11 research outputs found

    Control design for a mobile robot including tire behavior

    Full text link

    Multi-AGV transport of a load: state of art and centralized proposal

    Full text link
    [EN] An automatic guided vehicle is a battery powered fully automated industrial transport system. These vehicles are widely used in the industrial sector to substitute manual forklifts and conveyors. The challenge of using AGVs as transport agents in industrial environments goes through providing them with enough intelligence to develop collaborative tasks. Among these collaborative tasks the multi-AGV transport of one object is differentiated from the multi-object multi-AGV transport. This work presents the state of art of cooperative transport solutions of one object between several AGVs. The theoretical fundaments are revised and several proposals for its resolution are classified and described. Finally, an own proposal of one-object multi-AGV transport with omnidirectional AGVs based on centralized remote control is presented.[ES] Un vehículo de guiado automático (Automatic Guided Vehicle –AGV-en inglés) es un sistema de transporte industrial completamente automatizado y alimentado por baterías. Estos vehículos son ampliamente utilizados en el sector industrial para sustituir a carretillas manuales y cintas transportadoras. El reto de la utilización de AGVs como agentes de transporte en entornos industriales pasa por dotarles de la inteligencia suficiente para desarrollar tareas colaborativas. Dentro de estas tareas colaborativas se diferencia el transporte multi-AGV de un objeto del transporte multi-AGV de múltiples objetos. Este trabajo presenta el estado del arte de las soluciones de transporte cooperativo de un objeto entre varios AGVs. Para ello, se revisan los fundamentos teóricos y se clasifican y describen varias propuestas para su resolución. Finalmente se propone una solución de control remoto centralizado para el transporte de una carga con AGVs omnidireccionales.Este trabajo ha sido apoyado parcialmente por la Junta de Castilla y León bajo el proyecto 10/16/BU/0014 y la empresa ASTI Mobile Robotics.Espinosa, F.; Santos, C.; Sierra-García, JE. (2020). Transporte multi-AGV de una carga: estado del arte y propuesta centralizada. Revista Iberoamericana de Automática e Informática industrial. 18(1):82-91. https://doi.org/10.4995/riai.2020.12846OJS8291181Adăscăliţei, F., and Doroftei, I. 2011. Practical Applications for Mobile Robots based on Mecanum Wheels - A Systematic Survey. The Romanian Review Precision Mechanics, Optics & Mechatronics, nº 40.Alonso-Mora, J., Barker, S. and Rus, D. 2017. Multi-robot formation control and object transport in dynamic environments via constrained optimization. The International Journal of Robotics Research. August 10. https://doi.org/10.1177/0278364917719333Adreasson, H., Bourguerra, A., Driankov, D. and Karlsson. L. 2015. Autonomous Transport Vehicles: Where We Are and What Is Missing. IEEE Robotics & Automation Magazine · March 2015. https://doi.org/10.1109/MRA.2014.2381357Amoozgar, M. and Zhang, Y. 2012. Trajectory tracking of wheeled mobile robots: A kinematical approach. Mechatronics and Embedded Systems and Applications (MESA), 2012 IEEE/ASME International Conference on, 2012, pp. 275- 280. https://doi.org/10.1109/MESA.2012.6275574Bahíllo, A. y otros, 2019. Libro blanco sobre espacios inteligentes y tecnologías de posicionamiento y navegación en entornos de interior. Editorial: Universidad de Alcalá. ISBN: 978-84-17729-47-9.Berman, S. and Edan Y. 2002. Decentralized autonomous AGV system for material handling. International Journal of Production Research 40(15):3995-4006 https://doi.org/10.1080/00207540210146990Borenstein, J., 1995. Control and Kinematic Design of Multi-Degree-ofFreedom Mobile Robots with Compliant Linkage. IEEE Trans. On Robotis and Automation. Vol. 1 I , nº I. https://doi.org/10.1109/70.345935Borenstein, J., 2000. The OmniMate: a guidewire and beacon-free AGV for highly reconfigurable applications. Int. Journal of Production Research. Vol. 38, nº 9, June 15, 2000. https://doi.org/10.1080/002075400188456Bostel, A.J. and Sagar, V,K. 1996. Dynamic control systems for AGVs. Engineering. https://doi.org/10.1049/cce:19960403Brown, R., and Jennings, J., 1995. A pusher/steerer model for strongly cooperative mobile robot manipulation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots 3, 562-568Butdee, S., Vignat, F., Suebsomran, A. and Yarlagadda, P.K. 2009. Estimation and control of an automated guided vehicle. International Journal of Mechatronics and Manufacturing Systems 2(3). https://doi.org/10.1504/IJMMS.2009.026053Cameron, S. and Probert, P. 1994. Advanced Guided Vehicles: Aspects of the Oxford AGV Project. ISBN: 981-02-1393-X. https://doi.org/10.1142/2022Chen, X. and Li, Y., 2006. "Cooperative Transportation by Multiple Mobile Manipulators Using Adaptive NN Control". In 2006 International Joint Conference on Neural Networks.Chiacchio P. and Chiaverini S., 1997. Complex Robotic Systems. Springer. https://doi.org/10.1007/BFb0035182Choi, S.K., Easterday, O.T. 2001. An Underwater Vehicle Monitoring System and Its Sensors. Lecture Notes in Control and Information Sciences. Experimental robotics. Springer-Verlag. Pp551-560. ISBN 3-540-42104-1. https://doi.org/10.1007/3-540-45118-8_55Digani, V., Sabattini, L., Secchi, C., Fantuzzi, C., 2014. Hierarchical Traffic Control for Partially De-centralized Coordination of Multi AGV Systems in Industrial Environments. IEEE Inter-national Conference on Robotics & Automation (ICRA). https://doi.org/10.1109/ICRA.2014.6907764Esposito, J. M., Feemster, M. G., Smith, E., 2008. Cooperative manipulation on the water using a swarm of autonomous tugboats. in Proc. 2008 IEEE Int. Conf. on Robotics and Automation, pp. 1501-1506. https://doi.org/10.1109/ROBOT.2008.4543414Habibi, G., Kingston, Z., Xie, W., Jellins, M., McLurkin, J., 2015. Distributed Centroid Estimation and Motion Controllers for Collective Transport by Multi-Robot Systems. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2015.7139356Seattle, Washington Hasimoto, M. and Oba, F., 1993. Dynamic control approach for motion coordination of multiple wheeled mobile robots transporting a single object. Proceedings of the 1993 IEEE./RSJ lntemational Conference on lntelligent Robots and Systems Yokohama, Japan July 26-30, 1993Hichri, B., Adouane, L., Fauroux, J.C., Mezouar, Y. and Doroftei, I. Cooperative Mobile Robot Control Architecture for Lifting and Transportation of Any Shape Payload. Chapter book of Distributed Autonomous Robotic Systems pp 177-191. ISBN 978-4-431-55877-4. https://doi.org/10.1007/978-4-431-55879-8_13Hirata, Y., Kosuge, K., 2001. Motion Control of Distributed Robot Helpers Transporting a Single Object in Cooperation with a Human. Lecture Notes in Control and Information Sciences. Experimental robotics. SpringerVerlag. Pp. 313-322. ISBN 3-540-42104-1 https://doi.org/10.1007/3-540-45118-8_32Karim, N.A. and Ardestani, M.A. 2016. Takagi-Sugeno Fuzzy formation control of non-holonomic robots. 4th International Conference on Control, Instrumentation, and Automation (ICCIA), Qazvin, 2016, pp. 178-183. https://doi.org/10.1109/ICCIAutom.2016.7483157Kosuge, K., Oosumi, T., 1996. Decentralized Control of Multiple Robots Handling an Object. Proc. Of 1996 IEEE Int. Conf. on Intelligent Robots and Systems, pp.318-323.Kosuge, K., Sato., M., 1999. Transportation of a Single Object by Multiple Decentralized- Controlled Nonholonomic Mobile Robots. Proceedings of the 1999 IEEVRSJ International Conference on Intelligent Robots and Systems.Krnjak, A., and others. 2015. Decentralized control of free ranging AGVs in warehouse environments. IEEE International Conference on Robotics and Automation (ICRA). https://doi.org/10.1109/ICRA.2015.7139465Li, P.Y., 1999. Adaptive Passive Velocity Field Control. American Control Conference. June, 1999. https://doi.org/10.1109/ACC.1999.783145Li, P.Y., Horowitz, R., 2001. Passive Velocity Field Control (PVFC): Part I, Geometry and Robustness. IEEE Trans on Automatic Control. Vol 46, no 9. https://doi.org/10.1109/9.948463Li, P.Y., Horowitz, R., 2001. Passive Velocity Field Control (PVFC): Part II, Application to contour following. IEEE Trans on Automatic Control. Vol 46, no 9, 2001. https://doi.org/10.1109/9.948464Liu, Z., Hou, L., Shi, Y., Zheng X., Teng, H., 2018. A co-evolutionary design methodology for complex AGV system. Neural Computing and Applications 29:959-974. Springer. https://doi.org/10.1007/s00521-016-2495-1Meissner, H., Ilsen, R. and Aurich, J.C. 2017. Analysis of control architectures in the context of Industry 4.0. Proc CIRP 2017; 62:165-9. https://doi.org/10.1016/j.procir.2016.06.113Mellinger, D., Shomin, M., Michael, N., Kumar, V., 2010. Cooperative grasping and transport using multiple quadrotors. in Proc. Distributed Autonomous Robotic Systems, Lusanne, pp 545-558. https://doi.org/10.1007/978-3-642-32723-0_39Neumann, M.A., Chin, M.H., Kitts, C.A., 2014. Object Manipulation through Explicit Force Control Using Cooperative Mobile Multi-Robot Systems" Proceedings of the World Congress on Engineering and Computer Science 2014 Vol I WCECS 2014, 22-24 October, 2014, San Francisco, USAOhashi, F., Kaminishi, K., Figueroa, J.D., Kato, H., Ogata, T., Hara T., Ota, J., 2016. Realization of heavy object transportation by mobile robots using handcarts and outrigger. Robomech Journal. https://doi.org/10.1186/s40648-016-0066-yON5G, 2020. 5G e industria 4.0: retos y oportunidades de la cuarta revolución industrial. Observatorio Nacional 5G. https://on5g.es/wp-content/uploads/2020/01/INFORME-ON5G-NDUSTRIA4.0-DIGITAL.pdf. Accesible el 31/03/2020.Owen-Hill. A., 2018. Why we're entering the age of robotic logistics. Robotiq. https://blog.robotiq.com/why-were-entering-the-age-of-robotic-logisticsParker, L. E., 2008. Multiple mobile robot systems. Springer Handbook of Robotics. https://doi.org/10.1007/978-3-540-30301-5_41Peng, T., Qian, J., Zi, B., Liu, J., Wang, X., 2016. Mechanical Design and Control System of an Omnidirectional Mobile Robot for Material Conveying. International Conference on Digital Enterprise Technology DET-2016. DOI: 10.1016/j.procir.2016.10.068. Springer. https://doi.org/10.1007/s00521-016-2495-1Pereira, G.A.S., Pimentel, B.S., Chaimowicz, L., Campos, M.F.M., 2002. Coordination of multiple mobile robots in an object carrying task using implicit communication. Proceedings of the 2002 IEEE International Conference on Robotics & Automation" May 2002. https://doi.org/10.1109/ROBOT.2002.1013374Quinn, M., 2004. The evolutionary design of controllers for minimallyequipped homogeneous multi-robot systems. Ph.D. thesis. Brighton: University of SussexReister, D. B., 1991. A New Wheel Control System for the Omnidirectional HERMIES-III Robot. Proceedings of the IEEE Conference on Robotics and Automation Sacramento, California, April 7-12, pp. 2322-2327.Ria, 2019. Robotic Industries Association. "Logistic Robots" https://www.robotics.org/service-robots/logistics-robots, available on June 7th, 2019.Saha, S.K. and Angeles, J. 1989. Kinematics and dynamics of a three-wheeled 2-DOF AGV. ICRA 1989. https://doi.org/10.1109/ROBOT.1989.100202Santos, C., Espinosa, F., Martinez-Rey, M., Gualda, D. and Losada, C. 2019. Self-Triggered Formation Control of Nonholonomic Robots. Sensors 2019, 19(12), 2689; https://doi.org/10.3390/s19122689Solaque, L.E., Avendaño, D.R., Molina, M.A., Pulido, C.A. 2015. Sistema de transporte cooperativo desarrollado para un grupo de robots móviles noholonómicos usando el método Líder Virtual. Congreso internacional 264 de ingeniería mecatrónica y automatización - CIIMA 2015Suh, J.H., Lee, Y.J., Lee, K.S., 2005. Object-transportation control of cooperative AGV systems based on virtual-passivity decentralized control algorithm. Journal of Mechanical Science and Technology. Vol 19 n09, pp. 1720-1735. https://doi.org/10.1007/BF02984184Tan, W. 2002. Modeling and Control Design of an AGV. Proceedings of the 41st IEEE Conference on Decision and Control. 2002. https://doi.org/10.1109/CDC.2002.1184623Tuci, E., Alkilabi, M. H., & Akanyeti, O., 2018. Cooperative Object Transport in Multi-robot Systems: A Review of the State-of-the-Art. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2018.00059Ullrich, G., 2015. Automated Guided Vehicle Systems. A Primer with Practical Applications. Springer. ISBN 978-3-662-44813-7 DOI 10.1007/978-3-662-44814-4Wada, M. 1996. Holonomic and omnidirectional vehicle with conventional tires. IEEE Int. Conference on Robotics and Automation. May, 1996.Wada, M., Torii, R., 2013. Cooperative transportation of a single object by omnidirectional robots using potential method. 16th International Conference on Advanced Robotics (ICAR). https://doi.org/10.1109/ICAR.2013.6766543Wang, Z., Nakano, E., and Matsukawa, T., 1994. Cooperating multiple behavior based robots for object manipulation. in Proc. of the IEEE/RSJ/GI Int. Conf. on Intelligent Robots and Systems, Vol. 3 1524-1531 https://doi.org/10.1007/978-4-431-68275-2_33Wang, 2016 Z. Wang and M. Schwager. Chapter book: "Multi-robot manipulation without communication". Book: Distributed autonomous robotic systems. Editors: N.Y. Chong and Y.J. ISBN 978-4-431-55877-4 DOI 10.1007/978-4-431-55879-8Wang, T.M., Tao, Y., Liu, H., 2018. Current researches and future development trend of intelligent robot: a review. International Journal of Automation & Computing. Vol 15, no 5, pp. 525-548. https://doi.org/10.1007/s11633-018-1115-1Yan, Z., Jouandeau, N., and Cherif, A. A., 2013. A Survey and Analysis of Multi-Robot Coordination. Int. Journal of Advanced Robotic Systems 10 (12), 399. https://doi.org/10.5772/57313Yang, X., Watanabe, K., Kiguchi, K., Izumi, K., 2003. Coordinated transportation of a single object by two nonholonomic mobile robots. Artif Life Robotics. ISAROB 2003. https://doi.org/10.1007/BF02480885Yufka, A., Ozkan, M., 2015. Formation-based Control Scheme for Cooperative Transportation by Multiple Mobile Robots. International Journal of Advanced Robotic Systems, 2015. https://doi.org/10.5772/60972Zhan, M. and Yu, K. 2018. Wireless Communication Technologies in Automated Guided Vehicles: Survey and Analysis. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. https://doi.org/10.1109/IECON.2018.859278

    Motion Control for a Tracking Fluoroscope System

    Get PDF
    The tracking fluoroscope system (TFS), patent pending serial No.: 60/606,480; is a vehicle carrying a fluoroscope to take x-rays movies of person’s joints. Fluoroscope, composed by a radiation source and image intensifier, is moved by a total of four servomotors following a subject’s joint. At the same time, vehicle has to follow the subject using two driving-steering servomotor wheels. This thesis is the result of internal research developed at the Mechanical Aerospace Biomedical Engineering Department at the University of Tennessee. The thesis objective is to determine the best control system for TFS subject tracking function in linear translational mode. Kinematic and dynamic models of the system are presented. The kinematic and dynamic control systems are simulated, tested, and compared. A simplified dynamic model is introduced to compare its results with the kinematic model and evaluate if an extensive dynamic model is required. The dynamic model incorporates a tire friction model. Various tests are then carried out to compute the tire model parameters. To overcome some disadvantages presented by the dynamic and kinematic control systems, a stand-off distance controller is introduced and tested. The stand-off distance controller exhibits better performance than the other control systems proposed. Finally, a special setup process is developed and tested to rotate the vehicle in place

    Modeling, Analysis, and Control of a Mobile Robot for \u3ci\u3eIn Vivo\u3c/i\u3e Fluoroscopy of Human Joints during Natural Movements

    Get PDF
    In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while dynamically tracking the desired skeletal joint of interest. In addition to the joint tracking, this also requires the robotic platform to move along with the subject, allowing the manipulators to operate within their ranges of motion. A comprehensive dynamic model of the robotic fluoroscope prototype was created, incorporating the dynamic coupling of the system. Empirical data collected from an RGB-D camera were used to create a human kinematic model that can be used to simulate the joint of interest target dynamics. This model was incorporated into a computer simulation that was validated by comparing the simulation results with actual prototype experiments using the same human kinematic model inputs. The computer simulation was used in a comprehensive dynamic analysis of the prototype and in the development and evaluation of sensing, control, and signal processing approaches that optimize the subject and joint tracking performance characteristics. The modeling and simulation results were used to develop real-time control strategies, including decoupling techniques that reduce tracking error on the prototype. For a normal walking activity, the joint tracking error was less than 20 mm, and the subject tracking error was less than 140 mm

    Contribuições ao desenvolvimento e construção de um robô móvel com rodas

    Get PDF
    Dissertação (Mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica.O presente trabalho contribui para o desenvolvimento e construção de um robô móvel com rodas. A partir de trabalhos teóricos sobre controladores para robôs móveis com rodas, esta dissertação deriva as características necessárias em uma plataforma para desenvolvimento de testes práticos destes. Apresentam-se todas as decisões tomadas no projeto, relacionadas aos aspectos de hardware e firmware. O projeto mecânico define o leiaute e as características de atuação. Todas as peças são especificadas e cálculos de verificação da plataforma são apresentados. O projeto eletrônico proposto define os sensores, dispositivos e circuitos integrados que compõe a plataforma e proporciona uma solução para interligação destes componentes. Finalizando o trabalho a modelagem do sistema apresenta-se como suplemento ao objetivo do trabalho

    Intelligent Navigational Strategies For Multiple Wheeled Mobile Robots Using Artificial Hybrid Methodologies

    Get PDF
    At present time, the application of mobile robot is commonly seen in every fields of science and engineering. The application is not only limited to industries but also in thehousehold, medical, defense, transportation, space and much more. They can perform all kind of tasks which human being cannot do efficiently and accurately such as working in hazardous and highly risk condition, space research etc. Hence, the autonomous navigation of mobile robot is the highly discussed topic of today in an uncertain environment. The present work concentrates on the implementation of the Artificial Intelligence approaches for the mobile robot navigation in an uncertain environment. The obstacle avoidance and optimal path planning is the key issue in autonomous navigation, which is solved in the present work by using artificial intelligent approaches. The methods use for the navigational accuracy and efficiency are Firefly Algorithm (FA), Probability- Fuzzy Logic (PFL), Matrix based Genetic Algorithm (MGA) and Hybrid controller (FAPFL,FA-MGA, FA-PFL-MGA).The proposed work provides an effective navigation of single and multiple mobile robots in both static and dynamic environment. The simulational analysis is carried over the Matlab software and then it is implemented on amobile robot for real-time navigation analysis. During the analysis of the proposed controller, it has been noticed that the Firefly Algorithm performs well as compared to fuzzy and genetic algorithm controller. It also plays an important role inbuilding the successful Hybrid approaches such as FA-PFL, FA-MGA, FA-PFL-MGA. The proposed hybrid methodology perform well over the individual controller especially for pathoptimality and navigational time. The developed controller also proves to be efficient when they are compared with other navigational controller such as Neural Network, Ant Colony Algorithm, Particle Swarm Optimization, Neuro-Fuzzy etc

    Self–organised multi agent system for search and rescue operations

    Get PDF
    Autonomous multi-agent systems perform inadequately in time critical missions, while they tend to explore exhaustively each location of the field in one phase with out selecting the pertinent strategy. This research aims to solve this problem by introducing a hierarchy of exploration strategies. Agents explore an unknown search terrain with complex topology in multiple predefined stages by performing pertinent strategies depending on their previous observations. Exploration inside unknown, cluttered, and confined environments is one of the main challenges for search and rescue robots inside collapsed buildings. In this regard we introduce our novel exploration algorithm for multi–agent system, that is able to perform a fast, fair, and thorough search as well as solving the multi–agent traffic congestion. Our simulations have been performed on different test environments in which the complexity of the search field has been defined by fractal dimension of Brownian movements. The exploration stages are depicted as defined arenas of National Institute of Standard and Technology (NIST). NIST introduced three scenarios of progressive difficulty: yellow, orange, and red. The main concentration of this research is on the red arena with the least structure and most challenging parts to robot nimbleness

    Modelado cinemático y control de robots móviles con ruedas

    Full text link
    La presente tesis doctoral aborda el modelado cinemático y control de robots móviles con ruedas. En concreto se profundiza en los siguientes temas: - Se plantea el modelado de una rueda genérica que incluye todos los tipos comunes: fija, orientable centrada, orientable descentrada (castor) y sueca (también denominada universal, Mecanum ó Ilon). - Se describe un procedimiento eficiente para generar modelos cinemáticos, basado en el concepto de espacio nulo, el cual se aplica posteriormente a un gran número de tipos de robots móviles. Todos estos modelos son caracterizados en cuanto a su precisión o transmisión de errores (isotropía). - Se deduce un novedoso planteamiento geométrico que establece la singularidad de cualquier modelo cinemático de cualquier robot con ruedas. Este planteamiento se aplica a todos los tipos de robots anteriores. - Se desarrolla el modelado dinámico del robot para, a través de tres sucesivas aproximaciones y de la caracterización de las fricciones en las ruedas, llegar a un modelado cinemático con deslizamiento. - Se plantea un esquema de control del robot con tres bucles de control anidados (dinámico, cinemático y de planificación) que es conceptualmente similar a los empleados en robots manipuladores. En particular se profundiza en el bucle cinemático de nivel medio e indirectamente en el de planificación, al caracterizar las referencias que puede seguir cada tipo de robot sin error. - Se presentan experiencias de comprobación de los algoritmos de modelado con deslizamiento y de control del robot, realizadas sobre una plataforma eléctrica industrial (carretilla industrial). - Finalmente se desarrollan dos soluciones para las aplicaciones de aparcamiento en paralelo, con pre-planificación y caracterización geométrica, y de seguimiento de línea por visión.Gracia Calandin, LI. (2006). Modelado cinemático y control de robots móviles con ruedas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1840Palanci
    corecore