2,716 research outputs found

    FATODE: A Library for Forward, Adjoint, and Tangent Linear Integration of ODEs

    Get PDF
    FATODE is a FORTRAN library for the integration of ordinary differential equations with direct and adjoint sensitivity analysis capabilities. The paper describes the capabilities, implementation, code organization, and usage of this package. FATODE implements four families of methods -- explicit Runge-Kutta for nonstiff problems and fully implicit Runge-Kutta, singly diagonally implicit Runge-Kutta, and Rosenbrock for stiff problems. Each family contains several methods with different orders of accuracy; users can add new methods by simply providing their coefficients. For each family the forward, adjoint, and tangent linear models are implemented. General purpose solvers for dense and sparse linear algebra are used; users can easily incorporate problem-tailored linear algebra routines. The performance of the package is demonstrated on several test problems. To the best of our knowledge FATODE is the first publicly available general purpose package that offers forward and adjoint sensitivity analysis capabilities in the context of Runge Kutta methods. A wide range of applications are expected to benefit from its use; examples include parameter estimation, data assimilation, optimal control, and uncertainty quantification

    Order reduction methods for solving large-scale differential matrix Riccati equations

    Full text link
    We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies, by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces, as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890
    • …
    corecore