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ABSTRACT 

 

Reservoir modelling is an important tool in the management of hydrocarbon reservoirs. 

In fact, reservoir models are often a cost effective and time efficient alternative to a trial-

and-error field management approach. Reservoir models allow oil companies to simulate 

various reservoir conditions and management strategies without having to spend 

considerable amount of money and time. Consequently, it is crucial to find ways to 

generate fast and accurate reservoir models to assist in making these crucial decisions. 

Within a reservoir simulator, the time discretization scheme is one of the most sensitive 

and computer intensive steps of the entire simulator. As a result, it is vital to find an 

efficient ways to perform this step in order to optimize the performance of the simulator.  

During the time discretization process, the choice of the time-step is a crucial decision. 

In fact, the time-step affects the computation time, the convergence, the accuracy and the 

amount of memory space used by the computer to run the simulation. We have to pick a 

time-step that is small enough to allow the solution to converge, but also sufficiently 

large to avoid high computation times. In order to tackle this problem, there are several 

adaptive time-stepping methods developed to automatically adjust the time-step and 

make sure that it remains within an optimal range. In this study, we investigate the 

effectiveness of using the Proportional-Integral-Derivative controller (PID) to regulate 

the error and the variations in pressure and saturation during the simulation of a reservoir 

system. We compare the performance of the PID controller with the basic controller 

conventionally used in adaptive time-stepping. The results show that PID algorithm used 
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to control the variations in pressure and saturation can be more efficient than the basic 

controller as long as the proper PID coefficients are used in the simulation. We were 

able to reduce the computation cost with the use of the PID controller while maintaining 

the same level of accuracy as the basic method. The manual tuning of the controller can 

be time-consuming and future would have to include automatic tuning algorithms 

specifically tailored for adaptive time-stepping purposes. Otherwise, the benefit 

associated with using the PID controller would be dwarfed by the time-consuming 

manual tuning process. We also tested the PID controller to regulate the error within the 

Newton-Raphson loop. The results showed that the use of the PID controller inside this 

loop results in instabilities that cause the reservoir simulator to run inefficiently.  
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Time discretization is one the most computer-intensive and error-prone stage of a 

reservoir simulator. During this process, the time derivatives of the underlying partial 

differential equation are approximated and the solution of the system is obtained for a 

small time increment at every iteration. It is important to choose the right time-step 

during this stage to ensure an optimal performance of the reservoir simulator. The time-

step significantly affects the convergence rate, the stability, the accuracy, and the 

computation time of the reservoir simulator. As the time-step increases, the convergence 

rate decreases and the solution of the system becomes less accurate. At the same time, an 

increase in the time-step also leads to a decrease in the computational time. 

Consequently, the choice of the time-step becomes an optimization problem where the 

user has to find a happy medium between computation speed and accuracy. In an 

Implicit Pressure, Explicit Saturation formulation (IMPES), the computation required 

per iteration is low, but the time-step is limited to a small range due to stability issues 

[20]. In a relatively more stable fully-implicit reservoir simulator, choosing an optimal 

time-step becomes even more critical. In fact, the computation cost associated with a 

fully implicit discretization scheme is substantial and there are less restriction on the 

time-step due to relatively good stability; it is therefore imperative to maintain the time-

step in an optimal range throughout the simulation. To that end, there are numerous 

algorithms designed to automatically adjust the time-step. Among these methods, the 
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PID has proven to effectively control the time-step and generate a smooth and robust 

step response in problems involving ordinary differential equations [11]. Despite these 

positive results, the application of the PID controller to reservoir simulators has been 

limited. In our study, we look more in depth at the advantages and drawbacks of using 

the PID controller on a two-phase flow reservoir simulator. We compare the PID 

controller’s performance to a basic adaptive step-size method used in reservoir 

simulation. We perform a sensitivity analysis to determine the impact of each PID 

coefficient on the response of the system. We also look at the effect of permeability and 

well positions on the performance of the PID controller.  

 

1.1 Literature review 

Reservoir modelling has considerably evolved throughout the years from simple 

analytical models to geologically complex numerical models with intricate fracture 

networks and grid refinements. In 1942, Bruce [3] published a study describing a 

mathematical model used to predict the pressure changes during oil recovery. His 

relatively simple model assumed the oil in the reservoir to be “a homogeneous 

compressible liquid…contained in an infinite, horizontal, uniformly thick and 

homogeneous porous medium” [3]. He used a differential equation to represent the 

distribution of the density across the reservoir and was able to derive the analytical 

solution. He was also able to relate the change in density at any given point in the 

reservoir to the pressure change during oil recovery. This mathematical model had a lot 

of simplifying assumptions and was easy to implement. The simplicity of the model also 
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led to poor forecasting capabilities in reservoirs with more geological complexities. In 

order to improve the accuracy of the predictions, engineers had to design more complex 

models to obtain a realistic picture of the reservoirs’ dynamic behavior. With this added 

complexity, they had to move away from simple analytical solutions and use 

computational methods to solve intricate reservoir systems [6]. Finites difference was 

introduced in the 1930s and later improved to solve complex problems as seen in 

reservoir modelling. In finite difference, the derivatives are approximated using Taylor 

series expansion and the solution is obtained in small increments [23]. In the 1960s, the 

black oil model was generated and it initially used finite difference to solve the reservoir 

system [6]. The black oil model assumed a constant hydrocarbon fluid composition in 

the reservoir and only distinguished the hydrocarbon as either oil or gas [18]. Black oil 

reservoirs were effective at predicting the behavior of reservoirs with a mixture of heavy 

and light hydrocarbon components. However, in reservoirs with a wide range of 

hydrocarbon compositions, the model broke down and the forecasting became inaccurate 

[18]. The compositional model was developed in the 1970s to model reservoirs with 

more diverse hydrocarbon compositions and phase behavior. In this model, the reservoir 

contains hydrocarbons of different compositions [6]. Each hydrocarbon is treated 

uniquely and has a distinct phase behavior model in the reservoir simulator. This model 

is more complex and has a higher computational cost than the black oil model. Today, 

we are able to model even more complex oil reservoirs with involved well management 

schemes, fracture networks, intricate grid designs and surface facilities [6]. As the 

reservoir model gets more complex, so thus the computational cost. The introduction of 
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parallel computing has significantly helped alleviate this cost [6]. However, the increase 

in complexity of reservoirs models appears to outpace the upgrades in processors and 

computing techniques in the oil industry. As a result, it is important to optimally run 

these new simulators to make sure that the computation time is minimized and the 

accuracy enhanced. In reservoir models, the time discretization stage is one of the most 

sensitive stages of the entire simulator. The computing speed and accuracy of the 

simulator strongly depends on the choice of the time-step during this process. A time-

step that is too small can lead to large computing time, while a time-step too large can 

cause instabilities in the reservoir simulator. With the proper adaptive time-stepping 

method, we can achieve the best performance and allow practical run time of complex 

simulators in field environments.  

 There are various time-stepping strategies used in computational methods 

depending on the type of problem and the user preferences. The use of adaptive time-

stepping schemes has proven to be much more efficient than the constant time-step 

method. In 2010, Bender et al [2] compared an adaptive time-stepping method with a 

constant time-step scheme on an incompressible fluid flow problem. They were able to 

show that adaptive time-stepping was much more efficient than the constant time-step 

scheme. They obtained a lower computation time with the same accuracy in the solution. 

One of the most popular adaptive time-stepping controllers used to control the error is 

the basic controller described by Soderlind [22] using the equation below:  

ℎ𝑛+1 = (
𝜖

𝑟𝑛
)

1/𝑘

ℎ𝑛 
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where ℎ𝑛+1 is the time-step at iteration 𝑛 + 1, ℎ𝑛 is the time-step at iteration 𝑛, 𝜖 is the 

user-defined tolerance and 𝑟𝑛 is the local error estimate at iteration 𝑛 and 𝑘 is a constant 

that depends on the method used to solve the system. If the error 𝑟𝑛 is greater than the 

tolerance 𝜖, the ratio (
𝜖

𝑟𝑛
)

1/𝑘

 becomes less than 1 and so we get a reduction in the time-

step for the next iteration (ℎ𝑛+1< ℎ𝑛). Similarly if the local error is less than the 

tolerance, we get an increase in the time-step at the next iteration. In reservoir 

engineering, the use of adaptive time-stepping method dates back to the 80’s [14]. In 

1980, Jensen [14] presented an automatic time-step selection method that he applied to a 

finite difference steam injection simulator. In his study, he described various schemes 

that would be applicable to reservoir simulations and compared them to an algorithm 

that he developed based on a first order predictor-corrector scheme represented on Figure 

1. In this algorithm, the goal is to control the maximum change in the solution 𝑚𝑎𝑥|𝑑𝑐𝑖| 

by automatically adjusting the time-step throughout the simulation. This maximum 

change is used as an estimate of the error in the solution. β, ε and α are user-defined and 

can be adjusted based on the user’s preferences. The algorithm uses ‖𝑑𝑡‖, the absolute 

value of the maximum element of the vector 𝑑𝑐𝑖 , and compares this value to the 

tolerance range defined by the user. If the criteria of the user is not met, the current step 

is rejected and the time-step is divided by two for the next iteration. If the criteria is met, 

the current step is accepted and the time-step used in the next iteration depends on the 

value of ‖𝑑𝑡‖. In that case, two possible formulas can be used to compute the time-step 

of the next iteration as described in Figure 1. 
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Figure 1: Jensen adaptive time-step algorithm. This time-stepping method is used to control the 

maximum change in the solution ‖𝒅𝒕‖ [14] 

 

 

Jensen noted that the time-response using this algorithm was easier to implement 

and resulted in a lower computation time, and a smoother time-step response. In adaptive 

time-stepping, The PID has also proven to enhance the performance of computer 

simulations as described by Soderlind [11].   

Engineers have relied on PID controllers for almost half a century to regulate a 

wide variety of industrial processes [25]. Throughout the years, the PID controller has 

proven to be a stable and reliable control system method. It is a relatively simple and 

robust control technique that has a broad range of application in engineering. The use of 

PID controllers to regulate step-sizes in computer simulations is more recent. In 1988, 

Soderlind [11] used a Proportional-Integral (PI) controller to regulate the time-step of an 

ordinary differential equation. Soderlind was able to obtain a smooth and robust time-
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step response with the PI controller. He tested the PI controller with various tolerances 

and recorded the local error estimate response, the total number of time-steps used, and 

the dynamic time-step response of the PI controller. These tests were performed on a 

variety of differential equations problems that were solved using an explicit Runge-Kutta 

method. The results showed that the PI controller was faster than the old method while 

maintaining the same accuracy. Soderlind’s study highlighted the potential of the PI 

controller as a feedback loop in time discretization. It helped pave the way for the use of 

the Proportional-Integral-Derivative (PID) controllers in other types of problems 

including fully implicit time discretization simulators. In 2002 Valli et al [24]. used the 

PID controller as an adaptive time-step method for a 2D viscous flow and heat transfer 

problem. They used finite element to build the simulator and compare the PID controller 

to another adaptive time-stepping strategy. The PID controller was used to control both 

the error and the convergence rate. Valli et al [24]. obtained a smaller number of steps 

with the PID controller without much loss in accuracy. They achieved a smooth and 

robust time-step response similar to Soderlind’s results.  

The use of the PID controller as an adaptive time-step method is not wide    

spread in reservoir modelling and it effectiveness at controlling reservoir time 

discretization is not well understood. Consequently, our study aims at correcting this 

trend and focuses on applying this method to reservoir simulators. This study provides a 

unique and novel insight into the effectiveness of a PID controller for time-step control. 

It allows us to better understand the advantages and drawbacks of using such a controller 

endowed with rigorous error criteria on a fully implicit simulator.  
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1.2 Objective of the study 

In this paper, we assess the efficacy of a PID (proportional-integral-derivative) controller 

at regulating the time-step used during the time discretization of a reservoir simulator. 

We formulate the adaptive time-stepping in a control system framework and aim at 

achieving the following objectives: 

1. Assess the efficiency of the PID controller using various metrics 

(computing time, total number of time steps, number of rejected steps) 

and compare it to adaptive time-stepping techniques currently used in the 

industry.  

2. Perform a sensitivity analysis to determine the effect of varying PID 

controller parameters, and how these changes affect the response of the 

PID feedback loop. 

3. Evaluate the robustness of the PID controller by testing it using various 

types of reservoir simulators.    

 

1.3 Thesis organization 

In chapter two, we discuss the fundamentals behind the two phase flow reservoir 

simulator that we use in this study. We explain the implicit time discretization process 

and how the Newton-Raphson scheme is used to converge to the true solution. In chapter 

three, we discuss the fundamental of the PID controller and we go over the typical 

response of the controller and the effect of each coefficient. We formulate reservoir 

time-stepping in a control system framework and apply PID control techniques for 
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adaptive time stepping. We also derive the characteristic equation of the discrete PID 

used in our study. The PID controller is represented by a system that outputs the time-

step of the next iteration using local error estimates, pressure and saturation changes 

obtained from the previous time discretization.  In chapter four, we talk about the results 

obtained with the PID controller and compare them to the ones obtained using the basic 

controller. We compare the PID control strategy with other adaptive heuristics methods 

using the computation time, total number of time steps, number of rejected steps as 

metrics. We also evaluate the robustness of the PID controller gains, that is, 

proportional, integral and derivative gains, by varying the initial condition of the 

reservoir simulator and recording the performance. Chapter five focuses on the 

conclusion that we reach after analyzing the results and discuss future work. 
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CHAPTER II 

RESERVOIR SIMULATION  

 

Computer simulators are used to represent oil reservoirs for the purpose of predicting 

flow rate, pressure, saturation among other variables over the life cycle of the reservoir. 

In our study, we focus on a two-phase flow reservoir simulator containing both oil and 

water. In this type of reservoir simulator, two sorts of solutions are needed to completely 

characterize the system: pressure and saturation. In our study, these solutions are 

obtained by applying finite difference to the fundamental differential equations of the oil 

reservoir. In finite difference, the derivative of a differential equation is approximated 

using Taylor’s series expansion as described by Li [16]:  

𝜕𝑢

𝜕𝑡
=

𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−1

∆𝑡
+ 𝑅𝑡 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒     [2.1] 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑅𝑡  𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒   [2.2] 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛−1

2∆𝑡
+ 𝑅𝑡 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  [2.3] 

Where 𝑢 represents the time dependent state variable of the system, ∆𝑡 is the time-step 

used in the approximation, and the subscripts 𝑛 represent the time iteration during the 

reservoir simulation. 𝑅𝑡 represents the residual error created with the approximation. 

There are three types of finite differences methods (FDM): backward, forward and 

central. The backward and forward differences are first-order approximations while the 

central difference is a second order estimate. In our simulator, the time and space 
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derivative approximations are obtained using a combination of first and second order 

FDM. The error in the approximation depends on the size of the time-step used to 

generate the estimate. As the time-step of the FDM gets larger, the magnitude of the 

error increases. Thus, it is important to properly manage the value of the time-step 

throughout the simulation to keep the error in check. The control of the time-step 

depends on a lot of factors including the type of reservoir modelled. In our case, we 

simulate a two-phase flow reservoir with some simplifying assumptions discussed in the 

next section.  

 

2.1 Two-phase flow simulator  

The general governing equation of a two-phase flow described by Aziz et al [1]: 

𝜕

𝜕𝑡
(∅𝜌𝑙𝑆𝑙) = ∇. [

𝜌𝑙

𝜇𝑙
𝑘𝑟𝑙𝐾(∇𝑃𝑙 − 𝜌𝑙𝑔∇𝑍)] − 𝑚𝑙̃     [2.4] 

In our study, we assume the reservoir fluids immiscible, the gravitational and 

capillary forces negligible. We also assume water incompressible and oil only slightly 

compressible. Permeability varies in the horizontal plane and is assumed to be constant 

along the vertical axis. We mainly use the forward and central difference to approximate 

the space and time derivatives.  

A system of four equations and four unknowns defines the reservoir system as 

described in equations 2.5 to 2.8. Equation 2.7 and 2.8 represent the partial differential 

equation of oil and water respectively. The left-hand side of these equations is composed 

of space variables while the right-hand side contains the time variables. In equation 2.9 
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and [2.10], we apply forward difference to the time derivatives to obtain a first-order 

approximation used in our simulator.    

𝜕

𝜕𝑥
[𝐾𝑜

ℎ𝑜

𝐵𝑜
(

𝜕𝑝𝑜

𝜕𝑥
− 𝑝𝑜

𝜕𝑧

𝜕𝑥
)] +

𝜕

𝜕𝑦
[𝐾𝑜

ℎ𝑜

𝐵𝑜
(

𝜕𝑝𝑜

𝜕𝑦
− 𝑝𝑜

𝜕𝑧

𝜕𝑦
)] =

𝜕

𝜕𝑡
(∅

𝑆𝑜

𝐵𝑜
) + 𝑚𝑜̃           [2.5] 

𝜕

𝜕𝑥
[𝐾𝑤

ℎ𝑤

𝐵𝑤
(

𝜕𝑝𝑤

𝜕𝑥
− 𝑝𝑤

𝜕𝑧

𝜕𝑥
)] +

𝜕

𝜕𝑦
[𝐾𝑜

ℎ𝑤

𝐵𝑤
(

𝜕𝑝𝑤

𝜕𝑦
− 𝑝𝑤

𝜕𝑧

𝜕𝑦
)] =

𝜕

𝜕𝑡
(∅

𝑆𝑤

𝐵𝑤
) + 𝑚𝑤̃      [2.6] 

{
𝑆𝑜 + 𝑆𝑤 = 1               [2.7]

𝑝𝑐(𝑆𝑤) = 𝑝𝑜 − 𝑝𝑤     [2.8]
 

The time derivatives approximations are represented by the equations below 

𝜕

𝜕𝑡
(∅

𝑆𝑜

𝐵𝑜
) =

1

∆𝑡
[(∅

𝑆𝑜

𝐵𝑜
)

𝑛+1

− (∅
𝑆𝑜

𝐵𝑜
)

𝑛

]           [2.7] 

𝜕

𝜕𝑡
(∅

𝑆𝑤

𝐵𝑤
) =

1

∆𝑡
[(∅

𝑆𝑤

𝐵𝑤
)

𝑛+1

− (∅
𝑆𝑤

𝐵𝑤
)

𝑛

]        [2.8] 

 

𝜕

𝜕𝑡
(∅

𝑆𝑜

𝐵𝑜
) ≈ −(∅𝑏𝑜)𝑛+1

𝑆𝑤𝑛+1 − 𝑆𝑤𝑛

∆𝑡
+ (1 − 𝑆𝑤)𝑛[𝑏𝑜

𝑛+1∅′ + ∅𝑛𝑏𝑜
′ ]

𝑃𝑜
𝑛+1 − 𝑃𝑜

𝑛

∆𝑡
  [2.9] 

𝜕

𝜕𝑡
(∅

𝑆𝑤

𝐵𝑤
) ≈ [(∅𝑏𝑤)𝑛+1 − 𝑆𝑤

𝑛𝑏𝑛𝑏𝑤
′ 𝑝𝑐

′ ]
𝑆𝑤𝑛+1 − 𝑆𝑤𝑛

∆𝑡

+ [𝑆𝑤
′ 𝑏𝑤

𝑛+1∅′ + 𝑆𝑤
′ ∅𝑛𝑏𝑜

′ ]
𝑃𝑜

𝑛+1 − 𝑃𝑜
𝑛

∆𝑡
   [2.10] 

The time and space derivative approximations are replaced back into the differential 

equations. The system of equations generated from all the nodes of the reservoir can be 

represented in matrix form as described in equation 2.11. The size of the matrices in the 

reservoir system depend on the total number of nodes that it contains.  

𝑇𝑋 = 𝐵
𝑑𝑋

𝑑𝑡
+ 𝑄 + 𝐺      [2.11] 
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The matrix 𝑋 = [
𝑃𝑜
𝑆𝑤

] represents the state vector and contains oil pressure and water 

saturation of each node of the reservoir system. T is the transmissibility matrix and 

contains coefficients related to the fluid and formation properties. The accumulation 

matrix D stores the coefficient associated with the derivative of the pressure with respect 

to time. The matrix G contains the gravitational parameters used to factor in the effect of 

gravity on the system. Q is the source/sink vector and is used to model the presence of a 

production or an injection well. These matrices are populated using variables that are in 

some cases pressure-dependents. In fact, viscosity, formation volume factor, porosity 

and density are variables that depend on the pore pressure. In our simulator, we use an 

exponential regression to characterize this dependency. The general form of the 

exponential function is: 

𝐹 = 𝐹0𝑒𝑎(𝑝−𝑝𝑟𝑒𝑓)                            [2.12] 

Where 𝐹 is the value of the pressure-dependent variable at a pressure 𝑝, 𝑝𝑟𝑒𝑓 is the 

reference pressure and 𝑎 is a constant. After every iteration, the pressure-dependent 

variables are updated using equation 2.12. These variables are then used to populate the 

simulator matrices. During each iteration, once the transmissibility, accumulation, 

gravity and sink are constructed, the system is solved for the next time increment. This 

stage of the simulator is one the most sensitive of the entire simulation. In the next 

section, we discuss this process in more details.   
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2.2 Time discretization  

We use an implicit scheme to obtain the time-dependent solution of the system. The 

solution at time 𝑛 + 1 is guessed and the Newton-Raphson method is used to converge 

toward the true solution of the system. Equation 2.13 to 2.15 describe the derivation of 

the residual function used to perform the Newton-Raphson scheme.  

𝑇𝑛+1𝑋𝑛+1 = 𝐵𝑛+1 (
𝑋𝑛+1 − 𝑋𝑛

∆𝑡
) + 𝐺 + 𝑄   [2.13] 

𝑇𝑛+1 ≈ 𝑇𝑛 + 𝜗(∇𝑡)𝑇𝑛𝑋𝑛+1 = 𝐵𝑛 (
𝑋𝑛+1 − 𝑋𝑛

∆𝑡
) + 𝐺 + 𝑄     [2.14] 

(𝑇𝑛+1 −
1

∆𝑡
𝐵𝑛+1) 𝑋𝑛+1 +

1

∆𝑡
𝐵𝑛𝑋𝑛 − 𝐺 − 𝑄 = 0       [2.15] 

𝐹(𝑋𝑛+1) = 0 

Since our reservoir simulator is in matrix form, we can rewrite the Newton-Raphson 

scheme in the matrix form:  

𝑋𝑝+1
𝑛+1 = 𝑋𝑝

𝑛+1 − 𝐽−1(𝑋𝑝
𝑛+1)𝐹(𝑋𝑝

𝑛+1)    𝑤ℎ𝑒𝑟𝑒 𝑝 ≤ 𝑝𝑚𝑎𝑥         [2.16] 

Where 𝑝 represents the Newton-Raphson iteration and 𝑛 represent the time iteration. 𝐽 is 

the Jacobian and 𝐹 is the residual function. We have also incorporated a maximum 

number of Newton-Raphson iteration 𝑝𝑚𝑎𝑥 in our algorithm to promptly identify 

divergence and take corrective action. Whenever the maximum number of iterations 

𝑝𝑚𝑎𝑥  is reached, the time-step is reduced by half and the Newton-Raphson scheme is 

repeated until the solution converges within the tolerance. We can also observe that the 

equation 2.16 is dependent on the time-step ∆𝑡, which can change from iteration to 

iteration. 
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 In the Newton-Raphson scheme, the determination of the Jacobian 𝐽(𝑋𝑝
𝑛+1) can be 

error-prone and computer-intensive. In our simulator, we approximate the Jacobian 

using an analytical solution to help minimize the computation cost. In order to solve the 

Newton-Raphson equation, we use a linear factorization method. This method is more 

time efficient and accurate than performing a matrix inversion [9]. 

 In our study, we record the total number of Newton-Raphson iterations and the 

total number of time-steps counted during the simulation. We also use the ratio of the 

total number of Newton-Raphson iterations to the total number of time-steps: 

𝑁𝑅𝑟𝑎𝑡𝑖𝑜 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑅 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑒𝑝𝑠
 

This ratio gives an estimate of how efficient the Newton-Raphson scheme is. If the ratio 

is high, it means that the average convergence rate of the reservoir simulator is low and 

vice-versa. It is one of the criteria used to evaluate the performance of the PID controller 

and compare the adaptive time-stepping methods.  

The efficiency of the Newton-Raphson method strongly depends on the first 

guess and the size of the time-step. The stability of the Newton-Raphson scheme 

increases with decrease in the time-step. As the time-step is reduced, the Newton-

Raphson method becomes more likely to converge to a solution. At the same time, 

reducing the time-step can also lead to an increase in the total number of Newton-

Raphson iterations required to obtain the solution. As a result, the choice of the time-step 

for the N.R scheme becomes a trade-off between stability and total number of iteration.  
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2.3 Time-stepping  

As we see on equation 2.14, the residual function used in the N.R iteration is dependent 

on the time-step ∆𝑡. An increase in the time-step leads to lower convergence rate and 

higher error [13, 12]. As a result, it is crucial the optimally choose the time-step in order 

to obtain a solution within the user-defined tolerance. In our study, we adjust the time-

step in order to control the change in pressure and change in saturation per iteration. As 

the time step increase, so thus the change in pressure and saturation. In order to obtain a 

solution that captures all the critical changes in pressure and saturation, the time-step is 

reduced whenever there are high pressure and saturation changes. Similarly, the 

resolution controller increases the time-step whenever there are low changes in pressure 

and saturation in order to reduce the computational cost of the simulation. In chapter 3, 

we discuss in more details the resolution algorithm and the PID controller used in our 

study and we compare it to a basic controller.  

 

2.4 Linear solver 

The linear factorization method used in our simulator is the Matlab direct solver 

function. The algorithm behind this function depends on the nature of the input matrices. 

The general form of a system of linear equation solved by the backlash function can be 

written in the form: 

𝐴𝑥 = 𝑏 

 In our simulator, A represents the Jacobian  𝐽(𝑋𝑝
𝑛+1), 𝑥 represents the solution at the 

time iteration 𝑛 + 1: 𝑋𝑝+1
𝑛+1, and b is 𝐽(𝑋𝑝

𝑛+1) 𝑋𝑝
𝑛+1 − 𝐹(𝑋𝑝

𝑛+1). In this thesis, we use the 
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Matlab direct solver based on the Gaussian elimination with partial pivoting to solve the 

system of equations [17]. While the backlash function is less error-prone than the matrix 

inversion approach, there are nonetheless error accrued during this process. These errors 

are mainly due to the rounding of coefficients. The rounding errors can be estimated 

using the residual function defined by:  

𝑅_𝐿𝑈 =  𝐽(𝑋𝑝
𝑛+1) 𝑋𝑝

𝑛+1 − 𝐹(𝑋𝑝
𝑛+1) −  𝐽(𝑋𝑝

𝑛+1)𝑋𝑝+1
𝑛+1′

 

Where 𝑋𝑝+1
𝑛+1’is the solution obtained using the LU factorization. In our simulator, we 

noted that the residual error of the LU factorization is low compare to the residual error 

generated from the Newton-Raphson scheme itself. As a result, we did not set a 

tolerance for the factorization residual and assumed the error to be negligible for the 

purposes of this simulator. 
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CHAPTER III 

CONTROL-ORIENTED TIME-STEPPING 

 

In this chapter we present the control algorithms used in our simulation and the 

derivation of the PID controller characteristic equation. We also present a general 

introduction to control system theory and how it is applied to adaptive time-stepping. In 

this chapter, we also derive the basic controller for the change in pressure and saturation 

used as a performance benchmark for the PID controller.  

There have been several adaptive time-stepping methods developed throughout 

the years in numerical methods [3]. The choice of the method depends on the type of 

simulator used and user preferences. For error control algorithms, the relationship 

between the error and the time-step is also important to determine the appropriate 

adaptive time-step technique to use. For small time-steps and explicit Runge-Kutta 

methods, the relationship between the time-step and the error can be represented by 

equation 3.1 [10] 

𝑟𝑛 = 𝛼ℎ𝑛
𝑘     [3.1] 

where 𝑟𝑛  represents the local error estimate, 𝛼 is the norm of the error function. 𝑘 

represents the order of the method used to solve the differential equation, ℎ represents 

the time-step and 𝑛 represents the time discretization iteration. Let’s denote 𝜀 the error 

tolerance defined by the user in the reservoir simulator. If we want the local error at the 

next iteration 𝑛 + 1 to be equal to the tolerance 𝜀, we can replace 𝑟𝑛 by 𝜀 in equation 3.1 

and we get:  
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𝜀 = 𝛼ℎ𝑛+1
𝑘      [3.2] 

By writing this equation, we are assuming that the norm of the error function does not 

change considerably from one iteration to the other. This assumption is generally 

reasonable, but it is important to note that it is not always the case [10]. We combine 

equation 3.1 and 3.2 to get: 

𝜀

𝑟𝑛
=

𝛼ℎ𝑛+1
𝑘

𝛼ℎ𝑛
𝑘             [3.3] 

 

Simplifying equation 3.3, we get the basic equation for explicit Runge-Kutta methods 

described by Gustafson [11]: 

 

ℎ𝑛+1 = (
𝜖

𝑟𝑛
)

1/𝑘

ℎ𝑛       [3.4] 

This equation is the most basic control system algorithm and is designed to bring the 

local error within the tolerance in one iteration.  

 

3.1 Basic controller  

We can also derive a similar controller for the change in pressure and saturation of a 

fully-implicit reservoir simulation. In fact, for small time-steps, based on a first order 

Taylor approximation [4], we can assume the relation between the change in pressure 

and time-step as:  

ℎ𝑛 = 𝑎 ∗ ∆𝑃𝑛 
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where 𝑎 is norm that depends on the time derivative, ℎ𝑛 is the time-step used at 

iteration 𝑛, and ∆𝑃 is the change in pressure that occurs at iteration 𝑛. In order to obtain 

the change in pressure to the desired value ∆𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 within one iteration, we need: 

ℎ𝑛+1 = 𝑎 ∗ ∆𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

Dividing the equation above with the previous one, and assuming that the norm 𝑎 does 

not change significantly from one equation to the other, we get: 

ℎ𝑛+1

ℎ𝑛
=

𝑎 ∗ ∆𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑎 ∗ ∆𝑃𝑛
 

ℎ𝑛+1 = (
∆𝑃𝑑𝑒𝑠𝑖𝑟𝑒𝑑

∆𝑃𝑛
) ∗ ℎ𝑛        

We can obtain a similar equation for the time-step based on the change in saturation:  

ℎ𝑛+1 = (
∆𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑

∆𝑆𝑛
) ∗ ℎ𝑛          

where  ∆𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑 is the maximum change in saturation desired per iteration,∆𝑆𝑛 is the 

change in saturation at iteration 𝑛.This controller is referred throughout this research as 

the basic algorithm and is used to evaluate the performance of the PID resolution 

controller. The time-step obtained using the equations above is inputted in the residual 

function derived in chapter 2 (Equation 2.15). 

 

3.2 Feedback control system 

The general block diagram of a control feedback loop can be represented using Figure 2. 

The reference input represents the target value of the controlled variable defined by the 

user. The goal of the feedback control system is to make sure that the controlled variable 
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remains close to the reference input throughout the operation of the plant. The plant can 

represent any engineering process that needs to be controlled automatically. The 

controller block symbolizes the algorithm chose to adjust the manipulated variable. This 

variable is an input to the plant and can influence the controlled variable. 

 

 

 

Figure 2: Block diagram of feedback control loop 

 

 

Ideally, the manipulated variable would be automatically adjusted so that the controlled 

variable equals to the reference value. However, this never happens in practice. Instead, 

the controlled variable is maintained within a certain range of the reference value. The 

controlled variable is also affected by disturbances caused by external forces to the plant 

system. 

 Each block of the feedback system block diagram can be represented using a 

transfer function. The transfer function is a representation of the governing differential 

equation of the block. We can obtain the output of a block by multiplying the input 
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signal by the transfer function of the block. For continuous functions, Laplace 

transforms are used to represent the transfer function of a block in control system. In 

Figure 3, we illustrate the use of transfer functions in control system: 

 

 

Figure 3: Transfer function of control block 

 

 

In this example, the output signal 𝑦(𝑠)  can be obtained using the transfer function of the 

block 𝐻(𝑠) and the input signal 𝑢(𝑠)  by using the equation: 

𝑦(𝑠) = 𝐻(𝑠) ∗ 𝑢(𝑠)     [3.5] 

The transfer function allows us to solve differential equations by performing simple 

algebraic operations. 

 

3.3 PID controller 

The PID controller has three subcomponents in the control system block: the 

proportional, the integral, and the derivative components. The effect of all three 

component is added to create the overall response of the PID controller as illustrated in 

Figure 4. These components operate independently of each other and have a unique effect 

on the overall response of the PID controller. The proportional term helps the system 

respond to the latest feedback data coming from the plant. 
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Figure 4: PID controller block 

 

 

It is the instantaneous response component of the PID controller. In the event of a 

sudden change in the output of the plant, the response of the control system will first 

come from the proportional component. The integral component is affected by the 

cumulative trend of the plant’s output. In other words, the integral uses data from 

consecutive iterations to reduce the gap at steady-state between the controlled variable 

and the reference input. The derivative component is used to anticipate future plant 

output and preventively take corrective action. The derivative component is sensitive to 

the rate of change of the plant’s output.  

In time-domain representation, the PID controller governing equation can be written in 

the form [15]: 

𝑢(𝑡) = 𝐾𝑝 ∗ 𝜀(𝑡) + 𝐾𝑖 ∗ ∫ 𝜀(𝑡) + 𝐾𝑑 ∗
𝑑𝜀

𝑑𝑡
 

The continuous transfer function of a PID controller obtained from Crowe et Al [15] is 

represented using Laplace transform with the equation: 

𝐺𝑃𝐼𝐷(𝑠) =
𝐾𝑖 + 𝐾𝑝𝑠 + 𝐾𝑑𝑠2

𝑠2
       [3.6] 
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𝐾𝑖 is the integral coefficient, 𝐾𝑝 the proportional coefficient and 𝐾𝑑 is the derivative 

coefficient. The response of the controlled variable depends on these coefficients. In 

Figure 5, we present a typical PID controller response. The value of the controlled 

variable is plotted throughout the process. As seen in Figure 5, there is an initial rise of the 

controlled variable to the reference value, but once the reference value is exceeded, the 

controller adjusts the manipulated parameter in order to reduce the controlled variable. 

As the controlled variable drops below the reference point, the manipulated variable is 

again adjusted leading to an increase in the controlled variable. This process is repeated 

until the system reaches steady-state.  It is important to note that this controlled response 

does not always happen. In some cases, the controlled variable never overshoots the 

target but asymptotically approaches the target value until it reaches steady-state. The 

system response strongly depends on the PID coefficients. During the tuning process, the 

user can adjust the PID controller parameters to determine the optimal coefficients that 

generate the desired system response. There are tuning algorithms designed to determine 

the PID coefficients based on simulator parameters [19]. In our study, we perform the 

tuning of the PID manually because most of the tuning algorithms are not designed for 

adaptive time-stepping. As we see from Figure 6, increasing the proportional and the 

integral coefficients leads to a shorter rise time, but at the same time it leads to higher 

overshoot. The derivative is not represented in Figure 6, but has a unique effect on the 

system response. In fact, increasing the derivative coefficient leads to a decrease in the 

overshoot and the settling time [19]. 
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Figure 5: Typical PID controller response 

 

 

 

Figure 6: Effect of 𝑲𝒑 and 𝑲𝒊 on the system response [7] 
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The general schematic of the PID controller used in our simulator can be 

represented using Figure 7. In our study, the controller represents the PID algorithm and 

the plant is the reservoir simulator. The PID controller uses output data from the 

simulator-plant to generate a new time-step. This new time-step is then sent to the 

reservoir simulator where it is used to solve the system for the next time increment. 

 

 

Figure 7: Block diagram of time-step PID controller [10] 

 

The simulator-plant outputs the solution of the differential equation along with error 

estimates and changes in state variables. This data is fed back to the controller and the 

process is repeated until the final solution is reached.  

In order to obtain the transfer function of the PID controller in the time domain, we 

introduce the backward shift operator 𝑞−1 defined by [5] as: 

𝑞−1𝑢(𝑛) = 𝑢(𝑛 − 1) 

The difference between two consecutive iterations can be written using the backward 

shift operator: 

𝑢(𝑛) − 𝑢(𝑛 − 1) = 𝑢(𝑛) − 𝑞−1𝑢(𝑛) 

                                      = (1 − 𝑞−1)𝑢(𝑛) 
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                                    =
𝑞 − 1

𝑞
𝑢(𝑛) 

                                                                                    = 𝛻𝑓 

𝛻 =
𝑞−1

𝑞
 is the backward difference operator. It is the equivalent of the derivative 

operator for a continuous function. Similarly 
𝑞

𝑞−1
  is the summation operator and is the 

equivalent of the integral operator in the continuous function [2]. Using the difference 

operator and the summation operation, we can obtain the transfer function of the PID 

controller in the time domain: 

 

𝑢𝑛

𝑒𝑛
= (𝐾𝑝 +

𝑞 − 1

𝑞
∗ 𝐾𝑑 +

𝑞

𝑞 − 1
∗ 𝐾𝑖) 

Where 𝑢𝑛 is the output function of the PID controller and 𝑒𝑛 the input error function, 

both represented in the time domain. From Figure 7, we can replace the input function of 

our PID controller by the equation:  

𝑒𝑛 = 𝑙𝑜𝑔𝜀 − 𝑙𝑜𝑔𝑟𝑛−1 

Using the backshift operator, we can write:  

𝑒𝑛 = 𝑞−1(𝑙𝑜𝑔𝜀 − 𝑙𝑜𝑔𝑟𝑛) 

Similarly from Figure 7, we can replace the output function of our PID controller by the 

equation:  

𝑢𝑛 = 𝑙𝑜𝑔ℎ𝑛 

As a result, we can write:  

𝑙𝑜𝑔ℎ𝑛 = 𝑞−1 (𝐾𝑝 +
𝑞 − 1

𝑞
∗ 𝐾𝑑 +

𝑞

𝑞 − 1
∗ 𝐾𝑖) ∗ (𝑙𝑜𝑔𝜀 − 𝑙𝑜𝑔𝑟𝑛)      [3.7] 
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where ℎ represents the time-step, 𝜖 is the tolerance and 𝑟 is the local error estimate. We 

can now identify the transfer function of our adaptive time-stepping PID controller as 

[21]:  

𝐶𝑃𝐼𝐷(𝑞) = 𝑞−1 (𝐾𝑖

𝑞

𝑞 − 1
+ 𝐾𝑝 + 𝐾𝑑

𝑞 − 1

𝑞
)      

 

log ℎ = 𝐶𝑃𝐼𝐷(𝑞)(𝑙𝑜𝑔𝜖 − 𝑙𝑜𝑔𝑟)     [3.8] 

Substituting the backward shift operator by: 𝛻 =
𝑞−1

𝑞
  and taking the difference of 

equation 3.7, we get [21]:  

∆𝑙𝑜𝑔ℎ = (𝐾𝐼 + 𝐾𝑝𝛻 + 𝐾𝐷𝛻2). (𝑙𝑜𝑔𝜀 − 𝑙𝑜𝑔𝑟) 

The equation above is equivalent to the recursion [21]:  

𝑙𝑜𝑔ℎ𝑛+1 − 𝑙𝑜𝑔ℎ𝑛

= 𝐾𝐼(𝑙𝑜𝑔𝜀 − 𝑙𝑜𝑔𝑟𝑛) − 𝐾𝑃(𝑙𝑜𝑔𝑟𝑛 − 𝑙𝑜𝑔𝑟𝑛−1)

− 𝐾𝐷(𝑙𝑜𝑔𝑟𝑛 − 2𝑙𝑜𝑔𝑟𝑛−1 + 𝑙𝑜𝑔𝑟𝑛−2) 

 

𝑙𝑜𝑔
ℎ𝑛+1

ℎ𝑛
= 𝐾𝐼𝑙𝑜𝑔

𝜀

𝑟𝑛
− 𝐾𝑃 (𝑙𝑜𝑔

𝑟𝑛

𝑟𝑛−1
) − 𝐾𝐷 (𝑙𝑜𝑔

𝑟𝑛 ∗ 𝑟𝑛−2

𝑟𝑛−1
2

) 

 

Taking the exponential of both sides, we get [21]: 

  

ℎ𝑛+1

ℎ𝑛
= (

𝜀

𝑟𝑛
)𝐾𝐼 ∗ (

𝑟𝑛−1

𝑟𝑛
)

𝐾𝑃

∗ (
𝑟𝑛−1

2

𝑟𝑛 ∗ 𝑟𝑛−2
)

𝐾𝐷

         [3.9] 
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From equation 3.9, we can obtain the recurrence relation between the time-step and the 

local error estimate as described below:  

ℎ𝑛+1 = (
𝜀

𝑟𝑛
)𝐾𝑖 ∗ (

𝑟𝑛−1

𝑟𝑛
)

𝐾𝑝

∗ (
𝑟𝑛−1

2

𝑟𝑛𝑟𝑛−2
)

𝐾𝑑

∗ ℎ𝑛       [3.10] 

In this study, we investigate two independent PID control systems algorithms. 

We test a first PID controller to regulate the local error and a second one to control the 

resolution of the state variables. The control of the resolution is used to create small 

time-steps at time intervals with high rate of change in the state variables. Similarly, the 

algorithm generates large time-step for time intervals with small rate of changes.  

 

3.4 Error control algorithm  

For a two-phase flow reservoir simulator, there are two solutions: the pressure and the 

saturation. They each have a distinct error estimate; the PID uses the highest value of the 

two error estimates to compute the new time-step [24].   

𝑒𝑛 = max(𝑒𝑝, 𝑒𝑆)     [3.11] 

where 𝑒𝑝 =
‖𝑃𝑛−𝑃𝑛−1‖

‖𝑃𝑛‖𝑡𝑜𝑙𝑃
 𝑎𝑛𝑑 𝑒𝑆 =

‖𝑆𝑛−𝑆𝑛−1‖

‖𝑆𝑛‖𝑡𝑜𝑙𝑆
 

Substituting equation 3.11 in 3.10, we obtain the characteristic equation of our PID 

controller described by Geiser [8]: 

   

ℎ𝑛+1 = (
1

𝑒𝑛
)𝐾𝑖 ∗ (

𝑒𝑛−1

𝑒𝑛
)

𝐾𝑝

∗ (
𝑒𝑛−1

2

𝑒𝑛𝑒𝑛−2
)

𝐾𝑑

∗ ℎ𝑛 
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In Figure 8, we describe the algorithm that we use to control the error during the time 

discretization process. In this algorithm, the controller is located inside the Newton-

Raphson loop. In the event that Newton-Raphson does not converge to the solution, the 

PID controller uses the error estimate to adjust the time-step and improve the chances of 

convergence. If the error criteria are met, the algorithm accepts the solution of the 

current iteration and uses a basic controller to adjust the time-step of the next iteration. 

 

 

 

Figure 8: Algorithm to control error 

 

 

3.5 Resolution control algorithm in Reservoir simulation  

We also test a second PID controller to regulate the resolution of the solutions: In 

regions of fast pressure change and saturation, the control system would reduce the time 

steps to better capture the variations of the solution. Similarly, in areas of slow pressure 
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change and saturation, the system would allow larger time steps to reduce the 

computation time. A PID recurrence equation to control the resolution is described by 

the equation below: 

ℎ𝑛+1 = (
1

𝐶𝑛
)𝐾𝑖 ∗ (

𝐶𝑛−1

𝐶𝑛
)

𝐾𝑝

∗ (
𝐶𝑛−1

2

𝐶𝑛𝐶𝑛−2
)

𝐾𝑑

∗ ℎ𝑛 

𝐶𝑛 = max (𝐶𝑝, 𝐶𝑆) where 𝐶𝑝 =
‖𝑑𝑃𝑛‖

‖𝑑𝑃_𝑑𝑒𝑠𝑖𝑟𝑒𝑑‖
 𝐶𝑆 =

‖𝑑𝑆𝑛‖

‖𝑑𝑆_𝑑𝑒𝑠𝑖𝑟𝑒𝑑‖
 

The controller adjusts the time-step to make sure that the pressure changes and saturation 

changes are lower or equal to the desired value set by the user. It is also important to 

note that the basic controller is a special case of the PID controller for coefficients 𝐾𝑝=0, 

𝐾𝑖=1 and 𝐾𝑑= 0. The workflow of the PID algorithm used to control the pressure change 

and saturation is summarized in Figure 9.  

 

 

 

Figure 9: Algorithm to control resolution  
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After the time discretization process, if the solution doesn’t meet the criteria, then it is 

rejected and the next time-step is obtained by reducing the current time-step by 50%. If 

the solution meets the user-defined criteria, it is stored and used as input to the PID 

controller. The time-step obtained from the PID controller is compared to the minimum 

and maximum time-step value set by the user. These limits are placed in order to prevent 

the system from becoming unstable. If the PID time-step is lower than the minimum 

time-step, then the system uses the user-defined minimum time-step. Similarly, if the 

PID time-step is higher than the maximum time-step, then the system uses the user-

defined maximum time-step for the next iteration.  

 In the next chapter, we apply the algorithm discussed in this chapter to a two-

phase reservoir simulator. We compare the performance of the PID controller with the 

basic controller discussed in this chapter. We investigate various initial conditions 

scenarios to assess the robustness and the effectiveness of the PID controller at adjusting 

the time-step throughout the simulation.  
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CHAPTER IV 

SIMULATION RESULTS 

 

In this chapter, we present the results of the PID controller’s performance as a tool for 

adaptive time-stepping. We first perform a tuning of the PID parameters and a sensitivity 

analysis of the adaptive time-step controller to determine the optimal PID coefficients 

and how their change affect the time-step response. We then use these coefficients to run 

our simulator using a set of base-case parameters. We introduce disturbances in the form 

of change in bottom hole pressures and record the performance of the controllers. We 

also vary the controller parameters, the permeability and the well location and observe 

how it affects the response of the controllers.  

 

4.1 Base case scenario 

In our base case scenario, we use the permeability and the well location presented on 

Figure 10.  

 

 

Figure 10: Permeability and well positions of base case. The image represents log (k) where k is in 

millidarcies 
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We use a two-phase flow simulator with properties presented in Table 1. As shown on the 

Figure 10, the base case simulator has two producer wells and one injector well. The 

injector is located at the coordinates (23, 20) and the two producers are located at the 

coordinates (24, 5) and (20, 35). We assume a uniform initial porosity of ∅ = .2 . In our 

simulator, the producer wells’ bottom hole pressures are maintained at a constant value 

of 2800 psi and the injector well is steady at 7200 psi. The reservoir size is 2000ft by 

2000ft by 600ft. The reservoir is divided into 40 feet intervals in the x and y directions. 

We assume that there are no variations along the z direction. The reservoir simulation 

parameters are summarized in Table 1 

 

 

Table 1: Summary of simulation parameters 

 

 

4.2 PID controller tuning   

We tune the PID controller to obtain the optimal coefficients for our simulator. There are 

automatic tuning algorithms designed to easily determine the optimal PID coefficients. 

However, these tuning algorithms are not well suited for adaptive time-stepping 

methods. As a result, we manually tune the PID controller with a procedure consisting of 

Reservoir specifications Simulation parameters Well properties

Nx 40 Max number of N.R iterations 15 Injector location (x,y) (23,20)

Ny 40 Maximum simulation time (years) 20 Producer 1 (x,y) (24,5)

Nz 1 Relative error tolerance 1E+12 Producer 2 (x,y) (20,35)

Length in x direction (ft) 2000 Fluid properties Producers' bottom hole pressure (psi)2800

Length in y direction (ft) 2000 Oil reference viscosity (cp) 3 Injector bottom hole pressure (psi) 7200

Length in z direction (ft) 600 Water reference viscosity (cp) 1

Initial reservoir pressure (psi) 4200 Oil density (lbm/scf) 40

Initial water saturation 0.1 mu oil  0.000002

Water density (lbm/scf) 62.238
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varying one PID coefficient while leaving the others constant and recording the 

performance of the system. This process is performed for all three PID coefficients with 

the objective of obtaining PID coefficients that would lead to a fast response while 

minimizing the likelihood of overshoots above the user-defined control target. The 

results obtained from the PID tuning are summarized in Table 2. We obtain the best 

results with 𝐾𝑝=.001, 𝐾𝑖=1.34 and 𝐾𝑑= .01. These coefficients are used throughout our 

study to compare the performance of the PID controller with the basic controller. In the 

next section, we discuss how each coefficient affect the response of the PID controller 

through a sensitivity analysis.  

 

 

 

Table 2: Results of manual tuning of PID controller. N.R is the total number of Newton-Raphson 

iteration performed during the simulation and the overshoot is the number of times the controlled 

variable goes above the controller target.  

 

 

 

KP KI KD Time-step NR Overshoot

0 0.01 0 Very slow Very slow Very slow

0 0.1 0 632 159                     n/a

0 1 0 404 87 1

0 1.2 0 397 85 3

0 1.4 0 388 83 3

0.01 0.1 0 629 158                     n/a

0.01 1.2 0 397 85 1

0.05 1.2 0.01 390 84 2

0.001 1.4 0 392 84 1

0.001 1.34 0.01 392 84 1
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4.3 Sensitivity analysis 

We perform a sensitivity analysis to understand how each coefficient of the PID 

controller influence the time-step response. In Figure 11, we plot the time-step response 

with varying proportional coefficient values, leaving the integral and derivative 

coefficients constant. The time-step response is faster with increasing proportional 

coefficient. For coefficients above the critical value of 1, the PID controller becomes 

unstable and the reservoir simulator is rendered inefficient. This is in line with the 

general PID control theory as higher gains leads to less stability [19]. We perform a 

similar analysis on the derivative and the integral coefficients and illustrate the results in 

Figure 12 and Figure 13 respectively. In both cases, the results show that the time-step 

response is faster but less stable with increasing PID coefficients. We also noted that the 

integral coefficient was the most sensitive coefficient in our simulator. In fact, a change 

of 𝐾𝑖 from .01 to .1 led to a drastic change in the time-step response as shown on Figure 

12. The same change in 𝐾𝑑 barely affected the response as shown in Figure 13. The 

change in 𝐾𝑝 from .01 to .1 only affected the response moderately. 
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Figure 11: Proportional coefficient sensitivity analysis 

 

 

Figure 12: Integral coefficient sensitivity analysis 
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Figure 13: Derivative coefficient sensitivity analysis 

 

 

4.4 Resolution control 

For the resolution control system, the goal of the PID controller is to maintain the 

pressure change and saturation change below a limit set by the user. This controller does 

not reject non-compliant solutions, but takes corrective action at the next iteration. In 

control system terms, the pressure change and saturation change represent the controlled 

variables. The time-step used in the simulation is the manipulated variable and the 

reservoir simulator is the plant.  
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4.4.1 Time-step controller limited by pressure target 

The resolution controller simultaneously control the pressure change and the saturation 

change throughout the simulation. In this section, we make the pressure the limiting 

factor of the controller by setting the target saturation change 𝑑𝑆𝑡𝑎𝑟𝑔𝑒𝑡=1 and the target 

pressure change 𝑑𝑃𝑡𝑎𝑟𝑔𝑒𝑡= 80psi. The goal is to evaluate the effectiveness of the 

controller at regulating the pressure without interference from the saturation component. 

In our simulations, the time-steps are not bounded and allowed to take any value 

assigned by the controllers. The idea is to allow the controllers to operate freely in order 

to fully understand and assess their performance throughout the reservoir simulation. 

The time-step response that we obtain for the base case using the control parameters 

described above is shown on Figure 14 

 

 

 

Figure 14: Base case time step response PID vs basic 
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We can see that the PID controller has a faster response than the basic controller. In fact, 

throughout the reservoir simulation, the time-step plot of the PID controller is above the 

one of the basic controller. We also notice a drop in the time-step of the PID controller 

after 75 time iterations. Around the same time, we observe a reduction in the rate of 

increase of the basic time-step response. In order to explain this occurrence, we plot of 

the pressure change versus the simulation time in Figure 15. 

 

 

 

Figure 15: Pressure change versus simulation time (base case with pressure limiting factor) 

 

 

From this plot, we see that the pressure change remains just below the target throughout 

the simulation for both controllers. After 1000 days, we notice a sudden drop in the 
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pressure change that results in a time-step increase by the PID and the basic controllers 

to counteract the drop. The increase of the PID time-step is much more drastic than the 

one of the basic controller and it results in an overshoot of the target by about 8%. The 

PID controller then corrects the overshoot by reducing the time-step, hence the drop in 

time-step observed after 75 iterations. The basic controller doesn’t overshoot and we do 

not see any reduction in its time-step throughout the simulation. Instead, the basic 

controller considerably reduces the rate of increase of the time-step as the pressure 

change reaches its target at around 1500 days.  

As the reservoir system transitions from the transient to the steady-state region, 

the saturation change and the pressure change are considerably reduced. Thus, both 

controllers significantly increase the time-step to maintain the system close to target.   

 

 

 

Figure 16: Saturation change vs simulation (Base case with pressure as limiting factor) 
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In fact from Figure 15, we observe after 3000 days that the pressure change of the PID and 

the basic controller are well below their target and drifting even lower with time. In 

order to maintain the pressure change close to the target, the two controllers drastically 

increase the rate of increase of the time-step, resulting in a near vertical time-step 

response. The PID controller has a faster time-step response and is able to maintain the 

pressure change closer to the target than the basic controller as seen in Figure 15. The use 

of higher time-steps by the PID controller results in a lower overall computation cost and 

a higher risk of overshoot.  

We plot the saturation change as a function of the simulation time in Figure 16. 

The saturation change increases until it reaches a maximum value of .15 at around 1500 

days. After that, the saturation change drops and stabilizes. The peak in the saturation 

change coincide with the sudden drop in pressure change recorded in Figure 15. As 

discussed earlier, the controllers are not limited by the saturation change and the 

saturation change plot generated is a result of the controllers’ response to the pressure 

change requirements.  

The performance of the two controllers is summarized in Table 3. The results 

show that the PID controller generally has a lower time-step, total number of Newton-

Raphson iterations and computation time compare to the basic controller. As we observe 

in Figure 17, the computation time of the PID controller is generally lower than the one of 

the basic controller except for a simulation time of 2 years. The percentage reduction of 

the computation time varies from -7% to 30%.  
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Table 3: Performance of PID vs basic (base case with pressure limiting factor) 

 

 

 

Figure 17:  Computation time vs simulation time (base case with pressure as limiting factor) 

simulation time (years) 1 2 3 4 5 20

Conventional method

Computation time (min) 0.647 0.731 0.89 0.775 1.09 0.95

Total number of time steps 65 71 73 75 75 82

Number of NR iterations 268 298 308 319 319 354

Ratio NR/total time steps 4.123077 4.197183 4.219178 4.253333 4.253333 4.317073

PID

Computation time (min) 0.64 0.78 0.74 0.751 0.759 0.82

Total number of time steps 63 68 71 72 73 79

Number of NR iterations 259 284 299 304 310 340

Ratio NR/total time steps 4.111111 4.176471 4.211268 4.222222 4.246575 4.303797

Comparison

% reduction in NR iteration 3.36% 4.70% 2.92% 4.70% 2.82% 3.95%

% reduction in time steps 3.08% 4.23% 2.74% 4.00% 2.67% 3.66%

% comp time reduction 1.08% -6.70% 16.85% 3.10% 30.37% 13.68%



 

44 

 

We note a percentage reduction in the total number of Newton-Raphson iterations of the 

PID by nearly 4% for a simulation time of 20 years. Similarly, we also note a 4% 

reduction in the total number of time-steps for the same simulation time.   

 

 

 

Figure 18: Total number of time-step vs simulation time for base case 

 

 

Figure 19: N.R iteration vs simulation time for base case 
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We compute and plot the ratio between the total number of Newton-Raphson (N.R) 

iterations and the total number of time-steps on Figure 20 .We see that ratio the of N.R 

iterations to number of time-steps is consistently higher for the PID controller. This 

trend is expected as the average time-step generated by the PID controller is slightly 

larger than the one from the basic controller. As a result, it takes more iterations for the 

Newton-Raphson to converge to the solution when using the PID controller. It is also 

important to note that even though the average number of N.R iteration per time-step is 

higher for the PID controller, we obtain a lower total number of N.R iterations and 

computation time using this method. As a result, the overall computational cost of using 

the PID controller is lower than the one for the basic controller. 

 

 

Figure 20: N.R ratio vs simulation time for base case 
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In Figure 21, we plot the oil production rate of production well number 2. The results 

obtained using the PID controller are compared with the one obtained using the basic 

controller. As we see from the figure, we get the same production rate with the two 

adaptive time-stepping methods.  Despite the lower number of time-steps and 

computation time obtained using the PID controller, the accuracy of the solution has not 

been affected. 

 

 

 

Figure 21: Production rate vs simulation time for production well 2 (base case with pressure limiting 

factor) 
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4.4.2 Effect of disturbance on the pressure-limited controller  

In this section, we introduce disturbances in reservoir simulator in the form of sudden 

changes in bottom hole pressures of the producer and injector wells and record the 

performance of the controllers. The bottom hole pressures vary within a range of 300 psi 

from the nominal values and a period of 200 days. 

 

 

Figure 22: Pressure change with 300 psi disturbance (early times) 

 

 

In Figure 22, we plot the pressure change at early times with a sudden change in the 

bottom hole pressure. As the bottom hole pressure change occur, the pressure change 

curve shoots up above the controller target. As a result, the time-step controller takes 
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corrective action by dropping the time-step of the reservoir simulation as shown on Figure 

23. 

 

 

Figure 23: Time-step response with occurrence of disturbance (early times) 

 

 

 

The controllers respond to the disturbance by drastically reducing the time-step in the 

simulation with the PID controller inducing a more significant drop in time-step than the 

basic controller. The reduction in time-step by both controllers leads to a significant 

undershoot of the pressure change target. In order to correct for the newly created 

undershoot, the controllers switch directions again and now increase the time-step 

creating a v-shaped time-step response to the disturbance. As the system stabilizes, we 
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see in Figure 22 that the PID controller pressure change is closer to the target than the 

basic controller. The proximity of the PID controller to the target pressure change is due 

to the higher time-steps used that also leads to a lower computational cost. In fact, with 

the PID controller we get a lower total number of time-steps, N.R iterations and 

computation time as illustrated in Table 4.  

 

 

 

Table 4: Effect of disturbance amplitude on time-step controllers 

 

 

As it can be seen in Table 4, we get a total number of N.R iterations reduction with the 

PID controller of 15%, 4% and 14% for disturbance ranges of 300 psi, 400psi and 500 

psi respectively. We do not observe a clear trend in the computational cost reduction 

with increasing disturbance range.  

Disturbance amplitude (psi) 300 400 500

Conventional method

Computation time (min) 1.599 1.62 2.093

Total number of time steps 147 156 203

Number of NR iterations 629 664 854

Ratio NR/total time steps 4.278912 4.25641 4.206897

PID

Computation time (min) 1.3 1.55 1.86

Total number of time steps 125 150 173

Number of NR iterations 536 637 736

Ratio NR/total time steps 4.288 4.246667 4.254335

Comparison

% reduction in NR iteration 14.79% 4.07% 13.82%

% reduction in time steps 14.97% 3.85% 14.78%

% comp time reduction 18.70% 4.32% 11.13%
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4.4.3 Effect of pressure target on the reservoir system 

In this section, we vary the pressure target of the controllers and record the performance. 

The results are summarized in Table 5. We test a total of 4 target pressures for the time-

step controllers: 30, 40, 50, and 80 psi. The results show that as the pressure change 

target increases, so thus the percentage reduction in total N.R iterations, time-steps and 

computation time of the PID controller compare to the basic controller.   

 

 

 

Table 5: Effect of pressure target on reservoir performance 

 

 

This trend is observed because as the pressure target decreases, there is less room for the 

time-step of the PID controller to increase, as a result, its speed is limited to a small 

time-step interval , hence a lower reduction in computation time, N.R iterations, and 

Controller pressure target (psi) 80 50 40 30

Conventional method

Computation time (min) 0.95 1 1.219 1.58

Total number of time steps 82 124 152 199

Number of NR iterations 354 494 599 756

Ratio NR/total time steps 4.317073 3.983871 3.940789 3.798995

PID

Computation time (min) 0.82 0.9945 1.21 1.59

Total number of time steps 79 121 149 196

Number of NR iterations 340 483 586 746

Ratio NR/total time steps 4.303797 3.991736 3.932886 3.806122

Comparison

% reduction in NR iteration 3.95% 2.23% 2.17% 1.32%

% reduction in time steps 3.66% 2.42% 1.97% 1.51%

% comp time reduction 13.68% 0.55% 0.74% -0.63%
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time-steps. In Figure 24 we plot the total number of time-steps as a function of the 

pressure target. We see that the percentage reduction in total time-steps rise with 

increase in the pressure target of the controller. In other words, the PID controller 

becomes more computationally efficient as the pressure change target of the controller is 

raised. The same trend is observed for the total number of N.R iterations as illustrated in 

Figure 25. 

 Based on the data recorded, we conclude this section by establishing the 

correlation between the increase of the pressure target and the lowering of the 

computational cost of the PID controller relative to the basic method. 

 

 

 

Figure 24: Total number of time-step vs pressure target 
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Figure 25: Total number of N.R iterations as a function of pressure target 

 

 

4.4.4 Time-step controller limited by saturation target 

In this section, we make the saturation change the limiting factor by setting 𝑑𝑆𝑡𝑎𝑟𝑔𝑒𝑡 =

.05 and 𝑑𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 250 𝑝𝑠𝑖. In this scenario, we are able to study the controllers’ ability 

to regulate the saturation change without any interference from the pressure component.  
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Figure 26: Time-step response (base case with saturation as limiting factor) 

 

 

In Figure 26, we graph the time-step response of the PID controller and the basic with the 

saturation change as the limiting factor. We observe that the response from the PID 

controller is faster than the basic controller. In fact, the PID time-steps remains 

consistently above the basic controller time-step throughout the simulation.  
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Figure 27: Saturation change vs simulation time (base case with saturation as limiting factor) 

 

 

On Figure 27, we plot the change of saturation as a function of the simulation time for the 

PID controller and the basic controller. We note a lot of oscillations at early time with 

the saturation change mainly remaining below the controller target. As the system 

switches from transient phase to steady-state, we see a drop in the saturation change that 

is eventually corrected by the time-step controllers. Unlike the pressure control case, the 

controller is able to easily maintain the saturation change close to the target set by the 

user. We also note an overshoot of the target at the last iteration in both the basic and 

PID controllers. In Table 6, we sumarize the performance results from the basic and the 
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PID controller. The computation results in Table 6 confirms that the PID controller is less 

computationally costly than the basic controller.  

 

 

 

Table 6: Performance of PID controller vs basic (base case saturation limiting factor) 

 

 

In fact we get a reduction in total N.R iterations ranging from 3% to 5% with the PID 

controller compared to the basic controller. The same trend is observed for the total 

time-step and the computation time. In both cases, the PID controller has lower values 

with the percentage reduction in computation time reaching nearly 8%. We can conclude 

that the PID controller is more efficient at regulating the saturation change given the 

conditions used in this section.  

 

simulation time (years) 1 2 3 4 5 20

Conventional method

Computation time (min) 0.429 0.518 0.55 0.58 0.613 0.79

Total number of time steps 49 59 64 67 70 87

Number of NR iterations 216 266 290 305 320 404

Ratio NR/total time steps 4.408163 4.508475 4.53125 4.552239 4.571429 4.643678

PID

Computation time (min) 0.399 0.482 0.522 0.565 0.581 0.728

Total number of time steps 47 56 61 64 67 84

Number of NR iterations 208 253 277 292 307 392

Ratio NR/total time steps 4.425532 4.517857 4.540984 4.5625 4.58209 4.666667

Comparison

% reduction in NR iteration 3.70% 4.89% 4.48% 4.26% 4.06% 2.97%

% reduction in time steps 4.08% 5.08% 4.69% 4.48% 4.29% 3.45%

% comp time reduction 6.99% 6.95% 5.09% 2.59% 5.22% 7.85%
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4.4.5 Effect of saturation target on the reservoir system 

In this section, we vary the saturation target and record the effect on the controllers’ 

performance. The results obtained are summarized in Table 7 

 

 

 

Table 7: Performance of controllers with varying saturation target 

 

 

The results that we obtained are similar the pressure target case. We observe in Table 7 

that, as the saturation target drops, the percentage drop in total N.R iterations and time-

step drops as well. The advantages of the PID controller are more pronounced when the 

saturation target is higher.  

 

 

Controller saturation target 0.05 0.025 0.01

Conventional method

Computation time (min) 0.79 1.42 4.49

Total number of time steps 87 172 435

Number of NR iterations 404 691 1735

Ratio NR/total time steps 4.643678 4.017442 3.988506

PID

Computation time (min) 0.728 1.4 4.22

Total number of time steps 84 169 432

Number of NR iterations 392 676 1722

Ratio NR/total time steps 4.666667 4 3.986111

Comparison

% reduction in NR iteration 2.97% 2.17% 0.75%

% reduction in time steps 3.45% 1.74% 0.69%

% comp time reduction 7.85% 1.41% 6.01%
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4.4.6 Effect of disturbance on the saturation-limited controller 

In this section, we discuss the results that we obtain by introducing disturbances in the 

form of sudden change in bottom hole pressures and record the reaction of the PID and 

the basic controllers.   

 

 

 

Figure 28: Saturation change with disturbance (saturation limiting factor) 
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Figure 29: Pressure change with disturbance (saturation limiting factor) 

 

 

In Figure 28 and Figure 29, we present the saturation change and pressure change versus 

simulation time with a sudden change in the bottom hole pressure of the producer and 

injector wells. The first disturbance occurs after 190 iterations, but has a mild reaction 

from the controllers because it does not cross the pressure target line as seen in Figure 29. 

We have a second disturbance after around 430 iterations. This time, the target pressure 

change is exceeded, as a result the controllers take drastic corrective action as illustrate 

in Figure 30. 
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Figure 30: Time-step response with presence of disturbance (saturation as limiting factor) 

 

 

As can be observed, we record a significant drop in the time-step of the PID and the 

basic controller. We note that the PID controller forces a steeper drop in the time-step 

than the basic controller. As a result, the saturation change drops significantly before 

being pulled back up by the controller. The pullback effect of the PID controller leads to 

a 20% overshoot of the saturation target. At the same time, we see that the basic 

controller has a more smooth reaction and as result avoid overshooting the target 

saturation. Again, we see that with the more responsive PID controller has a faster 

reaction than the basic controller, but at the same time can lead to overshoot depending 

on the amplitude of the disturbance and the response of the reservoir system. It is 
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important to note that the basic controller also overshoots the target, but the chances of 

overshoot are greater with the PID controller. 

 

 

 

Table 8: Performance of PID controller vs Basic controller with varying disturbance amplitude 

(saturation limiting factor) 

 

 

The performance of the PID controller limited by saturation compared to the 

basic controller is summarized in Table 8. The data shows that the increase in amplitude 

of the disturbance correlates with a relatively faster computation time, lower time-step 

and N.R iterations of the PID controller compared to the basic controller. We also 

recorded the data showing the performance of the PID and the basic controller with 

increasing disturbance frequency in Table 9. The data shows that as the frequency of the 

disturbance increases, the PID controller becomes faster compare to the basic method. In 

Disturbance amplitude (psi) 300 400 500

Conventional method

Computation time (min) 0.837 0.898 0.959

Total number of time steps 93 104 111

Number of NR iterations 424 480 515

Ratio NR/total time steps 4.55914 4.615385 4.63964

PID

Computation time (min) 0.805 0.809 0.8259

Total number of time steps 91 93 93

Number of NR iterations 422 428 427

Ratio NR/total time steps 4.637363 4.602151 4.591398

Comparison

% reduction in NR iteration 0.47% 10.83% 17.09%

% reduction in time steps 2.15% 10.58% 16.22%

% comp time reduction 3.82% 9.91% 13.88%
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fact, with a period of 200 days, we get about .5% reduction in the total number of N.R 

iterations. This number goes up to 8.67% with a period of 50 days. A similar trend is 

observed with the computation time and the total number of time-steps.  

 

 

 

Table 9: Performance of PID and basic with varying disturbance frequency (saturation as limiting 

factor) 

 

 

4.4.7 Robustness of the PID controller with permeability changes 

In this section, we test the ability of the PID to effectively operate in various reservoir 

properties. To this end, we multiply the base case permeability of the reservoir simulator 

by a factor and record the performance of the PID controller and compare its 

Disturbance period (days) 200 100 50

Conventional method

Computation time (min) 0.837 0.959 1.1

Total number of time steps 93 111 128

Number of NR iterations 424 509 588

Ratio NR/total time steps 4.55914 4.585586 4.59375

PID

Computation time (min) 0.805 0.94 0.997

Total number of time steps 91 109 115

Number of NR iterations 422 504 537

Ratio NR/total time steps 4.637363 4.623853 4.669565

Comparison

% reduction in NR iteration 0.47% 0.98% 8.67%

% reduction in time steps 2.15% 1.80% 10.16%

% comp time reduction 3.82% 1.98% 9.36%
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performance to the basic controller. By increasing the permeability of the simulator, we 

essentially increase the magnitude of the pressure changes and saturation that occur 

throughout the simulation. The goal is to assess the robustness of the PID controller 

under varying conditions. The results are presented in Table 10.  

 

 

 

Table 10: Performance of controller with varying permeability (saturation as limiting factor) 

 

     

We observe much lower time-step for the PID controller than the basic controller. 

Excluding the permeability factor of .01 data, we observe that the PID controller 

becomes less efficient relative to the basic controller with increasing permeability factor. 

In fact, we note a percentage reduction in the total number of N.R iterations of 4.05% 

with a permeability factor of .1. This number drops to .34% with a permeability factor of 

Permeability factor 0.01 0.1 1 10 100

Conventional method

Computation time (min) 0.448 0.64 0.78 1.0258 5.07

Total number of time steps 52 74 87 118 583

Number of NR iterations 211 331 404 535 2484

Ratio NR/total time steps 4.057692 4.472973 4.643678 4.533898 4.26072

PID

Computation time (min) 0.425 0.613 0.728 1.011 4.94

Total number of time steps 50 71 84 115 581

Number of NR iterations 207 319 392 521 2463

Ratio NR/total time steps 4.14 4.492958 4.666667 4.530435 4.239243

Comparison

% reduction in NR iteration 1.90% 3.63% 2.97% 2.62% 0.85%

% reduction in time steps 3.85% 4.05% 3.45% 2.54% 0.34%

% comp time reduction 5.13% 4.22% 6.67% 1.44% 2.56%
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100. This trend can be explained using Figure 31. In fact, from Figure 31, we see that the 

time-step of the two methods stays within the range of 5 to 15 days. As the permeability 

of the system increases, so thus the variations of pressure and saturations. As a result, the 

controllers have to use relatively small time-steps to keep the variations within the user-

defined tolerance. Since the time-steps does not have room to increase in this simulation, 

the fast response of the PID controller becomes less utilized, as the time-step remains 

within a relatively small range.  

 

 

 

Figure 31: Time-step response PID controller (perm x100) 
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In Figure 32 we plot the saturation change during the simulation of a system with a 

permeability factor of 100. From the graph, we see that both methods constantly 

overshoot the target. This trend is due to the fact that the reservoir system has a quick 

response and small changes in time-steps leads to large pressure and saturation 

variations. The PID controller can be adjusted to eliminate these overshoot by lowering 

the PID coefficients. This action will also lead to an increase in the computation cost of 

the reservoir simulation. Again, we see that the adaptive time-stepping scheme is a fine 

balance between speed and accuracy.  

 

 

 

Figure 32: Saturation change vs simulation time (perm x100) 
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4.4.8 Effect of well location  

In this section, we change the well locations from the base case and record the 

performance of the reservoir simulator. The injector location remains the same. 

However, the location of the producer wells are change to (12, 20) and (32, 20).  

 In Table 11, we summarize the performance of the PID controller and compare it to the 

basic controller. The results show that the PID controller has a lower computation time, 

total number of N.R iterations and time-steps. From Figure 34, we can observe that the 

time-steps of the PID controller are consistently larger than the ones of the basic 

controller. We also note sharper variation in the time-step response of the PID controller 

than the basic controller. Notably, after about 68 iterations, the PID controller has a 

sharp drop in time-step whereas the basic only exhibit a reduction in the rate of increase 

of the time-step. The PID controller has a faster response than the basic controller, but at 

the same time this aggressive response increases the chances of overshoots during the 

simulation.  

 

Figure 33: Permeability data with new well location. The image represents log (k) where k is in 

millidarcies 

 



 

66 

 

 

Table 11: Performance of PID and basic controller with different well location 

 

 

Figure 34: Time-step response of PID with different well location 

 

simulation time (years) 1 2 3 4 5 20

Conventional method

Computation time (min) 0.38 0.438 0.47 0.486 0.501 0.658

Total number of time steps 45 50 54 56 58 73

Number of NR iterations 193 218 238 248 258 329

Ratio NR/total time steps 4.288889 4.36 4.407407 4.428571 4.448276 4.506849

PID

Computation time (min) 0.366 0.412 0.454 0.488 0.4921 0.618

Total number of time steps 43 48 51 54 55 70

Number of NR iterations 186 211 226 241 246 318

Ratio NR/total time steps 4.325581 4.395833 4.431373 4.462963 4.472727 4.542857

Comparison

% reduction in NR iteration 3.63% 3.21% 5.04% 2.82% 4.65% 3.34%

% reduction in time steps 4.44% 4.00% 5.56% 3.57% 5.17% 4.11%

% comp time reduction 3.68% 5.94% 3.40% -0.41% 1.78% 6.08%
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4.5 Error control algorithm 

We test the PID controller to adjust the time-step based on the error generated during the 

Newton-Raphson iteration. In case a solution is not within the defined tolerance, the PID 

controller would adjust the time-step such that the next step has a better chance of 

convergence to a solution within tolerance. In order to test this controller, we had to 

tighten the requirement for convergence to force steps to be rejected. As a result, we 

lower the maximum number of N.R iteration per time-step from 15 to 3. This change 

forces the system to reject most of the iterations and use the error control PID algorithm. 

The basic controller in this case consist of cutting the value of the previous time-step by 

half until the solution is within tolerance. We compare this algorithm with a PID 

controller using the characteristic equation 3.10 described in chapter 3.We were not able 

to obtain meaningful results with this algorithm as the system never converged. In fact, 

as we see from the equation below, the characteristic equation of the PID controller 

involves the error of previous iterations. During the Newton-Raphson iteration, the error 

of previous iteration is higher than current one as the scheme reduces the error in the 

solution. If the previous error is higher than the current one, then the proportional term 

would be higher than 1. In fact, (
𝑒𝑛−1

𝑒𝑛
)

𝐾𝑝

> 1 𝑖𝑓 𝑒𝑛−1 > 𝑒𝑛 . Similarly, the derivative 

term could also be greater than one if 𝑒𝑛𝑒𝑛−2 >𝑒𝑛−1
2 . As a result, depending on the PID 

coefficient, the algorithm of the time-step after a rejected step could lead to an increase 

in the time-step that would reduce even further the chances of convergence of the 

reservoir simulator. As a result, this technique is not appropriate to control within the 

Newton-Raphson iteration loop. 
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CHAPTER V  

CONCLUSION AND FUTURE WORK 

 

In conclusion, we can say that the PID resolution algorithm is an effective adaptive time-

stepping technique. In fact, it has proven to be a reliable and robust technique with 

superior performance when the proper tuning is done. The PID controller was tested 

using a broad range of control parameters and initial conditions. The results show that 

the PID controller can reduce the computational cost of the simulation while maintaining 

the same level of accuracy as the basic method. The tuning of the PID controller is the 

most important step in the implementation of this adaptive time-stepping method. A 

good tuning can result in an optimal performance of the simulator, but at the same time, 

if the tuning is not performed properly, the controller can become inefficient and lead to 

instabilities in the reservoir simulator. There are automatic tuning algorithm, but they do 

not work well for adaptive time-step purposes. Future work would have to focus on 

designing automatic tuning algorithms specifically tailored to work for adaptive time-

stepping purposes to avoid time-consuming manual tuning.     

 The test of the PID error control algorithm showed that the PID controller is not 

suited to control the error within the Newton-Raphson loop after a step is rejected. In 

fact, the PID controller created instabilities in the reservoir simulator and we were not 

able to run the simulation efficiently. As a result, we do not recommend the use of this 

controller in the settings described in this study.  
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5.1 Future work 

We were able to identify areas of improvement and topic of research that will help learn 

more about the PID controller and assess its effectiveness. We noted potential future 

work in the topics mentioned below: 

 

1. The resolution controller should be tested on a larger scale reservoir simulator. 

This test will allow us to further assess the robustness of the controller at 

adjusting the time-step during the time discretization process. 

 

2. We also suggest investigating the effectiveness of the controller at controlling the 

convergence of the Newton-Raphson iteration. The PID controller could be 

tested for adjusting the time-step for the purpose of controlling the convergence 

and preventing rejected steps. This convergence control could potentially help 

reduce the computational cost of the simulation.   

 

3. Future work will also have to include automatic PID controller tuning algorithm 

to avoid time-consuming manual tuning. It will also be interesting to look into 

the ability of the controller to self-adjust during the simulation in order to 

optimize its performance.  
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