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Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a 

complex process involving fast phases followed by slow phases.  Therefore their time accurate computation 

requires use of short time step initially followed by the use of much larger time step.  Yet there are instances 

that involve fast-slow-fast phases.  In this paper, we present a feedback control based adaptive time stepping 

algorithm, and discuss its use in network flow simulation of fluid and thermal transients.  The time step is 

automatically controlled during the simulation by monitoring changes in certain key variables and by 

feedback.  In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to 

simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate 

the accuracy and efficiency of this adaptive strategy. 

Nomenclature 

A = cross-sectional area, ft2 

Cf  = specific heat of the fluid, Btu/lb ºF  

CL = flow coefficient 

Cp = specific heat at constant pressure, Btu/lb ºF 

D = diameter of the pipe, ft 

f * = Darcy-Weisback friction factor 

gc = gravitational constant,  32.174 lb-ft/lbf.s
2 

h = enthalpy, Btu/lb  

hc = heat transfer coefficient, Btu/ft2–s ºF 

J  = mechanical equivalent of heat, equal to 778 ft-lbf/Btu 

Kf * = flow resistance coefficient, lbf-s
2/(lb-ft)2 

Krot  = nondimensional rotating flow resistance coefficient  

k = thermal conductivity, Btu/(ft-s ºF) 

L = length of the tube, ft 

Lg     =      initial length of air column in the pipe 

Ll     =      initial length for the water volume in the pipe 

LT      =    initial total length of liquid and air column; Lg +Ll 

m  = mass flow rate, lb/s 

m = resident mass, lb  

Nu = Nusselt number 

Pr = Prandtl number 

Re = Reynolds number 
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n  = number of branches  

p = pressure, lbf /ft
2  

Q  = heat source, Btu/s  

q  = heat transfer rate, Btu/s  

R = gas constant, lbf-ft/lb-R  

r = radius, ft 

S  = heat source, Btu/s 

S  = momentum source, lb  

T = temperature, ºF  

t = time, s  

V = volume, ft3  

v = fluid velocity, ft/s 

z = compressibility factor 

δ  = tube wall characteristic length, ft 

ε = surface roughness of pipe, ft 

 = density, lb/ft3 

 = specific volume, specific heat, or viscosity 

Subscripts 

f = liquid state 

g = vapor state  

i = ith node 

ij = branch connecting nodes i and j 

j = jth node 

s = solid node 

sa = solid to ambient 

sf = solid to fluid 

ss =  solid to solid 

u = upstream 

                                                           I. Introduction 

Fluid and thermal transients have significant impact in the design and operation of spacecraft and 

launch systems.  For instance the pressure rise due to the sudden opening or closing of valves of 

a propulsion feedline can cause serious damage during activation and shutdown of propulsion 

systems.  Efficient chilldown of transfer line is important in cryogenic propellant loading for  

propulsion systems.  Cryogenic transfer line chill down is a transient heat transfer problem that 

involves rapid heat exchange from solid structures to a fluid with phase change.  It is therefore 

essential that these phenomena are predicted accurately and efficiently.  During the past decades, 

a network flow simulation software based on finite volume method (Generalized Fluid System 

Simulation Program [10]) has been used to study transient thermo-fluid dynamic analysis of fluid 

systems and components of significant importance to aerospace and other engineering industries 

[1,2,3,4,17].  The time stepping scheme employed in this program is very stable for solving fluid 

and thermal transient problems due to the implicit nature of the scheme. However, the use 

constant (global) time stepping can be extremely inefficient in multiscale problems because  
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equidistant time step is governed by the subintervals with the fastest transients, such that in other 

subintervals much more time steps might be performed than necessary. To the best of our 

knowledge, the possibility of rigorously monitoring the adequacy of the time step-size and adjust 

it during the simulation has not yet been studied thoroughly in the field of network  flow 

simulation.   

 

The focus of this article is to propose and study an adaptive algorithm for implicit time stepping 

scheme for network flow simulation.  Adaptive algorithm for time stepping has the potential to 

substantially improve the accuracy and efficiency of flow simulations.  With explicit time 

stepping schemes, various heuristics based adaptive algorithms have been studied in [5,6,7,8,9].  

However, time step in explicit time-stepping schemes is limited by stability conditions such as 

Courant condition whereas with implicit time stepping schemes it is entirely based on accuracy 

considerations.  While this opens up the possibility of using very large time steps with implicit 

schemes for simulating steady-state behaviors, it can not capture fast transients often in the 

beginning of the simulation nor can it capture dynamically changing local phenomenon   and/or 

fast-slow-fast transient patterns in long time smilations.  The need for adaptivity with implicit 

time stepping is further motivated by observation [19] that indicated convergence rate of 

nonlinear solvers used with implicit schemes is affected by the time step size.  However, it is not 

trivial to incorporate efficient adaptive algorithm with implicit schemes.  Because of this, there 

has been fewer work on adaptive algorithm for implicit time stepping schemes [20,21,22,23]. 

Also with implicit time stepping schemes, one needs to solve nonlinear equations by iterative 

methods at every time step and the convergence rate of these iterative methods are known to be 

affected by the time-step size [19].   

 

Several proposals have been put forward in the literature for adaptive time step selection.  In 

most of the proposals, the time step selection is based on error estimation by comparing solutions 

computed with different time stepping schemes [20,21,24].  In [21], application of the so-called 

embedded scheme to incompressible Navier-Stokes equations is discussed.  Embedded schemes 

require solution of a first order scheme and a second order scheme to estimate the error and thus 

feasible only with higher order schemes.  In [20], two implicit second order time stepping 

schemes were employed (Crank-Nicolson and theta-scheme) to estimate the local truncation 

error.  Therefore, their adaptive time stepping algorithm increases the costs per time step by 

almost a factor of two.  In [24], a explicit Adams-Bashforth and implicit Crank-Nicolson 

schemes were employed to reduce the computational cost but it introduces the issue of a CFL 

stability condition.   Moreover, these developments are in the context of computational fluid 

dynamics (CFD).  However, the use of CFD in network modeling for propulsion system analysis 

is not feasible due to its excessive computational overhead. 

 

In this paper, we combine a simple approach of monitoring the change of the solution in two 

subsequent time steps and proportional-integral-derivative (PID) feedback control to develop an 

adaptive time stepping algorithm. The algorithm utilizes normalized changes in key variables 

such as flow rate, pressure and temperature to compute the local errors and adjusts the time step 

using PID feedback control.  In the context of solving ordinary differential equations, PID based 

adaptive time step selection has been reported in [9].  Our objective is to show the viability of 

PID control based time adaptivity to network fluid flow simulation. For this we will use two 

example problems, namely, prediction of pressure surges in a pipeline that has entrapped air at 
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one end and prediction of chill down of cryogenic feed-lines. The performance of the adaptive 

time stepping algorithm is compared with the fixed time stepping scheme. Numerical predictions 

are also validated by comparing the results with experimental data available in the literature. We 

show that, with adaptive scheme we obtain solutions with a smaller number of time steps without 

any loss of accuracy.   

         II.  Mathematical Formulation 
 

A finite volume based network flow simulation approach has been used to model the application 

problems used in the validation study reported in Section IV. A fluid system is discretized into 

nodes and branches, as shown in Fig. 1. Fluid enters into the flow network through inlet 

boundary nodes. Mass-conservation, energy-conservation, and species-concentration equations 

are solved at the nodes, whereas momentum-conservation equations are solved at the branches in 

conjunction with the thermodynamic equation of state. In conjugate heat transfer problems, the 

energy conservation equations for solid nodes are solved to determine the temperatures of the 

solid nodes simultaneously with all conservation equations governing fluid flow.  The fluid exits 

the flow network through the outlet boundary node. 

 
Figure 1.  Typical flow network consisting of fluid nodes, solid nodes, flow branches and 

conductors 

The approach is based on implicit time integration with a pressure-correction and thus the 

simulation within a time step is iterative.  The governing equations to be solved are coupled and 

therefore must be solved by an iterative method.  In order to efficiently solve this system, a 

partition iterative approach is employed in which a combination of fixed point iteration and 

Newton iteration are employed.  For e.g., the mass and momentum equations are solved for 

pressure and flow rate by the Newton iteration while the entropy conservation equation is solved 

by fixed point iteration.  The underlying principle for making such a partition is that the 

equations that are strongly coupled are solved by Newton’s method while the equations which 

are not strongly coupled with other equations are solved by fixed point iteration.  Fixed point 

iteration method is used to provide initial guess for Newton iterations.  Thus the partition 

iteration approach reduces the computer memory requirement while maintaining superior 

numerical convergence characteristics. The required thermodynamic and thermophysical 

properties in all conservation equations during iterative calculation are provided by the 

thermodynamic property programs GASP [11] and WASP [12]. 

 

A. Numerical Methods and Governing Equations  
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Modeling of the fluid transient using the finite volume method requires the solution of unsteady 

mass, momentum, and energy conservation equations in conjunction with thermodynamic 

equation of state.  The entire computational domain is split into a set of finite volume with a 

number of segments. 

 

 
 

Figure 2. Schematic of GFSSP nodes and branches in the context of mass conservation 

equation for node i. 

1. Mass Conservation Equation 

Pressure at internal node is calculated from the mass conservation equation.  Figure 2 is a 

schematic showing adjacent nodes, their connectivity, and the indexing convention. The mass 

conservation equation at the ith node can be expressed as follows, and each term has the unit of 

pounds of mass per second:  
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Equation (1) requires that, for the unsteady formulation, the net mass flow from a given node 

must equate to the rate of the change of mass in the control volume. 

 
Figure 3. Schematic of GFSSP nodes and branches in the context of momentum 

conservation equation for branch ij. 

 
 

2 Energy Conservation 

The energy conservation equation for node i, shown in Fig. 2b, can be expressed following 

the first law of thermodynamics and using enthalpy as the dependent variable. It can be written 

as 
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Equation (2) shows that for transient flow, the rate of increase of internal energy in the control 

volume is equal to the rate of energy transport into the control volume minus the rate of energy 

transport from the control volume plus any external rate of heat transfer from the solid node 

qsf . The max operator used in Eq. (2) is known as an upwind differencing scheme and has been 

extensively employed in the numerical solution of Navier-Stokes equations in convective heat 

transfer and fluid flow applications. When the flow direction is not known, this operator allows 

the transport of energy only from its upstream neighbor. In other words, the upstream neighbor 

influences its downstream neighbor but not vice versa.  

 

3 Momentum Conservation Equation 

The flow rate in a branch is calculated from the momentum conservation equation which 

represents the balance of fluid forces acting on a given branch; see Fig. 2a. Inertia, pressure, and 

friction are considered in the conservation equation. It should also be noted that the flow rate, 

ijm , is a vector quantity. A negative value of mij signifies that the flow is directed from the jth 

node to the ith node: 

   
   

 

max[ ,0]  -max[ ,0]

                                                    

ij ij

ij ij

t t t
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ij iji j f

mu mu
m mu u u u

g t

m mA K Ap p 

 


 


   



  

                            (3)  

The two terms on the left side of the momentum equation represent the inertia of the fluid. The 

first term is the time-dependent term that must be considered for unsteady calculations. The 

second term is significant when there is a large change in area or density from branch to branch. 

The first term on the right side of the momentum equation represents the pressure gradient in the 

branch. The second term represents the frictional effect. Friction is modeled as a product of Kf*, 

the square of the flow rate, and area. Kf*  is a function of the fluid density in the branch and the 

nature of flow passage being modeled by the branch.  To determine Kf*,  for pipe flow,  Kf* is 

expressed as  

2 5

8

f
u c

f L
K

D g 



   

 

where L is the pipe length, D is the pipe diameter, and ρu is the density of the fluid at the 

upstream node of a given branch. The Darcy-Weisbach friction factor f* in the definition of Kf* is 

calculated from the Colebrook equation [13] which is expressed as 

1 2.51
2log

3.7 ReDf f


 

 
   
 
 

, 

where ε/D is the surface roughness factor and Re (equal to ρ UL∕μ) is the Reynolds number. For 

flow through a restriction, Kf*  is expressed as Kf* =1/2gcρu CL
2A2 where CL is the flow 

coefficient, A is the area of restriction, and gc is the conversion factor for engineering unit. It is 

assumed that the role of the flow coefficient CL is independent of the flow direction. The density 

and viscosity for the Reynolds number are computed from quality, assuming homogeneous 
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mixture, to account for two phase flow. The momentum conservation equation also requires 

knowledge of the density and the viscosity of the fluid within the branch. These are functions of 

the temperatures, and pressures, and can be computed using the thermodynamic property 

program in [11] that provides the thermodynamic and transport properties for different fluids.  

4 Equation of State for Real Fluid 

Transient flow calculations require the knowledge of resident mass in a control volume. The 

resident mass in the ith control volume is calculated from the equation of state for real fluids:  

 

 m 
pV

RTz
.  (4) 

 

The compressibility factor z and temperature T in Eq. (4) are calculated from the thermodynamic 

property program [11] for a given pressure and enthalpy.  

5 Phase Change 

Modeling phase change is fairly straightforward in the present formulation. The vapor quality 

of saturated liquid vapor mixture is calculated from 

 

x 
h  h f

hg  h f

.  

 

Assuming a homogeneous mixture of liquid and vapor, the density, specific heat, and viscosity 

are computed from the following relations: 

 

  1 x  f  xg .  

 

where φ represents specific volume, specific heat, or viscosity. 

 

6. Specie Conservation Equation 

 

To model a homogeneous mixture of liquid and gas, the conservation equations for both liquid 

and gaseous species are solved in conjunction with Eqs. (1), (3), and (4).  For mixtures, the 

concentration of fluid specie must be determined so that the density may be calculated. The 

concentration for the kth specie at node i is:  
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
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


nj
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cmcm

kiijkjij

kiikii






                                    (5) 

Unlike a single fluid, the energy equation for a gas-liquid mixture 

is expressed in terms of temperature instead of enthalpy.  Moreover, it is assumed that the 

liquid and gas have the same temperature; however, specific heat of liquid and gas are 
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evaluated from a thermodynamic property program [11]. The density, specific heat, and 

viscosity of the mixture are then calculated. 

7. Energy Conservation Equation for Solid 

In fluid-solid network for conjugate heat transfer, solid nodes, ambient nodes, and conductors 

become part of the flow network. A typical flow network for conjugate heat transfer is shown in 

Fig. 2b. The energy conservation equation for the solid node is solved in conjunction with all 

other conservation equations. The energy conservation for solid node i can be expressed as: 

 
1 1 1

( ) ( )
       

sfss sa

s f a

i i nn n
p s t t p s t

iss sf sa

j j j

mC T mC T
q q q S

t
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

  


   


      (6) 

The left-hand side of the equation represents rate of change of temperature of the solid node, i. 

The right-hand side of the equation represents the heat transfer from the neighboring node and 

heat source or sink. The heat transfer from neighboring solid, fluid, and ambient nodes can be 

expressed as follows: 

 

 qss  kij
s
Aij

s
/ ij

s
Ts
j
s Ts

i  ,  (7a)  

 

 qsf  hij f Aijs T f
j f Ts

i ,  (7b)  

and 

 qsa  hij
a
Aij

a
Ta
j
a Ts

i .  (7c)  

 

The heat transfer rate can be expressed as a product of conductance and temperature differential. 

The conductance for Eqs. (5a)–(5c) is 
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where effective heat transfer coefficients for solid to fluid and solid to ambient nodes are 

expressed as: 
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a
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and 
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For the heat transfer coefficient specification we will neglect nucleate boiling and employ the 

modified Miropoloski’s correlation [14] for two-phase flow :  

 

 Nu = hcD/kv , 

 

where 

 

 Nu = 0.023(Remix)
0.8 (Prv)

0.4 (Y),  

 

where 
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The neglect of nucleate boiling in cryogenic flows with large initial wall superheat (difference in 

temperature between the duct wall and the fluid at saturation), is expected to have only a minor 

effect on the overall chilldown.  The reason for this is that film boiling remains down to a 

relatively low superheat after most of the cooling has occurred.  As a result, the amount of heat 

transfer occurring during nucleate boiling is relatively small when compared to the total heat 

transfer given the initial temperature difference between the fluid and structure.  Furthermore, 

since heat flux increases as peak heat flux is approached from minimum heat flux in film boiling, 

the boiling curve passes through the nucleate boiling regime very quickly. It may be also noted 

that radiative heat transfer and heat transfer to ambient have not been included in the 

computations presented in this paper because of their negligible effect on chilldown of vacuum 

jacketed copper transfer lines. 

The pressure, enthalpy, and resident mass in internal nodes and the flow rate in branches are 

calculated by solving the fully coupled, nonlinear system of Eqs. (1), (2), (4), and (3), 

respectively. There is no explicit equation for pressure. The pressure is calculated implicitly from 

the mass conservation equation.  For a mixture, the conservation of species (Eq. (5)) is solved in 

conjunction with Eqns. (1), (4), and (3). The energy equation is solved in terms of temperature 

instead of enthalpy. A combination of the Newton iteration and the fixed point iteration  has been 

used to solve the set of equations. Mass conservation, momentum conservation, and resident 

mass equations (Eqs. (1), (3), and (4), respectively) are solved by the Newton iteration. The 

energy and specie conservation equations are solved by the fixed point iteration. 

 

             III.  Adaptive Time Stepping Strategy  
 

The stepsize selection algorithm presented here monitors the change of key variables in two 

subsequent discrete times, e.g., as applied to the implicit Euler based finite volume model above.    
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Based on the relative changes, we would like to compute a correction for the time step size such 

that computational effort to construct an approximate solution is minimized. Let en be the 

measure of the relative changes of the quantities of interest in time tn.  

max( , , )m p h

ne e e e                                                                              (8) 

 

In order to measure the changes we use changes in nodal flow rate, pressure, enthalpy etc.  by 

taking where,  

1
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m
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ee e m m m
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ee e p p p
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1
ˆ ˆ,                
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h h

n n n
h

ee e h h h
tol     

are normalized changes in flow rate m   , pressure p and enthalpy h, respectively. Here 
m

tol , tolp 

,tolh are user specified tolerances corresponding to the normalized changes in flow rate, pressure 

and enthalpy. Moreover, the norm employed here is the maximum norm defined by ||p||=maxi pi.   

In [9], it has been shown that this problem can be viewed as a feedback control problem with 

PID feedback gain defined by (9)..  

2
1 1
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1
Dp I

kk k

n n

n n n n

e e
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e e e e
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

    
         

     

                              (9) 

The control is constructed such that it reduces the time step if the solution change is relatively 

large and increases it if the change is small.  We therefore define the time step by the following 

formula: 

 

                                                  
* nt G t                                                                     (10) 

where  G is the feedback gain factor defined by and the constants kp, kI and kD are the feedback 

gain parameters. The computational cost in computing the new time-step Δtn+1 as described in the 

Algorithm III.1 is negligible as it involves storing a few extra vectors and computation of norms. 

If the time step size is too small then a lot of unnecessary computational work has to be done. On 

the other hand, if the time step size is too large, the results may become too inaccurate. The 

introduction of the preset smallest time step ∆tmin  is to force the adaptive algorithm to bound the 

time step below by ∆tmin.  Likewise, time-step limiter ∆tmax gives the upper bound of the time 

step. Consequently, we require that  ∆t satisfy ∆tmin≤∆t ≤∆tmax. These limiters reduce both 

overshoot and control effort in the feedback system.  In order to avoid too large or too small 

values of gain factor G, we introduce gain size limiters Gmax and Gmin such that  Gmin ≤ G ≤ Gmax.  

In order to guarantee robustness of the PID controller with respect to PID parameters kp, kI ,kD, 
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parametric studies were performed for different values of the parameters for two example 

problems.  The PID controller was found to be robust for kp=0.11075, kI =0.2625,kD =0.0165. 

 

Algorithm III.1 

i. Input: 
nm , p, h, ∆tmin, ∆tmax,kp,kI,kD, tol

nm , tolp, tolh, Gmax, Gmin 

         ii   Initialize variables: en-2=1.d0,en-1=1.d0, ∆tn=∆tmin 

ii. Compute en using (8) and compute G*using (9) 

iii. Set G=max(G*,Gmin) and G=min(G*,Gmax) 

iv. Compute ∆t*using (10) 

v. Set ∆t=max(∆t*,∆tmin)  and ∆t=min(∆t*,∆tmax) 

vi. Set ∆tn=∆t 

 

                           IV. Numerical Results  
In this section, we present two numerical experiments to test the adaptive time stepping scheme 

presented in  Algorithm III.1. 

A. Example I: Fluid Transients in Pipe Due to Opening of Valve 

The first example involves a long pipe attached to a reservoir containing liquid water at one 

end and closed at the other end.  A ball valve separates the liquid water and entrapped air regions 

in the pipe, see Figure 5.  The controlling parameters such as the dimension of the pipeline, 

reservoir air column, are taken to be same as the experimental data from [16].  The ball valve is 

opened from 0% opening to a 100% opening by controlling the angle of the ball valve.  It starts 

opening at about 0.15s and opens 100% in about 4s. The reservoir pressure and initial pressure of 

entrapped air are taken to be 102.9 psia and 14.7 psia, respectively, so that the ratio of the 

reservoir pressure to the initial pressure PR=7.  The initial length for the water volume in the pipe 

Ll is fixed to 20 ft and the initial length of the air column in the pipe Lg is taken to be 16.23 ft so 

that the ratio of the initial length of the entrapped air column to the total lenth of the pipe    α 

(=Lg/LT)=0.448. The pipe diameter is 1.025 in.  The entrapped air and water are initially  at 14.7 

psia and 600F, respectively.   

 

The computational domain has been divided into ten nodes, see Figure 4.  The reference solution 

is obtained by using a small constant time step ∆t=0.005 s.  Figure 5 shows the computed results 

for transient pressure at the pipe end (pressure at node 10).  The proposed adaptive time stepping 

algorithm is tested with this water hammer scenario by using an initial time step of ∆t=0.005 s. 

In all of the examples studied in this paper, the initial timestep size is chosen to allow 

convergence of the fixed point iterations and the Newton iterations at the beginning of the 

process. .As observed from this plot, numerical results using the adaptive time stepping scheme 

matches quite well with that of the fixed time stepping scheme results and experimental data.The 

time step is allowed to adjust between ∆tmin=0.001 and ∆tmax=0.01.  The time history for the time 

step is presented in Figure 8 (left).  While pressure varies sharply, the time step is shortened to 

the minimum value of ∆tmin and while the pressure varies mildly the time step is increased back 

to ∆tmax . 

 

First we compare the computational effort to calculate the solution with constant time step 

and with adaptive time step.  A grid resolution investigation is carried out.  For the waterhammer 
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problem four meshes described in column one of Table 1 are generated.  CPU times for 

simulations with different number of nodes (different number of pipe segments) are compared in 

2nd and 3rd columns of Table 1. The results there confirms that in all four cases the computation 

time was decreased by about 90%.  With the adaptive algorithm one parameter that is critical to 

its efficiency and robustness is the maximum value of the time step limiter ∆tmax.  As can be seen 

in Figure 6, CPU time, total number of time steps and total number of (nonlinear) iterations all 

decrease with increase in ∆tmax until a critical value and beyond that it does not provide further 

decrease in CPU time etc.  This is not suprising because a larger time step wit inevitably mean 

the solution is computed more inaccurately.  This is evident in Figure 7 where adaptive algorithm 

simulation with three different ∆tmax are compared with experiment and the results clearly shows 

accuracy of the solutions is affected by too large a ∆tmax values.  With fixed time step, the 

nonlinear solver requires  90,473 iterations but only 54,124 iterations are required when adaptive 

algorithm is applied.  As seen in Figure 8 (right), using the adaptive algorithm clearly requires 

fewer nonlinear iterations at each time step compared to the fixed time step step algorithm. 

 

 

 
 

 
Figure 4  Schematic of water hammer experimental setup [15] (top) and a ten-node GFSSP model 
(bottom). 

 

                                       Table 1  CPU time with various grid size models for Example 1. 

 
Number of Nodes             CPU Time (seconds) 

Adaptive Time Step Fixed Time Step 

10 25 251 

20 81 785 

40 315 3297 

80 1605 17673 
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Figure 5. Predicted air pressure using adaptive time-stepping scheme for PR =7 at about 

45% initial air volume (α=0.4491).  Also shown are the predicted air pressure using fixed 

time step and experimental data. 

 

Figure 6. Effect of time step limiter ∆tmax on CPU time, total number of time steps and 

total number of iterations  
 

The time step limiters ∆tmax affects the CPU time, total number of iterations and total number 

of time steps needed to complete the simulations.  As we can see in Figure 6, CPU time, total 

number of time steps and total number of iterations all decrease with increase in maximum time 

step limiter  ∆tmax .  However, there seems to be a critical value beyond which increasing ∆tmax  
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does not translate into savings in computational effort.  In fact, as shown in Figure 7, accuracy of 

solutions may be affected by too large a values of ∆tmax . 

 
Figure 7. Transient pressure at the end of the pipe for various values of ∆tmax for 

example 1. Also shown is the measured data.  

Figure 7 shows the plot of pressure transients for various values of ∆tmax.  It also compares the 

results with that of the measured data.  It is clear from this figure that the accuracy of computed 

result is affected by too large a values of ∆tmax.  Figure 8 (right) shows the time-step size against 

time and the number of nonlinear iterations against time with adaptive time-stepping strategy and 

with fixed time step.  In this numerical example, if the step size is bigger than the maximum time 

step allowed, ∆tmax = 0.01, the number of nonlinear iterations obtained is larger than the 

maximum number of nonlinear iterations allowed, ITERmax = 2000. As a consequence, we can 

observe 

that at the end of the process, the timestep sizes are kept equal to the maximum size allowed. 

As we can see the adaptive time stepping strategy produces larger time steps with a decrease 

in nonlinear (Newton/Fixed point) iterations. 

 
Figure 8. Timestep variation (left) and nonlinear iterations (right) as a function of time 

with adaptive time-stepping and with fixed time stepping for example 1. 
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B.  Example II: Chilldown of  a Cryogenic Pipe Line 

Transients found in rocket propulsion system may involve thermofluid transients. The second 

numerical example involves prediction of chill down of a long cryogenic transfer line.  A long 

pipe is attached to a storage dewar containing liquid hydrogen (LH2) at one end, and it is open to 

the atmosphere,  as shown in Figure 10 (top).  Transient heat transfer between the liquid 

hydrogen and pipe wall causes vaporization of the liquid hydrogen  and this phase change causes 

transient pressure and flow surges. Figure 10 (top) shows a schematic of the experimental setup 

used by [18], which consists of a 200 ft long, 0.625 inch inside diameter copper tube.  The 

simulations, reported below, used LH2 supplied from the tank at 86.7 psia and at -424.57 oF and 

exiting to the atmosphere at 12.05 psia. Figure 10 (bottom) represents the numerical model 

constructed to simulate the chilldown of the pipe.   The model consists of 10 fluid nodes (two 

boundary nodes and 8 internal nodes), 8 solid nodes, and 9 branches. The upstream boundary 

node represents the LH2 tank, while the downstream boundary node represents the ambient.  The 

first branch represents the valve, the next 8 branches represent the pipe. The first branch 

represents the valve, the next 8 branches represent the pipe. 

 

 

 
Figure 9. Schematic of cryogenic line chilldown experimental setup [18] (top) and a 

GFSSP nine-branch model (bottom). 

 

The solid nodes are connected to the fluid nodes by fluid to solid conductors, which model 

convection from the fluid to the pipe wall. The Miropolskii correlation [14] is used to calculate 

the convection coefficient for the two-phase flow. Because the pipe is vacuum jacketed, heat 

transfer between the pipe walls and the ambient is assumed negligible. .At the internal fluid 

nodes and branches, mass, momentum, and energy equations are solved in conjunction with the 

thermodynamic equation of state to compute the pressures, flow rates, temperatures, densities, 

and other thermodynamic and thermophysical properties. The heat transfer in the wall is modeled 

using the lumped parameter method, assuming the wall radial temperature gradient is small. At 

the internal solid nodes, the energy equation is solved in conjunction with all other conservation 
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equations. 

 
Figure 10. Comparison of transient temperature for subcooled LH2 for the driving 

pressures 86.7 psia at four stations. Also shown is the measured data. 
 

The reference results are calculated with constant time step ∆t=0.001s. The predicted 

temperature history is shown in Figure 10. Stations one to four are nodes whose locations 

correspond to four measurement locations in the experimental data.  These stations are located at 

20, 80, 140 and 200ft, respectively, downstream of the tank.   

 
Figure 11. Timestep variation as a function of time with adaptive time-stepping and with 

fixed time stepping for example 2. 
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These numerical predictions compare well to the measured temperatures.  At this driving 

pressure the pipe line chills down in about 60s. Small discrepancy exists between prediction and 

experiments. This is partly due to coarseness of the network node—both solid and fluid—and 

partly due to the heat transfer coefficient that affects the longitudinal conduction that can be seen 

by noting that the discrepancy increases at each successive station in the downstream. As can be 

seen in Figure 10, the numerical model tends to slightly overpredict the cooldown times. Likely 

reasons for computational results not matching experimental results are (i) inaccuracy of 

Miropolski heat transfer correlation (ii) representation of friction factor in two phase flow 

assuming homogeneous mixture and  (iii) uncertainty in the experimental data being compared 

with. 

 

The adaptive time stepping algorithm is tested with this problem by using an initial time step 

of ∆t=0.001s.  The time step is adjusted between ∆tmin=0.001s and ∆tmax=0.007s. The time 

history for the time step is presented in Figure 11.  Figure 10 compares the wall temperatures of 

the adaptive time step predictions of the numerical model and the fixed time step predictions 

over the course of a 100 s simulation.  When the time step is adjusted according to the adaptive 

algorithm between ∆tmin=0.001s and ∆tmax=0.007s, the accuracy of the results is as good as with 

constant time step ∆t=0.001s.  When the fluid touches the warm pipe walls, heat transfer causes 

the liquid hydrogen to boil and the pipe wall temperature to rapidly decrease and the time step is 

shortened by the adaptive scheme.  As the pipe chills down to the liquid temperature the time 

step is increased back to ∆tmax=0.007s. 

 

CPU times for simulations with different number of nodes and constant time step is compared 

with CPU times for adaptive time step simulations in Table 2.  With this example the presented 

adaptive scheme provides about 65% decrease in CPU time.  Moreover, adaptive time stepping 

reduced the number of nonlinear iterations needed to obtain the solution.  With an increased time 

step the chilldown time prediction become more inaccurate.  When the time step is adjusted 

according to the adaptive algorithm between ∆tmin=0.001s and ∆tmax=0.007s, the accuracy of the 

results is as good as with a constant time step of ∆t=0.001s.  Yet the computation time step is 

almost as short as with a constant time step of 0.007s.  This proves that the time adaptive technique 

we have presented is an effective tool to obtain accurate and economical network flow solutions of the 

rocket propulsion system problems. 

 

                                 V. Conclusion 
 

Adaptive time stepping strategy enables capturing the details of fluid and thermal transients in 

rocket propulsion systems with significant decrease in computational time.  In the presented 

cases of water hammer and cryogenic heat transfer the computation time was decreased by about 

90% and 68%, respectively, without any significant differences in the results.   The applied finite 

volume based network flow simulation scheme is numerically stable for simulating water 

hammer and cryogenic heat transfer problems due to the implicit nature of the time stepping 

scheme.  Therefore accurate results can be achieved even with long time steps.  The proposed 

adaptive scheme can be used to increase computation accuracy, especially in the early stages of 

transition, and during short rough phases of flow and thermal behavior that may be encountered 

in the latter part of the simulation.  Moreover, it was shown that adaptive time stepping algorithm 
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can also improve the convergence behavior of the nonlinear solver associated with the implicit 

time stepping scheme leading to further reduction in CPU time. 

 

The presented adaptive time stepping algorithm is a general one and can be applied for 

network simulation study of transient thermos-fluid dynamic analysis of fluid systems and 

components of importance to aerospace and other engineering industries. 

 
                                   Table 2 CPU time with various grid size models for Example 2 
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