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Summary

With an increasing demand for oil and di�culties in �nding new major oil
�elds, research on methods to improve oil recovery from existing �elds is
more necessary now than ever. The subject of this thesis is to construct
e�cient numerical methods for simulation and optimization of oil recovery
with emphasis on optimal control of water �ooding with the use of smart-
well technology.
We have implemented immiscible �ow of water and oil in isothermal reser-
voirs with isotropic heterogenous permeability �elds. We use the method of
lines for solution of the partial di�erential equation (PDE) system that gov-
erns the �uid �ow. We discretize the two-phase �ow model spatially using
the �nite volume method (FVM), and we use the two point �ux approxima-
tion (TPFA) and the single-point upstream (SPU) scheme for computing
the �uxes.
We propose a new formulation of the di�erential equation system that arises
as a consequence of the spatial discretization of the two-phase �ow model.
Upon discretization in time, the proposed equation system ensures the mass
conserving property of the two-phase �ow model. For the solution of the
spatially discretized two-phase �ow model, we develop mass conserving ex-
plicit singly diagonally implicit Runge-Kutta (ESDIRK) methods with em-
bedded error estimators for adaptive step size control. We demonstrate that
high order ESDIRK methods are more e�cient than the low-order methods
most commonly used in reservoir simulators. Most commercial reservoir
simulation tools use step size control, which is based on heuristics. These
can neither deliver solutions with predetermined accuracy or guarantee the
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convergence in the modi�ed Newton iterations. We have established pre-
dictive step size control based on error estimates, which can be calculated
from the embedded ESDIRK methods. We change the step size control in
order to minimize the computational cost per simulation. To our knowledge,
there have been no previous attempts in applying ESDIRK integration or
error based step size control for computation of the water �ooding process,
neither for commercial purposes nor in simulators developed for research
purposes, with exception of the work that we present in this thesis.
We implement a numerical method for nonlinear model predictive control
(NMPC) along with smart-well technology to maximize the net present
value (NPV) of an oil reservoir. The optimization is based on quasi-Newton
sequential quadratic programming (SQP) with line-search and BFGS ap-
proximations of the Hessian, and the adjoint method for e�cient computa-
tion of the gradients. We demonstrate that the application of NMPC for
optimal control of smart-wells has the potential to increase the economic
value of an oil reservoir.

This thesis consists of a summary report and �ve research papers submitted,
reviewed and published in proceedings in the period 2009 - 2011.



Resumé

Med en stigende efterspørgsel efter olie og vanskeligheder med at �nde nye
store oliefelter, er forskning i metoder til at forbedre olieudvinding fra de
eksisterende felter mere nødvendig nu end nogensinde. Emnet for denne
afhandling er at konstruere e�ektive numeriske metoder til simulering og
optimering af olieudvinding med særlig vægt på optimal kontrol af vandin-
jektion med brug af smart-well teknologi.
Vi har implementeret ikke-blandbar strømning af vand og olie i isoterme
reservoirer med isotrope heterogene permeabilitets felter. Vi bruger "method
of lines" til løsning af det partielle di�erentialligningssystem (PDE), der
modellerer væskestrømmen. Vi diskretiserer to-fase strømningsmodellen
spatialt ved hjælp af �nite volume metoden (FVM), og vi bruger to-punkts
�ux tilnærmeslen (TPFA) og et-punkts opstrøms metoden (SPU) til at
beregne �uxen af væskerne.
Vi foreslår en ny formulering af det di�erentialligningssystem, der opstår
som følge af den spatiale diskretisering af to-fase strømningsmodellen. Det
ny di�erentialligningssystem sikrer to-fase strømningsmodellens massebe-
varende egenskab under temporal diskretisering. Til løsning af den spa-
tialt diskretiserede to-fase strømningsmodel, udvikler vi massebevarende
"explicit singly diagonally implicit Runge-Kutta" (ESDIRK) metoder med
ind-byggede fejl estimatorer til adaptiv skridtlængdekontrol. Vi viser, at hø-
jere ordens ESDIRK metoder er mere e�ektive end de lav-ordens metoder,
der oftest anvendes i reservoir simulatorer. De �este kommercielle reser-
voir simuleringsværktøjer bruger skridtlængde kontrol, som er baseret på
heuristikker. Disse kan hverken levere løsninger med forudbestemt nøj-
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agtighed eller garantere konvergens i de modi�cerede Newton iterationer.
Vi har etableret prædiktiv skridtlængde kontrol baseret på fejlestimater,
der kan beregnes ved hjælp af de indlejrede ESDIRK metoder. Vi ændrer
skridtlængdekontrollen med henblik på at minimere den beregningsmæssige
omkostning per simulering. Så vidt vi ved, er der ikke tidligere gjort forsøg
på at anvende ESDIRK integration eller skridtlængde kontrol baseret på
fejlestimater til beregning af vandinjektionsprocessen, hverken til kommer-
cielle formål eller i simulatorer udviklet til forskningsformål, med undtagelse
af det arbejde, som vi præsenterer i denne afhandling.
Vi implementerer en numerisk metode til ikke-lineær modelbaseret kontrol
(NMPC) sammen med smart-well teknologi til at maksimere nutidsvær-
dien (NPV) af et oliereservoir. Optimeringen er baseret på quasi-Newton
sekventiel kvadratisk programmering (SQP) med linie-søgning og BFGS ap-
proksimationer af Hessian matricen, og den adjungerede metode til e�ektiv
beregning af gradienterne. Vi viser, at anvendelsen af NMPC til optimal
kontrol af smart-wells har potentiale til at øge den økonomiske værdi af et
oliereservoir.

Denne afhandling består af en sammenfattende rapport samt fem forsknings-
artikler indsendt, revideret og o�entliggjort i perioden 2009 - 2011.
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CHAPTER 1
Introduction

The motivation and background for the work presented in this thesis is
given in Section 1.1. Section 1.2 is an overview of relevant literature on
reservoir optimization. In Section 1.3 we summarize the objectives and key
contributions of this work, and in Section 1.4 we outline the remainder of
the thesis.

1.1 Motivation

The global oil consumption is increasing and the most available resources are
being exhausted. On the same time it gets increasingly more di�cult to �nd
new major oil �elds. Consequently, future oil production may become highly
demanding �nancially as well as technologically. Either by producing from
complicated reservoirs (e.g. deep sea reservoirs, Arctic environment, extra
heavy oil or oil sands) or by producing oil remaing in reservoirs after current
conventional production. Currently, it is expected that the world's oil �elds
have an average recovery below 50%. With an increasing demand for oil and
di�culties in �nding new major oil �elds, the research in e�cient exploration
of existing �elds is becoming increasingly important. In particular, this
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1. Introduction

Figure 1.1: An o�-shore oil �eld with multiple horizontal wells.

is highly relevant for the Danish North Sea oil �elds where the expected
average oil recovery is less than 30%.
Oil is produced from subsurface reservoirs, which are formations of porous
rock, enclosed by impermeable layers. The reservoir �uids, mainly oil, gas
and water, are contained inside the microscopic pores of the rock under
high temperature and pressure. The reservoir rock is not only porous but
also permeable, i.e. the pores are interconnected, and we may induce �uid
�ow by adding a pressure gradient in the reservoir. In particular, we will
consider two-phase �ow, which describes combined �ow of water and oil in
reservoirs, exploited as a mechanism for oil production optimization.
The development of an oil �eld essentially consists of drilling wells into
the reservoir rock and connecting them to surface facilities from which the
oil can be transported to re�neries for processing, see Figure 1.1. In gen-
eral, the depletion process of a reservoir consists of two production phases,

2



1.1. Motivation

Figure 1.2: Two horizontal smart-wells in the water �ooding problem [1].

however, a third phase using enhanced oil recovery (EOR) techniques may
be used if economy permits. In the primary production phase, the initial
reservoir pressure will be the driving mechanism for the production. Af-
ter drilling the wells, oil will start �owing to the surface by itself. During
this phase, the pressure gradually decreases, and ultimately it will not be
high enough to push the reservoir �uids to the production facilities. Most
of the oil will remain in the reservoir by the use of this passive approach
alone. In the secondary recovery phase, liquid or gas is injected into the
reservoir. The most commonly used secondary recovery mechanism involves
injection of water, referred to as water �ooding. The purpose is to sustain
reservoir pressure and to displace the oil from the injection wells toward the
production wells, see Figure 1.2. Another similar recovery method is the
injection of CO2. However, CO2 injection is far more complicated, mainly
because of the involved logistics, and the method is not usually classi�ed as
a secondery recovery method. Even such techniques will leave the majority
of the oil trapped in the pores of the reservoir rock, and the oil recovery
factor will in most cases stay somewhere between 10% to 50%. Sometimes a
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1. Introduction

Figure 1.3: A smart-well with individually controllable segments [2].

further increase in the recovery factor is possible during a tertiary recovery
phase using enhanced oil recovery (EOR) methods: chemical �ooding by
injection of e.g. surfactants or polymers, microbial EOR, steam injection,
and in-situ combustion. However, these techniques are relatively expensive
and not economically feasible even at the current high level oil prices.
Alternatively, careful planning of the water �ooding process may increase
the oil recovery factor without doing excessive investments. The most com-
monly used strategy is a reactive �ooding control, based on measuring the
oil-water ratio in each well. In case of water breakthrough, that is, in case
that injected water reaches a production well, a shut-o� threshold is ap-
plied. This reaction based strategy su�ers from two major drawbacks: the
long-term time horizon from initial water injection until water breakthrough
makes proper feedback control unfeasible, and the irreversible development
of an oil �eld makes learning based algorithms for control unfeasible too.
Together with the fact that water �ooding behaves in a non-linear fash-
ion, such a simpli�ed strategy often leads to poor sweep e�cency. That is,
certain regions of the reservoir is not drained su�ciently, because injected
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1.1. Motivation

Figure 1.4: Block diagram af closed-loop optimization [3].

water may pass by the oil in those regions and penetrate a production well
instead.
The use of modern reservoir simulation tools based on physical reservoir
models may to some extend resolve this problem. In particular, a combina-
tion of reservoir modeling and nonlinear model predictive control (NMPC)
has the potential to provide long-term predictions of �uid �ow through
the reservoir, which can be used to plan future development strategies. In
model based reservoir management, the water �ooding process is optimized
by adjustment of smart-wells containing down-hole measurement and con-
trol equipment as well as individually controllable segments, see Figure 1.3.
In the sense of closed-loop optimization, these measurements together with
seismic interpretations of the subsoil may be used for frequent updating of
the reservoir model, whereas an optimal control strategy can be computed
based on the regularly updated model, see Figure 1.4.
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1. Introduction

1.2 Literature Review

Research on optimization of oil reservoirs using gradient based algorithms
and the adjoint approach for gradient computation has been conducted by
other authors. There are three major topics when it comes to optimization
of oil reservoirs: optimal well placement, history matching and production
optimization. Both optimal well placement and history matching are outside
the scope of this work. We will therefore only brie�y comment on these
two subjects. Regarding production optimization, we will mainly focus
on research that involves the adjoint method, when applied to the water
�ooding process.
Drilling of wells is extremely expensive. Thus, determination of the number,
type and location of wells are among the most important decision factors in
the early stages of reservoir development planning. Optimal well placement
is therefore an issue of ongoing research [4, 5, 6]. Common for these groups
is the use of gradient based optimization algorithms and the adjoint model
for gradient computation.
The �rst applications of gradient based optimization using the adjoint ap-
proach in the oil production industry was for history matching. History
matching used for reservoir optimization was pioonered by [7, 8].
Within the research area of production optimization, [9] was among the
�rst to formulate the problem of production optimization in the context of
an optimal control problem, using the adjoint method for gradient compu-
tation of the objective function. His work was mainly focused on tertiary
recovery techniques, such as chemical �ooding. Later, [10, 1] optimized the
water �ooding process, see Figure 1.2, and demonstrated that smart-well
technology, see Figure 1.3, combined with optimal control has the potential
to increase net present value (NPV) of a reservoir. Through their work,
gradient based optimization using the adjoint model has received signi�-
cant attention in the society of petroleum engineers. Smart-wells are either
completed with bang-bang type valves, i.e. on-o� valves, or completed with
variable-setting valves. It has been shown that the shape of the optimal solu-
tions will sometimes be of the bang-bang type [11, 12]. This type of solution
was also to some extent demonstrated in [10, 1]. Solutions of the bang-bang
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1.2. Literature Review

type may be implemented with simple on-o� valves, which has the advan-
tage of being less expensive than variable-setting valves. That is why the
shape of optimal solutions is still an open issue in the reservoir commuity.
Based on their work, several research groups have become interested in the
use of smart-well technology combined with optimal control. Common for
all groups is the use of gradient based optimization methods that include the
adjoint model for gradient computation [13, 14, 15, 16, 17]. Numerous other
issues related to production optimization of oil reservoirs are open to ongo-
ing research. In particular, state constraint handling [18, 14, 15, 19, 20, 21],
which is a very important topic in practical reservoir management, e.g.
bounds on the reservoir pressure to avoid fracturing of the reservoir rock or
limits on the amount of produced water. Another topic of relevance, is the
calculation of the second derivative, the Hessian, of the objective function.
The most common approach is to use BFGS approximations of the Hessian.
However, to gain more accuracy and better convergence toward an optimal
solution, second order adjoints may be an alternative [22].
Both history matching and production optimization are building blocks in
a closed-loop optimizer, see Figure 1.4, in which the red loop represents the
history matching, while the blue loop represents the production optimiza-
tion. Production optimization is an open-loop optimizer, which is based
on response from the reservoir model, whereas history matching updates
the model based on production data and seismic interpretations. Long-
term reservoir management requires a closed loop approach, where prop-
erties such as permeability and porosity of the reservoir rock are updated
frequently and uncertainties on such properties are quanti�ed. It is most
common to close the loop using the ensemble Kalman �lter (EnKF) for
history matching in conjunction with a gradient based algorithm for pro-
duction optimization. The EnKF provides model updates and quanti�es
model uncertainties based on an ensemble of di�erent reservoir properties,
e.g. ensembles of permeability and porosity. Some of the earliest attempts
of linking the EnKF and gradient based optimization using the adjoint
model for gradient computation can be found in [23, 10, 24, 25, 26]. There
has also been attempts on combining an estimator and an optimizer, where
both production data mis�ts and production optimization has been com-
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1. Introduction

puted using the adjoint approach [27, 28]. However, the methods described
above for history matching and production optimization all have the poten-
tial to increase the economic value of an oil reservoir. This is demonstrated
in a recent benchmark study of the water �ooding process performed on a
synthetic data set [29].

1.3 Objectives and Main Contributions

The primary objective of the work in this thesis is the implementation of a
framework for oil production optimization by water �ooding. We will use
an explicit singly diagonally implicit Runge-Kutta (ESDIRK) method as
a tool for e�cient integration of the reservoir model. To achieve this we
must understand the underlying processes of both reservoir simulation and
methods for production optimization. Reservoir models may generate large-
scale optimization problems. That is why single-shooting using adjoints for
gradient computation is the most widely used method for production opti-
mization of oil reservoirs, and it is also the reason why we have chosen this
method. Good convergence in the single-shooting method requires an e�-
cient and accurate numerical integration. ESDIRK methods with adaptive
step size control has such properties.
Computation of adjoints involves the gradients of the model. These are
computed by ESDIRK integration during simulations. Thus, to e�ciently
compute the adjoints, we need an implementation of both model and inte-
grator that facilitates the reuse of gradient information. This suggests that
we need a reservoir simulator, a method for numerical integration and an
adjoint model, where we have full access to the source code.
For the simulation we implement a two-phase �ow simulator. We spatially
discretize the �ow equations by the �nite volume method (FVM), in which
we use the two-point �ux approximation (TPFA) and single-point upstream
(SPU) weighting of the �uid terms. We use vertical injection and production
wells of the Peaceman type.
For the numerical integration we develop and implement mass conserving
ESDIRK methods with embedded error estimators for adaptive step size
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1.4. Outline

control. The two-phase �ow problem is based on conservation of mass. We
propose a new di�erential equation model that upon temporal discretization
maintains such a property. The spatially discretized two-phase �ow problem
can be directly formulated using this model.
For the optimization we use a gradient based algorithm, in which we include
the adjoint model for computing the gradient of the objective function. We
use BFGS updates for computing the Hessian of the objective function. We
do not have access to any real production data, thus, we perform open-loop
optimization (the blue loop in Figure 1.4). We focus on optimal control
of injection rates and bottom hole pressures (BHPs) of injection wells and
production wells, respectively. The objective is to increase oil production
using water �ooding and thereby maximize net present value (NPV) of the
reservoir.
The main contributions of this work are:

• The formulation of a new di�erential equation model that upon tem-
poral discretization maintains the mass conserving property of the
spatially discretized two-phase �ow problem.

• The development of mass conserving ESDIRK methods with embed-
ded error estimators for adaptive step size control.

• The application of ESDIRK integration and error based step size con-
trol for computation of the water �ooding process.

To our knowledge, there have been no previous attempts on applying ES-
DIRK methods and error based step size control for computation of the
water �ooding process. Neither for commercial purposes nor in simulators
developed for research purposes, with exception of the work that we present
in this thesis and in the papers A - E, included in this thesis.

1.4 Outline

This thesis is divided into 5 chapters and 8 appendices. The background
and motivation behind the project is given in Chapter 1. The model of
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1. Introduction

the combined �ow of water and oil in a reservoir is decribed in Chapter
2, together with a description of the well models. The reservoir model is
essentially a system of partial di�erential equations. The methods for spatial
and temporal discretization that we use to extract the solution from this
system is given in Chapter 3 and 4, respectively. In Chapter 5 we present
the water �ooding process and the problem of maximizing net present value
of a reservoir. Chapter 6 concludes the study.
In Appendix A we describe the derivation of selected Jacobian elements
in details. Appendix B includes the coe�cients for the numerical integra-
tion methods. Appendix C contains a list of the physical quantities that
describes the reservoir model and the well models along with a list of com-
monly used abbreviations. In appendix D - H we include �ve conference
papers A - E that have been reviewed, presented and published in proceed-
ings. The material presented in the papers and in the thesis overlap to some
extend. However, they are complementary, since both contain details that
are not presented elsewhere.
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CHAPTER 2
Reservoir Model

Oil reservoirs are characterized by complex geometry, spatially variable ge-
ological properties, e.g. porosity and permeability of a porous medium, and
complex �uid mixtures of water and multiple oil and gas components. In
reservoir simulation, we are interested in describing the transport of these
di�erent components through the porous medium. In general, a component
can exist in any �uid phase, and as a result we must solve one equation
per component times a set of phase equilibrium relations. Compositional
reservoir models, which treats every component in every �uid phase individ-
ually, are computationally expensive to simulate, even with today's modern
supercomputers. The complexity of the model can be reduced by lump-
ing the hydrocarbon components into pseudo components. The black oil
model, which is common in the petroleum industry, is a simpli�ed isother-
mal compositional reservoir model. Besides water, it contains only two
pseudo hydrocarbon components: oil and gas. In the black oil model it is
assumed that water and oil are immiscible, and that water does not vaporize
into the gas phase. Thus, the water phase consists of the water component
alone. The gas can dissolve in both the water phase and the oil phase, and
it is not uncommon that black oil models allow oil to vaporize into the gas
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2. Reservoir Model

phase.
With respect to computation time it is less demanding to simulate the black
oil model compared to compositional simulation. However, the physics are
treated less realistically in the black oil formulation. Because of the reduced
computational cost of the black oil model, this formulation is relevant in
production optimization, which requires frequent updating/simulation of
the reservoir model. In the present work we use a simpli�ed version of the
black oil formulation: a two-phase system containing only water and oil
with complete immiscibility [30, 31, 32, 33, 34]. The simpli�cation elimi-
nates the phase equilibrium relation due to the solubility of gas in the oil
phase. In this way we reduce the computational cost per simulation. The
simpli�ed description of the reservoir �uids is su�cient for demonstrating
the production optimization technique utilized in Chapter 5.
This chapter is organized as follows. In the �rst two sections we present
the equations that govern the two-phase �ow problem together with the
initial and boundary conditions. In Section 2.3 we describe the constutive
models, divided into properties concerning the reservoir rock and properties
concerning the reservoir �uids. Section 2.4 describes the transport model
governed by Darcy's law. The well models [35] that we use are presented
in Section 2.5. Finally, in Section 2.6 we discuss how to derive the primary
variables of the system.

2.1 Governing Equations

Consider the spatial domain Ω ⊂ R3 and the time domain T = {t ∈ R : t ≥
0}. The boundary of the spatial domian is ∂Ω ⊂ R3 and the boundary of the
time domain is ∂T = {t ∈ R : t = 0}. The water and oil phases are indexed
as α ∈ {w, o}. Let Cα = Cα(t, s), be the mass concentrations of water and
oil in the reservoir (mass per unit volume of reservoir) as functions of time
t ∈ T and position s ∈ Ω. The mass balances of the reservoir �uids are
expressed by the following system of partial di�erential equations

∂Cα
∂t

= −∇ · Fα +Qα t ∈ T \ ∂T s ∈ Ω \ ∂Ω (2.1)
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2.2. Initial and Boundary Conditions

Qinjα Qproα

Ω ∂Ω

Figure 2.1: Outline of a reservoir with internal source/sink (Qinjα /Qproα ) terms.

in which Fα = Fα(t, s) is the �ux of water and oil through the porous
medium. The �ux is a 3-dimensional vector, Fα ∈ R3, describing the mass
�ow in each spatial coordinate direction. The source/sink terms of water
and oil are denoted Qα = Qα(t, s). They are used to describe the �ow from
injection wells and the �ow to production wells inside the reservoir. The
reservoir is outlined in Figure 2.1.

2.2 Initial and Boundary Conditions

The initial concentrations of the reservoir �uids are speci�ed

Cα(t, s) = Cα(s) t ∈ ∂T s ∈ Ω (2.2)

The boundary conditions of the model incorporate external and internal
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2. Reservoir Model

conditions. External boundary conditions de�ne spatial limits of the reser-
voir. Internal boundary conditions de�ne well placements. Both external
and internal conditions are speci�ed by de�ning �ow rates across a boundary
or pressure at a boundary, which corresponds to Neumann or Dirichlet type
conditions. For external boundaries we will assume a Neumann condition
corresponding to no �ow across the reservoir boundaries

Fα(t, s) = 0 t ∈ T s ∈ ∂Ω (2.3)

Internal boundaries due to injection and production wells are treated seper-
ately in Section 2.5.

2.3 Constitutive Models

The concentrations of water and oil in the reservoir may be expressed as

Cα = φραSα (2.4)

φ is the porosity of the reservoir rock. ρα = ρα(Pα) is the density of
each reservoir �uid in particular. The density depends on the pressure
Pα = Pα(t, s) in the �uid. Sα = Sα(t, s) is the saturation of the �uid. The
saturation represents the volumetric fraction of the �uid occupying the void
space (pore space volume). As water and oil jointly �ll the entire void space
of the reservoir, the following saturation constraint holds

Sw + So = 1 (2.5)

Water and oil are transported by convection through the porous medium.
Therefore, the �uxes can be expressed as

Fα = ραuα (2.6)

uα = uα(Pw, Sw) are the velocities at which the �uid phases individually
�ow through the porous medium. They are modelled in terms of Darcy �ow
in Section 2.4.
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2.3. Constitutive Models

To complete the two-phase �ow model we must introduce several other
quantities, namely permeability, relative permeability, capillary pressure
and viscosity. Porosity and permeability are quantities that characterize
the porous medium in which the reservoir �uids reside. Density, relative
permeability, capillary pressure and viscosity are all properties of the reser-
voir �uids. In the following we will describe these quantities and provide
the models needed for completing the two-phase �ow model.

2.3.1 Porosity

The reservoir �uids are trapped inside the pores of a porous medium, e.g.
chalk or sandstone formations. The porosity is the volumetric fraction of
the total bulk volume that is not occupied by solid matter (reservoir rock),
ie. it is the fraction of the total bulk volume that may contain the reservoir
�uids (water, oil). Let V be the total bulk volume of the reservoir and let
Vp be the pore volume (PV), i.e. void space of the reservoir rock, then the
porosity is de�ned as φ = Vp/V . Since changes in rock characteristica are
not included in our model, the porosity is constant over time but may vary
at di�erent locations in the reservoir, such that φ = φ(s).

2.3.2 Permeability

The permeability is a measure of the capacity of a porous medium to conduct
�uids through its interconnected pores. It is de�ned for single-phase �ow
and often referred to as absolute permeability. The concept of permeability
is of importance in determining the connectivity and preferred �ow direction
in the reservoir. The permeability is de�ned as a tensor k of size 3× 3. In
theory k is a full tensor, however, in many practical situations it is possible
to assume that k is a diagonal tensor given by

k =



kxx 0 0
0 kyy 0
0 0 kzz


 (2.7)
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2. Reservoir Model

Classi�cation Permeability [mD]

Poor to fair 1-15
Moderate 15-20
Good 20-250
Very good 250-1000
Excellent >1000

Table 2.1: Typical values of absolute permeabilities [34].
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Figure 2.2: Permeability �eld [mD] with two high permeable streaks [1]. The
white squares on the left-hand side illustrates a row of injectors, and the white
circles on the right-hand side illustrates a row of producers.

in which all cross terms kxy = kxz = kyx = kyz = kzx = kzy = 0. Typically,
in reservoirs formed by deposition, the directional trend in the horizon-
tal plane is not very distinct or even not apparent, and we may assume
kxx = kyy = kH to be the horizontal permeability. In such reservoirs the
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vertical permebaility kzz = kV usually di�ers from kH , and the horizontal
permeability tends to be much larger than the vertical. In situations where
k = kI3×3 (kxx = kyy = kzz = k), the porous medium is called isotropic,
otherwise it is called anisotropic. We limit ourselves to a porous medium
with an isotropic heterogeneous permeability �eld. In our model we do not
include temporal changes of properties related to the reservoir rock. Hetero-
geneity though implies a spatial dependency of the permeability, k = k(s).
The SI unit for permeability is [m2]. However, in the petroleum literature
it is common to use the unit milliDarcy [mD], where 1 mD = 0.9869 · 10−15

m2 (1.01325 · 1012 mD = 1 m2). A reservoir is considered to be exploitable
without stimulation (with e.g. surfactants), if the permeability of the reser-
voir rock is greater than approximately 100 mD. Rocks with permeability
values signi�cantly lower than this may form e�ecient seals, preventing the
reservoir in exchanging �uids with the surrounding environment. Typical
values of absolute permeabilities are given in Table 2.1. The permeability
�eld that we use for production optimization in Chapter 5 is depicted in Fig-
ure 2.2, it is a synthetic �eld constructed by [1] for testing of optimization
strategies. It has since been used as a benchmark problem in various articles
[13, 24, 36, 19, 37] dealing with production optimization of oil reservoirs.

2.3.3 Relative Permeability

The relative permeability is a measure of the capacity of a porous medium
to conduct a �uid through its interconnected pores in the presence of other
�uids. It is de�ned as the ratio of the absolute permeability assigned to
a particular �uid. The relative permeability krα is a dimensionless term.
krα ≤ 1, assuming that the �ow of each phase is inhibited by the presence
of other phases. Thus, the e�ective permeability kα = kkrα of a particular
�uid is less than or equal to the single-phase permeability (absolute perme-
ability) of the porous medium. We accept, as an empirical fact, that relative
permeabilities are dependent on saturations alone, krα = krα(Sα). Figure
2.3 shows typical relative permeabilities for an oil-water system with water
displacing oil. The value of Sw at which water starts to �ow is called the
critical water saturation, Swc. The value of So at which oil (the displaced

17



2. Reservoir Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 ← S
wc

 1−S
or

 → 

S
w

k rα

 

 
k

rw

k
ro

Figure 2.3: Corey's two-phase relative permeability model (2.8) for the values
in Table 2.2.

phase) ceases to �ow is called the residual oil saturation, Sor. Swc and Sor
are irreducible saturations that de�ne lower bounds for the saturation values
of water and oil, respectively. Consequently, the maximum oil saturation
is 1 − Swc, and the maximum water saturation is 1 − Sor. We use Corey's
two-phase relative permeability model [38, 31, 34]

krw =





0 0 ≤ Sw ≤ Swc
k◦rws

nw
w Swc < Sw < 1− Sor

k◦rw 1− Sor ≤ Sw ≤ 1

(2.8a)

kro =





0 0 ≤ So ≤ Sor
k◦ros

no
o Sor < So < 1− Swc

k◦ro 1− Swc ≤ So ≤ 1

(2.8b)

in which k◦rw and k◦ro are the relative permeability end points, nw and no
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Symbol Description Value Unit

Swc Critical water saturation 0.2 -
Sor Residual oil saturation 0.2 -
k◦rw Water end point relative permeability 0.3 -
k◦ro Oil end point relative permeability 0.9 -
nw Water Corey exponent 1.5 -
no Oil Corey exponent 2.0 -

Table 2.2: The values used for illustration of the Corey's two-phase relative
permeability model (2.8) in Figure 2.3.

are the Corey exponents and sw and so are the normalized saturations

sw =
Sw − Swc

1− Swc − Sor
(2.9a)

so =
So − Sor

1− Swc − Sor
(2.9b)

of the water phase and the oil phase. Figure 2.3 is constructed using the
parameters in Table 2.2.

2.3.4 Capillary Pressure

In immiscible oil-water systems, water is most often wetting the surface of
the reservoir rock, meaning that water tends to maintain contact with the
rock, thus displacing the oil. Due to interfacial tension between the non-
wetting and the wetting phase �uids, the pressure in the non-wetting �uid is
higher than the pressure in the wetting �uid. The di�erence between these
two pessures is the capillary pressure

Pcow = Po − Pw (2.10)

Empirically, it is accepted, that the capillary pressure depends on the sat-
uration of the wetting �uid, such that Pcow = Pcow(Sw). E�ects due to
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2. Reservoir Model

capillarity becomes less signi�cant in highly permeable and highly porous
media. In dense formations with very small pores, capillarity introduces a
di�usive term into (2.1) [39]. However, we assume zero capillary pressure

Pcow = 0 (2.11)

since no additional insight for the optimization problem is gained by includ-
ing capillarity.

2.3.5 Density

Depending upon how �uids respond to pressure, they can be classi�ed as
compressible, slightly compressible or incompressible. Constant water den-
sity is normally a valid assumption. Some oil components may exhibit sig-
ni�cant density changes with pressure, especially if the oil phase contains
large quantities of dissolved gas. For a gas phase compressibility is very
important. However, we consider a water/oil system, in which we assume
both the water phase and the oil phase to behave like slightly compressible
�uids at reservoir conditions. For isothermal conditions the compressibility
of a �uid is de�ned by

cα =
1

ρα

∂ρα
∂Pα

∣∣∣∣
T

(2.12)

where ρα = ρα(Pα) is the �uid density (at constant temperature T ). As-
suming the �uid compressibility to be constant over the pressure range of
interest, integration of (2.12) yields the following equation of state

ρα = ρ◦αe
cα(Pα−P ◦

α) (2.13)

where ρ◦α is the density at reference pressure P
◦
α. The relation (2.13) between

density and pressure is depicted in Figure 2.4 using the reference values in
Table 2.3. Using a Taylor series expansion, we see that

ρα = ρ◦α

[
1 + cα(Pα − P ◦α) +

1

2!
c2
α(Pα − P ◦α)2 + · · ·

]
(2.14)
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Figure 2.4: The �uid density (2.13) for the values in Table 2.3.

Symbol Description Value Unit

ρ◦w Water density (at 1 atm) 1000 kg·m−3

ρ◦o Oil density (at 1 atm) 800 kg·m−3

cw Water compressibility 10−5 atm−1

co Oil compressibility 10−5 atm−1

Table 2.3: The values used for illustration of the �uid density (2.13) in Figure
2.4.

and since we assume the �uids to be only slightly compressible, i.e. the
compressibility cα is small (typically in the range from 10−10 to 10−9 Pa−1

[34]), we can neglect all high order terms and approximate (2.13) with the
linear relationship

ρα ≈ ρ◦α[1 + cα(Pα − P ◦α)] (2.15)

using a reference density and pressure at reservoir conditions.
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Classi�cation Viscosity [cP]

Light oil 0.3-1
Medium oil 1-6
Moderate oil 6-50
Heavy oil 50-1000
Heavy oil and oil sands >1000

Table 2.4: Typical values of oil viscosities at reservoir conditions (28-41 MPa
and 93◦ C) [34].

Symbol Description Value Unit

µw Water viscosity 1.0 cP
µo Oil viscosity 1.0 cP

Table 2.5: Constant water and oil viscosities that we use in our model.

2.3.6 Viscosity

The viscosity (thickness) of a �uid is a measure of the internal friction that
arises due to shear and tensile stress, when it is in motion. In general, �uid
viscosity depends on phase composition (multi component phases), pressure
(at very high pressures) and temperature. But, since the two-phase �ow
model is not compositional, and the pressure does not vary signi�cantly
throughout the reservoir, and the model is isothermal, we do not provide
any of these dependencies. Instead, the viscosities µα of the water phase and
the oil phase are held constant. The SI unit for visosity is [Pa·s], however, in
the petroleum literature it is common to use the unit centipoise [cP], where
1 cP = 10−3 Pa·s. The viscosity of water at standard conditions (1013.25
hPa at 20◦ C) is 1 cP. Typical values of oil viscosities at reservoir conditions
(28-41 MPa at 93◦ C) are given in Table 2.4. In our model we use the values
in Table 2.5.
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2.4 Transport Model

The �ow of the reservoir �uids is driven by spatial di�erences in pressure
(pressure gradient) and gravity. Fluid �ow in a porous medium at low to
moderate velocities is governed by Darcy's law [40, 31]

uα = −λαk∇Φα (2.16)

in which λα = krα
µα

is the phase mobility. Darcy's law is a linear relationship
between the phase velocity uα = uα(Pα, Sα) and the �ow potential �eld

∇Φα = ∇Pα − ραg∇z (2.17)

where ∇Pα is the pressure gradient, g is the gravitational acceleration and
z is the depth (downward positive). We do not include gravitational e�ects
in the model, that is g = 0 in (2.17).

2.5 Well Models

Although we have not presented any method for spatial discretization yet,
we will use the concept of grid blocks in this section. A grid block is a
�nite control volume of the total bulk volume of the reservoir. We will
provide a detailed description of the �nite volume approach in Chapter 3.
Injection wells and production wells (injectors and producers) are located
and perforated in a single grid block, e.g. as illustrated in Figure 2.5.
Injectors are used for injection of the phase, which in our case is water,
displacing the reservoir �uids. Producers are used for prodution of the
displaced reservoir �uids. Let N be the set of grid blocks, I ⊂ N be the
set of grid blocks containing an injector, and P ⊂ N be the set of grid
blocks containing a producer. Thus, if i ∈ I then the ith grid block is
penetrated by an injection well, and if i ∈ P then it is penetrated by a
production well. Injectors are operated at variable (volumetric) injection
rates, whereas producers are operated at variable bottom hole pressures
(BHPs). The BHP is the pressure inside the well at reservoir depth.
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Qinjα Qproα

Ω ∂Ω

Figure 2.5: Example of an injector and a producer located in two di�erent grid
blocks.

Under the assumption of single-phase �ow in the vicinity of the wells [31, 41],
we consider wells that are vertical, and fully completed and centered in a
single grid block. Furthermore, we assume that injectors and producers can
not coexist in the same grid block, i 6= j, i ∈ I, j ∈ P. Other models
could be implemented to simulate more specialized wells, e.g. horizontal or
deviated wells, completion in multiple grid blocks, or wells in unstructured
grids. However, such well models require a much more involved approach
[42, 43, 44, 45, 46, 47, 48], which is outside the scope of this work.

2.5.1 Injection wells

If an injector penetrates grid block i ∈ I, then we directly control the source
terms Qinjα,i = Qinjα,i (Pα,i). We de�ne the source terms
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Qinjα,i =

(
qinjα

V

)

i

i ∈ I (2.18a)

as the rate of injected mass qinjα,i of each phase averaged over the grid block
volume Vi (the rate of injected mass per unit volume of reservoir). Usually,
only water is injected to keep the pressure in the reservoir above a certain
level, implying that

qinjw,i = (ρwq
inj)i i ∈ I (2.19a)

qinjo,i = 0 i ∈ I (2.19b)

in which qinji is the volumetric injection rate of water into grid block i ∈ I.

2.5.2 Production wells

If a producer penetrates grid block i ∈ P, then we can only indirectly
control the sink terms Qproα,i = Qproα,i (Pα, Sα)i, since the produced liquid is a
composition of oil and water. We de�ne the sink terms

Qproα,i =

(
qproα

V

)

i

i ∈ P (2.20a)

as the rate of produced mass qproα,i of each phase averaged over the grid block
volume Vi (the rate of produced mass per unit volume of reservoir). The
set of producers are modelled as

qproα,i = −(WIραλα)i(Pα − P bh)i i ∈ P (2.21)

where WIi denotes the well index, and P bhi denotes the BHP of the pro-
duction well in grid block i ∈ P. Each producer enters the reservoir model
through a well index. The well index captures the interaction between the
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well and the reservoir, i.e. making the well model account for both geomet-
ric characteristics of the well and properties of the surrounding reservoir
rock. Speci�cally, for each grid block i ∈ P containing a well, the quantity
WIi relates the �ow rate of the well to the local BHP and the pressure in the
grid block. For vertical wells in non-square Cartesian grids (cuboid grids)
with anisotropic permeability �elds (assuming diagonal tensors), Peaceman
[35] derived an analytical expression for WIi. The Peaceman well index is
given as

WIi =

(
θ
√
kxxkyyh

ln(re/rw) + s

)

i

i ∈ P (2.22)

θ is the angle open to �ow (e.g. 2π for a well in the interior and π
2 for

a corner well), kxx and kyy are permeability components in the x- and y-
directions as de�ned in (2.7), ∆x and ∆y are the grid block sizes, h is the
height of the well (grid block height in the z-direction), rw is the wellbore
radius, and

re,i = 0.28




√√
kyy/kxx∆x2 +

√
kxx/kyy∆y2

4
√
kyy/kxx + 4

√
kxx/kyy



i

i ∈ P (2.23)

is the equivalent radius. re is the radial position (centered around the well)
at which the pressure in the well block, computed by the simulator, is equal
to the pressure obtained by the analytical model. The skin s in (2.22) is a
dimensionless factor included to match the theoretical productivity of the
well with actual conditions. Thus, the skin factor accounts for damage or in-
�uences that are impairing the well productivity, or stimulation (fracturing,
acidization, etc.) that enhances productivity. We assume ideal conditions,
that is s = 0.

26



2.6. State Transformation

2.6 State Transformation

Considering the algebraic constraints (2.5) and (2.11), we de�ne

S = Sw = 1− So (2.24a)

P = Po = Pw (2.24b)

where S = S(t, s) is the saturation of water, and P = P (t, s) is the phase
pressure (reservoir pressure, since Po = Pw). Throughout the rest of this
thesis we will refer to S and P as saturation and pressure respectively. In
the two-phase �ow model (2.1) - (2.17), we may use (S, P ) as state variables
instead of (Cw, Co). (2.4), (2.5), (2.10) and (2.11) may be used to compute
S and P given Cw and Co. Implying that we may state the initial conditions
(2.2) as initial saturation and pressure

S(t, s) = S(s) t ∈ δT s ∈ Ω (2.25a)

P (t, s) = P (s) t ∈ δT s ∈ Ω (2.25b)

2.7 Summary

We have described the two-phase �ow problem, the well models, and the
primary variables of the model. The two phases are oil and water. The
model consists of two partial di�erential equations representing conservation
of mass. Mass is transported by convection at a velocity determined by
Darcy's law. Relative permeabilites are determined by a Corey expression
and we assume zero capillary pressure. The �uid densities are described
by an equation of state relating the densities to pressure. The porosity is
homogeneous and we assume a heterogenous isotropic permeability �eld.
We use vertical injection and production wells of the Peaceman type. The
primary variables of the model are reservoir pressure and water saturation.
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CHAPTER 3
Spatial Discretization

In this chapter, we describe how we obtain the discrete representations for
the spatial derivative operators in the two-phase �ow equations (2.1). For
the purpose of spatial discretization we have a variety of methods to choose
from. Most of the methods are variations and combinations of three well
known methods: the �nite di�erence method (FDM), the �nite volume
method (FVM), and the �nite element method (FEM).
The FDM is considered the oldest of the three methods, and because of its
simplicity and intuitive approach it is still widely used [49, 34]. The method
represents the spatial derivatives in discrete grid points. FD schemes are
su�ciently robust and e�cient for a large number of problems, and exten-
sions to higher order approximations of the solution is relatively straight-
forward to obtain. However, higher order �nite di�erence stencils are often
constructed locally for each spatial dimension. This limits the geometric
�exibility of the method, making it less suitable for handling domains with
complex geometry, e.g. in terms of local grid re�nements for dealing with
abrupt changes in absolute permeability.
The FVM is a control volume formulation that uses an element based dis-
cretization. Due to the control volume formulation, FVMs maintain local
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conservation of mass, energy and momentum, which cannot in general be
guaranteed for FDMs. The FVM represents the physical domain by a col-
lection of small control volumes that jointly �ll the entire domain. The
elements may have di�erent sizes and may be organized in an unstruc-
tured manner. The solution is approximated on the element by the cell
average at the center of the element. The classic �nite volume scheme is
purely local, thus, no limitations are imposed on the grid structure, and
the method generalizes easily to unstructured grids in higher dimensions.
This ensures geometric �exibility of the method. The FVM reduces the
�ux term to a surface integral by the use of Gauss' divergence theorem, and
therefore we must evaluate the �uxes at the boundaries. The interface �ux
between neighbouring elements is most often computed by the two point
�ux approximation (TPFA) [32, 65, 50]. The TPFA is a low order approx-
imation. High order approximations are not straightforward to obtain in
unstructured grids, which is one of the major drawbacks of the FVM. High
order reconstructions of interface values by the use of multi point �ux ap-
proximations (MPFA) involve information from more than two cells. This
introduces the need for particular grid structures, which jeopardizes the
geometric �exibility of the FVM in higher dimensions. In particular, for
porous media �ow in an anisotropic permebaility �eld on non-k-orthogonal
grids, TPFA gives an error in the solution [51, 52]. However, to be able to
solve the �ow equations on general grids, variations of both TPFA [53] and
MPFA [54, 55, 56, 57, 58] methods have been suggested.
The FEM has initially been developed for structural stress analysis. As the
name of the method suggests, it is element based. It ensures geometric �ex-
ibility and allow di�erent element sizes. A recent employment of the FEM
in reservoir simulation can be found in [59]. High order discrete approxi-
mations of the solution are relatively simple to obtain in the �nite element
setting. In particular, local basis functions allows for di�erent orders of ap-
proximation in each element. However, the basis functions are symmetric
in space, and this may cause stability issues for problems based on conser-
vation laws, in which information �ows in speci�c directions. These issues
may be solved by the discontinuous Galerkin �nite element method (DG-
FEM). The DG-FEM is basically a hybrid between the FEM and FVM.
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The method ensures �exibility both in terms geometry and in the choice
of the numerical �ux, high order approximations are relatively simple to
obtain on general grids, and it maintains local conservation. On the nega-
tive side, the number of unknowns increases and DG-FEM solvers can be
computationally expensive in comparison to FVM and FEM solvers. How-
ever, because of the appealing properties, the method is gaining interest in
reservoir simulation [60, 61, 62] and a general description of the DG-FEM
is found in [63].
Because of the close relation to the conservation laws, we have chosen the
FVM for spatial discretization. We assume an isotropic permeability �eld,
thus, we use the TPFA to reconstruct the discrete �ux terms. In Section 3.1
and 3.2 we describe how we derive the spatially dicretized �ow equations.
Section 3.3 discusses how to evaluate the transmissibilities. In Section 3.4
we present a new di�erential equation model for the spatially dicretized �ow
equations, as proposed in Paper A. Finally, in the last section we illustrate
the Jacobian structure of the spatially discretized model.

3.1 Nomenclature

For the �nite volume approach, we divide the spatial domain Ω into N
subregions Ωi with boundaries ∂Ωi, i ∈ N = {1, 2, . . . , N}, such that

⋃

i∈N
Ωi = Ω (3.1a)

(Ωi\∂Ωi) ∩ (Ωj\∂Ωj) = ∅ i, j ∈ N i 6= j (3.1b)

where N is the set of indices of non-overlapping control volumes that cover
the whole domain Ω. This is illustrated in Figure 3.1. In the following
we will use Figure 3.1 to explain the problem setup and the symbols used.
De�ne

γij = Ωi ∩ Ωj i, j ∈ N i 6= j (3.2)

and for the ith control volume Ωi, let N (i) ⊂ N denote the set of indices of
neighbouring subregions. Then
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γij = Ωi ∩ Ωj i ∈ N j ∈ N (i) (3.3)

denotes the interface between two adjacent control volumes. In particular

γij 6= ∅ i ∈ N j ∈ N (i) (3.4a)

γij = ∅ i ∈ N j /∈ N (i) (3.4b)

Each control volume contains a nodal point. Properties of the model are
represented at the nodal points as the average over the control volumes
surrounding them. The nodal point of the ith control volume is located
such that

si ∈ Ωi i ∈ N (3.5)

and we de�ne

sij = sj − si i ∈ N j ∈ N (i) (3.6)

as the internode connection between the grid node locations of two neigh-
bouring grid blocks i and j. For the discrete spatial domain we assume
that

sij ⊥ γij i ∈ N j ∈ N (i) (3.7)

by construction. Figure 3.1 illustrates a 2-D grid maintaining the property
in (3.7). Because the location of the grid nodes si and sj are taken as
the circumcenters of each block, we see that sij (perpendicular) bisects the
interface γij , in this particular example.
For the spatial discretization below we use the following notation: ψij means
that we evaluate the property ψ at the interface γij , and ψi means that we
evaluate the property ψ at the nodal point si. In particular, for properties
depending on both time and space we have ψi = ψ(t, si), and for time
invariant properties that only depend on space we have ψi = ψ(si).
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Qinjα Qproα

Ω

Ωj

sjsi

sij γij

nij

∂Ω

Ωi

∂Ωj

∂Ωi

Figure 3.1: A reservoir spatially discretized by the FVM.

3.2 Finite Volume Approach

By integration of (2.1) over the control volume Ωi we obtain the integral
form of the governing equations

∂

∂t

∫

Ωi

CαdV = −
∫

Ωi

∇ · FαdV +

∫

Ωi

QαdV i ∈ N (3.8)

The volume integral on the left-hand side in (3.8), the accumulation term,
is discretized using the average value of the accumulated mass Cα over the
control volume

∫

Ωi

CαdV ≈ (CαV )i i ∈ N (3.9)

33



3. Spatial Discretization

The volume integral in the second term on the right-hand side in (3.8), the
source term, is discretized using the average value of the source Qα over the
control volume

∫

Ωi

QαdV ≈ (QαV )i i ∈ N (3.10)

In particular, Qα,i = 0, i /∈ I∪P. Remember that I is de�ned in Section 2.5
as the set of indices of grid blocks containing an injector, and P is de�ned
as the set of indices of grid blocks containing a producer.
The volume integral in the �rst term on the right-hand side in (3.8), the
convective (�ux) term, is rewritten as an integral over the entire bounding
surface of the control volume by application of Gauss' divergence theorem

∫

Ωi

∇ · FαdV =

∫

∂Ωi

n · FαdA i ∈ N (3.11)

where n is a unit vector normal to the surface elements dA of control volume
Ωi. Using (3.4), we may rewrite (3.11) as follows

∫

Ωi

∇ · FαdV =
∑

j∈N (i)

∫

γij

n · FαdA i ∈ N (3.12)

in which we sum over interfaces between the ith control volume and its
neighbouring subregions Ωj , j ∈ N (i). We approximate the surface integrals
in (3.12) using the midpoint rule

∫

Ωi

∇ · FαdV ≈
∑

j∈N (i)

(n · FαA)ij i ∈ N (3.13)

where nij is the normal vector of interface γij (pointing outwards in relation
to Ωi), Fα,ij is the �ux across interface γij , and Aij is the area of interface
γij . We now evaluate the �uxes across the interfaces using the TPFA.
Remembering (2.6), (2.16), (2.17), and neglecting gravity, the �ux across
interface γij becomes

Fα,ij = −(ραλαk∇P )ij i ∈ N j ∈ N (i) (3.14)
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3.2. Finite Volume Approach

where the properties ρα,ij , λα,ij , kij , and the pressure gradient ∇Pij are
evaluated at interface γij . Substituting the �ux in (3.13) with (3.14) yields

∫

Ωi

∇ · FαdV ≈ −
∑

j∈N (i)

nij · (ραλαk∇P )ijAij

= −
∑

j∈N (i)

Aij(ραλα)ijnij · (k∇P )ij

i ∈ N (3.15)

We only consider isotropic permeability �elds, kij = kijI. Consequently

∫

Ωi

∇ · FαdV ≈ −
∑

j∈N (i)

(Ak)ij(ραλα)ijnij · ∇Pij i ∈ N (3.16)

The �ux over interface γij is driven by the pressure gradient ∇Pij . For the
TPFA we use a �rst order approximation of the pressure gradient

∇Pij ≈
(

∆P

∆s

s

∆s

)

ij

i ∈ N j ∈ N (i) (3.17)

where ∆Pij = Pj − Pi is the pressure di�erence between the nodal points
si and sj of two adjacent control volumes Ωi and Ωj . We de�ne sij =
sj − si, such that ∆sij = |sij | is the internode distance between si and sj .
Substitution of ∇Pij in (3.16) with (3.17) yields

∫

Ωi

∇ · FαdV ≈ −
∑

j∈N (i)

(Ak)ij(ραλα)ijnij ·
(

∆P

∆s

s

∆s

)

ij

i ∈ N (3.18)

which we rearrange

∫

Ωi

∇·FαdV ≈ −
∑

j∈N (i)

(
Ak

∆s

)

ij

(ραλα)ij∆Pijnij ·
( s

∆s

)
ij

i ∈ N (3.19)

Because of the relation in (3.7), the grid is constructed such that
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3. Spatial Discretization

nij =
( s

∆s

)
ij

i ∈ N j ∈ N (i) (3.20)

and |nij | = 1, so that �nally the discrete convective term becomes

∫

Ωi

∇ · FαdV ≈ −
∑

j∈N (i)

(
Ak

∆s

)

ij

(ραλα)ij∆Pij i ∈ N (3.21)

It is common in the petroleum literature to de�ne the transmissibility

Υα,ij =

(
Ak

∆s

)

ij

(ραλα)ij i ∈ N j ∈ N (i) (3.22)

allowing us to write (3.21) in the compact form

∫

Ωi

∇ · FαdV ≈ −
∑

j∈N (i)

(Υα∆P )ij i ∈ N (3.23)

A detailed representation of the transmissibility is considered in Section 3.3.
We now substitute the accumulation term, the source term and the convec-
tive term in (3.8) with (3.9), (3.10) and (3.23) respectively. Consequently,
we may express the model (3.8) as a system of di�erential equations in the
form

dCα,i
dt

Vi =
∑

j∈N (i)

(Υα∆P )ij + (QαV )i i ∈ N (3.24)

The left-hand side in this system of di�erential equations is not trivial. It
is a function (2.4) of the primary variables that we want to compute, i.e.
pressure and saturation. Before we can simulate and predict the �eld devel-
opment using (3.24), we must choose a method for temporal discretization
that maintains the mass preserving property of the spatially discrete equa-
tions. Consequently, we have to take the special structure of (3.24) into
consideration when choosing a numerical scheme for integration. We will
discuss the reasons for that and the structure of (3.24) in more detail in
Section 3.4, and we will suggest a new formulation of systems of di�erential
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3.3. Calculation of Transmissibility

equations for process simulation problems that are based on conservation
of mass, energy, and momentum.

3.3 Calculation of Transmissibility

In this section we describe how to compute the transmissibility (3.22) for
grid blocks of unequal size and varying permeability. Transmissibility is
formed as the product of two parts. The �rst part, the geometric part,
contains the e�ects of absolute permeability and grid geometry. The second
part, the �uid part, depends purely on �uid properties. These parts are
given seperate designations since they are treated di�erently.

3.3.1 Treatment of the Geometric Part

We designate the geometric part

Γij =

(
Ak

∆s

)

ij

i ∈ N j ∈ N (i) (3.25)

When the reservoir is discretized spatially, the permeability is approximated
by a piecewise constant function, where ki is the average grid block perme-
ability of each control volume Ωi. Consider an irregular grid with blocks of
unequal size. We focus on two adjacent grid blocks i ∈ N and j ∈ N (i), of
permeabilities ki and kj . In general, grid geometry such as the area Aij of
the interface and the internode distance ∆sij are straightforward to com-
pute. However, the value to use for the interface permeability kij in (3.25)
is not obvious if ki and kj di�er.
The �ow between two adjacent grid blocks is expected to be predominated
by the block with the lowest permeability. This suggests a harmonic aver-
aging of the absolute permeabilities of neighbouring grid blocks along their
interfaces [64, 34]. Imposing �ux continuity across the grid block interfaces
leads to

kij =
∆sij

∆si/ki + ∆sj/kj
i ∈ N j ∈ N (i) (3.26)
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3. Spatial Discretization

which corresponds to the weighted harmonic average of ki and kj . ∆si is
the distance between si and γij , and ∆sj is the distance between sj and
γij . In particular, ∆sij = ∆si + ∆sj . Note that the geometric part of the
transmissibility can be computed in a preprocessing step for the simulation.

3.3.2 Treatment of the Fluid Part

The �uid part of the transmissibility is treated di�erently than the geometric
part. The e�ects of transportiveness of the �uid �ow must be taken into
consideration [65]. The �uid part is denoted

Hα,ij = (ραλα)ij i ∈ N j ∈ N (i) (3.27)

The hyperbolic character of the governing equations introduces a direction
dependency into the system. Therefore, the �uid part of the transmissi-
bility is upwinded. That is, the interface terms in (3.22) related to the
�uids are evaluated using upstream information. Although many di�erent
schemes exist for upwind interpolation, we will consider the simplest of
them - the single-point upstream (SPU) scheme, which is �rst order accu-
rate. The main advantage of the SPU scheme is its simplicity and its strictly
non-oscillatory behaviour. Higher order schemes may produce spurious os-
cillations in the solution near sharp fronts, unless sophisticated methods
to dampen these oscillations are applied, e.g. such as �ux limiters. The
main drawback of the SPU scheme is the low order. A very �ne grid is
needed for producing an accurate solution using lower order schemes. For
�rst order accurate methods, the second order term is the dominating part
in an expansion of the error. Second order terms behave di�usion-like, and
the truncation error introduced by �rst order schemes is often referred to as
numerical di�usion. Thus, the di�usive nature of the error tends to smear
out sharp fronts in the solution.
Di�erent phases can �ow in opposite directions at di�erent speeds across
the same interface. However, we assume purely advective �ow in a porous
medium, and we neglect the e�ects of gravity and capillary pressure. Under
these assumptions we obtain unidirectional �ow, where the phases always
�ow in the same direction across the same interface, even at di�erent speeds.
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3.4. Di�erential Equation Model

Therefore, the direction of the phase velocity can be readily determined
without explicitly computing the velocity by simply determining the sign of
∆Pij , such that

Hα,ij =

{
(ραλα)i ∆Pij < 0

(ραλα)j ∆Pij > 0
i ∈ N j ∈ N (i) (3.28)

While the geometric part of the transmissibility can be computed in a pre-
processing step for the simulation, the �uid part is computed concurrently.

3.4 Di�erential Equation Model

We use an explicit singly diagonally implicit Runge-Kutta (ESDIRK) method
for the solution of (3.24). ESDIRK methods have previously been developed
for systems of ordinary di�erential equations (ODEs) [66, 67, 68, 69]

dx

dt
= f(t,x) x(t0) = x0 (3.29)

and systems of index-1 di�erential algebraic equations (DAEs)

M(x)
dx

dt
= f(t,x) x(t0) = x0 (3.30)

While the spatially discretized model for the two-phase �ow problem may
be formulated as (3.30), such a formulation is not guaranteed to preserve
mass upon discretization in time. This is a major problem, as the di�er-
ential equations in (3.24) were formulated based on conservation of mass.
Process simulation problems in general are based on conservation of mass,
energy, and momentum. It is desirable to preserve such properties upon
numerical discretization in time. In Paper A we propose a new di�erential
equation model that upon temporal discretization maintains these proper-
ties for process simulation problems. This model can be formulated as

dg(x)

dt
= f(t,x) x(t0) = x0 (3.31)
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3. Spatial Discretization

in which x = x(t) are the system states, g(x) are the properties conserved,
while the right-hand side function f(t,x) has the usual interpretation. In
general, problems based on conservation of mass, energy, and momentum,
can directly be formulated as the model (3.31). Upon discretization in time
this model preserves mass, energy, and momentum. This is not in general
the case, if these problems are expressed as (3.30) using the chain rule, i.e.
dg(x)
dt = dg(x)

dx
dx
dt = M(x)dxdt with M(x) = dg(x)

dx . In Section 4.1.3 and 4.1.4
we will formulate Runge-Kutta and ESDIRK methods for the purpose of
solving di�erential equation models that has the structure of (3.31).
In the two-phase �ow problem considered, x is a vector with pressure and
water saturation in each grid block, g(x) is a vector with oil and water
concentrations in each grid block, and f(t,x) is a vector with the �uxes
of oil and water into each grid block plus any sources/sinks due to wells.
Consequently, the spatially discretized model for two-phase �ow (3.24) has
the structure of (3.31).

3.5 Structure of the Jacobian Matrix

The application of ESDIRK methods for solution of the di�erential equation
model (3.31) involves the Jacobian of the residual form of this model. In par-
ticular, for solution of the two-phase �ow model considered using ESDIRK
methods, we must derive the Jacobian of (3.24) with respect to pressure
and saturation. Since each grid block is associated with two equations (one
for oil and one for water) and two unknowns (pressure and saturation), the
Jacobian matrix will be of size 2N × 2N . Because the �ux term in (3.24) is
dependent on pressure and saturation in several grid blocks, we will use the
�ux term to illustrate the non-zero structure of the Jacobian matrix. The
net �ux of oil and water into the ith grid block is

Fα,i =
∑

j∈N (i)

(Υα∆P )ij i ∈ N (3.32)

De�ne the vector
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3.5. Structure of the Jacobian Matrix

x = [x1,x2, . . . ,xN ]T (3.33)

in which

xi = [Pi, Si]
T i ∈ N (3.34)

De�ne the vector

F = [F1,F2, . . . ,FN ]T (3.35)

with

Fi = [Fo,i, Fw,i]
T i ∈ N (3.36)

where F = F(x) and Fi = Fi(x). x = x(t) is a vector with pressure and
saturation in each grid block, and F is a vector with the net �uxes of oil
and water into each grid block. Elements of the Jacobian are obtained
by di�erentiating all elements of the vector (3.35) with respect to all the
unknowns (3.33) in the discrete domain. Consequently, the Jacobian of the
�ux term

∂F

∂x
=




∂F1
∂x1

∂F1
∂x2

· · · ∂F1
∂xN

∂F2
∂x1

∂F2
∂x2

· · · ∂F2
∂xN

...
...

. . .
...

∂FN
∂x1

∂FN
∂x2

· · · ∂FN
∂xN




(3.37)

is a block matrix with N ×N blocks. Each block in (3.37) is of size 2 × 2
and de�ned as follows

∂Fi
∂xj

=

[
∂Fo,i
∂Pj

∂Fo,i
∂Sj

∂Fw,i
∂Pj

∂Fw,i
∂Sj

]
i, j ∈ N (3.38)

In particular

∂Fi
∂xj

=

{
•2×2 j ∈ {i} ∪ N (i)

02×2 j ∈ N\({i} ∪ N (i))
i ∈ N (3.39)

41



3. Spatial Discretization

1 32

Figure 3.2: A 1-dimensional grid. The Jacobian is depicted in Figure 3.3.

1 2 3

1 • •
2 • • •
3 • •

Figure 3.3: The Jacobian for the 1-dimensional grid in Figure 3.2.

where the bullet • denotes that (3.38) is a block containing one or more
non-zero elements. Some elements in (3.38) may be zero due the upstream
weighting of the �uid part (3.28) of the transmissibility de�ned in (3.22).
Remember that N (i) is de�ned in Section 3.1 as the set of indices of grid
blocks adjacent to the ith grid block. A thorough derivation of the elements
in (3.38) can be found in Appendix A.
The structure of the Jacobian matrix depends on both grid structure and
grid numbering, and in the following we will use three grids in 1-, 2- and
3-dimensions respectively for illustrating the non-zero structure of the Ja-
cobian that is de�ned by (3.39). We use the bullet in (3.39) to illustrate
non-zero blocks in the �gures that illustrate the Jacobian structures. How-
ever, we must mention that the dots in the �gures that illustrate the grids
denote the nodal points of the control volumes. The 1-dimensional grid con-
sists of 3 grid blocks, the 2-dimensional grid consists of 9 grid blocks, and
the 3-dimensional grid consists of 18 grid blocks. The 2- and 3-dimensional
grids are constructed using the 1-dimensional grid in Figure 3.2 as a ba-
sis. The structure of the Jacobian for the 1-dimensional grid is depicted in
Figure 3.3.
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1 74

2

3

5

6

8

9

Figure 3.4: A 2-dimensional grid. The Jacobian is depicted in Figure 3.5.

1 2 3 4 5 6 7 8 9

1 • • •
2 • • • •
3 • • •
4 • • • •
5 • • • • •
6 • • • •
7 • • •
8 • • • •
9 • • •

Figure 3.5: The Jacobian for 2-dimensional the grid in Figure 3.4.

We construct the 2-dimensional grid in Figure 3.4 by repeating the 1-
dimensional grid three times along the second coordinate axis. We see that
the 2-dimensional Jacobian in Figure 3.5 comprises three 1-dimensional Ja-
cobians. Furthermore, two diagonals with index 3 and -3 are added (the

43



3. Spatial Discretization

3
i2

1

2

3

i1

i3 1

2

1 2

Figure 3.6: A 3-dimensional grid. The Jacobian is depicted in Figure 3.7.

main diagonal has index 0). These diagonals represent the new connections
established by repeating the 1-dimensional grid. Let us use the grid block
with index 2 in the 2-dimensional grid to illustrate the non-zero structure
de�ned by (3.39): the grid is identi�ed by the setN = {1, 2, 3, 4, 5, 6, 7, 8, 9},
and N (2) = {1, 3, 5} is the set of grid blocks adjacent to the 2nd grid block.
Implying that

∂F2

∂xj
=

{
•2×2 j ∈ {1, 2, 3, 5}
02×2 j ∈ {4, 6, 7, 8, 9}

is the non-zero structure that describes the connections associated with
block number 2 in the 2-dimensional grid.
The 3-dimensional grid in Figure 3.6 is constructed by repeating the 2-
dimensional grid two times along the third coordinate axis. We see that
the 3-dimensional Jacobian in Figure 3.7 comprises two 2-dimensional Ja-
cobians. In addition, two diagonals with index 9 and -9 are added. These
diagonals represent the new connections established by the repetition of the

44



3.5. Structure of the Jacobian Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 • • • •
2 • • • • •
3 • • • •
4 • • • • •
5 • • • • • •
6 • • • • •
7 • • • •
8 • • • • •
9 • • • •
10 • • • •
11 • • • • •
12 • • • •
13 • • • • •
14 • • • • • •
15 • • • • •
16 • • • •
17 • • • • •
18 • • • •

Figure 3.7: The Jacobian for the 3-dimensional grid in Figure 3.6.

2-dimensional grid. For the purpose of illustrating the 3-dimensional grid
and appertaining Jacobian we have de�ned the following global grid block
index

i = i1 + (i2 − 1)3 + (i3 − 1)9 i1, i2 = 1, 2, 3 i3 = 1, 2

In general we see that the bandwidth of the Jacobian matrix increases as the
size of the grid and/or the dimension of the grid grows. This signi�cantly
increases the computational cost when solving the non-linear equation sys-
tem.
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3. Spatial Discretization

The Jacobian matrices in Figure 3.3, 3.5 and 3.7 are not symmetric. This
is because upwinding of the �uid part of the transmissibility introduces
asymmetry in the blocks (3.38). In general, the SPU scheme generates
asymmetric Jacobian matrices, which is a drawback in terms of solving the
system of non-linear equations. However, assuming unidirectional �ow and
using a sequential method for temporal discretization (see Section 4.1), a
reordering strategy can be applied [61]. The idea is to obtain a triangu-
lar structure of the Jacobian. This may reduce the computational cost of
the solution procedure. This adds another advantage to the SPU scheme,
besides its simplicity and its non-oscillating behavior mentioned above.

3.6 Building the Di�erential Equation Model and

the Jacobian Matrix

To solve the spatially discretized two-phase �ow model using ESDIRKmeth-
ods, we must interpret (3.24) so that we can formulate the problem in the
form of (3.31). De�ne the vector

C = [C1,C2, . . . ,CN ]T (3.40)

with the accumulation terms in (3.24), in which

Ci = [Co,i, Cw,i]
T i ∈ N (3.41)

where C = C(x) and Ci = Ci(x). De�ne the vector

Q = [Q1,Q2, . . . ,QN ]T (3.42)

with the source terms in (3.24), where

Qi = [Qo,i, Qw,i]
T i ∈ N (3.43)

in which we de�ne Q = Q(x) and Qi = Qi(x). In Algorithm 3.6.1 we show
how to build the di�erential equation model (3.31).
As mentioned in Section 3.5, ESDIRK methods require the Jacobian of the
residual form of the di�erential equation model (3.31). Therefore, we must
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Algorithm 3.6.1: Building the di�erential equation model (3.31).

input: x.
output: f and g.
for i ∈ N do

Compute fi by the �ux term (3.36)

fi ← Fi

Remember the upstream weighting of the �uid part (3.28) of the
transmissibility de�ned in (3.22).
if i ∈ I ∪ P then

Add the source term (3.43) to fi

fi ← fi + (QV )i

Compute gi by the accumulation term (3.41)

gi ← (CV )i

compute the Jacobian of the both the accumulation term and the source
term in (3.24). The accumulation term for the ith grid block is dependent
on pressure and saturation in this block alone. Consequently, the Jacobian
of the accumulation term

∂C

∂x
=




∂C1
∂x1

∂C2
∂x2

. . .
∂CN
∂xN




(3.44)

is a block diagonal matrix with N blocks. Each block in (3.44) is of size
2× 2 and de�ned as follows
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3. Spatial Discretization

Algorithm 3.6.2: Building the Jacobian matrix, ∂f∂x , of the right-

hand side and the Jacobian matrix, ∂g
∂x , the left-hand side of the

di�erential equation model (3.31).

input: x.
output: ∂f

∂x and ∂g
∂x .

for i ∈ N do

Compute ∂fi
∂xi

by the Jacobian of the �ux term (3.38)

∂fi
∂xi
← ∂Fi

∂xi

for j ∈ N (i) do

Compute ∂fi
∂xj

by the Jacobian of the �ux term (3.38)

∂fi
∂xj
← ∂Fi

∂xj

Remember the upstream weighting of the �uid part (3.28) of
the transmissibility de�ned in (3.22).
if i ∈ I ∪ P then

Add the Jacobian of the source term (3.47) to ∂fi
∂xi

∂fi
∂xi
← ∂fi

∂xi
+
∂Qi

∂xi
Vi

Compute ∂gi
∂xi

by the Jacobian of the accumulation term (3.45)

∂gi
∂xi
← ∂Ci

∂xi
Vi

∂Ci

∂xi
=

[
∂Co,i
∂Pi

∂Co,i
∂Si

∂Cw,i
∂Pi

∂Cw,i
∂Si

]
i ∈ N (3.45)
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3.7. Summary

Like the accumulation term, the source term in the ith grid block is also
dependent on pressure and saturation in this block alone. Consequently,
the Jacobian of the source term

∂Q

∂x
=




∂Q1

∂x1
∂Q2

∂x2

. . .
∂QN
∂xN




(3.46)

is a block diagonal matrix with N blocks. Each block in (3.46) is of size
2× 2 and de�ned as follows

∂Qi

∂xi
=

[
∂Qo,i
∂Pi

∂Qo,i
∂Si

∂Qw,i
∂Pi

∂Qw,i
∂Si

]
i ∈ N (3.47)

In particular

∂Qi

∂xi
=

{
•2×2 i ∈ I ∪ P
02×2 i ∈ N\(I ∪ P)

(3.48)

where the bullet • denotes that (3.47) is a block containing one or more
non-zero elements. Remember that I is de�ned in Section 2.5 as the set of
indices of grid blocks containing an injector, and P is de�ned as the set of
indices of grid blocks containing a producer. Algorithm 3.6.2 shows how we
build the Jacobian matrix of the right-hand side and the Jacobian matrix
the left-hand side of the di�erential equation model (3.31). ∂f

∂x denotes the

Jacobian matrix of the right-hand side and ∂g
∂x denotes the Jacobian matrix

of the left-hand side.

3.7 Summary

We have described the FVM for spatial discretization of the two-phase �ow
problem. We compute the �uxes with the use of TPFA. We use the �ux
terms to illustrate the Jacobian structure of the spatially discretized model.
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3. Spatial Discretization

We describe how to evaluate the interface transmissibilities: the geometrical
part of the transmissibilities is computed by a harmonic averaging of the ab-
solute permeabilities, and the �uid part is upwinded using the SPU scheme.
We have presented a new di�erential equation model, as proposed in Pa-
per A. This model maintains the mass preserving property of the spatially
discretized two-phase �ow problem upon temporal discretization. Many
process simulation problems are derived upon conservation of mass, energy
and momentum, and therefore we may use (3.31) as a formulation for such
systems in general.
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CHAPTER 4
Temporal Discretization

One of the key aspects in reservoir simulation is the integration of the
di�erential equation system constituting the model. The number and the
type of equations to be solved depend on the geological characteristics of
the reservoir, the characteristics of the reservoir �uids, and the oil recovery
process to be modelled. As a consequence of the system complexity it is
necessary to �nd approximate solutions by numerical integration. Choosing
the appropriate method of integration involves deciding on factors such as
the order of the integration scheme, stability properties, and concern on
computational e�ciency. In addition, a robust adaptive step size control
is essential to an e�cient numerical integration. An adaptive step size
selection aims to keep the error estimate of the solution bounded, i.e. close
to a user-speci�ed tolerance by adjusting the size of the time step.
The implicit pressure explicit saturation (IMPES) method [70, 71, 72], the
sequential implicit method (SIM) [73, 74], and the implicit Euler method,
normally referred to as the fully implicit method (FIM), are commonly
used for temporal discretization in reservoir simulation. The IMPES scheme
bene�ts from the explicit treatment of the saturation, the SIM bene�ts from
the sequential approach, while the FIM o�ers unconditionally stability in
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4. Temporal Discretization

the sense of discrete approximations. However, in tems of controlling the
integration error, the low order of the FIM leads to small integration steps,
while the sequential approach and the explicit treatment of the saturation
restrict the step sizes for IMPES and the SIM respectively. Current reservoir
simulators often apply algorithms for time step adjustment that are based
on safeguarded heuristics [31, 75, 76]. Even, if they are provided with an
adaptive time step selection on the basis of error estimates [77, 78], they
can neither guarantee convergence in the underlying equation solver, nor
provide an estimate of the relation between convergence, integration error
and step size.
We apply high order explicit singly diagonally implicit Runge-Kutta (ES-
DIRK) methods, with an embedded error estimate, for the numerical inte-
gration of the �ow equations. ESDIRK methods have been used success-
fully for solution of convection-di�usion-reaction problems [79]. This class
of methods is computationally e�cient, and both A- and L-stable sti�y
accurate ESDIRK methods of various order, with an embedded method for
error estimation, have been derived [66, 67, 68, 69]. The non-linear resid-
ual equations arising in fully implicit methods have to be solved iteratively.
Thus, in implicit integration, both the integration error and the convergence
of the equation solver has to be monitored. Therefore we utilize a strategy
for adaptive step size control. The controller is based on the error estimate
provided by the embedded ESDIRK method as well as the convergence rate
of the equation solver [80].
In Section 4.1 we discuss assumptions, advantages and drawbacks of the
traditional IMPES method and the SIM approach, without going into com-
putational details. Furthermore, with special emphasis on the di�erential
equation system that we have proposed in Paper A, we present the Runge-
Kutta method for numerical integration. We shortly describe the di�erent
classes of Runge-Kutta methods, and in particular the family of ESDIRK
methods with an embedded error estimator for solution of (3.31) is pre-
sented. Section 4.2 is about error and convergence measures. That is, how
the integration error is estimated, and how to measure the convergence rate
in the iterative nonlinear equation solver. Section 4.3 focusses on adaptive
step size selection, and in particular we describe the modi�cations of the
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error and convergence control that we suggest in Paper C. Finally, in Sec-
tion 4.4 we compare and discuss the performance of three di�erent ESDIRK
methods that we have implemented, and we discuss the performance of the
step size controller with and without our suggested modi�cations.

4.1 Integration Methods

In this section we discuss the IMPES method and the SIM, which are the
most commonly used schemes for numerical integration in reservoir simu-
lation. The di�erent classes of Runge-Kutta methods are outlined and in
particular ESDIRK methods are described.

4.1.1 IMPES

The IMPES method is motivated from the observation that pressure waves
travel much faster than saturation waves. Pressure behaves elliptically in
that pressure changes propagate almost instantly throughout the reservoir.
In the limiting case of an incompressible system, pressure waves would travel
in�nitely fast. Saturation behaves hyperbolically, travelling in certain direc-
tions and at certain speeds through the reservoir. The two-phase �ow model
considered is essentially a mixed elliptic/hyperbolic problem and IMPES is a
tailored numerical scheme that takes advantage of this mixed characteristic
behaviour.
The basic assumption of the IMPES method is that the saturation is con-
stant within a time step. Under this assumption, the �ow equations are
combined to obtain an equation for pressure and an equation for saturation.
The IMPES method evaluates pressure implicitly and keeps saturation ex-
plicit. In that sense IMPES may be regarded as a simple implicit-explicit
(IMEX) scheme, where the pressure equation and the saturation equation
are solved sequentially:

• First, the pressure equation is solved using an implicit scheme. In
most commercial simulators the pressure solution is obtained using
backward Euler integration.
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4. Temporal Discretization

• After the pressure solution is obtained, the saturation is updated ex-
plicitly.

On a per time step basis, the computational cost of the IMPES method is
signi�cantly lower than that of a FIM. This is mainly because the IMPES
approach reduces the system of implicit equations to one per grid block.
However, the explicit treatment of the saturation introduces stability re-
strictions to the method. It may be di�cult to obtain a pressure solution
if saturation changes rapidly during a time step. The IMPES method can
cope with this by decreasing the time step, but this approach requires a
huge number of time steps to achieve a stable solution. This means that in
reservoirs where properties change rapidly, a FIM may provide a solution in
less computational time than the IMPES method, even though each time
step takes longer to complete.

4.1.2 SIM

The motivation of the SIM is to improve the stability of the IMPES method
by incorporating implicit treatment of the saturation equation, but still
without solving for pressure and saturation simultaneously. Both methods
use an operator splitting scheme, and the SIM can be coded to include
IMPES as an option. However, the SIM is not an IMEX type method,
since both pressure and saturation are treated implicitly. Like IMPES, the
SIM also advances pressure and saturation in time sequentially. It uses the
same pressure equation as IMPES but follows it with an implicit saturation
calculation. Thus, both SIM steps require the solution of a system of implicit
equations of same size. Therefore, the work for one time step with the SIM
is around twice the work for the IMPES method.
The SIM only approximately conserves mass, since the second step of the
method assumes incompressible �ow. At the end of a time step the �uid
volume in a grid block di�ers from the PV of the block. This volumetric
discrepancy is interpreted as an erroneous injection/production of a small
amount of �uid at that particular time step. It appears in the �ow equa-
tions the same way a source term would. Using the volumetric discrepancy
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as a driving force, the error may be corrected for by appropriate injec-
tion/production in the following time step. The SIM method is outlined as
follows:

• First, the pressure equation is solved using an implicit scheme. In
most commercial simulators the pressure solution is obtained using
backward Euler integration.

• After the pressure solution is obtained, the saturation equation is
solved using an implicit scheme. In most commercial simulators the
saturation equation is solved using backward Euler integration.

• When the saturation has been advanced in time, the volumetric dis-
crepancy is computed and used as a driving force in a source term
that recti�es the volumetric error in the next time step.

The volume balancing may be exploited for reducing the computational
cost of the second step in the SIM. This is done by limiting the number
of iterations performed by the equation solver in the implicit integrator.
Thus, the solution to the saturation equation is only approximate, and the
resulting volume discrepancy is then corrected for as described above. The
SIM may be faster than a FIM, but like IMPES it also su�ers from stability
restrictions.

4.1.3 Runge-Kutta Integration

We formulate an s-stage Runge-Kutta method for numerical integration of
the di�erential equation system that we have proposed in (3.31) (see Paper
A), in which x(t) ∈ Rm, g(x) ∈ Rm and f(t,x) ∈ Rm, as follows
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Ti = tn + hnci n ∈ N i ∈ S(1) (4.1a)

g(Xi) = g(xn) + hn

s∑

j=1

aijf(Tj ,Xj) n ∈ N i ∈ S(1) (4.1b)

g(xn+1) = g(xn) + hn

s∑

j=1

bjf(Tj ,Xj) n ∈ N (4.1c)

where Xi = Xi(Ti) are the internal stage values being approximations to
x(Ti) at Ti = tn + hnci. xn+1 = xn+1(tn+1) is the step computed at
tn+1 = tn + hn. The set N = {0, 1, . . . , N − 1} denotes the time steps, and
S(i) = {i, i+1, . . . , s} denotes the set of internal stages. The s-stage Runge-
Kutta method (4.1) may be designated in terms of its Butchter tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
xn+1 b1 b2 · · · bs

(4.2)

from which di�erent classes of Runge-Kutta methods can be obtained, de-
pending on the structure of the matrixA = [aij ]. This is illustrated in Figure
4.1. Explicit Runge-Kutta (ERK) methods have a strictly lower triangu-
lar A-matrix which allows all internal stages (4.1b) to be solved explicitly.
Therefore, ERK methods are computationally fast and straightforward to
implement, but they may su�er from stability limitations making them un-
suitable for sti� problems [81]. The four remaining classes of Runge-Kutta
methods are all implicit, that is, the value of the internal stages are no longer
computed explicitly from the values of the previous stages. Implicit meth-
ods are characterized by an A-matrix that is not strictly lower triangular,
and the stage valuesXi are computed iteratively by solution of (4.1b). Fully
implicit Runge-Kutta (FIRK) methods, identi�ed by a full A-matrix, have
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0 0 0 0
0

γ
γ

γ
γ

γ
γ

γ
γ

γ

ERK DIRK SDIRK ESDIRK FIRK

Figure 4.1: The A-matrix of Runge-Kutta methods.

excellent stability properties making them usefull for solving sti� systems of
ODEs. However, the excellent stability properties comes with high compu-
tational cost in the sense that each integration step involves the solution of
ms coupled nonlinear equations. To achieve some of the stability properties
of the FIRK methods but at lower computational cost, various methods
in between the ERK and the FIRK methods have been constructed. Di-
agonally implicit Runge-Kutta (DIRK) methods, singly diagonally implicit
Runge-Kutta (SDIRK) methods and ESDIRK methods all have a lower
triangular A-matrix. Instead of solving ms nonlinear equations simultane-
ously, like in the FIRK method, the internal stages in the DIRK, SDIRK
and ESDIRK methods are decoupled in such a way that the solution of s
systems of m nonlinear equations may be conducted sequentially.

4.1.4 ESDIRK Methods

ESDIRK methods have a lower triangular A-matrix. By construction they
retain the stability properties of FIRK methods but at signi�cant lower
computational cost. Because c1 = 0 and a11 = 0 the �rst stage in ESDIRK
methods is explicitly implying that the �rst stage value equals the last step,
i.e. X1 = xn. The subsequent stages are diagonally implicit. Thus, the
stage values Xi, i ∈ S(2), may be solved sequentially by solution of the
residual

R(Ti,Xi) = g(Xi)− hnγf(Ti,Xi)−ψi = 0 n ∈ N i ∈ S(2) (4.3)

with the term
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ψi = g(xn) + hn

i−1∑

j=1

aijf(Tj ,Xj) n ∈ N i ∈ S(2) (4.4)

using Newton-Raphson's (NR's) iterative method, in which we need the
Jacobian of (4.3). The Jacobian of the residual is

∂R(Ti,Xi)

∂Xi
=
dg(Xi)

dXi
− hnγ

∂f(Ti,Xi)

∂Xi
n ∈ N i ∈ S(2) (4.5)

in which dg(Xi)
dXi

and ∂f(Ti,Xi)
∂Xi

are the Jacobians of the left- and right-hand
sides in (3.31) respectively. Since ESDIRK methods are singly diagonally,
the Jacobian may be reused in several iterations in the sense of a modi�ed
NR method [82]. The identical diagonal elements in the A-matrix implies
that it may be su�cient just to update/factorize (4.5) once per integra-
tion step. Later in this chapter we will describe an algorithm for adaptive
step size adjustment that reuses the same Jacobian matrix during several
integration steps. We only consider methods that are assumed to be sti�y
accurate by construction, i.e. cs = 1 and asj = bj , j ∈ S(1). Which
means that the quadrature function (4.1c) corresponds to the last internal
stage in (4.1b). Consequently, the next step equals the last stage value, i.e.
xn+1 = Xs. The Butcher tableau for a sti�y accurate ESDIRK method is
presented in (4.6).

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
...

...
. . .

cs−1 as−1,1 as−1,2 as−1,3 · · · γ
1 b1 b2 b3 · · · bs−1 γ

xn+1 b1 b2 b3 · · · bs−1 γ

(4.6)
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4.2 Error and Convergence Measures

In this section we describe how the integration error is estimated, and how
this estimate is related to user speci�ed absolute and relative tolerances.
Finally, we describe how to measure the convergence rate in the iterative
nonlinear equation solver.

4.2.1 Integration Error

The ESDIRK method stated in (4.6) may be equipped with an embedded
method

g(x̂n+1) = g(xn) + hn

s∑

j=1

b̂jf(Tj ,Xj) n ∈ N (4.7)

which is used for computing the solution x̂n+1. The embedded method is
of di�erent order than the basic method. By subtracting the two solutions
(4.1c) and (4.7) we obtain an estimate of the local truncation error

en+1 = g(xn+1)− g(x̂n+1) = hn

s∑

j=1

djf(Tj ,Xj) n ∈ N (4.8)

which is an error estimate of the conserved quantities g(xn+1) in (3.31) and
not the states xn+1 themselves. This error estimate is essentially free, since
it involves no additional function evaluations of the system. Measures of
the error such as

rn+1 =
1√
m

∥∥∥∥
|en+1|

abstol + |g(xn+1)| · reltol

∥∥∥∥
2

n ∈ N (4.9a)

rn+1 =

∥∥∥∥
|en+1|

abstol + |g(xn+1)| · reltol

∥∥∥∥
p

n ∈ N (4.9b)

may be controlled adjusting the step size. 1√
m
‖·‖2 in (4.9a) denotes the

root-mean-square, whereas ‖·‖p in (4.9b) is the p-norm. Usually we use
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the 2- or the ∞-norm as a measurement of the error. Only solution points
for which the error-tolerance relation rn+1 ≤ 1 are accepted. The Butcher
tableau for an embedded ESDIRK method is presented in (4.10).

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
...

...
. . .

cs−1 as−1,1 as−1,2 as−1,3 · · · γ
1 b1 b2 b3 · · · bs−1 γ

xn+1 b1 b2 b3 · · · bs−1 γ

x̂n+1 b̂1 b̂2 b̂3 · · · b̂s−1 b̂s
en+1 d1 d2 d3 · · · ds−1 ds

(4.10)

By ESDIRKkk̂ we denote an ESDIRK integration method of order k with
an embedded method of order k̂. The method of order k is the advancing
method that provides us with the solution. The method of order k̂ is the
embedded method that provides us with an error estimate of the solution.
We have implemented three di�erent ESDIRK methods: ESDIRK12, ES-
DIRK23 and ESDIRK34. The coe�cients for the methods can be found in
Appendix B. They are computed such that the integration method satis�es
the Runge-Kutta order conditions, and such that the integration method is
both A- and L-stable.

4.2.2 Convergence Rate

The solution of the stage valuesXi, i ∈ S(2), is done iteratively by a modi�ed
NR method

JR∆X
(k)
i = −R(Ti,X

(k)
i ) i ∈ S(2) (4.11a)

X
(k+1)
i = X

(k)
i + ∆X

(k)
i i ∈ S(2) (4.11b)

in which the iteration matrix JR is an approximation
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JR ≈
∂R(Ti,X

(k)
i )

∂X
(k)
i

(4.12)

to the Jacobian (4.5) of the residual (4.3). We solve the linear equation
system (4.11a) with a direct method. We use sparse LU-factorizations,
because the Jacobian is nonsymmetric, see Section 3.5. The controller needs
to supervise the equation solver and answer questions like: when should the
Jacobian be evaluated/factorized, and what restrictions should be put on
the step size to ensure good convergence? To help answer these questions,
the convergence rate of the NR solver is monitored and measured. For
reasons of robustness, the convergence rate is measured by the residuals
[83]

α = max
i,k

r
(k)
R,i

r
(k−1)
R,i

i ∈ S(2) (4.13)

in which the iteration error of the kth iteration is computed as the following
residual-tolerance relation

r
(k)
R,i =

1√
m

∥∥∥∥∥
|R(Ti,X

(k)
i )|

abstol + |g(X
(k)
i )| · reltol

∥∥∥∥∥
2

i ∈ S(2) (4.14a)

r
(k)
R,i =

∥∥∥∥∥
|R(Ti,X

(k)
i )|

abstol + |g(X
(k)
i )| · reltol

∥∥∥∥∥
p

i ∈ S(2) (4.14b)

using the same componentwise absolute and relative error tolerances as in
(4.9). For robustness the iteration sequence should be contractive. If for
some k during the iterations α ≥ 1 the iteration sequence is terminated. In
the event of termination either a Jacobian update/factorization is called for
or the step size is restricted. In case of convergence, the equation solver is

successfully stopped when r
(k)
R,i ≤ τ . The choice of τ a�ects the e�ciency

of the controller [81]. We must choose τ � 1, such that the error estimate
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will not be dominated by the contribution from the iteration error. A large
value of τ may lead to one or more large components in the integration
error, with too many rejected steps as a result. We have chosen τ = 0.1
as a compromise between robustness and computational speed. In Algo-
rithm 4.2.1 we present an outline of the ESDIRK integration method using
adaptive step size control.

4.3 Step Size Selection

Adaptive step size selection is, in essence, a control problem, with the ob-
jective of producing numerical solutions for which the integration error (4.8)
is kept within a certain tolerance. We have modi�ed and implemented an
algorithm for adaptive step size selection originally developed by [80]. Our
modi�cations concern: the error control, the convergence control, and a
simpli�cation of the algorithm in general. In this section we brie�y describe
the key parts of the control strategy and the modi�cations of the error and
convergence control that we propose. The motivation for our modi�cations
and the modi�ed version of the algorithm can be found in Paper C. Before
we continue let us mention that we have two possible candidates for the
next step size, hn+1. The �rst candidate, hr, is based on an estimate of the
integration error. The second candidate, hα, is based on the convergence
rate in the equation solver. This is seen in Figure 4.2, depicting a block
diagram of the modi�ed control strategy.

4.3.1 Error Control

The original algorithm uses two rules for controlling the error of the so-
lution: the asymptotic rule for step size adjustment, and a proportional
integral (PI) step size controller. We start by describing the rules above,
and �nally the modi�cation that we propose. The asymptotic rule for step
size selection, which is the conventional control law that is commonly im-
plemented in ODE solvers, is as follows
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Algorithm 4.2.1: ESDIRK integration using adaptive step size control.

input: x0, t0 and tf (the �nal time).
output: {xn+1}N−1

n=0 .
while tn < tf do

Assign

T1 ← tn

X1 ← xn

for i ∈ S(2) do
Compute the stage value time Ti by (4.1a).
Assign

Xi ← xn

Compute the residual R(Ti,Xi) by (4.3).
while iterations not converged do

Compute the stage value Xi by solution of (4.11).

Compute the residual-tolerance relation r
(k)
R,i by (4.14).

Compute the convergence rate α by (4.13).

Assign

tn+1 ← Ts

xn+1 ← Xs

Compute the error-tolerance relation rn+1 by (4.9).
Apply step size control cf. Algorithm 4.3.3.

hr =

(
ε

rn+1

)1/k̂

hn n ∈ N (4.15)

The asymptotic step size selection rule uses only current information about
the step size and the error in order to achieve rn+1 = ε. Occasionally,
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Figure 4.2: A block diagram of the modi�ed control strategy in Paper C. JR

refers to the approximate Jacobian (4.12). "ref" is an abbreviation that covers
both αref , αJac and αLU .

the error estimate (4.8) may be unusually small or large, thus advocating
(4.15) to produce very large step size changes. This a�ects the e�ciency
of the solver: the smaller the step size the more steps will be necessary to
simulate the di�erential equations, and on the other hand, large steps risk
being rejected. Both situations are expensive in terms of computations.
This can to some extent be avoided by e.g. constraining the size of such
changes. However, information about previous time steps and related errors
should also be exploited in the controller to further improve robustness and
the quality of the predicted time step. This is why the PI controller
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hr =
hn
hn−1

(
rn
rn+1

)k1/k̂ ( ε

rn+1

)k2/k̂
hn n ∈ N (4.16)

is utilized as the core step size adjustment rule in the algorithm. k1 and k2

are the gain parameters of the proportional and the integral parts respec-
tively. We use k1 = k2 = 1 corresponding to deadbeat control [80]. ε is the
set point of the error-tolerance relation. In theory ε = 1 is an acceptable
threshold. However, in the practical implementation we have chosen 0.8 as
a safeguard.
While proceeding with the integration the controller must also ensure the
convergence of the equation solver, which can be done in two ways: restrict-
ing the step size, and evaluate/factorize the Jacobian matrix (more on this
in Section 4.3.2). The asymptotic step size adjustment rule is used, if the
controller restricts the step size because of poor convergence. Convergence
restricting the step size, i.e. hα < hr, leads to an error estimate rn+1 � ε.
Consequently, the size of the corresponding step produced by (4.15) may be
disproportionately large, making the subsequent error estimates �uctuate.
We avoid this by adding a �lter to (4.15) by using information of previous
step sizes

hr =
hn
hn−1

(
ε

rn+1

)1/k̂

hn n ∈ N (4.17)

such that it supports the trend in former step sizes. This may dampen the
�uctuations in the subsequent error estimates when the controller switches
back from having used hα to use hr. The error control based on (4.15),
(4.16) and (4.17) is presented in Algorithm 4.3.1.

4.3.2 Convergence Control

As mentioned above, to ensure good convergence in the modi�ed NR itera-
tion, the controller can either restrict the step size or update/factorize the
Jacobian matrix. For large systems of di�erential equations that usually
arise in reservoir simulation, large computational savings can be achieved,
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Algorithm 4.3.1: Error control by adaptive step size adjustments.

input: Current inf.: rn+1, hn and α. Prior inf.: rn, hn−1 and hLU .
output: hn+1.
if iterations converged then

if step accepted then

if step restricted then
Compute hr by (4.17).

else
Compute hr by (4.16).

Assign

rn ← rn+1

hn−1 ← hn

else
Compute hr by (4.15).

...

else
...

if the same Jacobian matrix is used during several integration steps. How-
ever, using a Jabobian based on old information leads to poor convergence
of the equation solver. This can result in rejected integration steps and
thus jeopardize the e�eciency of the solver. As an alternative to frequent
and expensive Jacobian evaluations and factorizations, the controller can
restrict the step size to achieve good convergence. This however, may lead
to a large number of integration steps, which increases the computational
cost of the solution process. Both extremes are expensive in terms of com-
putations. In the following we describe: how the original algorithm limits
the step size in case of poor convergence, the strategy adopted for when to
update/factorize the Jacobian matrix, and �nally the modi�cation that we
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suggest.
The Jacobian is not evaluated at every integration step. Thus, the Jacobian
is an approximation calculated at some solution point. The approximation
will deteriorate gradually for the subsequent steps, but at least we expect
good convergence at this point. However, in some cases the distance between
the stage points may be too large, and the convergence will be poor although
the Jacobian is based on current data. In this case, the only option is to
decrease the distance between the stage points by reducing the step size. If
convergence is poor, i.e. if α > αref the step size should be chosen as

hα =
αref
α

hn n ∈ N (4.18)

to achieve α = αref in the next step [80]. The main purpose of the step
length control is to comply with the accuracy requirement. Therefore, the
step size suggested by (4.18) has to be coordinated with one from the error
control. Consequently, if poor convergence is observed in spite of a Jacobian
based on current data, the step size is implemented as

hn+1 = min(hr, hα) n ∈ N (4.19)

restricting the step size by convergence if hα < hr. Slow convergence in
the equation solver can to some extend be avoided by step size reductions.
However, considering (4.5) we see that a step size change may imply a
factorization of the Jacobian matrix. In some cases however, it is not enough
simply to factorize the Jacobian matrix. To ensure convergence, it may be
necessary to both evaluate and factorize the Jacobian. This implies, that
we need a factorization/evaluation strategy for the Jacobian matrix. By
monitoring the relative step size change since the last factorization was
done, the following relation

|hn+1 − hLU |/hLU > αLU n ∈ N (4.20)

is used as a rule for when a factorization should be applied. The strategy
tries to anticipate possible convergence failures and factorizes the Jacobian,
if a planned step size change is likely to jeopardize convergence. Should poor
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4. Temporal Discretization

convergence be experienced despite of a recent factorization, the following
rule

α− |hn+1 − hLU |/hLU > αJac n ∈ N (4.21)

determines whether the Jacobian should be updated instead [84]. This
strategy both monitors the convergence rate and balances the amount of
computational time spent on Jacobian updates and factorizations versus
function evaluations in the equation solver.
When convergence restricts the step size, i.e. hα < hr, any value of α that
deviates from αref will be brought to the reference in one step. This may be
a too agressive strategy, making the subsequent error estimates �uctuate.
We prevent this to some extent by using (4.17) instead of (4.15) for the
subsequent calculation of hr. In addition, we modify (4.18) to

hα =
(αref

α

)1/k̂
hn n ∈ N (4.22)

such that the convergence restriction becomes less agressive. Thus, we may
avoid that the corresponding error estimate deviates too much, and we get a
smoother transition in the error estimate when the controller switches back
from having used hα to use hr.
The e�ciency of an implicit integration method depends highly on the con-
vergence in the equation solver, i.e. the value of the set point αref . In most
cases, any value 0.2 < αref < 0.5 is acceptable as reference for the conver-
gence rate, with robustness favoring the lower values. We use αref = 0.4
in our implementation [85, 80]. For the administration of the Jacobian, we
have chosen αJac = 0.2 and αLU = 0.2. For the two-phase �ow problem,
this choice seems like a good balance between the computational load of the
equation solver in comparison to the computational cost of Jacobian eval-
uations/factorizations. With these settings we try to minimize the total
computational time spent on the solution process. The maximum number
of iterations allowed in the equation solver is 10. The convergence control
based on (4.19), (4.20), (4.21) and (4.22) is presented in Algorithm 4.3.2.
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Algorithm 4.3.2: Convergence control by adaptive step size adjust-
ments and Jacobian evaluations/factorizations.

input: Current inf.: rn+1, hn and α. Prior inf.: rn, hn−1 and hLU .
output: hn+1.
if iterations converged then

...

if new Jacobian and α > αref then
Compute hα by (4.22).

Convergence restrict the step size by (4.19).
else

Assign
hn+1 ← hr

if (4.21) is satis�ed then
Evaluate and factorize the Jacobian.
Assign

hLU ← hn+1

else if (4.20) is satis�ed then
Factorize the Jacobian.
Assign

hLU ← hn+1

else
...

The complete modi�ed PI step size controller for an implicit Runge-Kutta
method is presented in Algorithm 4.3.3.
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4. Temporal Discretization

Algorithm 4.3.3: The complete modi�ed PI step size controller for an
implicit Runge-Kutta method.

input: Current inf.: rn+1, hn and α. Prior inf.: rn, hn−1 and hLU .
output: hn+1.
if iterations converged then

Apply error control cf. Algorithm 4.3.1.
Apply convergence control cf. Algorithm 4.3.2.

else

if new Jacobian then

if α > αref then
Compute hα by (4.22).
Assign

hn+1 ← hα

else
Assign

hn+1 ← hn/2

else
Evaluate the Jacobian.

Factorize the Jacobian.
Assign

hLU ← hn+1

4.4 Choice of Methods

In this section we use the two-phase �ow problem and the permeability �eld
in Figure 4.3a as a benchmark problem. The �eld consists of 45 × 45 × 1
grid blocks. 45 vertical injectors are placed along the left-hand side and
45 vertical producers are placed along the right-hand side. Figure 4.3b,
4.3c and 4.3d show the �eld development if we inject a total of 1 PV (see
page 15) of water over a period of 360 days. We compare and discuss the
performance of the three di�erent ESDIRK methods used for the solution of
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(a) Permeability �eld [mDa] [1].
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(b) 0.11 PV injected after 40 days.
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(c) 0.33 PV injected after 120 days.
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Figure 4.3: Water �ooding example showing the oil saturations after 40, 120
and 360 days of injection with a total of 1 PV of water injected over a period
of 360 days. The �eld in Figure 4.3a consists of 45 × 45 × 1 grid blocks. 45
vertical injectors are placed along the left-hand side and 45 vertical producers
are placed along the right-hand side.

the water �ooding problem. Finally, we discuss the performance of the step
size controller in its original form in relation to the version that includes
our proposed modi�cations.
By PI97 we denote the controller in its original form, and by PI10 we

71



4. Temporal Discretization

refer to the modi�ed version (according to Paper C). For the work-precision
diagrams we used a �xed absolute tolerance of 10−8 and relative tolerances
in the range from 10−8 to 10−2. We denote these as signi�cant digits (SDs),
such that SD = 4 corresponds to a relative tolerance of 10−4. The number
of function evaluations, which are listed in the following, can be directly
equated with the number of iterations in the equation solver.

4.4.1 Choice of ESDIRK Methods

From the work-precision diagram in Figure 4.4a, we see that the total com-
putational cost of ESDIRK12 increases in a more profound way than the
other two methos. This is due to the small step sizes, which are necessary
for the method in order to satisfy the required accuracy of the solution.
This implies an increased workload of the equation solver when trying to
retain (rR)ki ≤ τ . In addition, small step sizes lead to an increase in over-
head time, which can be seen in Figure 4.4b. As can be seen in Figure 4.4c
and Figure 4.4d, ESDIRK23 and ESDIRK34 are better at maintaining an
appropriate distribution of the workload as the requirements in accuracy in-
crease. Except for SD = 2, we can observe from the work-precision diagram
of the three methods, that ESDIRK23 is overall the most computationally
e�cient method for temporal discretization of the two-phase �ow problem.

4.4.2 Choice of step size Controller

The step size sequences for the PI97 and the PI10 controllers are depicted
in Figure 4.5a and in Figure 4.5b respectively. It must be mentioned that
nStep, nFail and nSlow refer to the number of timesteps used in order to
obtain the solution, the number of steps rejected by the error control, i.e.
rn+1 > 1, and the amount of steps rejected because the maximum number
of iterations is reached. By comparing the performance of the two con-
trollers, we see that fewer Jacobian evaluations/factorizations are required
by the PI10 controller in the sense of maintaining good convergence in the
equation solver. Thus fewer iterations are necessary in order to complete
the integration. Because of the less aggressive step size change suggested by
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(b) Workload distribution, ESDIRK12.
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(c) Workload distribution, ESDIRK23.
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(d) Workload distribution, ESDIRK34.

Figure 4.4: Total computational cost and distribution of workload of ES-
DIRK12, ESDIRK23 and ESDIRK34 with the use of the P10 controller (the
uppermost patch in the diagrams is overhead time).

(4.22) in connection with the �ltering of the asymptotic step size selection
rule, a smoother step size sequence is obtained by the PI10 controller. This
implies that the PI10 controller provides a solution with lesser rejected steps
when compared to the performance of the PI97 controller. In Figure 4.5a
several solution points for which rn+1 � ε can be observed. For the same
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Figure 4.5: Performances of the PI97 and the PI10 controller applied to ES-
DIRK23 computing the solution shown in Figure 4.3b.
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solution points the corresponding step sizes are small. Due to the ability of
(4.22) to increase the step size as well, this behaviour is only to a lesser ex-
tent observed in Figure 4.5b. Hence the PI10 controller may produce larger
step sizes in situations where the integration error and the convergence rate
are below their respective set points. In Figure 4.6 we compare the compu-
tational cost of the two controllers. We notice, that in comparison to the
PI97 controller, a better performance is obtained in the range from 2 to 5
SDs for the PI10 controller. The requirements for the accuracy in reservoir
simulation is often within the range mentioned above. Therefore, we pro-
pose the use of the modi�ed step length controller in Paper C for implicit
integration of dynamic systems such as the two-phase �ow problem.

4.5 Summary

We have described the most commonly used schemes for temporal discretiza-
tion in reservoir simulation: the FIM, the IMPES method and the SIM.
With special emphasies on the di�erential equation system (3.31) that we
propose in Paper A, we have presented three di�erent ESDIRK methods
with an embedded error estimator: ESDIRK12, ESDIRK23 and ESDIRK34.
All three methods are both A- and L-stable, as well as sti�y accurate. We
have described an adaptive step size control that is based on the embed-
ded error estimator. In particular, we have described the modi�cations of
the error and convergence control that we suggest in Paper C. Finally, we
have discussed the performance of the three ESDIRK methods, and the
performance of the step size controller both in its original form and with
the modi�cations that we suggest.
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(b) Computational cost of ESDIRK23.
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(c) Computational cost of ESDIRK34.
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Figure 4.6: Comparison of the PI97 and the PI10 controller separately used
with ESDIRK12, ESDIRK 23 and ESDIRK34.
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CHAPTER 5
Production Optimization

Petroleum reservoirs are subsurface formations of porous rocks with hy-
drocarbons trapped in the pores. Initially, the reservoir pressure may be
su�ciently large to push the �uids to the production facilities. However,
as the �uids are produced the pressure declines and production reduces
over time. When the natural pressure becomes insu�cient, the pressure
must be maintained arti�cially by injection of water. Conventional tech-
nologies for recovery leaves more than 50% of the oil in the reservoir. Wells
with adjustable downhole �ow control devices coupled with modern con-
trol technology o�er the potential to increase the oil recovery signi�cantly.
Optimal control of smart-wells have been introduced [1]. In these applica-
tions, downhole sensor equipment and remotely controlled valves are used
in combination with large-scale subsurface �ow models and gradient based
optimization methods in a NMPC framework to increase the production
and economic value of an oil reservoir [15, 25, 13, 26, 19]. Wether the ob-
jective is to maximize recovery or some �nancial measure like net present
value (NPV), the increased production is achieved by manipulation of the
well rates and BHPs of the injection and production wells. The optimal
water injection rates and production well BHPs are computed by solution
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of a large-scale constrained optimal control problem.
In this chapter, we focus on maximizing the economical value of an oil �eld
and describe the gradient based method to compute the optimal control
strategy. The discrete-time optimal control problem can be solved using
single-shooting [86, 87], multiple-shooting [88, 89], and the simultaneous
method [90, 91, 92]. Reservoir models are large-scale and the number of
states are easily in the order of magnitude of 105-106 for realistic problems.
Thus, we describe a single-shooting algorithm for solution of the non-linear
constrained optimal control problem. An ESDIRK method with an adaptive
step size control, see Chapter 4 and Paper C, is used for computationally
e�cient solution of the model. The gradients are e�ciently computed using
the adjoint method [93, 36, 22, 37]. The constrained optimization is per-
formed using quasi-Newton sequential quadratic programming (SQP) with
line-search and modi�ed BFGS approximations [94]. The adjoint equations
associated with the integration scheme are solved by integrating backwards
in time. The necessary information for the adjoint computation is com-
puted and stored during the forward solution of the model. The backward
adjoint computation assembles this information to compute the gradients
[13]. With the use of the spatial discretization presented in Section 3.1 -
3.2, we demonstrate the optimal control strategy using the 2-dimensional
water �ooding example presented in Chapter 2.
The chapter is organized as follows. Section 5.1 states the general con-
strained optimal control problem using the novel representation of the sys-
tem dynamics that we propose in Section 3.4 and Paper A. The numerical
methods for the constrained optimal control problem are described in Sec-
tion 5.2 - 5.4. Section 5.5 describes speci�c details related to the objective
function and the constraints for the water �ooding production optimiza-
tion problem. In this section we also describe the numerical case study
illustrating the optimization algorithm when applied to the water �ooding
problem.
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5.1 Optimal Control Problem

We formulate the water �ooding problem as a continuous time Bolza prob-
lem

min
[x(t),u(t)]

tf
t0

∫ tf

t0

J(x(t),u(t))dt+H(x(tf )) (5.1a)

s.t.
dg(x(t))

dt
= f(x(t),u(t)) x(t0) = x0 (5.1b)

umin ≤ u(t) ≤ umax (5.1c)

−∆umin ≤
du

dt
(t) ≤ ∆umax (5.1d)

The algorithm developed for solution of this problem is suitable for pro-
duction optimization of oil reservoirs. x(t) is a vector holding the system
states, and u(t) is a vector holding the manipulated variables. (5.1b) rep-
resents the dynamic model formulated as the di�erential equation system
that we have proposed in (3.31) (see Paper A). We use a zero-order-hold
parameterization for u(t). This implies that the constraints (5.1d) should
be interpreted as the movement constraints (5.4d).
To convert the in�nite-dimensional problem (5.1) into a numerically tractable
�nite-dimensional problem, we divide the temporal domain [t0, tf ] into K
control steps and each control step into Nk time steps for the integration of
the di�erential equations. We then de�ne a set of control step indices Ki =
{i, i+ 1, . . . ,K − 1} and a set of time step indices Nk = {0, 1, . . . , Nk − 1},
k ∈ K0. The number of control steps is known in advance due to the zero-
order-hold parametrization of the manipulated variables. A control step
k ∈ K0 is de�ned as an interval between the times t0,k and tNk,k. Note that
t0,0 = t0 and tNK−1,K−1 = tf . For a given control interval k, the number
of time steps are not known in advance as we use an adaptive step length
controller in the numerical integrator, see Chapter 4. This indexing of the
control steps and the time steps is illustrated in Fig. 5.1.
Using the ESDIRK12 scheme for temporal discretization of (3.31), we can
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u0
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uk+1 − uk

tn,k
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t0 t0,k tft0,k+1

tn+1,k

xn+1,k

Figure 5.1: The zero order hold parametrization and the relation between the
control steps and the time steps. For a given time step tn,k in a given control
step k the optimal control problem can be described by the system states xn,k
and the control settings uk.

compute the trajectory {{xn+1,k}Nk−1
n=0 }K−1

k=0 as the solution of the system of
di�erence equations

g(xn+1,k) = g(xn,k)− f(xn+1,k,uk)hn,k n ∈ Nk k ∈ K0 (5.2)

in which x(tn,k) = xn,k and u(tn,k) = uk. For notational convenience we
de�ne the residual function

Rn+1,k(xn+1.k,xn,k,uk) =

g(xn+1,k)− g(xn,k)− f(xn+1,k,uk)hn,k = 0
(5.3)

and formulate the continuous-time optimal control problem (5.1) as the
following discrete-time optimal control problem
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min
{{xn+1,k}

Nk−1
n=0 ,uk}K−1

k=0

K−1∑

k=0

Nk−1∑

n=0

Jn,k(xn+1,k,xn,k,uk) (5.4a)

s.t. Rn+1,k(xn+1.k,xn,k,uk) = 0 (5.4b)

umin ≤ uk ≤ umax (5.4c)

−∆umin ≤ ∆uk ≤ ∆umax (5.4d)

where ∆uk = uk − uk−1 and

Jn,k(xn+1,k,xn,k,uk) =

∫ tn+1,k

tn,k

J(x(t),uk)dt n ∈ Nk k ∈ K0 (5.5)

Furthermore, we de�ne the cost-to-go function HNk,k(xNk,k) = 0. (5.5) may
be solved with the use of some quadrature rule, e.g. the trapezoidal method,
Simpson's rule, etc. We use the quadrature rule de�ned by the method used
for integration of the di�erential equations (4.1).

5.2 Single Shooting Optimization

To keep the dimension of the optimization problem small and to be able
to use adaptive temporal step size, we use the single-shooting method for
solution of the discrete-time problem (5.4). In the single-shooting method,
the manipulated variables are �xed at each iteration and used to solve the
di�erence equations (5.4b) numerically. Knowledge of the initial state x0,
the manipulated variables {uk}K−1

k=0 , and the requirement that the systems

dynamics are satis�ed determines the states {{xn+1,k}Nk−1
n=0 }K−1

k=0 . This im-
plies that the states may be regarded as dependent variables as they can be
expressed as functions of the manipulated variables and the initial state. In
practical computations, the system constraints (5.4b) are satis�ed by solv-
ing (5.3), i.e. by doing a system simulation. In this way, a single-shooting
method for (5.4) can be approximated by the �nite dimensional optimiza-
tion problem
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min
{uk}K−1

k=0

ψ({uk}K−1
k=0 ,x0) (5.6a)

s.t. umin ≤ uk ≤ umax (5.6b)

−∆umin ≤ ∆uk ≤ ∆umax (5.6c)

in which

ψ({uk}K−1
k=0 ,x0) =

{
K−1∑

k=0

Nk−1∑

n=0

Jn,k(xn+1,k,xn,k,uk) :

Rn+1,k(xn+1,k,xn,k,uk) = 0 n ∈ Nk k ∈ K0

}
(5.7)

is the objective function that only depends on the manipulated variables
and the �xed initial state.

5.3 Gradient Computation by the Adjoint

Method

In solving the reduced system (5.6), we must compute the gradient ∇ukψ.
The system states in dynamic optimization problems are dependent on the
control variables, in the sense that any past change of the control variables
has an in�uence on all subsequent system states. Consequently, the gradient
information of (5.7) is not directly accessible. The necessary information for
computing∇ukψ is obtained during the simulation step at each optimization
iteration in the single-shooting approach. The adjoint method uses this
information e�ciently to compute the gradients.
Assume that the manipulated variables {uk}K−1

k=0 satis�es the input con-
straints (5.4c) and (5.4d). Thus, we may de�ne the Lagrangian of (5.4) as
follows
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L({{xn+1,k}Nk−1
n=0 ,uk, {λn+1,k}Nk−1

n=0 }K−1
k=0 ) =

K−1∑

k=0

Nk−1∑

n=0

(Jn,k(xn+1,k,xn,k,uk)

− λTn+1,kRn+1,k(xn+1,k,xn,k,uk))

(5.8)

The adjoint method can be derived using the �rst order necessary conditions
for optimality with respect to the dependent variables, {{xn+1,k}Nk−1

n=0 }K−1
k=0 ,

and the Lagrange multipliers (adjoint variables), {{λn+1,k}Nk−1
n=0 }K−1

k=0 , i.e.

∇xn+1,k
L = 0 n ∈ Nk k ∈ K0 (5.9a)

∇λn+1,k
L = 0 n ∈ Nk k ∈ K0 (5.9b)

The �rst order optimality condition corresponding to the adjoint deriva-
tive (5.9b) yields the system constraints (5.4b). The �rst order optimality
condition corresponding to the state derivative (5.9a) is

∇xn,kJn−1,k(xn,k,xn−1,k,uk)

−∇xn,kRn,k(xn,k,xn−1,k,uk)λn,k

+∇xn,kJn,k(xn+1,k,xn,k,uk)

−∇xn,kRn+1,k(xn+1,k,xn,k,uk)λn+1,k = 0

(5.10)

which upon rearrangement yields

∇xn,kRn,k(xn,k,xn−1,k,uk)λn,k =

+∇xn,kJn−1,k(xn,k,xn−1,k,uk)

+∇xn,kJn,k(xn+1,k,xn,k,uk)

−∇xn,kRn+1,k(xn+1,k,xn,k,uk)λn+1,k

(5.11)
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from which we can compute the adjoint variables λnk in a backward recur-
sion. The Lagrange multiplier at the �nal time is λNK−1,K−1 = 0 since the
cost-to-go function is zero. λNK−1,K−1 = 0 is used to initialize the back-
ward march for computation of the adjoint variables λn,k, n ∈ Nk, k ∈ K0.
Special attention must be given when computing λ0,k+1 at the transition
between uk and uk+1 for k ∈ {0, 1, . . . ,K − 2}. At this point, the left-hand
side and the �rst term on the right-hand side in (5.11) both belong to con-
trol step uk, while the second and third term on the right-hand side belong
to control step uk+1. When the state variables {{xn+1,k}Nk−1

n=0 }K−1
k=0 and the

adjoint variables {{λn+1,k}Nk−1
n=0 }K−1

k=0 satisfy (5.9), we have

ψ({uk}K−1
k=0 ,x0) =

{
L({{xn+1,k}Nk−1

n=0 ,uk, {λn+1,k}Nk−1
n=0 }K−1

k=0 ) :

Rn+1,k(xn+1,k,xn,k,uk) = 0 n ∈ Nk k ∈ K0

}
(5.12)

such that we can compute the sensitivity ∇ukψ as the sensitivity ∇ukL.
Thus, considering the partial derivatives of (5.8) with respect to the manip-
ulated variables {uk}K−1

k=0 , we may compute the gradients of the objective
function of the reduced system (5.6) as follows

∇ukψ({uk}K−1
k=0 ,x0) =

Nk−1∑

n=0

(∇ukJn,k(xn+1,k,xn,k,uk)

−∇ukRn+1,k(xn+1,k,xn,k,uk)λn+1,k)

k ∈ K0 (5.13)

The gradients ∇ukψ may be computed using (5.13) in combination with
solution of the adjoint equations (5.11) marching backwards. In Algorithm
5.3.1 we show how to compute the gradients ∇ukψ, k ∈ K, using adjoints
in a single shooting framework.
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5.4. Sequential Quadratic Programming

Algorithm 5.3.1: Computation of the gradients in (5.13) using adjoints
in a single shooting framework.

input: x0 and {uk}K−1
k=0 .

output: {∇ukψ}K−1
k=0 .

forward computation

Compute the system states {{xn+1,k}N
(k)

n=0 }K−1
k=0 by solution of (5.3)

using ESDIRK12.

backward computation
Assign

λN(K−1),K−1 ← 0

for k = K − 1,K − 2, . . . , 1 do

for n = N (k) − 1, N (k) − 2, . . . , 0 do
Compute the adjoint variables λn,k by solution of (5.11).

Compute the gradient ∇ukψ by (5.13).

for n = N (0) − 1, N (0) − 2, . . . , 1 do
Compute the adjoint variables λn,0 by solution of (5.11).

Compute the gradient ∇u0ψ by (5.13).

5.4 Sequential Quadratic Programming

We solve the reduced problem (5.6) using SQP with line-search and modi�ed
BFGS approximations, B, of the Hessian of the Lagrangian of (5.6) [94]. In
each iteration, we solve the convex quadratic program

min
∆u

1
2∆uTB∆u +∇uψ

T∆u (5.14a)

s.t. ∇uc(u)T∆u ≥ −c(u) (5.14b)

in which u = {uk}K−1
k=0 . c(u) is a function that represents the input con-

straints (5.6b) - (5.6c). The optimal solution of (5.14), ∆u = {∆uk}K−1
k=0 ,
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5. Production Optimization

Algorithm 5.4.1: Solution of the reduced problem (5.6) in an SQP
framework using line-search and modi�ed BFGS approximations.

input: x0 and an initial control strategy u.
output: Optimal solution of u.
while not optimal do

Compute ∆u by solving (5.14).
Compute the line-search parameter α using Powell's exact penalty
function and update the manipulated variables u by (5.15).
Compute the gradients {∇ukψ}K−1

k=0 cf. Algorithm 5.3.1.
Update the Hessian in (5.14) using modi�ed BFGS approximations.

combined with a line-search method based on Powell's exact penalty func-
tion [95] are used to determine the next iterate

u(i+1) = u(i) + α(i)∆u(i) (5.15)

α(i) is the line-search parameter. Algorithm 5.4.1 outlines how we solve the
reduced problem (5.6) in an SQP framework using line-search and modi�ed
BFGS approximations.

5.5 Water Flooding Production Optimization

The objective of oil reservoir management is to maximize the economic
value of the oil reservoir. Essentially, we want to produce as much oil as
possible while keeping the operational cost at a minimum. We do this
by maximizing the net present value (NPV). Consequently, the stage cost
J(t) = J(t, x(t), u(t)) in (5.1) becomes
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5.5. Water Flooding Production Optimization

J(t) = −e−dt

 ∑

j∈N pro

(
rproo

ρ◦o
qproo,j (t)− rprow

ρ◦w
qprow,j(t)

)

−
∑

j∈N inj
rinjw qinjj (t)




(5.16)

The factor e−dt accounts for the time value of capital. The terms contribut-
ing to J(t) are the value of the produced oil, the cost of separating water
from the produced oil, and the cost of water injection. rproo is the oil price,
rprow is the cost of water separation, and rinjw is the water injection cost.
qproo,j (t) is the oil production and qprow,j(t) is the water production at produc-

tion wells, j ∈ N pro, at time t. qinjj (t) is the rate of injected water at the

injection wells, j ∈ N inj , at time t. The term d denotes the continuous
discount rate (cost of capital per unit time).
For water �ooding using multiple injectors and producers, the well rates and
pressures are adjusted by the optimal control problem (5.1) such that the
NPV is maximized [1, 26]. The inequality constraints in (5.1) are bound
constraints (5.1c) and rate-of-change constraints (5.1d). The bound con-
straints correspond to limitations on the water injection for each injection
well and limitations on the BHP for each production well. The lower bounds
on the water injection rates are zero, while the upper bound is computed
such that no more than a prede�ned number of pore volumes (PVs) of water
are allowed to be injected over the time horizon considered, [t0, tf ]. That
is, PVmax is the maximum amount of water that may be injected into the
reservoir during the planned production period T = [t0, tf ]. These bound
constraints implies that we will implicitly satisfy

0 ≤
N inj∑

j=1

K−1∑

k=0

Nk−1∑

n=0

∫ tn+1,k

tn,k

qinjj (t)dt ≤ PVmax (5.17)

The reservoir �uids are trapped inside the pores of a porous medium. The
PV of a reservoir is de�ned by the fraction (the porosity) of the porous
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(a) Two horizontal smart-wells.
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(b) Permeability �eld (mDa).

Figure 5.2: Left: Schematic view of horizontal smart-wells in the water �ooding
problem (injector left and producer right) [1]. Right: Permeability �eld (mDa)
with two high permeable streaks [1]. 45 injector segments (white squares to
the left) and 45 producer segments (white circles to the right).

medium that is not occupied by reservoir rock, i.e. the void space of the
reservoir rock that may contain the reservoir �uids. Ideally we would replace
and thus produce all the reservoir �uids by injecting 1 PV of water into the
reservoir. The BHPs in the production wells are restricted to be lower
than the initial pressure of the reservoir. The lower bound of the BHPs
is chosen such that the pressure in the well is high enough to push the
produced �uids to the production facilities. The rate-of-change constraints
of both the injection rates and BHPs are chosen such that the controller is
able to change e.g. the injection rate from maximum to minimum within a
prede�ned number of control steps.
In the following, we apply the single shooting approach for the constrained
optimal control problem (5.1) to maximize the NPV of a horizontal 2-
dimensional reservoir using water �ooding and smart-well technology as
depicted in Figure 5.2a. The permeability �eld of the reservoir is illustrated
in Figure 5.2b [1]. The reservoir dimensions are 450 m × 450 m × 10 m
and it is discretized into 45 × 45 × 1 grid blocks. One horizontal injector
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5.5. Water Flooding Production Optimization

Symbol Description Value Unit

φ Porosity 0.2 -

Swc Critical water saturation 0.20 -
Sor Residual oil saturation 0.15 -
k◦rw Water end point relative permeability 0.6 -
k◦ro Oil end point relative permeability 0.8 -
nw Corey exponent, water 1.5 -
no Corey exponent, oil 2.0 -

ρ◦w Water density (at 1 atm) 1000 kg·m−3

ρ◦o Oil density (at 1 atm) 800 kg·m−3

cw Water compressibility 10−5 atm−1

co Oil compressibility 10−5 atm−1

µw Water viscosity 1.0 cP
µo Oil viscosity 1.0 cP

Sinit Initial water saturation 0.3 -
Pinit Initial reservoir pressure 200 atm

Table 5.1: Reservoir properties.

Symbol Description Value Unit

rproo Oil price 283,0 $/m3

rprow Cost of water separation 31,5 $/m3

rinjw Cost of water injection 5,0 $/m3

d Discount rate 0 -

Table 5.2: Economic data [15, 26, 36].

divided into 45 individually controllable segments is positioned on the left-
hand side of the reservoir (white squares, �rst segment at (x, y) = (5, 5) m,
last segment at (x, y) = (5, 445) m), and one horizontal producer divided
into 45 individually controllable segments is positioned on the right-hand
side of the reservoir (white circles, �rst segment at (x, y) = (445, 5) m,
last segment at (x, y) = (445, 445) m). In this setup we mimic horizontal
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5. Production Optimization

Symbol Description Value Unit

qinjmin Min. water injection rate per injector 0 m3·d−1

qinjmax Max. water injection rate per injector 50 m3·d−1

P bhmin Min. BHP in the producers 150 atm
P bhmax Max. BHP in the producers 200 atm

∆qinjmin Min. rate of change of the water injection -3.85 m3·d−1

∆qinjmax Max. rate of change of the water injection 3.85 m3·d−1

∆P bhmin Min. rate of change of the BHP -3.85 atm
∆P bhmax Max. rate of change of the BHP 3.85 atm

PVmax Max. amount of water allowed for injection 4Vp m3

T Planned production period 728 d

Table 5.3: Controller settings.

wells by composing multiple vertical wells. Each vertical well is completed
in adjacent grid blocks, see Section 2.5, such that a vertical well mimics a
horizontal well segment. Table 5.1 lists the geological properties and the
�uid properties of the reservoir. The economical data are listed in Table
5.2 [15, 26]. The discount rate is zero, d = 0 [36]. Table 5.3 provides the
constraints of the injection rates and the BHPs as well as the maximum
allowed number of PVs to be injected during the production period.
We apply two di�erent production strategies. In the �rst approach, we
inject 2.00 PV over a period of 728 days (2 years) using �xed injection
rates and BHPs. Throughout the 2-year production period, all injector
segments are assigned the same constant injection rate, and all producer
segments are assigned the same constant BHP. In the second approach, we
apply optimized well rates and BHPs to the injectors and the producers,
respectively. Each well segment is adjusted individually by the optimizer
every 28 days. As shown in Figure 5.3a, this strategy leads to an optimal
production period of 374 days (1 year and 10 days) with an injection of only
1.00 PV of water in total. Figure 5.3b illustrates injected PVs as function of
time. Figure 5.4a and 5.4b depicts the recovery factor (produced oil related
to the initial mass of oil in the reservoir) and the water cut (produced
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(a) NPV, 728 days of production.
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(b) PVs injected, 728 days of production.

Figure 5.3: NPV and PVs injected over 728 days of production. The red
dashed line represents maximum NPV using �xed rates and BHPs. The blue
dashed line represents maximum NPV using optimized rates and BHPs.

oil related to the total mass of produced reservoir �uids) as function of
time, respectively. Figure 5.3a shows the NPV as function of the time.
Figure 5.3a shows that the optimal production period using constant well
rates and pressures is 484 days (1 year and 120 days). In this period we
inject 1.33 PV. By letting the optimizer control the well rates and the
BHPs, we can thus reduce the production period from 484 days to 374
days. If we compare the two di�erent production strategies, we see an
increase in NPV of approximately 10% (from $ 39 mill. to $ 43 mill.). The
recovery factor corresponding to optimal operation in the controlled case
is 65%. In the uncontrolled case, the optimal recovery factor is 63%. The
corresponding optimal water cuts are 62% in the controlled case and 72%
in the uncontrolled case. Thus, the 10% increase in NPV for the controlled
case is due to 2% increased oil recovery, a 10% decrease in produced water,
and a 25% reduction in PVs of water injected (from 1.33 PV to 1.00 PV).
Figure 5.5 illustrates how the optimizer administrates the injection rates
and the BHPs over time for each individual well segment. Figure 5.6c and
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(a) Recovery factor, 728 days of production.
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(b) Water cut, 728 days of production.

Figure 5.4: Recovery factor and water cut over 728 days of production. The
red dashed line represents maximum NPV using �xed rates and BHPs. The
blue dashed line represents maximum NPV using optimized rates and BHPs.

5.6d show signs of water-breakthrough at the production wells after approx-
imately 50 days of production. In Figure 5.5a we see that the optimizer re-
sponds by reducing the injection rates in areas with high permeability and
by increasing the injection rates in areas with low permeability. Figure 5.5b
shows that the optimizer also responds by increasing the BHP in areas with
high permeability and by decreasing the BHP in areas with low permeabil-
ity. In this way, the optimizer tries to avoid water breakthrough, and thus
avoiding production of injected water as this will decrease the NPV signi�-
cantly. After approximately 374 days of production, the optimizer reduces
the injection rates in all injector segments. High BHP is maintained in
those producer segments that are positioned in areas with low permeability,
and low BHP is maintained in areas with high permeability. Applying these
settings minimizes both the injection and the production of water, thereby
maximizing the NPV.
Figure 5.6 - 5.10 illustrates the development of the reservoir when we apply
the two di�erent production strategies. In particular, Figure 5.9e depicts
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the oil saturation corresponding to maximum NPV using �xed injection
rates and BHPs (represented by red dashed lines in Figure 5.3 and 5.4),
and Figure 5.9b illustrates the oil saturation corresponding to the maximum
NPV using optimized injection rates and BHPs (represented by blue dashed
lines in Figure 5.3 and 5.4).

5.6 Summary

We have implemented a numerical method for solution of large-scale con-
strained optimal control problems (5.1). The implementation uses a novel
representation of the system dynamics that is relevant to describe �ow in
porous media, see Paper A. We use an ESDIRK method for the integration
along with adaptive temporal step sizes, see Paper C. The optimization is
based on single-shooting, the SQP optimization algorithm with line-search
and BFGS approximations of the Hessian, and the adjoint method for com-
putation of the gradients. We use this algorithm to maximize NPV using
water �ooding as method for oil recovery. The developed large-scale con-
strained optimal control algorithm computes the optimal pro�les of water
injection rates and the bottom hole pressures. Compared to the uncon-
trolled case, the NPV in the controlled case increases by 10%. This �gure
demonstrates a signi�cant economic potential of applying smart well tech-
nology along with constrained optimal control in oil reservoir management.
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(a) Individual injection rates (m3/day) of 45 injectors.
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(b) Individual BHPs (atm) of 45 producers.

Figure 5.5: Injection rates and BHPs over 728 days of production, updated
each 28 days. The injectors and producers are depicted in Figure 5.2b.
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(a) 0.07 PV, 25 days, �xed.
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(b) 0.07 PV, 25 days, optimized.
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(c) 0.14 PV, 50 days, �xed.
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(d) 0.14 PV, 50 days, optimized.
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(e) 0.21 PV, 75 days, �xed.
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(f) 0.24 PV, 75 days, optimized.

Figure 5.6: Oil saturations after 25, 50 and 75 days of production. Left
column: with the use of �xed injection rates and BHPs. Right column: with
the use of optimized injection rates and BHPs.
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(a) 0.28 PV, 100 days, �xed.
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(b) 0.33 PV, 100 days, optimized.
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(c) 0.41 PV, 125 days, �xed.
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(d) 0.50 PV, 125 days, optimized.
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(e) 0.56 PV, 150 days, �xed.
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(f) 0.64 PV, 150 days, optimized.

Figure 5.7: Oil saturations after 100, 150 and 200 days of production. Left
column: with the use of �xed injection rates and BHPs. Right column: with
the use of optimized injection rates and BHPs.
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(a) 0.62 PV, 225 days, �xed.
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(b) 0.71 PV, 225 days, optimized.
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(c) 0.69 PV, 250 days, �xed.
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(d) 0.77 PV, 250 days, optimized.
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(e) 0.82 PV, 300 days, �xed.
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(f) 0.88 PV, 300 days, optimized.

Figure 5.8: Oil saturations after 225, 250 and 300 days of production. Left
column: with the use of �xed injection rates and BHPs. Right column: with
the use of optimized injection rates and BHPs.
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(a) 1.04 PV, 374 days, �xed.
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(b) 1.00 PV, 374 days, optimized.
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(c) 1.17 PV, 425 days, �xed.
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(d) 1.07 PV, 425 days, optimized.
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(e) 1.33 PV, 484 days, �xed.
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(f) 1.14 PV, 484 days, optimized.

Figure 5.9: Oil saturations after 374, 425 and 484 days of production. Left
column: with the use of �xed injection rates and BHPs. Right column: with
the use of optimized injection rates and BHPs.
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5.6. Summary

x [m]

y 
[m

]

 

 

0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(a) 1.44 PV, 525 days, �xed.
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(b) 1.19 PV, 525 days, optimized.
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(c) 1.72 PV, 625 days, �xed.
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(d) 1.30 PV, 625 days, optimized.
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(e) 2.00 PV, 728 days, �xed.

x [m]

y 
[m

]

 

 

0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(f) 1.42 PV, 728 days, optimized.

Figure 5.10: Oil saturations after 525, 625 and 728 days of production. Left
column: with the use of �xed injection rates and BHPs. Right column: with
the use of optimized injection rates and BHPs.
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CHAPTER 6
Conclusion

The primary focus of the work in this thesis has been the application of mass
conserving high order explicit singly diagonal implicit Runge-Kutta (ES-
DIRK) methods with embedded error estimators for step size control and
the adjoint approach for gradient computation in a single-shooting frame-
work with emphasis on optimal control of the water �ooding process for
oil recovery. The overall achievements of the work are summarized in this
chapter.

• We have implemented the immiscible two-phase �ow problem for sim-
ulation of combined �ow of water and oil in isothermal reservoirs with
heterogenous isotropic permeability �eld. The well models are based
on the Peaceman well index for vertical wells in non-square Cartesian
grids. Injection wells are operated at variable injection rates, whereas
production wells are operated at variable bottom hole pressure (BHP).

• The �uid �ow in the reservoir model is governed by a system of partial
di�erential equations (PDEs). We use the method of lines for solution
of the model. We have discretized the model spatially using the �nite
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6. Conclusion

volume method (FVM), and we have applied the two point �ux ap-
proximation (TPFA) and the single-point upstream (SPU) scheme for
computing the interface �uxes of the water and oil phases. We solve
the spatially discretized model using a fully implicit mass conserving
high order method for numerical integration.

• We have proposed a new mass conserving formulation of the di�er-
ential equation system that arise as a consequence of the spatial dis-
cretization of the two-phase �ow model. The two-phase �ow model
is developed under the assumption of mass conservation. In general,
process system models are based on conservation of mass, energy and
momentum, and they can be directly represented in the form of the
proposed di�erential equation system. Upon discretization in time,
the proposed equation system ensures the preservation of such prop-
erties.

• We have presented the family of Runge-Kutta integration methods,
and we have developed new mass conserving ESDIRK methods with
embedded error estimators for adaptive step size control. In situations
where solutions with high accuracy is required, we have demonstrated
that high-order ESDIRK methods can provide a solution of the wa-
ter �ooding problem more e�ciently than the traditional low-order
methods, often referred to in the petroleum literature as: the implicit
pressure explicit saturation (IMPES) method, the sequential implicit
method (SIM), and the fully implicit method (FIM).

• Current reservoir simulation tools use step size control, which is based
on safeguarded heuristics. These can neither deliver solutions with
predetermined accuracy or guarantee the convergence in the modi�ed
Newton-Raphson (NR) iterations. We have established predictive step
size control based on error estimates, which can be calculated from the
embedded ESDIRK methods. The adaptive step size control monitors
both the integration error of the solution and the convergence of the
iterative solver. We have added some modi�cations to both error and
convergence monitoring in order to achieve a smoother control of the

102



integration error. In this way we minimize the computational cost per
simulation of the two-phase �ow problem.

• We have used nonlinear model predictive control (NMPC) to maxi-
mize the net present value (NPV) of an oil reservoir by manipulat-
ing injection rates and BHPs of injection wells and production wells,
respectively. We have implemented a single-shooting method for so-
lution of large-scale constrained optimization problems. The forward
integration is done using ESDIRK methods along with adaptive tem-
poral step sizes. The optimization is based on quasi-Newton sequential
quadratic programming (SQP) with line-search and BFGS approxi-
mations of the Hessian, and the adjoint method for e�cient computa-
tion of the gradients. We have demonstrated that the application of
NMPC for optimal control of smart-wells has the potential to increase
the economic value of an oil reservoir.
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APPENDIX A
Derivatives of the Flux Term

The following sections describe the elements in (3.38), which are derivatives
of the �ux term (3.32) with respect to pressure and saturation. The �rst
section deals with the derivatives of the oil and water �uxes into grid-block
i ∈ N with respect to pressure, Pi, and saturation, Si, in the block. The
second section deals with the derivatives of the oil and water �uxes into
the ith grid-block with respect to pressure, Pj , and saturation, Sj , in the
neighbouring blocks, j ∈ N (i).

A.1 Derivatives of the Flux Term Fα,i with
respect to Pi and Si

The derivative of the �ux term Fα,i with respect to Pi is
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A. Derivatives of the Flux Term

∂Fα,i
∂Pi

=
∑

j∈N (i)

∂(Υα∆P )ij
∂Pi

=
∑

j∈N (i)

(
∂Υα,ij

∂Pi
∆Pij + Υα,ij

∂∆Pij
∂Pi︸ ︷︷ ︸
=−1

)

=
∑

j∈N (i)

Γij





∂Hα,i
∂Pi

∆Pij −Hα,i ∆Pij < 0
∂Hα,j
∂Pi︸ ︷︷ ︸
=0

∆Pij −Hα,j ∆Pij > 0

=
∑

j∈N (i)

Γij

{
−Hα,i(1− cα∆Pij) ∆Pij < 0

−Hα,j ∆Pij > 0

i ∈ N (A.1)

The derivative of the �ux term Fα,i with respect to Si is

∂Fα,i
∂Si

=
∑

j∈N (i)

∂(Υα∆P )ij
∂Si

=
∑

j∈N (i)

(
∂Υα,ij

∂Si
∆Pij + Υα,ij

∂∆Pij
∂Si︸ ︷︷ ︸
=0

)

=
∑

j∈N (i)

Γij





∂Hα,i
∂Si

∆Pij ∆Pij < 0
∂Hα,j
∂Si︸ ︷︷ ︸
=0

∆Pij ∆Pij > 0

=
∑

j∈N (i)

Γij

{
Hα,iσα,i∆Pij ∆Pij < 0

0 ∆Pij > 0

i ∈ N (A.2)

where we have de�ned
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A.2. Derivatives of the Flux Term Fα,i with respect to Pj and Sj

σα,i =
nα
sα,i

∂sα,i
∂Si

=
nα
sα,i

{
1

1−Swc−Sor α = w
−1

1−Swc−Sor α = o

i ∈ N (A.3)

A.2 Derivatives of the Flux Term Fα,i with
respect to Pj and Sj

The derivative of the �ux term Fα,i with respect to Pj is

∂Fα,i
∂Pj

=
∑

k∈N (i)

∂(Υα∆P )ik
∂Pj

=
∑

k∈N (i)\{j}

∂(Υα∆P )ik
∂Pj︸ ︷︷ ︸
=0

+
∂(Υα∆P )ij

∂Pj

=
∂Υα,ij

∂Pj
∆Pij + Υα,ij

∂∆Pij
∂Pj︸ ︷︷ ︸
=1

= Γij





∂Hα,i
∂Pj︸ ︷︷ ︸
=0

∆Pij + Hα,i ∆Pij < 0

∂Hα,j
∂Pj

∆Pij + Hα,j ∆Pij > 0

= Γij

{
Hα,i ∆Pij < 0

Hα,i(cα∆Pij + 1) ∆Pij > 0

i ∈ N j ∈ N (i) (A.4)

The derivative of the �ux term Fα,i with respect to Sj is
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A. Derivatives of the Flux Term

∂Fα,i
∂Sj

=
∑

k∈N (i)

∂(Υα∆P )ik
∂Sj

=
∑

k∈N (i)\{j}

∂(Υα∆P )ik
∂Sj︸ ︷︷ ︸
=0

+
∂(Υα∆P )ij

∂Sj

=
∂Υα,ij

∂Sj
∆Pij + Υα,ij

∂∆Pij
∂Sj︸ ︷︷ ︸
=0

= Γij





∂Hα,i
∂Sj︸ ︷︷ ︸
=0

∆Pij ∆Pij < 0

∂Hα,j
∂Sj

∆Pij ∆Pij > 0

= Γij

{
0 ∆Pij < 0

Hα,jσα,j∆Pij ∆Pij > 0

i ∈ N j ∈ N (i) (A.5)

where we have de�ned

σα,j =
nα
sα,j

∂sα,i
∂Sj

=
nα
sα,j

{
1

1−Swc−Sor α = w
−1

1−Swc−Sor α = o

j ∈ N (i) (A.6)
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APPENDIX B
ESDIRK Coe�cients

Starting from left to right, the Butcher tableau's for ESDIRK12, ESDIRK23
and ESDIRK34 are as follows

0 0
1 0 1

xn+1 0 1

en+1 −1
2

1
2

0 0
c2 a21 γ
1 b1 b2 γ

xn+1 b1 b2 γ

en+1 d1 d2 d3

0 0
c2 a21 γ
c3 a31 a32 γ
1 b1 b2 b3 γ

xn+1 b1 b2 b3 γ

en+1 d1 d2 d3 d4

The coe�cients for ESDIRK12 are found in the Butcher tableau. The co-
e�cients for ESDIRK23 and ESDIRK34 are found in Table B.1 and B.2
respectively.
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B. ESDIRK Coefficients

Coe�cient Value

c2 0.585786437626905

a21 0.292893218813452
γ 0.292893218813452

b1 0.353553390593274
b2 0.353553390593274

d1 0.138071187457698
d2 -0.333333333333333
d3 0.195262145875635

Table B.1: ESDIRK23 coe�cients [69].

Coe�cient Value

c2 0.871733043016918
c3 0.468238744851844

a21 0.435866521508459
a31 0.140737774724706
a32 -0.108365551381321
γ 0.435866521508459

b1 0.102399400619911
b2 -0.376878452255556
b3 0.838612530127186

d1 -0.054625497240414
d2 -0.494208893625995
d3 0.221934499735065
d3 0.326899891131344

Table B.2: ESDIRK34 coe�cients [69].
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APPENDIX C
Nomenclature

C.1 Physical Quantities

Symbol Description SI Units Mixed Units

Cα Mass concentration of phase α kg ·m−3 kg ·m−3

cα Compressibility of phase α Pa−1 atm−1

g Gravitational acceleration m · s−2 m · d−2

Fα Flux of phase α kg·m−2·s−1 kg ·m−2 ·d−1

h Well height m m
k Absolute permeability (tensor) m2 mDa
k Absolute permeability (isotropic) m2 mDa
kxx Absolute permeability in x-direc-

tion (anisotropic)
m2 mDa

kyy Absolute permeability in y-direc-
tion (anisotropic)

m2 mDa

kzz Absolute permeability in z-direc-
tion (anisotropic)

m2 mDa

krα Relative permeability of phase α - -
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C. Nomenclature

Symbol Description SI Units Mixed Units

k◦rw Water end point relative perme-
ability (krw = k◦rw when 1−Sor ≤
Sw ≤ 1)

- -

k◦ro Oil end point relative permeabil-
ity (kro = k◦ro when 1 − Swc ≤
So ≤ 1)

- -

nα Corey exponent of phase α - -
Pα Pressure of phase α Pa atm
P ◦α Reference pressure of phase α

with density ρ◦α

Pa atm

P bh Bottom hole pressure in producer Pa atm
Pcow Capillary pressure due to interfa-

cial tension between the oil phase
and the water phase

Pa atm

Qα Source/sink terms of phase α due
to injectors/producers

kg·m−3·s−1 kg ·m−3 ·d−1

Qinjα Source term (injector) of phase α kg·m−3·s−1 kg ·m−3 ·d−1

Qproα Sink term (producer) of phase α kg·m−3·s−1 kg ·m−3 ·d−1

qinj Volumetric water injection rate m3 · s−1 m3 · d−1

qinjα Mass injection rate of phase α kg · s−1 kg · d−1

qproα Mass production rate of phase α kg · s−1 kg · d−1

re Equivalent radius (radial dis-
tance from the well at which the
pressure obtained by the reser-
voir model and the pressure ob-
tained by the well model are
equivalent)

m m

rw Well bore radius m m
Sα Saturation of phase α - -
Swc Critical water saturation (water

does not to �ow when 0 ≤ Sw ≤
Swc)

- -
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C.1. Physical Quantities

Symbol Description SI Units Mixed Units

Sor Residual oil saturation (oil does
not to �ow when 0 ≤ So ≤ Sor)

- -

s Skin factor of well - -
s Position in the spatial domain Ω m m
sα Normalized saturation of phase α - -
t Time s d
T Temporal domain s d
uα Flow velocity of phase α (Darcy's

law)
m · s−1 m · d−1

V Total bulk volume m3 m3

Vp Pore volume (PV) m3 m3

WI Well index m3 m3

∆x Grid block length in x-direction m m
∆y Grid block length in y-direction m m

α Phase index (α ∈ {w, o}) - -
λα Mobility of phase α (de�ned as

krα/µα)
Pa−1 · s−1 cP−1

µα Viscosity of phase α Pa · s cP
Ω Spatial domain m m
Φα Flow potential of phase α Pa ·m−1 atm ·m−1

φ Porosity of the reservoir rock (de-
�ned as Vp/V )

- -

ρα Density of phase α kg ·m−3 kg ·m−3

ρ◦α Density of phase α at reference
pressure P ◦α

kg ·m−3 kg ·m−3

θ Radial angle of well open to �ow - -
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C. Nomenclature

C.2 Commonly used Abbreviations

Abbreviation Description

BFGS Broyden-Fletcher-Goldfarb-Shanno
BHP Bottom hole pressure
DG-FEM Discontinuous Galerkin �nite element method
DIRK Diagonally implicit Runge-Kutta
EnKF Ensemble Kalman �lter
EOR Enhanced oil recovery
ERK Explicit Runge-Kutta
ESDIRK Explicit singly diagonally implicit Runge-Kutta

ESDIRKkk̂ Explicit singly diagonally implicit Runge-Kutta method
of order k with an embedded method of order k̂ (ES-
DIRK12, ESDIRK23 and ESDIRK34), see page 60

FDM Finite di�erence method
FEM Finite element method
FIM Fully implicit method
FIRK Fully implicit Runge-Kutta
FVM Finite volume method
IMEX Implicit-explicit
IMPES Implicit pressure explicit saturation
MPFA Multi-point �ux approximation
NMPC Nonlinear model predictive control
NPV Net present value
NR Newton-Raphson
ODE Ordinary di�erential equation
PDE Partial di�erential equation
PI Proportional-integral
PI97 Proportional-integral step size controller (original), see

page 71
PI10 Proportional-integral step size controller (modi�ed), see

page 71
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C.2. Commonly used Abbreviations

Abbreviation Description

PV Pore volume Vp (void space of the reservoir rock contain-
ing the reservoir �uids)

SD Sigi�cant digit
SDIRK Singly diagonally implicit Runge-Kutta
SIM Sequential implicit method
SPU Single-point upstream
SQP Sequential quadratic programming
TPFA Two-point �ux approximation
WI Well index
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Simulation of Subsurface Two-Phase Flow in an Oil Reservoir

Carsten V̈olcker∗, John Bagterp Jørgensen∗‡, Per Grove Thomsen∗, Erling H. Stenby†

Abstract— Off-shore subsurface oil fields are porous rocks
with oil trapped in the pores. Conventional technologies for
recovery of this oil in porous rocks leave more than 50%
of the oil in the reservoir. Wells with adjustable downhole
flow control devices coupled with modern control technology
offer the potential to increase the oil recovery significantly. The
valve settings could be computed by solution of a large scale
constrained optimal control problem implemented in a receding
horizon fashion. The major computational effort in this optimal
control problem concerns solution of a very large system of
differential equations describing the flow of oil and water in the
porous rock. We present a two-phase immiscible flow model for
the oil reservoir and describe a new explicit singly diagonally
implicit Runge-Kutta (ESDIRK) method for computationally
efficient solution of this model. The ESDIRK integrator is
mass preserving, of high order, and equipped with integration
error controllers. The ESDIRK methods are computationally
competitive to the implicit Euler method normally used for
solution of the oil reservoir two phase immiscible flow problem.

I. I NTRODUCTION

As the number of newly discovered major oil fields
decrease, efficient exploration of already discovered oil fields
becomes increasingly important. Automatic optimization and
control of the operation of the oil recovery process constitute
an important technology for increasing the oil recovery
efficiency [1], [2].

Off-shore subsurface oil fields are porous rocks with oil
in the capillaries of the rocks. Exploration of such oil
reservoirs is typically conducted in three recovery phases.
During primary recovery just after drilling, the pressure
in the oil reservoir is so high that the oil is produced
under the natural pressure in the reservoir. Primary recovery
leaves about 70-85% of the hydrocarbons in the reservoir.
To continue recovery of the remaining oil, water is injected
at injection wells and oil is recovered at production wells.
Water injection maintains high reservoir pressure and flow
rates. As illustrated in Figure 1, it displaces the oil and
pushes it toward the production wells. This part of the
recovery is calledsecondary recoveryor water flooding. If
the reservoir pressure is above the bubble point pressure
of the oil phase, secondary recovery occurs bytwo-phase
immiscible flow. One phase is water and the other phase is oil.
No mass transfer occurs between the phases. If the reservoir
pressure drops below the bubble point pressure, the oil phase

∗Department of Informatics and Mathematical Modeling,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{cv,jbj,pgt }@imm.dtu.dk , ‡ Corresponding author.†Department of
Chemical and Biochemical Engineering, Technical University of Denmark,
DK-2800 Kgs. Lyngby, Denmark{ehs }@kt.dtu.dk . This research
project is financially supported by the Danish Research Council for
Technology and Production Sciences. FTP Grant no. 274-06-0284.

Fig. 1. An oil field with adjustable valves at the down-hole pipes [3].

split into a liquid and a vapor phase in thermodynamic
equilibrium. The water phase does not exchange mass with
the other phases, but the hydrocarbon liquid and vapor
phases exchange mass such that they are in thermodynamic
equilibrium. More than 50% of the hydrocarbons remain
in the reservoir after conventional water flooding. Strong
surface tension which traps oil in small pores as well as high
viscosity of the oil are some factors responsible for this low
recovery. Another factor is the heterogeneity of the porous
rock structure which imply different permeability in different
locations of the reservoir such that large pockets of oil may
be left by conventional uncontrolled water flooding.Tertiary
recoveryincludes chemical flooding, steam flooding and in-
situ combustion. It aims at recovering the remaining oil using
chemical and thermal effects that reduce the surface tension
and adhesion of oil to the rocks as well as the viscosity of the
oil. These techniques are also called enhanced oil recovery.

Optimal control has been used for controlling two-phase
immiscible subsurface porous flow using adjustable control
valves at the down-hole pipes [3]–[9] as well as for enhanced
oil recovery [10]–[12]. The constrained optimal control
problem is usually solved by a gradient based optimization
method. The gradients are computed from the adjoint equa-
tions of the optimal control problem. Several methods have
been used for spatial discretization of the partial differential
equation system, while temporal discretization is usually
based on some variants of the implicit Euler method [13]–
[15]. The implicit Euler method is a first-order method in
the step size.



There is evidence, that high-order integration methods
have the potential to produce faster computation when ap-
plied for temporal discretization of models describing multi-
phase flows in porous media [16]. In this paper we develop
a model for two-phase immiscible flow in a porous medium.
A finite volume method is used for spatial discretization
of the resulting system of partial differential equations. An
explicit singly diagonally implicit Runge-Kutta (ESDIRK)
method is used for temporal discretization. Newly developed
ESDIRK methods with mass preserving properties, error esti-
mators and automatic step size controllers are presented. The
efficiency of the methods are demonstrated on simulation
examples.

II. 1-D IMENSIONAL MODEL

In this Section we describe a one-dimensional model for
two-phase immiscible flow in a porous medium. This model
is important in its own right but also important for numerical
studies of solution procedures [17], [18]. The two phases are
oil and water. The model consists of two partial differential
equations representing conservation of mass. Mass is trans-
ported by convection at a velocity determined by Darcy’s law.
Relative permeabilites are determined by a Corey expression
and we assume zero capillary pressure. The fluid densities
are described by an equation of state relating the densities
to pressure.

A. Conservation Equations and Boundary Conditions

Consider the one-dimensional spatial domain
Ω = {x ∈ R : 0 ≤ x ≤ L} and the time domain
T = {t ∈ R : t ≥ 0}. The boundary of the spatial domain
is δΩ = {x ∈ R : x = 0 ∧ x = L} and the interior of the
spatial domain isΩo = {x ∈ R : 0 < x < L}. The mass of
oil and water is conserved. SimilarlyδT = {t ∈ R : t = 0}
andT o = {t ∈ R : t > 0}.

We consider a two-phase flow of oil and water with
complete immiscibility. LetCw = Cw(t, x) and Co =
Co(t, x) be the concentrations of water and oil (kg water/oil
per volume reservoir) in the reservoir as function of time
t ∈ T and positionx ∈ Ω. The mass balances for water and
oil in the reservoir is expressed by the following system of
partial differential equations

∂Cw

∂t
= −∂Nw

∂x
+ qw t ∈ T o, x ∈ Ωo (1a)

∂Co

∂t
= −∂No

∂x
+ qo t ∈ T o, x ∈ Ωo (1b)

Nw = Nw(t, x) andNo = No(t, x) are the fluxes of water
and oil through the porous medium. The source/sink terms of
water and oil are denotedqw = qw(t, x) and qo = qo(t, x).
They are used to describe the flow from injection wells and
the flow to production wells.

The initial concentrations of water and oil in the reservoir
are specified

Cw(t, x) = Cw0(x) t ∈ δT, x ∈ Ω (2a)

Co(t, x) = Co0(x) t ∈ δT, x ∈ Ω (2b)

as well as the flux of water and oil at the boundaries

Nw(t, x) = 0 t ∈ T, x ∈ δΩ (3a)

No(t, x) = 0 t ∈ T, x ∈ δΩ (3b)

B. Constitutive Models

The concentrations of water and oil in the reservoir may
be expressed as

Cw = φρw(Pw)Sw (4a)

Co = φρo(Po)So (4b)

φ is the porosity of the reservoir rock. The porosity is the
volumetric fraction of void space that can be occupied by the
reservoir fluids (water and oil). We assume the porosity to be
constant.ρw = ρw(Pw) andρo = ρo(Po) are the densities of
water and oil. These densities depend on the water pressure
Pw and the oil pressurePo, respectively.Sw andSo are called
the saturations of water and oil, respectively. They represent
the volumetric fraction of water and oil in the void space.
Consequently, as water and oil jointly fills the entire void
space

Sw + So = 1 (5)

Water and oil are transported by convection through the
porous medium. Therefore, the water and oil fluxes can be
expressed as

Nw = ρw(Pw)uw(Pw, Sw) (6a)

No = ρo(Po)uo(Po, So) (6b)

uw = uw(Pw, Sw) and uo = uo(Po, So) are the linear
velocities of each phase.

The flow through the porous medium is pressure driven
and can be expressed using Darcy’s law

uw = −kkrw(Sw)

µw

∂Pw

∂x
(7a)

uo = −kkro(So)

µo

∂Po

∂x
(7b)

k = k(x) denotes the permeability of the porous medium.
The permeabilities depend only on the spatial position in the
reservoir.µw andµo are the viscosities of oil and water. The
relative permeabilities of each phasekrw = krw(Sw) and
kro = kro(So) are nonlinear functions of the saturation of
the associated phase.

The relative permeabilities are approximated by the Corey
relations

sw =
Sw − Swc

1− Swc − Sor
(8a)

so =
So − Sor

1− Swc − Sor
(8b)

krw(Sw) =





0 0 ≤ Sw ≤ Swc

krw0s
nw
w Swc < Sw < 1− Sor

krw0 1− Sor ≤ Sw ≤ 1

(8c)

kro(So) =





0 0 ≤ So ≤ Sor

kro0s
no
o Sor < So < 1− Swc

kro0 1− Swc ≤ So ≤ 1

(8d)



krw0, kro0, nw and no are determined experimentally for
each particular porous medium.Swc is the critical water
saturation andSor is the residual oil saturation.sw and so
are the reduced saturations.

Assuming that the fluid compressibilitiescw and co are
constant over the pressure range of interest, the fluid densities
can be expressed using the following equation of states

ρw = ρw0e
cw(Pw−Pw0) (9a)

ρo = ρo0e
co(Po−Po0) (9b)

ρw0 = ρw(Pw0) andρo0 = ρo(Po0) are the densities at the
reference pressuresPw0 andPo0.

The pressure in the wetting fluid (the water in this case)
is less than in the non-wetting fluid. The pressure difference
is given by the capillary pressure, which is assumed to be a
function of the water saturation

Pcow(Sw) = Po − Pw (10)

In highly permeable and highly porous media the capillary
effects are small. In dense formations with very small pores
the capillary pressure introduces a diffusive term into (1)
[19]. The irreducible saturationsSwc andSor can partly be
explained by the capillary effects in the porous medium, so
the capillary pressure is to some extend taken into account
through the relative permeabilities. In this model we assume
zero capillary pressure

Pcow(Sw) = 0 (11)

C. Well Models

The injector and producer wells are all located at point
locations. LetI denote an index set for the injectors and
P denote an index set for the producers. Then the injectors
are located atxI,j for j ∈ I and the producers are located
at xP,j for j ∈ P. Let δI,j = δ(x − xI,j) and δP,j =
δ(x− xP,j) denote Dirac’s delta function.

Then the set of injector wells may be modeled as

qw = qw(t, x) = ρw(Pw)qjδI,j j ∈ I (12a)

qo = qo(t, x) = 0 j ∈ I (12b)

in which qj is the volumetric injection rate of water at
injection well j ∈ I. The set of producer wells are modeled
as

qw = −αjwjρw(Pw)
krw(Sw)

µw
(Pw − Pwell,j)δP,j (13a)

qo = −αjwjρo(Po)
kro(So)

µo
(Po − Pwell,j)δP,j (13b)

in which j ∈ P. Pwell,j is the pressure at the well.αj ∈
[0, 1] is the position of the control valve andwj is the well-
index for production wellj ∈ P [13]–[15].

D. State Transformation

Let P = P (t, x) = Po(t, x) be the oil pressure andS =
S(t, x) = Sw(t, x) be the water saturation. In the two-phase
immiscible flow model (1)-(11), we may use(S, P ) as state

variables instead of(Cw, Co). (4), (5), (10) and (11) may be
used to computeS andP givenCw andCo.

This imply that we may state the initial conditions (2) as
initial saturations and pressures

S(t, x) = S0(x) t ∈ δT, x ∈ Ω (14a)

P (t, x) = P0(x) t ∈ δT, x ∈ Ω (14b)

III. G ENERAL 3-DIMENSIONAL MODEL

Consider the time domainT = {t ∈ R : t ≥ 0} and the

spatial domainΩ ⊂ R3. Let ∇ =
[

∂
∂x

∂
∂y

∂
∂z

]T
. Using

the state variablesS = S(t, x, y, z) = Sw(t, x, y, z) andP =
P (t, x, y, z) = Po(t, x, y, z) for t ∈ T and(x, y, z) ∈ Ω, we
may generalize the mass balances of the 1-D model to the
general 3-D model

∂Cw

∂t
= −∇ ·Nw + qw t ∈ T o, (x, y, z) ∈ Ωo (15a)

∂Co

∂t
= −∇ ·No + qo t ∈ T o, (x, y, z) ∈ Ωo (15b)

Nw =
[
Nw,x Nw,y Nw,z

]T
and No =[

No,x No,y No,z

]T
are 3-dimensional flux vectors

with the mass flux in each spatial direction as coordinates.
The initial conditions with(S, P ) as state variables are

S(t, x, y, z) = S0(x, y, z) t ∈ δT, (x, y, z) ∈ Ω (16a)

P (t, x, y, z) = P0(x, y, z) t ∈ δT, (x, y, z) ∈ Ω (16b)

The zero net influx condition at the spatial boundary can be
expressed as

Nw(t, x, y, z) · n(x, y, z) = 0 t ∈ T, (x, y, z) ∈ δΩ (17a)

No(t, x, y, z) · n(x, y, z) = 0 t ∈ T, (x, y, z) ∈ δΩ (17b)

n(x, y, z) for (x, y, z) ∈ δΩ is a normal vector the boundary
δΩ.

The flux of water and oil is by convection. Therefore, the
flux vectors are

Nw = ρw(Pw)uw (18a)

No = ρo(Po)uo (18b)

in whichuw anduo are linear velocities governed by Darcy’s
law

uw = −Kkrw(Sw)

µw
(∇Pw − ρw(Pw)g∇z) (19a)

uo = −Kkro(So)

µo
(∇Po − ρo(Po)g∇z) (19b)

with K = diag(kx, ky, kz) being a diagonal permeability
matrix. OftenK = kI.

The fluid and rock properties are determined in the same
was as for the 1-dimensional model. The source terms at
injection wells and the sink terms at production wells are
determined by a trivial extension of Dirac’s delta-function to
the 3-dimensional case, i.e.δj = δ(x−xj)δ(y−yj)δ(z−zj).



IV. F INITE VOLUME DISCRETIZATION

In this section we present a method for spatial discretiza-
tion of the two-phase immiscible flow problem. Using Gauss’
divergence theorem, (15) may be expressed in integral form

∂

∂t

∫

Ω

CwdV = −
∫

δΩ

(Nw · n)dS +

∫

Ω

qwdV (20a)

∂

∂t

∫

Ω

CodV = −
∫

δΩ

(No · n)dS +

∫

Ω

qodV (20b)

n is an outward pointing normal vector on the boundary.
The model integral form then consists of (20) along with the
initial conditions (16) and the boundary conditions (17). In
this section we describe a finite volume method for spatial
discretization of this model. For notational simplicity we
consider the equation

∂

∂t

∫

Ω

CdV = −
∫

δΩ

(N · n)dS +

∫

Ω

qdV (21)

and the structured grid of finite volumes

Ωi,j,k = {(x, y, z) ∈ R3 : xi− ≤ x ≤ xi+,
yj− ≤ y ≤ yj+, zk− ≤ z ≤ zk+}

(22)

with xi− =
∑i−1

l=1 ∆xl, xi = xi− + 1
2∆xi, and xi+ =

xi−+∆xi. Similar definitions apply in they andz directions.
Ωi,j,k is a finite volume with mid-point in(xi, yj , zk). δΩi,j,k

is the boundary of the finite volumeΩi,j,k. The concentration
in each control volumeΩi,j,k is obtained using

∂

∂t

∫

Ωi,j,k

CdV = −
∫

δΩi,j,k

(N · n)dS +

∫

Ωi,j,k

qdV (23)

∀(i, j, k) along with the initial and boundary conditions. The
accumulation term is

∂

∂t

∫

Ωi,j,k

CdV =
dCi,j,k

dt
(t)Vi,j,k (24)

with Vi,j,k = ∆xi∆yj∆zk. The flux term on the boundary
may be expressed as
∫

δΩi,j,k

(N · n)dS =

Sx,j,k(Nx(t, xi+, yj , zk)−Nx(t, xi−, yj , zk))+

Sy,i,k(Ny(t, xi, yj+, zk)−Ny(t, xi, yj−, zk))+

Sz,i,j(Nz(t, xi, yj , zk+)−Nz(t, xi−, yj , zk−))

(25)

with Sx,j,k = ∆yj∆zk, Sy,i,k = ∆xi∆zk, and
Sz,i,j = ∆xi∆yj . Define the fluid transmissibilityζi,j,k =
ρ(Pi,j,k)kr(Si,j,k)/µ. The fluxes in the x-direction are

Nx,i+,j,k = −kx,i+,j,kζi+,j,k
Pi+1,j,k − Pi,j,k

xi+1 − xi
(26a)

Nx,i−,j,k = −kx,i−,j,kζi−,j,k
Pi,j,k − Pi−1,j,k

xi − xi−1
(26b)

∆Nx,i,j,k = Nx,i+,j,k −Nx,i−,j,k (26c)

To have flux continuity across interfaces,kx,i+,j,k and
kx,i−,j,k are computed using the harmonic average for the
permeabilities in the adjacent grid blocks

∆xi +∆xi−1

kx,i−,j,k
=

∆xi
kx,i,j,k

+
∆xi−1

kx,i−1,j,k
(27a)

∆xi+1 +∆xi
kx,i+,j,k

=
∆xi+1

kx,i+1,j,k
+

∆xi
kx,i,j,k

(27b)

Due to the hyperbolic nature of the equation, the fluid
transmissibilities,ζi+,j,k and ζi−,j,k, are computed using
upstream information. The single point upstream scheme is

ζi+,j,k =

{
ζi+1,j,k Pi+1,j,k − Pi,j,k ≥ 0

ζi,j,k Pi+1,j,k − Pi,j,k < 0
(28a)

ζi−,j,k =

{
ζi,j,k Pi,j,k − Pi−1,j,k ≥ 0

ζi−1,j,k Pi,j,k − Pi−1,j,k < 0
(28b)

Similar expressions are derived for the fluxes in the y- and z-
directions. In the z-direction we incorporate the gravity term
in the flow direction test.

The source/sink term of (23) becomes
∫

Ωi,j,k

qdV = qi,j,k(t)Vi,j,k (29)

Consequently, we may express the model (23) as a system
of ordinary differential equations in the form

dCi,j,k

dt
= −

(
∆Nx,i,j,k

∆xi
+

∆Ny,i,j,k

∆yj
+

∆Nz,i,j,k

∆zk

)

+ qi,j,k

(30)

V. ESDIRK

In this section we describe a method for temporal dis-
cretization of the two-phase immiscible flow model.

A. New Differential Equation Model

Explicit Singly Diagonally Implicit Runge-Kutta (ES-
DIRK) methods has previously been developed for system
of ordinary differential equations [20]–[23]

d

dt
x(t) = f(t, x(t)) x(t0) = x0 (31)

and systems of index-1 differential algebraic equations [23],
[24]

M(t, x(t))
d

dt
x(t) = f(t, x(t)) x(t0) = x0 (32)

While the spatially discretized model for the immiscible two-
phase flow problem may be formulated as (32), the main
problem with such a formulation is that it is not guaranteed
to preserve mass upon discretization in time. This is a
major problem, as the differential equations was formulated
based on conservation of mass. Process simulation problems
in general are based on conservation of mass, energy and
momentum. It is desirable to preserve such properties upon
numerical discretization in time.
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Fig. 2. The A-matrix in Runge-Kutta methods.

Therefore, we propose a new system of differential equa-
tion model for simulation of process systems. This model
can be formulated as

d

dt
g(x(t)) = f(t, x(t)) x(t0) = x0 (33)

x(t) are the states, whileg(x(t)) are the properties con-
served. In the two-phase flow problem considered,g(x(t))
is a vector with oil and water concentrations in each grid-
cell of the reservoir.x(t) is a vector with water saturation
and oil pressure in each grid cell of the reservoir. The right
hand side function,f(t, x(t)), has the usual interpretation.
Consequently, the spatially discretized immiscible two-phase
flow problem (30) has the structure of (33).

In general process system models based on conservation of
mass, energy, and momentum can directly be formulated as
the model (33). Upon discretization in time this model pre-
serves mass, energy, and momentum. This is not in general
the case, if these process systems models are expressed as
(32) using the chain rule, i.e.ddtg(x(t)) =

∂g
∂x (x(t))

dx
dt (t) =

M(t, x(t)) d
dtx(t) with M(t, x(t)) = ∂g

∂x (x(t)).

B. Integration Method

Consider Runge-Kutta methods withs stages in each time
step. Such Runge-Kutta methods for integration of (33) can
be expressed as

Ti = tn + cih i = 1, . . . , s (34a)

g(Xi) = g(xn) + hn

s∑

i=1

aijf(Tj , Xj) i = 1, . . . , s (34b)

with Xi being a numerical approximation tox(Ti). hn is the
step length of the current step.

Different Runge-Kutta methods are obtained depending
on the structure of the matrixA = [aij ]. If the A-matrix
is strictly lower triangular an explicit Runge-Kutta (ERK)
method is obtained, while a fullA-matrix yield a fully im-
plicit Runge-Kutta (FIRK) method. A number of variations in
between these two extreme cases exist. This is illustrated in
Figure 2. ERK methods are computationally fast but cannot
be applied to stiff systems such as the two-phase problem.
FIRK methods require simultaneous solution of (34b) and
is computationally demanding. However, these method have
excellent stability properties and can be applied for solution
of stiff systems of differential equations as well as index-1
differential algebraic equations.

Explicit Singly Diagonally Implicit Runge-Kutta (ES-
DIRK) methods has a lower triangularA-matrix. They have
an explicit first stage and a single coefficient,aii = γ for
i = 2, . . . , s, on the remaining diagonals of theA-matrix.

The explicit first stage implies thatT1 = tn andX1 = xn.
The subsequent state values,Xi, at Ti = tn + hnci for
i = 2, . . . , s may be solved sequentially. Hence, the state
valuesXi are obtained by sequential solution of

R(Xi) = g(Xi)−hnγf(Ti, Xi)−ψi = 0 i = 2, . . . , s (35)

with

ψi = g(xn) + hn

i−1∑

j=1

aijf(Tj , Xj) i = 2, . . . , s (36)

using some modified Newton’s method. The Jacobian of the
residual,R(Xi), is

J(Xi) =
∂R

∂Xi
(Xi) =

∂g

∂x
(Xi)− hnγ

∂f

∂x
(Ti, Xi)

≈ ∂g

∂x
(xm)− hmγ

∂f

∂x
(tm, xm)

= J(xm) = LU

(37)

The Jacobian is only re-evaluated and factorized when the
modified Newton step

LU∆Xi = R(Xi) (38a)

Xi := Xi −∆Xi (38b)

for solution of (35) converges too slowly or even diverge.
The coefficients,b = [bi], in the quadrature equation

g(xn+1) = g(xn) + hn

s∑

i=1

bif(Ti, Xi) (39)

are constructed such this equation is equal to the last stage,
i.e. bi = as,i for i = 1, . . . , s and cs = 1. This implies that
the next time and state value may be computed as

tn+1 = tn + hn = T4 (40a)

xn+1 = X4 (40b)

The ESDIRK methods [23] has an embedded error esti-
mator

ên+1 = g(xn+1)− g(x̂n+1) = hn

s∑

i=1

dif(Ti, Xi) (41)

with the asymptotic relation̂en+1 = φ(tn, xn)h
p+1
n wherep

is the order of the basic ESDIRK method. It should be noted
that ên+1 is an error estimate of the conserved quantities
g(xn+1) and not the statesxn+1 themselves. Measures of
the error such as

r̂n+1 =
1

nx

√√√√
nx∑

i=1

( |(ên+1)i|
absi + |(g(xn+1))i| · reli

)2

(42a)

r̂n+1 = max
i∈{1,...,nx}

|(ên+1)i|
absi + |(g(xn+1))i| · reli

(42b)

may be controlled adjusting the time step according to [25],
[26]

hn+1 =
hn
hn−1

(
ε

r̂n+1

)k2/k ( r̂n
r̂n+1

)k1/k

hn (43)
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Fig. 3. Performance comparison of three ESDIRK methods as function
of the number of significant digits (SD) in the solution. The performance
is measured by number of function evaluations, jacobian evaluations, LU
factorizations, and back substitutions. ESDIRK12 = red, ESDIRK23 =
green, ESDIRK34 = blue.

with k = p+ 1, k1 = k2 = 1, ε = 0.8.
The parameters{[aij ], [ci], [di], p, k1, k2, ε} defining an

ESDIRK method are provided in [20]–[23]. They are com-
puted such that the integration method satisfy the Runge-
Kutta order conditions and such that the integration method
is A- and L-stable. We have implemented ESDIRK12, ES-
DIRK23, and ESDIRK34.

VI. SIMULATION EXAMPLE

We have defined a 1-dimensional two phase immiscible
flow problem with 1000 grid blocks. The performance of
the ESDIRK methods have been compared in terms of
statistics describing the computational efficiency. The results
are plotted in Figure 3. It is evident that the higher ESDIRK
methods are much more efficient that ESDIRK12 which
corresponds to an implicit Euler method with a trapezoidal
error estimator.

VII. C ONCLUSION

In optimal control of the two phase immiscible flow
problem is an example of a large-scale optimal control
problem. The major computational effort for solution of this
problem is spent solving the differential equations. We have
developed new mass preserving adaptive ESDIRK methods
for solution of the differential equations and demonstrated
that high order methods are more efficient than low order
methods such as the implicit Euler method. The methods
are adaptive and equipped with an error estimator.
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Abstract: This paper concerns predictive stepsize control applied to high order methods for
temporal discretization in reservoir simulation. The family of Runge-Kutta methods is presented
and in particular the explicit singly diagonally implicit Runge-Kutta (ESDIRK) methods are
described. A predictive stepsize adjustment rule based on error estimates and convergence
control of the integrated iterative solver is presented. We try to improve the predictive stepsize
control by smoothing the stepsize sequence through combining the control of error with the
control of convergence.
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1. INTRODUCTION

Reservoir simulators are computer programs that solve
the equations for heat and mass flow in porous media.
Numerical integration is one of the basic steps involved in
the simulation process. The number and type of equations
to be solved depend on the geological characteristics of the
reservoir, the characteristics of the oil and the oil recovery
process to be modeled. Choosing the appropriate method
of integration involves deciding on factors such as the
order of the integration scheme, stability properties and
concern on computational efficiency. ESDIRK methods
have been applied successfully for solution of convection-
diffusion-reaction problems, see Kennedy and Carpenter
(2003). This class of methods is computationally efficient,
and both A- and L-stable and stiffly accurate ESDIRK
methods of various order with an embedded method for
error estimation have been derived by Kværnø (2004) and
Jørgensen et al. (2008). In addition, a robust adaptive
stepsize selection is essential to an efficient numerical
integration. An adaptive stepsize selection aims to keep
the error estimate bounded i.e. close to a user-specified
tolerance by adjusting the timestep. Gustafsson (1992)
suggested a strategy for stepsize selection based on the
rigorous error estimates provided by embedded Runge-
Kutta methods.
We have applied the controller by Gustafsson and Söder-
lind (1997) to three different ESDIRK methods used for
solving a two-phase reservoir model. Although the control
strategy has proven efficient we observed that certain steps

? This research project is financially supported by the Danish
Research Council for Technology and Production Sciences. FTP
Grant no. 274-06-0284.

were rejected due to irregularities in the stepsize selection.
We found that a different interaction between the error and
the convergence control in the stepsize selection process
may solve this problem. The idea is to combine the control
of error with control of convergence in the inner iterations
in a simple logic that minimizes the number of rejected
steps and thereby improves the efficiency.

2. DIFFERENTIAL EQUATION MODEL

In this section we briefly outline the two-phase flow prob-
lem and we present the typical formulation of a system of
ordinary differential equations (ODE) based on conserva-
tion laws.

2.1 The two-phase flow problem

We consider immiscible two-phase flow of oil and water in
porous media. Let Po = Po(t, x) be the pressure of oil and
Sw = Sw(t, x) be the saturation of water, as function of
time t ≥ 0 and position x ⊂ R2, and let Cw = Cw(Po, Sw)
and Co = Co(Po, Sw) be the mass concentrations of water
and oil respectively. Then the mass balances for water and
oil in the reservoir is expressed by the following system of
partial differential equations

∂

∂t
Cw= −∇ · Fw +Qw (1a)

∂

∂t
Co = −∇ · Fo +Qo (1b)

Fw = Fw(Po, Sw) and Fo = Fo(Po, Sw) are the fluxes of
water and oil through the porous media. The source/sink
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Fig. 1. Field development after 9 weeks of water injection.

terms of water and oil are denoted Qw = Qw(Po, Sw)
and Qo = Qo(Po, Sw). They are used to describe the flow
from injection wells and the flow to production wells. A
more profound description can be found in Chen (2007)
and Völcker et al. (2009). We use a standard 2-D problem
defined by Brouwer and Jansen (2004), depicted in Figure
1.

2.2 An ODE system in general

Many process simulation problems in general are based
on conservation of mass, energy and momentum. It is
desirable to preserve such properties upon numerical in-
tegration in time. As proposed by Völcker et al. (2009) a
general formulation of such an ODE system may be

d

dt
g(x(t)) = f(t, x(t)) x(t0) = x0 (2)

where x(t) denotes the system states, g(x(t)) are the
properties conserved, while the right-hand side function
f(t, x(t)) has the usual interpretation.

3. INTEGRATION METHODS

In this section different classes of Runge-Kutta methods
are outlined. In particular ESDIRKmethods are described.

3.1 Runge-Kutta Integration

An s-stage Runge-Kutta method for integration of (2) can
be expressed as

Ti = tn + hnci i ∈ S1 (3a)

g(Xi) = g(xn) + hn

s∑

j=1

aijf(Tj , Xj) i ∈ S1 (3b)

g(xn+1) = g(xn) + hn

s∑

j=1

bjf(Tj , Xj) (3c)
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Fig. 2. The A-matrix of Runge-Kutta methods.

where Ti and Xi are the internal stage values being numer-
ical approximations to x(Ti). xn+1 is the step computed
at tn+1 = tn + hn. The set Si denotes the internal stages
i, i+ 1, . . . , s.
Different classes of Runge-Kutta methods can be obtained
depending on the structure of the matrix A = [aij ]. This is
illustrated in Figure 2. Explicit Runge-Kutta (ERK) meth-
ods have a strictly lower triangular A-matrix which allows
(3b) to be solved explicitly without iterations. Therefore,
ERK methods are computationally fast but cannot be ap-
plied to stiff problems because of poor stability properties.
All implicit methods are characterized by an A-matrix
that is not strictly lower triangular and the state values
Xi are computed iteratively by solution of (3b). Fully
implicit Runge-Kutta (FIRK) methods, identified by a full
A-matrix, have excellent stability properties making them
usefull for solving stiff systems of ODE’s. However, the ex-
cellent stability properties comes with high computational
cost in solving (3b) simultaneously at each iteration step.
To achieve some of the stability properties of the FIRK
methods but at lower computational cost, various methods
in between the ERK and the FIRK methods have been
constructed.

3.2 ESDIRK Methods

ESDIRK methods have a lower triangular A-matrix. By
construction they retain the stability properties of FIRK
methods but at significant lower computational cost. Be-
cause c1 = 0 and a11 = 0 the first stage in ESDIRK
methods is explicit implying that the first state value
equals the last step (T1, X1) = (tn, xn). The subsequent
stages are singly diagonally implicit such that the state
values Xi at Ti = tn + hnci for i ∈ S2 may be solved
sequentially by solution of the residual

R(Ti, Xi) = g(Xi)− hnγf(Ti, Xi)− ψi = 0 i ∈ S2 (4)

with the term

ψi = g(xn) + hn

i−1∑

j=1

aijf(Tj , Xj) i ∈ S2 (5)

using Newton-Raphson’s iterative method. The Jacobian
JR(Ti, Xi) =

∂
∂Xi

R(Ti, Xi) of the residual is

JR(Ti, Xi) = Jg(Xi)− hnγJf (Ti, Xi) i ∈ S2 (6)

where Jg(Xi) =
d

dXi
g(Xi) and Jf (Ti, Xi) =

∂
∂Xi

f(Ti, Xi)

are the Jacobiants of the right- and left-hand sides of (2)
respectively. We only consider methods assumed to be
stiffly accurate by construction i.e. cs = 1 and asj = bj
for j ∈ S1. This implies that the quadrature function (3c)
corresponds to the last internal stage in (3b). Consequently



the next step equals the last state value (tn+1, xn+1) =
(Ts, Xs). The Butcher tableau for stiffly accurate ESDIRK
methods is represented in (7).

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
. . .

1 b1 b2 b3 · · · γ
xn+1 b1 b2 b3 · · · γ
x̂n+1 b̂1 b̂2 b̂3 · · · b̂s
en+1 d1 d2 d3 · · · ds

(7)

4. ERROR AND CONVERGENCE CONTROL

In this section we describe how to estimate the integration
error, how the error is related to the user specified toler-
ances and how to control the convergence of the iterative
solver.

4.1 Integration error

The ESDIRK method stated in (7) is equipped with an
embedded Runge-Kutta method

g(x̂n+1) = g(xn) + hn

s∑

j=1

b̂jf(Tj , Xj) (8)

computing the embedded solution x̂n+1. The embedded
method is of different order, which then provides an
estimate of the local truncation error

en+1 = g(xn+1)− g(x̂n+1) = hn

s∑

j=1

djf(Tj , Xj) (9)

corresponding to the numerical solution xn+1. The inte-
gration error (9) is controlled adjusting the timestep by
monitoring the root mean square of the error-tolerance
relation

rn+1 =
1√
m

∣∣∣∣
∣∣∣∣

en+1

atol + |g(xn+1)|rtol

∣∣∣∣
∣∣∣∣
2

(10)

where atol and rtol are componentwise user specified ab-
solute and relative error tolerances and m is the dimension
of the solution vector. Only stepsizes for which rn+1 ≤ 1
are accepted.

4.2 Convergence control

The solution of (4) is done iteratively by a modified
Newton-Raphson’s method i.e. the Jacobian of the resid-
ual is not evaluated/factorized at each timestep. There
is always a trade-off between the rate of convergence of
the equation solver and the frequency of Jacobian up-
dates/factorizations. For reasons of robustness the con-
vergence rate is measured by the residuals Houbak et al.
(1985)

αi =
(rR)

k−1
i

(rR)ki
i ∈ S2 (11)

where the iteration error of the kth iteration is computed
as the root mean square of the residual-tolerance relation

(rR)
k
i =

1√
m

∣∣∣∣
∣∣∣∣

(R(Ti, Xi))
k

atol + |(g(Xi))k|rtol

∣∣∣∣
∣∣∣∣
2

i ∈ S2 (12)

using the same componentwise absolute and relative error
tolerances as in (10). If for some k during the iterations
α ≥ 1 the iteration sequence is terminated and the stepsize
is restricted. In case of convergence the iterations are
successfully stopped when (rR)

k
i ≤ τ . As noticed in Hairer

and Wanner (1996) the choice of τ affects the efficiency of
the algorithm. A large value of τ may lead to one or more
large components in the integration error (10) with too
many rejected steps as a result. We have chosen τ = 0.1
as a compromise between robustness and computational
speed.

5. STEPSIZE SELECTION

This section is divided into a brief description of the
stepsize selection rule adopted, a description of the modi-
fications that we suggest in order to simplify and stabilize
the control algorithm and finally an outline of the complete
controller is presented.

5.1 Predictive control

The integration error is controlled using a predictive con-
troller for stepsize selection as presented by Gustafsson
(1992). The controller must keep the estimate (9) of the
local truncation error bounded and minimize the compu-
tational work in the solution process by trying to keep
rn+1 = 1 by maximizing the stepsize. Based on empiri-
cal evidence Gustafsson (1992) suggested a proportional
integral (PI) stepsize adjustment rule on the form

hr =
hn
hn−1

(
rn
rn+1

)k1/k̂ ( ε

rn+1

)k2/k̂

hn (13)

where k1 and k2 are the gain parameters of the propor-

tional and the integral parts respectively and k̂ is the
order of the embedded Runge-Kutta method, while ε is the
desired tolerance (including a safety factor). Gustafsson
(1992) suggests k1 = k2 = 1 corresponding to deadbeat
control and a safety factor of 0.8.

5.2 Modified controller

The core stepsize adjustment rule (14) must be imple-
mented along with a number of extensions and various
safety nets and the original framework from which we
propose our modifications can be found in Gustafsson
(1992). Additionally a modification suggested by Gustafs-
son and Söderlind (1997) is described and implemented.
The modified PI controller that we suggest is presented in
Algorithm 5.1.



Since we are only considering stiffly accurate methods
the order reduction for stiff systems can be avoided, see
Prothero and Robinson (1974). Consequently the strategy

described by Gustafsson (1992) for estimating k̂ after
successive rejects can be omitted. This does not make
any noticeable change in the controller performance but
simplifies the algorithm a great deal.
Besides the frequency of Jacobian updates/factorizations
the stepsize is the only available control variable affecting
the convergence rate of the equation solver. In order to
assure convergence in the equation solver the stepsize has
to be restrained in some situations. If convergence is too
slow i.e. if α > αref Gustafsson (1992) suggest the stepsize
to be chosen as

hα =
αref

α
hn (14)

to obtain α = αref in the next step. The stepsize suggested
by (15) must be coordinated with the requirements from
the error control. If α > αref the stepsize in Gustafsson
(1992) is implemented as

hn+1 = min(hr, hα) (15)

restraining the stepsize if hα < hr. The strategy adopted
by (15) and (16) may be too aggressive in the sense that
the corresponding error estimate (10) becomes very low
compared to ε. Hence the subsequent stepsize estimated
by the asymptotic controller

hr =

(
ε

rn+1

)1/k̂

hn (16)

will be too large making the error estimate and thereby the
stepsize fluctuate wildly. We try to avoid this by modifying
(15) to

hα =
(αref

α

)1/k̂
hn (17)

which means that the deviation of the convergence rate
from αref is not necessarily corrected in one step. If a step
has been rejected and restricted by slow convergence, then
in combination (17) is filtered by the relation between the
previous accepted step and the current accepted step

hr =
hn
hn−1

(
ε

rn+1

)1/k̂

hn (18)

which further reduces the stepsize following a convergence
restricted step. If the current step is accepted we neglect
the condition α > αref on (16). In addition (14) is al-
ways used estimating the next stepsize, whenever a step
is accepted. Consequently we allow the convergence of the
equation solver to gain more influence on the stepsize se-
lection. While Gustafsson (1992) suggests 0.2 . αref . 0.5
as set-points for the convergence rate we chose αref = 0.6.
This value favours robustness and a minimum amount of
work needed to complete the integration fairly equal.
Slow convergence in the equation solver and in particular
rejected steps because of convergence failure is very costly.

This can to some extend be controlled by the stepsize but
also by the frequency of Jacobian updates/factorizations.
Considering (6) we see that stepsize changes invokes a
refactorization of the Jacobian but not necessarily a Ja-
cobian reevaluation - if on the other hand the Jacobian is
updated a factorization is always called for. Good conver-
gence can be obtained by both updating and factorizing
the Jacobian at every stepsize change. For large systems
though this may be the dominating part of the computa-
tions and large savings can be made by utilizing a strat-
egy for reusing the same Jacobian for several timesteps.
Gustafsson (1992) monitors the relative stepsize change
since the last factorization was done and suggests

|hn+1 − hLU |/hLU > αLU (19)

as a refactorization strategy. The strategy is preventive in
the sense that it tries to avoid convergence failures by fac-
torizing whenever planning to do a stepsize change that is
likely to jeopardize convergence. Should poor convergence
be experienced despite a factorization based on current
data, say α > αJac, then a reevaluation of the Jacobian
is called for. Gustafsson and Söderlind (1997) suggests the
combination

α− |hn+1 − hLU |/hLU > αJac (20)

as decision for when to compute a new Jacobian. Besides
monitoring the convergence rate of the equation solver this
strategy also trades Jacobian updates with factorizations
and function evaluations. The value of αref sets an upper
limit on αJac and αLU , see Gustafsson (1992). In the two-
phase flow problem the administration of the Jacobian
is expensive compared to one iteration. This argues for
large values of αJac and αLU . To be more specific it is
more costly to update the Jacobian than factorizing it,
consequently we have chosen αJac = 0.5 and αLU = 0.3.
Because of the large value of αJac we allow a fairly large
maximum number of iterations in the equation solver,
setting kmax = 20.

5.3 The complete controller

The complete modified PI controller for an implicit Runge-
Kutta method is outlined in Algorithm 5.1. The controller
includes three main parts:

• A stepsize selection rule based on both the error-
tolerance relation and the convergence of the equation
solver.

• An update/factorization strategy for the Jacobian
that supervises the convergence and the iteration
error of the equation solver.

• A strategy for handling convergence failures.

6. CHOICE OF METHODS

In this section the two-phase flow problem is used as a
benchmark. We compare and discuss the performance of
the controller by Gustafsson and Söderlind (1997) and
the controller suggested in Algorithm 5.1 when applied to
three different ESDIRK methods.
In this section ESDIRKkk̂ refers to an ESDIRK method of



Algorithm 5.1: The complete modified PI controller for
an implicit Runge-Kutta method.

if iterations converged then

hr ←
(
ε
r

)1/k̂
h

if step accepted then
if step restricted then

hr ← h
hacc

hr
else

hr ← h
hacc

(
racc

r

)1/k̂
hr

racc ← r
hacc ← h

h← min

(
hr,
(αref

α

)1/k̂
h

)

if α− |h− hLU |/hLU > αJac then
Form new Jacobian and factorize iteration matrix.
hLU ← h

else if |h− hLU |/hLU > αLU then
Factorize iteration matrix.
hLU ← h

else
if new Jacobian then

if α > αref then

h←
(αref

α

)1/k̂
h

else
h← h/2

Step restricted.
else

Form new Jacobian.
Factorize iteration matrix.
hLU ← h

order k with an embedded method for error estimation of
order k̂. PI97 denotes the controller by Gustafsson and
Söderlind (1997) and PI09 refers to the controller pre-
sented in Algorithm 5.1. For the work-precision diagrams
we used a fixed absolute tolerance of 10−8 and the relative
tolerances from 10−2 to 10−8, denoted as significant digits
(SD).

6.1 Choice of ESDIRK method

As can be seen from the work-precision diagram in Fig-
ure 3(a), the computational cost of ESDIRK12 increases
dramatically with the requirement in SD’s. This is due
to the small stepsizes, which yields an increased workload
of the equation solver trying to retain (rR)

k
i ≤ τ (12).

This is seen in Figure 4(a), where the number of function
evaluations reflects the number of iterations. ESDIRK23
and ESDIRK34 are better at maintaining an appropriate
distribution of the workload as the requirements of the
number in SD’s increases. The distribution of workload
of the two methods are almost identical and only the
distribution of ESDIRK23 is depicted in Figure 3(b).
Except for SD = 2 we observe from the work-precision
diagram of the three methods, that ESDIRK23 is the most
computationally efficient method for temporal discretiza-
tion of problems like the two-phase flow.
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(a) Computational cost of the
three ESDIRK methods.
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Fig. 3. Total computational cost of the three ESDIRK
methods applied with the PI09 controller and the
distribution of the computational cost in ESDIRK23.
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(b) Computational cost of Ja-
cobian updates.
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(c) Computational cost of LU
factorizations.
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Fig. 4. Performance comparison of the three ESDIRK
methods applied with the PI09 controller.

6.2 Choice of controller

The stepsize sequences for the PI97 and the PI09 con-
trollers are depicted in Figure 5 and 6 respectively. As
expected, we observe a reduction in rejected steps (nFail
and nSlow) and fewer iterations done by the equation
solver (nFun). In the PI97 controller, convergence is only
allowed to restrict the stepsize, if α > αref . The PI09
controller allows convergence to restrict the stepsize by
combining (16) and (18), hence the relation between α
and αref is taken into account in each stepsize selection.
Due to this improved interaction between the error and
the convergence control in the stepsize selection process,
large fluctuations of the stepsize, when advancing in time,
is avoided. Consequently a smoother stepsize sequence
is obtained and the need for heuristics to restrain large
stepsize changes no longer applies.
As seen in Figure 7, it is difficult to make a general con-
clusion of the difference in computational cost for the two
controllers. Typically we require 3 to 4 SD’s in reservoir
simulation, as a consequence we suggest applying the PI09
controller, when solving problems like the two-phase flow.
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Fig. 5. Performance of ESDIRK23 applied with the PI97
controller computing the solution in Figure 1(b).
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Fig. 6. Performance of ESDIRK23 applied with the PI09
controller computing the solution in Figure 1(b).

7. CONCLUSION

In this paper we combined the control of error with the
convergence control of the equation solver in a simple
logic that decreases the number of rejected steps and
produces a smoother stepsize sequence. In some cases,
better convergence of the equation solver is obtained i.e.
fewer iterations is needed in order to meet the required
tolerance. For large scale systems, which is typical in
reservoir simulation, it may be necessary to solve the
linearized equations iteratively. If this is the situation, the
cost per iteration, both for the equation solver and the
iterative solver of the linearized system, can be significant.
Consequently, it is crucial for the solution of large scale
systems to minimize the number of iterations per timestep,
when performing implicit numerical integration.
In addition, the integration of the convergence control
has the effect that extreme variations in stepsize are
eliminated making the logics in the control algorithm free
of heuristics.
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Fig. 7. Comparison of the PI97 and the PI09 controller
applied to the three ESDIRK methods.
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Abstract

The implicit Euler method, normally refered to as the fully implicit (FIM) method, and the
implicit pressure explicit saturation (IMPES) method are the traditional choices for temporal
discretization in reservoir simulation. The FIM method offers unconditionally stability in the
sense of discrete approximations, while the IMPES scheme benefits from the explicit treatment
of the saturation. However, in tems of controlling the integration error, the low order of the
FIM method leads to small integration steps, while the explicit treatment of the saturation may
restrict the stepsizes for the IMPES scheme. Current reservoir simulators apply timestepping
algorithms that are based on safeguarded heuristics, and can neither guarantee convergence
in the underlying equation solver, nor provide estimates of the relations between convergence,
integration error and stepsizes.
We establish predictive stepsize control applied to high order methods for temporal discretiza-
tion in reservoir simulation. The family of Runge-Kutta methods is presented and in particular
the explicit singly diagonally implicit Runge-Kutta (ESDIRK) method with an embedded error
estimate is described. A predictive stepsize adjustment rule based on error estimates and con-
vergence control of the integrated iterative solver is presented. We try to improve the predictive
stepsize control through an extended communication between the convergence rate, the error
control and the stepsize.

Keywords: Reservoir simulation, implicit Runge-Kutta methods, ESDIRK, Newton-Raphson,
convergence control, error control, stepsize selection.

Introduction

Reservoir simulators are computer programs that solve the equations for heat and mass flow in
porous media. Numerical integration is one of the basic steps involved in the simulation process.
The number and type of equations to be solved depend on the geological characteristics of the
reservoir, the characteristics of the reservoir fluids, and the oil recovery process to be modeled.
Choosing the appropriate method of integration involves deciding on factors such as the order of
the integration scheme, stability properties, and concern on computational efficiency. ESDIRK
methods have been applied successfully for solution of convection-diffusion-reaction problems
(Kennedy and Carpenter (2003)). This class of methods is computationally efficient, and both
A- and L-stable stiffly accurate ESDIRK methods of various order, with an embedded method
for error estimation, have been derived by Kværnø (2004) and Jørgensen et al. (2008). In ad-
dition, a robust adaptive stepsize selection is essential to an efficient numerical integration. An
adaptive stepsize selection aims to keep the error estimate bounded i.e. close to a user-specified
tolerance by adjusting the timestep. The nonlinear residual equations arising in fully implicit
methods has to be solved iteratively. Thus in implicit integration the convergence in the equa-
tion solver has to be monitored. Gustafsson (1992) suggested a strategy for stepsize selection
based on the error estimates provided by embedded Runge-Kutta methods.
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We have applied the controller by Gustafsson and Söderlind (1997) to three different ESDIRK
methods used for solving a two-phase reservoir model. Although the control strategy has proven
efficient we observed that certain steps were rejected due to irregularities in the stepsize selec-
tion. We found that an extended use of previous accepted stepsizes in terms of filtering, a less
aggressive stepsize suggestion from the convergence controller, and different interaction between
the error and the convergence control in the stepsize selection process may solve this problem.
The idea is to combine the control of error with the control of convergence in the equation solver
such that we obtain a smoother stepsize sequence. This minimizes the number of rejected steps
and produces a smoother stepsize sequence and thereby improves the efficiency of the implicit
integration.

Differential Equation Model

In this section we briefly outline the two-phase flow problem and we present the general formu-
lation of a system of differential equations based on conservation laws.

The Two-Phase Flow Problem

We consider immiscible two-phase flow of oil and water in porous media. Let Po = Po(t, x) be
the pressure of oil and Sw = Sw(t, x) be the saturation of water, as function of time t ≥ 0 and
position x ∈ R3, and let Cw = Cw(Po, Sw) and Co = Co(Po, Sw) be the mass concentrations of
water and oil respectively. Then the mass balances for water and oil in the reservoir is expressed
by the following system of partial differential equations

∂

∂t
Cw= −∇ · Fw +Qw (1a)

∂

∂t
Co = −∇ · Fo +Qo (1b)

Fw = Fw(Po, Sw) and Fo = Fo(Po, Sw) are the fluxes of water and oil through the porous media.
The source/sink terms of water and oil are denoted Qw = Qw(Po, Sw) and Qo = Qo(Po, Sw).
They are used to describe the flow from injection wells and the flow to production wells. A
more profound description can be found in Chen (2007) and Völcker et al. (2009). We use a
standard 2-D problem defined by Brouwer and Jansen (2004), depicted in Figure 1.

General Formulation

Many process simulation problems in general are based on conservation of mass, energy and
momentum. It is desirable to preserve such properties upon numerical integration in time. As
proposed by Völcker et al. (2009) a mass preserving general formulation of such an ODE system
may be

d

dt
g(x(t)) = f(t, x(t)) x(t0) = x0 (2)

in which x(t) ∈ Rm denotes the system states, g(x(t)) ∈ Rm are the properties conserved,
while the right-hand side function f(t, x(t)) ∈ Rm has the usual interpretation. The spatially
discretized two-phase flow problem considered has the structure of (2).
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Figure 1 Water flooding example, 1 pore volume injected (PVI) over 360 days.

Integration Methods

In this section different classes of Runge-Kutta methods are outlined. In particular ESDIRK
methods are described.

Runge-Kutta Integration

An s-stage Runge-Kutta method for integration of (2) can be expressed as

Ti = tn + hnci i ∈ S1 (3a)

g(Xi) = g(xn) + hn

s∑

j=1

aijf(Tj , Xj) i ∈ S1 (3b)

g(xn+1) = g(xn) + hn

s∑

j=1

bjf(Tj , Xj) (3c)

where Xi are the internal stage values being numerical approximations to x(Ti). xn+1 is the
step computed at tn+1 = tn + hn. The set Si denotes the internal stages i, i + 1, . . . , s. The
s-stage Runge-Kutta method (3) may be denoted in terms of its Butchter tableau

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
xn+1 b1 b2 · · · bs

(4)
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Figure 2 The A-matrix of Runge-Kutta methods.

from which different classes of Runge-Kutta methods can be obtained, depending on the struc-
ture of the matrix A = [aij ]. This is illustrated in Figure 2. Explicit Runge-Kutta (ERK)
methods have a strictly lower triangular A-matrix which allows all internal stages (3b) to be
solved explicitly. Therefore, ERK methods are computationally fast and straightforward to
implement but may suffer from stability limitations making them unsuitable for stiff problems
(Hairer and Wanner (1996)). The four remaining classes of Runge-Kutta methods are all im-
plicit, that is, the value of the internal stages are no longer computed explicitly from the values
of the previous stages. Implicit methods are characterized by an A-matrix that is not strictly
lower triangular and the stage values Xi are computed iteratively by solution of (3b). Fully
implicit Runge-Kutta (FIRK) methods, identified by a full A-matrix, have excellent stability
properties making them usefull for solving stiff systems of ODE’s. However, the excellent sta-
bility properties comes with high computational cost in the sense that each integration step
involves the solution of ms coupled nonlinear equations. To achieve some of the stability prop-
erties of the FIRK methods but at lower computational cost, various methods in between the
ERK and the FIRK methods have been constructed. Diagonally implicit Runge-Kutta (DIRK)
methods, singly diagonally implicit Runge-Kutta (SDIRK) methods and ESDIRK methods all
have a lower triangular A-matrix. Instead of solvingms nonlinear equations simultaneously, like
in the FIRK method, the internal stages in the DIRK, SDIRK and ESDIRK methods are de-
coupled in such a way that the solution of s systems of m nonlinear equations may be conducted
sequentially.

ESDIRK Methods

ESDIRK methods have a lower triangular A-matrix. By construction they retain the stability
properties of FIRK methods but at significant lower computational cost. Because c1 = 0 and
a11 = 0 the first stage in ESDIRK methods is explicit implying that the first stage value equals
the last step, i.e. (T1, X1) = (tn, xn). The subsequent stages are diagonally implicit such that
the stage values Xi at Ti = tn + hnci for i ∈ S2 may be solved sequentially by solution of the
residual

R(Ti, Xi) = g(Xi)− hnγf(Ti, Xi)− ψi = 0 i ∈ S2 (5)

with the term

ψi = g(xn) + hn

i−1∑

j=1

aijf(Tj , Xj) i ∈ S2 (6)

using Newton-Raphson’s iterative method. The Jacobian JR(Ti, Xi) = ∂
∂Xi

R(Ti, Xi) of the
residual (5) is
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JR(Ti, Xi) = Jg(Xi)− hnγJf (Ti, Xi) i ∈ S2 (7)

in which Jf (Ti, Xi) =
∂

∂Xi
f(Ti, Xi) and Jg(Xi) =

d
dXi

g(Xi) are the Jacobiants of the right- and
left-hand sides of (2) respectively. Since ESDIRK methods are singly diagonally, the Jacobian
may be reused in the sense of a modified Newton-Raphson. The identical diagonal elements in
the A-matrix implies that (7) only needs to be updated/factorized once per integration step. We
only consider methods assumed to be stiffly accurate by construction, i.e. cs = 1 and asj = bj
for j ∈ S1. This implies that the quadrature function (3c) corresponds to the last internal stage
in (3b). Consequently the next step equals the last stage value, i.e. (tn+1, xn+1) = (Ts, Xs).
The Butcher tableau for stiffly accurate ESDIRK methods is represented in (8).

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
...

...
. . .

cs−1 as−1,1 as−1,2 as−1,3 · · · γ
1 b1 b2 b3 · · · bs−1 γ

xn+1 b1 b2 b3 · · · bs−1 γ

(8)

Error and Convergence Measures

In this section we describe how to estimate the integration error, how the error is related to the
user specified tolerance and how to estimate the convergence rate of the iterative solver.

Integration Error

The ESDIRK method stated in (8) may be equipped with an embedded Runge-Kutta method

g(x̂n+1) = g(xn) + hn

s∑

j=1

b̂jf(Tj , Xj) (9)

computing the embedded solution x̂n+1. The Butcher tableau for embedded ESDIRK methods
takes the form

0 0
c2 a21 γ
c3 a31 a32 γ
...

...
...

...
. . .

cs−1 as−1,1 as−1,2 as−1,3 · · · γ
1 b1 b2 b3 · · · bs−1 γ

xn+1 b1 b2 b3 · · · bs−1 γ

x̂n+1 b̂1 b̂2 b̂3 · · · b̂s−1 b̂s
en+1 d1 d2 d3 · · · ds−1 ds

(10)

The embedded method is of different order, which then provides an estimate of the local trun-
cation error
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en+1 = g(xn+1)− g(x̂n+1) = hn

s∑

j=1

djf(Tj , Xj) (11)

corresponding to the numerical solution xn+1. It should be noted that en+1 is an error estimate
of the conserved quantities g(xn+1) and not the states xn+1 themselves. Measures of the error
such as

rn+1 =
1√
m

∣∣∣∣
∣∣∣∣

|en+1|
abstol + |g(xn+1)| · reltol

∣∣∣∣
∣∣∣∣
2

(12a)

(12b)

rn+1 =

∣∣∣∣
∣∣∣∣

|en+1|
abstol + |g(xn+1)| · reltol

∣∣∣∣
∣∣∣∣
∞

(12c)

may be controlled adjusting the timestep in such a way that only stepsizes for which the error-
tolerance relation rn+1 ≤ 1 are accepted.

Convergence Rate

The solution of the residual function (5) is done iteratively by modified Newton-Raphson it-
erations. The controller needs to supervise the equation solver and make decisions like: when
should the Jacobian be evaluated/factorized, and what restrictions should be put on the stepsize
to assure convergence? In practice the convergence rate is measured. For reasons of robustness
the convergence rate is measured by the residuals (Houbak et al. (1985))

α = max
i,k

(rR)
k−1
i

(rR)ki
i ∈ S2 (13)

in which the iteration error of the kth iteration is computed as the residual-tolerance relation

(rR)
k
i =

1√
m

∣∣∣∣
∣∣∣∣

|(R(Ti, Xi))
k|

abstol + |(g(Xi))k| · reltol

∣∣∣∣
∣∣∣∣
2

i ∈ S2 (14a)

(14b)

(rR)
k
i =

∣∣∣∣
∣∣∣∣

|(R(Ti, Xi))
k|

abstol + |(g(Xi))k| · reltol

∣∣∣∣
∣∣∣∣
∞

i ∈ S2 (14c)

using the same componentwise absolute and relative error tolerances as in (12). For robustness
the iteration sequence should be contractive. If for some k during the iterations α ≥ 1 the itera-
tion sequence is terminated. In the event of termination either a Jacobian update/factorization
is called for or the stepsize is restricted. In case of convergence, the equation solver is success-
fully stopped when (rR)

k
i ≤ τ . As noticed in Hairer and Wanner (1996) the choice of τ affects

the efficiency of the algorithm. A large value of τ may lead to one or more large components in
the integration error (12) with too many rejected steps as a result. We have chosen τ = 0.1 as
a compromise between robustness and computational speed.
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Stepsize Selection

This section is divided into a brief description of the stepsize selection rule adopted and a
description of the convergence control and the Jacobian evaluation/factorization strategy.

Predictive Error Control

The objective of adaptive timestepping is to produce numerical solutions for which the inte-
gration error (11) is kept within the error tolerance. This implies choosing stepsizes small
enough such that rn+1 ≤ ε, and at the same time large enough in the sense of minimizing the
computational cost in the solution process. The asymptotic stepsize selection rule is as follows

hr =

(
ε

rn+1

)1/k̂

hn (15)

in which k̂ is the order of the embedded Runge-Kutta method. The asymptotic stepsize selection
rule uses nothing else than current information about the stepsize and the error in order to
achieve rn+1 = ε. Occasionally, the error estimate may be unusually small or large, thus
advocating (15) to produce very small or large stepsize changes. This can to some extend be
avoided by including some limitations on such changes. However, information about previous
timesteps should also be exploited in the controller to further improve robustness and the quality
of the predicted timestep. Gustafsson (1992) suggests a proportional integral (PI) stepsize
adjustment rule on the form

hr =
hn
hn−1

(
rn
rn+1

)k1/k̂ ( ε

rn+1

)k2/k̂

hn (16)

where k1 and k2 are the gain parameters of the proportional and the integral parts respectively, k̂
is the order of the embedded Runge-Kutta method, while ε is the set point of the error-tolerance
relation. In theory ε = 1 is an acceptable threshold. However, in the practical implementation
we have chosen 0.8 as a safeguard. Gustafsson (1992) suggests k1 = k2 = 1 corresponding to
deadbeat control.

Convergence Control

In some situations the stepsize has to be restrained in order to assure convergence in the equation
solver. When using modified Newton-Raphson the convergence is normally secured by frequent
Jacobian updates/factorizations. Thus the Jacobian is an approximation computed at one
solution point, and the distance between consecutive solution points may be large enough to
jeopardize convergence. Besides frequent Jacobian updates/factorizations the stepsize is the
only available control variable affecting the convergence rate in the equation solver. Decreasing
the distance between the different solution points by stepsize reduction may secure convergence.
If convergence is too slow, i.e. if α > αref , Gustafsson (1992) suggests the stepsize to be chosen
as

hα =
αref

α
hn (17)

to achieve α = αref in the next step. The stepsize suggested by (17) must be coordinated with
the requirements from the error control. Convergence may be a more restrictive constraint than
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accuray, and it even may occur that convergence is poor in spite of a Jacobian based on current
data. If this is the case and if α > αref at the same time, then the stepsize is implemented as

hn+1 = min(hr, hα) (18)

restricting the stepsize by convergence if hα < hr. The effeciency of an implicit integration
method depends highly on the convergence in the equation solver, i.e. the value of the set point
αref . If the two conditions described above are satisfied simultaneously, the controller invokes
(18) in an attempt to obtain α = αref . Gustafsson (1992) recommends, based on an idea due
to Söderlind (1986), any value 0.2 < αref < 0.5 as reference for the convergence rate, with
robustness favoring the lower values. More precisely he suggests the set point αref = 0.4, which
is the value that we use in our implementation.
Slow convergence in the equation solver can to some extend be avoided by stepsize reductions,
but also by frequent of Jacobian evaluations/factorizations. Considering (7) we see that stepsize
changes may invoke a refactorization of the Jacobian but not necessarily a Jacobian reevalua-
tion. On the other hand, if the Jacobian is updated a factorization is always called for. Good
convergence can be obtained by both updating and factorizing the Jacobian at every stepsize
change. For large systems though this may be the dominating part of the computations and
large savings can be made by utilizing a strategy for reusing the same Jacobian for several
timesteps. The relative stepsize change is monitored since the last factorization was done by
the relation

|hn+1 − hLU |/hLU > αLU (19)

as a refactorization strategy. The strategy anticipates possible convergence failures and refac-
torizes the Jacobian whenever a suitable, planned stepsize change is likely to jeopardize conver-
gence. Should poor convergence be experienced despite a factorization based on current data,
say α > αJac, then a reevaluation of the Jacobian is called for. Gustafsson and Söderlind (1997)
suggests the combination

α− |hn+1 − hLU |/hLU > αJac (20)

as decision for when to compute a new Jacobian. Besides monitoring the convergence rate of
the equation solver this strategy also trades Jacobian updates with factorizations and function
evaluations. The maximum reasonable value of αref sets an upper limit on αJac and αLU .
In other words, it is of no use having a Jacobian update/factorization strategy that accepts a
convergence rate worse than what is known to be effecient.
In the two-phase flow problem the administration of the Jacobian is expensive compared to one
iteration. Though we have chosen αJac = 0.2 and αLU = 0.2. This choice seems like a good
balance between the computational load of the equation solver compared to the total compu-
tational cost of Jacobian evaluations/factorizations, thus minimizing the total computational
time spent in the solution process. The maximum number of iterations allowed in the equation
solver is set to 10, i.e. kmax = 10.

Modifying the Control Algorithm

In this section we present our modifications of the control algorithm and finally an outline of
the complete controller is presented.
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Figure 3 Stepsizes restricted by convergence, i.e. hα < hr.

Controller Modifications

The core stepsize adjustment rule (16) must be implemented along with a number of extensions
and various safety nets and the original framework from which we propose our modifications
can be found in Gustafsson (1992). The modified PI controller that we suggest is presented in
Algorithm 1.
Since we are only considering stiffly accurate ESDIRK methods, the order reduction for stiff
systems can be avoided (Prothero and Robinson (1974)). Consequently, the strategy described
by Gustafsson (1992) for estimating k̂ after successive rejects can be omitted. This does not
make any noticeable change in the controller performance but simplifies the algorithm a great
deal.
The strategy adopted by (17) and (18) may be too aggressive. Gustafsson (1992) denotes a
stepsize as restricted in two situations: if α > αref in spite of a Jacobian based on current data,
and if the iterations do not converge either because α ≥ 1 or because the maximum number
of iterations is reached. Whenever a stepsize is restricted by convergence, i.e. hα < hr, the
asymptotic stepsize selection rule (15) is utilized. Convergence restricting a stepsize leads to
an error estimate (12) much below ε, thus advocating (15) to produce a very large stepsize.
Compared to the sequence of stepsizes that corresponds to past solution points, this stepsize
may be too large, making the error estimates fluctuate wildly. We adopt some changes in
both the error and the convergence control in order to anticipate this behaviour. The stepsize
selection based on convergence (17) is modified to

hα =
(αref

α

)1/k̂
hn (21)

such that the deviation of the convergence rate from αref is not necessarily corrected in one
step. In addition the asymptotic stepsize selection rule (15) is filtered by the relation between
the previous accepted stepsize and the current accepted stepsize

hr =
hn
hn−1

(
ε

rn+1

)1/k̂

hn (22)

such that it supports the trend of either a decreasing or an increasing restricted stepsize. This
is illustrated in Figure 3: on the left showing an accepted decreasing restricted stepsize, and on
the right showing an accepted increasing restricted stepsize.
In order to secure convergence Gustafsson (1992) suggests two conditions on deciding if a stepsize
has to be restricted. If the Jacobian is based on current data and at the same time α > αref ,
then the stepsize should be restricted by (21) and (18). In most cases the Jacobian is not
updated before the condition α > αref has occured. Furthermore, this update is only carried
into effect on the consecutive stepsize, and a stepsize executed with a Jacobian based on current
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Figure 4 A typical scenario showing the correlation between the error-tolerance relation (12)
(upper plot) and the estimate of the convergence rate (13) (lower plot).

data mostly results in good convergence, i.e. α ≤ αref . Consequently, convergence restriction
is not invoked very often and (21) may only have little effect on the stepsize selection process.
The situation is depicted in region ”a” in Figure 4. The red solution points satisfy the condition
α > αref , but the Jacobian is an approximation computed at a previous solution point. The
Jacobian at the green solution point is based on current data, which on the other hand leads
to good convergence, i.e. α ≤ αref . So none of the solution points in region ”a” satisfies
both conditions simultaneously. In region ”b” in Figure 4 we try to illustrate a situation where
both conditions are satisfied. The topmost red solution point in the lower plot represents a
rejected step (as indicated by the corresponding upper red solution point in the upper plot
where rn+1 > 1) that satisfies the condition α > αref only. The controller calls for a Jacobian
update/factorization and proceeds with the same stepsize. The step may be rejected once again,
which leads us to the green solution point that actually satisfies both conditions. So the green
solution point in region ”b” indicates a situation where the stepsize is convergence restricted
by (21) and (18). The two conditions suggested by Gustafsson (1992) only allows convergence
to restrain the stepsize, and only when the Jacobian is based on current data. This implies
that (21) is prevented to cause undesirable stepsize decrements, even if convergence is above the
reference value, i.e. α > αref . This is a very important feature, in particular if the error is below
the desired set point at the same time, i.e. rn+1 < ε. It may be advantageous though if (21)
had the opportunity to increase the stepsize as well. If the error estimate is low in comparison
to the tolerance, then

ε

rn+1
> 1 (23)

which essentially provides the error control the potential to increase the stepsize. In situations
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like this it could be beneficial to allow convergence to increase the stepsize as well. This may
be possible if

αref

α
> 1 (24)

at the same time. If we require both (23) and (24) to be satisfied before we let convergence
increase the stepsize, then (21) will also become an active part in the stepsize selection in the
blue sections in Figure 4. A stepsize increment must not jeopardize the integration error. So
the stepsize suggested by (21) has to be coordinated with the one from the error control. Since
(18) secures the integration error such that the error control tries to maintain the condition
rn+1 < ε, we may omit condition (23) and only require α < αref to be satisfied. By doing so
we let (21) increase the stepsize in the green sections in Figure 4.

Algorithm 1: The complete modified PI controller for an implicit Runge-Kutta method.

if iterations converged then

hr ←
(
ε
r

)1/k̂
h

if step accepted then

hr ← h
hacc

hr
if step not restricted then

hr ←
(
racc
r

)1/k̂
hr

racc ← r
hacc ← h

if new Jacobian and α > αref or α < αref then

h← min

(
hr,
(αref

α

)1/k̂
h

)

else
h← hr

if α− |h− hLU |/hLU > αJac then
Form new Jacobian and factorize iteration matrix.
hLU ← h

else if |h− hLU |/hLU > αLU then
Factorize iteration matrix.
hLU ← h

else
if new Jacobian then

if α > αref then

h←
(αref

α

)1/k̂
h

else
h← h/2

else
Form new Jacobian.

Factorize iteration matrix.
hLU ← h

The modifications that we suggest to the original framework are as follows: the strategy for
estimating k̂ in case of successive rejects is omitted, the stepsize suggested by convergence (17)
is made less aggressive by (21), the asymptotic stepsize selection rule (15) is filtered by (22),
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Figure 5 P10 controller: total computational cost and distribution of workload (the uppermost
patch in the diagrams is overhead time).

and convergence is allowed to increase the stepsize if α < αref .

The Complete Controller

The complete modified PI controller for an implicit Runge-Kutta method is outlined in Algo-
rithm 1. The controller includes four main parts: a stepsize selection based on error control,
a strategy that coordinates the stepsize suggested by (21) with the one from the error control,
a Jacobian update/factorization strategy monitoring convergence in the equation solver, and a
strategy for handling convergence failures.

Choice of methods

In this section the two-phase flow problem (1) is used as a benchmark. We compare and
discuss the performance of the controller by Gustafsson and Söderlind (1997) and the controller
suggested in Algorithm 1, when applied to three different ESDIRK methods.
In this section ESDIRKkk̂ refers to an ESDIRK method of order k with an embedded method
for error estimation of order k̂. PI97 denotes the controller by Gustafsson and Söderlind (1997)
and PI10 refers to the controller presented in Algorithm 1. For the work-precision diagrams we
used a fixed absolute tolerance of 10−8 and relative tolerances in the range from 10−8 to 10−2.
We denote the relative tolerances as significant digits (SD), such that SD = 4 corresponds to
the relative tolerance 10−4. The count of function evaluations, which some of the figures refers
to, relates directly to the number of iterations done in the equation solver.

Choice of ESDIRK Method

From the work-precision diagram in Figure 5(a), we see that the total computational cost of
ESDIRK12 increases in a more profound way than the other two methos. This is due to the
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Figure 6 PI97 controller: performance of ESDIRK23 when computing the solution shown in
Figure 1(b).
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Figure 7 PI10 controller: performance of ESDIRK23 when computing the solution shown in
Figure 1(b).

small stepsizes, which are necessary for the method in order to satisfy the required accuracy of
the solution. This implies an increased workload of the equation solver when trying to retain
(rR)

k
i ≤ τ . In addition, small stepsizes leads to an increase in overhead time, which can be

seen in Figure 5(b). As can be seen in Figure 5(c) and Figure 5(d), ESDIRK23 and ESDIRK34
are better at maintaining an appropriate distribution of the workload as the requirements in
accuracy increases. Except for SD = 2, we can observe from the work-precision diagram of
the three methods, that ESDIRK23 is overall the most computationally efficient method for
temporal discretization of the two-phase flow problem (1).
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Figure 8 Comparison of the PI97 and the PI10 controller applied to the three ESDIRK methods.

Choice of Controller

The stepsize sequences for the PI97 and the PI10 controllers are depicted in Figure 6 and in
Figure 7 respectively. It must be mentioned that nStep, nFail and nSlow refers to the number of
timesteps used in order to obtain the solution, the number of steps rejected by the error control,
i.e. rn+1 > 1, and the amount of steps rejected because the maximum number of iterations
is reached. By comparing the performance of the two controllers, we see that fewer Jacobian
evaluations/factorizations is required by the PI10 controller in the sense of maintaining good
convergence in the equation solver. Thus fewer iterations is necessary in order to complete the
integration. Because of the less aggressive stepsize change suggested by (21) in connection with
the filtering of the asymptotic stepsize selection rule, a smoother stepsize sequence is obtained by
the PI10 controller. This implies that the PI10 controller provides a solution with lesser rejected
steps when compared to the performance of the PI97 controller. In Figure 6 several solution
points for which rn+1 � ε ca be observed. For the same solution points the corresponding
stepsizes are small. Due to the ability of (21) to increase the stepsize as well, this behaviour
is only to a lesser extend observed in Figure 7. Hence the PI10 controller may produce larger
stepsizes in situations where the integration error and the convergence rate are below their
respective set points. In Figure 8 we compare the computational cost of the two controllers.
We notice, that in comparison to the PI97 controller, a better performance is obtained in the
range from 2 to 5 SD’s for the PI10 controller. Since high accuracy is not required in reservoir
simulation, we suggest the application of the stepsize controller presented in Algorithm 1 for
implicit integration of dynamical systems like the two-phase flow problem.

Conclusion

We have established a predictive stepsize control applied to high order methods for temporal
discretization of the two-phase flow problem. The family of Runge-Kutta methods has been
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presented and the implicit ESDIRK scheme with an embedded method for error estimation has
been emphasized. A stepsize selection based on error estimates and convergence control of a
modified Newton-Raphson method has been presented. The performance of the timestep control
for the solution of the two-phase flow problem has been improved. The convergence controller
is allowed more influnce on the stepsize selection process, thus improving the relation between
the convergence and the error control. This leads to fewer iterations in the eqaution solver.
Moreover, the controller produces a smoother stepsize sequence because of the extended use of
information of previous stepsizes and the damping of the stepsize suggested by the convergence
control.
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Abstract 

In this paper, we use nonlinear model predictive control (NMPC) to maximize 
secondary oil recovery from an oil reservoir by controlling two-phase subsurface porous 
flow using adjustable down-hole control valves. The resulting optimal control problem 
is nonlinear and large-scale. We solve this problem numerically using a single shooting 
sequential quadratic programming (SQP) based optimization method. Explicit singly 
diagonally implicit Runge-Kutta (ESDIRK) methods are used for integration of the stiff 
system of differential equations describing the two-phase flow, and the adjoint method 
is used for sensitivity computations. We report computational experiences and oil 
recovery improvements for a standard test case. 

Keywords: Reservoir simulation, water flooding, NMPC, single shooting, adjoints, 
SQP, ESDIRK, adaptive time stepping. 

1. Introduction 
As the discoveries of new significant oil fields decrease, efficient exploration of existing 
oil fields using automatic optimization and control of the recovery process is becoming 
increasingly important (Smith and Maitland (1998) and Jansen et al. (2008)). After 
drilling the wells the oil is usually produced under the natural pressure in the reservoir, 
but after some years of production the pressure in the reservoir has dropped below the 
hydrostatic pressure and this primary recovery phase ends. In the secondary recovery 
phase, water or gas is injected into the reservoir to maintain the pressure and to displace 
the oil from the injection wells towards the production wells, see Fig. 1. Even such 
techniques leaves most of the oil in the microscopic pores of the reservoir rock, and 
often the recovery factor stays below 50%. Sometimes a further increase in the recovery 
factor is possible during a tertiary recovery phase where enhanced oil recovery methods 
such as chemical flooding, steam flooding or in situ combustion are deployed. However, 
these techniques are relatively expensive and not economically feasible even at the 
current high level oil prices. Alternatively, the recovery factor in the secondary phase 
could be increased by real-time model based reservoir management, also known as 
closed-loop optimization. In the closed-loop approach the water flooding process is 
optimized by adjustment of smart wells containing down-hole measurement and control 
equipment. The measurements may be used for frequent updating of the reservoir 
model, whereas an optimal control strategy can be computed based on the regularly 
updated model. We focus on the optimal control of injection rates and bottom hole 
pressures (BHP) of injection and production wells respectively. The objective is to 
maximize net present value (NPV) of the water flooding process. 
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2. Control Strategy 
The two-phase flow model is derived on the assumption of mass conservation. It is 
desirable to preserve such properties upon numerical integration in time. As suggested 
by the authors (Völcker et al. (2009)) a general formulation of such a system of 
differential equations may be 

00 )());(),(())(( xtxtutxftxg
dt

d
  (2) 

in which are the properties conserved, are the system states, are the 

control variables, while the right-hand side has the usual interpretation. 

Using (2) we formulate the water flooding problem as a continuous time Bolza problem 
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where the dynamics of (2) is represented as the system constraints. We use zero order 
hold parameterization of the control variables, i.e. we assume that is a piecewise 

constant function of time. Besides the system constraints we also consider the input 
constraints both in terms of upper and lower bounds and in terms of limiting the 

rate of change of the control variables. For water flooding using multiple injectors and 
producers, the injection rates and the BHP’s of injection wells and production wells 
respectively can be used to optimimize the flooding process. Reservoir models are 
large-scale by nature, so the number of system constraints will be in the order of 

magnitude of . We solve (3) using the single shooting method, in which two 
steps, a system simulation and an update of the control variables, are performed 
sequentially in each optimization iteration. Because the control variables are fixed 
during the simulation step, we can regard the system states as functions of the control 
variables, such that they are uniquely identified by (2). In addition the initial 
state is never changed, consequently, the system constraints can be satisfied 

by the solution of (2) exclusively. In this way the variable space of (3) is strongly 
reduced. 

)(tu

))(( tuc

510 

0x

610

0 )(tx

We consider the ESDIRK12 scheme for temporal discretization of (2). We control the 
error of the numerical solution by an adaptive step size selection as described by the 
authors (Völcker et al. (2010a) and Völcker et al. (2010b)). The ESDIRK12 scheme is 
using an advancing method of first order and is equipped with an embedded Runge-
Kutta method of second order, used for error estimation. In order to determine if the 
optimal solution (the optimal set of controls) is found, we need the sensitivities of the 
objective function of (3) with respect to the control variables. In each simulation step 
we compute the system states of the temporal domain, thus we can use this information 
to compute the gradient by the adjoint method (Jørgensen (2007)). So in each 
optimization iteration we do one system simulation, then we compute the sensitivies by 
the adjoint method and finally we update the control variables. Since the state 
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constraints are eliminated from (3) by the variable reduction, we can find the optimal 
solution of (3) using an SQP based optimization method. The control updates are done 
by solving the underlying QP, in which we use modified BFGS approximations of the 
Hessian matrix (Nocedal and Wright (2006)). 

3. Numerical Experiment 
We consider immiscible isothermal two-phase flow of oil and water in a porous media. 
A further description is found in e.g. Aziz and Settari (1971) and Völcker et al. (2009). 
The optimal control strategy is conducted on a synthetic horizontal 2D permeability 
field (Brouwer and Jansen (2004)). The field contains two narrow high permeable 
streaks in which the reservoir fluids flows very easily. The injected water has a 
tendency to flow through the streaks. Consequently, the producer segments positioned 
at the streaks produce large amounts of water while the field is developed. The fluid 
properties and the economical data, that we use in this numerical experiment, are found 
in Kraaijevanger et al. (2007) and Jansen et al. (2009). Except from the crude oil price, 
which is the current market value. The discount rate related to the NPV is set to zero. 
Implying that maximizing NPV essentially amounts to maximizing cummulative oil 
production and minimizing cummulative water production/injection (Sarma et al. 
(2008)). We constrain the injection rates of injectors and the BHP's of producers. The 
injection of water is limited to a total of 2 pore volumes (PV’s) injected over the 
complete period of production, which is one year. 
We have applied two different development strategies. In the first approach in Fig. 4 we 
use fixed injection rates and BHP's (w/o control), such that 2 PV's are injected over a 
period of 360 days. In the second approach in Fig. 5 and 6 we apply optimized well 
rates and pressures (w control) leading to only 0.93 PV injected over the full period of 
360 days. The control variables are updated every 30 days, and in each subinterval 
between the updates we simulate the dynamic system using implicit integration with 
predictive step size adjustment. In Fig. 2 we find an increase in NPV of approximately 
10%, provided that the approach using fixed controls is stopped after 220 days of 
production, while we keep producing with the optimized strategy for all 360 days. In 
Fig. 3 we find, that the recovery factor (produced oil related to the total initial mass of 
oil in the reservoir) is 61% and the water cut (produced oil related to the total mass of 
produced reservoir fluids) is 70% after 220 days of production using the fixed control 
strategy. Whereas the application of optimized well rates and pressures results in a 
recovery factor of 60% and a water cut of 60% for all 360 days of production. So the 
employment of optimal control of the water flooding process leads to a decrease in 
recovery by 1%, yet still the NPV has increased. The increase is a consequence of the 
lower production cost that can be explained by the decrease of 10% of the water cut, 
and the reduction from 1,22 PV's injected using the fixed control strategy to 0,93 PV's 
injected using the optimized strategy. 
Considering the updates of the control variables, as seen in Fig. 7 and 8, we notice the 
influence of the cost of water injection and the cost of water seperation. The injection 
rate is reduced as the reservoir fluids are produced and the injection of water has almost 
stopped when the reservoir is near depletion. This is emphasized by the close to zero 
gradient of the blue curve in Fig. 2 at 360 days. The BHP's of the producers are 
regulated in such a way that production of those wells that do not contribute to an 
increase in NPV is lowered or even completely shut down. Consequently, the injected 
water is redirected and thereby pushing the remaining oil saturated reservoir fluids 
towards active producer segments that still contributes positively. This behaviour is 
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seen in Fig. 5. At this stage the field still represents a significant economical value 
compared to Fig. 4, where no further increase in NPV is possible according to Fig. 2. 
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Fig. 3. Recovery factor and water cut. 

Fig. 1. Schematic view of horizontal wells in 
the water flooding problem. 
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Fig. 2. Net present value. 

Fig. 4. Oil saturation, 220 days (w/o control). 

x [m]

y 
[m

]

 

 

0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x [m]

y 
[m

]

 

 

0 100 200 300 400
0

50

100

150

200

250

300

350

400

450

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Fig. 5. Oil saturation, 220 days (w control). Fig. 6. Oil saturation, 360 days (w control). 
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4. Conclusion 
In this paper, we applied a single shooting SQP based optimization method for 
production optimization of an oil reservoir. We use a fully implicit integration scheme 
equipped with an adpative step size control for efficient integration of the model 
equations, and we compute the sensitivities by the adjoint method. We demonstrate the 
method on a simple water flooding problem using linear input constraints and low 
frequency updates of the control variables. The numerical results show an increase of 
the economical value. A further increase of the economical value of existing oil fields 
demonstrates the potential of model based optimization as a good alternative to finding 
new ones. 
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Oil Reservoir Production Optimization using Optimal Control

Carsten Völcker, John Bagterp Jørgensen and Erling Halfdan Stenby

Abstract—Practical oil reservoir management in-
volves solution of large-scale constrained optimal con-
trol problems. In this paper we present a numerical
method for solution of large-scale constrained optimal
control problems. The method is a single-shooting
method that computes the gradients using the ad-
joint method. We use an Explicit Singly Diagonally
Implicit Runge-Kutta (ESDIRK) method for the in-
tegration and a quasi-Newton Sequential Quadratic
Programming (SQP) algorithm for the constrained
optimization. We use this algorithm in a numerical
case study to optimize the production of oil from
an oil reservoir using water flooding and smart well
technology. Compared to the uncontrolled case, the
optimal operation increases the Net Present Value of
the oil field by 10%.

I. Introduction

Petroleum reservoirs are subsurface formations of
porous rocks with hydrocarbons trapped in the pores.
Initially, the reservoir pressure may be sufficiently large
to push the fluids to the production facilities. However,
as the fluids are produced the pressure declines and
production reduces over time. When the natural pressure
becomes insufficient, the pressure must be maintained
artificially by injection of water. Conventional technolo-
gies for recovery leaves more than 50% of the oil in the
reservoir. Wells with adjustable downhole flow control
devices coupled with modern control technology offer
the potential to increase the oil recovery significantly.
[1] introduces optimal control of smart wells. In these
applications, downhole sensor equipment and remotely
controlled valves are used in combination with large-scale
subsurface flow models and gradient based optimization
methods in a Nonlinear Model Predictive Control frame-
work to increase the production and economic value
of an oil reservoir [2]–[6]. Wether the objective is to
maximize recovery or some financial measure like Net
Present Value, the increased production is achieved by
manipulation of the well rates and bottom-hole pressures
of the injection and production wells. The optimal water
injection rates and production well bottom-hole pressures
are computed by solution of a large-scale constrained
optimal control problem.
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Grant no. 274-06-0284

C. Völcker and J.B. Jørgensen are with the Department of Infor-
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Fig. 1. Schematic view of horizontal wells in the water flooding
problem [1].

In this paper, we focus on maximizing the economical
value of an oil field and describe the gradient based
method to compute the optimal control strategy. An Ex-
plicit Singly Diagonally Implicit Runge-Kutta (ESDIRK)
method with an adaptive step size control is used for
computationally efficient solution of the model [7], [8].
The gradients are computed by the adjoint method [9].
The adjoint equations associated with the integration
scheme are solved by integrating backwards in time.
The necessary information for the adjoint computation
is computed and stored during the forward solution of
the model. The backward adjoint computation assembles
this information to compute the gradients [9], [10]. We
demonstrate the optimal control strategy using a 2-
dimensional water-flooding example as illustrated in Fig.
1.

The paper is organized as follows. Section II briefly
introduces the two phase flow model. Section III states
the general constrained optimal control problem using
a novel representation of the system dynamics. The
numerical methods for the constrained optimal control
problem are described in Section IV. Section V describes
specific details related to the objective function and the
constraints for the water flooding production optimiza-
tion problem. Section VI describes a numerical case study
illustrating the method. Conlcusions are presented in
Section VII.

II. Two-Phase Flow Model

In this section we briefly state the governing equations
of an oil reservoir model. We consider isothermal two-



phase flow of oil and water in a porous media. We
assume complete immiscibility of the reservoir fluids,
zero capillary pressure and we neglect gravity effects.
Let P = P (t, r) be the pressure in the reservoir and
S = S(t, r) be the saturation of water, as function of time
t ≥ 0 and position r ∈ Ω ⊂ R3 with Ω being the domain
of the reservoir. Let Cw = Cw(P, S) and Co = Co(P, S)
be the mass concentrations of water and oil, respectively.
Then the mass balances for water and oil in the reservoir
are expressed by

∂

∂t
Cw= −∇ · Fw +Qw (1a)

∂

∂t
Co = −∇ · Fo +Qo (1b)

Fw = Fw(P, S) and Fo = Fo(P, S) are the fluxes of water
and oil through the porous media. The source/sink terms
of water and oil are denoted Qw = Qw(P, S) and Qo =
Qo(P, S). They describe the flow rate of water from the
injection wells into the reservoir and the flow rates of oil
and water from the reservoir into the production wells.
[11]–[13] provide more detailed descriptions of the model.

III. Continuous-Time Optimal Control

Process models are based on conservation of mass,
energy and momentum. It is desirable to preserve such
properties upon numerical integration in time. Such
problems related to flow in porous media can be rep-
resented by the system of differential equations [13]

d

dt
g(x(t)) = f(x(t), u(t)) (2)

with the initial condition x(t0) = x0. The left-hand side
g(x(t)) are the properties conserved, x(t) are the system
states, u(t) are the manipulated variables, while the
right-hand side f(x(t), u(t)) has the usual interpretation.
Considering (2) we formulate the water flooding problem
as a continuous time Bolza problem

min
[x(t),u(t)]

tf
t0

∫ tf

t0

J(t, x(t), u(t))dt (3a)

s.t.
d

dt
g(x(t)) = f(x(t), u(t)), x(t0) = x0 (3b)

umin ≤ u(t) ≤ umax (3c)

− u∆min ≤
d

dt
u(t) ≤ u∆max (3d)

The algorithm developed for solution of this problem
is suitable for production optimization of oil reservoirs.
We use a zero-order-hold parameterization for u(t). This
implies that the constraints (3d) should be interpreted
as the movement constraints (6d).

IV. Numerical Methods

In this section, we describe a single-shooting algorithm
for solution of (3). An ESDIRK method is used for the
integration, the gradients are computed using the adjoint
method, and the constrained optimization is performed
using a quasi-Newton SQP method.

To convert the infinite-dimensional problem (3) into
a numerically tractable finite-dimensional problem, we
divide the temporal domain [t0, tf ] into K control steps
and each control step into Nk time steps for the inte-
gration of the differential equations. We then define a
set of control step indices Ki = {i, i + 1, . . . ,K − 1}
and a set of time step indices Nk = {0, 1, . . . , Nk − 1}
for all k ∈ K0. The number of control steps is known
in advance due to the zero-order-hold parametrization
of the manipulated variables. A control step k ∈ K0

is defined as an interval between the times tnk=0 and
tnk=Nk

. Note that tn0=0 = t0 and tnK−1=NK−1
= tf .

For a given control interval k, the number of time steps
are not known in advance as we use an adaptive step
length controller in the numerical integrator [7], [8]. This
indexing of the control steps and the time steps are
illustrated in Fig. 2.

Using the ESDIRK12 scheme for temporal dis-
cretization of (2), we can compute the trajectory
{{xnk+1}Nk−1

nk=0 }K−1
k=0 as the solution of the system of

difference equations [13]

g(xnk+1) = g(xnk
)− f(xnk+1, uk)hnk

(4)

in which x(tnk
) = xnk

and u(tnk
) = uk for nk ∈ Nk and

k ∈ K0. For notational convenience we define the residual
function

Rnk+1(xnk+1, xnk
, uk) =

g(xnk+1)− g(xnk
)− f(xnk+1, uk)hnk

= 0
(5)

for nk ∈ Nk and k ∈ K0. The continuous-time optimal
control problem (3) can be formulated as the following
discrete-time optimal control problem

min
{{xnk+1}Nk−1

nk=0 ,uk}K−1
k=0

K−1∑

k=0

Nk−1∑

nk=0

Jnk
(xnk

, uk) (6a)

s.t. Rnk+1(xnk+1, xnk
, uk) = 0 (6b)

umin ≤ uk ≤ umax (6c)

− u∆min ≤ ∆uk ≤ u∆max (6d)

where ∆uk = uk − uk−1 and

Jnk
(xnk

, uk) =

∫ tnk+1

tnk

J(x(t), uk)dt, nk ∈ Nk, k ∈ K0

(7)

A. Single-Shooting Optimization

The discrete-time optimal control problem (6) can be
solved using single-shooting, multiple-shooting, and the
simultaneous method. Reservoir models are large-scale
and the number of states are easily in the order of
magnitude of 105 − 106 for realistic problems.

To keep the dimension of the optimization problem
small and to be able to use adaptive temporal step
size, we use the single-shooting method in this paper. In
the single-shooting method, the manipulated variables,
u, are fixed at each iteration and used to solve the
difference equations (6b) numerically. Knowledge of the
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Fig. 2. The zero order hold parametrization and the relation between the control steps and the time steps. For a given time step tnk in
a given control step k the optimal control problem can be described by the system states xnk and the control settings uk.

initial state, x0, the manipulated variables, {uk}K−1
k=0 , and

the requirement that the systems dynamics are satisfied
determines the states {{xnk+1}Nk−1

nk=0 }K−1
k=0 . In practical

computations, the system constraints (6b) are satisfied
by solving (5), i.e. by doing a system simulation. In this
way, a single-shooting method for (6) can be stated as
the optimization problem

min
{uk}K−1

k=0

ψ({uk}K−1
k=0 , x0) (8a)

s.t. umin ≤ uk ≤ umax (8b)

− u∆min ≤ ∆uk ≤ u∆max (8c)

with the objective function

ψ({uk}K−1
k=0 , x0) ={

K−1∑

k=0

Nk−1∑

nk=0

Jnk
(xnk

, uk) :

Rnk+1(xnk+1, xnk
, uk) = 0, nk ∈ Nk, k ∈ K0

}
(9)

B. Sequential Quadratic Programming

We solve the reduced problem (8) using sequential
quadratic programming (SQP) with line-search and mod-
ified BFGS approximations, B, of the Hessian of the
Lagrangian [14]. In each iteration, we solve the convex
quadratic program

min
∆u

1

2
∆uTB∆u+∇uψ

T∆u (10a)

s.t. ∇uc(u)
T∆u ≥ −c(u) (10b)

in which u = [u0, u1, . . . , uK−1]
T . The optimal solution

of (10), ∆u = {∆uk}K−1
k=0 , combined with a line-search

method based on Powell’s exact penalty function are used
to determine the next iterate

u(i+1) = u(i) + α∆u(i) (11)

α is the line search parameter.

C. Gradient Computation by the Adjoint Method

In computing the search direction, i.e. solving (10),
we must compute the gradient ∇uk

ψ. The system states
in dynamic optimization problems are dependent on the

control variables, in the sense that any past change of
the control variables has an influence on all subsequent
system states. Consequently, the gradient information of
(9) is not directly accessible. The necessary information
for computing ∇uk

ψ is obtained during the simulation
step at each optimization iteration in the single-shooting
approach. The adjoint method uses this information
efficiently to compute the gradients.

Assume that the current iterate, u(i), satisfies the input
constraints (8b-8c). The adjoint method can be derived
using parts of the first order necessary conditions and the
Lagrangian [9]

L({{xnk+1}Nk−1
nk=0 , uk, {λnk+1}Nk−1

nk=0 }K−1
k=0 ) =

K−1∑

k=0

Nk−1∑

nk=0

[Jnk
(xnk

, uk)−

λTnk+1Rnk+1(xnk+1, xnk
, uk) ]

(12)

When the Lagrange multipliers (adjoint variables)
{{λnk+1}Nk−1

nk=0 }K−1
k=0 and the state variables

{{xnk+1}Nk−1
nk=0 }K−1

k=0 satisfy certain parts of the KKT
conditions, we have

ψ({uk}K−1
k=0 ) ={

L({{xnk+1}Nk−1
nk=0 , uk, {λnk+1}Nk−1

nk=0 }K−1
k=0 ) :

Rnk+1(xnk+1, xnk
, uk) = 0, nk ∈ Nk, k ∈ K0

} (13)

such that we can compute the sensitivity ∇uk
ψ as the

sensitivity ∇uk
L. The KKT condition corresponding to

the state derivative of (12) yields

∇xnk
L =∇xnk

Jnk
(xnk

, uk)−
∇xnk

Rnk+1(xnk+1, xnk
, uk)λnk+1−

∇xnk
Rnk

(xnk
, xnk−1, uk)λnk

= 0

(14)

for nk ∈ Nk and k ∈ K0. Substituting the definition of
the residuals (5) into (14) and taking derivatives gives

[
∇xnk

g(xnk
)−∇xnk

f(xnk
, uk)hnk−1

]
λnk

=

∇xnk
Jnk

(xnk
, uk) +∇xnk

g(xnk
)λnk+1

(15)

from which we can compute the adjoint variables λnk

marching backwards. The Lagrange multiplier at the
final time is λNK−1

= 0 since the cost-to-go function is



zero. λNK−1
= 0 is used to initialize the backward march

for computation of the adjoint variables λnk
. Special

attention must be given when computing λNk−1
at the

transition between uk−1 and uk for k ∈ K1. This is
because the first term and the second term on the right-
hand side in (14) both belong to control step uk, while
the third term belongs to control step uk−1.

The partial derivatives of (12) with respect to the
manipulated variables are

∇uk
L =∇uk

L+∇uk
Jnk

(xnk
, uk)−

∇uk
Rnk+1(xnk+1, xk, uk)λnk+1

(16)

for k ∈ K0. Using (5) and ψ = L we arrive at the
following expression for ∇uk

ψ

∇uk
ψ = ∇uk

L =∇uk
L+∇uk

Jnk
(xnk

, uk)+

∇uk
f(xnk+1, uk)hnk

λnk+1

(17)

for k ∈ K0. Consequently, the gradients ∇uψ may be
computed using (17) in combination with solution of the
adjoint equations (15) marching backwards.

V. Water Flooding Production Optimization

The objective of oil reservoir management is to maxi-
mize the economic value of the oil reservoir. Essentially,
we want to produce as much oil as possible while keeping
the operational cost at a minimum. We do this by
maximizing the Net Present Value (NPV). Consequently
the stage cost J(t) = J(t, x(t), u(t)) in (3) becomes

J(t) = −e−dt


 ∑

j∈Npro

(ropQo,j(t)− rwpQw,j(t))

−
∑

j∈Ninj

rwiQw,j(t)




(18)

The factor e−dt accounts for the time value of capital.
The terms contributing to J(t) are the value of the
produced oil, the cost of separating water from the
produced oil, and the cost of water injection. rop is the
oil price, rwp is the water separation cost, and rwi is
the water injection cost. Qo,j(t) is the oil production
and Qw,j(t) is the water production at production wells,
j ∈ Npro, at time t. Qw,j(t) is water injection rate as the
water injectors, j ∈ Ninj . d is the continuous discount
rate (cost of capital per unit time).

For water flooding using multiple injectors and pro-
ducers, the well rates and pressures are adjusted by
the optimal control problem (3) such that the NPV is
maximized [1], [5].

The inequality constraints in (3) are bound constraints
(3c) and rate-of-movement constraints (3d). The bound
constraints corresponds to constraints on the water injec-
tion rates at the injectors and the bottom hole pressures
(BHPs) at the production wells. The lower bounds on the
water injection rates are zero, while the upper bound is
computed such that no more than PVmax pore volumes

TABLE I

Reservoir properties.

Symbol Description Value Unit
φ Porosity 0.2 -
cr Rock compressibility 0 Pa−1

ρo Oil density (at 1 atm) 800 kg/m3

ρw Water density (at 1 atm) 1000 kg/m3

co Oil compressibility 10−5 Pa−1

cw Water compressibility 10−5 Pa−1

µo Oil viscosity (dynamic) 1 cP
µw Water viscosity (dynamic) 1 cP
Sor Residual oil saturation 0.15 -
Swc Connate water saturation 0.20 -
kro,wc End-point rel. perm., oil 0.8 -
krw,or End-point rel. perm., water 0.6 -
no Corey exponent, oil 2.0 -
nw Corey exponent, water 1.5 -
Pinit Initial reservoir pressure 200 atm
Sinit Initial water saturation 0.3 -

of water are injected over the time horizon considered,
[t0, tf ]. These bound constraints implies that we will
implicitly satisfy

0 ≤
K−1∑

k=0

Nk−1∑

nk=0

Ninj∑

j=1

Qwi
nk,j

hnk
≤ PVmax (19)

The reservoir fluids are trapped inside the pores of a
porous medium. The total void space of a reservoir is de-
fined by the fraction (the porosity) of the porous medium
that is not occupied by rock. Ideally we would replace
and thus produce all the reservoir fluids by injecting
one PV of water into the reservoir. The BHP’s in the
production wells are restricted to be lower than the initial
pressure of the reservoir. The lower bound of the BHP’s
is chosen such that the pressure in the well is high enough
to push the produced fluids to the production facilities.
The rate-of-change constraints of both the injection rates
and BHP’s are chosen such that the controller is able to
change e.g. the injection rate from maximum to minimum
within a predefined number of control steps.

VI. Numerical Case Study

In this section, we apply our algorithm for the con-
strained optimal control problem (3) to maximize the Net
Present Value of a horizontal 2D reservoir using water
flooding and smart well technology. The permeability
field of the reservoir is illustrated in Fig. 3 [1]. The
reservoir dimensions are 450 × 450 × 10 m and it is
discretized into 45 × 45 × 1 grid blocks. One horizontal
injector (white squares at x = 5 m) and one horizontal
producer (white circles at x = 445 m) are divided into
45 segments each. With this setup each grid block that
is penetrated by a well represents a well segment. Table
I lists the geological and fluid properties of the reservoir.
The economical data are listed in Table II [2] [5]. The
discount rate is zero, d = 0 [4]. Table III provides the
constraints of the injection rates and the BHP’s as well
as the maximum allowed number of PV’s to be injected
over the period of production.
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Fig. 3. Permeability field (mDa) with two high permeable streaks,
45 injector segments (white squares at x = 5 m) and 45 producer
segments (white circles at x = 445 m) ( [1]).

TABLE II

Economic data.

Symbol Description Value Unit
rop Oil price 283,0 $/m3

rwp Cost of water separation 31,5 $/m3

rwi Cost of water injection 5,0 $/m3

d Discount rate 0 -

We apply two different production strategies. In the
first approach, we use fixed injection rates and fixed
BHP’s. In this case, 2 PV’s are injected over a period
of 728 days (2 years). In the second approach, we apply
optimized well rates and pressures that we update every
28 days (4 weeks). This strategy leads to 1.00 PV injected
over the optimal production period of 374 days. Fig. 4(a)
illustrates the injected pore volumes as function of time.
Fig. 4(b) illustrates that the recovery factor (produced oil
related to the initial mass of oil in the reservoir) and the
water cut (produced oil related to the total mass of pro-
duced reservoir fluids) as function of time. Fig. 5 shows
the NPV as function of the time in which we develop
the reservoir. Without control, the optimal development
period is 484 days. In the case with optimized water
injections and BHPs, the optimal development period
is 374 days. NPV increases by approximately 10% by

TABLE III

Controller settings.

Symbol Description Value Unit
Qwi

min Min. injection rate 0 m3/day
Qwi

max Max. injection rate 50 m3/day
BHPmin Min. BHP in producers 150 atm
BHPmax Max. BHP in producers 200 atm
∆Qwi

min Max. rate of change -3.85 m3/day
∆Qwi

max Max. rate of change 3.85 m3/day
∆BHPmin Max. rate of change -3.85 atm
∆BHPmax Max. rate of change 3.85 atm
PVmax Max. PV’s allowed 4 -
T period of production 728 days
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Fig. 5. NPV over 728 days of production. Red curve: Fixed
injection rates and BHP’s. Blue curve: Optimized injection rates
and BHP’s.

adjusting the water injections and BHPs compared to the
uncontrolled case with a development period of 484 days.
The recovery factor corresponding to optimal operation
in the controlled case is 65%. In the uncontrolled case,
the optimal recovery factor is 63%. The corresponding
optimal water cuts are 62% in the controlled case and
72% in the uncontrolled case. Thus, the 10% increase
in NPV for the controlled case is due to 2% increased
oil recovery, a 10% decrease in produced water, and a
reduction in injected water from 1.33 PV to 1.00 PV.

Fig. 7 illustrates the optimal water injection rates and
the optimal BHPs for the controlled case. The water
injection rates are increased in the injectors located
at regions with low permeabilities. Similarly, the water
injection rates are decreased for the injectors located in
areas with high permeability. The BHPs are adjusted
such that the back pressures are increased at locations
with high water breakthrough. Fig. 8 illustrates the
corresponding oil saturations of the reservoir at time 50,
125, 200, 374 days for the optimally controlled case. Fig.
6 shows the oil saturations for the uncontrolled case after
484 days of production.

VII. Conclusion

We have implemented a numerical method for solution
of large-scale constrained optimal control problems (3).
The implementation uses a novel formulation of the
system dynamics that is relevant to describe flow in
porous media. We use Explicit Singly Diagonally Implicit
Runge-Kutta (ESDIRK) methods for the integration
along with adaptive temporal step sizes. The optimiza-
tion is based on single-shooting, the SQP optimization
algorithm with line-search and BFGS approximations of
the Hessian, and the adjoint method for computation of
the gradients.

We use this algorithm to maximize the Net Present
Value of an oil reservoir case study. In this case study,
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(b) Recovery factor (top) and water cut (bottom).

Fig. 4. Production data over 728 days of production. Red: Fixed injection rates and BHP’s. Blue: Optimized injection rates and BHP’s.
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(b) Individual BHP’s (atm) of 45 producers.

Fig. 7. Injection rates and BHP’s over 728 days of production, updated each 28 days. The injectors and producers are depicted in Figure
3.

we use water flooding to produce the oil. The developed
large-scale constrained optimal control algorithm com-
putes the optimal profiles of water injection rates and
the bottom hole pressures. Compared to the uncontrolled
case, the Net Present Value in the controlled case in-
creases by 10%. This figure demonstrates a significant
economic potential of applying smart well technology
along with constrained optimal control in oil reservoir
management.
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