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ABSTRACT

PSIDE is a code for solving implicit differential equations on parallel computers. It is an implementation of the

four-stage Radau IIA method. The nonlinear systems are solved by a modified Newton process, in which every

Newton iterate itself is computed by an iteration process. This process is constructed such that the four stage

values can be computed simultaneously. We describe here how PSIDE is set up as a modular system and what

control strategies have been chosen.
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1. Introduction

A powerful method for the numerical solution of the system of implicit differential equations

g(t, y, ẏ) = 0, g, y ∈ IRd,
t0 ≤ t ≤ tend, y(t0) = y0, ẏ(t0) = ẏ0,

(1.1)

is an implicit Runge–Kutta method (IRK). In the class of IRKs, the Radau IIA methods combine
high order, 2s − 1, where s is the number of stages, with the nice property of L-stability. However,
implementing this method requires high computational costs. PSIDE (abbreviating Parallel Software
for Implicit Differential Equations) is an implementation of the four-stage Radau IIA method, where
the stages can be computed in parallel. Section 2 describes how this is done.
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When implementing an IRK, a lot of decisions have to be made. How to form a prediction for
the Newton process, when to refactorize the iteration matrix, when to evaluate the Jacobian, how
many Newton iterations should be done, what should be the new stepsize, when to reject a step? The
answers to these questions for PSIDE are mainly based on [SS97, GS97, OS99, Ben96, HW96b, Gus92].

In order to have a clear overview of these control strategies, PSIDE is set up modularly. Section 3
shows how several modules build up PSIDE. Section 4–12 each describe one of these modules in detail.

2. Parallelism in PSIDE

For solving (1.1) numerically with the four-stage Radau IIA method, we have to solve Ẏ from the
nonlinear system

G(1l⊗ yn + h(A⊗ I)Ẏ , Ẏ ) = 0 . (2.1)

Here, Ẏ = (Ẏ T
1 , Ẏ

T
2 , Ẏ

T
3 , Ẏ

T
4 )T is the so-called stage derivative vector of dimension 4d, where the Ẏi

contain approximations to the derivative values ẏ(tn + cih), the abscissa are in c = (c1, c2, c3, c4)T,
the stepsize is denoted by h, the 4× 4 Radau IIA matrix by A, the approximation to y(tn) by yn, the
Kronecker product by ⊗, the vector (1, 1, 1, 1)T by 1l, and G stands for the stacked values of g, i.e.

G(1l⊗ yn + h(A⊗ I)Ẏ , Ẏ ) :=

 g(tn + c1h, yn + h
∑
j a1j Ẏj , Ẏ1)

...
g(tn + c4h, yn + h

∑
j a4j Ẏj , Ẏ4)

 .

Here and in the sequel, I is an identity matrix of dimension either 4 or d, but its dimension will always
be clear from the context. For Radau IIA, cs = 1. Once we obtained Ẏ , we compute the stage vector
Y and yn+1 from

Y = 1l⊗ yn + h(A⊗ I)Ẏ , yn+1 = (eT
s ⊗ I)Y ,

where es = (0, 0, 0, 1)T. To solve (2.1) we apply a modified Newton process and apply the Butcher
transformation AT = TΛ, where Λ is a block diagonal matrix containing 2 blocks of dimension 2× 2,
thus arriving at

Scheme: Ẏ is given by predictor
repeat until convergence
Y ← 1l⊗ yn + h(A⊗ I)Ẏ
solve (I ⊗M + hΛ⊗ J)∆Ẇ = −(T−1 ⊗ I)G(Y, Ẏ )
Ẏ ← Ẏ + (T ⊗ I)∆Ẇ

end

where M = ∂g/∂ẏ and J = ∂g/∂y, both evaluated at some previous approximations. By P ← Q we
mean that Q is assigned to P .

Remark It would also have been possible to define Z = Y −1l⊗yn, apply a modified Newton process
to

G(1l⊗ yn + Z, ((hA)−1 ⊗ I)Z) = 0 ,

and iterate on Z. Applying Butcher transformations A−1T = TΛ−1 would then lead to
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Scheme: Z is given by predictor
repeat until convergence
Ẏ ← ((hA)−1 ⊗ I)Z
solve ((hΛ)−1 ⊗M + I ⊗ J)∆W = −(T−1 ⊗ I)G(1l⊗ yn + Z, Ẏ )
Z ← Z + (T ⊗ I)∆W

end

which is equally expensive as iterating on Ẏ . We prefer not to use additional quantities Z. However,
for the problem class Mẏ = f(y), iterating on Z is somewhat cheaper. 3

To compute ∆Ẇ we would need to solve two linear systems of dimension 2d. Instead of doing this,
we solve ∆Ẇ by the Parallel Iterative Linear system Solver for Runge–Kutta methods (PILSRK)
proposed in [HS97]. In PILSRK we split the matrix Λ in L+ (Λ − L), where L has distinct positive
eigenvalues, and rewrite the equation as

(I ⊗M + hL⊗ J)∆Ẇ = (h(L− Λ)⊗ J)∆Ẇ − (T−1 ⊗ I)G(Y, Ẏ ) .

Now we perform an iteration process according to

(I ⊗M + hL⊗ J)∆Ẇ j = (h(L− Λ)⊗ J)∆Ẇ j−1 − (T−1 ⊗ I)G(Y, Ẏ ) . (2.2)

If J is a full matrix, then the computation of h(L−Λ)⊗J can be expensive. Since for most applications
M is sparser than J (e.g., for ordinary differential equations, M = ±I), we rewrite (2.2) as

(I ⊗M + hL⊗ J)
(

∆Ẇ j −
(
(I − L−1Λ)⊗ I

)
∆Ẇ j−1

)
=

−
(
(I − L−1Λ)⊗M

)
∆Ẇ j−1 − (T−1 ⊗ I)G(Y, Ẏ ) .

(2.3)

Applying again Butcher transformations LS = SD, where D is a diagonal matrix, and m iterations
of type (2.3), leads to

Scheme: Ẏ is given by predictor
repeat until convergence
Y ← 1l⊗ yn + h(A⊗ I)Ẏ
∆V̇ 0 ← 0
do j = 1, . . . ,m

solve (I ⊗M + hD ⊗ J)(∆V̇ j − (B ⊗ I)∆V̇ j−1) =
−(B ⊗M)∆V̇ j−1 − (Q−1 ⊗ I)G(Y, Ẏ )

end
Ẏ ← Ẏ + (Q⊗ I)∆V̇ m

end

where B = I − (LS)−1ΛS and Q = TS. We now see that the 4 components of dimension d in ∆V̇ k,
each corresponding to one stage, can be computed in parallel.

How to form the matrices T , L and S such that PILSRK converges rapidly, can be found in [HS97].
However, the appendix of this specification lists all the matrices that play a role in the derivation
above.

3. PSIDE as modular scheme

Figure 1 shows the modules of PSIDE. If a line connects two modules, then the upper module ‘calls’
the lower one. Table 1 describes what the modules basically do. The next sections describe them in
more detail.
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COMPH0 CTRL

ERROR

JACFAC NEWTON

PILSRKPREDIC

TSTEPS

VERGEN

Figure 1: The modular form of PSIDE

Since in an actual implementation, we do not store the sequences t0, t1, . . . ; y0, y1, . . . and ẏ0, ẏ1, . . . ,
in the sequel the values t, y and ẏ denote the current timepoint, and the approximations to the solution
and its derivative at t, respectively.

4. Module TSTEPS

This module performs the iteration in time. It uses COMPH0, JACFAC, NEWTON, CTRL.

Scheme: compute h by COMPH0
hLU ← h
t← t0
ẏ ← ẏ0

Ẏp ← 1l⊗ ẏ
first ← true
jacnew ← true
facnew ← true
while ( t < tend ) do
depending on jacnew, facnew compute M,J, LU by JACFAC
compute Y, Ẏ , α, growth, diver, conver by NEWTON
compute y, ẏ, Ẏp, t, hp, h, hLU , first, jacnew, facnew by CTRL

end

Depending on the boolean variables jacnew and facnew, module JACFAC evaluates the Jacobian
matrices M and J and factorizes the iteration matrix I⊗M +hLUD⊗J . These booleans jacnew and
facnew and the stepsize used for this factorization, hLU , are determined in the control module CTRL.

Apart from the vectors Ẏ and Y , module NEWTON gives as output the estimated rate of convergence
α, and the boolean variables growth, diver and solved. If the growth of the current iterate has a
too large increment with respect to y, then growth is true, whereas diver and solved tell that the
Newton process is diverging or has converged. Based on α, growth, diver and solved, module CTRL
decides whether the current Ẏ and Y can be accepted. If so, then it assigns t← t+h, y ← Ys, ẏ ← Ẏs
and proposes a new stepsize. The old stepsize and old stage derivative vector are stored in hp and Ẏp,
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Table 1: Overview of tasks of modules in Figure 1.

Module Function
TSTEPS performs the time-stepping
JACFAC evaluates the Jacobians and factorizes the iteration matrix
NEWTON performs the Newton iteration
PREDIC computes the prediction to start the Newton iteration
COMPH0 computes the initial stepsize
CTRL decides whether the Jacobians should be updated and the iteration

matrix should be factorized
PILSRK the Parallel Iterative Linear system Solver for Runge–Kutta methods
VERGEN checks whether the Newton iterates diverge or converge
ERROR computes the local error estimate

respectively. If the step is not accepted, then t, y and ẏ are not changed and h is recomputed.

5. Module JACFAC

Depending on jacnew and facnew, this module evaluates the Jacobians and factorizes the iteration
matrix. If the Jacobians are re-evaluated, the boolean jacu2d (Jacobians up to date) is set true.

Variables: input jacnew, facnew, hLU
output jacu2d,M, J, LU

Scheme: if (jacnew) then
form the Jacobian matrices M,J
jacu2d ← true

end
if (facnew) then
factorize the iteration matrix I ⊗M + hLUD ⊗ J

end

6. Module NEWTON

Module NEWTON, which uses the modules PREDIC, PILSRK and VERGEN, performs the Newton iteration.

Variables: input y, Ẏp, LU,M, t, hp, h

output Y, Ẏ , α, growth, diver, slow, solved, exact
local ∆Y,∆Ẏ , k, ready
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Scheme: ready ← false
k ← 0
compute Ẏ by PREDIC
Y ← 1l⊗ y + h(A⊗ I)Ẏ
compute ready, growth by VERGEN
while (not(ready)) do
k ← k + 1
compute ∆Ẏ by PILSRK
∆Y ← h(A⊗ I)∆Ẏ
Y ← Y + ∆Y
Ẏ ← Ẏ + ∆Ẏ
compute α, growth, diver, slow, solved, exact by VERGEN

end

The estimated rate of convergence α and the booleans growth, diver, slow, solved and exact are
computed for use in module CTRL.

7. Module PREDIC

As starting value for the Newton process we use fourth order extrapolation of the previous stage
derivative vector, i.e.

Ẏ = EYp,

where the s× s matrix E is determined by the order conditions

E(c− 1l)k =
(
h
hp
c
)k
, k = 0, 1, . . . , s− 1 .

(Here, for any vector a = (ai), the kth power ak, is understood to be the vector with entries aki .) This
means that

E = V U−1, U :=
[
1l c− 1l · · · (c− 1l)s−1

]
, V :=

[
1l h

hp
c · · ·

(
h
hp

)s−1
]
.

Variables: input Ẏp, hp, h

output Ẏ

Scheme: Ẏ ← EYp

We experimented with a lot of other predictors than fourth order extrapolation: Extrapolation of
order 3 (using only 3 of the 4 stages in Ẏp), a polynomial of degree 2 that fitted the four stages in Yp
in an—in least squares sense—optimal way, a last step point value predictor (i.e. Ẏ = ( 1l eT

s ⊗ I)Ẏp),
and a starting value that is one of these predictors, depending on which predictor yields the smallest
residual. We also tried several rational approximations. However, numerous experiments showed that
fourth-order extrapolation yields the best overall performance.

8. Module COMPH0

This module computes the initial stepsize h0. It is similar to the strategy used in DASSL [Pet91].
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Variables: input ẏ0, t0, tend

output h0

local ζ, hdef , fh

Scheme: h0 ← min{hdef , fh|tend − t0|}
if ( ‖ẏ0‖scal > ζ/h0 ) then
h0 ← ζ/‖ẏ0‖scal

end
h0 ← sign(h0, tend − t0)

Parameters: value source
ζ 0.5 [Pet91]
hdef 10−5 [HW96a]
fh 10−5 experience

9. Module CTRL

This module is a modified version of the one presented in [GS97, Figure 4].

Variables: input y, Y, ẏ, Ẏ , LU, t, tend, h, hLU , α, first,
growth, diver, slow, solved, jacu2d, jacnew, exact

output y, ẏ, Ẏp, t, hp, h, hLU , first, jacnew, facnew, jacu2d
local hr, hnew, hα, αref , αjac, αLU , fmin, fmax, frig, ξ, ω, nrem
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Scheme: if (not(growth)) hα ← hαref/max{α, αref/fmax}
if (solved) then
compute y, ẏ, Ẏp, t, hp, hr, first by ERROR
if ( |tend − t| > 10uround|t| ) then

if jacu2d ∧α > αref ) then
hnew ← min{fmaxh, max{fminh, min{hr, hα}}}

else
hnew ← min{fmaxh, max{fminh, hr}}

end
if (not(exact) ∧α− |h− hLU |/hLU > αjac ) then
if (jacu2d) then
hnew ← h/frig

else
jacnew ← true

end
end

end
elseif (growth) then
hnew ← h/frig

elseif (diver) then
hnew ← min{fmaxh, max{fminh, hα}}
jacnew ← not(jacu2d)

elseif (slow) then
if (jacu2d) then

if ( α > ξαref ) then
hnew ← min{fmaxh, max{fminh, hα}}

else
hnew ← h/frig

end
else
hnew ← h; jacnew ← true

end
end
nrem ← (tend − t)/hnew

if ( nrem − bnremc > ω ∨ bnremc = 0 ) then
nrem ← bnremc+ 1

else
nrem ← bnremc

end
h← (tend − t)/nrem

facnew ← jacnew ∨ (|h− hLU |/hLU > αLU)
if (facnew) hLU ← h
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Parameters: value source
αref 0.15 see below
αjac 0.1 [GS97]
αLU 0.2 see below
fmin 0.2 [Ben96, p.52]
fmax 2 experience
frig 2 [Gus92, p.154]
ξ 1.2 experience
ω 0.05 [SSV97]

In this scheme, αref is the desired rate of convergence. In [GS97] it is shown that, under reasonable
assumptions, hα is the stepsize for which the rate of convergence will be αref . If the current rate of
convergence α is larger than αref , then hα will be used for the next Newton process, unless it is greater
than hr, the stepsize proposed by module ERROR. [GS97] also derives that, if α−|h−hLU |/hLU > αjac,
then the convergence of the Newton process is likely to fail due to an old Jacobian. Such failures are
prevented by the strategy above. If nevertheless the Jacobian is fresh, then the assumptions of the
theory are not fulfilled and the stepsize is reduced by a rigid factor frig. The case where exact is true,
refers to the situation that that (2.1) was solved exactly. This happens e.g. if the function g in (1.1)
equals ẏ.

If growth is true (see §11), then the stepsize is reduced by a factor frig, but we do not compute new
Jacobians.

For a diverging Newton process, hα will be the new stepsize. If slow is true, then the Newton
process is converging too slowly (see §11). In this case, the new stepsize is again identified with hα, if
α > ξαref . The factor ξ, which has to be > 1, is built in for the case that α is only slightly larger than
αref . Without this factor, the new stepsize for this case would be set equal to hα, which is only a little
bit smaller than the old stepsize, thus leading again to a Newton process that converges too slowly. If
α ≤ ξαref , then the assumptions of the analysis have failed to hold, and the stepsize is rigidly reduced
by a factor frig. For both the diverging and the slowly converging case, the iteration matrix will be
factorized, with or without a new Jacobian, depending on jacnew.

The formulas of the form hnew = min{fmaxh,max{fminh, ·}} prevent the new stepsize to vary from
the old stepsize by a factor outside the range [fmin, fmax].

This strategy for updating the Jacobian and refactorizing the iteration matrix is different from most
strategies in ODE/DAE software, in the sense that it attempts to adjust the stepsize such that an
optimal convergence rate of the Newton process is obtained. Another difference is the strategy for the
case that the Jacobian is not updated. Many codes do not change the stepsize in this situation if the
relative change of stepsize is in a ‘dead-zone’ (e.g. RADAU5 uses the dead-zone [1; 1.2]). However,
in [Gus92, p.135] it is argued that, in order to arrive at a smooth numerical solution, it is better to
remove this strategy ‘since a smooth stepsize sequence leads to smoother error control’.

The role of nrem is to adjust the stepsize such that the remaining integration interval is a multiple
of the stepsize. This strategy was taken from [SSV97].

If a new Jacobian is not required, then the iteration matrix will only be factorized in case that the
proposed stepsize hnew differs significantly from hLU , i.e. (|hnew − hLU |/hLU > αLU ).

The papers [GS97] and [Gus92] advocate values of αref , αjac and αLU around 0.2. However, they
also suggest to use larger values if the costs of factorizing the iteration matrix are high with respect
to the costs of one iteration. Since PSIDE is a parallel code aiming at problems of large dimension,
we choose 0.25 for αref and 0.3 for αLU . Numerous experiments confirmed that these choices yield an
efficient code.
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10. Module PILSRK

This module is the same as presented in §2, although an economization is made by computing the first
iterate separately. Numerous experiments showed that for index 0 and index 1 problems, performing
only 1 inner iteration suffices. On the other hand, [HV97] reveals that for higher-index problems, 2
inner iterations lead to a more robust and efficient behavior.

Variables: input Y, Ẏ , LU,M, t, h

output ∆Ẏ
local ∆V̇ , G̃, j,m

Scheme: G̃← (Q−1 ⊗ I)G(Y, Ẏ )
∆V̇ ← −(LU)−1G̃
if (higher index) then
do j = 2, . . . ,m

∆V̇ ← (B ⊗ I)∆V̇ − (LU)−1((B ⊗M)∆V̇ + G̃)
end

end
∆Ẏ ← (Q⊗ I)∆V̇

Parameters: value source
m 2 experience

11. Module VERGEN

This module checks the convergence behavior of the Newton process. Most of it is based on [Gus92,
§5.2].

Variables: input y, Y,∆Y, h, k, α
output α, ready, growth, diver, slow, solved, exact
local up, u, τ, κ, kmax, γ, α1
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Scheme: growth ← false
diver ← false
slow ← false
solved ← false
exact ← false
if ( ∃ i |Yi,s|/max{|yi|, atoli} > gfac ∧ indi ≤ 1 ) then
growth ← true

else
if ( k = 1 ) then
u← ‖∆Y ‖scal

α = α1

exact ← u = 0
solved ← exact

elseif ( k > 1 ) then
up ← u
u← ‖∆Y ‖scal

α← αθ(u/up)1−θ

if ( α ≥ γ ) then
diver ← true

elseif ( u α/(1− α) < τ ∨ u < κ uround‖y‖scal ) then
solved ← true

elseif ( k = kmax ∨ u αkmax−k/(1− α) > τ ) then
slow ← true

end
end

end
ready ← growth ∨ diver ∨ slow ∨ solved ∨ exact

Parameters: value source
τ 0.01 see below
κ 100 [Ben96, p.51]
kmax 15 see below
γ 1 [Gus92, p.132]
θ 0.5 experience
gfac 100 experience
α1 0.1 experience

The boolean variable growth monitors whether the current iterate is too large with respect to y.
This is necessary to prevent overflow. We use max{|yi|, atoli} instead of |yi| for the case yi = 0.
Experience has shown that it is not efficient to put a limit on the growth of higher-index variables.
The variable u is saved for use in the next call of VERGEN. The case where slow is true, refers to a
Newton process that is converging too slowly.

Here and in the sequel, the norm ‖ · ‖scal is defined by

‖X‖scal =

√√√√ 1
4d

3∑
i=0

d∑
j=1

(
hindj−1Xid+j

atolj + rtolj |yj |

)2

, if X ∈ IR4d ,

and by

‖x‖scal =

√√√√1
d

d∑
j=1

(
hindj−1xj

atolj + rtolj |yj |

)2

, if x ∈ IRd .
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In these formulas, atolj and rtolj are the user-supplied absolute and relative error tolerance vectors,
respectively, and indj contains the user-supplied index of component j. For both index 0 and index 1
variables, indj = 1.

In the first iterate, we initialize α by α1. The value of τ is rather small compared to termination cri-
teria in other codes. E.g., in RADAU5 values around 10−1 or 10−2 were found to be efficient [HW96b,
p.121], and DASSL uses 0.33 [BCP89, p.123]. The reason for this is that τ can be seen as the factor
by which the iteration error has to be smaller than the error estimate ε. In PSIDE, ε is of local order
5 (see §12), and the steppoint value of local order 8. Consequently, in order not to let the iteration
error spoil the accuracy of the steppoint value, τ has to be smaller than 1, and how much smaller than
1 should depend on the difference between the order of the error estimate and that of the method.
This may in part explain why RADAU5, where this difference is 2, and DASSL, where it is 1, use
larger values for τ .

The reason for the rather large value of kmax ([HW96b, p.121] advocates values of 7 or 10 for
RADAU5) is twofold. Firstly, the order of PSIDE is seven, which is higher than that of e.g. the
fifth order RADAU5, so that we need more iterations to find the solution of the non-linear system.
Secondly, if PILSRK does not find the exact Newton iterate, a few additional iterations might help.

12. Module ERROR

12.1 The error estimate in PSIDE
The construction of the error estimate is based on [SS97]. In order not to have confusion between the
previous values of y and ẏ and the current ones, we use the time index n in the derivation of the error
estimate.

To estimate the error, we use an implicit embedded formula of the form

ŷn+1 = yn + h(b0ẏn + (bT ⊗ I)Ẏ + dsˆ̇yn+1) , (12.1)

where ds is the lower right element in D. We eliminate ˆ̇yn+1 by substituting (12.1) in (1.1) yielding

g(tn+1, ŷn+1, (hds)−1(ŷn+1 − yn − h(b0ẏn + (bT ⊗ I)Ẏ ))) = 0 . (12.2)

Solving ŷn+1 from (12.2) by a modified Newton process, leads to the recursion

ŷj+1
n+1 = ŷjn+1 − hds(M + hLUdsJ)−1g(tn+1, ŷ

j
n+1,

(hds)−1(ŷjn+1 − yn − h(b0ẏn + (bT ⊗ I)Ẏ ))) .

Now we set ŷ(0)
n+1 = yn+1, and consider the first Newton iterate ŷ1

n+1 as a reference formula by itself,
which is

ŷ1
n+1 = yn+1 − hds(M + hLUdsJ)−1g(tn+1, yn+1,

(hds)−1(ŷn+1 − yn − h(b0ẏn + (bT ⊗ I)Ẏ ))) .

In this formula, we determine b such that ŷ1
n+1 is of local order s+ 1, i.e., it satisfies

C b = (1− b0, 1/2, 1/3, . . . , 1/s)T − ds1l , (12.3)

where C = (cij); cij = ci−1
j . Notice that implying order conditions directly on (12.1) would also lead

to (12.3). The paper [SS97] describes how to select the parameter b0 such that the amplitude of the
error estimate approximates the true error in yn+1. Carrying out this procedure for the four-stage
Radau IIA method yields the value 0.01 for b0.

We now define the error estimate r by

r = ŷ1
n+1 − yn+1

= −hds(M + hLUdsJ)−1g(tn+1, yn+1, d
−1
s ((vT ⊗ I)Ẏ − b0ẏn)) , (12.4)
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where v = (vi), with vi = asi − bi.
We notice that the error estimate (12.4) reduces for ODE problems to the same formula as in

RADAU5 [HW96b, p.123, Formula (8.19)]. However, by choosing the reference method as being of
the form (12.1), the ‘filtering’ with the matrix (M + hLUdsJ)−1, needed to ‘remove’ the stiff error
components in the error estimate, arises on purely mathematical grounds.

12.2 Stepsize selection
The following module contains the predictive stepsize controller of Gustafsson [Gus92, Listing 5.1] to
propose a new stepsize hr.

Variables: input y, Y, ẏ, Ẏ , LU, t, hp, h, fmax, first
output y, ẏ, Ẏp, t, hp, hr, first, jacu2d
local r, hrej, εp, εrej, ε, pest, pmin, sucrej

Scheme: compute r from (12.4)
ε← ‖r‖scal

if ( ε < 1 ) then
if ( ε = 0 ) then
hnew ← fmaxh

elseif (first ∨ sucrej) then
first ← false
hr ← ζhε−1/5

else
hr ← ζh2/hp (εp/ε2)1/5

end
y ← Ys
ẏ ← Ẏs
Ẏp ← Ẏ
t← t+ h
if ( |tend − t| < 10uround)|t|) then t← tend

hp ← h
εp ← ε
sucrej ← false
jacu2d ← false

else
if (not(first) ∧ sucrej) then

pest ← min{5, max{pmin,
log(ε/εrej)
log(h/hrej)

}}
hr ← ζhε−1/pest

else
hr ← ζhε−1/5

end
hrej ← h
εrej ← ε
sucrej ← true

end

Parameters: value source
ζ 0.8 [Gus92, p.156]
pmin 0.1 [Gus92, p.121]

The variables hrej, εp, εrej and sucrej are saved for use in the next call of ERROR. Notice that this
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module is only called if the Newton process has converged. If ‖ε‖scal < 1, it steps forward in time, i.e.
it updates t, y, ẏ and shifts Ẏp, hp and εp; the Jacobians are per definition not up to date anymore.

Appendix

In this appendix we provide the method parameters in PSIDE, i.e. the abscissa vector c and the RK
matrix A, that define the four-stage Radau IIA method, the matrices D, B, Q and Q−1, defining the
Parallel Linear system Solver for Runge–Kutta methods (PILSRK), and the scalar b0 and the vector
v, needed for the embedded reference formula. As additional information, we list the matrices Λ, L,
S and T that arose in the derivation of PILSRK.

cT =
(

0.08858795951268 0.40946686444074 0.78765946176085 1.00000000000000
)

A =


0.11299947932312 −0.04030922072350 0.02580237742032 −0.00990467650726
0.23438399574737 0.20689257393542 −0.04785712804857 0.01604742280653
0.21668178462322 0.40612326386742 0.18903651817002 −0.02418210489982
0.22046221117674 0.38819346884323 0.32884431998002 0.06250000000001


diag(D) = [

0.15207736897658 0.19863166560206 0.17370482124555 0.22687976652481
]

B =


−3.36398745680207 −0.44654700754010 0 0
25.34203884124225 3.36398745680207 0 0

0 0 −0.43736727682531 −0.05805760311840
0 0 3.29483348541735 0.43736727682531



Q =


2.95257334306175 0.31594239005361 1.53250361857179 0.02760017730665
−7.26634778465530 −0.87557678542461 −1.05525925554832 −0.31127768044595

3.42024269744602 0.94929336342678 −10.79971906268609 −2.13491394363799
34.89702510456449 4.37526650476817 −42.90392657810952 −5.89600020104167



Q−1 =


0.49403714522764 0.26941265525930 −0.20775393051682 0.06331582713183
−3.53352093058280 −2.98586378845007 1.75646110158256 −0.49490947213933

0.48764145508107 0.12393820514650 0.04237703393234 −0.01960507515011
−3.24650638474176 −1.52301305545687 −0.23459121597752 −0.01945253030841


b0 = 0.01

vT =
(

0.01577537639774 −0.00973676595201 0.00646138955427 0.22437976652485
)

Λ =


0.15207736897658 0.06790969403105 0 0
−0.35070903457864 0.04202359569373 0 0

0 0 0.17370482124555 0.01008488557162
0 0 −0.40058458777036 0.20362278551270



L =


0.15207736897658 0 0 0
−0.35070903457864 0.19863166560206 0 0

0 0 0.17370482124555 0
0 0 −0.40058458777036 0.22687976652481



S =


1 0 0 0

7.53333333333333 1 0 0
0 0 1 0
0 0 7.53333333333333 1



T =


0.57247400465791 0.31594239005361 1.32458228286171 0.02760017730665
−0.67033600112323 −0.87557678542461 1.28969927047784 −0.31127768044595
−3.73110064036903 0.94929336342678 5.28329931272012 −2.13491394363799

1.93668410197760 4.37526650476817 1.51260826973776 −5.89600020104167
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