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of step size variation. It is also worth noting that (22)
generates a smooth step size sequence, as hn � hn�1 D
O.hnhn�1/.

This type of control does not work with an error
estimate, but rather tracks a prescribed target function;
it corresponds to keeping hQ.y/ D const:, where Q is
a given functional reflecting the geometric structure of
(1). One can then take G.y/ D grad Q.y/�f .y/=Q.y/.
For example, in celestial mechanics, Q.y/ could be
selected as total centripetal acceleration; then the step
size is small when centripetal acceleration is large
and vice versa, concentrating the computational effort
to those intervals where the solution of the problem
changes rapidly and is more sensitive to perturbations.

Literature

Step size control has a long history, starting with
the first initial value problem solvers around 1960,
often using a simple step doubling/halving strategy.
The controller (10) was soon introduced, and further
developments quickly followed. Although the schemes
were largely heuristic, performance tests and practical
experience developed working standards. Monographs
such as [1, 2, 6, 7, 10] all offer detailed descriptions.

The first full control theoretic analysis is found
in [3, 4], explaining and overcoming some previously
noted difficulties, developing proportional-integral (PI)
and autoregressive (AR) controllers. Synchronization
with Newton iteration is discussed in [5]. A complete
framework for using digital filters and signal process-
ing is developed in [11], focusing on moving average
(MA) controllers. Further developments on how to
obtain improved computational stability are discussed
in [12].

The special needs of geometric integration are dis-
cussed in [8], although the symmetric controllers are
not based on error control. Error control in implicit,
symmetric methods is analyzed in [13].
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Introduction

The behavior of the atmosphere, oceans, and climate
is intrinsically uncertain. The basic physical principles
that govern atmospheric and oceanic flows are well
known, for example, the Navier-Stokes equations for
fluid flow, thermodynamic properties of moist air, and
the effects of density stratification and Coriolis force.
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Notwithstanding, there are major sources of random-
ness and uncertainty that prevent perfect prediction and
complete understanding of these flows.

The climate system involves a wide spectrum of
space and time scales due to processes occurring on
the order of microns and milliseconds such as the
formation of cloud and rain droplets to global phenom-
ena involving annual and decadal oscillations such as
the EL Nio-Southern Oscillation (ENSO) and the Pa-
cific Decadal Oscillation (PDO) [5]. Moreover, climate
records display a spectral variability ranging from 1
cycle per month to 1 cycle per 100;000 years [23]. The
complexity of the climate system stems in large part
from the inherent nonlinearities of fluid mechanics and
the phase changes of water substances. The atmosphere
and oceans are turbulent, nonlinear systems that dis-
play chaotic behavior (e.g., [39]). The time evolutions
of the same chaotic system starting from two slightly
different initial states diverge exponentially fast, so that
chaotic systems are marked by limited predictability.
Beyond the so-called predictability horizon (on the
order of 10 days for the atmosphere), initial state
uncertainties (e.g., due to imperfect observations) have
grown to the point that straightforward forecasts are no
longer useful.

Another major source of uncertainty stems from
the fact that numerical models for atmospheric and
oceanic flows cannot describe all relevant physical
processes at once. These models are in essence
discretized partial differential equations (PDEs), and
the derivation of suitable PDEs (e.g., the so-called
primitive equations) from more general ones that
are less convenient for computation (e.g., the full
Navier-Stokes equations) involves approximations and
simplifications that introduce errors in the equations.
Furthermore, as a result of spatial discretization of
the PDEs, numerical models have finite resolution
so that small-scale processes with length scales
below the model grid scale are not resolved. These
limitations are unavoidable, leading to model error and
uncertainty.

The uncertainties due to chaotic behavior and
unresolved processes motivate the use of stochastic and
statistical methods for modeling and understanding
climate, atmosphere, and oceans. Models can be
augmented with random elements in order to represent
time-evolving uncertainties, leading to stochastic
models. Weather forecasts and climate predictions
are increasingly expressed in probabilistic terms,

making explicit the margins of uncertainty inherent
to any prediction.

Statistical Methods

For assessment and validation of models, a compar-
ison of individual model trajectories is typically not
suitable, because of the uncertainties described earlier.
Rather, the statistical properties of models are used
to summarize model behavior and to compare against
other models and against observations. Examples are
the mean and variance of spatial patterns of rainfall or
sea surface temperature, the time evolution of global
mean temperature, and the statistics of extreme events
(e.g., hurricanes or heat waves). Part of the statistical
methods used in this context is fairly general, not
specifically tied to climate-atmosphere-ocean science
(CAOS). However, other methods are rather specific
for CAOS applications, and we will highlight some of
these here. General references on statistical methods in
CAOS are [61, 62].

EOFs
A technique that is used widely in CAOS is Principal
Component Analysis (PCA), also known as Empirical
Orthogonal Function (EOF) analysis in CAOS. Con-
sider a multivariate dataset ˆ 2 RM�N . In CAOS this
will typically be a time series �.t1/; �.t2/; : : : ; �.tN /

where each �.tn/ 2 RM is a spatial field (of, e.g., tem-
perature or pressure). For simplicity we assume that
the time mean has been subtracted from the dataset, soPN

nD1 ˆmn D 0 8m. Let C be the M � M (sample)
covariance matrix for this dataset:

C D 1

N � 1
ˆ ˆT :

We denote by .�m; vm/, m D 1; : : : ; M the ordered
eigenpairs of C :

C vm D �m vm ; �m � �mC1 8m:

The ordering of the (positive) eigenvalues implies that
the projection of the dataset onto the leading eigen-
vector v1 gives the maximum variance among all
projections. The next eigenvector v2 gives the max-
imum variance among all projections orthogonal to
v1, v3 gives maximum variance among all projections
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orthogonal to v1 and v2, etc. The fraction �m=
P

l �l

equals the fraction of the total variance of the data
captured by projection onto the m-th eigenvector vm.

The eigenvectors vm are called the Empirical Or-
thogonal Functions (EOFs) or Principal Components
(PCs). Projecting the original dataset ˆ onto the lead-
ing EOFs, i.e., the projection/reduction

�r.tn/ D
M 0X

mD1

˛m.tn/vm ; M 0 � M;

can result in a substantial data reduction while retain-
ing most of the variance of the original data.

PCA is discussed in great detail in [27] and [59].
Over the years, various generalizations and alternatives
for PCA have been formulated, for example, Principal
Interaction and Oscillation Patterns [24], Nonlinear
Principal Component Analysis (NLPCA) [49], and
Nonlinear Laplacian Spectral Analysis (NLSA) [22].
These more advanced methods are designed to over-
come limitations of PCA relating to the nonlinear or
dynamical structure of datasets.

In CAOS, the EOFs vm often correspond to spatial
patterns. The shape of the patterns of leading EOFs
can give insight in the physical-dynamical processes
underlying the dataset ˆ. However, this must be done
with caution, as the EOFs are statistical constructions
and cannot always be interpreted as having physical
or dynamical meaning in themselves (see [50] for a
discussion).

The temporal properties of the (time-dependent)
coefficients ˛m.t/ can be analyzed by calculating,
e.g., autocorrelation functions. Also, models for these
coefficients can be formulated (in terms of ordinary
differential equations (ODEs), stochastic differential
equations (SDEs), etc.) that aim to capture the main
dynamical properties of the original dataset or model
variables �.t/. For such reduced models, the emphasis
is usually on the dynamics on large spatial scales and
long time scales. These are embodied by the leading
EOFs vm; m D 1; : : : ; M 0, and their corresponding
coefficients ˛m.t/, so that a reduced model .M 0 � M /

can be well capable of capturing the main large-scale
dynamical properties of the original dataset.

Inverse Modeling
One way of arriving at reduced models is inverse mod-
eling, i.e., the dynamical model is obtained through
statistical inference from time series data. The data can

be the result of, e.g., projecting the dataset ˆ onto the
EOFs (in which case the data are time series of ˛.t/).
These models are often cast as SDEs whose parameters
must be estimated from the available time series. If the
SDEs are restricted to have linear drift and additive
noise (i.e., restricted to be those of a multivariate
Ornstein-Uhlenbeck (OU) process), the estimation can
be carried out for high-dimensional SDEs rather easily.
That is, assume the SDEs have the form

d˛.t/ D B ˛.t/ dt C � dW.t/ ; (1)

in which B and � are both a constant real M 0 �
M 0 matrix and W.t/ is an M 0-dimensional vector
of independent Wiener processes (for simplicity we
assume that ˛ has zero mean). The parameters of this
model are the matrix elements of B an � . They can be
estimated from two (lagged) covariance matrices of the
time series. If we define

R0
ij D E˛i .t/˛j .t/ ; R�

ij D E˛i .t/˛j .t C �/ ;

with E denoting expectation, then for the OU process
(1), we have the relations

R� D exp.B �/ R0

and
BR0 C R0BT C ��T D 0

The latter of these is the fluctuation-dissipation relation
for the OU process. By estimating R0 and R� (with
some � > 0) from time series of ˛, estimates for
B and A WD ��T can be easily computed using
these relations. This procedure is sometimes referred
to as linear inverse modeling (LIM) in CAOS [55].
The matrix � cannot be uniquely determined from A;
however, any � for which A D ��T (e.g., obtained
by Cholesky decomposition of A) will result in an OU
process with the desired covariances R0 and R� .

As mentioned, LIM can be carried out rather easily
for multivariate processes. This is a major advantage
of LIM. A drawback is that the OU process (1) cannot
capture non-Gaussian properties, so that LIM can only
be used for data with Gaussian distributions. Also, the
estimated B and A are sensitive to the choice of � ,
unless the available time series is a an exact sampling
of (1).
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Estimating diffusion processes with non-Gaussian
properties is much more complicated. There are var-
ious estimation procedures available for SDEs with
nonlinear drift and/or multiplicative noise; see, e.g.,
[30, 58] for an overview. However, the practical use
of these procedures is often limited to SDEs with
very low dimensions, due to curse of dimension or to
computational feasibility. For an example application
in CAOS, see, e.g., [4].

The dynamics of given time series can also be
captured by reduced models that have discrete state
spaces, rather than continuous ones as in the case of
SDEs. There are a number of studies in CAOS that
employ finite-state Markov chains for this purpose
(e.g., [8,48,53]). It usually requires discretization of the
state space; this can be achieved with, e.g., clustering
methods. A more advanced methodology, building on
the concept of Markov chains yet resulting in contin-
uous state spaces, is that of hidden Markov models.
These have been used, e.g., to model rainfall data (e.g.,
[3, 63]) and to study regime behavior in large-scale
atmospheric dynamics [41]. Yet a more sophisticated
methodology that combines the clustering and Markov
chain concepts, specifically designed for nonstationary
processes, can be found in [25].

Extreme Events
The occurrence of extreme meteorological events, such
as hurricanes, extreme rainfall, and heat waves, is
of great importance because of their societal impact.
Statistical methods to study extreme events are there-
fore used extensively in CAOS. The key question for
studying extremes with statistical methods is to be able
to assess the probability of certain events, having only a
dataset available that is too short to contain more than
a few of these events (and occasionally, too short to
contain even a single event of interest). For example,
how can one assess the probability of sea water level
at some coastal location being more than 5 m above
average if only 100 years of observational data for that
location is available, with a maximum of 4 m above
average? Such questions can be made accessible using
extreme value theory. General introductions to extreme
value theory are, e.g., [7] and [11]. For recent research
on extremes in the context of climate science, see, e.g.,
[29] and the collection [1].

The classical theory deals with sequences or obser-
vations of N independent and identically distributed
(iid) random variables, denoted here by r1; : : : ; rN .

Let MN be the maximum of this sequence, MN D
maxfr1; : : : ; rN g. If the probability distribution for MN

can be rescaled so that it converges in the limit of in-
creasingly long sequences (i.e., N ! 1), it converges
to a generalized extreme value (GEV) distribution.
More precisely, if there are sequences aN .> 0/ and
bN such that Prob..MN � bN /=aN � z/ ! G.z/ as
N ! 1, then

G.z/ D exp

�
�
�
1 C �

� z � �

�

��1=�
��

:

G.z/ is a GEV distribution, with parameters � (lo-
cation), � > 0 (scale), and � (shape). It combines
the Fréchet (� > 0), Weibull (� < 0), and Gumbel
(� ! 0) families of extreme value distributions. Note
that this result is independent of the precise distribution
of the random variables rn. The parameters �; �; � can
be inferred by dividing the observations r1; r2; : : : in
blocks of equal length and considering the maxima on
these blocks (the so-called block maxima approach).

An alternative method for characterizing extremes,
making more efficient use of available data than the
block maxima approach, is known as the peaks-over-
threshold (POT) approach. The idea is to set a thresh-
old, say r�, and study the distribution of all observa-
tions rn that exceed this threshold. Thus, the object
of interest is the conditional probability distribution
Prob.rn � r� > z j rn > r�/, with z > 0. Under
fairly general conditions, this distribution converges to
1 � H.z/ for high thresholds r�, where H.z/ is the
generalized Pareto distribution (GPD):

H.z/ D 1 �
�

1 C � z

Q�
��1=�

:

The parameters of the GPD family of distributions are
directly related to those of the GEV distribution: the
shape parameter � is the same in both, whereas the
threshold-dependent scale parameter is Q� D �C�.r��
�/ with � and � as in the GEV distribution.

By inferring the parameters of the GPD or GEV
distributions from a given dataset, one can calculate
probabilities of extremes that are not present them-
selves in that dataset (but have the same underlying
distribution as the available data). In principle, this
makes it possible to assess risks of events that have not
been observed, provided the conditions on convergence
to GPD or GEV distributions are met.
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As mentioned, classical results on extreme value
theory apply to iid random variables. These results
have been generalized to time-correlated random vari-
ables, both stationary and nonstationary [7]. This is
important for weather and climate applications, where
datasets considered in the context of extremes are often
time series. Another relevant topic is the development
of multivariate extreme value theory [11].

Stochastic Methods

Given the sheer complexity of climate-atmosphere-
ocean (CAO) dynamics, when studying the global cli-
mate system or some parts of global oscillation patterns
such ENSO or PDO, it is natural to try to separate
the global dynamics occurring on longer time scales
from local processes which occur on much shorter
scales. Moreover, as mentioned before, climate and
weather prediction models are based on a numerical
discretization of the equations of motion, and due to
limitations in computing resources, it is simply impos-
sible to represent the wide range of space and time
scales involved in CAO. Instead, general circulation
models (GCMs) rely on parameterization schemes to
represent the effect of the small/unresolved scales on
the large/resolved scales. Below, we briefly illustrate
how stochastic models are used in CAO both to build
theoretical models that separate small-scale (noise) and
large-scale dynamics and to “parameterize” the effect
of small scales on large scales. A good snapshot on the
state of the art, during the last two decades or so, in
stochastic climate modeling research can be found in
[26, 52].

Model Reduction for Noise-Driven Large-Scale
Dynamics
In an attempt to explain the observed low-frequency
variability of CAO, Hasselmann [23] splits the system
into slow climate components (e.g., oceans, biosphere,
cryosphere), denoted by the vector x, and fast com-
ponents representing the weather, i.e., atmospheric
variability, denoted by a vector y. The full climate
system takes the form

dx

dt
D u.x; y/ (2)

dy

dt
D v.x; y/;

where t is time and u.x; v/ and v.x; y/ contain the
external forcing and internal dynamics that couple the
slow and fast variables.

Hasselmann assumes a large scale-separation
between the slow and fast time scales: �y D
O

 
yj

�
dyj

dt

��1
!

� �x D O

 
xi

�
dxi

dt

��1
!

, for

all components i and j . The time scale separation
was used earlier to justify statistical dynamical models
(SDM) used then to track the dynamics of the climate
system alone under the influence of external forcing.
Without the variability due to the internal interactions
of CAO, the SDMs failed badly to explain the observed
“red” spectrum which characterizes low-frequency
variability of CAO.

Hasselmann made the analogy with the Brownian
motion (BM), modeling the erratic movements of a few
large particles immersed in a fluid that are subject to
bombardments by the rapidly moving fluid molecules
as a “natural” extension of the SDM models. Moreover,
Hasselmann [23] assumes that the variability of x can
be divided into a mean tendency hdx=dti D hu.x; y/i
(Here h:i denotes average with respect to the joint
distribution of the fast variables.) and a fluctuation
tendency dx0=dt D u.x; y/ � hu.x; y/i D u0.x; y/

which, according to the Brownian motion problem, is
assumed to be a pure diffusion process or white noise.
However, unlike BM, Hasselmann argued that for the
weather and climate system, the statistics of y are
not in equilibrium but depend on the slowly evolving
large-scale dynamics and thus can only be obtained
empirically. To avoid linear growth of the covariance
matrix hx0 ˝ x0i, Hasselmann assumes a damping
term proportional to the divergence of the background
frequency F.0/ of hx0 ˝x0i, where ı.! � !0/Fij.!/ D
hVi.!/Vj .!0/i with V.!/ D 1

2�

R1
�1 u0.t/e�i!t dt.

This leads to the Fokker-Plank equation: [23]

@p.x; t/

@t
Crx �.Ou.x/p.x; t// D rx �.Drxp.x; t// (3)

for the distribution p.x; t/ of x.t/ as a stochastic
process given that x.0/ D x0, where D is the nor-
malized covariance matrix D D hx0 ˝ x0i=2t and
Ou D hui��rx �F.0/. Given the knowledge of the mean
statistical forcing hui, the evolution equation for p can
be determined from the time series of x obtained either
from a climate model simulation of from observations.
Notice also that for a large number of slow variables xi ,



1382 Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science

the PDE in (3) is impractical; instead, one can always
resort to Monte Carlo simulations using the associated
Langevin equation:

dx D Ou.x/dt C †.x/dW t (4)

where †.x/†.x/T D D.x/. However, the functional
dependence of Ou and D remains ambiguous, and rely-
ing on rather empirical methods to define such terms
is unsatisfactory. Nonetheless, Hasselmann introduced
a “linear feedback” version of his model where the
drift or propagation term is a negative definite linear
operator: Ou.x/ D Ux and D is constant, independent
of x as an approximation for short time excursions of
the climate variables. In this case, p.x; t/ is simply a
Gaussian distribution whose time-dependent mean and
variance are determined by the matrices D and U as
noted in the inverse modeling section above.

Due to its simplicity, the linear feedback model is
widely used to study the low-frequency variability of
various climate processes. It is, for instance, used in
[17] to reproduce the observed red spectrum of the
sea surface temperature in midlatitudes using simula-
tion data from a simplified coupled ocean-atmosphere
model. However, this linear model has severe limi-
tations of, for example, not being able to represent
deviations from Gaussian distribution of some climate
phenomena [13, 14, 17, 36, 51, 54]. It is thus natural
to try to reincorporate a nonlinearity of some kind
into the model. The most popular idea consisted in
making the matrix D or equivalently † dependent on
x (quadratically for D or linearly for † as a next
order Taylor correction) to which is tied the notion
of multiplicative versus additive (when D is constant)
noise [37, 60]. Beside the crude approximation, the
apparent advantage of this approach is the maintaining
of the stabilizing linear operator U in place although it
is not universally justified.

A mathematical justification for Hasselmann’s
framework is provided by Arnold and his collaborators
(see [2] and references therein). It is based on the
well-known technique of averaging (the law of large
numbers) and the central limit theorem. However, as in
Hasselmann’s original work, it assumes the existence
and knowledge of the invariant measure of the
fast variables. Nonetheless, a rigorous mathematical
derivation of such Langevin-type models for the slow
climate dynamics, using the equations of motion in

discrete form, is possible as illustrated by the MTV
theory presented next.

The Systematic Mode Reduction MTV Methodology
A systematic mathematical methodology to derive
Langevin-type equations (4) à la Hasselmann, for the
slow climate dynamics from the coupled atmosphere-
ocean-land equations of motion, which yields the
propagation (or drift) and diffusion terms Ou.x/ and
D.x/ in closed form, is presented in [44,45] by Majda,
Timofeyev, and Vanden-Eijnden (MTV).

Starting from the generalized form of the discretized
equations of motion

dz

dt
D Lz C B.z; z/ C f .t/

where L and B are a linear and a bilinear operators
while f .t/ represent external forcing, MTV operate
the same dichotomy as Hasselmann did of splitting
the vector z into slow and fast variables x and y, re-
spectively. However, they introduced a nondimensional
parameter 	 D �y=�x which measures the degree of
time scale separation between the two sets of variables.
This leads to the slow-fast coupled system

dx D	�1 .L11x C L12y/ dt C B1
11.x; x/dt

C 	�1
�
B1

12.x; y/ C B1
22.y; y/

	
dt

C Dxdt C F1.t/dt C 	�1f1.	
�1t/ (5)

dy D	�1
�
L21x C L22y C B2

12.x; y/ C B2
22.y; y/

	
dt

� 	�2
ydt C 	�1�dW t C 	�1f2.	�1t/

under a few key assumptions, including (1) the non-
linear self interaction term of the fast variables is
“parameterized” by an Ornstein-Uhlenbeck process:
B2

22.y; y/dt WD �	�1
ydt Cp
	

�1
dW t and (2) a small

dissipation term 	Dxdt is added to the slow dynamics
while (3) the slow variable forcing term assumes slow
and fast contributions f1.t/ D 	F1.	t/ C f1.t/. More-
over, the system in (5) is written in terms of the slow
time t �! 	t .

MTV used the theory of asymptotic expansion ap-
plied to the backward Fokker-Plank equation associ-
ated with the stochastic differential system in (5) to
obtain an effective reduced Langevin equation (4) for
the slow variables x in the limit of large separation
of time scales 	 �! 0 [44, 45]. The main advantage
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of the MTV theory is that unlike Hasselmann’s ad
hoc formulation, the functional form of the drift and
diffusion coefficients, in terms of the slow variables,
are obtained and new physical phenomena can emerge
from the large-scale feedback besides the assumed
stabilization effect. It turns out that the drift term is
not always stabilizing, but there are dynamical regimes
where growing modes can be excited and, depending
on the dynamical configuration, the Langevin equation
(4) can support either additive or multiplicative noise.

Even though MTV assumes strict separation of
scales, 	 � 1, it is successfully used for a wide
range of examples including cases where 	 D O.1/

[46]. Also in [47], MTV is successfully extended
to fully deterministic systems where the requirement
that the fast-fast interaction term B22.y; y/ in (5) is
parameterized by an Ornstein-Uhlenbeck process is
relaxed. Furthermore, MTV is applied to a wide range
of climate problems. It is used, for instance, in [19] for
a realistic barotropic model and extended in [18] to a
three-layer quasi-geostrophic model. The example of
midlatitude teleconnection patterns where multiplica-
tive noise plays a crucial role is studied in [42]. MTV is
also applied to the triad and dyad normal mode (EOF)
interactions for arbitrary time series [40].

Stochastic Parametrization
In a typical GCM, the parametrization of unresolved
processes is based on theoretical and/or empirical
deterministic equations. Perhaps the area where
deterministic parameterizations have failed the
most is moist convection. GCMs fail very badly
in simulating the planetary and intra-seasonal
variability of winds and rainfall in the tropics due
to the inadequate representation of the unresolved
variability of convection and the associated cross-
scale interactions behind the multiscale organization
of tropical convection [35]. To overcome this problem,
some climate scientists introduced random variables to
mimic the variability of such unresolved processes.
Unfortunately, as illustrated below, many of the
existing stochastic parametrizations were based on
the assumptions of statistical equilibrium and/or of a
stationary distribution for the unresolved variability,
which are only valid to some extent when there is scale
separation.

The first use of random variables in CGMs appeared
in Buizza et al. [6] as means for improving the skill
of the ECMWF ensemble prediction system (EPS).

Buizza et al. [6] used uniformly distributed random
scalars to rescale the parameterized tendencies in the
governing equations. Similarly, Lin and Neelin [38]
introduced a random perturbation in the tendency of
convective available potential energy (CAPE). In [38],
the random noise is assumed to be a Markov process of
the form �tC�t D 	t �t C zt where zt is a white noise
with a fixed standard deviation and 	t is a parameter.
Plant and Craig [57] used extensive cloud-permitting
numerical simulations to empirically derive the param-
eters for the PDF of the cloud base mass flux itself
whose Poisson shape is determined according to ar-
guments drawn from equilibrium statistical mechanics.
Careful simulations conducted by Davoudi et al. [10]
revealed that while the Poisson PDF is more or less
accurate for isolated deep convective clouds, it fails to
extend to cloud clusters where a variety of cloud types
interact with each other: a crucial feature of organized
tropical convection.

Majda and Khouider [43] borrowed an idea from
material science [28] of using the Ising model of
ferromagnetization to represent convective inhibition
(CIN). An order parameter � , defined on a rectangular
lattice, embedded within each horizontal grid box of
the climate model, takes values 1 or 0 at a given
site, according to whether there is CIN or there is
potential for deep convection (PAC). The lattice model
makes transitions at a given site according to intuitive
probability rules depending both on the large-scale cli-
mate model variables and on local interactions between
lattice sites based on a Hamiltonian energy principle.
The Hamiltonian is given by

H.�; U / D �1

2

X
x;y

J.jx�yj/�.x/�.y/Ch.U /
X

x

�x

where J.r/ is the local interaction potential and h.U /

is the external potential which depends on the climate
variables U and where the summations are taken over
all lattice sites x; y. A transition (spin-flip by analogy
to the Ising model of magnetization) occurs at a site
y if for a small time � , we have �tC� .y/ D 1 �
�t .y/ and �tC� .x/ D �t .x/ if x ¤ y. Transitions
occur at a rate C.y; �; U / set by Arrhenius dynamics:
C.x; �; U / D 1

�I
exp.��xH.�; U // if �x D 0 and

C.x; �; U / D 1
�I

if �x D 1 so that the resulting Markov
process satisfies detailed balance with respect to the
Gibbs distribution �.�; U / / exp.�H.�; U /. Here
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�xH.�; U // D H.� CŒ1��.x/�ex/; U /�H.�; U / D
�Pz J.jx � zj/�.z/ C h.U / with ex.y/ D 1 if y D x

and 0 otherwise.
For computational efficiency, a coarse graining of

the stochastic CIN model is used in [34] to derive a
stochastic birth-death process for the mesoscopic area
coverage 
X D P

x2X �.x/ where X represents a
generic site of a mesoscopic lattice, which in practice
can be considered to be the GCM grid. The stochastic
CIN model is coupled to a toy GCM where it is
successfully demonstrated how the addition of such a
stochastic model could improve the climatology and
waves dynamics in a deficient GCM [34, 42].

This Ising-type modeling framework is extended in
[33] to represent the variability of organized tropical
convection (OTC). A multi-type order parameter is
introduced to mimic the multimodal nature of OTC.
Based on observations, tropical convective systems
(TCS) are characterized by three cloud types, cumulus
congestus whose height does not exceed the freezing
level develop when the atmosphere is dry, and there is
convective instability, positive CAPE. In return conges-
tus clouds moisten the environment for deep convective
towers. Stratiform clouds that develop in the upper
troposphere lag deep convection as a natural freezing
phase in the upper troposphere. Accordingly, the new
order parameter � takes the multiple values 0,1,2,3, on
a given lattice site, according to whether the given site
is, respectively, clear sky or occupied by a congestus,
deep, or stratiform cloud.

Similar Arrhenius-type dynamics are used to build
transition rates resulting in an ergodic Markov process
with a well-defined equilibrium measure. Unphysi-
cal transitions of congestus to stratiform, stratiform
to deep, stratiform to congestus, clear to stratiform,
and deep to congestus were eliminated by setting the
associated rates to zero. When local interactions are
ignored, the equilibrium measure and the transition
rates depend only on the large-scale climate variables
U where CAPE and midlevel moisture are used as
triggers and the coarse-graining process is carried with
exact statistics. It leads to a multidimensional birth-
death process with immigration for the area fractions
of the associated three cloud types. The stochastic
multicloud model (SMCM) is used very successfully
in [20, 21] to capture the unresolved variability of
organized convection in a toy GCM. The simula-
tion of convectively coupled gravity waves and mean

climatology were improved drastically when compared
to their deterministic counterparts. The realistic statis-
tical behavior of the SMCM is successfully assessed
against observations in [56]. Local interaction effects
are reintroduced in [32] where a coarse-graining ap-
proximation based on conditional expectation is used
to recover the multidimensional birth-death process
dynamics with local interactions. A Bayesian method-
ology for inferring key parameters for the SMCM is
developed and validated in [12]. A review of the basic
methodology of the CIN and SMCM models, which is
suitable for undergraduates, is found in [31].

A systematic data-based methodology for inferring
a suitable stochastic process for unresolved processes
conditional on resolved model variables was proposed
in [9]. The local feedback from unresolved processes
on resolved ones is represented by a small Markov
chain whose transition probability matrix is made de-
pendent on the resolved-scale state. The matrix is
estimated from time series data that is obtained from
highly resolved numerical simulations or observations.
This approach was developed and successfully tested
on the Lorenz ’96 system [39] in [9]. [16] applied it to
parameterize shallow cumulus convection, using data
from large eddy simulation (LES) of moist atmospheric
convection. A two-dimensional lattice, with at each
lattice node a Markov chain, was used to mimic (or
emulate) the convection as simulated by the high-
resolution LES model, at a fraction of the computa-
tional cost.

Subsequently, [15] combined the conditional
Markov chain methodology with elements from the
SMCM [33]. They applied it to deep convection
but without making use of the Arrhenius functional
forms of the transition rates in terms of the large-scale
variables (as was done in [33]). Similar to [16], LES
data was used for estimation of the Markov chain
transition probabilities. The inferred stochastic model
in [15] was well capable of generating cloud fractions
very similar to those observed in the LES data. While
the main cloud types of the original SMCM were
preserved, an important improvement in [15] resides
in the addition of a fifth state for shallow cumulus
clouds. As an experiment, direct spatial coupling of
the Markov chains on the lattice was also considered
in [15]. Such coupling amounts to the structure of
a stochastic cellular automaton (SCA). Without this
direct coupling, the Markov chains are still coupled,
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but indirectly, through their interaction with the large-
scale variables (see, e.g., [9]).
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Abstract

We present approaches for the study of fluid-structure
interactions subject to thermal fluctuations. A me-
chanical description is utilized combining Eulerian
and Lagrangian reference frames. We establish general
conditions for the derivation of operators coupling
these descriptions and for the derivation of stochastic
driving fields consistent with statistical mechanics. We
present stochastic numerical methods for the fluid-
structure dynamics and methods to generate efficiently
the required stochastic driving fields. To help establish
the validity of the proposed approach, we perform
analysis of the invariant probability distribution of the
stochastic dynamics and relate our results to statisti-
cal mechanics. Overall, the presented approaches are
expected to be applicable to a wide variety of systems
involving fluid-structure interactions subject to thermal
fluctuations.


