721 research outputs found

    Flexible active compensation based on load conformity factors applied to non-sinusoidal and asymmetrical voltage conditions

    Get PDF
    This study proposes a flexible active power filter (APF) controller operating selectively to satisfy a set of desired load performance indices defined at the source side. The definition of such indices, and of the corresponding current references, is based on the orthogonal instantaneous current decomposition and conformity factors provided by the conservative power theory. This flexible approach can be applied to single- or three-phase APFs or other grid-tied converters, as those interfacing distributed generators in smart grids. The current controller is based on a modified hybrid P-type iterative learning controller which has shown good steady-state and dynamic performances. To validate the proposed approach, a three-phase four-wire APF connected to a non-linear and unbalanced load has been considered. Experimental results have been generated under ideal and non-ideal voltage sources, showing the effectiveness of the proposed flexible compensation scheme, even for weak grid scenarios

    Key technologies of active power filter for aircraft: a review

    Get PDF
    Active Power Filter (APF) is not only an advanced technology to improve power quality and purify power system pollution but also a good approach to solve electrical problems of an advanced aircraft such as harmonic, reactive power and unbalanced load. However, there are still some specific problems for the application of aeronautic APF in practice. Based on current research on aeronautic APF, this paper reviews three key technologies where APF can be used in aircraft AC power supply system, including the acquisition method of reference current, the strategy of APF current control and the main circuit topology.  Consecutively, the features of current aeronautic APF research are summarized, and the future research directions are also suggested

    Recent Technologies and Control Methods for Electric Power Systems in More Electric Aircrafts: A Review

    Get PDF
    This paper is aimed at discussing the current trends in the design of Electric Power Systems (EPS) architectures which are intended to be implemented in More Electric Aircrafts (MEAs). Various EPS architectures such as HVAC, HVDC, hybrid HVAC/HVDC etc are studied and compared. Various control techniques which are implemented in order to control the EPS are also reviewed and they are compared on the basis of power quality, ease of installation and maintenance, possibility of future expansion of EPS, need of active power filters and so on. On the basis of the evaluation of various EPS architectures, the need of fuel cell installation in the EPS to be used for MEAs is explained and various ways to incorporate the fuel cell in the said EPS are discussed. Further the need of DC to DC converters in the power grid of a MEA is discussed and various possible choices for the topologies of DC to DC converters are compared on the basis of the parameters such as efficiency, transient response, reliability, electromagnetic emissions, size, weight and so on. Moreover, various controllers such as PI controller, PID controller, Sliding Mode Controller etc which can be used for a closed loop control of DC to DC converters are discussed

    Power Quality and Voltage Stability Enhancement of Terrestrial Grids and Shipboard Microgrids

    Get PDF

    ANFIS control of a shunt active filter based with a five-level NPC inverter to improve power quality

    Get PDF
    Š 2021 The Author(s). This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/).This paper addresses the problem of power quality, and the degradation of the current waveform in the distribution network which results directly from the proliferation of the nonlinear loads. We propose to use a five-level Neutral Point Clamped (NPC) inverter topology for the implementation of the shunt active filter (SAPF). The aim of the SAPF is to inject harmonic currents in phase opposition at the connection point. The identification of harmonics is based on the pq method. A neuro-fuzzy controller based on ANFIS (Adaptive Neuro Fuzzy Inference System) is designed for the SAPF. The simulation study is carried out using MATLAB/Simulink and the results show a significant improvement in the quality of energy and a reduction in Total Harmonic Distortion (THD) in accordance with IEC standard, IEEE-519, IEC 61000, EN 50160.Peer reviewe

    A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.publishedVersio

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    On Deep Machine Learning Based Techniques for Electric Power Systems

    Get PDF
    This thesis provides deep machine learning-based solutions to real-time mitigation of power quality disturbances such as flicker, voltage dips, frequency deviations, harmonics, and interharmonics using active power filters (APF). In an APF the processing delays reduce the performance when the disturbance to be mitigated is tima varying. The the delays originate from software (response time delay) and hardware (reaction time delay). To reduce the response time delays of APFs, this thesis propose and investigate several different techniques. First a technique based on multiple synchronous reference frame (MSRF) and order-optimized exponential smoothing (ES) to decrease the settling time delay of lowpass filtering steps. To reduce the computational time, this method is implemented in a parallel processing using a graphics processing unit (GPU) to estimate the time-varying harmonics and interharmonics of currents. Furthermore, the MSRF and three machine learning-based solutions are developed to predict future values of voltage and current in electric power systems which can mitigate the effects of the response and reaction time delays of the APFs. In the first and second solutions, a Butterworth filter is used to lowpass filter the\ua0 dq\ua0 components, and linear prediction and long short-term memory (LSTM) are used to predict the filtered\ua0 dq\ua0 components. The third solution is an end-to-end ML-based method developed based on a combination of convolutional neural networks (CNN) and LSTM. The Simulink implementation of the proposed ML-based APF is carried out to compensate for the current waveform harmonics, voltage dips, and flicker in Simulink environment embedded AI computing system Jetson TX2.\ua0In another study, we propose Deep Deterministic Policy Gradient (DDPG), a reinforcement learning (RL) method to replace the controller loops and estimation blocks such as PID, MSRF, and lowpass filters in grid-forming inverters. In a conventional approach it is well recognized that the controller tuning in the differen loops are difficult as the tuning of one loop influence the performance in other parts due to interdependencies.In DDPG the control policy is derived by optimizing a reward function which measure the performance in a data-driven fashion based on extensive experiments of the inverter in a simulation environment.\ua0Compared to a PID-based control architecture, the DDPG derived control policy leads to a solution where the response and reaction time delays are decreased by a factor of five in the investigated example.\ua0Classification of voltage dips originating from cable faults is another topic addressed in this thesis work. The Root Mean Square (RMS) of the voltage dips is proposed as preprocessing step to ease the feature learning for the developed\ua0 LSTM based classifier. Once a cable faults occur, it need to be located and repaired/replaced in order to restore the grid operation. Due to the high importance of stability in the power generation of renewable energy sources, we aim to locate high impedance cable faults in DC microgrid clusters which is a challenging case among different types of faults. The developed Support Vector Machine (SVM) algorithm process the maximum amplitude and\ua0 di/dt\ua0 of the current waveform of the fault as features, and the localization task is carried out with\ua0 95 %\ua0 accuracy.\ua0Two ML-based solutions together with a two-step feature engineering method are proposed to classify Partial Discharges (PD) originating from pulse width modulation (PWM) excitation in high voltage power electronic devices. As a first step, maximum amplitude, time of occurrence, area under PD curve, and time distance of each PD are extracted as features of interest. The extracted features are concatenated to form patterns for the ML algorithms as a second step. The suggested feature classification using the proposed ML algorithms resulted in\ua0 95.5 %\ua0 and\ua0 98.3 %\ua0\ua0 accuracy on a test data set using ensemble bagged decision trees and LSTM networks

    An Effective Model Predictive Control Method With Self-Balanced Capacitor Voltages for Single-Phase Three-Level Shunt Active Filters

    Get PDF
    This paper presents an effective model predictive control (MPC) method for single-phase three-level T-type inverter-based shunt active power filters (SAPFs). The SAPF using T-type inverter topology has not been reported in the literature yet. Contrary to most of the existing MPC methods, the proposed MPC method eliminates the need for using weighting factor and additional constraints required for balancing dc capacitor voltages in the cost function. The design of cost function is based on the energy function. Since the factor used in the formulation of the energy function does not have any adverse influence on the performance of the system, the cost function becomes weighting factor free. The weighting factor free based MPC brings simplicity in the practical implementation. The effectiveness of the proposed MPC method has been investigated in steady-state as well as dynamic transients caused by load changes. The theoretical considerations are verified through experimental studies performed on a 3 kVA system
    • …
    corecore