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Abstract

This thesis provides deep machine learning-based solutions to real-time mit-
igation of power quality disturbances such as flicker, voltage dips, frequency
deviations, harmonics, and interharmonics using active power filters (APF).
In an APF the processing delays reduce the performance when the distur-
bance to be mitigated is tima varying. The the delays originate from software
(response time delay) and hardware (reaction time delay). To reduce the
response time delays of APFs, this thesis propose and investigate several dif-
ferent techniques. First a technique based on multiple synchronous reference
frame (MSRF) and order-optimized exponential smoothing (ES) to decrease
the settling time delay of lowpass filtering steps. To reduce the computational
time, this method is implemented in a parallel processing using a graphics
processing unit (GPU) to estimate the time-varying harmonics and interhar-
monics of currents. Furthermore, the MSRF and three machine learning-based
solutions are developed to predict future values of voltage and current in elec-
tric power systems which can mitigate the effects of the response and reaction
time delays of the APFs. In the first and second solutions, a Butterworth
filter is used to lowpass filter the dq components, and linear prediction and
long short-term memory (LSTM) are used to predict the filtered dq compo-
nents. The third solution is an end-to-end ML-based method developed based
on a combination of convolutional neural networks (CNN) and LSTM. The
Simulink implementation of the proposed ML-based APF is carried out to
compensate for the current waveform harmonics, voltage dips, and flicker in
Simulink environment embedded AI computing system Jetson TX2.

In another study, we propose Deep Deterministic Policy Gradient (DDPG),
a reinforcement learning (RL) method to replace the controller loops and
estimation blocks such as PID, MSRF, and lowpass filters in grid-forming in-
verters. In a conventional approach it is well recognized that the controller
tuning in the differen loops are difficult as the tuning of one loop influence the
performance in other parts due to interdependencies. In DDPG the control
policy is derived by optimizing a reward function which measure the perfor-
mance in a data-driven fashion based on extensive experiments of the inverter
in a simulation environment. Compared to a PID-based control architecture,
the DDPG derived control policy leads to a solution where the response and
reaction time delays are decreased by a factor of five in the investigated ex-
ample.
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Classification of voltage dips originating from cable faults is another topic
addressed in this thesis work. The Root Mean Square (RMS) of the voltage
dips is proposed as preprocessing step to ease the feature learning for the de-
veloped LSTM based classifier. Once a cable faults occur, it need to be located
and repaired/replaced in order to restore the grid operation. Due to the high
importance of stability in the power generation of renewable energy sources,
we aim to locate high impedance cable faults in DC microgrid clusters which
is a challenging case among different types of faults. The developed Support
Vector Machine (SVM) algorithm process the maximum amplitude and di/dt

of the current waveform of the fault as features, and the localization task is
carried out with 95% accuracy.

Two ML-based solutions together with a two-step feature engineering method
are proposed to classify Partial Discharges (PD) originating from pulse width
modulation (PWM) excitation in high voltage power electronic devices. As a
first step, maximum amplitude, time of occurrence, area under PD curve, and
time distance of each PD are extracted as features of interest. The extracted
features are concatenated to form patterns for the ML algorithms as a second
step. The suggested feature classification using the proposed ML algorithms
resulted in 95.5% and 98.3% accuracy on a test data set using ensemble bagged
decision trees and LSTM networks.

Keywords: Active Power filter, Deep Learning, Reinforcement learning, Ca-
ble faults, Voltage fluctuation, Flicker, Harmonics and Interharmonics, Ma-
chine Learning, phase locked loop, Partial Discharges, Voltage Dip.
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CHAPTER 1

Introduction

1.1 Problem definition

Electric power systems are defined as a system comprised of electrical com-
ponents to generate, transmit and distribute electricity to the utilities. By
nature, electric power systems behavior is highly time-variant, nonlinear, and
dynamic i.e. activation of circuit breakers, variation of load demands. Due to
the above-mentioned features, a stable and robust behavior of electric power
systems is challenging to be upheld and supported at all times. Besides, in
the last two decades, the number of nonlinear loads and distributed genera-
tors has increased very rapidly due to the expansion of electric power systems,
with new generation units such as solar panels,wind turbines, as well as the
connection of more complicated and nonlinear loads, including electric arc
furnaces (EAF), DC/AC drivers [1]. Furthermore, by developing and con-
necting more sensitive devices to the electric power system, the awareness
of power quality (PQ) issues has increased [2]. PQ concerns the deviations
from the ideal behavior of electric power systems as experienced by consumer
devices and can be categorized into two main areas: PQ events and varia-
tions. Voltage dips, swell, transients, and interruption are examples of PQ
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events, and frequency deviations, harmonics, interharmonics, voltage fluctu-
ations, and flicker are examples of PQ variations. According to [3]–[5], in
the global range, 96% of the PQ problems in power systems are related to
harmonics, voltage dips/fluctuation, flicker, and frequency deviation, which
can cause significant damage to the system, and to utilities connected to
the electric power system, leading to significant economical cost by the end
[6]–[8]. Therefore, automatic countermeasures and compensation techniques
should be developed for the problematic parts of the electric power systems.
According to the IEC-61000-2-1 standard [9] harmonics are defined as spec-
tral components of current or voltage waveform with a frequency equal to an
integer multiple of the fundamental frequency. The same standard defines
interharmonic as follows: between the harmonics of the power frequency volt-
age and current, further frequencies can be observed which are not an integer
of the fundamental. Voltage dips are short, temporary drops (due to cable
faults in a majority of cases) in the voltage magnitude in the distribution or
customer’s electrical system as stated in IEC Standard 61000-4-30 [10]. Cable
faults are defined as any break in the cables, short circuit among cables and
the earth. The flicker phenomenon is an objectionable consequence of random
or periodic fluctuations on the voltage waveform envelope, as defined in IEC
61000-4-15 standard [11]. These fluctuations is referred to as "light flicker"
with the frequency range of 1 and 30 Hz.

Based on current literature on PQ analysis and compensation in medium
and high voltage systems, real time mitigation of highly time varying PQ issues
is still a challenging problem due to delays [12]–[18] see 1.1. These delays can
be categorized into two main parts: (i) response time delay sources from the
response time of control algorithms [19], [20], filters [21]–[23], and (ii) reaction
time delays originating from hardware such as response time of sensors [24]–
[26], processors [27], [28], data acquisition units [29], and boost inductors/
capacitor [20], [30] used in APFs and grid connected inverters/Converters.

Among various types of cable faults in electric power systems, the cable
faults occurring in DC lines are more challenging compared to AC power sys-
tems [31]. The AC waveform contains more frequency and amplitude informa-
tion than the DC signal, which is only defined by the amplitude. Analyzing
these pieces of information helped AC systems have a more advanced protec-
tion system to detect the location of AC cable faults and their location [32]–
[35]. Therefore, detection of the location of DC cable faults requires further

4



1.1 Problem definition

Figure 1.1: Classification of APF according to power rating and delays [12], [15]

attention.
Another problem in electric power systems is the failure of components

that are caused by partial discharges (PD). PDs are among the most common
issues in electric devices connected to high voltage electric power systems. PD
is defined as a partial but not complete breakdown of dielectrics in insulation
systems due to high voltage stress between conductors [36]. It usually occurs
due to voids and flaws in high voltage insulation systems, and it can eventually
lead to a full breakdown of the insulation if it is left undetected. The presence
of PDs is considered a weakness in electrical devices and is in 70% − 80%
the reason for the breakdown of high voltage electric devices of the cases
[37]–[40]. For example, the existence of PD indicates an incipient insulation
fault and can be regarded as an early warning sign of electrical insulation
deterioration in electric power systems. Many studies analyze and classify
PDs originating from sinusoidal shape waveforms. However, the most recent
studies have reported a new type of PDs that originates from pulse width
modulation (PWM) excitation in high voltage energy conversion units such
as variable frequency/speed drives and inverters. These types of high voltage
waveforms can also cause insulation deterioration, yet little or no research has
addressed their fingerprints and root cause.

5
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Figure 1.2: Overview of the electric power systems together with identified prob-
lems.

1.2 Aim and outline of thesis
Based on the current literature and discussion with industries, in this thesis
we aim to look to electric power systems from generation to consumers and
develop tools that provide complementary solutions to unsolved problems in
this context (see Fig. 1.2). An outline of the thesis contents is:

• The delay in mitigating the PQ disturbances is the first problem identi-
fied to be solved. For this case, we aim to develop predictive APF which
has almost no delay compared to trivial APF. The idea is to predict
voltage and current to mitigate the settling time delays of components
that are source of response and reaction time delays. In Chapter 2 the
thesis gives an overview of the nature of PQ disturbances and the con-
sequences of their occurrence in electrical power systems. Moreover, a
brief introduction to existing methodologies for estimating and compen-
sating the harmonics, interharmonics, flicker, and voltage dips will be
discussed. We will also discuss the drawbacks and limitations of the
existing APFs/inverters, and show how the proposed methods mitigate
the problems. These studies are presented in paper A and B in detail

6
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and theirs summary and contribution are addressed in Chapter 2.

• For the case of mitigating disturbances by grid-forming inverters, we
aimed to develop deep deterministic policy gradient (DDPG) a type of
reinforcement learning (RL) based grid forming-inverter. The details of
this approach is presented in paper C and Chapter 2 covers the overview
of the RL-based inverter, the paper summary and contributions.

• We also give a brief background review on voltage dips and their classi-
fication methods, including our proposed solution. The details of these
methods are given in paper D and the contributions and summary of
the paper are addressed in Chapter 2.

• We also proposed an ML-based solution for the localization of the high
impedance cable faults in DC lines. This study is presented in paper
E, and the summary and short discussion on the existing methodologies
are given in Chapter 2.

• In the case of analyzing the reasons for equipment failure in electric
power systems, Chapter 3 of this thesis aims to propose solutions for
the classification of PDs. This study targets the PDs originating from
PWM excitation in power electronics devices such as APFs, inverters,
and drives. This chapter includes an introduction to PDs and a lit-
erature review on existing methods for measuring and classifying the
PDs originating from sinusoidal and DC waveforms. Moreover, the de-
tails of the proposed methods for measurement and classification of PDs
originating from PWM excitation is given in paper F.

The summary of the defined problems and provided solutions is illustrated
in Fig. 1.3. The path to provided solution is shown with red arrows and
boxes.

7
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Figure 1.3: Overview of the defined problems and provided solutions in electric
power systems together with some examples from the existing solu-
tions.
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CHAPTER 2

Prediction and Mitigation of PQ Disturbances

This chapter will give a brief introduction, possible causes, and consequences
of the existence of the most common PQ disturbances in electric power sys-
tems. Furthermore, we will also address the available solution for mitigation
and analysis of them. Finally, we briefly touch on the developed methodologies
and contributions.

2.1 Harmonics and interharmonics
Voltage and current harmonics and interharmonics are originated due to the
operation principle of nonlinear loads or generators. This results in voltage
and current waveforms that differ from the sinusoidal shape with the fun-
damental frequency of the electric power systems. They can cause various
problems impacting the quality of the electric power system in all generation,
transmission, and distribution levels, including :

• reducing the performance of energy generation units (generators, invert-
ers),

• heating in the transmission cables, winding of transformers and motors



Paper

which leads to insulation degradation, energy losses and reduced lifetime,

• cause of vibration and malfunctions on the motors,

• potential amplification of some harmonics due to parallel or series res-
onance in components such as capacitors which in turn can lead to fre-
quency deviations and in severe cases can cause a blackout in electric
power systems.

Power filters are used to mitigate harmonics and interharmonics caused by
nonlinear components and loads in the power system. These filters can be
categorized into two main classes: active and passive power filters. Passive
filters are a combination of capacitors and inductors used to suppress harmonic
currents. The passive filters have a limited capacity to mitigate time-varying
harmonics and interharmonics originating from some nonlinear loads. APFs
are the most well-known choice over classical passive filters due to higher
efficiency and being capable of actively adapting to variations in the harmonics
and interharmonics level in power system for mitigation purposes [41], [42].
Compensation is usually tackled by estimating the amplitudes and phases of
the undesired frequency components (harmonics and interharmonics) in real-
time and canceling them by supplying currents with the same amplitudes but
opposite phase.

Harmonics and interhamonics estimation methods can be classified into two
main classes, time-domain based and frequency domain based methods [13].
This classification is illustrated in more detail with some method examples
from each domain in Table 2.1.

The frequency domain-based approaches, DFT, FFT, and RDFT, are dis-
cussed and implemented as harmonic estimation methods for APFs in [13].
RDFT and DFT are used to analyze, detect and compensate harmonics and
resonance damping using APFs. Another RDFT based harmonics detection
method is used for harmonic compensation in [43]. RDFT is used to gener-
ate the reference current signal for a single-phase shunt compensator in [44].
A method based on the estimation of overall phases of harmonics together
with a sliding DFT is proposed by Hao et al. in [45] to improve the response
time in selective harmonic compensation systems. A selective harmonic sup-
pression methodology is developed for stability analysis of shunt active power
filter (SAPF) in [46]. Sliding DFT is used in [47] to estimate harmonics
and synchronize to act as an adaptive-harmonic compensator in PV systems.
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2.2 Voltage fluctuation and Flicker

Table 2.1: Overview of the most common PQ estimation methods used in APFs
Domain PQ estimation method
Frequency domain Discrete Fourier Transform(DFT)

Fast Fourier Transform (FFT)
Recursive Discrete Fourier transform (RDFT)

Time domain Synchronous fundamental dq frame
Synchronous individual harmonic dq frame
Instantaneous power pq theory and variants
Generalized integrator and variants

Generalized DFT is another method, which is shown to be a simple, fast, and
flexible method to extract harmonics selectively [48]. In [49], recursive and
nonrecursive versions of DFT are used to compute reference current wave-
forms for APFs. A DFT-based method in [50] is proposed to track frequencies
and the corresponding amplitudes and phases. In [51], FFT methods are used
to extract harmonics for single-phase shunt active filters as part of a multi-
level inverter. A dominant harmonics elimination based on FFT is proposed
in [52].

For time domain-based, a detailed investigation on the implementation of
pq theory and synchronous reference frame (SRF), together with their mod-
ified version is conducted in [53]. In [13] a synchronous dq frame analysis,
synchronous individual harmonic dq frame, instantaneous power pq theory
and variants and Generalized integrator and variants are also implemented
and discussed as a harmonic estimation method. The method has some draw-
backs, such as implementing a Phase Lock Loop (PLL) to calculate the refer-
ence angle. In [54] a fast, selective harmonic current compensation method is
developed with active power filter capabilities based on SRF and two degrees-
of-freedom internal model controllers.

2.2 Voltage fluctuation and Flicker
Voltage fluctuations, and the corresponding light flicker due to them, are usu-
ally created by large power fluctuations at frequencies less than about 30
Hz. These fluctuations can be caused by large nonlinear loads such as EAFs,
motors, and even reactive power compensator (a type of APF) and cyclo-
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converters. Besides health-related issues, flickering lights can cause nuisance
tripping of equipment because of the misoperation of relays and contactors.
Fluctuations can also cause unwanted activation of uninterruptible power sup-
plies (UPS) units to battery mode as well as problems with sensitive electronic
equipment that requires consistent voltage (e.g., medical laboratories). Very
large voltage fluctuation due to lack of power can also cause frequency devi-
ations. Compared to harmonics compensation, a limited amount of research
has been conducted on flicker compensation and mostly they are based on
using active filters. The basic idea of the APFs/inverters is to dynamically in-
ject a current (in shunt connection) or voltage (in series connection) of desired
amplitude, frequency, and phase into the grid. The injected current/voltage
will increase voltage amplitude at the PCC. With such a controllable injection
of the current or voltage we can limit voltage variations. Some examples of
using APF for the compensation of voltage fluctuations and flicker are:

• PV-Fed smart inverters for mitigation of voltage and Frequency Fluctu-
ations in islanded microgrids [55],

• Energy-storage fed smart inverters for Mitigation of Voltage Fluctua-
tions in islanded microgrids [56]

• voltage flicker mitigation studies with a current controlled PWM-based
DSTATCOM [57],

• mitigation of arc furnace voltage flicker using an innovative scheme of
adaptive notch filters [58],

• synthesis and evaluation of fast on-load multi-tap changers for flicker
compensation in AC arc furnaces [59],

• selective interharmonic compensation to improve STATCOM perfor-
mance for light flicker mitigation [60].

Almost all studies suggest using APF/inverter for the flicker and voltage fluc-
tuation compensations. Therefore, the real-time compensation of time-varying
fluctuation can be the issue that needs to be moderated.
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2.3 Voltage dip

2.3 Voltage dip
Voltage dips may be caused by various faults in the transmission and distribu-
tion networks, faults in the connected equipment, or high inrush and switching
currents in the customer’s installation. They can be relevant to many parts
of the electric power system (generation, transmission, and distribution), al-
beit different performance parameters are needed for different stakeholders.
Many types of electrical equipment are sensitive and can become damaged or
malfunction by voltage dips including, but not limited, to variable frequency
drives (VFD), motors, and PLCs. Therefore, such a phenomenon has to be an-
alyzed and mitigated. This subsection will briefly introduce the classification
and mitigation of voltage dips.

Classification of voltage dip
The most well-known solution to understand the characteristics of the volt-
age dips is their classification. They can occur repetitively within a short
measurement interval due to the operation principle of the circuit breakers
or self-recovering faults in cables. Having a classification can help to reduce
downtime and contribute to fast repair of the electric power system. It can
give clues for understanding, for example if the voltage dip is caused by a
short connection of two phases (phase to phase fault) or short connection of
one of the cables to the ground (single phase to ground) or overload effect on
the system. Therefore we can find the responsible faulty phase fast and define
the possible solution to mitigate it. This type of analysis can also help better
grid planning and design. There are several comprehensive survey papers on
the characterization of voltage dips and their challenges [61]–[63].

The literature can be roughly divided into two categories for extracting volt-
age dip features. The first category of methods (conventional ones) extracts
features of different types of voltage dips by translating/converting human
experts’ knowledge into analytic models, methods, and algorithms. This cate-
gory of feature extraction methods utilizes the hand-crafted feature extraction
in the ML community [64]–[69]. The second category of methods is based on
feature learning by using a large amount of training data where the features
are extracted and modeled using deep learning-based methods such as CNN
[70], [71], LSTM [72], and autoencoders [73], [74].

The benefit of deep learning-based methods is that they do not require
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several layers of explicit feature engineering methods, defining thresholds, and
taking steps toward automatizing voltage dip event analysis and classification.

This thesis proposes deep learning-based methods that can learn and classify
voltage dips using a large amount of voltage dip data. The details of both the
proposed method and feature engineering together with experimental results
are provided in paper D [75].

Location of faults in DC lines
Cable faults are damages to cables that affect the resistance in the cable. If
allowed to persist, this can lead to high overcurrents and damage the electric
power system. There are different types of cable faults. From a high-level per-
spective, they can be categorized into cable faults in DC and AC networks.
Despite the advantages of DC networks such as no requirement for generator
synchronization, the possibility of delivering more power, and no skin effect,
dealing with cable faults in DC networks is more challenging thanks to their
complications in the protection schema [76]. Plus, since the DC lines are
mostly are underground or underwater, and it is more challenging to detect
the fault in such conditions than the AC lines above ground. Compared to
studies for the detection of cable faults in AC networks, there are limited
amounts of research to detect cable faults in DC networks. Among the DC
cable faults, detecting high impedance faults is the most challenging task be-
cause the observable pattern changes in the current shape are hard to detect.
Thus the localization of high impedance DC cable faults is the target in this
case of study. The primary focus of recent research work is offline techniques
for the detection of the location of the DC cable faults [76]–[80]. Techniques
widely used in industry are trace methods using acoustic or electromagnetic
approaches [76], [77], which are time-consuming. Traveling-wave-based meth-
ods have also been developed using different algorithms [78]–[80]. However,
when the system structure is complex (for example, meshed for multi-terminal
connection), many reflections occur, influencing location results. Another
drawback of the existing methods is that a detailed cable model is required
for accurate fault location using the transient response to a high-frequency
pulse. The majority of ML-based methods for the detection of cable faults are
carried out for the AC networks [81]–[83]. Inspired by these contributions, we
propose simple, effective ML-based methods to identify the location of cable
faults in the DC network. The details of ML methods and feature engineering
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steps are presented in paper E.

Voltage dip mitigation

When a fault occurs, e.g., a short circuit between one phase lead and ground,
it means that there is a power flow to the ground in one location. Therefore,
the voltage level will drop, and as a consequence of such a problem, the other
customers connected to the electric power system will experience a voltage
dip event, which means a momentary lack of power. To prevent this issue
a circuit breaker trips to disconnect the short circuit from the grid, and it
is imperative for the electric power systems to be equipped with solutions
to mitigate the effects of such a problem. There are several ways to mitigate
voltage dips: (i) Upgrading the protection system to reduce the circuit breaker
delays. (ii) Increasing the equipment immunity to voltage dips; The tolerance
of the equipment satisfy based on the voltage-tolerance curve introduced by
IEEE Std.1346-1998 [84]. (iii) Mitigation equipment at the interface where
they can also be categorized into transformer based [85]–[87], motor generator
based [88], and power electronics based [89]–[94].

The motor-based solution has low initial costs and enables long-duration
ride through (several seconds) but can only be used in an industrial environ-
ment, due to its size, noise, and maintenance requirements. Transformer-based
solutions are suitable for low-power and constant loads. However, this solution
is a passive method, and it can suffer from delays in a dynamic environment.

Power electronics-based solutions such as APF and grid-supporting inverters
are historically less costly, and they are more suitable for industrial customers
with high PQ demands. The basic idea of these devices is to dynamically inject
a current (in shunt connection) or voltage (in series connection) of desired
amplitude, frequency, and phase into the grid. The injected current/voltage
will increase voltage amplitude at the PCC. Such a controllable injection of
the current or voltage limits voltage drop.

As indicated by the above summary, compared to available solutions such
as motor, transformer, renovation of electric power system components, APF/
inverter installation is indeed a feasible long-term solution to reduce the im-
pact of voltage dips.
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2.4 Active power filters for compensation of
harmonics, interharmonics, flicker, and voltage
dips

One of the issues in implementing APF is the ability (i) to real-time measure
and estimate (ii) to have fast hardware and control strategy to compensate the
PQ disturbances. A large number of methods [13]–[18] have been developed
to address these challenges. However, they usually suffer from delays that
challenge fast response and mitigation of time varying PQ disturbances. The
amount of delay can differ depending on the operating power level of APFs (see
Fig. 1.1). Recall from the introduction chapter, the delays are categorized into
response [15], [95]–[98] and reaction [96], [97], [99] time delays. The response
time delay is the summation of the effect of the settling time delays of the
component used in the software part of APFs and reaction time delay is the
summation of settling time delays of physical components used in the hardware
of APFs. The software and hardware part of a shunt APF with a feed-forward
configuration is illustrated in Fig. 2.1. The delays of the software part includes
the settling time delay of estimation methods [13], controllers, [19], [20], digital
filters [21]–[23], and the delay of the hardware includes settling time delay of
sensors [24]–[26], [100], processors [27], [28], data acquisition units [29], and
boost inductors / capacitor [20], [30], [101] used in APFs. The choices of
each component depend on power level, PQ disturbances, expenses of the
components. For instance, if the PQ disturbance is highly time-varying (in
the range of milliseconds), the components have to have a minimal response
time, which is an irrelevant factor when dealing with the PQ disturbances
that vary over hours.

As an example, we will investigate the Fig. 2.2 (a) illustrates the settling
time of control algorithms that can be used in APFs.

Based on Fig. 2.2 (a), the settling time delay of control algorithm is defined
as the time difference between initial state (t1) and final state (t2 or t3) where
the system’s response has reached the desired stable situation. The acceptable
settling time delay can be different from the case of PQ disturbances, aimed
for the compensation. For example, in the case of compensating harmonics,
a bit of a ripple (±5% corresponding to t2) can be acceptable as far as APF
brings the level of harmonics to less than 2% [11], [102]. However, in the
case of flicker compensation the settling time is t3 (corresponding to ±0.2%
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flicker, and voltage dips

Figure 2.1: Diagram of a shunt APF in a feed-forward configuration.

ripple) [11], [103]. The accuracy of estimation of flickers is more important
because choosing ±5% as an acceptable ripple can cause a voltage or current
fluctuation and contribute to the problem rather than mitigation of it. We
used a replica of the dq frame-based shunt APF proposed in Fig. 2.1 in the
Simulink environment for generating these harmonics. An example of using
the PI controller for compensating the third harmonic is shown in Fig. 2.2
(b). The PI controller is supposed to generate a stationary third harmonic.
It can be seen that it takes almost 40ms for the controller to reach the final
state where the acceptable ripple is 5%. Note that, in Fig. 2.2, the calculation
of settling time delay is illustrated for estimation of dq component. It is also
noteworthy to mention again that the settling time delay exists on all of the
other components of APF (in software or hardware). Thus, when the PQ
disturbances are time-varying, it is challenging for the APFs to follow the
trend of changes in real-time and mitigate them.

Some approaches available in the literature have investigated methods to
reduce the response and reaction time delays of APFs. To mitigate reaction
time delay, the focus of studies is to develop faster equipment such as high-
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(a)

(b)

Figure 2.2: (a) Overview of settling time delay of controllers in APFs. t2 and
t3 are times that the control objective reaches an acceptable ripple
range in final states (±5% for harmonics and ±0.2% for flickers). (b)
calculating the settling time of the P I control algorithm of a shunt
APF for mitigating the third harmonic.
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frequency switches, faster sensors, and processing units. Some studies also
have investigated the possibility of using different passive components. In the
case of response time delay, the focus is to propose a faster control algorithms
for APFs and the real-time estimation of the PQ disturbances. Taking all of
these points into account, using in predictive methods in software can make
it possible to mitigate the response and reaction time delays.

In this thesis, we propose two methods to mitigate the reaction and re-
sponse time delays of APFs. In the first proposed method, parallel processing
based on multiple synchronous reference frame (MSRF) analysis is used with
exponential smoothing (ES) to reduce the reaction and response time delay.
This study is presented in paper A. In the second method, we propose three
ML-based solutions to predict the future samples of dq signals to be estimated
with parallel processing-based MSRF methods. The results of this study are
presented in paper B. The contributions of these studies will be summarized
in the following two subsections.

2.5 Discussion on estimation and prediction of PQ
disturbances

Recalling from the previous section, the critical point for mitigation of PQ
disturbances is an accurate real-time compensation of these issues. The APF
has delays and we predict the voltage and current to mitigate them. This
section will discuss the proposed method for estimating and predicting PQ
disturbances. In short, to predict the PQ disturbances, we decompose the
voltage and current into different frequency components and then use ML for
the prediction on each frequency component. For the decomposition task, we
develop MSRF transformation, which consists of two synchronous reference
frame (SRF) transforms shown with ABC/dqo in the same figure. The overall
diagram of the MSRF is illustrated in 2.3 (blue dashed box). Each ABC/dqo
block uses Park Transformation [104] with corresponding positive and negative
frequency (w and −w) and converts three phase sets of voltage or current into
dq+/dq− and o frame that rotates synchronously with the grid voltage vector.
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The electric power system current can be defined as:

ia(t) =
√

2Ia sin (2πft + Φa)

ib(t) =
√

2Ib sin (2πft + Φb)

ic(t) =
√

2Ic sin (2πft + Φc)

(2.1)

where Ia, Ib and Ic are the amplitudes of each phase, f is the frequency and
Φa, Φb and Φc are phase angles of the three-phase set. The Park Transforma-
tion of current is defined as:
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Such a transformation will result in the DC value of the desired frequency
component in dq+/dq− and o frame superposed with other frequency com-
ponents. To extract only the DC value of the desired frequency component,
we use lowpass filter where it can be seen in Fig. 2.3 with LPF block. Thus
with this style any three-phase time-varying signals which contain several fre-
quency components, can be decomposed into their DC signals in dq+/dq− and
o frames. This transformation is invertable and so given the components we
can recover the three phase signal with MSRF −1 shown in Fig. 2.3. Each
dqo/ABC block in MSRF −1 block, uses the inverse of Park transformation.
The inverse Park Transformation is defined as:
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The summation of the output of dqo/ABC blocks on based on positive and
negative frequency components(dq+ and dq−) and o frame will recover in si-
nusoidal version of the desired frequency component. For instance, if the a
three phase current waveform of the electric power system is pure 50 Hz sinu-
soidal waveform with 1 A (see Fig. 2.4 (a)), the dq+ and dq− decomposition
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Figure 2.3: The block diagram of the proposed MSRF method.

of current using MSRF will be like Fig. 2.4 (b). zero sequence is shown with
io in Fig. 2.4 (a). Note that for dq+ f = 50 Hz and dq−, f = −50 Hz. It can
be seen that the frame rotation with 50 Hz speed will result in a DC waveform
for components (i+

d and i−d ) with 50 Hz in the original waveform.
As another example, if the original waveform with 50 Hz frequency and 1

A amplitude contains a 250 Hz frequency harmonic with 0.2 A amplitude (see
2.5 (a)), the transformation with f = 50 Hz in (2.2) will result positive d

component as a DC signal superposed with an AC waveform (i+
d 2.5 (b)). We

can also observe that the other positive and negative components appear as
AC signals in the same figure. Using Butterworth lowpass filter will result in
only the DC part of 50 Hz frequency components which is illustrated in Fig.
2.5 (c). Finally using the MSRF−1 with f = 50 Hz resulted the AC waveform
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(a) (b)

Figure 2.4: dq transform of a three phase current waveform (a) three phase current
waveform with 1 A amplitude including the zero sequence. (b) dq+ and
dq− transformation of three phase current waveform

of pure 50 Hz fundamental frequency component which is shown in 2.5 (d). In
the case of estimating other 250 Hz frequency components, a similar procedure
will be carried out by setting the f in MSRF and transforming it into f = 50
Hz for positive and f = −50 Hz for negative dq components. Thus, it can
be seen that using MSRF transform can isolate the DC form of the different
frequency components of three phase signal.

The benefit of using MSRF is that we can decompose a nonlinear wave-
form into a fundamental signal and other frequency components in a parallel
fashion, thereby reducing the computation time. Also, we can represent each
frequency component in a DC format which helps to observe the possible vari-
ation on the amplitude and phase of each frequency component in a smoother
version. This makes it possible to do a prediction with a long enough horizon
to mitigate the reaction and response time delay of the APFS. One example
of these delays can be seen in Fig. 2.5 (c) and (d) originated from settling
time delay of Butterworth filter in lowpass filtering of dqo components. For
the prediction tasks, we used three methods, namely linear prediction, LSTM,
and CNNLSTM. Linear prediction is a mathematical operation where future
values of the lowpass filtered dqo components are estimated as a linear func-
tion of previous samples. Furthermore, LSTM consists of stateful operators
that compute the future value based on the historical lowpass filtered dqo

components a certain time ago. Finally, CNNLSTM architecture involves us-
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(a) (b)

(c) (d)

Figure 2.5: (a) A three phase set containing 5th harmonic. (b)dqo transform of
a three phase current waveform with (c) filtered version of dqo com-
ponents to extract the fundamental component of the there phase set.
(d) MSRF −1 version of filtered dqo
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ing CNN layers for feature extraction on input data combined with LSTMs to
support sequence prediction. In this thesis, the CNN layer is used to extract
the filtered version of dqo components as the features and then LSTM tackles
the prediction task by analyzing the extracted features sequentially. Note that
the Butterworth filter is used only in linear prediction and LSTM methods.
The details of the proposed MSRF and prediction methods are addressed in
papers A and B respectively.

2.6 Mitigation of PQ disturbances by
grid-connected inverters.

In the previous sections, we observe that the remaining concern with APF is
their delays, and mitigation of disturbances requires several chains of anal-
yses such as MSRFs, lowpass filters, PID controllers. Each step should be
designed and tuned very carefully, which adds to the complexity of the pro-
posed methods. Another issue with APFs is that they are an expensive and
additional cost to electric power system train. Besides all the challenges men-
tioned above, one of the remaining issues in all methods is the choice of the
PLL. The design of PLL requires filters and at least one control loop [105] and
they need to be well-tuned. However, the settling time delay and estimation
error are unavoidable. Subsequently, this will cause delays in estimating angle
and frequency in the cases of phase angle jumps rapid or continuous varia-
tions in frequency level. Consequently, even if the amplitude is estimated in
real-time, there will be a remaining error due to errors in instantaneous phase
estimation.

As indicated by the above discussion, compared to available solutions in the
literature and industry, by altering the topology of inverter’s control units to-
wards a fast response to disturbances in electric power system, we can develop
a feasible long-term solution to avoid installing additional equipment such as
APF, ease the computational and design complexity and costs. Such a solution
can be obtained by using a RL based method. In the rest of this section, we
will briefly discuss the conventional control methods used in inverters/APFs
versus the proposed RL-based method.
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2.7 Reinforcement learning based grid-forming
inverter

Based on the literature study, we find that the control strategy of actuation
parts of grid-connected inverters are based on classical control theory. These
typologies are developed based on designing actions from well-specified es-
timation models of electric power systems. This can be a challenging task,
especially when the behavior of the electric power system is nonlinear and
time-varying. The nonlinearity of electric power systems is defined as un-
known states in control theory caused by components and loads’ operation
conditions. A solution to gain understanding such situations can be to have
a replica of the component of the electric power system in a simulation en-
vironment and an extensive experiments covering many scenarios and build
their model based on the observation of the outcomes. Such a solution can
be carried out using reinforcement learning (RL) based techniques which can
find suitable control policies based on experiments in the simulation environ-
ments. Recently, different versions of this method have been used in several
applications in electric power systems. A RL-based control of photovoltaics
is carried out for control of power flow in the electric power system in [106],
[107]. Epsilon greedy RL is used to control the connection and disconnection
of photovoltaics to the electric power system [108]. DDPG RL-based method
used for control of DAB converters for the reactive power flow control [109].
The RL-based method has also been used for designing and choosing the pa-
rameters of power electronic-based devices such as converters [110], [111]. All
these methods contribute to solving various concerns in electric power systems.
However, none of them are used for the control of grid-connected inverters.
In this research work, we developed a DDPG based grid forming inverter to
convert the energy from DC to AC and mitigate disturbances such as voltage
fluctuations, voltage dips, and frequency deviations. In this approach, the
system behavior is explored in many scenarios and an implicit model of them
is based on the simulation outcome and simultaneously a control policy is
learned. Utilizing the optained policy is helpful to cope and integrate into the
non-linearity of the electric power systems and act faster to time-varying PQ
events and variations minimized delays. The detail of the developed methods
is given in paper C.
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2.8 Contributions and paper summary
This section briefly presents the summary and contributions of the papers
presented in this thesis. In all of the papers except paper E my contributions
(in relation to the other authors) can be summarized as:

• Problem formulation (main)

• Solution idea (main)

• Code Implementation (main)

• Generating numerical results and Experiment design (main)

• Writing process (main)

In paper E my contributions were equal to the first author and the aforemen-
tioned tasks are equally distributed.

Paper A
In paper A, parallel processing-based MSRF analysis is used with exponential
smoothing (ES) and Kalman filter, with a shorter response time than But-
terworth filtering. The proposed methods reduce the settling time delay of
estimating filtered dqo components to 1 ms and 3 ms using ES and Kalman
filter, respectively. The possibility of adapting the window size of ES is opti-
mized specifically to each harmonic and interharmonic frequency can increase
the performance, however with the cost of extra manual effort. Parallel pro-
cessing of all harmonics and inter harmonics is applied to the GPU framework,
which lets the algorithm be close to real-time. Implementing MSRF in a par-
allel manner on a GPU decreased the computational time by almost a factor
of 50. Therefore this study contributes to lowering both response and reac-
tion time delay. The overall harmonics and inter harmonics system proposed
has been tested on the EAF currents measured in the electricity transmission
system.

Paper B
The studies in paper B propose three solutions for predicting harmonics and
interharmonics to mitigate the delays in APFs in real-time harmonics filter-
ing. The aim is to eliminate the reaction and response time delay of APFs
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originating from software and hardware parts. In the first approach, we used
the Butterworth filter to estimate the dq components of the desired harmon-
ics or interharmonics and then a linear prediction for the prediction of the
future value of the filtered dq component. In the second solution, we devel-
oped an LSTM based prediction algorithm instead of a linear prediction. In
the third solution, we proposed an end-to-end ML-based solution for filtering
and predicting dq components. The ML method combines CNN and LSTM
methods, where CNN has the role of filtering, and LSTM takes the predic-
tion role. The LSTM based prediction increased the prediction accuracy and
horizon up to two cycles of fundamental frequency (40ms) compared to the
first and third solutions. We also proposed a novel data-driven regularization
method to increase the prediction accuracy and horizon in the second and
third solutions. To show the effectiveness and benefit of predictive methods
for compensation of harmonics and inter harmonics, we designed a Simulink-
based setup together with an embedded AI computing GPU (Jetson TX2)
to design a predictive ML-based APF. The replica of an APF is built in a
Simulink environment and prediction and estimation of harmonics are carried
out on Jetson TX2. Implementing an ML-based active filter resulted in 96%
efficiency compensating harmonics and interharmonics which is 36% higher
than a trivial APF running in the same setup.

Paper C
Paper C aimed to mitigate the PQ disturbances such as frequency deviations,
voltage dips, and continuous voltage fluctuation using RL based grid forming
inverter. We use the DDPG method, the type of RL suitable for continuous
states space, and model the grid and inverter’s behavior. The control policy
directly use the voltage and current waveforms as state-inputs and thereby by-
pass several estimation chains (SRF, MSRF, FFT) and lowpass filters used for
conventional control algorithms such as PID. Furthermore, using the DDPG
method eliminates the need for Ad hoc based tuning of parameters for coeffi-
cients of PID controllers and lowpass filter’s cutoff frequency and order. The
DDPG method mitigates the delays and measurement errors for the angle esti-
mation. Such a model also helped reduce the settling time delay of the control
system (15ms compared to 50ms) compared to a PID based solution. Another
contribution with DDPG based grid-forming inverter is that the compensation
efficiency of voltage fluctuations is improved by almost 2%. Additionally, the
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DDPG method helped grid-forming inverter to have a fast reaction and accu-
rate mitigation of frequency deviations originating from loads in the electric
power systems.

Paper D
In this paper the topic of voltage dip classification is treated. The ML solu-
tion presented in paper D reduce the amount of preprocessing and learn the
features within the learning process. Thus, instead of using several layers of
preprocessing methods, we only used calculating RMS of voltage dips as a
feature engineering step and LSTM networks as deep learning parts for the
classification of the voltage dips. The proposed method resulted in 93.4%
accuracy on test data set recorded from other countries. Furthermore, this
method can be a suitable solution for classifying voltage dips in online applica-
tions for power systems. Using the deep learning-based method, Paper D has
introduced the possibility of developing automatic feature learner algorithms
rather than rule-based methods that need setting threshold values and pre-
processing, which are standard methods available in literature and industry
for voltage dip classification.

Paper E
Paper E proposes a feature engineering method and exploratory ML-based
methods to detect the location of cable faults in DC networks. The contribu-
tion of such a method is that it needs only the current waveform recording and
does not require any additional sensors. The proposed method eliminates the
necessity of expensive and advanced equipment such as ships and scanners
in underwater and underground cables. The proposed method is robust in
noisy conditions. Finally, among the experimented ML methods, using Sup-
port Vector Machine (SVM) on suggested features resulted in detecting the
location of high impedance cable faults with 5% average localization error.
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CHAPTER 3

Classification of Partial Discharge Originating from PWM

3.1 Partial discharge analysis and classification

Partial Discharges can occur in different parts of electrical systems and equip-
ment e.g. cables, transformers, motors, and can be caused by several factors,
including shape and frequency of the high voltage signal, improper installa-
tions, aging, manufacturing defects, environmental and third-party damage.
In recent years, by introducing more and more semiconductor devices in power
systems such as (power electronic devices) PED, e.g., motor drives, inverters,
and converters, the degradation due to PDs has become more common. Due
to the voltage stress inflicted by pulse width modulation (PWM) switching
techniques in PED devices, the PD characteristics are different from PDs oc-
curring due to sinusoidal voltage exposure in terms of frequency, amplitude,
and total charge amount. Detecting the presence and the magnitude of PD
is a helpful tool to optimize the cost and the need to use electrical filters to
smooth pulses generated by PWM and increase the lifetime of the insulation.

Understanding the behavior and analyzing PDs is of great importance in
automating the engineering of electric devices. Classifying and finding the
root cause of PDs can also help to improve the isolation design of the electric
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devices and systems. Furthermore, it can also provide an advanced warning
for pending insulation degregation, which needs to be repaired or replaced.
Early detection and root cause identification of PDs followed by remedial ac-
tion lead to simpler, lower-cost maintenance solutions. It is worth mentioning
that classifying and analyzing PD can provide safety to people working in
substations by minimizing arc flash hazards in medium voltage switch gears.
Thus, many studies have addressed the topics of detecting, classifying, and
analyzing the PDs occurring due to sinusoidal shape high voltage in electric
power systems i.e. [37], [112]–[117]. Early contributions in methods for mea-
suring and detecting of PDs can be found in [118]. Later these measurement
studies have improved and methods for classification of different types of PD
have been developed and introduced in [37]. Lutz has proposed a general-
ized solution to model and classifies PDs using rule-based approaches in [119].
Neural network-based solutions for classifying PDs have been reported [117],
[120]. With the progress in detecting and classifying PDs, research studies
have started to investigate different types of PD presence in electric devices
and systems. Digital detection, grouping, and classification of PDs signals at
DC voltage are developed in [121]. Chaotic analysis of PD is used to detect
insulation defects in gas-insulated switchgear [122]. Detection of SF6 decom-
position products by analyzing the PDs using SVM can be found in [123]. The
feature engineering techniques together with ML-based methods are further
used for analyzing PD in sinusoidal and DC electric power systems [124]–
[129]. These studies show that that the characteristics of PDs have a very
high correlation to the shape and frequency of the waveform. Also, due to
the stochastic nature of PDs, the characteristics of the individual PD events
originating from a particular PD class, e.g., an insulation failure, can dif-
fer in terms of amplitude and frequency, which makes the classification task
very challenging. The large-scale introduction of new types of power conver-
sion units to the electric power system, such as inverters and drives, leads
to non-sinusoidal waveforms and new types of PDs with new characteristics
arise. These PDs can also damage the insulation systems in electric power
systems and have high importance to study, which have been less covered in
the literature.

This thesis proposes a novel feature engineering and machine learning-based
method to classify PDs originating from pulse width modulation (PWM)
waveforms in energy conversion units and is reported in paper F.
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3.2 Contributions and paper summary

3.2 Contributions and paper summary

Paper F
Paper F has addressed a study on classifying PDs that have occurred due to
PWM in power electronic devices (PED). Such PDs have been less studied
in the literature in the past but have gained more importance lately by the
increasing number of PWM-based devices in today’s power systems. One of
the contributions of this study is the developed feature engineering method.
Note that the characteristic of the same class of PDs originating from the same
source (e.g., a cavity in the insulation with a certain high voltage excitation)
has a random behavior in terms of amplitude and time of occurrence. Thus,
the proposed method creates new patterns by concatenating features from
several consecutive PDs. In addition to features described in the literature,
e.g., max amplitude or frequency of PD occurrence, we extract more PD fea-
tures, including the max amplitude of PD, the time duration of each PD, area
under the PD curve, and time distance occurrence. The concatenated features
from sequential PDs captures the temporal dependency between consecutive
PDs. This extra information improves the performance of the classification
task. Numerical results show that the deep learning LSTM architecture and
ensemble bagged decision trees yield a 98.3% and 95.5% classification accuracy
respectively on a representative PDs test data set.

In this paper my contributions (in relation to the other authors) can be
summarized as:

• problem formulation (main)

• Solution idea (main)

• Code Implementation (main)

• Generating numerical results and Experiment design (main)

• Writing process (main)
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CHAPTER 4

Conclusion

The thesis work initially started as a study to develop methods for mitigating
and analyzing PQ disturbances such as harmonics, interharmonics, voltage
dips. In the case study for mitigation of PQ disturbances, we discover that
the APFs are the most common choice. However, in the case of dealing with
highly nonlinear loads, fast estimation and reaction to the PQ disturbances
is still a challenging issue, and they have response and reaction time delays.
First, we find that the lowpass filtering process of dqo components using filters
such as the Butterworth filter includes almost one cycle delay. Therefore we
propose parallel programming-based MSRF together ES and Kalman filter
as a faster and more accurate method than Butterworth filter. It has been
illustrated that the proposed parallel processing-based algorithm and data-
driven approaches such as ES and Kalman filter can reduce the response time
delay and increase the estimation accuracy of harmonics and interharmonics.

To mitigate the rest of delays originating from other parts of APFs such
as control algorithims, we proposed three ML-based predictor algorithms to
mitigate response and reaction time delay. The first solution is to use lin-
ear prediction and Butterworth filter to lowpass filter and predict the future
values of dq components of the MSRF method. This solution has managed
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to mitigate the delays originating from the Butterworth filter but still lags
when the prediction horizon increases. The second solution is similar to the
first one, but we used LSTM for the prediction task. We observed that the
prediction accuracy with LSTM is higher than the linear prediction. It is also
possible to increase the prediction horizon enough to mitigate both response
and reaction time (lag of Butterworth filter, PI controller, data communica-
tion, and processing time). The final solution is an end-to-end deep learning
solution where we used a combination of CNN and LSTM to lowpass filter and
prediction task. The third solution resulted in a more accurate and extended
horizon than the first solution but worse than the second solution.

The voltage dips classification took further attention because such analy-
ses can help to find out the type of the faults and help to have automatized
proactive maintenance and surveillance. We developed two DL-based classi-
fication methods to analyze cable faults that cause voltage dips. Hence, we
calculated the RMS value of voltage dip, and LSTM networks are used as
the classifier. This study is conducted to provide a solution with a minimal
preprocessing step. We also observed that the developed method provides an
automatized solution for classifying different voltage dips in online PQ mon-
itoring systems. Using LSTM allowed classifying voltage dips while they are
occurring even before the whole event ends.

This thesis aimed to develop a deep deterministic policy gradient (DDPG), a
reinforcement learning-based method for controlling the grid-forming inverter
that mitigates the variations in the amplitude and frequency of the fundamen-
tal frequency component. This method builds an implicit voltage model in an
electric power system and eliminates the need for several chains of analysis to
estimate the amplitude of grid voltage. Therefore, compared to classical PID-
based approaches, by directly mapping the outcome of the performance of the
inverter to the disturbances and maximizing the reward function, the delays in
estimation and reaction to voltage fluctuations and frequency deviations are
mitigated with an optimal data-driven control policy. The obtained results
illustrate that, in the case of mitigation of voltage dips, the proposed method
managed to reduce the response time of the inverter (resulting in reaction and
response time delays) to 15 ms, which is a five-time improvement compared
to the PID-based version. The DDPG based inverter also performed better
in the case of mitigating the frequency deviations and variation in the voltage
level of the electric power system in the example studied.

34



We also recognized that cable fault localization in the DC lines is one of the
challenging topics in electric power systems. Hence, we proposed a feature
engineering method and an exploitative study using several machine learning
(ML) based methods to detect the location of the faults. The proposed method
uses the current waveform recorded from the line and assembles a correlation
between the extracted features (di/dt, impedance, and max of current) and the
location of the fault to carry on the detection task. The proposed method has
a lower cost, is more accurate, and is computationally less complex than the
methods listed on the paper. Using the suggested features as a preprocessing
step and support vector machine (SVM) as an ML-based method identified
the location of fault with 5% average error in localization of cable faults.

Finally, we amid to study the leading cause for the failure of the electrical
equipment, PD. Doing such analysis can help preventive maintenance and
reduce considerable future costs. We classify PDs based on their origins, e.g.,
a cavity located in the insulations, the shape of PWM waveform in thems of
its rising time. The classification of PDs has been studied by stacking the
features extracted from PDs and forming sequences of PD information and
two ML algorithms. The proposed classification algorithms on the features
have resulted in the highest accuracy for LSTM architecture and ensemble
on top of decision trees. We realized that using every feature of PDs can be
valuable information to create understandable patterns from each PD type.
The proposed feature engineering steps, together with ensemble bagged DT
and LSTM methods, classify different classes of PDs with 95.3% and 98.5%
accuracy, respectively. It can be concluded that the proposed method can be
used as an online application to classify PDs originating from PWM of PEDs.
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