7,111 research outputs found

    Curve Reconstruction via the Global Statistics of Natural Curves

    Full text link
    Reconstructing the missing parts of a curve has been the subject of much computational research, with applications in image inpainting, object synthesis, etc. Different approaches for solving that problem are typically based on processes that seek visually pleasing or perceptually plausible completions. In this work we focus on reconstructing the underlying physically likely shape by utilizing the global statistics of natural curves. More specifically, we develop a reconstruction model that seeks the mean physical curve for a given inducer configuration. This simple model is both straightforward to compute and it is receptive to diverse additional information, but it requires enough samples for all curve configurations, a practical requirement that limits its effective utilization. To address this practical issue we explore and exploit statistical geometrical properties of natural curves, and in particular, we show that in many cases the mean curve is scale invariant and oftentimes it is extensible. This, in turn, allows to boost the number of examples and thus the robustness of the statistics and its applicability. The reconstruction results are not only more physically plausible but they also lead to important insights on the reconstruction problem, including an elegant explanation why certain inducer configurations are more likely to yield consistent perceptual completions than others.Comment: CVPR versio

    Subjectively interpreted shape dimensions as privileged and orthogonal axes in mental shape space

    Get PDF
    The shape of an object is fundamental in object recognition but it is still an open issue to what extent shape differences are perceived analytically (i.e., by the dimensional structure of the shapes) or holistically (i.e., by the overall similarity of the shapes). The dimensional structure of a stimulus is available in a primary stage of processing for separable dimensions, although it can also be derived cognitively from a perceived stimulus consisting of integral dimensions. Contrary to most experimental paradigms, the present study asked participants explicitly to analyze shapes according to two dimensions. The dimensions of interest were aspect ratio and medial axis curvature, and a new procedure was used to measure the participants' interpretation of both dimensions (Part I, Experiment 1). The subjectively interpreted shape dimensions showed specific characteristics supporting the conclusion that they also constitute perceptual dimensions with objective behavioral characteristics (Part II): (1) the dimensions did not correlate in overall similarity measures (Experiment 2), (2) they were more separable in a speeded categorization task (Experiment 3), and (3) they were invariant across different complex 2-D shapes (Experiment 4). The implications of these findings for shape-based object processing are discussed

    Cortical spatio-temporal dimensionality reduction for visual grouping

    Full text link
    The visual systems of many mammals, including humans, is able to integrate the geometric information of visual stimuli and to perform cognitive tasks already at the first stages of the cortical processing. This is thought to be the result of a combination of mechanisms, which include feature extraction at single cell level and geometric processing by means of cells connectivity. We present a geometric model of such connectivities in the space of detected features associated to spatio-temporal visual stimuli, and show how they can be used to obtain low-level object segmentation. The main idea is that of defining a spectral clustering procedure with anisotropic affinities over datasets consisting of embeddings of the visual stimuli into higher dimensional spaces. Neural plausibility of the proposed arguments will be discussed

    Cumulative object categorization in clutter

    Get PDF
    In this paper we present an approach based on scene- or part-graphs for geometrically categorizing touching and occluded objects. We use additive RGBD feature descriptors and hashing of graph configuration parameters for describing the spatial arrangement of constituent parts. The presented experiments quantify that this method outperforms our earlier part-voting and sliding window classification. We evaluated our approach on cluttered scenes, and by using a 3D dataset containing over 15000 Kinect scans of over 100 objects which were grouped into general geometric categories. Additionally, color, geometric, and combined features were compared for categorization tasks

    Perceptual saliency of points along the contour of everyday objects: A large-scale study

    Full text link

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America

    Contour-based classification of video objects

    Full text link
    The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object base don its appearance in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views of prototypical objects using a modified curvature scale space technique. By integrating the result of an umber of successive frames and by using the modified curvature scale space technique as an efficient representation of object contours, our approach enables the robust, tolerant and rapid object classification of video objects

    2-D shapes description by using features based on the differential turning angle scalogram

    Get PDF
    International audienceA 2-D shape description using the turning angle is presented 1 . This descriptor is based on a scalogram obtained from a progressive filtering of a planar closed contour. At a given scale, the differential turning angle function is calculated from which, three essential points are derived: the minimum differential-turning angle (α-points), the maximum differential-turning angle (β-points) and the zero-crossing of the turning angle (γ-points). For a continuum of the scale values in the filtering process, a map (called d-TASS map) is generated. As shown experimentally in a previous study, this map is invariant under rotation, translation and scale change. Moreover, it is shearing and noise resistant. The contribution of the present study is firstly, to prove theoretically that d-TASS is rotation and scale change invariant and secondly to propose a new descriptor extracted from the blocks within the scalogram. When applied to shape retrieval from commonly used image databases like MPEG-7 Core Experiments Shape-1 dataset, Multiview Curve Dataset and marines animals of SQUID dataset, experimental results yield very encouraging efficiency and effectiveness of the new analysis approach and the proposed descriptor
    corecore