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Abstract—In this paper we present an approach based on
scene- or part-graphs for geometrically categorizing touching and
occluded objects. We use additive RGBD feature descriptors and
hashing of graph configuration parameters for describing the spa-
tial arrangement of constituent parts. The presented experiments
quantify that this method outperforms our earlier part-voting
and sliding window classification. We evaluated our approach
on cluttered scenes, and by using a 3D dataset containing over
15000 Kinect scans of over 100 objects which were grouped into
general geometric categories. Additionally, color, geometric, and
combined features were compared for categorization tasks.

I. INTRODUCTION

This paper considers categorization of previously unknown

objects in cluttered scenes, where accurate segmentation can

be difficult to achieve, as the objects are touching, occluding

each other. In the context of robotic perception, additional ro-

bustness to varying lighting conditions and to multiple similar

objects having no unique texture is required. For such tasks,

RGBD camera based approaches are a promising addition

to the repertoire of image understanding. Since a household

assistant could encounter new objects during its operation,

no matter how large a training database is, geometric (edge-

based or 3D) categorization and perceptual grouping can be

an important step before template-based (image processing)

approaches can be applied for instance-level recognition [1],

[2]. In our previous [3] work we proposed a method to detect

and categorize possible object parts in cluttered scenes based

on their shape. Its steps are shown in Figure 1 and detailed

in III. The main idea is to over segment the scene into parts,

and decide what kind of object do they form, based on the

arrangement of its parts. Image-based approaches often fail for

textureless objects, or under bad lighting, as seen in Figure 2.

Therefore we perform 3D-based geometric categorization in a

recognition-by-components approach.

In this paper we complement our findings in [3] focusing on

testing RGB and RGBD features, comparisons to alternative

approaches, quantitative evaluations, and enabling the robot to

accumulate information about the scene. We also validate the

choice of our geometric categories. Evaluation was performed

on RGBD scans of cluttered tabletop scenes of previously

unknown objects, and we experimented with enriching the

training set by combining different databases.

II. RELATED WORK

As discussed in [5], perceptual organization should be

captured using models that take account of the part structure of

objects and capture the properties of 3D shapes. As argued for

(a) Hand-held RGBD Scanning by the
PR2

(b) Scene-graph Creation

(c) Part Categorization

Fig. 1. Overview of the process of scanning, segmenting and categorizing
objects in clutter. In the final result cylinders are marked with blue, boxes
with yellow, rectangular flat faces with cyan, and (half) spheres with red.

Fig. 2. Image-based segmentation results of cluttered scenes like in Fig. 1
using [4]

example by Huber [6], part-based detection has the advantage

of generalizing to unknown instances of object types. While in

[6], [7] and for the part-based VFH (called CVFH) feature [8],

objects need to be separated first, approaches like [9], [10]

can efficiently detect objects in clutter. This typically requires

over-segmenting the scene, possibly multiple times, while re-

specting object boundaries. Because an object can be split into

multiple parts, a correct and fully reproducible segmentation

is not needed, thus simpler segmentation methods can be

employed, usually based on detecting properties like concavity,

that are known to delimit objects [11], [12].

Our approach is similar to the one presented by Felzen-

szwalb in [13], but which uses only RGB data. However,

the core idea that objects are represented by mixtures of

deformable part models was used in this work, by capturing re-

lations between unsupervisedly identified parts by a classifier.
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Shotton et al. [14] incorporate poses and viewpoints, texture,

layout, and context information for image segmentation based

object recognition. In a complementing publication [15] they

address the problem of categorical objects recognition and lo-

calization in space and scale using a sliding window classifier.

Although the method is image based, in its formulation and

its use of geometry related image features it is similar to 3D

approaches, that become more and more popular.

In [9] the authors also propose a similar system for under-

standing cluttered scenes. Our approach combines the over-

segmentation from [10] with an extended version of creating

multiple groupings of these “parts” [9], and was designed to

handle multiple instances of objects from several categories,

that were labeled according to their general 3D shape. While in

[10] information coming from the different parts of the object

was combined by a Hough voting scheme for identifying

the object’s 2D centroid, the approach presented here is

more close to [7]. Identifying to what object does each part

belong to, consists of considering its descriptor (and that of

neighboring parts), together with the local topology of the

scene. Thus it improves on the vocabulary of parts and simple

vote accumulating approach from [10]. Furthermore, this work

focuses on objects relevant to pick and place tasks, which have

6 degrees of freedom poses instead of 3 as furniture pieces.

Recently, Richtsfeld et al. [16] presented a multi-level

approach to fit planar or curved surfaces to over-segment parts,

and then define inter-segment relations to decide if they should

be merged or not. Unlike our approach, they consider relations

between non-touching parts as well, but the method performs

best for merging touching segments and for convex shapes.

Other approaches also focus on creating surface models by

fitting shape primitives or superquadrics and considering the

spacial relations between them [17], [18], [19], but in slightly

simpler scenarios.

Detection of small objects in clutter using a sliding window

was explored by Kanezaki et al. [20] using an additive feature.

If a feature is additive, the descriptor that would be computed

for the object is the same as the sum of the features of

its parts. Thus it is especially useful for detecting objects

based on features computed only for parts of it, for example

by using the Linear Subspace Method (LSM) on the feature

space, as presented by Watanabe et al. [21]. We used the

additive property of 3 features (GRSD- [3], C3-HLAC [22]

and VOSCH [23]) to compute the descriptor of grouped parts

by summing up the parts’ descriptors, and here we compare

our method to that presented in [20] and [10].

III. PART-GRAPH HASHING BASED RECOGNITION

In our previous work [7], [10], [3] we found that a part-

based approach lends itself easily for solving object detection

when segmentation is problematic. Our geometric categoriza-

tions’ basic idea (detailed in [3]) is that segmenting objects

accurately does not always work robustly and will result in

labeling mistakes, but over-segmentation is easily realizable

[24], [9]. Learning the different parts/segments and their

combinations that form objects is a scalable way to capture

the different object categories a robot would encounter. For

example, a mug is typically a cylindrical part, next to a handle,

or a teapot is a combination of different rounded shapes with a

top and a large handle. The obtained segments represent only

a sub-part of objects but can be used to compute features, and

combined to build up object candidates, as shown in Figure 3.

The advantage of additive features for our part-grouping

method is that we only need to create the descriptor for each

part, and all the possible part combinations can be described

by the sum of the features of the constituent parts. There

are of course several ways of combining parts, not all of

them creating a valid object. However, testing the validity

of a combination is possible by checking if the combined

feature vector is known. We also exploit the fact that parts

and their connections (neighborhood relations) can be treated

as a graph, and only certain types of sub-graphs are present

in the graph formed by the parts of an object. Checking for

subgraph isomorphism is not practical, but there are several

descriptors one can employ to rule out isomorphism. Thus,

during training we decompose our objects into parts, compute

the features for each part, build the part-graph, and generate

all sub-graphs along with their combined features. Each sub-

graph has an “arrangement key”, which in our case is formed

of the degrees of its nodes, and this can be used for hashing

them into several categories before classification. Therefore

we can avoid confusions between subgraphs that don’t have

the same number of nodes and speed up training/testing.

Fig. 3. Overview of part-graph hashing (using a single object, as during
training)

As reviewed in [12], there are certain principles that should

guide the search for perceptually salient parts. We rely in

this work on the “hypothesis of normalized curvature” and

the “hypothesis of turning angle”. The segmentation criteria

used to over-segment the scans is presented in [10], such that

patches with a relatively small curvature are considered. In

a typical scene consisting of around 10
5 points, this method

created around 50 segments, and over 100 groupings of parts.

When processing a test scene, the same segmentation and

hashing procedure is repeated for the query, and the part

groupings’ features are classified. The obtained probability

distributions are accumulated in the constituent parts, giving

lower weight to larger groups. In contrast to [9], where the



product of the class probabilities for each grouping was used,

we found that the (confidence weighted) voting approach

performs better. Similar findings supporting voting were made

in [25] when evaluating combinations of classification results.

The method labels the parts as forming an object of the

following general geometric categories: sphere, box, flat rect-

angle, cylindrical, disk/plate, or other. These intuitive cate-

gories match most of the objects for which we had appropriate

training data (and the remaining ones were assigned to the

other category), and also the categories we found in public

household objects databases [2]. As in our previous works,

the categories are given by human intuition, but results using

unsupervised clustering of geometric features show that they

make sense also based on the data, as detailed below.

Sphere
Box

Flat rect.
Cylinder

Plate/disk
Other

   Cluster: 1 2 3 4 5 6

Sphere
Box

Flat rect.
Cylinder

Plate/disk
Other

   Cluster: 1 2 3 4 5 6 7

Fig. 4. Unsupervised RIM clustering compared to the manually defined
geometric categories (left: GRSD-, right: VFH). Clusters overlap well with the
used categories, with two geometrically similar pairs merged using GRSD-
. However, in the higher dimensional VFH feature space these can be
distinguished.

We used the Regularized Information Maximization (RIM)

technique [26] to find meaningful clusters of our training data

and assign testing instances to these clusters in the GRSD- and

VFH feature spaces. We measured how well do the clusters

overlap with the given categories by computing the Adjusted

Rand Index (ARI), using different parameters.

For GRSD- the best ARI (0.36) is obtained using 6 clusters

and λ = 90, with stable results around these values. As shown

in Figure 4 (left), the clusters are quite clean, and also the

categories are grouped nicely with clusters, but cylindrical

objects were merged with boxes and flat ones with plates. This

makes sense given that GRSD- encodes only relations between

neighboring voxels, thus features like the contour are not cap-

tured. Additionally, small boxes and cylinders can look quite

similarly in Kinect scans, especially after smoothing. However,

we chose to keep these two pairs as separate categories as they

are semantically different and provide relevant information for

model fitting and grasping applications.

Using VFH these clusters could be separated, thanks to the

increased descriptiveness given by the higher dimensionality

and viewpoint variance. Here the best obtained ARI (0.42) is

obtained using 7 or 8 clusters and λ between 75-80, but the

results are not as stable as for GRSD-, suggesting that the

clustering depends very much on the random initialization.

In both cases, smaller clusters are created as well, into

which parts of the object categories are separated, suggesting

that more views of object instances from a category could be

grouped together (e.g. side and front views of flat rectangular

objects like cereal boxes). Such a strategy was used in [2] to

increase the geometric categorization accuracy.

Since we label only parts now, future work will focus

on obtaining a grouping of parts into objects by geometric

fitting and grouping. We plan to extend fitting methods to

use the geometric labels as priors when selecting models for

fitting. The method was already successfully employed to pre-

segment scenes and to signal the presence of remaining under-

segmented parts to an interactive segmentation system [27].

The robot’s manipulation capability was used to track parts

that move together when pushed, thus individuating objects.

IV. EVALUATION AND DISCUSSION

For our tests we used a part of the large RGBD dataset from

[28]. As in [28], we use every fifth point cloud, because the

similarity between consecutive point clouds is extremely high.

Since in this work we focus on categorization into general

geometric shapes, we selected those object categories that have

good 3D data (and excluded very small, shiny or transparent

objects) and grouped them into geometric categories as de-

scribed in [3] (“RGBD-Large”). In order to be able to test and

compare our method and features, for some of the more time-

intensive tests we reduced the dataset to roughly 7000 scans

of 57 objects from 9 object categories (“RGBD-Small”) [3].

Additionally, we used the dataset from [23] to add knowledge

about the objects in our environment.

A. Complete Cluttered Scenes

As labeling scenes is a time-consuming process, we could

evaluate only a couple of them, extending the results from [3].

We present results on 3 frames in this subsection, and a

sequence of 6 scans of a fixed scene will be used in the next

section. Figure 5 show three tabletop scenes on which we

tested our approach. The color red represents the sphere class,

blue cylinders, yellow boxes, and cyan the flat class.

Testing on the cluttered scenes was run using different

datasets (or combinations) as training data, as shown in

Tables I and II. As it is expected, results vary depending on

the type of feature descriptor and on the training dataset.

Fig. 5. Segmentation and geometric categorization on three cluttered scenes.

In order to diversify our training data we combined the

RGBD datasets with the “VOSCH” Kinect scan dataset (VDB)

used in [23], consisting of 63 similar objects to the ones in

our scenes, captured from different viewpoints with an angular

step of 15 degrees. Similarly to [9], we found that this “domain



adaptation” improves results, as seen in Table I. However, as

the results on the larger RGBD dataset suggest, identifying the

correct weighting of the two data sources is necessary, possibly

based on an evaluation set. Apparently, as the number of

objects increases, confusions get more frequent, therefore the

weight of the domain specific objects need to be increased. In

the case of the smaller dataset, the combination with the scans

from VDB improved over the results on both separate training

sets, highlighting the importance of mixing various sources

of information while keeping specific specialties1. Related

ideas are discussed by Horswill et.al. [29] as well (task and

environment adaptation improving perception capabilities).

Another interesting observation is that upon combining the

datasets the per point result improve much more then the per

segment ones. This is due to the fact that the parts resulting

from flat and box like objects consist of a greater number of

points then those that come from the other categories, and that

for these parts in general we have better classification results.

Average RGBD- RGBD- VDB Small+ Large+
success rates Small Large VDB VDB

per point 73% 48% 75% 84% 61%
per segment 78% 45% 74% 79% 59%

TABLE I. Results in clutter using different training datasets with GRSD-

Average RGBD- RGBD- VDB Small+ Large+
success rates Small Large VDB VDB

per point 43% 48% 67% 62% 59%
per segment 46% 46% 69% 57% 50%

TABLE II. Results in clutter using different training datasets with VOSCH

Lai et al. reported results on the comparison of visual

and geometric features using the database presented in [28].

Their tests highlight the fact that geometric features are more

suitable for categorization and visual ones for instance recog-

nition, but they found that visual features outperformed geo-

metric ones both at instance and category recognition, while

a combination of both works best. Using our experiments this

was not the case, suggesting that their conclusion does not

hold in every case. When using the color-dependent VOSCH

feature, the fact that many of the test objects are from VDB

becomes reflected in higher success rates, as shown in Table II.

However, these results are worse than the corresponding results

using GRSD- and much worse than the best results obtained

with the purely geometric feature (despite the large difference

in dimensionality). We believe that the contradicting results are

due to the fact that in [28] some categories show little variation

among the instances (at least with the employed features).

Run-times vary depending on the dimensionality of the

extracted feature and the scale of the used dataset, with

classification on the small VDB dataset using the only 20

dimensional GRSD- feature yielding the fastest results, due

to the fact that the VDB contains only around 900 individual

scans of objects. The classification times shown in Table III

were obtained on a single core 2.4 GHz CPU.

1Thanks to the hashing approach, handling large databases and dynamically
adding new objects is alleviated, as only affected groups have to be re-trained.

Runtimes using RGBD- RGBD- VDB Small+ Large+

diff. datasets Small Large VDB VDB

GRSD- [20d]

per point 0.24E-04 0.44E-0.4 0.041E-04 0.28E-04 0.47E-04

per segment 0.043 0.083 0.007 0.053 0.089

VOSCH [137d]

per point 1.4E-04 2.3E-04 0.19E-04 1.6E-04 2.5E-04

per segment 0.27 0.43 0.03 0.30 0.47

TABLE III. Average classification times in seconds for the scenes from
Figure 5

For a more detailed evaluation, the next subsections will

focus on large scale tests using the RGBD dataset, using

separated objects as queries. The RGBD-Small set was split

2:1 into a training and testing scans [3], except for the cross-

validation test that was performed using the methodology

from [28]. Given separated objects, we can take advantage of

the fact that only a single object needs to be categorized, and

merge the results obtained for the different parts by weighting

the label probabilities by the number of points in the part.

B. Evaluation of Features

In our earlier work we tested different distance metrics for

nearest neighbors classification and found that the Jeffries-

Matsushita distance performs best. Due to the hashing proce-

dure, the separate classifiers for each hash key combination

have an easier job in distinguishing parts coming from differ-

ent categories. Thus results are on par with that obtained with

Support Vector Machines, but using a simple nearest neighbors

approach, which has considerably shorter training time [3].

(a) GRSD- (b) Cumulative result GRSD-

(c) VOSCH (d) C3-HLAC

Fig. 6. Confusion matrices and cumulative score on the RGBD-Large set.

Here we present again the results obtained by our method

on the RGBD-Large dataset, but extend it with a comparison

to the C3-HLAC and VOSCH additive features. Results are

shown in Figure 6, with an interesting observation relating



to (b): the two most likely results are by 5% better than

the ones reported as most likely. This suggests that in case

we obtain similar top scores, re-segmenting the test scene

(with different random seeds) could improve the labeling, by

merging the votes from different segmentations. This approach

was employed in the next section in the case of different views.

We also performed a cross validation experiment to test how

well these additive features generalize to unknown objects. See

Table IV for results. As it was to be expected, the purely

color based C3-HLAC feature performs the worst (except

for the typically white plates), with an average success rate

of 59.19%. The VOSCH feature is aided by its geometric

part, and achieves 70.88%, while in this experiment GRSD-

performed best, with an average of 72.06%.

Sphere [%] Box [%] Flat [%] Cylinder [%] Plate [%] Other [%]

GRSD- 67.5±26.2 52.5±15.2 95.8±2.7 89.5±2.6 47.1±22.5 79.9±14.2

C3 -HLAC 53.0±28.8 32.1±17.6 80.2±8.6 77.4±10.7 65.1±32.2 47.3±22.7

VOSCH 63.2±27.2 60.4±25.2 90.6±7.2 90.1±9.5 50.9±27.7 70.1±24.5

TABLE IV. Per class leave-one-out cross validation tests on the RGBD-Small
set

C. Comparison to Previous Methods

In our previous work [3] we performed a comparison to

segmentation-based categorization, by segmenting round and

rectangular objects using the method from [30], and found

a significant drop in accuracy due to segmentation mistakes.

Since we consider multiple segmentation possibilities and the

relations between parts, the results were more robust than for

a single segmentation and global feature based approaches.

Here we compared our results to those obtained with the

statistical features and method described in [10], considering

only the part voting step, without the geometric object (pose)

identification, as CAD models and ground truth poses are not

available for our objects. A vocabulary of size 400 was created

out of the descriptors of the parts from the training dataset

using K-Means, and used to assign class probabilities to parts

in the testing dataset. These votes cast by the different parts

are weighted by their similarity to the activated cluster, and

the final class is assigned to the highest scoring one.

Both the statistical features and GRSD- were tested using

this method, and we obtained a mean success rate of 80.45%

for the former and 75.86% for the latter. As seen from the

corresponding confusion matrices in Figure 7, the difference is

due to the fact that the miscellaneous “other” class is handled

considerably better by the statistical features – if this class is

ignored, the two features give practically the same result. Since

the original features are not additive, using them in the current

method would require its repeated re-computation. Moreover,

some of the statistical features are orientation dependent,

requiring training objects in multiple poses.

Our method and the sliding window based Linear Subspace

method was also evaluated on the same data, using the GRSD-

descriptor. Overall, the results indicate a clear advantage of the

part-based categorization process, as shown in Table V.
D. Synthetic Scenes

This subsection presents results on a large scale test on

scenes containing touching objects (without occlusions). As

ground truth data is difficult to obtain, we generated scenes

(a) Statistical Feature (b) GRSD-

Fig. 7. Confusion matrices of the vocabulary of parts method.

Part-graph Hashing Part Vocabulary [10] LSM [20]

Success rate 95.5 75.9 77.8

TABLE V. Results using different methods on the RGDB-Small datasets

containing from 2 to 6 object scans from the testing dataset

(100 scenes from each type) and labeled them with the known

object category. This way we can quantitatively evaluate the

effect of scene complexity on the results, as shown in Table VI.

Nr. objects: 2 3 4 5 6

Success rate: 73% 74% 69% 70% 66%

TABLE VI. Per-segment results on the 600 generated scenes from test scans

The generated scenes do not contain occlusions, but the

results are indicating the performance drop as more false

groupings are considered. Considering more than 6 touching

objects should affect the results less and less, as the number

of parts that are grouped is limited. Best results on the real

scenes were obtained for 3-4 parts being considered [3].

V. INCORPORATING MULTIPLE VIEWS

Since we found that the highest votes are close to each other,

additional information is needed for choosing the correct label.

As hinted in [10], this extra information could come from a

second scan of the scene from a new viewpoint.

Here, the advantage of incorporating multiple views is

evaluated on six views of a scene. We used GRSD- and

the “Small+VDS” dataset combination for training, as that

performed best in our earlier experiments. As the robot is

calibrated, all the scans can be places into the same coordinate

220 240 260 280 300 320

40

50

60

70

80

90

[scan]

[%
]

average

merged

Fig. 8. Left: a moving camera captures multiple frames that cover different
parts of the objects in the scene. Right: results for a cluttered scene with
7 frames from multiple viewpoints (denoted by angles around the table’s
normal).



system, with only small misalignments (that could be fixed by

an Iterative Closest Point algorithm). Then a 5 mm voxel grid

was used to assign points from different frames to each other.

The votes were accumulated for each voxel, and a per-point

success rate is calculated both for the individual frames, and

for the merged RGBD point cloud, presented in Figure 8.

The robot’s end-effector was pointing the camera towards

the scene while moving along a circle that respects the

minimum range requirement. Still, some of the scenes were not

captured fully, or from a non-optimal angle, so large variations

in accuracy can be observed (as large regions get a good or bad

label). By incorporating multiple views however, the overall

success rate improved by nearly 5%.

An interesting aspect would be to combine results obtained

by different features (as evaluated in [31]) or different seg-

mentations in a stacking approach for ensemble learning. We

will explore this topic further on the basis of multiple labeled

scenes. However, as suggested by [25], voting seems to be the

most robust choice for creating ensembles2.

VI. CONCLUSION AND FUTURE WORK

In this paper we have shown the advantages of exploiting

multiple frames and part-graph descriptors to deal with object

categorization in clutter. The proposed methods were evaluated

on a large RGBD dataset, and on Kinect scans of cluttered

tabletop scenes, and showed promising results when compared

to alternative approaches. The advantage of geometric features

was shown for the cases when testing objects that are very

different from the trained ones needed to be categorized.

Most importantly, the inclusion of a geometric grouping

method needs to be considered, using or extending some of the

existing solutions relying on different assumptions: [10] (using

available CAD models), [30] (upright boxes and cylinders),

[16] (mostly convex shapes). Future work will focus on

quantifying the effect of occlusions, the development of a more

descriptive additive geometric feature, and more advanced

domain adaptation. More powerful classifiers combined with

our hashing method could also improve results.
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