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Abstract
A 2-D shape description using the turning angle is presented 1. This descriptor is based
on a scalogram obtained from a progressive filtering of a planar closed contour. At a given
scale, the differential turning angle function is calculated from which, three essential points
are derived: the minimum differential-turning angle (α-points), the maximum differential-
turning angle (β-points) and the zero-crossing of the turning angle (γ-points). For a
continuum of the scale values in the filtering process, a map (called d-TASS map) is
generated. As shown experimentally in a previous study, this map is invariant under
rotation, translation and scale change. Moreover, it is shearing and noise resistant. The
contribution of the present study is firstly, to prove theoretically that d-TASS is rotation
and scale change invariant and secondly to propose a new descriptor extracted from the
blocks within the scalogram. When applied to shape retrieval from commonly used image
databases like MPEG-7 Core Experiments Shape-1 dataset, Multiview Curve Dataset and
marines animals of SQUID dataset, experimental results yield very encouraging efficiency
and effectiveness of the new analysis approach and the proposed descriptor.

Keywords: pattern analysis, pattern recognition, turning/tangential angle, multi-scale
analysis, scale-space analysis, CBIR

1. Introduction
With the development of the technology, we are facing more and more images that we have
to handle and understand. In this context automatic image retrieval from within large da-
tabases is necessary: the corresponding system have to integrate a simple, fast and efficient
algorithm for shape feature extraction and representation. Petrakis et al. in [3] and Kpalma
et al. in [4] present a sample set of criteria for shape representation for reliable shape mat-
ching and retrieval. Among these criteria, is the uniqueness, the robustness, the invariance,
the scalability, the efficiency, the compactness, the reliability... Uniqueness means that the
representation must uniquely describe a shape ; otherwise, a query may retrieve shapes that
are not similar to it. The robustness states that the representation must be resistant to
distortions and noise, which are typical on natural shapes. The invariance indicates that the
representation must be insensitive to viewing conditions that the shape could undergo: it
must be invariant to translation, scale change, rotation, and viewing angle. The scalability
will help to capture information about the shape at many scales so that similar shapes can
be recognized even if they appear at different resolutions. An efficient representation must
be computationally efficient. A compact representation uses a low number of features. The

1. This paper is a broad extension of [1] and [2] and its evaluation over various databases.
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reliability means that the extracted features remain the same as long as one deals with the
same pattern.
d-TASS (differential-Turning Angle Scale Space) function is presented in [1] and [2], and

some shape features extracted from it were introduced therein. It was then shown that this
scale space representation of planar objects yields characteristic properties that are interes-
ting in the context of shape description. In [2], it has been shown that this representation
complies with a number of criteria listed above: it is rotation, translation and scale change
invariant and that it is also shearing and noise resistant.
The current paper aims at to demonstrate theoretically that d-TASS scalograms are inva-

riant under rotation and scale change. Then we propose and evaluate new features extracted
from these scalograms. The evaluation of the proposal is conducted upon 4 databases and
then the retrieval performance based on the bull’s eye measure [5] is compared to that
provided by well-known state-of-the-art methods.
The rest of the paper is organized as follows: section 2 recalls the principle of the method;

it presents the differential turning angle scalogram and defines the d-TASS map. Section 3
concerns the definition of the new descriptor. Section 4 is dedicated to the evaluation of the
proposed descriptor. Finally, in section 5, discussions are presented and then the paper is
concluded.

2. Differential turning angle scalogram generation
This approach is based on the analysis of closed contours and belongs to the group of
contour-based shape representations in accordance with the classification done by Zhang
et al. [6]. An input contour is represented by a sequence of points defined by their (x, y)
coordinates. First, the input contour is separated into two functions x(u) and y(u) which are
functions of a normalized curvilinear parameter u that varies from 0 to 2π relatively to the
curve length. Each point of the curve is then represented by its coordinates (xn, yn) where
xn = x(un) and yn = y(un) are the coordinates corresponding to the sampled curvilinear
abscissa. If the number of the points is set to N, then the index n varies from 0 to N-1. In
this study, N is set to 360 points reorganized in counter clockwise as explained in [2].

2.1 Differential turning angle: definition
In order to reduce the effect of various deformations that could affect the contour, this one
is firstly normalized as proposed in [7] by Avrithis et al. Then, given a starting point P0, the
points are numbered from P0 to Pn−1.

Fig.1: Illustration of the differential-turning angle
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Let
−→
V n be the vector defined by the two points Pn and Pn+1 originating at Pn and oriented

towards Pn+1. The turning angle θn at point Pn is the angle between vector
−→
V n and the

x-axis. Figure 1, illustrates the principle. The differential-Turning Angle (d-TA) function is
the angle ϕn between two consecutive vectors

−→
V n−1 and

−→
V n ; in other words:

ϕn = θn − θn−1 (1)

2.2 Differential turning angle: scalogram construction
Fig.2 shows an example of the d-TA function. The parts of the contour pointed by letters
from (a) to (k) are represented by specific behavior on the d-TA function as demonstrated
by the letters (A) through (K).
From the d-TA function, a scalogram is generated : we call it the differential-Turning

Angle Scale Space (d-TASS) function. To generate the d-TASS function, the input contour
is progressively smoothened with a Gaussian filter by reducing its bandwidth as proposed
in [1] and [8].

Fig.2: Example of a contour and its d-TA function at a given scale.
For a given Gaussian kernel, we obtain progressive filtering by iterating the operation. By
doing so, the filtering scale σn is reached after n iterations so that σn = σ0

√
n where σ0 is

the standard deviation of the Gaussian kernel. In this study, the Gaussian kernel of size 3,
g=[0.25, 0.50, 0.25], corresponding to σ0 =

√
2/π is used. Based on this d-TASS function,

three essential points are derived to give the d-TASS map (see [4]); the definition of the
essential points, is as follows:
• α-points are those with a local minimum of d-TASS function (green on Fig.4),
• β-points are those with a local maximum of d-TASS function (blue on Fig.4)
• γ-points are those that correspond to the zero-crossing of the d-TASS function (red on

Fig.4).
Figure 3 illustrates the procedure generating the d-TASS map. Starting from the input
coordinates sequences X0=x and Y0=y, the d-TA function is computed to generate cor-
responding essential points. When an essential point is detected at a given location, this
location is marked "1" in the corresponding channel (red, green or blue) otherwise, it is
marked "0".
As can be seen on the flowchart, prior to the filtering procedure, the contour is resampled

by using the so called iso-area normalization [9] so that each input contour have 360 points
as explained in [8]. The stop condition of the iteration is that "there is no more γ-points
at the current scale". Figure 4 shows two examples of d-TASS map on which the x-axis
corresponds to the normalized curvilinear abscissa u representing the space variable and the
y-axis is related to the scale variable σ. Row n on the map holds the trace of the essential
points at the nth iteration.
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Fig.3: Principle of d-TASS generation Fig.4: Examples of d-TASS map

To compensate for rotation, a circular translation of the d-TASS map is performed before
extracting features. This translation is done so that the maximum peak of γ-points in the
map is aligned on the abscissa value of 180 (see Fig.4). Figure 5 shows a set of contours
obtained from a contour after it has undergone a transformation of equation (16) with various
values of the transformation parameters (θ, h, λ) representing respectively, the rotation
angle, the scale factor and the shearing factor.

Fig.5: Example of a contour and its affine transforms.

The corresponding d-TASS maps are represented on Fig.6: as it can be seen, these maps are
visually similar. This confirms that the d-TASS map is representative of the contour and
that it is robust and invariant under various transformations.
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Fig.6: d-TASS maps of the contours in figure 5

2.3 d-TASS vs. affine transforms
In this section, we demonstrate the effect of an affine transform on the d-TASS. First, we
will consider a general affine transformation and then we will analyze the particular cases
of rotation and scaling. Let A be the affine transform matrix and ~T the translation vector
of coordinates Tx and Ty. The matrix is defined by four real-valued parameters a, b, c and
d as follows:

A =

(
a b

c d

)
(2)

A given point P of coordinates P(x,y) is then transformed onto the point P’(x’,y’):(
x′

y′

)
=

(
a b

c d

)(
x

y

)
+ ~T =

(
ax + by + Tx

cx + dy + Ty

)
(3)

Let us consider a line segment (PnPn+1) defined by the two points Pn(xn, yn) and Pn+1(xn+1, yn+1)
(see figure 7). The angle θn between this segment and the x-axis is defined by:

θn = arctg
(
yn+1 − yn
xn+1 − xn

)
(4)

d-TASS vs. translation : now suppose that this segment has undergone an affine transfor-
mation as defined by equation (3). The angle between the transformed segment (P ′nP

′
n+1)

and the x-axis is given by:

θ′n = arctg
(
y′n+1 − y′n
x′n+1 − x′n

)
= arctg

(
c(xn+1 − xn) + d(yn+1 − yn)
a(xn+1 − xn) + b(yn+1 − yn)

)
From this relation, it is clear that the turning angle θ′n never depends on the translation:
the turning angle is invariant under any translation.
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By rearranging this expression, we obtain

θ′n = arctg

 c
a + d

a

(
yn+1−yn

xn+1−xn

)
1 + b

a

(
yn+1−yn

xn+1−xn

)
 (5)

Regarding equation (4), θ′n can be rewritten as follows:

θ′n = arctg

(
c
a + d

atg(θn)
1 + b

atg(θn)

)
(6)

In terms of d-TA, the differential angle ϕ′n at the point P ′n of the transformed contour is
given by the difference of the two angles θ′n and θ′n−1 so that we can write:

ϕ′n = θ′n − θ′n−1 = arctg

(
c
a + d

atg(θn)
1 + b

atg(θn)

)
− arctg

(
c
a + d

atg(θn−1)

1 + b
atg(θn−1)

)
(7)

By definition, the ϕ′n angle is the angle between two line segments: one from point P ′n−1 to
point P ′n and the other from P ′n to P ′n+1 as illustrated on the following figure. On Fig.7(a),
one can observe that the angle between line segments (Pn−1Pn) and (PnPn+1) is ϕn. Fig.7(b)
corresponds to the rotation of Fig.7(a) through angle θ around the origin. As can be observed,
the angle between line segments (P ′n−1P

′
n) and (P ′nP

′
n+1) is also ϕn. This will be proved

below.

Fig.7: The differential turning angle face to rotation

For convenience and simplicity of the analysis, let’s calculate the tangent of ϕ′n based on the
following relation for two angles α and β

tg(α− β) =
tg(α)− tg(β)
1 + tg(α)tg(β)

(8)

equation (7) rewrites as follows:

tg(ϕ′n) =

(
c
a + d

atg(θn)
1 + b

atg(θn)
−

c
a + d

atg(θn−1)

1 + b
atg(θn−1)

)
/

(
1 +

c
a + d

atg(θn)
1 + b

atg(θn)
×

c
a + d

atg(θn−1)

1 + b
atg(θn−1)

)
(9)

Equation (9) linking a general affine transform to the differential turning angle shows that
d-TASS is not invariant under general affine transform. But starting from this relation, one
can prove the invariance for two particular cases that are scaling and rotation.
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d-TASS vs. scaling: in the case of a simple scaling, the transformation matrix is defined
by: b=c=0 and a=d then the previous relation (9) becomes:

tg(ϕ′n) =
tg(θn)− tg(θn−1)
1 + tg(θn)tg(θn−1)

= tg(θn − θn−1) = tg(ϕn)

From this, it appears that ϕ′n = ϕn proving that d-TASS is invariant under scaling.
d-TASS vs. rotation: when concerned by a rotation through angle θ (see Figure 7) around
the origin, the transformation matrix becomes a=d= cos(θ) and b=-c= sin(θ). By proceeding
as previously, equation (9) becomes:

tg(ϕ′n) =
tg(θ + θn)− tg(θ + θn−1)

1 + tg(θ + θn)× tg(θ + θn−1)
= tg(θn − θn−1) = tg(ϕn)

Again, it is clear that ϕ′n = ϕn indicating that d-TASS is invariant under rotation. Based
on these properties, a new descriptor is proposed for contour characterization.

3. Proposed descriptor and pattern description
3.1 Combination of essential points
For pattern description, we propose a feature matrix based on weighted moments of the
content of blocks within the d-TASS map. First, d-TASS maps are cut up into R rows by C
columns blocks: hence each block is referred to by using its coordinates r (r=1, 2, . . ., R) and
c (c=1, 2, . . ., C). These blocks are considered to be possibly overlapping as illustrated on
figure 9. Typically, 25% overlapping is found to be the most performing. For a given block
located at (r,c), let Bα

rc, B
β
rc, and Bγ

rc be the corresponding blocks from α, β and γ essential
points, respectively. From these blocks, we generate the block Brc, defined by:

Brc = wαB
α
rc + wβB

β
rc + wγB

γ
rc (10)

where wα, wβ and wγ are the weights applied, respectively, to α-, β- and γ-points. In other
words, Brc is obtained by using a pixel-wise linear combination of the blocks of the three
essential points maps : Brc(m,n) = wαB

α
rc(m,n) + wβB

β
rc(m,n) + wγB

γ
rc(m,n), for pixel

(m,n). Each pixel containing an essential point is supposed to be unity and null otherwise.

3.2 Matrix-wise descriptor
From this Brc block, we compute the corresponding coefficient Mpq(r,c) as follows:

Mpq(r, c) = mpq (11)

where p=0 or 1 and q=0 or 1. The coeffi-
cient Mpq(r,c) is an element of the feature
matrix Mpq and mpq represents the first three
moments (m00, m01 and m10) of the Brc
block. Jointly with these moments, we de-
fine and use the mean value M0 of the inter-
essential points distance. The following figure
illustrates the principle of the inter-essential
points distance measurement at a given scale.

Fig.8: Definition of the inter-essential points
distance
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The inter-essential points distance function is the distance between the current contour point
Pn and the mid-point PM (s,t) between the two consecutive γ-points Pσ,s and Pσ,t. As for
illustration, figure 8 shows six γ-points (Pσ,1, Pσ,2,. . ., Pσ,6). PM (6,1) represents the mid-
point between the consecutive γ-points Pσ,6 and Pσ,1. By iterating the process for a range
of scales (until the stop condition), we obtain the distance scale space function (DSSF).
Figure 9 illustrates the principle of blocks creation and feature matrix generation: Fig.9.a)

represents the gridding applied to the d-TASS map and Fig.9.b) shows an illustration of the
resulting feature matrix (represented as an image). On Fig.9.c), one can see an example of
d-TASS map and, from left to right, the corresponding M00, M01, M10 and M0 matrices.
In this representation, the color demonstrates the value of the moment computed from the
corresponding block Brc.

Fig.9: d-TASS-based descriptor construction: a) blocks definition on the d-TASS map, b) corresponding
feature matrix, c) example of d-TASS map and, from left to right, its M00, M01, M10, M0 matrices.

The motivation of using these moments is illustrated on Fig.10 that shows a sample set of
typical patterns encountered in Brc blocks. In each block, we have exactly the same number
of pixels (in black) with value 1 on a white background (of value zero). As can be seen in
Table I, m00 is the same for the four patterns. m01 and m10 are different from a pattern to
another so they are likely to carry some discriminating information other than that of m00

coefficient.

Fig.10: Examples of typical patterns in Brc blocks of a d-TASS map

Table I: Moments computed from blocks in figure 10.
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3.3 Similarity measurement
In accordance with the study presented in [10], we have used the Manhattan distance to
measure the similarity between two shapes. The similarity between two shapes A and B is
the weighted sum of distances computed individually from the moments. Equation (12) gives
the definition of the distance between feature matricesMA

ω andMB
ω with ω = {00, 01, 10, 0}.

dω(A,B) =
∑
ω

|MA
ω (r, c)−MB

ω (r, c)| (12)

The global distance is then defined by the following equation (13) where aω indicates the
weight of the contribution of the distance dω.

d(A,B) =
∑
ω

aωdω(A,B)
1 + SCω(A) + SCω(B)

(13)

Because features are of different nature and different ranges, it is necessary to normalize
their individual distances before these ones can be combined together. For this purpose, we
use the shape complexity ; as explained in [11] and [12], the shape complexity with respect
to a shape feature is some measure of the extent of this feature. In this study, this measure
is defined as SC(A) = |max(VA)−min(VA)| where VA is the feature vector of shape A.

4. Evaluation of the proposed descriptor
The evaluation of the proposed descriptor is based on the comparison of its retrieval results
with those obtained from other studies, of the literature such as MCC (Multi-scale Convexity
Concavity) [13], TA (Triangle Area) using DSW (Dynamic Space Warping) [11], BAS (Beam
Angle Statistics) [14], method presented by Bandera et al. [15], WARP [16], SC (Shape
Context) [17], Wavelet [18], ZM (Zernike Moments) [19], TS (Tangent Space) [20], VP (Visual
Parts) [21], DAG (Directed Acyclic Graphs) [22], IDSC (Inner Distance Shape Context)
[23], CSS (Curvature Scale Space) [24], [25], [26], CED (Curve Edit Distance) [27]. For more
details about each method one may consider to have a look at the appropriate reference. To
have effective comparison results, the experiments are conducted on five different datasets
with more or less complexities in the deformations.
The MCC uses the degree of convexity/concavity at various scale levels as a descriptor. The

matching of two contours is then achieved using dynamic programming which provides the
dissimilarity measure. The TA-DSW retrieval method uses triangle-area to represent non-
rigid shapes based on their closed contours. This measures the convexity/concavity of each
point at various scales. The similarity measurement is based on a dynamic space warping
(DSW) algorithm that searches for the optimal correspondence between the points of two
shapes. The BAS descriptor is based on the beams originating from a boundary point, which
are de ?ned as lines connecting that point with the rest of the points on the boundary. The
angle between a pair of beams gives a measure of the topological structure of the boundary.
The similarity between two shapes is measured by the optimal correspondent subsequence
(OCS) algorithm. The method proposed by Bandera et al. is based on a global incremental
scheme which combines two learning mechanisms: the Incremental Non-parametric Discri-
minant Analysis and the mode analysis method. Then feature selection is performed based
on an adaptive curvature estimator. The matching of two shapes is then performed by using
the incremental mode analysis followed by the k-nearest neighbor classification. WARP is a
shape retrieval approach that uses the phase of Fourier coefficients and the similarity bet-
ween shapes is performed using the Dynamic Time Warping. The SC-based descriptor uses
the so called shape context at each point of the contour to determine the corresponding
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point. From the corresponding points, the transformation that better aligns the two coun-
tours is estimated by using the regularized thin-plate splines and the similarity is obtained
by the sum of the matching errors.
The ZM-based shape descriptor consists of the coefficients of Zernike moments. For si-

milarity measure, the nearest-neigbour classification and the minimum-mean-distance are
performed. The IDSC descriptor is based on the inner-distance between control points. A
dynamic programming based method is then used for shape matching. The CSS descriptor
consists of the maxima of curvature zero crossing contours of curvature scale space image
and its aspect ratio combined with the eccentricity and the circularity of the contour. The
CED retrieval approach is based on the correspondence between two contours. The similarity
measure is given by the two intrinsic properties of the contour alignment, namely, length
and curvature by using a dynamic-programming method both for aligning pairs of contours
segments and pairs of closed contours.
For more details about the differents methods, the reader is urged to refer to the corres-

ponding literature refered herein.

4.1 Description of the experimental datasets
The first dataset is based on the Shape Queries Using Image Databases (SQUID) [28] pro-
vided by F. Mokhtarian et al. It is generated by applying affine transformation (rotation,
scaling and shearing) to some contours of SQUID database. This enabled us to evaluate the
proposed descriptor on a "synthetic" database. This dataset will be referred to as Dataset-I
(see Fig.11 and Fig.12).
The second dataset is that of Multiview Curve Dataset (MCD) proposed by Zuliani et al.

[29], [30] and also used by [31]. This dataset consists of natural perspective deformations
that a 2-D object could undergo. This dataset represent more realistic deformations than
that of Dataset-I and it will be referred to as Dataset-II represented on Fig.16. The third
dataset, called Dataset-III is extracted from the SQUID, presented and used in the studies
conducted by F. Mokhtarian and M. Bober in [24] and by F. Mokhtarian et al. in [25]. The
contours are selected so that the individuals from the same class are visually similar (see
Fig.17). The fourth dataset, referred to as Dataset-IV, is based on that of the well-known
MPEG-7 Core Experiments Shape-1. The goal of this experiment is to check robustness of a
descriptor when facing deformations like scale change (Part A-1), rotation (Part A-2), and
small non-rigid deformations (Part B). The last dataset is called Dataset-V. It is dedicated
to the evaluation of retrieval systems relatively to non-rigid deformations due to motion. It
is commonly referred to as Part C of the MPEG-7 Core Experiments Shape-1 (see Fig.18).

4.2 Performance assessment
In information retrieval, and particularly in CBIR (Content-Based Image Retrieval), there
exist many measures to help evaluate a system. But as stated by Muller et al. in [32], it is
most common to use the Recall and Precision curve to assess the performance of a retrieval
system. Indeed, the Recall and Precision curve enables us to capture the global behavior of
the system. Moreover, it may help to deepen the analysis by taken the Precision at a given
number of retrieved patterns. The best system between two retrieval systems is that one
whose curve is nearer to the upper-right corner of the graph. As indicated by Petrakis in [3],
when two curves intersect, the best system is the one that gives higher Precision and higher
Recall for large number of retrieved patterns: the right side of this curve must be above the
other one.
Based on that statement, we plot Precision-Recall curves and then analyze the Bull’s Eye

Performance (BEP) [5] and the corresponding area under that curve (AUC) [33]. For this
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purpose, each contour of the database is used as a query and then the first R most similar
contours are retrieved. If RR is the number of retrieved relevant contours among the total
of R retrieved contours, Precision and Recall are given by relations (14) and (15)

Precision(R) =
#(Retrieved Relevant)

#Retrieved
=

RR
R

(14)

Recall(R) =
#(Retrieved Relevant)

#Relevant
=

RR
R0

(15)

where R0 is the number of contours that are relevant to the query in the database.
The BEP corresponds to the Recall for the twice the number of relevant contours in the

database (BEP=Recall(2R0)). The BEP and AUC parameters provide objective measures
of the efficiency of a retrieval system. The higher they are the better is the system.

4.3 Evaluation on Dataset-I: marine animals
4.3.1 Description of the test set
To evaluate the ability of this d-TASS-based feature to discriminate objects, we have conduc-
ted retrieval experiments by applying our approach to a "synthetic" database of planar ob-
jects. Figure 11 shows the set of shapes of this database. As said before, this test set is drawn
from the SQUID [28] database of marine animals contours. It is constructed by applying
affine transformations to 50 original contours (see Fig.11). The transformation is defined by
a composition of three transformations that are a rotation with rotation angle θ, a scaling
with scale factor h and a shearing with a shearing factor λ. The affine transformation is then
defined by: (

xo

yo

)
=

(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)(
h 0

0 h

)(
1 λ

0 1

)(
xi

yi

)
(16)

where (xi, yi) are the coordinates of a point of the input contour and (xo, yo) the coordinates
of the corresponding point of the transformed contour.

Fig.11: The 50 original contours selected from SQUID dataset

As mentioned in [1], we have defined three values referenced by n (n=0, 1, 2) for each para-
meter. Table II shows these parameters and their references. By using different combinations
of these parameters, one can generate 27 transformed copies so that for each original contour,
we have a family of 28 siblings. For this experiment, each original contour is different from
the others so that for a given individual in the database, there are R0=28 relevant shapes.
Thus this test database consists of 50×28=1400 contours in total.
Figure 12, represents a contour (upper-left corner) and its siblings : the contour named
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RxHyLzkk1 is obtained from the original contour named kk1 after it has undergone rotation
of angle θx, scaling factor hy and shearing factor λz. For easier visualization, the contours
have been rescaled to an appropriate size.

Table II: The set of affine transformation parameters

The results presented in the next sections correspond to the average values all-over the
database by using each of the 1400 contours as a query. Together with Table III, the graphs
in figures 13 and 14 show the performance of the proposed features. This table shows the
BEP and AUC for 16 different combinations of essential points and for four sizes of the
feature matrix. In this table bold face values indicate BEP scores above 95%.

Fig.12: Example of a contour and its affine transforms.

4.3.2 Experimental results
In the experiments we have evaluated the effect of the size of the feature matrix and also
the effect of the overlapping of the blocks. To evaluate the effect of the size of the feature
matrix and as indicated previously, the d-TASS map is cut up into blocks of equal size.
Prior to blocks generating, the d-TASS map has been circularly shifted to center the maxi-
mum peak of γ−points on the map. Figure 13 shows the Precision vs. Recall curves for
different sizes (4×4, 8×8, 16×16, 32×32) of the feature matrix with 25% overlapping. For
this experiment, the weights of essential points are set as follows : wα=1, wβ=1 and wγ=1.

Fig.13: Example of Precision vs.
Recall graphs.

Fig.14: Precision vs. Recall graphs for 16 combinations of essential
points in the case of 4×4 feature matrix with 25% overlapping.
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As it can be seen on Figure 13, the feature matrix of size 4×4 gives the best performance,
nevertheless, we must observe, thanks to Table III and Figure 14, that the performance
depends not only on the size of the feature matrix but it also depends on the combination
of the essential points.
To evaluate the overlapping effect, the overlapping rate is set to three values: 0, 25% and

50%. The majority of the experimental results showed 25% overlapping rate to give the
best performance. One can observe up to 98.6% of BEP and 0.964 of AUC indicating high
performance of the approach. This is confirmed by the Precision-Recall graphs that are close
to the ideal case (upper-right corner of the figure, see the zoom of this corner on Figure 14).

Table III: Examples of retrieval performance

From these experiments, we can observe that γ-points are very important: indeed, in most of
the cases better performance is obtained when γ-points are weighted higher than the other
essential points. It is also the most stable with respect to the size of the feature matrix
because it gives almost the same performance for the tested sizes.

4.4 Evaluation on dataset-II: Multiview Curve Dataset (MCD)
This dataset consists of 40 shape classes drawn from the MPEG-7 Core Experiment Shape-
1. Each class contains 14 contours corresponding to different perspective distortions of the
original one. To construct the MCD dataset, the authors [34] have printed the 40 original
contours on white paper. For each one, they took images from 7 different view angles using a
digital camera and then contours are extracted. By adding random rotations and reflections
to these samples, the number of samples in each class is doubled to 14. This dataset presents
realistic perspective transformations that one can encounter while creating images of real
objects. The performance of the descriptors is evaluated using the Precision-Recall curve
averaged over the MCD.
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The number R0 of relevant contours is 14
for each class so the BEP corresponds to the
Recall after 28 retrievals. The size of the
feature matrix is set to 8×8, the weights ap-
plied to essential points are wα=0.5, wβ=0.8
and wγ=1.5 and those applied to moment
matrices are a00=4, a01=2, a10=2 and a0=4.
Figure 15 illustrates the Precision vs. Re-
call graph. The curve plotted on this graph
sticks to the upper side and the right side
of the figure (very close to the upper-right
corner) indicating high performance system.

Fig.15: Mean Precision-Recall curve

On this graph, the point • corresponds to Recall and Precision after 14 retrievals while the
point ◦ corresponds to the BEP. On this curve, one can observe that after having retrieved
14 contours, the Precision and Recall are higher than 94.5%. This shows that the proposed
method outperforms that of HCD [29] that reports a precision of 85% for a recall of 86%.
The performance reported in a recent study, conducted on the same dataset, by Ekombo et
al. [31] is not more than 90% Precision for 90% Recall.
Figure 17 shows a sample set of retrieval results. The first column is the query and the

middle indicates the 14 most similar contours. Mis-classified shapes are represented with
different color (say red edge and yellow foreground). The similarity score is decreasing when
going from left to right. The last column is the ratio of the retrieved relevant to the number
of relevant contours in the class. As can be seen, apart from bird01 and bottle01, all the
queries have provided a precision of 100% after 14 retrievals. This confirms the high BEP rate
obtained and the behavior of the Precision-Recall curve presented in figure 15. Moreover,
one must also notice that in the cases of less than 100% precision, mis-retrieved shapes
appear at the last positions corresponding to the lowest similarity score.

Fig.16: A sample of retrieved contours: first column is the query, middle is 14 most similar and last column
is the ratio of the retrieved relevant over the number of relevant contours in the class.
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4.5 Evaluation on Dataset-III: marine animals
This dataset consists of 17 classes containing from 6 to 8 objects selected from the marine
animals of SQUID database. For comparison, we have followed the same procedure proposed
and used by the author of the database [25] and [26]. This procedure is similar to the concept
of Recall presented previously: thus the performance that is used corresponds to the BEP.
The procedure is as follows:

1. For a given class, use each of the contours as the query and determine the first 15 most
similar outputs. Within these 15 outputs, count the number of relevant contours that
are retrieved and compute the ratio of this number to the number of relevant contours
in the class. Repeat this for all contours in the considered class. The mean value of
this ratio all-over the class is the performance measure for the concerned class (see
individual columns in table IV).

2. Repeat 1. for all the classes in the dataset. The overall performance is then obtained
by averaging the performance provided by the 17 classes. Column ’Overall’ in table
IV, gives that overall performance for the four involved methods.

To assess the performance of the proposed method, its results are compared to those obtained
from three methods tested on the same database and reported in [24]. These compared
methods are the well-known CSS, the Fourier descriptor (FD) and the moment invariants
(MI).

Fig.17: Dataset-III extracted from the SQUID database

For this experiment, the size of the feature matrix is set to 8×8 with 25% overlapping. The
weights applied to essential points are wα=1.5, wβ=1.25 and wγ=1.25 and those applied to
moment matrices are a0=1, a01=0.5, a10=0.5 and a0=1. Regarding table IV, one can notice
that the proposed method ranks the second with 87% performance after CSS method.
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Table IV: Comparison of retrieval performance for four methods

4.6 Evaluation on MPEG-7 datasets
The proposal is also compared with various recent methods reported in the literature [12],
[35], [14] and [20]. This will enable us to evaluate our approach relatively to studies of the
state-of-the-art.
The following datasets from MPEG-7 are used to evaluate the retrieval system. Tradi-

tionally, the evaluation is reported individually on each Part and then the global score is
computed: the results are presented in table V. For the following experiments, the size of
the feature matrix is set to 10×11 with 25% overlapping. The weights applied to essential
points are wα=0.8, wβ=0.5 and wγ=0.8 and those applied to moment matrices are a00=4.8,
a01=2.6, a10=2 and a0=1.6.

4.6.1 Evaluation on Dataset-IV: MPEG-7 CE-Shape-1
The whole database is composed of 1400 contours classified into 70 classes containing 20
visually similar contours each. Within-class deformations include occultation and non-rigid
deformations. This experiment aims at the evaluation of 2-D shape descriptors when the
shape has undergone change of viewpoint, non-rigid motion and noise. The experiments are
then conducted according to following three parts:

Part A-1 is dedicated to evaluate the robustness of the descriptor against scale change. The
dataset used for this experiment is composed of 70 basic shapes selected from the original
dataset-IV. Then each of them is scaled with 5 scale factors: S=[2.0 0.3 0.25 0.2 0.1]. This
leads to 420 individuals in the dataset with 6 individuals in each class. Each individual is
used as a query and the number of correct matches is computed in the Top-6 contours. The
success rate is reported on the row Part A1 of Table V. The proposed method gives 100%
success rate, outperforming all other methods.

Part A-2 is utilized to evaluate the robustness of the descriptor against rotation. Like for
Part A-1, the test set is composed of 70 basic shapes selected from the original Dataset-IV.
Each of them is rotated by using 5 angles: R=[9 36 45 90 150]. Again, this leads to 420
objects in the dataset with 6 individuals in each class. The same way, each individual is
used as a query and the number of correct matches is computed in the Top-6 contours.
The retrieval success rate is reported on the row Part A2 of Table V. Again ; the proposed
method gives 100% success rate, outperforming all other methods.

Part B is the similarity-based retrieval and it is the most difficult part. The whole dataset-
IV is used. Each of the 1400 shapes is used as query and the number of relevant objects
retrieved in the Top-40 is computed. This value corresponds to the BEP. Recently, Bandera
et al. have proposed a new description approach based on an adaptive curvature estimator
by using a global incremental scheme in [7]. Experiments conducted using the MPEG-7
CE-shape-1 Part B showed good performance in terms of BEP. Table V shows the BEP
performance of various shape description techniques reported in the state of the art (see row
Part B). The proposed method gives 76.92% BEP.
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4.6.2 Evaluation on Dataset-V: video clip of marine animals
Commonly referred to as Part C, it concerns a test to assess the performance of the retrieval
system when facing motion and non-rigid deformations. The dataset is composed of contours
extracted from 200 frames of a video clip of a swimming bream fish plus 1100 contours of
marine animals. Fig.18 shows a sample set of the video clip. The contour of the bream fish
named "bream-000" is then used as query and the number of relevant objects retrieved in
the Top-200 is computed. This way, the maximum number of possible matches is 200. The
retrieval success rate is reported on the row Part C of Table V. As opposed to what is said
by Latecki et al. in [20], this table shows that some descriptors give more than 93% accuracy
in Part C. With our method, this accuracy equals 93.53%.

Fig.18: The query shape (bream-000) and a sample set of the bream fish video.

4.6.3 Comparison and discussion of the results
In order to get a global quantitative measurement to compare these different methods, we use
the mean retrieval performance obtained by combining the performance rates computed for
the three parts. The accuracy assessment is done relative to two average values as suggested
by Latecki et al. in [20] and also used by Mokhtarian et al. in [24] (see equations (17) and
(18)).
• MeanScore1 defined by the average performance over the three parts:

MeanScore1 =
0.5(PartA1 + PartA2) + PartB + PartC

3
(17)

• MeanScore2 defined by the average over the number of queries 2241 queries:

MeanScore2 =
420PartA1 + 420PartA2 + 1400PartB + PartC

2241
(18)

Table V, shows the comparison of the proposed method with some recent studies reported
in the literature [35]. All the papers involved in this study report a value for Part B but
not all of them report Part A and Part C. Hence the comparison will be assessed onto two
groups based on two aspects according to the available measurement.
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Table V: Comparison of the results obtained from different methods reported in the literature

The first group is concerned with Part B: in this category, fifteen methods are available.
As can be seen on this table, our proposed method is the 7th best among the 15 presented
methods. It presents a BEP score of 76.92% face to 87.23% for the highest (TA-DSW [11])
and 58.5% for the lowest (WARP [16]).
Recently, Ahmad et al. have introduced an approach similar to TA-DSW which gave

86.65% of BEP. It is a hybrid approach that uses both interior region and shape contours
features: the descriptor consists of a set of local contour-based and region-based features
extrated from the labeled grid representation of the shape.
The second group consists of seven methods that report all the measurements involved in

the computation of MeanScore1 and MeanScore2. For both scores, the proposed method is
the second; using the first type score (MeanScore1), the proposed method obtains a score
of 90.15% behind but very close to the best score of 90.44% (for BAS-60 [14]). The lowest
score in this category is 76% for DAG [22].

5. Conclusion
The context of this paper is the description of planar objects based on the multi-scale analysis
of their contours. For this purpose, we have presented and tested a new feature extracted from
the d-TASS map. The proposed descriptor is derived from a matrix generated by weighted
moments extracted from blocks within the d-TASS map. As for other multi-scale approaches,
one of the advantages of this descriptor holds in its ability to integrate information from
multiple scales at the same time.
The main contribution of this paper is the extensive experiments conducted on various

datasets to compare the proposed approach with other methods proposed in the literature.
Experiments show that the proposed approach ranks 2nd on SQUID database and outper-

forms other methods on MCD dataset.
When applied to shape retrieval from MPEG-7 CE-Shape-1 databases, the obtained results

show that this d-TASS-based descriptor is very promising: up to 93.53% performance is
reached in case of deformations due to motion, on Part C. Although the results of 93.32% of
BEP on Part B, presented by a recent study [36] outperforms the proposed method, one can
notice its satisfactory performance over the same dataset. It is particularly interesting to
notice that the proposed method outperforms a recent performance of 76.56% reported in [37]
on Part B. Especially, one must highlight the 100% performance obtained from this method
when applied to Part A-1 and Part A-2 datasets: this confirms the perfect insensitivity of the
method to rotation and scaling. The main weakness of the proposal is the large number of
parameters so one may consider another combination of d-TASS features in order to reduce
this number.
In terms of global mean score, the proposed method holds a honorable rank among the

well-established methods since it is ranked second among the seven presented methods.
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Though the proposed method provides average performance when applied to MPEG-7 Part
B, it offers satisfactory and encouraging results when we analyze the results obtained from
various datasets.
To improve the proposed approach, failure cases need to be analyzed more deeply: this

will allow to better adjust the parameters properly to make them be more generic for all
datasets. So, future work will mainly focus on the analysis of failure cases in each dataset
and then set optimal values for the parameters.
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