283 research outputs found

    Nucleus segmentation : towards automated solutions

    Get PDF
    Single nucleus segmentation is a frequent challenge of microscopy image processing, since it is the first step of many quantitative data analysis pipelines. The quality of tracking single cells, extracting features or classifying cellular phenotypes strongly depends on segmentation accuracy. Worldwide competitions have been held, aiming to improve segmentation, and recent years have definitely brought significant improvements: large annotated datasets are now freely available, several 2D segmentation strategies have been extended to 3D, and deep learning approaches have increased accuracy. However, even today, no generally accepted solution and benchmarking platform exist. We review the most recent single-cell segmentation tools, and provide an interactive method browser to select the most appropriate solution.Peer reviewe

    MoNuSAC2020:A Multi-Organ Nuclei Segmentation and Classification Challenge

    Get PDF
    Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public

    Nuclei & Glands Instance Segmentation in Histology Images: A Narrative Review

    Full text link
    Instance segmentation of nuclei and glands in the histology images is an important step in computational pathology workflow for cancer diagnosis, treatment planning and survival analysis. With the advent of modern hardware, the recent availability of large-scale quality public datasets and the community organized grand challenges have seen a surge in automated methods focusing on domain specific challenges, which is pivotal for technology advancements and clinical translation. In this survey, 126 papers illustrating the AI based methods for nuclei and glands instance segmentation published in the last five years (2017-2022) are deeply analyzed, the limitations of current approaches and the open challenges are discussed. Moreover, the potential future research direction is presented and the contribution of state-of-the-art methods is summarized. Further, a generalized summary of publicly available datasets and a detailed insights on the grand challenges illustrating the top performing methods specific to each challenge is also provided. Besides, we intended to give the reader current state of existing research and pointers to the future directions in developing methods that can be used in clinical practice enabling improved diagnosis, grading, prognosis, and treatment planning of cancer. To the best of our knowledge, no previous work has reviewed the instance segmentation in histology images focusing towards this direction.Comment: 60 pages, 14 figure

    Mathematical Morphology for Quantification in Biological & Medical Image Analysis

    Get PDF
    Mathematical morphology is an established field of image processing first introduced as an application of set and lattice theories. Originally used to characterise particle distributions, mathematical morphology has gone on to be a core tool required for such important analysis methods as skeletonisation and the watershed transform. In this thesis, I introduce a selection of new image analysis techniques based on mathematical morphology. Utilising assumptions of shape, I propose a new approach for the enhancement of vessel-like objects in images: the bowler-hat transform. Built upon morphological operations, this approach is successful at challenges such as junctions and robust against noise. The bowler-hat transform is shown to give better results than competitor methods on challenging data such as retinal/fundus imagery. Building further on morphological operations, I introduce two novel methods for particle and blob detection. The first of which is developed in the context of colocalisation, a standard biological assay, and the second, which is based on Hilbert-Edge Detection And Ranging (HEDAR), with regard to nuclei detection and counting in fluorescent microscopy. These methods are shown to produce accurate and informative results for sub-pixel and supra-pixel object counting in complex and noisy biological scenarios. I propose a new approach for the automated extraction and measurement of object thickness for intricate and complicated vessels, such as brain vascular in medical images. This pipeline depends on two key technologies: semi-automated segmentation by advanced level-set methods and automatic thickness calculation based on morphological operations. This approach is validated and results demonstrating the broad range of challenges posed by these images and the possible limitations of this pipeline are shown. This thesis represents a significant contribution to the field of image processing using mathematical morphology and the methods within are transferable to a range of complex challenges present across biomedical image analysis

    SEGMENTATION AND INFORMATICS IN MULTIDIMENSIONAL FLUORESCENCE OPTICAL MICROSCOPY IMAGES

    Get PDF
    Recent advances in the field of optical microscopy have enabled scientists to observe and image complex biological processes across a wide range of spatial and temporal resolution, resulting in an exponential increase in optical microscopy data. Manual analysis of such large volumes of data is extremely time consuming and often impossible if the changes cannot be detected by the human eye. Naturally it is essential to design robust, accurate and high performance image processing and analysis tools to extract biologically significant results. Furthermore, the presentation of the results to the end-user, post analysis, is also an equally challenging issue, especially when the data (and/or the hypothesis) involves several spatial/hierarchical scales (e.g., tissues, cells, (sub)-nuclear components). This dissertation concentrates on a subset of such problems such as robust edge detection, automatic nuclear segmentation and selection in multi-dimensional tissue images, spatial analysis of gene localization within the cell nucleus, information visualization and the development of a computational framework for efficient and high-throughput processing of large datasets. Initially, we have developed 2D nuclear segmentation and selection algorithms which help in the development of an integrated approach for determining the preferential spatial localization of certain genes within the cell nuclei which is emerging as a promising technique for the diagnosis of breast cancer. Quantification requires accurate segmentation of 100 to 200 cell nuclei in each patient tissue sample in order to draw a statistically significant result. Thus, for large scale analysis involving hundreds of patients, manual processing is too time consuming and subjective. We have developed an integrated workflow that selects, following 2D automatic segmentation, a sub-population of accurately delineated nuclei for positioning of fluorescence in situ hybridization labeled genes of interest in tissue samples. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all 4 normal cases and all 5 non-cancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. As a natural progression from the 2D analysis algorithms to 3D, we first developed a robust and accurate probabilistic edge detection method for 3D tissue samples since several down stream analysis procedures such as segmentation and tracking rely on the performance of edge detection. The method based on multiscale and multi-orientation steps surpasses several other conventional edge detectors in terms of its performance. Subsequently, given an appropriate edge measure, we developed an optimal graphcut-based 3D nuclear segmentation technique for samples where the cell nuclei are volume or surface labeled. It poses the problem as one of finding minimal closure in a directed graph and solves it efficiently using the maxflow-mincut algorithm. Both interactive and automatic versions of the algorithm are developed. The algorithm outperforms, in terms of three metrics that are commonly used to evaluate segmentation algorithms, a recently reported geodesic distance transform-based 3D nuclear segmentation method which in turns was reported to outperform several other popular tools that segment 3D nuclei in tissue samples. Finally, to apply some of the aforementioned methods to large microscopic datasets, we have developed a user friendly computing environment called MiPipeline which supports high throughput data analysis, data and process provenance, visual programming and seamlessly integrated information visualization of hierarchical biological data. The computational part of the environment is based on LONI Pipeline distributed computing server and the interactive information visualization makes use of several javascript based libraries to visualize an XML-based backbone file populated with essential meta-data and results

    Computer Vision Approaches for Mapping Gene Expression onto Lineage Trees

    Get PDF
    This project concerns studying the early development of living organisms. This period is accompanied by dynamic morphogenetic events. There is an increase in the number of cells, changes in the shape of cells and specification of cell fate during this time. Typically, in order to capture the dynamic morphological changes, one can employ a form of microscopy imaging such as Selective Plane Illumination Microscopy (SPIM) which offers a single-cell resolution across time, and hence allows observing the positions, velocities and trajectories of most cells in a developing embryo. Unfortunately, the dynamic genetic activity which underlies these morphological changes and influences cellular fate decision, is captured only as static snapshots and often requires processing (sequencing or imaging) multiple distinct individuals. In order to set the stage for characterizing the factors which influence cellular fate, one must bring the data arising from the above-mentioned static snapshots of multiple individuals and the data arising from SPIM imaging of other distinct individual(s) which characterizes the changes in morphology, into the same frame of reference. In this project, a computational pipeline is established, which achieves the aforementioned goal of mapping data from these various imaging modalities and specimens to a canonical frame of reference. This pipeline relies on the three core building blocks of Instance Segmentation, Tracking and Registration. In this dissertation work, I introduce EmbedSeg which is my solution to performing instance segmentation of 2D and 3D (volume) image data. Next, I introduce LineageTracer which is my solution to performing tracking of a time-lapse (2d+t, 3d+t) recording. Finally, I introduce PlatyMatch which is my solution to performing registration of volumes. Errors from the application of these building blocks accumulate which produces a noisy observation estimate of gene expression for the digitized cells in the canonical frame of reference. These noisy estimates are processed to infer the underlying hidden state by using a Hidden Markov Model (HMM) formulation. Lastly, for wider dissemination of these methods, one requires an effective visualization strategy. A few details about the employed approach are also discussed in the dissertation work. The pipeline was designed keeping imaging volume data in mind, but can easily be extended to incorporate other data modalities, if available, such as single cell RNA Sequencing (scRNA-Seq) (more details are provided in the Discussion chapter). The methods elucidated in this dissertation would provide a fertile playground for several experiments and analyses in the future. Some of such potential experiments and current weaknesses of the computational pipeline are also discussed additionally in the Discussion Chapter

    Locality sensitive modelling approach for object detection, tracking and segmentation in biomedical images

    Get PDF
    Biomedical imaging techniques play an important role in visualisation of e.g., biological structures, tissues, diseases and medical conditions in cellular level. The techniques bring us enormous image datasets for studying biological processes, clinical diagnosis and medical analysis. Thanks to recent advances in computer technology and hardware, automatic analysis of biomedical images becomes more feasible and popular. Although computer scientists have made a great effort in developing advanced imaging processing algorithms, many problems regarding object analysis still remain unsolved due to the diversity of biomedical imaging. In this thesis, we focus on developing object analysis solutions for two entirely different biomedical image types: uorescence microscopy sequences and endometrial histology images. In uorescence microscopy, our task is to track massive uorescent spots with similar appearances and complicated motion pattern in noisy environments over hundreds of frames. In endometrial histology, we are challenged by detecting different types of cells with similar appearance and in terms of colour and morphology. The proposed solutions utilise several novel locality sensitive models which can extract spatial or/and temporal relational features of the objects, i.e., local neighbouring objects exhibiting certain structures or patterns, for overcoming the difficulties of object analysis in uorescence microscopy and endometrial histology

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF
    • …
    corecore