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GLOSSARY: 

2D: Two Dimensional: the term typically used to indicate the standard format in 

which images are acquired by a standard camera 

3D: Three Dimensional: the term typically used to indicate a z-stack of 2D images 

referring to different optical sections 

API: Application Programming Interface: a set of functions and procedures 

allowing the development of applications that access the features or data of an 

operating system, application, or other service 

BBBC: Broad Bioimage Benchmark Collection: an open microscopy image 

collection for scientific purposes 

CNN: Convolutional Neural Network: a class of deep neural networks including 

convolutional layers based on blocks responsible for appropriate image feature 

retrieval (via convolutions) and scaling (with pooling blocks) 

DAPI: a widely used fluorescent stain that binds to adenine–thymine-rich regions of 

the DNA, thus labels the nucleus 

DIC: Differential Interference Contrast: a microscopy technique that introduces 

contrast to images of specimen with little or no contrast upon brightfield microscopy 



DNN: Deep Neural Network is an artificial neural network machine learning 

architecture that includes several hidden layers, and can be trained to solve more 

complex tasks on more complex data compared to shallow neural networks 

DSB2018: Data Science Bowl 2018: the data science competition held in 2018 with 

a task to segment nuclei in microscopy images. The official, open dataset of the 

competition is also referred to as such, and is often used to benchmark nucleus 

segmentation methods 

GPL: General Public License: a series of widely used open-source licenses that 

guarantee end users the freedom to run, study, share, and modify the software 

GPU: Graphics Processing Unit: a specialized electronic circuit designed to rapidly 

manipulate memory to accelerate computations related primarily to graphics 

H&E: Hematoxylin and Eosin: a combination of two histological stains: hematoxylin 

and eosin. Hematoxylin stains cell nuclei to purplish blue, and eosin stains the 

extracellular matrix and cytoplasm to pink 

IF: Immunofluorescence: a staining which utilizes fluorescent-labelled antibodies to 

detect specific target antigens 

ISBI: International Symposium on Biomedical Imaging: a scientific conference 

series dedicated to mathematical, algorithmic, and computational aspects of 

biological and biomedical imaging 

IT: Iterative Thresholding: an algorithm used to define the background and 

foreground in an image 

LoS: line-of-sight: the straight line between the object and the target 

mAP: mean Average Precision: a popular metric related to measuring the accuracy 

of object detectors 



MITK: Medical Imaging Interaction Toolkit: a software suite designed for medical 

image analysis 

NEUBIAS: Network of European BioImage Analysts, a network of experts in life 

sciences for image data analysis. 

PC: Phase Contrast: an optical microscopy technique that converts phase shifts in 

light passing through a transparent specimen to brightness changes in the image 

RPN: Region Proposal Network: a fully convolutional network that simultaneously 

predicts object bounds and objectness scores at each position 

siRNA: short-interfering RNA: a class of double-stranded, non-coding RNA 

molecules, similar to miRNA, operating within the RNA interference (RNAi) pathway 

SNR: Signal-to-Noise Ratio: a measure used to compare the level of a desired 

signal relative to the level of background noise 

TCGA: The Cancer Genome Atlas: a huge cancer genomic program which covers 

many cancer types with a patient-based, open dataset including genomic, proteomic, 

imaging etc. data  

TIFF: Tagged Image File Format: one of the most common image file formats 

TTA: Test-time augmentation: the aggregation of predictions across transformed 

versions of a test input 

WSI: Whole Slide Image: scanned image of an entire histopathology tissue section, 

usually of gigapixel size, resulting in file size of gigabytes, which is difficult to handle 

by an image processing software 

  

ABSTRACT 

Single nucleus segmentation is a frequent challenge of microscopy image 

processing, since it is the first step of many quantitative data analysis pipelines. The 



quality of tracking single cells, extracting features or classifying cellular phenotypes 

strongly depends on segmentation accuracy. Worldwide competitions have been 

held, aiming to improve segmentation, and recent years have definitely brought 

significant improvements: large annotated datasets are now freely available, several 

2D segmentation strategies have been extended to 3D, and deep learning 

approaches have increased accuracy. However, even today, no generally accepted 

solution and benchmarking platform exist. We review the most recent single-cell 

segmentation tools, and provide an interactive method browser to select the most 

appropriate solution. 

  

  

TOWARDS ROBUST AND AUTOMATED METHODS FOR NUCLEUS 

SEGMENTATION 

  

The history [1] of detecting and segmenting single cells goes along with the first 

digitized microscopy images. Many research fields utilizing microscopy, such as 

developmental biology [2], drug discovery [3], functional genomics [4] and pathology 

[5] are dependent on accurate cell and nucleus segmentation as a vital part of image 

analysis workflows. Since image analysis has moved from a methodological 

research area towards data science as a result of the recent machine learning 

revolution, annotated datasets have become essential regarding the performance of 

nuclear segmentation methods. Especially, modality-independent, generalizable, and 

robust machine learning-based nucleus segmentation models need heterogeneous 

and large collections of expert-annotated images [6,7]. 

 

https://paperpile.com/c/jnl2dW/Hh9m0
https://paperpile.com/c/jnl2dW/7J6vg
https://paperpile.com/c/jnl2dW/tutRw
https://paperpile.com/c/jnl2dW/YS9mw
https://paperpile.com/c/jnl2dW/jTRAL
https://paperpile.com/c/jnl2dW/CDLaf+zcPzD


The level of difficulty of single-cell detection in an image, let alone precise outlining, 

widely varies (see Figure 1). In most simple cases nuclei have high contrast and are 

separated by proper experimental conditions (referred to as easy cases), hence their 

segmentation is not difficult (e.g. large siRNA - see Glossary) [8]. In other cases 

segmentation is highly challenging, for instance in 3D, label-free or thick tissue 

sections where cells touch, overlap or have non-conventional morphology, intensity, 

or patterns. International competitions [6][9] have promoted the potential to 

overcome these issues, yet a genuinely general solution is still awaited. However, 

due to major advancements in this field in recent years, our community has reached 

an unprecedented improvement in detecting single nuclei [10]. Easy cases of 

segmentation, especially in 2D are not problematic anymore [11,12], while accuracy 

has also improved in challenging cases [6]. In addition, 3D data analysis methods 

have progressed with extended 2D segmentation solutions [13] or with native 3D 

ones [14][15]. The community has accumulated large amounts of annotated data 

(either by experts [6] or crowdsourcing [16]) for training machine learning 

segmentation models, and to evaluate the methods in public benchmarking platforms 

[6][17]. This review describes the specific techniques biologists can exploit for single-

cell analysis. However, we emphasise that no standardized approach has been 

developed to date to properly compare different solutions before deciding which tool 

to use for a specific application.  

  

First, the variety and extent of datasets currently available to test and train methods 

are presented. Next, a selection of annotation tools available for creation of training 

datasets for machine learning methods is introduced. Then the issues related to pre- 

and post-processing of images to reduce challenges inherent to complex data are 

https://paperpile.com/c/jnl2dW/tTqbZ
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/hKIpt
https://paperpile.com/c/jnl2dW/KaodM
https://paperpile.com/c/jnl2dW/K96Q2+NOslV
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/mEbWH
https://paperpile.com/c/jnl2dW/WDwHQ
https://paperpile.com/c/jnl2dW/OPs9o
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/EFHMs
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/jY5TN


briefly discussed (see Suppl. Mat. 1 for details on different techniques), followed by 

insights into 2D nuclear segmentation methods. Classical approaches that provide 

task-specific and general solutions for a wide variety of acquisition techniques are 

presented. However, most recent methods usually rely on DNNs, and since the 

target objective is related to image processing, CNNs are most commonly applied to 

segment nuclei (see in Glossary). As processing 3D data is one of the major 

challenges in single nucleus segmentation, a set of promising and successful 

methods appropriate to solve specific 3D segmentation tasks is discussed. 

  

Figure 2 supports a better understanding of the definitions of detection and 

segmentation tasks. When identifying single cells (objects) in microscopy images 

automatically, i.e. using computer algorithms, the results may be either (1) detections 

corresponding to the localization of the objects or (2) segmentations which separate 

independent image regions. The former is typically represented as bounding boxes, 

whereas the latter may be realized by either assigning a binary label to each pixel 

while dividing the image into not necessarily connected regions (semantic 

segmentation) or by separating individual objects (instance segmentation). One may 

choose from a plethora of methods and software tools to perform nuclear 

segmentation (see section “Segmentation methods and toolkits”). Major challenges 

are discussed in the Outstanding Questions Box. As many of the segmentation 

methods considered in this review utilize deep learning approaches, this subset of 

machine learning is also introduced. Deep learning involves the training of DNNs for 

complex yet arbitrary tasks, such as detection, segmentation and classification (not 

strictly in our domain of cellular image analysis, but also in natural image-, video- or 

audio-processing). Deep learning based approaches are proven to perform 



excellently on the trained domain, with the potential of extension to unseen domains 

[18]. Their translation is limited by the lack of publicly available datasets related to 

less common modalities (see section “Annotated nucleus datasets”). 

  

A portalI was developed to offer a graphical aid to select the most appropriate 

method for non-image analysis experts (see Figure 2). This portal has several 

advantages: (1) the imaging community can select the methods 

applicable/appropriate for their images of interest, and (2) developers can submit the 

description and best practices for their methods. Currently, the most common optical 

microscopy categories are considered. Notably, the web portal is declared to be 

maintained by the authors, yet the community is encouraged to actively contribute 

and eventually propose extensions to it. For benchmarking the segmentation 

methods, users can exploit BIAFLOWSII [17], a freely available web-based platform 

developed by NEUBIAS. The assessment of new proposals has been commonly 

performed with limited datasets and arbitrary metrics (see Suppl. Mat. 2); in 

contrast,  NEUBIAS is a step forward to prevent such a biased evaluation. However, 

an unbiased quantitative method comparison is still impossible due to the lack of a 

comprehensive annotated dataset for training and testing the methods using a 

globally accepted benchmark platform and unified metrics (see section 

“Segmentation methods and toolkits”). 

 

 

ANNOTATED NUCLEUS DATASETS 

  

https://paperpile.com/c/jnl2dW/VnUeX
https://paperpile.com/c/jnl2dW/jY5TN


Annotated datasets are used in computer science to validate the accuracy of 

developed algorithms. In addition, nowadays annotated datasets are also used for 

training machine learning models for various tasks. One of the key factors 

influencing the performance of segmentation models is the composition of annotated 

data. Ideally, a trainable model yields optimal results on a test set sampled from the 

same domain as training data are collected from, hence domain-specific annotated 

datasets serve as a valuable asset, especially when they are expert-curated. Highly 

specific domain datasets are usually complemented with proper metadata [19][20], 

such as the experimental setup, sample preparation or microscope device, and are 

expert-curated when it comes to annotations. However, they typically cover a narrow 

diversity, and are small in size. Open datasets may contain a varying number of 

images (see Table 1). An important aspect for the user to consider when either 

training a new model or evaluating segmentation performance on publicly available 

datasets is that the corresponding annotations occasionally contain such 

segmentations yielded by automatic methods [19] that might not be refined by an 

expert, thus the results might be biased. Annotated nucleus datasets displayed in 

Table 1 show diversity in size (not only regarding the number of images, but also 

that of the objects too) and content, focusing on those widely used as benchmarks or 

training data. Annotations may be realized as objects (instance aware) or binary 

masks (semantic), are primarily 2D, and the two most common imaging modalities 

cover fluorescence stained cell cultures and H&E stained tissue sections. 

 

Table 1. Open datasets of annotated nucleus for single-cell analysis purposes 

  

https://paperpile.com/c/jnl2dW/C7HKS
https://paperpile.com/c/jnl2dW/7IBxG
https://paperpile.com/c/jnl2dW/C7HKS


Name Individual 

objects (O) 

or binary 

masks (BM) 

2D/3D Microscopy Staining Sample # 

images 

# objects Ref. 

BBBC032 O 3D confocal fluo mouse 

embryo 

blastocyst 

cells 

1 

(172*) 

1220 [21] 

BBBC033 O 3D confocal fluo mouse 

trophoblas

t stem 

cells 

1 (32*) 585 [21] 

BBBC034 O 3D brightfield/fluoresce

nt 

x/3 

fluo** 

hiPSC 3D 1 (52*) 790 [19] 

Scaffold-A549 

Dataset 

O 3D fluorescent Hoechst

+DiL 

lung 

cancer 

tissue 

21 800 

(+10000 

w/o 

labels) 

[22] 

BBBC039 O 2D fluorescent Hoechst U2OS 

cells 

200 23.615 [10] 

CoNSeP O 2D brightfield H&E colon 

tissue 

41 24.319 [23] 

CryoNuSeg 

(TCGAIV ) 

O 2D brightfield H&E various 

tissues 

30 7.596 [24] 

DSB2018 O 2D various various various 

tissues 

and cells 

841 37.530 [6] 

Janowczyk et 

al.V 

BM 2D brightfield H&E breast 

tissue 

141 ~12.000 [25] 

LIVECell O 2D phase-contrast label-

free 

cell 

cultures 

5 239 1.686.35

2 

[26] 

https://paperpile.com/c/jnl2dW/03cAm
https://paperpile.com/c/jnl2dW/03cAm
https://paperpile.com/c/jnl2dW/C7HKS
https://paperpile.com/c/jnl2dW/jF7sC
https://paperpile.com/c/jnl2dW/KaodM
https://paperpile.com/c/jnl2dW/hF21D
https://paperpile.com/c/jnl2dW/XMErh
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/D2Xsn
https://paperpile.com/c/jnl2dW/WO30C


Lizard O 2D brightfield H&E colon 

tissue 

291 495.179 [27] 

MoNuSeg201

8 

O 2D brightfield H&E various 

tissues 

44 28.846 [28] 

NuCLS O*** 2D brightfield H&E breast 

tissue 

N/A 222.396 [16] 

NucMM O 3D electron 

microscopy/ micro-

CT 

label-

free 

brain 

tissue 

2 ~170.000 

+ ~7.000 

[29] 

PanNuke O 2D brightfield H&E various 

tissues 

481 205.343 [30] 

S-BSST265 O 2D fluorescent/ 

confocal 

IF/ 

DAPI 

various 

tissues 

and cells 

79 7.813 [20] 

TCGAIV 

images 

  processed 

by Irshad et 

at. 

N/A 2D brightfield H&E kidney 

clear cell 

renal 

carcinoma 

tissue 

63 N/A [31] 

TCGAIV 

images 

  processed 

by Kumar et 

at. 

O 2D brightfield H&E various 

tissues 

30 21.623 [28] 

TNBC O 2D brightfield H&E breast 

tissue 

50 4.022 [32] 

Wienert et al. O 2D brightfield H&E various 

tissues 

36 7.931 [33] 

TissueNet 

Version v1.0 

O 2D fluorescent various 

staining

s 

various 

tissues 

6990 ~1.200.0

00 

[7] 

  

https://paperpile.com/c/jnl2dW/A5LNW
https://paperpile.com/c/jnl2dW/1soHI
https://paperpile.com/c/jnl2dW/EFHMs
https://paperpile.com/c/jnl2dW/8AQU7
https://paperpile.com/c/jnl2dW/SLUuh
https://paperpile.com/c/jnl2dW/7IBxG
https://paperpile.com/c/jnl2dW/7Iihw
https://paperpile.com/c/jnl2dW/1soHI
https://paperpile.com/c/jnl2dW/ywrsE
https://paperpile.com/c/jnl2dW/sebD7
https://paperpile.com/c/jnl2dW/zcPzD


* the number of slices is presented; 1 image is available 

** CellMask Deep Red plasma membrane, EGFP beta-actin, Hoechst DNA 

*** object contours or bounding boxes with class label 

  

International challenges, such as the annual ISBI or competitions hosted by e.g. 

Kaggle with industry partners, inspire those in the field of research and development 

to propose new technologies and methods or combine existing ones for a new 

purpose. One of the most successful and widely used segmentation methods, U-Net 

[34] (see in Supplementary Material 4) arose from the 2015 ISBI Cell Tracking 

Challenge [35], and has been the basis for several novel CNN architectures ever 

since (see section “Segmentation Methods and Toolkits”). Similar competitions 

contribute to the development of this field with invaluable collections of microscopy 

images, on which developers may benchmark their novel approaches according to 

standard evaluation metrics (typically mAP) in a fairly comparable way. In recent 

years the DSB2018 [6] dataset has been applied as such, since its image set 

comprises various types of microscopy modalities, magnifications, labels, sources 

etc. This might also provide insight into the expected model performance. Generally, 

datasets originating from challenges are carefully validated by field-expert annotators 

[6][15] (usually biologists and pathologists), promoting their further applicability to 

train new models. Notably, annotations of the training set are usually released 

instantly, while test set annotations may remain private even after the challenge is 

concluded [35]. Dataset size strongly depends on the task, e.g. a competition in 2D 

instance segmentation (like DSB2018) generally has a larger number of annotated 

images than a tracking [35] or a 3D segmentation task [19][21]. 

 

https://paperpile.com/c/jnl2dW/PZEb0
https://paperpile.com/c/jnl2dW/J3Q4X
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/J3Q4X
https://paperpile.com/c/jnl2dW/J3Q4X
https://paperpile.com/c/jnl2dW/C7HKS
https://paperpile.com/c/jnl2dW/03cAm


Conclusively, a key contribution of the bioimage analysis community to this field is 

the release of open datasets of annotated images, in as many varying imaging 

modalities as possible. Data sharing is highly encouraged, especially in case of 

intrinsically challenging microscopy types, such as label-free imaging (notably, 

LIVECell [26] is a promising step in this direction) or generally in 3D. Provided in an 

open way, these annotated datasets could inspire method developers to increase 

their focus on less frequent modalities, and release pre-trained models for those as 

well. Also, they enable users to benchmark (evaluate the performance of) available 

methods on this data. Additionally, experiment-specific unlabelled image sets (e.g. 

TCGAIV) may also promote progress in case an annotated subset is shared later 

independently [24,28][31]. Finally, as annotated datasets require an appropriate 

software tool that the experts (or generally, annotators) can use to create the labels, 

various annotation software solutions are collected in the following section. 

 

 

TOOLS FOR ANNOTATION 

  

Countless software tools are available to create annotations for single-cell 

segmentation training or validation, with a widely varying spectrum of functionality. 

These tools are designed either for specialists, such as biologists and pathologists, 

or for method developers. Options for annotation typically include freehand drawing, 

point, ellipse or polygon labelling, all of which may be exported to formats suitable for 

different applications. The finer the representation (annotation) of the object is, the 

more information it provides for a model when used as training data. While object 

location marked simply by a centre point or bounding box coordinates is sufficient for 

https://paperpile.com/c/jnl2dW/WO30C
https://paperpile.com/c/jnl2dW/XMErh+1soHI
https://paperpile.com/c/jnl2dW/7Iihw


detection or even classification training, contours (boundaries) labelled either 

semantically (binary) or in an instance-aware way are usually used to train 

segmentation. Equivalently, the same types of annotated data may be utilized to 

assess the accuracy of different methods. 

 

Even though labelling several images tends to be time-consuming for a single 

expert, even students [16] can learn how to create accurate annotations when 

curated by experts, yielding large annotated datasets via joint and shared efforts. 

Semi-automatic annotation achieved by initial segmentation methods offers a 

convenient solution to speed up the annotation process for experts, and is often 

preferred by the community. Such annotation methods also help to increase [36][37] 

the agreement between experts, which is a common problem source in annotation. 

Alternatively, a consensus of multiple annotators may be used [31][6] at the object- 

or pixel level; crowdsourced annotations [16] are easier to combine this way. 

Commercial solutions and free-to-use software, including but not limited to those 

applied in cell biology, are described in detail in Suppl. Mat. 3 and Suppl. Table 2. 

  

Plugins or extensions to existing open-source software, such as ImageJ/Fiji [38,39] 

or MITK [40] are popular choices preferred by  bioimage analysts already 

experienced with the given software. The Fiji plugins Trainable Weka Segmentation 

[41] and LabKitIII use machine learning to train pixel classification similarly to ilastik 

[42] (see Suppl. Mat. 3-4), while AnnotatorJ [36] applies a U-Net to assist contour 

annotation. Assistance in the MITK plugin 3D-Cell-Annotator [43] exploits active 

surfaces with shape descriptors in 3D, while NuClick [18] uses its own CNN for 

histopathology images. 

https://paperpile.com/c/jnl2dW/EFHMs
https://paperpile.com/c/jnl2dW/L4mE9
https://paperpile.com/c/jnl2dW/4riM1
https://paperpile.com/c/jnl2dW/7Iihw
https://paperpile.com/c/jnl2dW/CDLaf
https://paperpile.com/c/jnl2dW/EFHMs
https://paperpile.com/c/jnl2dW/Fo1KT+m10ZV
https://paperpile.com/c/jnl2dW/eR1WO
https://paperpile.com/c/jnl2dW/xOmyT
https://paperpile.com/c/jnl2dW/RsWCZ
https://paperpile.com/c/jnl2dW/L4mE9
https://paperpile.com/c/jnl2dW/wHFJ8
https://paperpile.com/c/jnl2dW/VnUeX


  

Larger image analysis projects not primarily intended for annotation, but for a rather 

more comprehensive evaluation of the sample images (Cytomine [44][45], ilastik 

[42], DeepCell [46], QuPath [47]), including e.g. the segmentation or classification of 

cells, may also provide convenient solutions for annotation. Still, each has its target 

application: e.g. QuPath is a desktop tool suitable for WSI analysis, while Cytomine 

processes WSIs online in a collaborative way, and DeepCell improves its 

segmentation DNN with annotation collaboration.  

 

Standalone software packages (Diffgram, LabelImg, Segmentor [37]) offer a 

lightweight, specific solution for annotation: Segmentor [37]is intended for 3D 

annotation, Make Sense and Diffgram have additional online interfaces, and the 

latter also supports deep learning. Online tools (VGG Image Annotator, Kaibu, 

supervise.ly, Piximi annotator) require no installation and have no specific hardware 

requirements. However, it is worth noting that online service-based platforms 

(Lionbridge.AI or Hive) require that raw data are sent out of the laboratory, which 

might be undesirable in case of sensitive (e.g. patient-related) images. 

  

Nonetheless, genuinely general-purpose image editing applications, such as GIMP 

(GPL licence, free) or Photoshop (Adobe, commercial) may also be used to create 

annotations at the expense of more cumbersome export, e.g. in the case of instance 

annotation labels. 

  

https://paperpile.com/c/jnl2dW/bk8nH
https://paperpile.com/c/jnl2dW/T6mJC
https://paperpile.com/c/jnl2dW/RsWCZ
https://paperpile.com/c/jnl2dW/W03OL
https://paperpile.com/c/jnl2dW/LUPHW
https://paperpile.com/c/jnl2dW/4riM1
https://paperpile.com/c/jnl2dW/4riM1


Conclusively, several options are available, depending on the specific requirements 

of a project or experiment. Tools that provide multiple implementations (e.g. both 

local and online) might be ideal for more users. 

 

 

SEGMENTATION METHODS AND TOOLKITS 

 

Single nucleus segmentation methods may work with raw images, but in more 

challenging cases (e.g. Figure 1. j-v) the quality of the analysis (and specifically that 

of single nucleus segmentation) benefits from additional pre- and post-processing 

steps (e.g. illumination correction [48][49] or denoising [50] prior to the analysis, 

mask refinement or test time augmentation (TTA) [51] applied as post-processing). 

Application of these methods depends on the task and the desired quality of the 

result; some of the most commonly used processing steps are described in Suppl. 

Mat. 1. 

 

Nucleus segmentation is traditionally performed using a data-specific workflow that 

contains various filtering and thresholding methods, followed by morphological 

operations and processing steps (ImageJ/Fiji [38,39], QuPath [47], CellProfiler [52]). 

Segmentation using pixel classification, based on classical machine learning 

methods has been used for challenging data for a decade, with early versions of 

tools including e.g. DeepMIB [53] and ilastik [42]. The fundamental difference 

between classical image processing-based nucleus segmentation and that with 

classical machine learning is the input required from the user: in the former case, 

manual parameter setting and fine-tuning is expected in different processing 

https://paperpile.com/c/jnl2dW/dOtI4
https://paperpile.com/c/jnl2dW/QxP4F
https://paperpile.com/c/jnl2dW/Rw6ml
https://paperpile.com/c/jnl2dW/Ap2iO
https://paperpile.com/c/jnl2dW/Fo1KT+m10ZV
https://paperpile.com/c/jnl2dW/LUPHW
https://paperpile.com/c/jnl2dW/phH7Q
https://paperpile.com/c/jnl2dW/63Esb
https://paperpile.com/c/jnl2dW/RsWCZ


modules in the pipeline, which is still capable of yielding very high accuracy at the 

expense of time-consuming re-parameterization for each new experiment. The latter 

enables users to rely on automated feature extraction and learning by still providing 

examples manually, which most likely also need to be repeated in experiments. 

Notably, appropriate pre-processing of input images (e.g. intensity scaling) can help 

to unify the range of optimal parameters in both cases. The nuclear segmentation 

task has moved towards robust and automated approaches with U-Net [34] (see in 

Suppl. Mat. 4), which was a breakthrough for deep learning-based nucleus 

segmentation (and in the field of deep learning-based segmentation in general). In 

contrast to image processing and classical machine learning, deep learning-based 

methods require fewer input parameters from the user, and are generally more 

straightforward to apply between experiments than in the case of classical 

approaches. Nonetheless, pre-processing also increases the accuracy of CNNs in 

most cases. U-Net still serves as a baseline for semantic segmentation tasks, and is 

(1) used as part of recent general nucleus/cell segmentation pipelines, such as 

Cellpose [12] and StarDist [54], and (2) utilized or further developed in nnU-Net [55] 

and UNet++ [56]. Even though U-Net is a semantic segmentation framework, it can 

be extended to instance segmentation with post-processing. One typical solution is 

to classify pixels into three classes where one class represents nuclear edges, and 

as such, it can aid instance segmentation [10]. Computationally U-Net is relatively 

simple, thus it is possible to train a basic U-Net on workstations or even laptops with 

a GPU. 

  

Another breakthrough in deep learning-based instance segmentation was Mask R-

CNN [57]. This network was designed for the segmentation of natural images, 

https://paperpile.com/c/jnl2dW/PZEb0
https://paperpile.com/c/jnl2dW/NOslV
https://paperpile.com/c/jnl2dW/Jncli
https://paperpile.com/c/jnl2dW/lNUir
https://paperpile.com/c/jnl2dW/CBd66
https://paperpile.com/c/jnl2dW/KaodM
https://paperpile.com/c/jnl2dW/hC92s


however, it has been adapted for nucleus segmentation in methods such as 

nucleAIzer [11]. Mask R-CNN is built over a CNN feature extraction backbone and 

RPN [58] to suggest possible object regions. These proposals are classified and 

used for binary mask prediction. Mask R-CNN outputs a list of masks allowing 

overlaps, whereas the output of U-Net is an image with no overlaps. However, two 

recent extensions to U-Net-based StarDist, MultiStar [59] and SplineDist [60], enable 

segmentation of overlapping objects. NuSeT [61] combines RPN, U-Net and 

watershed post-processing to optimize segmentation of crowded cells. Mask R-CNN 

requires more computational resources than U-Net, still it can be trained on a 

modern workstation or laptop. 

  

Even though many segmentation methods are not deep learning-based (MINS 

[62,63], XPIWIT [64] etc.), the field has recently tended to shift towards approaches 

based on deep learning (e.g. ilastik [42] now offers DNNs). This includes bundles of 

specific deep learning methods for segmentation and pre-processing which could be 

used on Google Colab (ZeroCostDL4Mic [65], Segmentation of stochastic optical 

reconstruction microscopy (STORM) images [66]), or other client-server architecture 

(ImJoy [67], DeepCell Kiosk [46][68], HistomicsML2 [69]) with provided separate pre-

trained models (CDeep3M [70], nucleAIzer [11], Cellpose [12]). ImageJ users can 

also utilize deep-learning based segmentation with plugins and pre-trained models 

(DeepImageJ [71]). The majority of the methods discussed here are deep learning-

based (see Table 2), which require hardware resources due to the parallelizable and 

heavy computational costs of DNNs, hence GPU acceleration is advised, especially 

for training. Cloud-based solutions often meet this requirement. 

  

https://paperpile.com/c/jnl2dW/K96Q2
https://paperpile.com/c/jnl2dW/9rb7K
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https://paperpile.com/c/jnl2dW/2kfo8
https://paperpile.com/c/jnl2dW/Z9KBn
https://paperpile.com/c/jnl2dW/T3PH1+wHfCK
https://paperpile.com/c/jnl2dW/MPqY5
https://paperpile.com/c/jnl2dW/RsWCZ
https://paperpile.com/c/jnl2dW/OMfog
https://paperpile.com/c/jnl2dW/SsTMe
https://paperpile.com/c/jnl2dW/ch9QG
https://paperpile.com/c/jnl2dW/W03OL
https://paperpile.com/c/jnl2dW/Wb1rR
https://paperpile.com/c/jnl2dW/ZqBi3
https://paperpile.com/c/jnl2dW/RfsCH
https://paperpile.com/c/jnl2dW/K96Q2
https://paperpile.com/c/jnl2dW/NOslV
https://paperpile.com/c/jnl2dW/BUhel


Several methods mentioned above could be used for 3D datasets (see Table 2). 

Segmentation of 3D nuclear images with deep learning is not straightforward. The 

major limitation is that the annotated data in the field are less abundant compared to 

the planar case. There are several deep learning-based methods developed by the 

medical image analysis community facing a similar challenge. However, in the case 

of medical images, usually only one or a few objects need to be segmented. This 

task is different from and less difficult than nucleus segmentation, where hundreds of 

instances should be segmented even when they touch. For example, segmenting a 

medical image by combining the segmentations of 2D images may provide 

acceptable accuracy. In contrast, nucleus segmentation is an instance segmentation  

task where this approach alone is less likely to work in crowded parts of the image, 

but the connected components of the stacked 2D segmentations can be used as a 

seed image for the watershed transform to compute the final 3D instance 

segmentation [72]. Besides, 3D segmentation is more demanding in terms of 

computational resources (especially GPU memory and file sizes) when a dense 2D 

method is extended directly to process 3D images. Introduction of a further 

dimension may lead to substantially growing complexity (for example in case of 

differential geometry-based approaches) and more complex spatial dependencies in 

case of CNNs, however, this phenomenon termed ‘the curse of dimensionality’ is 

especially problematic, thus more training data and more computational resources 

are required. Still, several tools are specifically developed for the 3D segmentation 

task [73], and some deep learning based methods developed for 2D segmentation 

are also extended to 3D. The IT3DImageJSuite is an ImageJ (Fiji) [38,39] plugin that 

involves several algorithms (including iterative thresholding and watershed). LoS [74] 

approximates the convex decomposition of the objects with spectral clustering. 

https://paperpile.com/c/jnl2dW/lFwiy
https://paperpile.com/c/jnl2dW/FBSoN
https://paperpile.com/c/jnl2dW/Fo1KT+m10ZV
https://paperpile.com/c/jnl2dW/wypDS


OpenSegSPIM [75] is a MATLAB application which performs instance segmentation 

by applying a pipeline of filters in a semi-automatic manner. RACE [76] and 

Ruszczycki et al. [15] first compute the 2D segmentation on the z-slices, and then 

combine them to 3D objects. Similarly to BioImageXD [77], Fiji [38,39] and Icy [78], 

Vaa3D [79] uses a pipeline consisting of Gaussian filtering, adaptive thresholding, 

distance transformation and 3D watershed [80], while the MITK plugin 3D-Cell-

Annotator [43] uses active contours for semi-automatic 3D segmentation. In contrast, 

most recent methods apply deep learning techniques to segment nuclei. These 

include QCANet [81], developed to analyze mouse embryos in 3D, 3DeeCellTracker 

[82], intended for tracking after the segmentation of nucleus instances, and the 

algorithm proposed in Lapierre-Landry et al. [83] which performs watershed 

segmentation on the probability map, and supervoxel clustering to achieve the final 

instance segmentation.  

 

Self-supervised and unsupervised learning approaches decrease or even eliminate 

the need of annotated training data. A few of such methods for nuclear segmentation 

have appeared recently [84,85][86]. These methods show competitive results, 

though their accuracy does not exceed that of the supervised state-of-the-art 

methods. Self-supervised segmentation for histopathology images [85] uses 

ResUnet-101 and requires a minimum of annotated data for fine-tuning. Another 

approach [84] uses an attention mechanism, and does not require annotated data. 

AD-GAN [86]uses a sophisticated training approach based on GAN, does not require 

annotated data and also works for both 2D and 3D.  
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https://paperpile.com/c/jnl2dW/srslL


Table 2 and Suppl. Table 3 report the list of tools mentioned above, whilst Suppl. 

Mat. 4 includes their short descriptions. 

  

Table 2. Relevant tools for nucleus segmentation 

Algorithm: A complete method to segment nuclei. An algorithm can be shared as a source code for developers in 

e.g. a GitHub repository or can be implemented as a user-accessible method in a platform. Pipeline: A workflow 

of image processing algorithms to segment nuclei, allowing the user to set parameters for each step of the 

workflow or even change the included algorithms to optimize segmentation tailored to the specific data. Platform: 

A software package that includes multiple algorithms or pipelines for nucleus segmentation, and often has a 

defined API to include additional methods as well. 

2D/3D/Bot

h 

Tool name Pipeline/algorithm/platf

orm 

Code 

availabilit

y 

Year Referenc

e 

GUI/Tutorial/Biaflows/GPU/Cl

oud 

2D U-Net Algorithm Yes 2015 

Ronneberg

er et al.[34] N/N/Y/Y/N 

2D SegNet Algorithm Yes 2015 

Badrinaray

anan et al. 

[87]  N/N/?/Y/N 

2D Mask R-CNN Algorithm Yes 2017 

He et 

al.[57] N/Y/Y/Y/N 

2D QuPath Platform Yes 2017 

Bankhead 

et al.[47] Y/Y/N/Y/N 

2D UNet++ Algorithm Yes 2018 

Zhou et 

al.[56] N/N/N/Y/N 

2D 

Segmentation 

of Nuclei in 

Histopathology 

Images by 

deep 

regression of 

the distance 

map Algorithm Yes 2018 

Naylor et 

al.[88] N/Y/N/Y/N 

https://paperpile.com/c/jnl2dW/PZEb0
https://paperpile.com/c/jnl2dW/jZ4zH
https://paperpile.com/c/jnl2dW/hC92s
https://paperpile.com/c/jnl2dW/LUPHW
https://paperpile.com/c/jnl2dW/CBd66
https://paperpile.com/c/jnl2dW/esNWu


2D 

Multi-scale Cell 

Instance 

Segmentation 

with Keypoint 

Graph based 

Bounding 

Boxes Algorithm Yes 2019 

Yi et al. 

[89] N/N/?/Y/N 

2D HoVer-Net Algorithm Yes 2019 

Graham et 

al.[23] N/Y/N/Y/N 

2D CIA-Net Algorithm No 2019 

Zhou et 

al.[90] N/N/N/Y/N 

2D Bend-Net Algorithm No 2020 

Wang et 

al.[91] N/N/N/Y/N 

2D nucleAIzer Algorithm, Pipeline Yes 2020 

Hollandi et 

al.[11] Y/Y/N/Y/Y 

2D MultiStar Algorithm Yes 2020 

Walter et 

al.[59] N/N/N/Y/N 

2D 

Instance-

Aware Self-

supervised 

Learning for 

Nuclei 

Segmentation Algorithm No 2020 

Xie et al. 

[85] N/N/N/Y/N 

2D 

Self-supervised 

Nuclei 

Segmentation 

in 

Histopathologic

al Images 

Using Attention Algorithm Yes 2020 

Sahasrabu

dhe et al. 

[84,85] N/N/N/Y/N 

2D Triple U-Net Algorithm Yes 2020 

Zhao et 

al.[92] N/N/N/Y/N 

https://paperpile.com/c/jnl2dW/WXcyL
https://paperpile.com/c/jnl2dW/hF21D
https://paperpile.com/c/jnl2dW/E0zK9
https://paperpile.com/c/jnl2dW/D0x2w
https://paperpile.com/c/jnl2dW/K96Q2
https://paperpile.com/c/jnl2dW/UBHv3
https://paperpile.com/c/jnl2dW/FaYEl
https://paperpile.com/c/jnl2dW/FaYEl+WMeaD
https://paperpile.com/c/jnl2dW/BYpzO


2D 

“High-

resolution deep 

transferred 

ASPPU-Net for 

nuclei 

segmentation 

of 

histopathology 

images” Algorithm No 2021 

Chanchal 

et al.[93] N/N/N/Y/N 

2D NucleiSegNet Algorithm Yes 2021 

Lal et 

al.[94] N/Y/N/Y/N 

2D SplineDist Algorithm Yes 2021 

Mandal et 

al.[60] N/N/N/Y/N 

2D 

Contour 

Proposal 

Network Algorithm Yes 2021 

Upschulte 

et al.[95] N/N/N/Y/N 

2D HistomicsML2 Pipeline, Platform Yes 2021 

Lee et 

al.[69] Y/Y/N/Y/Y 

2D STORM Pipeline Yes 2021 

Mela et 

al.[66] N/N/N/Y/Y 

2D MSRF-Net Algorithm Yes 2021 

 

Srivastava 

et al. [96] N/N/N/Y/N 

3D 

“3D cell nuclei 

segmentation 

based on 

gradient flow 

tracking” Algorithm No 2007 Li et al.[97] N/N/N/N/N 

3D Vaa3D Platform Yes 2010 

Peng et 

al.[79] Y/Y/Y/Y/N 

3D 

IT3DImageJSui

te Platform Yes 2013 

Ollion et 

al.[98] Y/Y/N/N/N 

3D LoS Algorithm Yes 2013 

Asafi et 

al.[74] N/Y/N/N/N 

https://paperpile.com/c/jnl2dW/LmWql
https://paperpile.com/c/jnl2dW/im2dF
https://paperpile.com/c/jnl2dW/2kfo8
https://paperpile.com/c/jnl2dW/LMAG7
https://paperpile.com/c/jnl2dW/ZqBi3
https://paperpile.com/c/jnl2dW/SsTMe
https://paperpile.com/c/jnl2dW/xcAgQ
https://paperpile.com/c/jnl2dW/Ke6Yi
https://paperpile.com/c/jnl2dW/sshOI
https://paperpile.com/c/jnl2dW/j3Lj8
https://paperpile.com/c/jnl2dW/wypDS


3D 

“Automated 

cell 

segmentation 

with 3D 

fluorescence 

microscopy 

images” Algorithm No 2015 

Kong et 

al.[99] N/N/N/N/N 

3D OpenSegSPIM Platform Yes 2016 

Gole et 

al.[75] Y/Y/N/N/N 

3D RACE Platform Yes 2016 

Stegmaier 

et al.[76] Y/Y/N/Y/N 

3D U-Net (3D) Algorithm Yes 2016 

Cicek et 

al.[100] N/N/N/Y/N 

3D 

“Segmentation 

of fluorescence 

microscopy 

images using 

three 

dimensional 

active contours 

with 

inhomogeneity 

correction” Algorithm No 2017 

Lee et 

al.[14] N/N/N/N/N 

3D DeepSynth Algorithm No 2019 

Dunn et 

al.[101] N/N/N/Y/N 

3D 

“Three-

Dimensional 

Segmentation 

and 

Reconstruction 

of Neuronal 

Nuclei in 

Confocal 

Microscopic 

Images“ Algorithm Yes 2019 

Ruszczycki 

et al.[15] N/N/N/N/N 

https://paperpile.com/c/jnl2dW/61tx9
https://paperpile.com/c/jnl2dW/ikxeZ
https://paperpile.com/c/jnl2dW/mUEkZ
https://paperpile.com/c/jnl2dW/c24xz
https://paperpile.com/c/jnl2dW/WDwHQ
https://paperpile.com/c/jnl2dW/ttMq5
https://paperpile.com/c/jnl2dW/OPs9o


3D 

“Semi 

supervised 

segmentation 

and graph-

based tracking 

of 3D nuclei in 

time-lapse 

microscopy“ Algorithm Yes 2020 

Shailja et 

al.[102] N/N/N/Y/N 

3D 

“A deep 

learning 

pipeline for 

nucleus 

segmentation” Pipeline No 2020 

Zaki et 

al.[103] N/N/N/Y/N 

3D 

“Combined 

detection and 

segmentation 

of cell nuclei in 

microscopy 

images using 

deep learning” Algorithm No 2020 

Ram et 

al.[104] N/N/N/Y/N 

3D QCANet Algorithm Yes 2020 

Tokuoka et 

al.[81] N/Y/N/Y/N 

3D 

Allen Cell and 

Structure 

Segmenter Platform Yes 2020 

Chen et 

al.[105] Y/Y/N/Y/N 

3D 

3D-Cell-

Annotator Platform Yes 2020 

Tasnadi et 

al.[43] Y/Y/N/Y/N 

3D 

“Nuclei 

detection for 

3D microscopy 

with a fully 

convolutional 

regression 

network” Algorithm No 2021 

Lapierre-

Landry et 

al.[83] N/N/N/Y/N 

3D 

3DeeCellTrack

er Platform Yes 2021 

Wen et 

al.[82] N/Y/N/Y/N 

https://paperpile.com/c/jnl2dW/KMQmA
https://paperpile.com/c/jnl2dW/c1Su6
https://paperpile.com/c/jnl2dW/RHMEZ
https://paperpile.com/c/jnl2dW/9qEGb
https://paperpile.com/c/jnl2dW/zcRNJ
https://paperpile.com/c/jnl2dW/wHFJ8
https://paperpile.com/c/jnl2dW/taSf8
https://paperpile.com/c/jnl2dW/C7CdQ


Both MINS Platform Yes 2014 

Lou et 

al.[62,63] Y/Y/N/N/N 

Both XPIWIT Algorithm Yes 2016 

Bartschat 

et al.[64] Y/Y/N/Y/N 

Both ilastik Platform Yes 2018 

Berg et 

al.[42] Y/Y/Y/Y/N 

Both DeepImageJ Platform Yes 2019 

Gómez-de-

Mariscal et 

al.[71] Y/Y/N/Y/N 

Both ImJoy Platform Yes 2019 

Ouyang et 

al.[67] Y/Y/N/Y/Y 

Both 

“A coarse-to-

fine data 

generation 

method for 2D 

and 3D cell 

nucleus 

segmentation” Algorithm No 2020 

Zhao et 

al.[106] N/N/N/Y/N 

Both Cellpose Algorithm Yes 2020 

Stringer et 

al.[12] Y/Y/Y/Y/Y 

Both CDeep3M Platform Yes 2020 

Haberl et 

al.[70] Y/Y/N/Y/Y 

Both StarDist Algorithm Yes 2020 

Shmidt et 

al.[13] ; 

Weigert et 

al.[54] N/Y/Y/Y/N 

Both NuSeT Platform Yes 2020 

Yang et 

al.[61] Y/Y/N/Y/N 

Both nnU-Net Platform Yes 2021 

Isensee et 

al.[55] N/Y/N/Y/N 

Both DeepMIB Platform Yes 2021 

Belevich et 

al.[53] Y/Y/N/Y/N 

Both InstantDL Pipeline, Platform Yes 2021 

Waibel et 

al.[107] N/Y/N/Y/N 

https://paperpile.com/c/jnl2dW/T3PH1+wHfCK
https://paperpile.com/c/jnl2dW/MPqY5
https://paperpile.com/c/jnl2dW/RsWCZ
https://paperpile.com/c/jnl2dW/BUhel
https://paperpile.com/c/jnl2dW/ch9QG
https://paperpile.com/c/jnl2dW/QgJj4
https://paperpile.com/c/jnl2dW/NOslV
https://paperpile.com/c/jnl2dW/RfsCH
https://paperpile.com/c/jnl2dW/mEbWH
https://paperpile.com/c/jnl2dW/Jncli
https://paperpile.com/c/jnl2dW/Z9KBn
https://paperpile.com/c/jnl2dW/lNUir
https://paperpile.com/c/jnl2dW/63Esb
https://paperpile.com/c/jnl2dW/7H7xk


Both 

ZeroCostDL4M

ic Pipeline, Platform Yes 2021 

von 

Chamier et 

al.[65] Y/Y/N/Y/Y 

Both DeepCell Kiosk Pipeline, Platform Yes 

2021

; 

2016 

Bannon et 

al.  

[46,68]]; 

Van Valen 

et 

al.[46,68]  Y/Y/Y/Y/Y 

Both AD-GAN Algorithm No 2021 

Yao et al. 

[86]  N/N/N/Y/N 

Both 

Embedding-

based Instance 

Segmentation 

in Microscopy Algorithm Yes 2021 

Lalit et al. 

[108] N/Y/?/Y/N 

  

Most of the listed tools require some effort from the user to install, prepare the 

environment, do the pre-processing of the input if needed, and finally to run it. The 

amount of time and effort primarily depends on the computational background of the 

user, and on the tool itself. Cloud-based tools (usually supplied with web GUI) could 

be the primary starter choices for life scientists. However, there is a trade-off: cloud-

based versions of tools have limited customizability, while local versions are more 

flexible, and the user does not need to share the data with third-party services. In the 

latter case the quality of the documentation also matters to assure proper setup. In 

Table 2 we provide information on whether the tool is documented properly (only 

official documentation was taken into account). The algorithms quite often lack 

detailed official documentation, though provide the most flexibility (usually are parts 

of the complex pipelines), and for the most popular ones unofficial documentation or 

https://paperpile.com/c/jnl2dW/OMfog
https://paperpile.com/c/jnl2dW/W03OL+Wb1rR
https://paperpile.com/c/jnl2dW/W03OL+Wb1rR
https://paperpile.com/c/jnl2dW/srslL
https://paperpile.com/c/jnl2dW/NPHu4


tutorials and third-party implementations exist too. The potential performance of a 

tool is obviously an important concern for the user, and it might be challenging to 

decide on choosing the appropriate tool. The user may decide based on the 

community’s preferences. Alternatively, a reliable comparison of the performance of 

the different tools can support decision-making. However, apart from BIAFLOWSII 

and automatic challenge submission systems (e.g. Kaggle or ISBIVI), the microscopy 

image analyst community lacks (1) an evaluation platform for the objective 

comparison of nucleus segmentation methods, using (2) a standardized evaluation 

metric in a transparent way. Thus, a consensus on utilizing a single, standardized 

platform is eagerly awaited. Since challenge portals only provide this functionality for 

the datasets of given challenges, a more inclusive platform, such as BIAFLOWS is 

suggested. Even though the relevance of newly published methods is usually 

supported by some quantitative segmentation results, it has several shortcomings 

from the user’s point of view as follows. (1) The test dataset might not suggest 

relevant performance when the dataset size is too small, or covers a single imaging 

modality only. On the other hand, approaches developed for specific microscopy 

images (such as H&E or fluorescence confocal images) or segmentation scenarios 

(e.g. crowded cell culture) are intended to work in their given domain of images, and 

should not be expected to perform just as well on more extensive or general 

datasets. (2) When comparison to prior methods is performed and reported, the 

number of tested methods is usually low, and (3) additional model- or data-specific 

modifications might have been applied to the compared methods (or the test images 

as pre-processing), thus merely literature-based comparisons of accuracy scores 

may confuse the user (see Suppl. Mat. 2). 

 



 

CONCLUDING REMARKS 

 

Recent years have brought significant improvements in nucleus segmentation, 

including large annotated datasets, new high-accuracy 2D/3D strategies, deep 

learning approaches, and segmentation benchmarking platforms, however, 

establishing a genuinely general solution for nucleus segmentation is still an unmet 

need. In this review and the accompanying web-based portalI we aimed to cover the 

missing link between recent advancements and users’ needs by providing a detailed 

overview on the available means for nucleus segmentation. The concluding remarks 

below are focused on crucial limitations and future goals. 

  

The first crucial point is to cover more modalities of microscopy data for both 2D, 

and especially 3D, with open datasets of annotated images. Current methods are 

expected to work when trained on additional microscopy data modalities [18,109]. 

Most datasets include H&E stained tissues or fluorescently labelled cell cultures (see 

Table 1) which are two of the most widely used modalities in practice. However, 

further microscopy types (e.g. DIC, light-sheet or phase contrast) lack such publicly 

available annotations, except a recently published, large, label-free dataset [26]. 

Even though researchers can train existing deep learning methods on their own 

nowadays, these models remain private (unless released on e.g. GitHub, zenodo, 

Kaggle or in a Napari [110] plugin; on the first three platforms datasets may also be 

deposited [32]) and the initial datasets are small, resulting in suboptimal model 

generalization. For a given modality of interest, generalization is also a crucial point 

for medical applications: the data should be as diverse as possible to promote robust 

models. Diversity from a computer vision point of view would include various regions 

https://paperpile.com/c/jnl2dW/w1rni+VnUeX
https://paperpile.com/c/jnl2dW/WO30C
https://paperpile.com/c/jnl2dW/0Ecgr
https://paperpile.com/c/jnl2dW/ywrsE


of tissue with the distinct visual appearance of both the target objects and the 

surroundings, as well as covering several phenotypes of cells, different batches or 

slightly different experimental setups. An extensive annotated dataset including most 

(if not all) modalities occuring in single-cell analysis experiments with respect to the 

type of microscopy, sample and label could definitely improve existing trainable 

methods. Besides, it would offer the possibility of releasing genuinely general pre-

trained models, and would also serve as a standard dataset, similarly to the widely 

used COCO dataset [111] in computer vision. 

  

The second crucial point relates to solving common microscopy challenges for 

both 2D and 3D data, such as: touching, overlapping and irregularly shaped nuclei 

[54][59][60][61]. Either dataset design or model architecture can be beneficial for a 

solution. Current methods achieve various levels of success in overcoming these 

issues, thus further developments are needed. 

  

The third crucial point is the lack of (1) a globally accepted benchmark platform for 

comparison, and (2) a unified metric for tool evaluation. BIAFLOWS and Kaggle are 

available solutions to overcome these issues. However, still most publications 

presenting novel methods or tools typically provide limited comparisons (either in 

terms of the data used in evaluation or the number of methods compared) and use 

not standardized metrics. Accordingly, the results published by different authors are 

often difficult to compare. 

  

The ultimate goal is to develop an algorithm, and train it so that the resulting single 

model would be able to accurately segment nuclei in a variety of microscopy 

https://paperpile.com/c/jnl2dW/4rNPS
https://paperpile.com/c/jnl2dW/Jncli
https://paperpile.com/c/jnl2dW/UBHv3
https://paperpile.com/c/jnl2dW/2kfo8
https://paperpile.com/c/jnl2dW/Z9KBn


modalities. Some of the available algorithms and models are aimed to meet this 

requirement [11,12], and the field is moving towards a generally applicable solution. 

While a quantitative comparison of the methods available for each modality is 

beyond our intention, it is worth mentioning that deep learning tends to provide fine 

accuracy in segmenting nuclei in images obtained with different microscopy 

techniques, as shown at the DSB 2018 challenge [6][112]. 
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FIGURE CAPTIONS 

  

Figure 1. Diversity of optical microscopy images representing nuclei. The inner circle 

shows standard examples of each type (e.g. widefield, confocal, light-sheet, DIC, PC 

images), while the outer circle presents more difficult cases. Finally, common 

challenging cases (e.g. multinucleated cells, irregular morphology, elongated shape,  

heterogeneous samples) regarding nucleus segmentation are reported in the 

corners. c,d, l, f, g, o, t are images from our laboratories/collaborators; a, s, j are 

from BBBC collection; e, n are from the TCGA collection; r is from the LIVECell 

dataset; the remaining ones are from the internet (see Supplementary Table 1 for 

the sources). 

  

Figure 2. A sample-driven guide to select an appropriate method for single nucleus 

segmentation. Firstly, based on the images of the given experiment the user can 

determine the category (e.g. widefield, confocal, light-sheet, DIC, PC images) and 

select the corresponding node in the interactive online tool unbias
I
 according to the 

sample, label and microscopy type. Then, a list of segmentation methods is shown in 

the table on the right, including the method description and implementation if 

available alongside pre-trained models. The list may be filtered with the buttons 

above the table by dimension (2D/3D) and challenging segmentation issues (e.g. 

elongated nucleus in smooth muscle tissue). Finally, the goal of the experiment (e.g. 

object-aware segmentation or additional phenotyping i.e. classification) guides the 

user to select the appropriate segmentation method. 
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SUPPLEMENTARY MATERIAL 1 

 

Optional pre-processing steps: 

1) Each segmentation method requires its own input format (e.g. file types, 

annotations, image size, etc.). To match these requirements, a basic, but 

practical suggestion is to try analysing sample datasets (if provided) and 

perform input pre-processing prior to the usage of the method. Besides the 

images themselves, the annotation formats required by different methods are 

also not uniform: different file formats (TIFF or PNG, in most cases), all objects 

in the same file or one annotation file per object, the pixel values.  These should 

also be considered prior to using the given method.  

2) Uneven illumination affects every image acquired by a microscope. It is often 

overlooked, but it can introduce considerable bias to image measurements. 

Illumination correction methods are applied to solve this problem. One of the 

most common approaches is known as the “rolling ball” algorithm [1] which is 

implemented in many image processing platforms. More advanced methods 

(BaSiC [2] and CIDRE [3]) aim to model the illumination pattern for correction.  

3) Dataset augmentation is used to increase both the number and diversity of 

the training examples to train more robust models. Conventionally, modified 

https://paperpile.com/c/QmDGEN/bMLBI
https://paperpile.com/c/QmDGEN/dSoWZ
https://paperpile.com/c/QmDGEN/EEtyA


(rotated, noised, cropped, rescaled) versions of training images are added to 

the dataset. Another approach to dataset augmentation is to use image style 

transfer models (for instance CycleGAN-based framework Pix2Pix [4]) which 

allows generating additional images in two ways: (1) the input image is style-

transferred to simulate either a different tissue, cell line or microscopy modality, 

and (2) another approach is to firstly simulate annotations creating 

representative labels, then use these labels as the input to the style transfer 

model to get reconstructed examples of nuclei in the desired image modality 

[5]. The disadvantage of this is that separate training is required making it more 

time-consuming and less user-friendly. 

4) In certain circumstances or experimental setups, all or several images might be 

acquired with undesirable noise. In this case, denoising approaches can be 

applied as a preprocessing step to improve the image SNR. For this purpose, 

classical image processing methods such as median filter [6] or gaussian filter 

[6][7] are widely used. Also, recently, deep learning-based methods appeared 

for this task. Content-Aware Image Restoration (CARE) [8] is a deep learning-

based method to improve the SNR. The models are specific to experimental 

setups and trained with pairs of low and high SNR, thus it requires ground truth 

data and is not suitable to use for imaging of novel biological structures. 

Noise2Void [9], uses only noisy images and is, therefore, more suitable in case 

of the absence of denoised data. For a more complete review of denoising 

approaches, we point the reader to the following recent review [10]. 

5) The fluorescent labelling process is expensive, time-consuming and may have 

undesirable effects on the samples, thus fluorescent stains cannot be used in 

all experiments. However, segmentation of nuclei from transmitted light images 

https://paperpile.com/c/QmDGEN/e7hqH
https://paperpile.com/c/QmDGEN/9C91B
https://paperpile.com/c/QmDGEN/fu2g
https://paperpile.com/c/QmDGEN/fu2g
https://paperpile.com/c/QmDGEN/GRjq
https://paperpile.com/c/QmDGEN/2Oy92
https://paperpile.com/c/QmDGEN/cqSXs
https://paperpile.com/c/QmDGEN/7Gsa


is more challenging than from fluorescent microscopy images. One possible 

solution to this is in-silico labelling [11][12][13]: prediction of fluorescent stains 

(such as Hoechst for nuclear staining) from transmitted light images.  

6) To handle very high-resolution large size microscopy images, one possible 

solution is to split (tile or crop) the image into smaller ones and use these for 

training or prediction. After prediction of the tiles they can be merged back to 

one mosaic at the original image size [14]. 

 

Optional post-processing steps: 

1) Prediction mask refinement either with classical methods (watershed, 

thresholding) or with a deep learning model specifically trained to refine 

segmentation masks provided by other methods in the pipeline. 

2) Test-time augmentation (TTA), to make predictions using the transformed 

input images (i.e. rotated, flipped) and then merge the predictions of all versions 

of the input image with consensus voting. In case of U-Net simple averaging 

and thresholding are generally used, while in the case of Mask R-CNN majority 

voting is typically approached to infer the object and averaged masks for the 

final objects. The solution was tested [15] on the DSB2018 dataset and showed 

minor improvement of the prediction scores, but another application of test-time 

augmentation is to observe and analyze uncertainty in predictions.  

https://paperpile.com/c/QmDGEN/ILlMb
https://paperpile.com/c/QmDGEN/juIhU
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SUPPLEMENTARY MATERIAL 2 

 

The diversity among the different nucleus segmentation tools and the lack of an 

uniform strategy of evaluation make the performance determination and the 

quantitative assessment of new methods very challenging. Most of the papers 

describing a new method also propose some limited assessments, but the inconsistent 

use of segmentation accuracy metrics makes it nearly impossible to merge the results 

of different papers and define a priori which method is the best for a specific dataset 

of images. For example, in the Plantseg original paper [16] the variation of information 

metric is used, for the original U-Net plus watershed paper [17] the aggregated Jaccard 

metric, whereas Cellpose [18] uses an average precision metric. Also, besides the 

conventional Jaccard Index, the Aggregated Jaccard Index metric (AJI) is used in 

papers like [19]  and [20], in which the AJI not only estimates the overlap of the true 

positives but also accounts for false positives and false negatives present in the 

segmentations. StarDist [21] reported scores on 10% of a custom fluorescent subset 

of the DSB2018 dataset [22], trained on the remaining part of this subset. EmbedSeg 

[23] used the same subset for their evaluation. Thus, comparing both their mean 

average precision (mAP) scores to other methods evaluated on the entire DSB test 

set (also comprising of histopathology images) would be irrelevant. Accordingly, these 

two specific methods however, can be fairly compared. Additionally, the authors 

[21][23] presented accuracy within the IoU thresholds 0.5 to 0.9 in contrast to the 

DSB2018 competition [22] where 0.5 to 0.95 was used. Notably, mAP reported on the 

DSB2018 dataset includes the number of false negative objects, while traditionally 

precision does not. In [24] listed 20 deep learning approaches for histopathological 

image segmentation reporting for each of them the metrics used in the original paper 

to assess the proposed method. The first game-changing attempt to propose a 

https://paperpile.com/c/QmDGEN/Xr08
https://paperpile.com/c/QmDGEN/Qyki
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systematic comparison of nucleus segmentation architectures on complex stained 

images was proposed in [22]. This work reported the results of the 2018 Data Science 

Bowl, which challenged participants to segment nuclei in a variety of stained 2D light 

microscopy images without the need for any manual interaction or adjustment. The 

goal was to investigate whether any modern solutions, such as large capacity deep-

learning models, could provide a single unifying solution without requiring manual 

configuration. The evaluation strategy was on the basis of identifying object-level 

errors. This was accomplished by matching target object masks with predicted objects 

submitted by participants and then computing true positives and false positives. In 

order to match target masks and predicted objects, the Intersection-over-Union (IoU) 

score was computed for all pairs of objects using IoU. A minimum IoU threshold was 

selected to identify correctly segmented objects and any other predicted segmentation 

mask below the threshold was considered an error. With all true positives, false 

positives, true negatives and false negatives, they created a confusion matrix and 

computed precision, recall and F1 scores using a fixed IoU threshold. Finally, the 

official competition score S was defined using multiple IoU thresholds. However, this 

work considered just 2D images, while in [25] quantitatively compared the 

segmentation performance of 9 segmentation tools using two publicly available 3D 

nuclear stained datasets related to a cancer spheroid and a mouse embryo, imaged 

with a light-sheet fluorescence microscope (LSFM) and a confocal microscope, 

respectively. The tools tested were randomly assigned to 5 expert computer scientists 

working with microscopy images on a daily basis who set different parameters of the 

tools to achieve the best segmentation they could. Performance was evaluated simply 

using the Jaccard Index value obtained between the segmentation masks and the 

ground truth. A milestone was achieved in the same year in the paper [26] that 
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introduced BIAFLOWS, a community-driven, open-source web tool enabling to 

reproducibly deploy and benchmark bioimage analysis workflows on annotated 

multidimensional microscopy data. It is worth noting that BIAFLOWS extends 

Cytomine [27], a web platform originally developed for the collaborative annotation of 

high-resolution bright-field bioimages and also shows qualitative (visualized) 

comparison of segmentation results on example datasets (e.g. the heterogeneous 

DSB2018 dataset) achieved by some of the most commonly used methods, hence 

users can better understand the differences between method results including 

segmentation errors and challenging cases. Today, 6 methods have been compared 

using BIAFLOWS on the DSB2018 dataset, but since training a new model is not 

available within BIAFLOWS, pre-trained models with different characteristics provided 

by the authors of original methods have been compared. Notably, these models are 

not trained on a standardized dataset, therefore performance comparison on a public 

dataset might yield unexpected results. Recently, [28] evaluated and compared the 

segmentation effectiveness of 5 deep learning architectures (U-Net, U-Net ResNet, 

Cellpose, Mask R-CNN, KG instance segmentation) and two conventional algorithms 

(Iterative h-min based watershed, Attributed relational graphs) on complex 

fluorescence nuclear images of various types. Using a publicly available dataset of 

images from specimens of different diagnosis, they showed that instance-aware 

segmentation architectures and Cellpose outperform the U-Net architectures and 

conventional methods on complex images in terms of F1 scores, while the U-Net 

architectures achieve overall higher mean Dice scores. In addition, they provided 

quantitative results demonstrating that images annotated by under-graduates (the so 

called “silver images”) are sufficient for training instance-aware segmentation 

architectures to efficiently segment complex fluorescence nuclear images. Finally, [29] 
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implemented and quantitatively compared 5 representative deep learning pipelines, 

alongside a highly efficient non-deep learning method named MARS [30]. The deep 

learning methods were trained on a common dataset of 3D cellular confocal 

microscopy images. An extensive, publicly available annotated confocal image dataset 

and a new segmentation quality evaluation which isolates segmentation errors due to 

under/over segmentation, were adopted. First, they analyzed the quality of 

segmentation on overall stacks, including all cell layers. Next, the confocal stack was 

split into different cellular layers and the segmentation quality of the 5 pipelines for 

each layer was studied. Finally, they evaluated the segmentation quality on synthetic 

images with commonly occuring aberrations. For quantitative assessment, a Volume 

averaged Jaccard Index (VJI) metric measuring the degree of overlap averaged over 

the cell volume was used to estimate overlap between the predicted segmentations 

and ground-truths, and two additional metrics that identify the rates of over and under 

segmentation were applied. The rate of over-segmentation is the percentage of cells 

in the ground truth associated with multiple regions in the predicted segmentation. 

Conversely the rate of under-segmentation is the percentage of cases where several 

regions in the groundtruth are associated with a single cell in the predicted 

segmentation. Concluding, despite today comparing heterogeneous image analysis 

methods is still tedious and error prone, the different approaches recently described 

and BIAFLOWS help the developers of new methods fairly and quantitatively compare 

their approach with the state-of-the-art ones without the need of proposing new 

assessment and comparison strategies.  
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SUPPLEMENTARY MATERIAL 3 

 

This supplementary material contains short descriptions of the annotation tools.  

 

1. AnnotatorJ [31]: The plugin has various annotation and export options, 

integrated deep learning (U-Net) as well as classical algorithm (e.g. region 

growing) assistance, classification option and z-stack annotation support. It 

allows contour edit, instance and semantic object annotation, bounding boxes 

and custom Keras model import. It is open-source and cross-platform (as 

ImageJ/Fiji [32,33]). 

2. Trainable Weka Segmentation [34]: Applies machine learning to train pixel 

classification from drawn labels (similarly to ilastik), using the Weka framework. 

It does not support deep learning or further annotation types. 

3. NuClick [35]: Uses its own CNN to assist in annotation of histopathology H&E 

stained images (also showed the ability to work on IHC and Pap Smear 

modalities). The user only needs to click on the nuclei to annotate them.    

4. LabKit: Suggested as an annotation tool by the authors of StarDist [21], Labkit 

allows labelling and pixel classifier training similar to Trainable Weka 

Segmentation and ilastik, alongside 3D object annotation. 

5. 3D-Cell-Annotator [36]: It is a tool integrated into the segmentation plugin of 

the Medical Imaging Interaction Toolkit (MITK) version 2018.04. It is based on 

3D active contours with shape descriptors. It works in a semiautomatic fashion 

requiring an initial seed point for each object to start contour evolution. Finally, 

a label is associated with each object. 

6. Cytomine [27][37]: A bioimage analysis software with a wide range of general 

image processing functionality that also offers several annotation options, has 

an online version and offers deep learning support. It can process WSIs online, 

operates in a collaborative way of iterating the annotations: Cytomine puts 

emphasis on the expert curation (e.g. multiple pathologists can collaborate on 

the same WSI). 

7. ilastik [38]: A software using user-defined labels to train pixel classification 

(with machine learning, similarly to the Trainable Weka Segmentation plugin). 

See also the “General frameworks for 2D images” section. 
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8. Segmentor [39]: An open-source tool for 3D annotation of light-sheet 

microscopy images, developed by Borland et al. The tool is cross-platform (e.g. 

MacOS, Windows, Linux). Segmentor allows loading annotations from other 

tools and has built-in intensity thresholding but does not have built-in deep 

learning capabilities. 

9. Diffgram: Aids annotation with deep learning models (Tensorflow-based) and 

image processing algorithms (e.g. GrabCut). It has an online and local (Python) 

version, as well as a paid plan. 

10. LabelImg: It is a lightweight object annotator in Python via bounding boxes with 

export to popular data formats (Pascal VOC, YOLO). 

11. Make Sense: Offers annotation assistance via pre-trained deep learning 

models (SSD on COCO, and PoseNet), has an online and a local (TypeScript) 

version. 

12. VGG Image Annotator: A lightweight, online tool with multiple annotation 

options. 

13. Kaibu: An online application also realized as an ImJoy [40] plugin and 

invokable in a Jupyter notebook [41], with multiple drawing options, labelling 

and export to a json file. 

14. Supervise.ly: A web-based annotation tool with deep learning model support 

(e.g. YOLO, U-Net, Mask R-CNN) including training, has multiple annotation 

options and is free for research. 

15. Lionbridge.AI and Hive: Two service-based tools (project management) with 

wide functionality and paid plans, outsourcing the annotation task, intended for 

general purpose object annotation (such as computer vision applications) on 

natural photos. They are available at https://lionbridge.ai/services/image-

annotation/ and https://thehive.ai/, respectively. 

16. DeepCell Label: Part of the DeepCell [42], it allows both to create annotations 

from scratch or to correct the predictions of the segmentation model. When 

used in collaboration (or crowdsourcing), annotations serve to improve the 

segmentation DNN of DeepCell. The application is web-based, it can be 

deployed either locally or on the cloud service.  

17. QuPath [43]: A local open software with workflow-based processing options 

intended for whole slide image (WSI) analysis. Annotation is possible in terms 

of drawing ROIs. See also the “General frameworks for 2D images” section. 
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SUPPLEMENTARY MATERIAL 4 

 

In this section, we present short descriptions of the tools/methods to segment single 

nuclei. 

 

 

Not deep learning-based tools working on 2D images: 

 

1. MINS [44,45]: MINS works on fluorescent 2D and 3D images. It was designed 

for segmenting single cells in embryos, but it can be easily used for other 

multicellular models as well. It is implemented into three subsequent modules: 

detection, segmentation, and cell position classification. Tutorials and an easy-

to-use GUI leads the user through the modules. MINS currently only works on 

local machines. 

2. XPIWIT [46]: It is an XML-based wrapper application for the Insight Toolkit (ITK) 

containing several segmentation algorithms. One of the most promising 

algorithms for nucleus segmentation included in XPIWIT is the Threshold of 

Weighted intensity And seed-Normal Gradient dot product image (TWANG) 

segmentation [47]. The authors provided a GUI and tutorials, but programming 

experience is required to effectively use XPIWIT. Currently,  XPIWIT does not 

work in the cloud. 

 

 

Deep learning-based tools working on 2D images: 

 

1. Cellpose [18]: It is a generalist segmentation method based on U-Net for 

predicting gradients (horizontal and vertical separately) that form a vector field 

used to define individual objects. It is mainly designed for cells but includes a 

pre-trained nucleus segmentation model as well. It does not work with RGB 

data such as H&E stained images (automates or needs information of which 

channel is used for segmentation). It also includes an annotation tool. It has a 

GUI or can be run from the command line. Predictions can also be performed 

in the cloud. An extensive user guide is provided. 

2. EmbedSeg [23]: It is an embedding-based instance segmentation method 

designed for microscopy images. The claimed key features are the ability to 

accurately segment different shapes and low GPU-memory footprint, compared 

https://paperpile.com/c/QmDGEN/1Taq+60TG
https://paperpile.com/c/QmDGEN/C7wzh
https://paperpile.com/c/QmDGEN/yFPRN
https://paperpile.com/c/QmDGEN/lm3iC
https://paperpile.com/c/QmDGEN/VQyK


to other methods (U-Net, Mask R-CNN, Cellpose). Code examples and detailed 

introduction on the GitHub page are provided. It does not have its own GUI. 

3. Mask R-CNN [48]: It is an instance segmentation method originally for natural 

images, nevertheless, it can also be trained to segment nuclei. Besides 

segmentation, it also provides a classification of the segmented objects. As it is 

a general segmentation method, there is no “official” guide for nucleus 

segmentation, but guides can be found elsewhere. Code examples are 

provided. It does not have its own GUI. 

4. MSRF-Net [49]: This method is designed for medical segmentation tasks, 

including segmentation of microscopy images. In the described tests this 

method significantly outperforms baseline methods U-Net and U-Net++ on the 

DSB2018 dataset. The instructions on the GitHUb page are not well detailed. 

The method does not have its own GUI. 

5. Multi-scale Cell Instance Segmentation with Keypoint Graph based 

Bounding Boxes [50]: This method is primarily designed for nuclei/cell 

segmentation. This method firstly makes detections (bounding-boxes) by 

detecting and then grouping of keypoints. Segmentation is then performed 

inside detected bounding boxes. In the described tests, this method performed 

significantly better than the baseline Mask R-CNN. Code examples are 

provided on the GitHub page, though there is no detailed tutorial. The method 

does not have its own GUI.  

6. nnU-Net [51]: It is mainly based on U-Net, the key feature of this pipeline is an 

automated adaptation strategy for different datasets based on heuristics rules 

and the method learns other parameters directly from the dataset. No GUI or 

cloud execution is provided. Has an extensive user-guide.  

7. nucleAIzer [5]: A pipeline mainly based on Mask R-CNN. As a first step, the 

pipeline performs resizing of the images to make the mean nucleus size 

uniform. To adapt the model to different types of cells and stainings, style 

transfer is used for dataset augmentation. After a Mask R-CNN-based 

segmentation U-Net is used to refine the output masks. The pre-trained model 

works on all kinds of images from fluorescence microscopy to H&E stained 

images. Predictions can be performed in the cloud, a user tutorial is provided 

on the project’s site. 
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8. SegNet [52]: This segmentation is based on encoder-decoder architecture, the 

encoder part is based on VGG16 [53]. Can be used as a baseline for semantic 

segmentation tasks. This is a bare neural network architecture, so no GUI or 

cloud execution is provided out of the box. Guides can be found online. 

9. StarDist [21]: The name StarDist is related to the core idea of the approach: 

star-convex polygons. The implementation is based on a modified U-Net with 

two output layers, one for object probability for each pixel and a polygon 

distance output layer. Includes pre-trained models for fluorescence nuclei and 

brightfield H&E staining. The method does not have a built-in GUI, but code 

examples are provided in the form of Jupyter Notebooks. 

10. U-Net [54]: It is based on the encoder-decoder architecture, and is the winner 

of the ISBI 2015 cell tracking challenge [55]. Provides good baselines for 

semantic segmentation tasks. This is a bare neural network architecture, so no 

GUI or cloud execution is provided out of the box. Guides can be found online. 

11. UNet++ [56]: It is a U-Net with redesigned skip connections to exploit multiscale 

features in image segmentation and a pruning scheme to speed up inference 

(with a minor negative impact on accuracy). This is a neural network 

architecture, no GUI or cloud execution is provided out of the box. Guides can 

be found online.  

12. Contour Proposal Networks for Biomedical Instance Segmentation [57]: It 

is a method based on the idea of fixed-sized representation based on Fourier 

Descriptors and uses object detection networks as a backbone. This is a neural 

network architecture, no GUI or cloud execution is provided out of the box. No 

user guide is provided either.  

13. MultiStar: Instance Segmentation Of Overlapping Objects With Star-

convex Polygons [58]: In essence, it is very similar to StarDist, for better 

handling of overlapping objects an additional output branch was added for 

overlap predictions. This is a neural network architecture, no GUI or cloud 

execution is provided out of the box. Example code is provided, but there is no 

user guide.  

 

 

General frameworks for 2D images: 
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1. CDeep3M [59]: It is a semantic segmentation tool based on a convolutional 

neural network (CNN) architecture for image segmentation. It works as an 

online platform offering a place for web tools. The GUI is provided, predictions 

can also be done in the cloud. Extensive user guides with video tutorials are 

provided.  

2. DeepCell Kiosk [42],[60]: It is a cloud-native implementation of the DeepCell 

ecosystem. It is designed to allow researchers to easily deploy and scale a 

deep learning platform for biological image analysis. Once launched, users can 

drag-and-drop images to be processed in parallel using publicly available  or 

custom-built TensorFlow models. This method is also used for the whole-cell 

segmentation of tissue images [61]. The web-based GUI can be used out of the 

box. An extensive user guide on installation and usage is provided.  

3. DeepImageJ [62]: It is an ImageJ framework and a deep learning model 

repository. It provides trained models for different tasks and it contains U-Net 

2D/3D, Mask R-CNN, StarDist. The GUI is provided out of the box. The site of 

the project has extensive text and video tutorials. 

4. DeepMIB [63]: It is a user-friendly (has a GUI and extensive tutorials) software 

package written in MATLAB, suitable for different types of microscopy images 

(2D and 3D electron and multicolor light microscopy). Deep learning 

architectures are available (and pretrained): 2D&3D U-Net, 3D U-Net for 

anisotropic datasets and 2D SegNet [52]. 

5. Ilastik [38]: It is a user-friendly (has a GUI and extensive tutorials) interactive 

tool for a variety of microscopy image analysis tasks, including segmentation. 

The underlying segmentation method is similar to the Weka Segmentation [34]. 

6. ImJoy [40]: It is a serverless web application that can be used locally, either a 

local machine or remote servers can be used for computation. The 

segmentation plugin of ImJoy is based on U-Net. The GUI is web-based. The 

user guides are provided. 

7. InstantDL [64]: It is a framework that solves a wide range of tasks, 2D and 3D 

semantic, 2D instance segmentation and 2D&3D in-silico staining. It was 

designed to be user-friendly, the user only needs to specify the inputs (more 

parameters and modifications are available for advanced users). Semantic 

segmentation and in-silico staining are performed by U-Net, instance 
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segmentation is performed by Mask R-CNN. It does not have a GUI, though the 

documentation is extensive and supported by video tutorials. 

8. ZeroCostDL4Mic [65]: A framework designed to allow the usage of 

segmentation (based on U-Net and StarDist) without any coding or even 

hardware for deep learning, as it was developed mainly for Google Colab (cloud 

execution) and does not have a separate GUI. Besides 2D&3D segmentation, 

the framework provides object detection (based on YOLOv2 [66]), denoising for 

2D&3D data (based on CARE and Noise2Void). The framework is well-

documented.   

9. QuPath [43]: Designed primarily for whole slide image (WSI) analysis, it 

provides options for initial intensity scaling based on staining channels even in 

H&E with colour deconvolution, automatic cell segmentation based on classical 

image processing algorithms to find nuclei, classification with machine learning 

methods and various tests for statistical analysis. Its open source 

implementation is written in Java and utilizes ImageJ’s image processing 

capabilities, has a user-friendly GUI and documentation. It is possible to utilize 

a StarDist segmentation extension in QuPath with possible GPU acceleration. 

 

 

Purpose-specific frameworks for 2D images: 

 

1. HistomicsML2 [67]: It runs as a containerized server application that provides 

web-based user interfaces for analysing whole-slide imaging data. It can be 

deployed on GPU servers or cloud platforms. The project wiki provides the 

detailed documentation. 

2. NuSeT [68]: A deep learning tool for reliably separating and analyzing crowded 

cells. Combines U-Net, Region Proposal Network [69], and watershed to 

segment nuclei. Focuses especially on touching or overlapping nuclei. This 

framework can handle 2D/3D data and pre-trained models are available. The 

tool has its own GUI, the documentation is on the project’s GitHub page. 

3. Segmentation of stochastic optical reconstruction microscopy (STORM) 

images [70]: Authors compared U-Net, Mask R-CNN and ANCIS [71] (Attentive 

neural cell instance segmentation) architectures for super-resolution 
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microscopy and provided Google Colab (Jupyter [41]) notebooks (to run in 

cloud) and for local machines. 

4. HoVer-Net [72]: performs classification and segmentation of 2D H&E stained 

histology images. Pretrained models for different histology datasets are 

provided on the project GitHub page, together with the instructions to run it. 

5. Segmentation of Nuclei in Histopathology Images by deep regression of 

the distance map [73]: an algorithm for nuclei segmentation of 2D H&E stained 

histology images. The segmentation task is formulated as a regression of the 

intra-nuclear distance maps. This is done to overcome the problem of touching 

nuclei. The method does not have a GUI but has instructions for running on a 

GitHub page. 

6. Triple U-Net [74]: an algorithm for nucleus segmentation of 2D H&E stained 

histology images. It consists of three U-Net-like branches: RGB branch, a 

Hematoxylin branch and a Segmentation branch; the features extracted from 

these branches are then aggregated by novel methods proposed in the paper. 

The method does not have a GUI or well detailed instructions for running on a 

GitHub page. 

7. NucleiSegNet [75]: an algorithm for nucleus segmentation of 2D H&E stained 

histology images. It consists of three parts: a robust residual block (for feature 

extraction), a bottleneck block, and an attention decoder block (object 

localization). The method does not have a GUI but has instructions for running 

on a GitHub page. 

8. Self-supervised Nuclei Segmentation in Histopathological Images Using 

Attention [76]: the method for nuclear segmentation of 2D H&E stained 

images. The method is self-supervised, meaning that it is trained with an 

auxiliary task (identification of magnification level) and does not require ground-

truth annotations for segmentation (only for validation) and then post-

processing steps applied. Tested on three H&E datasets and provides 

competitive performance. The method does not have a GUI; it has an 

instruction on a GitHub page.   

 

Methods for 2D images but without a freely available implementation: 
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1. A Coarse-to-Fine Data Generation Method for 2D and 3D Cell Nucleus 

Segmentation [77]: A two-step deep learning approach for segmenting 2D and 

3D data. The method combines detection with a sparse annotation strategy for 

training a 3D deep learning model, without requiring extensive full voxel 

annotation. Such models typically face a critical challenge: the insufficient 

availability of training data due to various difficulties related to annotation. A full 

voxel annotation strategy incurs high workloads and costs because only experts 

can annotate biomedical images properly, and currently, no direct annotation 

technique is available for 3D biomedical images. GUI is not mentioned in the 

paper. 

2. CIA-Net: Robust Nuclei Instance Segmentation with Contour-aware 

Information Aggregation [78]: This method is based on the idea of multilevel 

information aggregation between two task-specific decoders: nucleus decoder 

and contour decoder for hierarchical refinement of the details of nuclei and the 

contour. GUI is not mentioned in the paper. 

3. CPP-Net: Context-aware Polygon Proposal Network for Nucleus 

Segmentation [79]: It is a method based on StarDist. Compared to StarDist, 

there is an additional distance map. It includes additional refinement steps 

(context enhancement) for final segmentation. GUI is not mentioned in the 

paper. 

4. FANet A Feedback Attention Network for Improved Biomedical Image 

Segmentation [80]: The key idea is a feedback mechanism which allows the 

use of information from the previous training epoch in the current one. It was 

tested on different datasets, including DSB2018. GUI is not mentioned in the 

paper. 

5. Bend-Net [81]: An encoder-decoder type of network with the special bending 

loss, designed specifically for histopathology images. This loss function 

penalizes large curvature (which are probably touching nuclei), and gives small 

penalties to points with small curvature (typical for nuclei in histopathological 

images). According to the paper, it can outperform Hover-Net for several 

histopathology datasets. GUI is not mentioned in the paper.  

6. High-resolution deep transferred ASPPU-Net for nuclei segmentation of 

histopathology images [82]: a method for nucleus segmentation in H&E 

stained histopathology images. It uses deep and wide encoder-decoder with  
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atrous spatial pyramid pooling architecture to handle a widely varied spectrum 

with a large number of artifacts. According to the paper, the method could reach 

better results for three datasets vs DIST, SegNet and U-Net with attention. GUI 

is not mentioned in the paper. 

7. Instance-Aware Self-supervised Learning for Nuclei Segmentation [83]: a 

self-supervised method for nuclear segmentation of 2D H&E stained images. 

The training consists of two self-supervised auxiliary tasks: scale-wise triplet 

learning (in this task the scale of the sample is the class label) and nuclei count 

ranking. The network has encoder-decoder architecture (with ResNet-101[ref] 

as a backbone). Encoder is trained with the auxiliary tasks and then the network 

is fine-tuned for the segmentation task. The method claims to be state-of-the-

art (as for October 2021) on the MoNuSeg dataset (AJI metric). GUI is not 

mentioned in the paper. 

8. AD-GAN [84]: an end-to-end unsupervised approach based on generative 

adversarial network. This method can handle both 2D and 3D data, and claims 

to provide competitive performance versus supervised methods. GUI is not 

mentioned in the paper. 

 

Not deep learning-based tools specific for 3D images: 

 

1. IT3DImageJSuite [85]: It is an ImageJ Suite that contains several algorithms 

for 3D segmentation. In particular, the 3D Iterative Thresholding (IT) is a tool 

designed to test all the single threshold levels and collects the objects yielded 

at different values, fulfilling some a priori criteria defined by the user. No 

programming experience is required to use IT3DImageJSuite, tutorials and GUI 

help the users. Currently IT3DImageJSuite only works on local machines. 

2. LoS [86],[87]: It is a fully automated local intensity-based thresholding method 

to segment 3D fluorescence images. This method is based on the intrinsic 

definition of line-of-sight (LoS), used to cluster the surface points and separate 

the borders of the nuclei. LoS works on local machines but its implementation 

in Mathematica and limited documentation make its usage not easy. 

3. OpenSegSPIM [88]: It is designed to easily segment nuclei or cells and 

compute several features without requiring human interaction, except for setting 

a few initial parameters: an approximate nucleus diameter measurement and 
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intensity adjustment of the image contrast. Its documentation and GUI make 

using the tool easy. Currently it does not work in the cloud.  

4. RACE [89]: It is an open-source analysis framework designed for large-scale 

3D images taking advantage of state-of-the-art multi-core processors and 

graphics cards for processing terabyte-sized datasets within a reasonable time 

(e.g. 1–2 days). It requires single-channel 3D TIFF image stacks of 

fluorescently labelled cell membranes or nuclei and seeding points. RACE 

works on local machines. The authors provided a manual and implemented a 

GUI to improve usability. 

5. Vaa3D [90]: It is designed for large-scale bioimage visualization, analysis and 

management. Vaa3D has a rich set of functions and plugins, including the cell 

segmentation toolkit. It is a fully automatic gradient vector flow-based 

segmentation tool. Vaa3D comes with documentation, user manuals, testing 

data and video tutorials. It does not work in the cloud and it is easy to use. 

6. 3D-Cell-Annotator [36]: It allows to segment single cells and nuclei in 3D using 

3D active contours with shape descriptors as prior information for true single-

cell annotation in a semiautomatic fashion using initial seeding points. It comes 

with a user manual, video tutorial, documentation and GUI. Currently it does 

not work in the cloud. 

7. Three-Dimensional Segmentation and Reconstruction of Neuronal Nuclei 

in Confocal Microscopic Images [91]: A 3D segmentation algorithm for 

crowded, overlapping objects in the 3D space. The algorithm assumes that the 

objects have regular shapes therefore the surface of each object can be 

reconstructed by processing multiple XY-planes. Currently no implementation 

and documentation is provided. 

 

 

Deep learning-based tools specific for 3D images: 

 

1. Allen Cell Structure Segmenter [92]: It is a toolkit developed for the 3D 

segmentation of intracellular structures in fluorescence microscope images. 

This toolkit brings classic image segmentation and iterative deep learning 

workflows together to generate high-quality segmentations. The software 

originally used Jupyter [41] notebooks to construct the segmentation workflows, 
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but it also has a Napari interface developed recently. To train the segmentation 

models some technical knowledge may be needed. It has extensive 

documentation with video tutorials. 

2. QCANet [93]: It is a 3D instance segmentation method designed to analyze the 

development of fluorescently labelled mouse embryos. The algorithm consists 

of a Nuclear Detection Network that detects the object centers and a Nuclear 

Segmentation Network that separates the background from the object. Then, in 

a post-processing step, 3D watershed is applied to label the segmented image 

using the output of the detection network. Once the source code is downloaded, 

the user has to execute it from the command line. The readme file shows basic 

examples and the details of the configuration. 

3. Semi-supervised segmentation and graph-based tracking of 3D nuclei in 

time-lapse microscopy [94]: It describes a simple 3D CNN used to extract the 

object probability map for the input image. Then, a watershed and a supervoxel 

algorithm (SLIC) are applied simultaneously to obtain a roughly segmented 

image and an over-segmented one. The two images are then merged and 

processed using a novel boundary correction algorithm to obtain more accurate 

object boundaries. The software can be executed in the command line once the 

source code is downloaded. The readme file shows basic examples. 

4. 3DeeCellTracker [95]: It is a 3D instance segmentation pipeline aimed to track 

cells in 3D such as cells of the brain of moving worms or tumor spheroids. The 

pipeline consists of two major parts: segmentation and tracking. The 

segmentation part uses a 3D U-Net and a 3D watershed is applied to construct 

the final instance segmentation. Jupyter [41] notebooks are provided for 

running the software. Video tutorials are available that show the installation of 

the software, tracking functionality, manual annotation with the ITK-snap and 

correcting the labels. 

 

 

Methods for 3D images but without a freely available implementation: 

 

1) A Deep Learning Pipeline for Nucleus Segmentation [96]: An end-to-end 

computational pipeline to train and evaluate the performance of machine 

learning-based nuclear segmentation algorithms. This pipeline was first used to 
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generate preliminary nuclear labels of several different cell types, then manually 

corrected in an interactive fashion and used to train and evaluate the 

performance of different CNN-based architectures for nuclear segmentation. 

The pipeline was based on the Snakemake language, a generic workflow 

management software where individual computational tasks are chained 

together to form a pipeline. Each task is configured by a set of input files and 

parameters, by a call to a bash script or a Python script that accepts the input 

files and processes them, and by a set of output files generated by the task. 

The pipeline was developed as a reproducible workflow capable of evaluating 

any number of different nuclear instance segmentation models. As a first step 

in the pipeline, a pretrained CNN model or a traditional nucleus segmentation 

algorithm is used to generate preliminary sets of labels for the nuclei. These 

preliminary labels generally contain gross segmentation mistakes, such as false 

positives, false negatives, splits and merges, which can be manually corrected 

using an interactive, web-based interface. The implemented pipeline runs either 

on clusters or on a local server equipped with NVIDIA™ GPUs. The 

Snakemake pipeline for models training and testing is deposited in a dedicated 

Github repository: https://github.com/CBIIT/nci-hitif 

2) Combined detection and segmentation of cell nuclei in microscopy 

images using deep learning [97]: A 3D convolutional neural network to 

simultaneously segment cell nuclei and detect their centroids in confocal 

microscopy images. Mirroring the co-dependency of these tasks, the proposed 

model consists of two serial components: the first part computes a 

segmentation of cell bodies. In particular, they adopt the U-Net architecture as 

the basis of the segmentation network. The motivation behind this architecture 

is that the contraction and expansion paths of the architecture capture the 

context around the objects in order to provide a better representation of the 

object. The second module identifies the centers of these cells. This serial 

architecture is motivated by the observation that the detection task is rather 

straightforward given a segmentation map, yet annotations are easier to obtain 

for the detection task. 

3) DeepSynth [98]: This method uses synthetic data to train a modified 3D U-Net. 

In this version of the U-Net, the network consists of leaky ReLU activations and 

the authors employ a combination of the dice and binary cross-entropy loss to 
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achieve better accuracy. As a post-processing step, a 2D watershed is used on 

each orthogonal plane to separate the overlapping nucleus instances. The code 

is available on request. 

4) Nuclei detection for 3D microscopy with a fully convolutional regression 

network [99]: Lapierre-Landry et al. recently presented VRegNet, a two-step 

encoder-decoder segmentation network based on the V-Net architecture, a 

popular 3D semantic segmentation architecture similar to 3D U-Net but using 

the Dice loss to prevent class imbalance, combined with a new regression-

based fully convolutional network. Precisely, in VRegNet nuclei are first 

segmented from the background using V-Net, then the regression network is 

used to directly identify centroids. VRegNet is designed to segment nuclei in 

large 3D fluorescence datasets. 

5) 3D Cell Nuclei Segmentation Based on Gradient Flow Tracking [100]: A 

physical model is proposed to segment each nucleus instance. The authors 

argue that computing only the gradient of the image and tracking the points to 

reach the intensity maxima to detect cells could lead to suboptimal accuracy 

because of the noisy areas present in the center of the objects and the cluttered 

gradients present in images containing irregularly shaped objects. Therefore a 

gradient vector diffusion algorithm is proposed that diffuses the gradient vectors 

from the high magnitude areas to the low magnitude parts. The proposed 

equation also produces a smooth vector field even in noisy areas. After the 

diffused gradient vector field is constructed, the points are tracked back to the 

sinks that correspond to the nucleus instances. The tracking can be 

implemented efficiently by not tracking the pixels that are tracked back during 

the processing of a different pixel previously. 

6) Segmentation of fluorescence microscopy images using three 

dimensional active contours with inhomogeneity correction [101]: In 

another interesting paper, a deep mathematical model is developed to segment 

nucleus instances in fluorescent images. The proposed model is a 3D active 

contour model with a region-based data term that considers the image 

inhomogeneities during the surface evolution. The input image is modelled as 

the pointwise multiplication of the homogeneous Image and the 

inhomogeneous field added to a zero mean gaussian. The proposed energy 
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functional is then minimized by solving the corresponding partial differential 

equation. 

7) Automated Cell Segmentation with 3D Fluorescence Microscopy Images 

[101,102]: A pipeline with several steps to segment cell instances in 3D 

fluorescent images. First, the image is interpolated using cubic interpolation, 

then a Gaussian filter is applied. Then, the gradient vector field is computed for 

the pre-processed image and an adaptive threshold is applied to the image to 

separate the foreground and background pixels. As a post-processing step, the 

object boundaries are smoothed using morphological operation. 
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