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Abstract— Detecting various types of cells in and around
the tumor matrix holds a special significance in charac-
terizing the tumor micro-environment for cancer prognos-
tication and research. Automating the tasks of detecting,
segmenting, and classifying nuclei can free up the pathol-
ogists’ time for higher value tasks and reduce errors due
to fatigue and subjectivity. To encourage the computer
vision research community to develop and test algorithms
for these tasks, we prepared a large and diverse dataset
of nucleus boundary annotations and class labels. The
dataset has over 46,000 nuclei from 37 hospitals,71 patients,
four organs, and four nucleus types. We also organized a
challenge around this dataset as a satellite event at the
International Symposium on Biomedical Imaging (ISBI) in
April 2020. The challenge saw a wide participation from
across the world, and the top methods were able to match
inter-human concordance for the challenge metric. In this
paper, we summarize the dataset and the key findings of
the challenge, including the commonalities and differences
between the methods developed by various participants.
We have released the MoNuSAC2020 dataset to the public.

Index Terms— Multi-organ dataset, nucleus classifica-
tion, computational pathology, instance segmentation,
panoptic quality.

I. INTRODUCTION

ATUMOR’S microenvironment (TME) is characterized by
the presence and spatial organization of different types
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of cells in and around a tumor. To assess the role of the
TME milieu in tumor initiation, development, invasion, and
outcome, it is important to accurately identify different types
of cells. For example, while the epithelial cells are important
because many cancers originate there, the tumor infiltrat-
ing lymphocytes (TILs) are associated with the outcomes
of various cancers [1], [2]. Similarly, the tumor associated
macrophages (TAMs) and neutrophils also influence diverse
processes such as angiogenesis, neoplastic cell mitogenesis,
antigen presentation, matrix degradation, and cytotoxicity in
various tumors [3].

Although hematoxylin and eosin (H&E) stained tissue slides
are often used for the primary diagnosis due to their low cost,
they are not very good for differentiating nuclei of different
types of cells. For instance, epithelial nuclei within the tumor
vary in their appearance across organs, and these can appear
small and dense, just like lymphocytes, within a necrotic tis-
sue. Macrophages can be mistaken for the other cells that they
may have just started digesting. The multi-lobular structure of
neutrophils can be missed depending on their angle of rotation.
More importantly, the manual identification of individual cells
takes substantial time and is prone to inter- and intra-observer
variability. Thus, automated detection of nuclei of different
types of cells using artificial intelligence (AI) can reduce time,
costs, and errors to set up for the analysis of the TME.

To build generalizable and robust algorithms for segmenting
and recognizing nuclei of various types of cells, the computer
vision community needs a large, diverse, curated, and anno-
tated dataset. Previously, several public datasets have been
released for nucleus segmentation, but the annotated nuclei
were either not further classified into different types [4]–[8],
or not sourced from multiple organs [8], or not curated
to the level of individual nuclei [9]. We, therefore, pre-
pared the multi-organ nucleus segmentation and classifica-
tion (MoNuSAC) dataset with over 46,000 hand-annotated
nuclei covering 71 patients, 31 hospitals, four organs, and four
cell types. Our focus was on identifying epithelial and three
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types of immune cells that are important for characterizing the
TME. We sourced the raw images from The Cancer Genome
Atlas (TCGA) repository [10].

Based on the dataset, the computer vision community was
invited to participate in the MoNuSAC2020 challenge that
featured as a satellite event in the International Symposium
on Biomedical Imaging (ISBI) 2020. The challenge webpage
was hosted at grand-challenges.org – a well-known host and
portal for biomedical image analysis challenges [11]. Thirteen
teams from 11 countries successfully completed the challenge.
Post-challenge submissions were opened for another month
after the challenge workshop due to a popular demand and
the COVID-19 situation, which attracted four additional sub-
missions and two resubmissions. Computational credits for the
top ten teams to refine their techniques and a GPU prize for the
challenge winner were sponsored by the Nvidia Corporation.

After the challenge, we confirmed that the top few tech-
niques compared favorably with inter-human agreement for
the challenge metric. We also checked that ensembling the top
few techniques led to only a modest improvement in accuracy.
Thus, we hope that the challenge dataset and competing
algorithms will be used in the near future to characterize
the TME for cancer prognostication and immune response
assessment. With this paper, we have released the details of
the competing techniques and MoNuSAC training and testing
dataset to the public under the creative commons license
(CC BY-NC-SA 4.0) [11].

We revisit other data sources and techniques for nucleus
segmentation and classification in Section II. We describe the
preparation of MoNuSAC2020 training and testing datasets,
and the choice of evaluation metric in Section III. We sum-
marize the techniques developed by the challenge participants
and their results in Section IV, post-challenge experiments in
Section V, and the conclusions in Section VI.

II. BACKGROUND AND PRIOR WORK

A. Nucleus Segmentation and Classification

Earlier nucleus segmentation algorithms largely used
non-machine learning approaches, such as watershed segmen-
tation, morphological operations, color-based thresholding,
and variants of active contours [7], [12]–[15]. However, these
methods failed to generalize across diverse nuclear morpholo-
gies present in multiple organs and tissue types. Furthermore,
these algorithms did not perform well for segmenting touching
and overlapping nuclei [5]. Due to these reasons several
machine learning algorithms were developed for accurate and
generalizable nucleus segmentation. Earlier machine learning
approaches focused on the extraction of hand-crafted features
based on color, intensity, and texture from H&E stained tissue
images to distinguish between nuclear and non-nuclear pixels
using traditional algorithms such as random forests, support
vector machines, etc. [16]–[18]. However, feature selection
for such algorithms relied on domain knowledge and such
algorithms also used trial-and-error for improving nucleus
segmentation performance. Additionally, these methods treated
simultaneous nucleus segmentation and classification as two

distinct decoupled tasks. More detailed reviews of these
nucleus segmentation algorithms appear in [4], [5], [19], [20].

The advent of large annotated datasets and supervised deep
learning models overcame the limitations of aforementioned
hand-crafted feature based approaches. As algorithms based
on deep learning that scale performance more effectively to
the availability of labeled data started outperforming prior
techniques, the focus of computer vision research shifted from
engineering of features to that of neural network architectures
and loss functions. For nucleus segmentation, there has been
a recent interest in deep neural net architectures inspired from
the fully convolutional neural networks (FCN) [5], [8], [21],
[22]. These architectures involve the use of encoder-decoder
blocks that could systematically transfer features from multiple
scales and levels for efficient image segmentation. The U-Net
model, a variant of FCN architecture, has given promising
results for nucleus and other segmentation tasks [23]. The
U-Net model has additional skip connections compared to the
FCN for spatially refined semantic segmentation, when touch-
ing objects of the same kind need not be recognized as separate
entities. Some modifications to the basic U-Net architectures,
such as U-Net++ [24], utilize enhanced encoder-decoder
architectures and loss functions to improve the instance seg-
mentation of individual (possibly crowded) nuclei.

More robust architectures have also been proposed such as
W-Net, which uses a two-step procedure for contour detec-
tion and segmentation map generation for improved nucleus
segmentation [25]. Some of the other techniques that make
use of the nuclear contours for effective instance segmen-
tation are based on a unified multi-level FCN framework
with contour map generation for separating overlapping nuclei
instances [26], and a contour-seed pairs learning for robust
nucleus segmentation [27]. Another set of popular techniques
adopt mask-RCNNs [28] from the general vision literature for
robust instance level nucleus segmentation [29]–[31]. These
methods make use of an additional region proposal step to
identify potential nucleus locations and following it up with a
segmentation step.

For nucleus classification, usually a patch centered around
a nucleus is input to a neural network, which makes detection
or segmentation a prerequisite task. For example, SC-CNN
uses a novel neighboring ensemble predictor to label individ-
ual nuclei that follows detection by a spatially constrained
convolutional neural network [32], while Hover-Net performs
simultaneous nucleus segmentation and classification using
horizontal and vertical distance maps to resolve and separate
clustered nuclei [33]. Recently, mask-RCNN has also been
used for the joint segmentation and classification of various
types on nuclei in H&E stained tissue images of lung aden-
carcinoma [34]. An exhaustive list of other deep learning
based nucleus segmentation and classification techniques can
be found in [20].

B. Annotated Nuclear Datasets

The advent of deep learning for computer vision has also
shifted the focus of research to the preparation of large
labeled datasets such as ImageNet [35]. The computational
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TABLE I
DATASETS OF ANNOTATED NUCLEI IN H&E IMAGES

pathology community has been somewhat slow in adopting
the trend of releasing large curated datasets for deep learning,
primarily because of the expensive and time consuming data
curation process, privacy concerns, and approvals required for
publicly releasing de-identified human tissue datasets. The
noteworthy publicly available datasets with nuclear annota-
tions in H&E stained slides are listed in Table I. These
datasets, with the exception of PanNuke [9], either cover only
one organ or do not provide nucleus type labels, which is
insufficient for training neural networks that generalize well
for simultaneous nuclear segmentation and classification. And,
although PanNuke seems to bridge this gap, its annotations
were collected using a semi-automatic strategy. Thus, there is
a possibility of nucleus annotation errors because it cannot be
guaranteed that every nucleus was visually inspected during
the pathologist verification. Furthermore, the PanNuke dataset
does not contain separate labels for lymphocytes, macrophages
and neutrophils, but it combined them into a single “inflam-
matory cells” category [9]. Large-scale regional annotations
of different components of tissues are also available in the
Atlas of Histopathology [36], although it lacks the individual
nucleus-level annotations. Thus, there was a clear need for
a curated multi-organ dataset of different nucleus types, espe-
cially one that differentiated between various types of immune
cells given their importance in characterizing TME.

III. DATASET AND CHALLENGE RULES

The training and testing datasets, and the rules of the
challenge were prepared to meet the objective of providing
an open, large, usable, annotated, and curated dataset for
the development and comparison of robust algorithms for
nucleus instance segmentation and classification. For usability,
we sampled multiple organs and concentrated on nucleus types
important for a wide spectrum of studies on tumor initiation
and progression, i.e., epithelial cells, lymphocytes, neutrophils,
and macrophages [1]–[3].

A. Training Dataset

The training set was prepared by cropping whole slide
images (WSIs) of 46 patients from 32 hospitals downloaded

Fig. 1. Sample annotations: (a) A sub-image from the training dataset
with boundaries of different types of nuclei shown in different colors –
epithelial cells in red, lymphocytes in yellow, macrophages in green, and
neutrophils in red, and (b) a test image with additional white boundaries
for ambiguous regions. Some boundaries are pointed out for the reader
by arrows of the same colors.

from The Cancer Genome Atlas (TCGA) data portal [10].
WSIs were scanned by the TCGA contributors at a 40× mag-
nification. Cropping WSIs ensured that the annotations were
diverse and of high quality as we could sample more slides and
nucleus-rich regions. This also encouraged wider participation
in the challenge due to the computational manageability of
cropped images.

Annotations were performed using Aperio ImageScope®

application, on a 25” monitor with a 200× digital magni-
fication such that each image pixel occupied 5 × 5 screen
pixels to ensure clear visibility for annotating nuclear bound-
aries with a laser mouse. We adopted the previously estab-
lished protocol for manual nuclear boundary annotations as
described in [4]. In addition to nuclear boundary annotations,
we also provided nucleus class labels for each annotated nuclei
included in MoNuSAC2020 dataset. For overlapping nuclei,
each multi-nuclear pixel was assigned to the nucleus that
appeared to be on top. Each type of nucleus was annotated
using a unique colored marker. An example of the training set
annotations is shown in Figure 1(a). Annotations were saved as
XML files and the code for reading annotations was provided
to the participants [11].

The annotators were engineering graduate students and the
quality control was performed by an expert pathologist with
several years of experience in analyzing tissue sections. Specif-
ically, the pathologist reviewed the annotations of each nucleus
type to point out missed nuclei, false nuclei, mislabeled nuclei,
and nuclei with wrong boundaries. Nuclear annotations were
iteratively revised based on the pathologist’s feedback, until
less than 1% nuclei of any type had any of these errors. The
distribution of annotated nuclei by nucleus type and organ in
the training data is shown in Table II.

B. Testing Dataset

The testing data were prepared using the same procedure
as that for the training data, except that it was sourced from
25 patients that did not overlap with the training data. This
data was taken from 19 hospitals out of which 14 were shared
with the training dataset. Additionally, the testing data also
contained annotations for ambiguous regions. The ambiguous
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TABLE II
COMPOSITION OF THE MONUSAC2020 TRAINING AND TESTING DATA BY ORGAN AND NUCLEUS TYPE

(WITH THE NUMBER OF PATIENTS SHOWN IN PARENTHESIS)

regions were not used for computing the evaluation metric for
ranking the participants because these regions either had very
faint nuclei with unclear boundaries, or the annotators were
unsure of their true class. Participants were provided with the
images and the annotations of the ambiguous regions but not
the four nucleus types, while the latter were exclusively used
to compute the challenge metric by the MoNuSAC2020 orga-
nizers. An example of the test set annotations with ambiguous
regions in white is shown in Figure 1(b). The distribution of
testing dataset across organs and nucleus types is shown in
Table II.

The patient and hospital details for the training and the
testing data are available in the supplementary material. With
this paper, we have publicly released the complete training
and testing datasets of MoNuSAC2020 including the testing
set annotations, under the creative commons license (CC
BY-NC-SA 4.0), on the challenge webpage [11].

C. Challenge Metric and Leaderboard

To evaluate both the semantic segmentation and the instance
classification accuracy of the challenge participants using a
single metric, the average of class-specific panoptic quality
(a-PQ) was used [41]. For the i th image and the cth class
of nuclei, the class-specific PQ was computed as the sum
of intersection-over-union (IoU ) of the matching pairs of the
detected nuclei pi, j

c , indexed by j , and the ground truth nuclei
gi,k

c , indexed by k. That is,

P Qi
c =

∑
(pi, j

c ,gi,k
c )∈{T Pi

c } IoU(pi, j
c , gi,k

c )

|T Pi
c | + 1

2 |F Pi
c | + 1

2 |F Ni
c |

, (1)

where T Pi
c , F Pi

c , and F Ni
c are respectively the sets of

true positive, false positive, and false negative nuclei for
the i th image and the cth class, and |.| represents set car-
dinality. To be considered a match for inclusion in T Pi

c ,
the segmented and the ground-truth nucleus pair {pi, j

c , gi,k
c }

should have an IoU > 0.5, which would make the match-
ing bidirectionally unique. For the i th test image, arith-
metic mean of the class-specific P Qi

c over the number of

classes (C) in that image gave the image-level PQ score,
P Qi = 1

C

∑C
c=1 P Qi

c, f or C ∈ {1, 2, 3, 4}.
The value of PQ ranges between 0 to 1, where 0 means

all nucleus instances were segmented incorrectly (no-overlap
between the ground truth and segmented nuclei) at the
pixel-level and each segmented nuclei was also incorrectly
labeled, while 1 means perfect segmentation and classification.
Participants submitted a separate output file for each of the
25 test images. P Qi was assigned 0 if the file for the i th test
image was not submitted. Arithmetic mean of the 25 P Qi

scores formed the final average panoptic quality (a-PQ) score
for ranking the participants.

Each participating team was allowed two submissions.
Based on their first submissions, the organizers released the
preliminary leaderboard on the challenge webpage [11] three
weeks before the challenge workshop at ISBI 2020. The top
ten teams on the preliminary leaderboard were given access
to a cloud instance with two V100 GPUs (16GB VRAM
each) for a week by the Nvidia Corporation to refine their
models for the final submission. The challenge leaderboard
for the rankings at the time of the challenge workshop at ISBI
2020 is shown in Table III (with a prefix L). The challenge
workshop was organized virtually as a part of ISBI 2020,
where the participants presented their algorithms (recordings
are available at [11]). The winner of the challenge was awarded
a TITAN V GPU from Nvidia Corporation. Keeping in view
the COVID-19 situation and requests from the challenge
workshop attendees, the challenge was re-opened for another
month and the post-challenge participants were allowed only
one submission. The post-challenge rankings are also shown
in Table III (with a prefix P L).

Table III also shows the 95% confidence intervals (95%
CIs) around a-PQ for each participant. It is evident that most
of the techniques (especially, the top three techniques) have
narrow CIs, indicating that the ranking based on a-PQ is stable.
Fine-grained results are shown in Supplementary Table S2,
where it is apparent that the ranking trends for the overall
a-PQ are held at the level of organs and nuclear types as
well. This means that nucleus segmentation and classification
for some organs and certain types of nuclei were relatively
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difficult (e.g., kidney and neutrophils) or easy (e.g., prostate
and epithelial nuclei) for all techniques. Nuclei of neutrophils
are quite difficult to segment because of high heterogeneity
in their shapes and sizes compared to other types of nuclei.
This heterogeneity stems from the fact that neutrophils are
amorphous and change their shape (from spherical to amoeba-
like) once activated and extend pseudopods while hunting for
antigens [1], [2].

IV. COMPETING TECHNIQUES AND OBSERVATIONS

In this section we summarize the techniques developed
by MoNuSAC2020 participants who appeared on the chal-
lenge and post-challenge leaderboards, as shown in Table III.
We first describe the key trends in the use of pre-processing,
data augmentation, deep learning, and post-processing tech-
niques. We then summarize individual techniques. More
details about each technique are available in the supplementary
material and under the “manuscripts” tab on the challenge
webpage [11].

A. Pre-Processing and Data Augmentation

The performance of deep learning models with relatively
fewer parameters can be improved by data normalization that
reduces the unwanted variations (e.g., in image contrast) in
the input data. On the other hand, models with relatively
more parameters benefit from data augmentation that syn-
thetically introduces variations (e.g., color augmentation) to
help the model generalize over those variations. Both trends
were observed in the pre-processing techniques of the entries
submitted to MoNuSAC2020, as shown in Table III.

Color and intensity transformations were the most common
data pre-processing techniques seen in the challenge. For
example, five teams used color normalization to reduce the
color variations, which could have arisen due to the use of
different scanners and reagent concentrations in H&E stained
tissue images. Out of these, four teams used the Structure
Preserving Color Normalization (SPCN) [42]. On the other
hand, ten teams used color jitter for data augmentation.

Among geometric data augmentation techniques, rigid trans-
formations of images – such as rotations (especially, by mul-
tiples of 90 degrees), horizontal/vertical flips – were the most
common. Additionally, twelve teams used image rescaling, and
six teams also used elastic transformations.

B. Specification of the Learning Task

Given the images and the target nuclear boundary masks
in the training set, the participants formulated the learning
problem in one of the following three ways: (1) binary
segmentation, (2) ternary segmentation, or (3) distance map
estimation. In binary segmentation, the learning task is for-
mulated as the segmentation of foreground nuclear pixels
from the non-nuclear background, while the task of separat-
ing overlapping nuclei is accomplished using post-processing
techniques. An additional class of boundary pixels is used in
ternary segmentation to facilitate the separation of touching
and overlapping nuclei [22]. Distance map based algorithms

estimate how far a nuclear pixel is from the centroid of
a nucleus [22]. The learning task is then formulated as
a per-pixel regression problem in contrast to the former
two formulations. Four teams, including the challenge win-
ner, employed a variation of the distance map regression
approach to estimate the horizontal and vertical distance maps
separately.

C. Model Architectures and Loss Functions

All participants used deep convolutional neural networks to
segment and classify the nuclei. Fourteen teams used variants
of U-Net [23] with different base architectures including
ResNet [43], FCN [21], Hover-Net [33], and DenseNet [44],
while three teams used feature pyramid network (FPN) [45] for
semantic segmentation and EfficientNetB7 [46] as an encoder,
as shown in Table III.

For the loss function, pixel-wise cross entropy loss, Dice
loss [47], or a hybrid of the two losses were the most common
ones used for the challenge, as shown in Table III.

D. Post-Processing

Post-processing was used by several teams for the sep-
aration of overlapping nuclei. Seven teams used watershed
segmentation (WS) for separating touching nuclei in binary
segmentation masks. Additionally, a few teams used a neural
network to predict the location markers for individual nuclei.
Markers were based on either maps of the nucleus centers,
or maps of the distance from or the direction towards the
nearest nucleus center, as shown in Table III.

Other common uses of post-processing steps were the
suppression of small stray or weak detections using Gaussian
smoothing or morphological operations, and averaging results
from the augmented versions of a given test image.

E. Description of the Techniques

While each technique is described in detail in the sup-
plementary material and in the respective manuscripts on
the challenge webpage [11], we briefly describe the key
features of the techniques that appear on the challenge and
the post-challenge leaderboards. The teams are ordered as
per their final ranks on the challenge leaderboard (L1 is the
winner) in Table III. Two teams that made it to the challenge
leaderboard – Amirreza Mahbod and SharifHooshPardaz –
revised their models for the post-challenge submission as well.
Visual samples of the segmentation and classification results of
the top-five techniques across the two leaderboards are shown
in Figure 2.

1) L1, TIA-Lab: Patches of size 256 × 256 were sampled,
normalized in range [0, 1], and augmented using random
affine transform, rotation, blur, and color jitter. Horizontal
and vertical distance maps of nuclear pixels were gener-
ated to separate clustered nuclei. Hover-Net [33] architecture,
inspired by U-Net [23], was used as the learning model.
Resnet50 [48] was used for feature extraction as an encoder
followed by three FCN decoders [21], which were used for
(a) binary segmentation, (b) prediction of the distance maps,
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Fig. 2. Test sub-images taken from different organs exemplifying challenges of working with varied nuclear appearances, types, and crowding
patterns are shown in columns. Original H&E images, ground truth masks, and segmentation results from the top-five techniques from the challenge
and the post-challenge leaderboards are shown in rows. To highlight the separation of touching and overlapping nuclear instances belonging to the
same class, the nuclear boundaries are highlighted in brown. Annotations and segmentations of each cell class are shown using matching colors.

and (c) nucleus classification, respectively. A combination of
cross entropy, Dice loss, and mean square error (MSE) were
used to train the Hover-Net. The initial model weights were
obtained by training on PanNuke dataset [9] to improve results
over random weight initialization.

2) L2, SJTU 426: Reinhard color normalization [49]
followed by an extensive data augmentation using random
scaling, horizontal and vertical flips, affine and elastic transfor-
mation, random rotations, and z-score normalization of each
RGB channel was performed on input images. A two-level
hierarchical deep neural network was trained. U-Net [23], with
Resnet34 architecture, was used to predict ternary probability
maps for pixels inside, on the boundary of, and outside the
nuclei, coupled with a combination of weighted cross-entropy
and perceptual losses. Individual nucleus instances thus seg-
mented were used to train another U-Net, with VGG16 [50]
architecture, to classify the nuclei using cross entropy loss.

3) L3, IVG: Patches of size 256 × 256 were sampled and
augmented with RGB shift, color channel shuffle, random
color variations, affine and elastic transformations, horizon-
tal and vertical flips, and 90◦ rotations using the Albu-
mentation library [51]. A U-Net [23] architecture with a
Resnet50 [48] encoder and squeeze-and-excitation blocks [52]
was trained using a combination of weighted cross-entropy and
Lovasz-softmax loss [53]. Test-time augmentation was also
used and the final results were obtained through averaging.

4) L4, LSL000UD: Patches of size 256 × 256 were sampled
and augmented using random cropping, color jitter, random
flips, rotation, scaling, elastic transforms, and an addition
of speckle and Gaussian noise. A two stage approach was
developed where a U-Net [23] model with DenseNet121 [44]
architecture was used for nuclei boundary prediction, fol-
lowed by three separate U-Nets trained for the classifica-
tion of various class combinations. Both MoNuSeg [5] and
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MoNuSAC2020 [11] data were used for training the boundary
prediction stage with binary cross-entropy, while only the
MoNuSAC2020 [11] data were used for pixel classification
with Dice loss.

5) L5 and PL3, SharifHooshPardaz: Images were color
normalized using SPCN [42], and data augmentation was
done using random flips, rotation, translation, scaling, elastic
transformation, addition of random values to hue and sat-
uration channels, brightness and contrast adjustments, and
Gaussian blurring. FPN [45] for semantic segmentation with
the EfficientNetB7 architecture [46] was trained to segment
six classes: background, four cell types, and the boundary
pixels. The model was pre-trained on ImageNet [35] using the
weighted cross-entropy loss. Test-time augmentation was also
used and the final results were obtained by averaging followed
by watershed segmentation. After watershed segmentation,
a conditional random field (CRF) [54] was used as another
post-processing step. However, in the post-challenge submis-
sion, the CRF was removed, which led to an improvement in
the accuracy.

6) L6, xperience.ai: Data were augmented using random
flips, shifts, scaling, rotations, noise addition, and random
color variations. A combination of U-Net and dual path net-
works (DPN) [55] was trained with Dice loss and the predicted
outcomes were post-processed using the watershed segmenta-
tion. The submitted model was compared with LinkNet [56],
PSPNet [57], SAUNet [58] and the traditional UNet [23], but
a combination of U-Net and DPN gave the best results.

7) L7, TeamTiger: Patches of size 256 × 256 were sampled
and color normalized using SPCN [42]. Two FPNs [45] were
trained, one with an EfficientNetB7 [46] to segment epithelial
and lymphocytes, while other using ResNet34 [48] to segment
macrophages and neutrophils.

8) L8 and PL1, Amirreza Mahbod: Patches of size 256 × 256
were sampled and augmented using random flips, crops,
scaling, and color augmentation through contrast and bright-
ness alteration. Two separate U-Nets were trained for binary
segmentation and distance map prediction for nuclei instance
segmentation. Gaussian smoothing and watershed algorithms
were applied on the average output of the two U-Nets to obtain
the segmented nucleus instances, which were classified using
a third U-Net.

In their post-challenge submission, they used only one
U-Net for nucleus instance segmentation, but the segmentation
U-Net was given two decoder units – one for semantic
segmentation and another one for distance map prediction.
The use of two decoders in the segmentation U-Net led to
an improvement in their performance.

9) L9, DeepBlueAI: Data were augmented using random
crops, scaling, flips, and color jitter. A hyper column and
context attention based U-Net (HCCA-UNet), which combines
hypercolumn [59] and context attention [60] modules, based
on ResNet-101 backbone was trained for simultaneous seg-
mentation and classification of nuclear instances using a cross
entropy loss.

10) L10, Debut Kele: Data were augmented using ran-
dom crops, affine transformations, and rotations. A U-Net
was trained for nucleus instance segmentation. For cell-type

classification, an XGBoost [61] model was trained using
local statistical features extracted from the segmented
instances.

11) L11, The Great Backpropagator: Patches of size 96 ×96
were used to train a U-Net with EfficientNet-B3 architec-
ture [46] to segment and classify nuclei. The model was ini-
tialized with weights that were pre-trained on ImageNet [35].
A combination of focal loss [62] and Jaccard index was used to
optimize the model. Median filtering and watershed algorithm
were used for post-processing the segmented masks.

12) L12, Steven Smiley: Patches were augmented using
random rotations, flips, scaling, and color jitter. Four U-Net
models were trained – one each for the segmentation of each
nucleus type. The final softmax layer of the U-Nets were
replaced with sigmoid layers and the models were optimized
for the binary cross-entropy loss.

13) L13, NUKMLMA: Data were augmented using random
crops, rotations, and flips. A pyramid scene parsing network
(PSPNet) [57] was trained for nucleus segmentation and clas-
sification. While testing, the images were augmented using 90◦
rotations and flips. Results were averaged across the test-time
augmented outputs.

14) PL2, IIAI: Patches of size 540 × 540 were sampled
and augmented using color jitter, Gaussian and median
blurring, affine transformations including random rotations,
scaling, shear, translation, vertical and horizontal flips,
and center cropping. Hover-Net architecture with Preact-
ResNet50 encoder [33] was trained with cross-entropy
loss on multiple datasets (CPM17 [39], Kumar [22], and
CoNSep [33]) before fine-tuning on the MoNuSAC data [11].

15) PL4, Trnal: Patches of size 128 × 128 pixels were
sampled and augmented using random rotations and flips. Four
U-Nets, one for each cell-type, with exponential linear acti-
vation units were trained for segmentation. For a given patch,
each pixel was labelled based on the maximum probability
across the four class-specific U-Nets. Augmentation and result
averaging was performed at test time.

16) PL5, Cp&ig: Pixel intensities were normalized in the
range [0, 1] and the data were augmented by horizontal and
vertical flips. A novel fully convolutional multi-class distance
regularized dense inception network (m-DRDIN) was pro-
posed to segment and classify nuclei instances. m-DRDIN
contains one encoder branch with four inception blocks and
two decoder branches, each with three inception blocks. The
first decoder branch caters to the instance segmentation while
the second one gives multi-class labels. The model used the
boundary weight map to regularize the network and to learn
to identify the boundary pixels. A combination of weighted
binary cross-entropy and boundary-aware weight map loss
function was used for training.

17) PL6, Onward: Images were color normalized by
SPCN [42] and a variant of U-Net, U-HoverNet, with two
decoders was trained to segment and classify nuclei. One
decoder produced the class-specific segmentation outputs
and the other produced the horizontal and vertical distance
maps that were used by the watershed algorithm to improve
the class-specific segmentation maps obtained from the first
decoder.
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V. ADDITIONAL EXPERIMENTS

After the challenge, we checked how the top few techniques
compared to inter-human agreement, and whether the results
can be further improved by ensembling the top few techniques.

A. Comparison With Inter-Human Agreement

We re-annotated the test images and computed their a-PQ
with the previous annotations. The re-annotation protocol was
identical to the one used for creating the training set of
MoNuSAC2020, but was done by a separate student annotator
who was blinded to the previous test-set annotations. The
a-PQ between new and old manual annotations across the test
images was 0.594 (95% CI: 0.580-0.608) to which the a-PQ of
the top few techniques compare favorably. This suggests that
for multi-class nucleus segmentation in H&E images, machine
performance is at par with human performance if the image
quality is as good as the one used in this challenge.

B. Ensemble of the Top-Three Techniques

Unlike ensembling of semantic segmentation, where class
probabilities or decisions can be averaged for each pixel loca-
tion, ensembling of multi-class instance segmentation results is
not straightforward, and we did not find any usable solution to
this problem. We have proposed our own approach for ensem-
bling segmentation results earlier [5], which we modified to
generate the ensemble output of instances segmented by the
top-three techniques (L1, L2, and P L1 in Table III) as follows.
We created the ensemble nuclear masks separately for each
cell-type. For example, first we obtained the segmented masks
of epithelial nuclei of top three techniques and looped over
the epithelial instances to identify the corresponding instances
from the other two techniques based on the number of
overlapping pixels. An ensemble instance was thus computed
through pixel-level majority voting of the three corresponding
instances. Once we looped over all epithelial nuclei instances
predicted by the rank 1 technique, to incorporate the epithelial
nuclei instances missed so far, we looped over all epithelial
nuclei instances of rank 2 technique that did not find an
overlap with those of the rank 1 technique. We used the afore-
mentioned ensemble method separately for other cell-types
including lymphocytes, neutrophils, and macrophages. Finally,
we aggregated the ensemble masks of individual cell-types to
obtain the multi-class nuclei instance masks. This ensembling
method gave an overall a-PQ of 0.620 (95% CI: 0.607-0.635),
which is only marginally better than the individual results of
the top-three teams.

VI. CONCLUSION AND DISCUSSION

In this paper, we described the dataset and the organization
of the MoNuSAC2020 challenge [11] for instance segmenta-
tion and classification of nuclei in H&E-stained cancer tissue
images. The major trends observed in the development of tech-
niques for this problem can be summarized as follows. Firstly,
fully convolutional architectures inspired by the U-Net [23]
and FCN [21] seem to be useful for segmentation due to their
efficient use of convolutional parallelism for not only the input

but also the output. Secondly, heavy data augmentation was
also a common step used by several teams as it helps make
the training data diverse enough to model the distribution of
the testing data as well. Thirdly, an appropriate combination
of the semantic loss (e.g. Dice loss) and instance label loss
(e.g. cross-entropy) worked best for training neural networks
for nucleus segmentation and classification task. Finally, a few
participants also developed novel and unique neural architec-
tures, such as m-DRDIN (team Cp&ig).

Overall, the results were quite satisfactory, both qualitatively
(as shown in Figure 2) and quantitatively (as shown in Table III
and Section V-A). Some difficult examples of macrophages
and neutrophils, which were under-represented in the training
set, were also accurately segmented and labeled by the top
participants. Additionally, their performance matched that of
inter-human agreement. Ensembling the top three techniques
did not improve the results significantly, perhaps because of
the limitations of human subjectivity in labeling and annotat-
ing nuclei in particular, and images in general. For instance,
the rotation angle of a neutrophil may hide its characteristic
tell-tale multi-lobular structure. Additionally, in H&E stained
tissue images, the nuclear boundaries are not easily visible
below the cytoplasm of another cell for overlapping nuclei.
Finally, the annotation strokes can also be imprecise, and
therefore, some level of noise in manual annotations is to be
expected. Hence, to handle the manual labeling noise, robust
machine learning techniques should be developed [63], [64].

While improvements in nucleus segmentation and classifi-
cation will indeed come in the next few years, we hope that
the MoNuSAC2020 data released with this paper [11] will
accelerate the development of such algorithms. Additionally,
by using the techniques developed by the challenge partic-
ipants, researchers will be able to plan studies to compare
the tumor microenvironments of various cohorts of cancer
patients. For instance, quantitative investigations into the inten-
sity and proximity of immune response and their association
with disease progression can now be studied, as can be the role
of neutrophils and macrophages in tumor progression [1]–[3].
We also hope that the challenge serves as a template for
others to release carefully annotated and curated datasets for
building algorithms for medical image assessment to support
the future downstream analysis such as understanding disease
pathobiology, prognostication, and treatment planning.
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