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Summary

This project concerns studying the early development of living organisms. This
period is accompanied by dynamic morphogenetic events. There is an increase
in the number of cells, changes in the shape of cells and specification of cell
fate during this time. Typically, in order to capture the dynamic morphological
changes, one can employ a form of microscopy imaging such as Selective Plane
Illumination Microscopy (SPIM) which offers a single-cell resolution across time,
and hence allows observing the positions, velocities and trajectories of most cells in
a developing embryo. Unfortunately, the dynamic genetic activity which underlies
these morphological changes and influences cellular fate decision, is captured only
as static snapshots and often requires processing (sequencing or imaging) multiple
distinct individuals. In order to set the stage for characterizing the factors which
influence cellular fate, one must bring the data arising from the above-mentioned
static snapshots of multiple individuals and the data arising from SPIM imaging
of other distinct individual(s) which characterizes the changes in morphology, into
the same frame of reference.

In this project, a computational pipeline is established, which achieves the
aforementioned goal of mapping data from these various imaging modalities and
specimens to a canonical frame of reference. This pipeline relies on the three
core building blocks of Instance Segmentation, Tracking and Registration. In the
Chapter 2, I introduce EmbedSeg which is my solution to performing instance
segmentation of 2D and 3D (volume) image data. In the Chapter 3, I introduce
LineageTracer which is my solution to performing tracking of a time-lapse
(2d+t, 3d+t) recording. In the Chapter 4, I introduce PlatyMatch which is
my solution to performing registration of volumes. Errors from the application of
these building blocks accrue which produces a noisy observation estimate of gene
expression for the digitized cells in the canonical frame of reference. These noisy
estimates are processed to infer the underlying hidden state by using a Hidden
Markov Model (HMM) formulation, and details surrounding this are provided in
the Section 4.5. Lastly, for wider dissemination of these methods, one requires an
effective visualization strategy. A few details about the employed approach are
discussed in the Section 3.4.

The pipeline was designed keeping imaging volume data in mind, but can
easily be extended to incorporate other data modalities, if available, such as Single
cell RNA Sequencing (scRNA-Seq) (more details are provided in the Section 5.3).
The methods elucidated in this dissertation would provide a fertile playground for
several experiments and analyses in the future. Some of such potential experiments
are detailed in the Section 5.4. Current weaknesses of the computational pipeline
are discussed additionally in the Section 5.4.
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MLP Multi-Layer Perceptron.

MOTS multi object tracking and segmentation.

PCA Principal Component Analysis.

RANSAC Random Sample Consensus.

scRNA-Seq Single cell RNA Sequencing.

SOTA State-of-the-art.
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Introduction

Figure 1.1: Mapping gene expression between developmental stages. Max-
imum projection of confocal images of in situ hybridized Platynereis dumerilii
specimens at developmental stages of 16 hours post fertilization (hpf) (left) and 20
hours post fertilization (hpf) (right), with Pax3/7 in magenta and DAPI in cyan.
A central question in developmental biology is to map spatial gene expression
patterns between different developmental stages. When successful, one would be
able to answer the question - whether the cells expressing Pax3/7 on the right are
the progeny of the cells expressing Pax3/7 on the left, or instead are independent
transcription events. Image credits: Mette Handberg-Thorsager.

Two central questions which exist in developmental biology are piq how gene
expression unfolds over time and piiq how dynamic changes in gene expression
correlate with dynamic changes in cellular morphology, as an embryo grows from
a state of a few cells to becoming a fully-differentiated organism.

With the recent advancements in Single cell RNA Sequencing (scRNA-Seq),
it has now become possible to obtain transcriptional signatures of individual cells
at discrete time points during the developmental life-cycle of an organism. Then
by ordering the sequenced cells along a trajectory based on similarity in their
expression patterns (a group of strategies referred to as Trajectory Inference (TI)
or pseudo-time analysis), one can achieve a mapping between cells sequenced at
different time points (Saelens et al., 2019), and thus in turn, address how gene
expression unfolds over time, the first of the two questions.

However, a few difficulties exist with scRNA-Seq: piq the low mRNA content-
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A B C

Figure 1.2: Single cell RNA Sequencing (scRNA-Seq) loses spatial and
dynamic context. (A) To apply scRNA-Seq, one has to disassociate a piece of
tissue, which provides a single cell slurry (B) scRNA-Seq is comprehensive and
allows one to identify different cell types and states (C) scRNA-Seq loses spatial
context i.e. one loses a sense of the spatial neighborhood of cells and is not able
to monitor cell-to-cell interactions. Also, scRNA-Seq loses dynamic information
i.e. one loses a sense of the temporal behaviour of cells as they migrate and divide.
Adapted from https://www.youtube.com/watch?v=UwoSLWlyC74.
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CHAPTER 1. INTRODUCTION

per cell results in sparse data, which makes it unclear if the gene was actually
not expressed (real zero) or was dropped because of technical noise. This problem
is alleviated by sequencing cells from several individuals synchronized at the
developmental stage of interest, but has the unfortunate consequence of losing
information about the lineage tree of any one individual piiq since scRNA-Seq is
reliant on physical disassociation of cells from their residing tissue, it introduces
additional computational challenges in linking spatial information (in the form
of x, y, z coordinates) to a library of sequenced cells (see Figure 1.2) (Teves and
Won, 2020).

In this thesis work, I present an alternate solution to scRNA-Seq. The pro-
posed strategy relies completely on imaging and jointly addresses both central
questions introduced above. The computational pipeline integrates (through reg-
istration) digitized live embryos, imaged through Selective Plane Illumination
Microscopy (SPIM) (digitized by using instance segmentation and tracking) with
separate, digitized embryos, fixed and stained for the expression of specific genes,
following the norms of Whole Mount in situ hybridization (WMISH). In the
following paragraphs, I will elucidate the idea behind the underlying compo-
nents.

A common strategy for performing in vivo imaging of living organisms is by
generating transgenic organisms in which fluorescent proteins label individual cells
and tissues. SPIM is a fluorescence microscopy technique where the transgenic
specimen is illuminated with a focused light plane on the side (Huisken and
Stainier, 2009). It offers a high spatial and temporal resolution which allows one
to employ computer vision strategies such as instance segmentation to detect
and identify the shape of each nucleus/cell from volumetric image snapshots, and
tracking which connects these digitized segmentations (obtained per time-point)
across time in order to build a lineage tree (this strategy is referred to as tracking
by detection where in several detections/instance segmentations obtained per time
point are connected across time or assigned the same id based on whether they
show a high similarity in terms of a feature). The lineage tree enables keeping
track of parent-child relationships and monitoring the positions, velocities and
trajectories of most cells.

Since the resolution that can be achieved in live specimens is generally lower
than in fixed specimens (owing to movement of the cells, light scattering etc.),
often spatial gene expression maps are obtained through alternate imaging modal-
ities. With WMISH, individual specimens are fixed and stained for the expression
of key developmental genes and imaged through confocal microscopy. ISH uti-
lizes fluorescently-labeled nucleotide probes to detect specific mRNAs, localized
at different spatial coordinates in a cell (see Figure 1.3). The number of RNA
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species which can be simultaneously measured by ISH is, however, limited. As a
consequence, one must fix and stain multiple equally-aged specimens.

A B C

Figure 1.3: Schematic of in situ hybridization (ISH). (A) mRNA molecules
produced by a specific gene, are visualized as gray strands. (B & C) Compli-
mentary probes (shown as a black strand) are designed for these target mRNA
molecules and are hybridized to the target molecules. These probes are labeled
with a fluorophore (shown as a red star) which enables visualizing each individual
mRNA molecule as a dot, when inspected under the confocal microscope.

Assuming that the above-mentioned digitization of the SPIM movie of the live
embryo and the confocal images of the ISH specimens is successful, then one could
estimate a bridging transform between the two imaging modalities by using a
computer vision strategy called as registration. This is especially pertinent because
the process of fixation causes non-uniform shrinking of an embryo. Additionally
each individual in situ specimen possesses its own unique orientation and global
position.

But to which time point in the SPIM movie of the live embryo should the
in situ specimen register? For stereotypically-developing organisms where the
variability in the positions, number and division patterns of cells, between equally
aged individuals is low, one could use cell count as a proxy for staging the in situ
specimen along the lineage tree arising from the live embryo.

I show the results of our computational pipeline on the marine annelid worm
Platynereis dumerilii. Platynereis dumerilii is an excellent model system since
embryos are known to develop stereotypically (Fischer et al., 2010). Further,
embryos are large enough to micro-inject for fluorescent labeling of cells and nuclei
(Özpolat et al., 2021). Additionally, nuclei are small and transparent enough for
a long duration, which enables acquiring images with high cellular resolution.
Lastly, it has been shown recently that linking cell lineages and individual cells
between different image modalities is possible for early-stage P. dumerilii embryos
(Vergara et al., 2021).

4



CHAPTER 1. INTRODUCTION

Figure 1.4: Max z projections of ISH specimens at the developmental
stage of 24 hpf. These specimens were aligned and registered to a reference atlas
using ProSPr (Vergara et al., 2017). Image credits: Mette Handberg-Thorsager.
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Figure 1.5: Schematic and building blocks of the computational pipeline.
By leveraging the computer vision strategies of Instance Segmentation, Tracking
and Registration (right), one can transfer information about cellular gene expres-
sion from the ISH specimens onto the lineage tree (left).
Here green indicates cells which are expressing a given gene, while white indicates
cells which are not expressing that gene. By leveraging the available lineage tree,
one can even conjecture about the state of gene expression in between develop-
mental stages (for which no ISH data is available) - here, yellow indicates cells
expressing a given gene. This computational pipeline enables setting up a canoni-
cal space for monitoring dynamic changes in cell morphology and gene expression,
during the early development of Platynereis dumerilii.

To test my computational pipeline, I use two sets of real biological specimen.
Firstly, representing the fixed biological specimen containing information about
gene expression, we (in combination with our collaborators) collected whole-mount
specimens of Platynereis dumerilii stained with ISH probes for several different,
developmentally regulated transcription factors at three specific developmental
stages of 16, 20 and 24 hpf (See Figure 1.4 for ISH specimens at the developmental
stage of 24 hpf). These specimens were scanned in 3D by laser scanning confocal
microscopy resulting in three-dimensional images containing the DAPI (nucleus)
channel used in our registration as a common reference and the gene expression
channel.

Secondly, representing the live imaging modality, we obtained access to a
recording capturing the embryological development of the Platynereis dumerilii
at cellular resolution in toto (Tomer et al., 2012) using a SimView light sheet
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microscope. The embryos were injected with a fluorescent nuclear tracer prior to
imaging and thus the time-lapse movie visualizes all the nuclei in the embryo
throughout development. This movie which extends from 5 to 24 hpf stage of
Platynereis development provides an appropriate inter-modal target to register
the fixed specimen to on the basis of the common nuclear signal.

Since, digitization of the individual static snapshots of the ISH specimens and
the movie of the live embryo, alongside the procedure for estimating a bridging
transform are critical (see Figure 1.5), these will form a major chunk of this dis-
sertation work. I shall firstly elucidate the method behind Instance Segmentation
in Chapter 2. Next in Chapter 3, I shall delve into my approach to address Track-
ing and building lineage trees. Then in Chapter 4, I will attempt to explain the
method behind Registration. Finally in Chapter 5, I will discuss the biological
insights we can draw from using this pipeline in the context of P. dumerilii (also
see Figure 1.1).
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1.1 Contributions
Parts of this thesis have been published:

1. Lalit, M., Tomancak, P., and Jug, F. “EmbedSeg: Embedding-based In-
stance Segmentation for Biomedical Microscopy Data”. Accepted in: Medical
Image Analysis 2022.

2. Lalit, M., Tomancak, P., and Jug, F. “Embedding-based Instance Segmen-
tation in Microscopy”. In: Medical Imaging with Deep Learning (MIDL)
Conference 2021.

3. Lalit, M., Handberg-Thorsager, M., Hsieh, Y-W., Jug, F., Tomancak, P.
“Registration of Multi-modal Volumetric Images by Establishing Cell Cor-
respondence”. In ECCV Bio-Image Computing Workshop, Lecture Notes in
Computer Science 2020.

Separately, I also worked on other projects during the thesis work, a few of
which were published:

1. Prakash, M., Lalit, M., Tomancak, P., Jug, F., and Krull, A. “Fully Unsu-
pervised Probabilistic Noise2Void”. In International Society of Biomedical
Imaging 2020.

2. Prakash, M., Buchholz, T-O., Lalit, M., Tomancak, P., Krull, A., and Jug,
F. “Leveraging Self-supervised Denoising for Image Segmentation”. In In-
ternational Society of Biomedical Imaging 2020.

3. Krull, A., Vičar, T., Prakash, M., Lalit, M. and Jug, F. “Probabilistic
Noise2Void: Unsupervised Content-Aware Denoising”. In Frontiers in Com-
puter Science 2020.
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CHAPTER 2. INSTANCE SEGMENTATION

2.1 Introduction

The task of instance segmentation addresses the combined problem of identifying
the semantic label (class label) for each pixel in an image, and at the same time
determining a unique id for each object instance in the image.

Instance segmentation of cellular and sub-cellular structures in biomedical
microscopy images is needed for a plethora of downstream analyses, such as
piq outlining tissues, cells, nuclei, or other organelles, for example to identify phe-
notypic changes that result from environmental or genetic modifications (Yang
et al., 2017), piiq feature-based image registration between time-points or imag-
ing modalities (Kist et al., 2021; Lalit et al., 2020), or piiiq tracking-by-detection
where segmented instances get associated over time to form object tracks, for ex-
ample to study the interaction dynamics of biological objects (Stern et al., 2021;
Gomez et al., 2021).

Owing to its importance, many methods have been proposed which all tackle
the task of identifying unique object instances in biomedical image data (Meijer-
ing, 2012). More recently, Deep Learning (DL) has enabled new approaches to
automated instance segmentation and has lead to substantial improvements in
segmentation quality (He et al., 2018; Schmidt et al., 2018; Hirsch et al., 2020;
Stringer et al., 2021). A shortcoming of many existing methods is that they do
not directly optimize for the Intersection over Union (IoU) metric during training.
Instead, simpler to use cross-entropy loss (for classification) or L1 or L2 losses
(for regression) are typically used (Stringer et al., 2021; Schmidt et al., 2018).
Optimizing for such ‘auxiliary metrics’ promotes sub-par results with respect to
IoU, which is in many cases, the metric one would truly like to maximize for most
useful automated results.

Another weakness of many existing segmentation approaches is that they only
operate on 2D image data. While some methods are intrinsically not fit for full
3D data, e.g. Upschulte et al. (2022), other methods would generalize to full 3D
operations, but lack respective implementations (Neven et al., 2019).

Still, 2D methods can of course be applied to axis-parallel 2D slices of a given
3D dataset. If such redundant 2D results are then averaged (or otherwise suitably
merged) during inference, reasonable 3D instance segmentation results can often
be achieved (Stringer et al., 2021). In general, we observe that methods to segment
volumetric (3D image) data are less common, despite being desperately needed
in countless biomedical applications.
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CHAPTER 2. INSTANCE SEGMENTATION

Here I present a bottom-up instance segmentation method called EmbedSeg1,
a capable and very compact model for end-to-end instance segmentation which
we initially presented at the MIDL conference (Lalit et al., 2021). In EmbedSeg,
each pixel predicts its own spatial embedding, i.e. another unique pixel location
(embedding pixel) that is meant to represent the entire object this particular pixel
is part of. At the same time, EmbedSeg learns an instance-specific clustering
band-width used to cluster nearby embedding pixels into object instances. The
segmentation mask of an object is defined by all original image pixels that point to
the same cluster of embedding pixels. An additional seediness score for each pixel
is simultaneously predicted as well, indicating how likely it is for the respective
pixel, and its associated clustering band-width, to indeed represent a true object
instance.

Pixel-wise spatial embeddings, clustering bandwidth, and seediness score are
learnt jointly and end-to-end, allowing the individual predictions to fit well to-
gether right away. As I describe later, EmbedSeg does this by directly optimiz-
ing to maximize the Intersection over Union (IoU) metric during training, which
thereby leads to results that are close to ground truth in a practically sensible
distance score.

EmbedSeg proposes several novelties over existing embedding based instance
segmentation methods that help to improve the quality of segmentation results
on biomedical image data. Maybe practically most relevant, EmbedSeg is not
limited to 2D images but can directly be trained and applied on volumetric data
in full 3D. I provide four possible modes (2D, 3D, 3D-sliced and 3D-ilp), one could
choose from, for training and inferring on one’s data and respective annotations,
which are elucidated in the following sections.

2.2 Related Work
The field of instance segmentation encompasses a vast body of literature. Here
we focus on rather recent state-of-the-art methods that have found successful
application on biomedical image data.

We distinguish three types of instance segmentation methods: piq Shape-
agnostic approaches, that map each pixel to a set of semantic classes and do
not explicitly model or learn the shapes of objects to be segmented. piiq Shape-
augmented approaches, which map each pixel to an explicit shape representation
of the underlying object. piiiq Embedding-based approaches, that learn latent
embedding locations for each pixel and post-process these to obtain final object

1 A memory-efficient open-source implementation of EmbedSeg is available at https://
github.com/juglab/EmbedSeg.
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instance masks.

2.2.1 Shape-agnostic Approaches

The vanilla U-Net (Ronneberger et al., 2015) followed by, for example, connected
component analysis, is a member of this category of approaches. But several other
methods for biomedical instance segmentation that belong to the category as well
have themselves employed a U-Net backbone.

Dietler et al. (2020), for example, segmented non-convex shaped budding cells
of Saccharomyces cerevisiae (yeast) by training a U-Net to learn the mapping
between an image pixel and its class. During inference, they thresholded the
foreground class probability map and performed a distance transform on this
thresholded map in order to obtain interior seed locations and followed this up with
a watershed-based transformation strategy for obtaining the final masks (Dietler
et al., 2020).

Scherr et al. (2020) propose a different approach where a U-Net is trained
to map each pixel in a given image to a normalized distance to the surround-
ing cell boundary, also introducing a novel neighbor distance. These learnt dis-
tance fields are then further evaluated during inference time to obtain instance
masks.

In DenoiSeg (Buchholz et al., 2020), the authors train a U-Net jointly for
the task of denoising and 3-Class pixel classification (foreground, background,
membrane). Results show that segmentation can gain significantly in performance
by co-learning the unsupervised denoising task, for which typically much more
training data is readily available. During inference, these class probability maps
are post-processed (connected components analysis) in order to obtain the final
instance masks.

Also in this category of methods is Cellpose (Stringer et al., 2021). In Cellpose
a U-Net is trained to predict a flow at each pixel. The ground truth vector flow
field is pre-computed from the instance masks as solution to the steady-state
heat diffusion equation, assuming a heat source placed at the center of the object
instance and a Dirichlet boundary condition at the object boundary. During
inference, the predicted flows are followed to group pixels which converge to the
same location into object instances. Cellpose can also be applied to 3D image
data, but owing to the fact that acquiring ground truth instance masks as training
data is hard, the authors propose to train a 2D model and apply it in a suitable
way to all axis parallel slices of the 3D data.

Another recent and rather interesting member of this family of approaches
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is called PlantSeg (Wolny et al., 2020). In a rather classical fashion, the authors
propose to train a U-Net to learn the mapping between image voxels and the
boundary probability. Most of the novelty is introduced during inference, where
specialized graph partitioning methods are employed to obtain high quality in-
stance segmentations on large 3D plant tissues datasets.

2.2.2 Shape-augmented Approaches
StarDist (Schmidt et al., 2018) and StarDist-3D (Weigert et al., 2020) are arguably
the most widely applied methods in this category. StarDist jointly predicts, at
each pixel (voxel), the distance to the boundary of the surrounding object and the
pixel’s foreground probability. The boundary prediction happens by predicting
distances along a predefined number of directions (rays) projecting out of every
given pixel. During inference, all candidate pixel predictions are post-processed by
first sorting them in the decreasing order of their predicted foreground probability
score and then suppressing overlapping proposals using a greedy non-maximum
suppression scheme. By design, all predicted instance masks are star-convex, i.e.
the entire interior of each instance can be seen from the pixel (voxel) that made
the initial prediction.

In order to address also more complex, non star-convex shapes, PatchPer-
Pix (Hirsch et al., 2020) proposes to predicts a dense binary mask per pixel.
These learnt local per-pixel (per-voxel) shape descriptor masks are, during infer-
ence, assembled into complete object instance masks.

With Contour Proposal Networks, (Upschulte et al., 2022) introduce a different
shape representation where a model learns the mapping between an image pixel
and the corresponding Elliptical Fourier Descriptor representation of the underly-
ing object. This is achieved by a loss formulation which encourages the predictions
of the model to be accurate in the pixel and the frequency domains. While this
is a very elegant approach, it is currently only applicable to 2D data.

2.2.3 Embedding-based Approaches
These methods map each pixel to an unique (latent) embedding location, such
that pixels belonging to the same object map to nearby locations. During infer-
ence, embedding locations need to be clustered, e.g. by using a fast variant of
the mean-shift algorithm (Fukunaga and Hostetler, 2006), and the final object
instance masks are defined by all pixels that embedded themselves into one of
those identified clusters.

Embedding-based segmentation methods initially emerged in the context of
multi-person pose estimation in classical computer-vision. Newell et al. (2017)
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initially suggested a framework where each pixel predicted a so called tag. The
proposed objective encouraged pairs of tags to have similar values if and only if
they belonged to the same object.

In the same year, Brabandere et al. (2017) suggested a specific hinge-loss
which additionally forced embeddings arising from pixels belonging to different
objects to have different values, which lead to improved clustering of embedding
locations during inference time.

Payer et al. (2018) employed cosine similarity (instead of euclidean distance)
between pixel embeddings in the loss formulation, and showed applicability to
biomedical image segmentation and tracking. Their learnt pixel embeddings are
clustered during inference into instance segmentations using the HDBSCAN al-
gorithm (Campello et al., 2015).

Novotny et al. (2018) later showed that constructing dense pixel embeddings
to separate objects is not possible with a fully convolutional setup and suggested
using semi-convolutions to alleviate this problem.

Lee et al. (2021) instead showed that first calculating an affinity graph from
learnt pixel or voxel embeddings (in their case arising from overlapping image
patches) and then partitioning the (aggregated, complete) affinity graph using the
Mutex Watershed algorithm (Wolf et al., 2020) even enables instance segmenta-
tions of intertwined branching neurons in electron microscopy images.

Another idea by Kulikov and Lempitsky (2020) proposes to calculate harmonic
embeddings from ground truth instance masks and then learning the mapping be-
tween the input image and these auxiliary, ground truth pixel embeddings. During
test-time, quite similar to the method by Brabandere et al. (2017), the mean-shift
clustering algorithm was used to obtain the final instance masks.

In the wonderful work by Neven et al. (2019), the authors acknowledge that
in most embedding-based methods either a fixed-size clustering bandwidth or
no bandwidth is specified in the loss formulation, and that this leads to sub-
optimal results during inference. Hence, they proposed to instead jointly learn
an instance-specific clustering bandwidth and pixel-level embeddings. Further-
more, they proposed a modified loss formulation which allowed optimizing for the
IoU metric over each ground truth instance mask during training, which leads to
better quality instance segmentation masks.
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2.3 Proposed Method

The goal of instance segmentation is to cluster a set of pixels X⃗ “ tx⃗1 . . . x⃗i . . . x⃗Nu,
where x⃗ P RD, with D being the dimensionality of the given input images, into
a set of segmented object instances S “ tS1 . . . Sk . . . SKu.

This is achieved by learning an offset vector o⃗i for each pixel x⃗i, so that the
resulting (spatial) embedding e⃗i “ x⃗i` o⃗i points to its corresponding object center
(instance center) C⃗k. Here, o⃗i, e⃗i and C⃗k are in RD, with D P t2, 3u, depending if
the input is a 2D image or a 3D volume.

In order to do so, a Gaussian function ϕk for each object Sk is used, which
converts the distance between a (spatial) pixel embedding e⃗i and the instance
center C⃗k into the probability of belonging to that object.

ϕk pe⃗iq “ exp

¨

˚

˝

´

∥∥∥∥∥∥∥∥
´

e⃗i ´ C⃗k

¯T

Σ⃗´1
k

´

e⃗i ´ C⃗k

¯

2

∥∥∥∥∥∥∥∥
˛

‹

‚

. (2.1)

A high probability is interpreted as the pixel embedding e⃗i being close to the
instance center C⃗k, meaning that the corresponding pixel is likely to belong to the
object Sk. A low probability, in contrast, means that the pixel is more likely to
belong to either the background or to another object. More specifically, if ϕkpe⃗iq ą

0.5, the pixel at location x⃗i will be assigned to object Sk. Here, Σ⃗k P RDˆD is
the diagonal covariance matrix, representing the explicitly learned and predicted
cluster bandwidth for object Sk. The corresponding standard deviation vector
for object Sk is indicated as σ⃗k P RD whose entries along the dth dimension are
denoted as σk,d. For example, for volumetric image data, where D “ 3,

Σ⃗k “

»

—

–

σ2
k,1 0 0
0 σ2

k,2 0
0 0 σ2

k,3

fi

ffi

fl

.

In order to allow larger objects to predict a larger and similarly, smaller objects
to predict a smaller Σ⃗k, we let each pixel x⃗i of object k individually predict a σ⃗i

and compute the corresponding σ⃗k for the constituting object as the mean of all
predicted σ⃗i for that object, i.e.

17



CHAPTER 2. INSTANCE SEGMENTATION

σ⃗k “
1

|Sk|

ÿ

σ⃗iPSk

σ⃗i.

By comparing the predicted ϕk of a given object to the corresponding ground
truth foreground mask Sk, we compute the differentiable Lovász-Softmax loss
LIoU (Berman et al., 2018; Yu and Blaschko, 2015).

At inference time, the remaining computational task to be addressed is how
to identify the best clusters that represent all object instances. More concretely,
this problem is to look for a suitable cluster center and cluster margin around it,
such that all pixel embeddings of a given object fall within this area, which no
other pixels have embedded themselves in it.

For this purpose, we also let each pixel predict a seediness score that indicates
how likely it is for this given pixel to be the designated embedding location for
the object instance it is part of. This means, the seediness score should actually
be close to the output of the gaussian function in Equation (2.1).

With this all in mind, we can now formulate a training loss function for the
seediness score as

Lseed “
1
N

N
ÿ

i“1
wfg1tsiPSku∥si ´ ϕkpe⃗iq∥2

` wbg1tsiRSfgu∥si ´ 0∥2,

which allows minimizing the distance between the output of the gaussian
function corresponding to any pixel and the predicted seediness score, arising
from that pixel. The seediness score for the background pixels are regressed to
0.

Furthermore, to ensure that at inference, while sampling highly seeded pixels,
σ⃗k « ˆ⃗σk, we include a smoothness loss

Lvar “
1

|Sk|

ÿ

σ⃗iPSk

∥σ⃗i ´ σ⃗k∥2.

Hence, the joint loss function for training EmbedSeg is then given by the
weighted sum

L “ wseedLseed ` wIoULIoU ` wvarLvar. (2.2)
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2.3.1 Network Architecture and Inference Scheme

Figure 2.1: Visualization of the inference procedure of EmbedSeg. (top-
left) An exemplary raw input image. During inference, we iteratively pick seed
pixels greedily from the predicted seediness map (top-right) and cluster other
foreground pixels w.r.t. their predicted embeddings as explained in Section 2.3.
The image on the (bottom-left) shows the thresholded seediness map as the
white region, 5 randomly sampled foreground pixels (marked with colored pluses),
embedding location of these pixels (dots, mostly tightly clustered within ellipses),
and the predicted clustering bandwidth thresholded at a likelihood of 0.5 (semi-
transparent ellipses). The (bottom-right) image shows the final predicted instance
segmentation result.

EmbedSeg uses a branched ERF-Net (Romera et al., 2018; Neven et al.,
2019) for 2D images and branched ERF-Net 3D for volumetric image data. Once
trained, and as also visualized in the bottom left panel of Figure 2.1, the following
inference scheme is used to find object instances: piq all pixels with a seediness
score si ą sfg are collected in a set of foreground pixels Sfg, piiq from all pixels
in Sfg, we pick x⃗seed, the pixel with the highest seediness score si ą smin for a
suitably chosen smin, piiiq if such an x⃗seed exists, we collect all foreground pixels in
Sfg that embed themselves at a location where the embedding likelihood defined
by e⃗seed and σ⃗seed is ą 0.5. Together, these pixels define a segmented instance Sk.
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Finally, pivq we remove all pixels Sk from Sfg and jump to step two until no more
valid seed pixels x⃗seed exist in Sfg. In all presented experiments we use sfg “ 0.5
and smin “ 0.9.

To additionally boost performance during prediction, we use 8-fold and 16-
fold test-time augmentation for 2D and 3D applications, respectively (Zeng et al.,
2017; Wang and Solomon, 2019). This means that we take each image to be
segmented and transform it by axis-aligned rotations and flips, predict each aug-
mented copy independently, and then back-transform these predictions, average
them, and compute object instance just as we do without augmentation.

2.3.2 Using the Medoid as Embedding Location

While Neven et al. either learn the desired embedding location during training or
simply use the centroid of known objects, we argue that this is not the optimal
choice when object shapes are more complex (i.e. not star-convex).

Instead, we reason that it is desirable to choose a point that minimizes the
average distance to all pixels x⃗i P Sk, i.e. the geometric median (GM). Like the
centroid, also the GM has the unfortunate property that it can lie outside of its
defining object. Such object-external points are bad embedding points for two
reasons: piq the seediness score of such points will likely not be consistently high,
and piiq multiple such points might fall very close to each other in crowded image
regions, potentially making a clean segregation (clustering) impossible.

Hence, we propose to use the medoid as the embedding location of choice in-
stead. The medoid pixel of the object instance Sk is defined as the pixel of that ob-
ject that has the smallest average distance to all other object pixels i.e.

x⃗medoidpSkq “ arg min
y⃗PSk

1
|Sk|

ÿ

x⃗PSk

∥x⃗, y⃗∥2.

2.3.3 Tiled Predictions via Label Propagation

During inference, we process evaluation images one-by-one. For larger data, mainly
in 3D, this might still lead to out-of-memory exceptions caused by too little GPU
memory being available. In order to provide a solution for this problem, we devised
and implemented a label propagation strategy that enables us to stitch results
obtained on overlapping tiles that by themselves do fit in GPU memory. The
required size of the overlap margins is a direct consequence of the used network
architecture and set to minimize computational and memory overhead.
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During label propagation, for each pair of overlapping tiles, we re-assign ids
to all instances which EmbedSeg has segmented in the overlapping region. This
is performed by computing a maximum bipartite matching of predicted instances,
using IoU as matching energy. Ids between neighboring tiles in the overlap region,
are only considered as potential matches if their IoU score is greater than 0.5.
Matched pairs below this threshold are interpreted as different objects.

Overall, this strategy enables the processing of arbitrary sized 2D images and
3D volumes without introducing additional parameters.

2.4 EmbedSeg (Sliced)

We also investigate a Sliced training regime for 3D images, where a 2D model is
trained and applied to all axis parallel 2D slices of a volumetric 3D image, and the
three individual prediction per voxel suitably merged to enable 3D instance seg-
mentations. We found this interesting in direct comparison to Cellpose (Stringer
et al., 2021) where a similar principle is used to segment 3D data. In practical
applications this special training regime can be advantageous due to much re-
duced memory requirements during training and for only requiring 2D ground
truth labels which are much easier to manually generate.

In more detail, for sliced training we use a 2D Branched ERF-Net on XY,
YZ and ZX slices of the given 3D training data. For anisotropic data (typically
lower pixel-resolution along the z axis), we first upsample the images using near-
est neighbor interpolation and then train the network on all slices for which
ground truth labels exist. During inference, we will naturally obtain three full
prediction stacks which have to be merged to obtain consensus offsets, margin
bandwidths, and seediness scores. Once merged, we follow the same inference
scheme previously described in Section 2.3 and Figure 2.1 for full 3D instance
segmentation.

2.5 EmbedSeg (ILP)

In this section, we introduce an alternate strategy to generate 3D instance seg-
mentations on evaluation images using a trained 2D model. An advantage of this
strategy, similar to Sliced (see Section 2.4) is a lower GPU memory footprint
during the training of the 2D model. This strategy essentially re-assigns labels to
objects predicted by a trained model, independently in each slice of a 3D volume
by solving a global, integer linear-optimization task.

Firstly, we apply the trained 2D model independently on each slice of a 3D
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Figure 2.2: Qualitative results in 2D. EmbedSeg and two baselines com-
pared on representative images of the BBBC010 , Usiigaci, DSB and
MoNuSeg datasets. Columns show: full input image, zoomed insets, ground
truth labels (GT), and instance segmentation results by the 3-class U-Net base-
line, the best performing competing baseline, and EmbedSeg. Each segmented in-
stance is shown in a unique random color. The strong baseline methods shown are
Neven et al. (2019), Cellpose, Neven et al. (2019) and StarDist for the BBBC010 ,
Usiigaci, DSB and MoNuSeg datasets respectively
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Figure 2.3: Qualitative results in 3D. Qualitative results of
EmbedSeg on the Mouse-Organoid-Cells-CBG, C. elegans-Cells-HK ,
Arabidopsis-Cells-CAM and Platynereis-Nuclei-CBG datasets.
Columns show orthogonal XY , Y Z and XZ slices of one representative input
image, ground truth labels (GT), and our instance segmentation results using
EmbedSeg, respectively. Note that each segmented instance is shown in a
random but unique color.
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volume. This generates labels for object cross-sections which are not consistent
across the slices. Hence, the next task is to re-associate them so that the labels
for the same 3D object are equal.

We associate the generated instance segmentations between the slices by
solving a global, integer linear program. A sparse, undirected graph is created
by considering each instance segmentation as a node and linking it to instance
segmentations in the next Z slices. Connections are allowed in the next Z slices
instead of just the next slice in order to account for missing segmentations. Edges
are built between consecutive slices by identifying nodes which have an IoU
score greater than 0 (i.e. there is some overlap between the considered pair of
nodes).

A binary appearance variable Az
i is associated with the ith instance segmen-

tation at depth z, and A denotes the set of all appearance indicator variables. A
binary disappearance variable Dz

i is associated with the ith instance segmentation
at depth z, and D denotes the set of all disappearance indicator variables. Binary
assignment variables Ezezs

ij are associated with the ith instance segmentation at
depth ze and the jth instance segmentation at depth zs (ze P rzs ´Z, . . . , zs ´ 1s),
and E denotes the set of all assignment indicator variables.

The global optimization problem concerns solving for

Ê , Â, D̂ “ argmin CappA ` CdisappD ` CedgeE , (2.3)

where the corresponding edge cost is set equal to 1´ IoU between the considered
instance segmentations. The node costs for appearance and disappearance are
both set equivalent to the normalized size (in number of pixels) of the instance
segmentation.

2.6 Alternate Inference Strategies

Currently, the seediness map predicted by the trained model is processed in a
greedy fashion to carve out individual instances (see Section 2.3.1). However, one
could adopt alternate ways of processing this seediness map. For example, in the
case that single point locations per cell are additionally available by a process
of manual curation, then these available seed points could be used instead, in
order to cluster neighboring pixels at the embeddings predicted for these seed
locations.

Another strategy is to use the Multi-Cut approach, employed in PlantSeg
(Wolny et al., 2020). In order to include the Multi-Cut strategy, one must first
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find the local maxima of the predicted seediness map, next run the seeded water-
shed algorithm from the locations of these local maxima, and doing so generates
a number of super-voxels. These super-voxels are perceived as nodes of a graph,
where the edges are placed between super-voxels which are adjacent. The corre-
sponding edge weight is set as the negative of the average seediness score along
the line segment joining any two nodes (super voxels) (if a ground truth cell is
over-segmented into two or more super voxels, then the edge weight between these
over-segmentations would be low. On the other hand, in between actual ground
truth cells, the edge weight would be higher in magnitude). Finally, running the
Multi-Cut algorithm would merge super-voxels and provide an improved instance
segmentation.

A third strategy would be to let each foreground pixel (i.e. seediness score
above a certain threshold sfg - see Section 2.3.1) predict the corresponding in-
stance it belongs to. In the next step, these predicted, overlapping instances can be
resolved either by a similar inference scheme as in StarDist (Schmidt et al., 2018)
where overlapping instances are processed greedily or as in PatchPerPix (Hirsch
et al., 2020) where overlapping instances are processed by building a patch affin-
ity graph and the final instance segmentation is obtained through signed graph
partitioning.

2.7 Baselines, Experiments, Results

Table 2.1: Used 3D datasets. We introduce four new volumetric microscopy
datasets, covering various practically relevant imaging conditions and microscopy
modalities. All datasets come with high quality ground truth labels for training.
Name Description Pixel Size (Z,Y,X) rµm3s Bit Depth Used Microscope

Mouse-Organoid-Cells-CBG
Mouse Embryonic Stem Cells,

(1.0, 0.1733, 0.1733) uint16
Selective Plane

R1 cell line, labeled membrane Illumination Microscopy
(Lalit et al., 2021)

C. elegans-Cells-HK
Cells of multiple, developing Caenorhabditis

(0.22, 0.22, 0.22) uint8
Laser Scanning

elegans embryos (4-350 cell stage), Confocal Microscopy
(Cao et al., 2020) labeled membrane

Arabidopsis-Cells-CAM
Cells in the shoot apical meristem

Variable resolution uint8
Laser Scanning

of 6 NPA-treated Arabidopsis plants, Confocal Microscopy
(Willis et al., 2016; Refahi et al., 2021) labeled membrane

Platynereis-Nuclei-CBG
Nuclei of a developing Platynereis dumerilii embryo

(2.031, 0.406, 0.406) uint16
Simultaneous Multi-view

at stages between 0 to 16 hours post fertilization, Light-Sheet Microscopy
(Lalit et al., 2021) injected with a fluorescent nuclear tracer

Paryhale-Nuclei-IGFL
Nuclei from the regenerating legs of a developing

(2.1605, 0.2768, 0.2768) uint8
cLSM Zeiss 780

Paryhale hawaiensis embryo expressing Histone-EGFP inverted confocal microscope
(Alwes et al., 2016; Weigert et al., 2020) from the PhHSąH2B-EGFP transgene,

Mouse-Skull-Nuclei-CBG
Nuclei of the skull region of developing mouse

(0.200, 0.073, 0.073) uint16
Inverted Zeiss

embryos, labeled with DAPI LSM 880 Microscope
(Lalit et al., 2021)

Platynereis-ISH-Nuclei-CBG
Nuclei of whole-mount Platynereis dumerilli

(0.4501, 0.4499, 0.4499) uint8
Laser Scanning

specimens at stage of 16 hours post fertilization, Confocal Microscopy
(Lalit et al., 2021) labeled with DAPI

We measure the performance of EmbedSeg on a total of four 2D and seven
3D datasets against several state-of-the-art baseline methods that have most been
developed in the context of biomedical image segmentation.
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2.7.1 Used 2D Data
For 2D images, we tested all baseline methods introduced below on four publicly
available datasets, namely the BBBC010 C. elegans brightfield dataset (Ljosa
et al., 2012)2, the Usiigaci NIH/3T3 phase-contrast dataset (Tsai et al., 2019),
the DSB data from the Kaggle Data Science Bowl challenge of 2018 (Caicedo
et al., 2019)3 and the MoNuSeg dataset (Kumar et al., 2020).

2.7.2 Used and Contributed 3D Data
We tested the baseline methods mentioned below on seven 3D datasets, i.e. the
Mouse-Organoid-Cells-CBG, Platynereis-Nuclei-CBG, Mouse-Skull-Nuclei-CBG,
and Platynereis-ISH-Nuclei-CBG datasets which we have prepared using Labkit
(Arzt et al., 2021) and made available online (Lalit et al., 2021), and the publicly
available C. elegans-Cells-HK dataset (Cao et al., 2020), Arabidopsis-Cells-CAM
dataset (Willis et al., 2016; Refahi et al., 2021) and the Paryhale-Nuclei-IGFL
dataset (Alwes et al., 2016) which is available upon request to the authors of the
corresponding publication.

Additional details about the used 3D datasets can be found in Table
2.1.

2.7.3 Baseline Methods
For 2D images, we compare the performance of EmbedSeg against several base-
line methods, i.e. the methods described in Ronneberger et al. (2015); Stringer
et al. (2021); Hirsch et al. (2020); Schmidt et al. (2018); Kulikov and Lempitsky
(2020) and He et al. (2017).

Cellpose, in addition to providing a 2D public model, can also be trained from
scratch. Hence whenever possible, we report numbers from evaluating on both
the Cellpose (public) and the Cellpose model specifically trained by ourselves on
that respective dataset.

For the BBBC010 C. elegans brightfield dataset (Ljosa et al., 2012), we flatten
the one-hot encoded instance masks in order to be compatible with the available
Cellpose and StarDist training code. This means that areas where object instances
overlap now need to commit to one of the overlapping labels. While training

2 We used the C. elegans infection live/dead image set version 1 provided by Fred Ausubel
and available from the Broad Bioimage Benchmark Collection

3 We used a subset of the image set BBBC038v1 which is available from the Broad
Bioimage Benchmark Collection. The frequently used subset is provided for download from
the StarDist (Schmidt et al., 2018) github repository at https://github.com/stardist/
stardist/releases/download/0.1.0/dsb2018.zip
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Cellpose, we used the default settings (diameter equal to 30, n_epochs equal to
500, batch_size equal to 8). With StarDist (Schmidt et al., 2018), we used the
default settings of n_rays equal to 32, grid equal to p2, 2q, train_batch_size

equal to 4, train_patch_size equal to p256, 256q and train_epochs equal to 400.
With StarDist-3D (Weigert et al., 2020), we used n_rays equal to 96, grid equal
to p2, 2, 2q, train_batch_size equal to 2, train_patch_size equal to p48, 96, 96q
and train_epochs equal to 400.

For 3D images, we compare the performance of EmbedSeg when directly ap-
plied to the volumetric data and EmbedSeg (sliced), where axis-parallel 2D pre-
dictions are merged (see Section 2.7.6 below for details), against CellPose (Stringer
et al., 2021) and StarDist-3D (Weigert et al., 2020). We do this because Cellpose
is itself using a sliced inference mode for segmenting 3D data, while StarDist-3D
is directly applied to the 3D image data.

2.7.4 Data Handling in 2D

The BBBC010 dataset consist of only 100 images of size 696 ˆ 520 pixels each.
Like others before us, we randomly split these images in two equally sized sets,
one used for training, the other to evaluate the achieved instance segmentation
performance (testing). We cropped 256 ˆ 256 patches that are centered around
each ground truth object (worm) and have used 15% of all crops as validation
set. Reported results are averages over 9 independent data-splits and training
runs.

For the Usiigaci dataset, we split the available 50 images of size 1024 ˆ 1022
pixels as suggested by Tsai et al. (2019) in 45 training and 5 test images. We
cropped 512ˆ512 patches that are centered on all ground truth objects.

The DSB dataset is the largest collection of images, of which we use the same
subset as originally suggested in Schmidt et al. (2018). It contains a total of 497
images of variable size and is pre-split in 447 training and 50 test images. Training
was performed on object-centered 256 ˆ 256 image crops.

The MoNuSeg dataset consists of a total of 44 images of size 1000 ˆ 1000
pixels, and is pre-split in 30 training images (containing 22000 nuclei) and 14 test
images (containing 7000 nuclei). This dataset was originally obtained by annotat-
ing tissue images of several patients with tumors of different organs, diagnosed
and imaged at multiple hospitals, making the dataset quite heterogeneous and
therefore challenging. Also here, we train on object-centered 256 ˆ 256 image
crops.

For the DSB, Usiigaci and MoNuSeg datasets, we hold out 15% of all train-
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ing images (prior to cropping training patches), chosen at random for validation
purposes. Reported numbers are averages over 9 independent training runs. Re-
sults from these independent runs are available at https://github.com/juglab/
EmbedSeg/wiki. Separately, we calculate the crop size from the available label im-
ages during training in the provided example notebooks and this leads to similar
results as presented in Table 2.2.

2.7.5 Data Handling in 3D

The Mouse-Organoid-Cells-CBG dataset consists of 108 volumes of 70 ˆ 378 ˆ

401 (Z, Y, X) voxels each. We randomly select 15 and 11 images for validation
and testing, respectively. Training is performed on object-centered crops of size
32 ˆ 200 ˆ 200.

The C. elegans-Cells-HK dataset (Cao et al., 2020) contains 54 training im-
ages and 21 test images of 131 ˆ 285 ˆ 205 voxels each. We randomly select 8
images for validation from the training set, downsample both training and valida-
tion images by a factor of 2 along X, Y and Z axes and train on object-centered
crops of size 64ˆ 80ˆ 80. During inference, we predict on similarly downsampled
evaluation images and then upsample the predicted instance segmentations using
nearest neighbor interpolation.

The Arabidopsis-Cells-CAM dataset is the largest collection of 3D images,
comprising of 125 training images provided by Willis et al. (2016) and 10 test
images provided by Refahi et al. (2021). These images correspond to multiple
meristems, and have variable sizes and voxel resolutions. We randomly select 19
images for validation from the training set. Training is performed using object-
centered crops of size 80 ˆ 80 ˆ 80.

The Platynereis-Nuclei-CBG dataset contains 9 images (113ˆ660ˆ700 voxels
each), of which we randomly select 2 and 2 images for validation and testing,
respectively. Training is performed on object-centered crops of size 32 ˆ 136 ˆ

136.

The Paryhale-Nuclei-IGFL data (Alwes et al., 2016) was originally used to
demonstrate the performance of Stardist-3D (Weigert et al., 2020). It contains
a total of 6 images of 34 ˆ 512 ˆ 512 (Z, Y, X) voxels each. We train on object-
centered 24 ˆ 120 ˆ 120 crops. We randomly put aside 1 image for evaluation,
and then hold out 2 training images chosen at random for testing.

The Mouse-Skull-Nuclei-CBG dataset contains only 2 images of 209 ˆ 512 ˆ
512 and 125 ˆ 512 ˆ 512 voxels respectively. Due to this very limited amount
of available data, we test on the sub-volume p:, :, 256:512q of the second image.
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Training is performed on the remaining data using object-centered crops of size
96 ˆ 128 ˆ 128.

The Platynereis-ISH-Nuclei-CBG dataset also contains only 2 images of size
515ˆ648ˆ648 voxels. We test the performance on the the sub-volume p300:405, :
, :q of the second image and train on object-centered crops of size 80ˆ 80ˆ 80 on
the remaining data.

For all 3D datasets, we report the average results on the test data over 3
independent runs. Results from these independent runs are available at https:
//github.com/juglab/EmbedSeg/wiki. Separately, we calculate the crop size
from the available label images during training in the provided example notebooks
and this leads to similar results as presented in Table 2.3.

2.7.6 Training Details for EmbedSeg & Neven et al
All results obtained with EmbedSeg and the method by Neven et al. on 2D
datasets use the Branched ERF-Net (Romera et al., 2018; Neven et al., 2019)
architecture, the Adam optimizer (Kingma and Ba, 2014) with a decaying learning
rate αi “ 5e´4 “

1 ´ i
200

‰0.9, where i denotes the current epoch.

For all training runs, we set wIoU, wvar and wseed (Eq. 2.2) equal to 1, 10, and
1 respectively.

For training and inference on 3D datasets, we employed the Branched ERF-
Net operating with 3D convolutions, as previously introduced in Lalit et al.
(2021).

During training, axis-aligned rotations and flips were used for augmenting the
available data.

Every training was run for 200 epochs, and the model with the best perfor-
mance w.r.t. IoU on the validation data was later used for reporting results on
the evaluation data (find all results in Tables 2.2 and 2.3).

2.7.7 Performance Evaluations
All results on 2D images are compared using the Mean Average Precision (APdsb

score (Schmidt et al., 2018), at IoU thresholds ranging from 0.5 to 0.9 (see Ta-
ble 2.2), while the results on volumetric images are evaluated on at IoU thresholds
ranging from 0.1 to 0.9 (see Table 2.3).

For all EmbedSeg and Neven et al. results, we compute the minimum object
size in terms of the number of interior pixels using the available training and
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Table 2.2: Quantitative evaluation on four 2D datasets. For each dataset,
we compare results of multiple baselines (rows) to results obtained with our pro-
posed pipeline highlighted in gray. The columns show the Mean Average Precision
(APdsb) for selected IoU thresholds. Best and second best performing methods
per column are indicated in bold and underlined, respectively.

AP0.50 AP0.55 AP0.60 AP0.65 AP0.70 AP0.75 AP0.80 AP0.85 AP0.90

BBBC010
3-Class U-Net 0.521 0.466 0.451 0.440 0.427 0.407 0.377 0.332 0.243
Cellpose (public) 0.225 0.204 0.184 0.155 0.097 0.043 0.013 0.002 0.000
Cellpose (BBBC010 ) 0.874 0.859 0.842 0.822 0.787 0.744 0.674 0.552 0.310
Harmonic Emb. 0.900 0.723
PatchPerPix 0.930 0.905 0.879 0.792 0.386
StarDist 0.518 0.408 0.258 0.145 0.044 0.004 0.001 0.000 0.000
Neven et al. 0.953 0.941 0.927 0.904 0.878 0.830 0.731 0.563 0.297
EmbedSeg 0.965 0.954 0.934 0.917 0.896 0.854 0.762 0.596 0.326

Usiigaci
3-Class U-Net 0.245 0.188 0.133 0.090 0.049 0.016 0.008 0.000 0.000
Cellpose (public) 0.291 0.237 0.169 0.128 0.066 0.031 0.010 0.000 0.000
Cellpose (Usiigaci) 0.704 0.600 0.499 0.370 0.258 0.138 0.040 0.005 0.000
Mask R-CNN 0.583 0.520 0.439 0.365 0.235 0.130 0.045 0.008 0.000
StarDist 0.510 0.427 0.337 0.235 0.143 0.076 0.019 0.002 0.000
Neven et al. 0.648 0.570 0.463 0.343 0.233 0.115 0.035 0.004 0.000
EmbedSeg 0.704 0.643 0.535 0.414 0.273 0.140 0.044 0.005 0.000

DSB
3-Class U-Net 0.806 0.775 0.743 0.701 0.654 0.578 0.491 0.374 0.226
Cellpose (public) 0.868 0.852 0.829 0.802 0.755 0.676 0.563 0.418 0.234
Cellpose (DSB) 0.853 0.826 0.812 0.792 0.768 0.716 0.645 0.536 0.402
Mask R-CNN 0.832 0.805 0.773 0.730 0.684 0.597 0.489 0.353 0.189
PatchPerPix 0.868 0.827 0.755 0.635 0.379
StarDist 0.864 0.836 0.804 0.755 0.685 0.586 0.450 0.287 0.119
Neven et al. 0.873 0.852 0.830 0.799 0.762 0.704 0.623 0.511 0.373
EmbedSeg 0.876 0.858 0.834 0.806 0.768 0.715 0.645 0.530 0.399

MoNuSeg
Cellpose (public) 0.757 0.725 0.678 0.610 0.523 0.390 0.222 0.079 0.008
Cellpose (MoNuSeg) 0.726 0.695 0.651 0.597 0.517 0.405 0.256 0.106 0.016
StarDist 0.745 0.709 0.658 0.590 0.491 0.376 0.225 0.088 0.013
Neven et al. 0.704 0.686 0.661 0.618 0.546 0.431 0.274 0.111 0.016
EmbedSeg 0.717 0.701 0.679 0.636 0.567 0.453 0.294 0.119 0.019
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Table 2.3: Quantitative Evaluation on seven 3D datasets. For each dataset,
we compare results of multiple baselines (rows) to results obtained with our pro-
posed pipeline (EmbedSeg) highlighted in gray. The columns show the Mean
Average Precision (APdsb) for selected IoU thresholds. Best and second best per-
forming methods per column are indicated in bold and underlined, respectively.

AP0.1 AP0.2 AP0.3 AP0.4 AP0.5 AP0.6 AP0.7 AP0.8 AP0.9

Mouse-Organoid-Cells-CBG
Cellpose 0.217 0.214 0.212 0.210 0.203 0.197 0.183 0.146 0.042
StarDist-3D 0.988 0.982 0.982 0.982 0.973 0.970 0.958 0.774 0.052
EmbedSeg (Full 3D) 0.988 0.982 0.982 0.982 0.973 0.973 0.973 0.970 0.929

C. elegans-Cells-HK
Cellpose 0.745 0.742 0.740 0.730 0.702 0.673 0.609 0.422 0.013
StarDist-3D 0.959 0.959 0.959 0.959 0.954 0.939 0.881 0.447 0.000
EmbedSeg (Full 3D) 0.981 0.981 0.981 0.980 0.965 0.958 0.905 0.606 0.017

Arabidopsis-Cells-CAM
Cellpose 0.266 0.256 0.248 0.241 0.229 0.214 0.196 0.157 0.060
EmbedSeg (Full 3D) 0.685 0.672 0.661 0.646 0.617 0.584 0.535 0.398 0.100

Platynereis-Nuclei-CBG
Cellpose 0.971 0.971 0.966 0.957 0.931 0.872 0.700 0.299 0.009
StarDist-3D 0.973 0.969 0.966 0.966 0.937 0.910 0.736 0.246 0.002
EmbedSeg (Full 3D) 0.982 0.982 0.982 0.975 0.964 0.932 0.804 0.361 0.004

Paryhale-Nuclei-IGFL
U-Net 0.592 0.552 0.481 0.372 0.280 0.198 0.097 0.010 0.000
Cellpose 0.545 0.498 0.456 0.384 0.285 0.154 0.040 0.006 0.000
StarDist-3D 0.766 0.757 0.741 0.698 0.593 0.443 0.224 0.038 0.000
EmbedSeg 0.581 0.581 0.579 0.543 0.472 0.359 0.185 0.038 0.000

Mouse-Skull-Nuclei-CBG
Cellpose 0.613 0.587 0.587 0.563 0.515 0.471 0.389 0.316 0.064
StarDist-3D 0.468 0.468 0.400 0.358 0.264 0.138 0.034 0.000 0.000
EmbedSeg (Sliced) 0.649 0.649 0.649 0.649 0.424 0.424 0.237 0.146 0.108
EmbedSeg (Full 3D) 0.844 0.844 0.844 0.844 0.750 0.662 0.573 0.341 0.044

Platynereis-ISH-Nuclei-CBG
Cellpose 0.731 0.674 0.629 0.554 0.493 0.390 0.247 0.038 0.000
StarDist-3D 0.599 0.587 0.545 0.442 0.280 0.114 0.010 0.000 0.000
EmbedSeg (Sliced) 0.893 0.872 0.831 0.821 0.745 0.634 0.509 0.175 0.000
EmbedSeg (Full 3D) 0.882 0.879 0.864 0.850 0.779 0.659 0.507 0.135 0.000
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validation masks. We then use this value during inference to avoid spurious false
positives.

2.7.8 Ablation Studies

Table 2.4: Ablation studies. For the BBBC010, Usiigaci and
Platynereis-Nuclei-CBG datasets, we show how using the centroid instead
of the medoid during training and/or removing test-time augmentation nega-
tively impacts overall performance. Like before, columns show APdsb (first row)
or ∆APdsb (rows 2-4) at selected IoU thresholds. Individual rows show: results
obtained with EmbedSeg; using centroids instead of medoids during training;
using medoids but without test-time augmentation; using centroids during
training and no test-time augmentation.

APdsb AP0.50 AP0.55 AP0.60 AP0.65 AP0.70 AP0.75 AP0.80 AP0.85 AP0.90

BBBC010 (2D)
EmbedSeg 0.965 0.954 0.934 0.917 0.896 0.854 0.762 0.596 0.326
ë medoid ñ centroid -0.002 -0.002 -0.000 -0.002 -0.001 -0.004 +0.004 +0.001 +0.003
ë no test-time augm. -0.007 -0.008 -0.003 -0.008 -0.014 -0.020 -0.028 -0.033 -0.025
ë both (“Neven et al.) -0.011 -0.013 -0.007 -0.012 -0.018 -0.024 -0.032 -0.033 -0.029

Usiigaci (2D)
EmbedSeg 0.704 0.643 0.535 0.414 0.273 0.140 0.044 0.005 0.000
ë medoid ñ centroid -0.014 -0.013 -0.006 -0.005 +0.006 +0.009 +0.002 -0.001 0.000
ë no test-time augm. -0.028 -0.048 -0.050 -0.052 -0.040 -0.030 -0.008 -0.001 0.000
ë both (“Neven et al.) -0.038 -0.053 -0.053 -0.055 -0.028 -0.020 -0.006 0.000 0.000

APdsb AP0.10 AP0.20 AP0.30 AP0.40 AP0.50 AP0.60 AP0.70 AP0.80 AP0.90

Platynereis-Nuclei-CBG (3D)
EmbedSeg 0.982 0.982 0.982 0.975 0.964 0.932 0.804 0.361 0.004
ë medoid ñ centroid -0.006 -0.006 -0.008 -0.005 -0.010 -0.007 +0.018 +0.026 0.000
ë no test-time augm. -0.012 -0.012 -0.012 -0.012 -0.013 -0.019 -0.023 -0.037 -0.003
ë both -0.013 -0.014 -0.016 -0.018 -0.022 -0.013 -0.033 -0.019 0.000

In order to evaluate the contribution of piq using the medoid instead of the
centroid in EmbedSeg, and piiq employing test-time augmentation, we have per-
formed respective ablation studies and report the results on two representative
2D and one representative 3D dataset in Table 2.4.

2.8 Open Code and Online Resources

2.8.1 EmbedSeg napari

To foster widespread use of EmbedSeg, we provide all sources publicly on GitHub.
This contains the full source code as well as tutorial-style example training and
prediction Jupyter notebooks (see Figure 2.4 pbq and pdq, respectively) for use on
2D and 3D image data.
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RAW GT

PREDICTED

(a)

(b) (c)

(d) (e)

Figure 2.4: The EmbedSeg training and inference workflow as available
via open Jupyter notebooks and napari plugin. paq Schematic showing that
training and inference are decoupled by the possibility to store trained EmbedSeg
models for later use. pb, dq Screenshots of the EmbedSeg training and prediction
notebook, respectively. Both being openly available on GitHub. pc, eq Screenshot
of the EmbedSeg napari plugin during training and prediction, respectively.
The four quadrants in (c) show the raw image tail currently used for training
(top left), the corresponding ground truth labels (top right), the current instance
predictions (bottom right). In the bottom left quadrant we additionally show,
a few randomly-selected pixels, their embedding locations, and the clustering
bandwidth (visualized as pluses, dots, and an ellipse, respectively). See Figure 2.1
for a larger view.
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Provided notebooks are designed to enable users to piq learn on provided demo
training data how an EmbedSeg model can be trained and later used to create
instance segmentations on provided demo test data, and piq modify the tutorial
notebooks and train a suitable EmbedSeg model on their own data.

Additionally, we created an EmbedSeg plugin for napari (napari contribu-
tors, 2019), enabling even users without any programming experience to benefit
from our method (see Figure 2.4 (c) and (e) for screenshots of this plugin dur-
ing training and prediction, respectively). Among its functionality, the plugin
offers the possibility to piq stop training and re-starting it from saved check-
points, piiq live visualization of the model’s prediction on training and validation
data during training (visualization updates every fifth training step), piiiq simply
dragging and dropping evaluation images into the napari viewer, pivq fine-tuning
pre-trained models (we provide all 11 models trained for this publication) with
data provided by the users, and pvq training a an EmbedSeg model from scratch
on data provided by the users. Taking all this into account, we strongly believe
that this plugin is powerful and flexible enough that even seasoned bioimage ana-
lysts with extensive programming experience will fall back to the convenience of
our napari integrated EmbedSeg UI.

In summary, we believe that the presented method, paired with the openly
provided resources we described above, will enable many biomedical scientists to
perform high-quality 2D and 3D instance segmentations and are looking forward
to provide the necessary support when required.

2.8.2 EmbedSeg Demo

We also created a web-based plugin for providing an easier access to users to the
capabilities of EmbedSeg (see Figure 2.5). Our web-based plugin hosts several
models previously trained previously by us on diverse 2D and 3D datasets. We
provide the capability for users to upload their own image data through a con-
venient drag-and-drop operation and later check out the performance on their
uploaded data, using any of the available pretrained models.

This web-based plugin is intended to provide the user a glimpse of how well
pretrained models can work on their data. In case, the instance segmentation
results look somewhat convincing, then the user could either download the pre-
trained model weights and fine-tune those on manually prepared training labels;
or instead choose to train a model completely from scratch, but with similar
specifications as used for the pretrained model which performed the best in their
opinion.
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Figure 2.5: EmbedSeg web-based demo for 2D and 3D inference. The web-
based tool allows selecting a demo image (top) or dragging and dropping in a 2D or
a 3D image (bottom), choosing a previously trained model, inspecting the instance
segmentation prediction, dynamically updating the model prediction by changing
parameters such as seediness threshold (left panel) and finally downloading the
instance segmentation prediction. Available at https://share.streamlit.io/
mlbyml/embedseg_demo/main/main.py.

2.9 Discussion
EmbedSeg is an embedding-based instance segmentation method for 2D and 3D
biomedical image data.

The unmodified4 embedding-based method by Neven et al. shows promising

4 Small adaptions of the code by Neven et al. (Neven et al., 2019) are required in order to
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results on 2D microscopy data, but the modifications we propose (medoid embed-
ding, test-time augmentation, extension to 3D, hyper-parameters deduced from
training data, one-hot encoded masks, etc.) secure EmbedSeg’s state-of-the-art
results on many practically relevant biomedical microscopy datasets.

When comparing the results of EmbedSeg to all obtained baseline predic-
tions, we noticed that Cellpose often runs into issues for 3D volumes which
are downsampled along one of the axes. For example, Cellpose results on
the Mouse-Organoid-Cells-CBG dataset produce spurious over-segmentations,
which we believe are a side-effect of Cellpose’s interpolation of individual
2D predictions of sliced 3D input. A similar trend is in fact observable for
EmbedSeg (Sliced). While results are good for (near-)isotropic datasets such
as Platynereis-ISH-Nuclei-CBG, sliced predictions lead to reduced quality results
for anisotropic data like the Mouse-Skull-Nuclei-CBG dataset (where voxels in
z-direction are downsampled by a factor of about 2.75).

StarDist-3D, by design, runs into trouble when the objects to be
segmented are not star-convex (e.g. for the Mouse-Skull-Nuclei-CBG or
Platynereis-ISH-Nuclei-CBG datasets) and EmbedSeg as well as Cellpose lead
to favorable results. On datasets that do contain only star-convex objects, e.g.
labeled cell nuclei in the Paryhale-Nuclei-IGFL dataset, StarDist-3D performs
extraordinarily well.

Additionally, I noticed that StarDist-3D performance generally drops at higher
IoU-thresholds APě0.7 (see Tables 2.2 and 2.3). When I analyzed this, we found
that the IoU score even for relatively well segmented instances can drop below
0.7, since ground truth object instances typically have smooth, rounded surfaces,
while StarDist-3D instances are by definition the convex hull of a given number
of vectors (rays) radiating out of a source pixel.

Embedding-based segmentation approaches can segment different parts of the
same body even if those do not belong to the same connected component (for
example, see qualitative predictions from EmbedSeg on the BBBC010 dataset
in Figure 2.2)

For pixels belonging to regions where multiple object instances overlap, one
generally observes a low seediness score. This is caused by the trained model being
uncertain about which of the overlapping instances to embed to. By modifying the
learning task to map each pixel not to single location but instead to a distribution
of spatial embedding locations per pixel, overlapping objects could be addressed
in a more principled manner. I intend to implement this in a future version of

deal with non-RGB images, one-hot encoded instance masks etc.
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EmbedSeg.

An additional and practically quite relevant feature of EmbedSeg is its small
memory footprint on the GPU during training and our newly devised tiled predic-
tions during inference. During training, I opt for small batch sizes and gradient
accumulation. Additionally it is helpful to use the Branched ERF-Net architec-
tures in 2D and 3D which both use factorized convolutions to reduce the number
of trainable parameters (Romera et al., 2018). Together, this enables our users to
benefit from EmbedSeg even on cheap laptop hardware.

The usability of EmbedSeg is further enabled by our openly available sources,
tutorials, Jupyter notebooks, and the easy to use napari plugin. Hence, I strongly
feel that EmbedSeg will lead to faster progress in many biomedical research
projects that require high-quality 2D or 3D instance segmentations.
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CHAPTER 3. TRACKING

3.1 Introduction
Time-lapse imaging of an embryo allows studying how an organism grows from
a few cell stage to become a multi-cellular being. In order to study the develop-
ment of an embryo systematically, one must monitor the motion and division of
all cells. In early works, cells were observed using transmission microscopy and
lineage trees were sketched by hand (Sulston et al., 1983). Such manual analysis
is time-consuming and hard to reproduce, and automated solutions for tracking
are therefore essential. However, automated tracking of cells and nuclei continues
to be a challenging problem.

Some of the requirements of such automated solutions include piq detecting an
unknown number of cells, piiq handling over (split), under (merged) and missing-
segmentations appropriately, piiiq accounting for cell divisions, pivq minimizing
incorrect assignment of segmentations to tracklets, since an incorrect assignment
upstream leads to a higher cumulative error downstream, etc. Despite the presence
of many, classical (non-learning based) solutions (Magnusson et al., 2015; Tinevez
et al., 2017), results tend to be sometimes incorrect and the time to curate the
outputs of these trackers is significant. Recently, new deep learning (DL)-based
solutions (Sugawara et al., 2021; Ulicna et al., 2021; Moen et al., 2019; Wen et al.,
2021; Malin-Mayor et al., 2021; Ershov et al., 2021) have become available. Due to
promising improvements of cell segmentation algorithms, these methods follow the
tracking-by-detection paradigm 1, where in the first step, nuclei/cells are detected
or segmented in evaluation time-lapse data, by using a model trained on clean
GT annotations. Next, by considering each detection as a potential target, these
methods attempt to assign the generated segmentations the same or different label
or id, if they are supposed to belong to the same or different tracklet respectively,
while additionally also noting the parent-daughter relationships. This is either
done by piq generating partial track segments in a first step and then generating
complete tracks from these track segments in a second step (Jaqaman et al.,
2008; Tinevez et al., 2017; Ershov et al., 2021; Ulicna et al., 2021), or by piiq

performing tracking across a pair of frames (Magnusson et al., 2015; Sugawara
et al., 2021).

Some of these methods additionally emphasize learning features between a
pair of frames - for example, Sugawara et al. (2021); Malin-Mayor et al. (2021)
learn the pixel-wise flow between adjacent time frames - and this extra information
further benefits in improving tracking accuracy on evaluation data. In this chapter,
I present LineageTracer, a 2D and 3D tracker for biological objects, which
provides a different learning framework to the 2D and 3D tracking problem in the

1 In tracking-by-detection, detection and tracking are decoupled, hence a reasonable quality
of cell segmentation is needed for good tracking results.
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biomedical domain. LineageTracer follows the tracking-by-detection paradigm
where segmentations are firstly generated by a using a trained EmbedSeg model,
next a Graph Neural Network (GNN) is trained - the task during training is
formulated as learning a function (parameterized as the model weights) that
maps the set of pixels (voxels) belonging to an object instance to a feature per
object instance such that object instances that belong to the same tracklet are
closer in this feature space and distant from object instances belonging to other
tracklets. I show that learning features per instance segmentation jointly across a
tracklet is more robust than learning pixel-wise features between a pair of frames.
LineageTracer achieves SOTA results on a variety of 2D and 3D biological
datasets.

3.2 Related Work
In this chapter, I highlight some of the recently published works addressing track-
ing of biological data. In TrackMate (Jaqaman et al., 2008; Tinevez et al., 2017;
Ershov et al., 2021), nuclei are detected as local maxima of a Laplacian of Gaus-
sian convolution response or inferred from a trained instance segmentation model.
These detected nuclei are initially linked between consecutive frames in a tem-
porally greedy manner. This produces track segments which are corrected for
in a second step to close gaps, split merged nuclei detections and merge over
segmented detections.

The first step of linking nuclei detections in TrackMate is modified in Deep
Tree (Ulicna et al., 2021). A convolutional neural network is trained in order to clas-
sify each detection as belonging to one of five phases (Interphase, Prometaphase,
Metaphase, Anaphase, Apoptosis). Next, a constant velocity Kalman filter model
is employed, which uses the output of the appearance (classification) model and
the nuclei positions to assemble track segments with no divisions. Similar to
TrackMate, these track segments are then subject to a globally optimal step which
produces the complete lineage tree.

In Kausler et al. (2012), tracking-by-detection is reformulated as a chain graph
(a mixed directed-undirected probabilistic graphical model), which is capable of
handling missing and false detections. The authors argue for including domain-
specific knowledge, such as enforcing a biological lower-bound on the duration of
the cell cycle, and this information is incorporated in the constraints to exclude
biological impossible trackings, while solving an Integer Linear Program (ILP)
to globally minimize an energy function for obtaining the maximum a-posteriori
(MAP) configuration of indicator variables.

In KTH-SE (Magnusson et al., 2015), the authors use a dynamic programming
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approach to create an entire lineage tree which is optimal with respect to a
probabilistically-motivated scoring function. The authors include event variables
associated with the number of cells in each detection, mitotic events, apoptotic
events, migrations into the imaged area, and migrations out of the imaged area.
They next find tracks that give the largest increase to the scoring function using
the Viterbi Algorithm. In order to relax the Markov assumption implicit in the
Viterbi Algorithm, the authors employ a strategy which they refer to as swap
operations which allows editing previously created tracks, thus reducing error
propagation.

In DeepCell, Moen et al. (2019) argue that constructing a cost function has
downsides such as possessing limited accuracy and the time required for engi-
neering etc., and that it is rather better to learn the cost function by adopting a
supervised approach. The authors approach learning the cost function as a classi-
fication task - the model produces unique signatures of detections which encodes
for their individual appearance, morphology, motion and neighborhood, and for
each pair of detections, these signatures are mapped through additional trainable
weights to the final classification probabilities psame (if two detections belong to
same tracklet), pdiff (if they belong to different tracklets) and pparent-child (if they
share a parent-daughter relationship).

In Elephant (Sugawara et al., 2021) and Linajea (Malin-Mayor et al., 2021), a
movement vector is learnt between a pair of consecutive frames from a time-lapse
microscopy recording. Separately, cell positions are learnt by training a model on
point annotations. During inference, lineages are built by combining the nuclei
detections and movement vector, either through a pair-wise greedy association
strategy (Sugawara et al., 2021) or through a globally-constrained optimization
formulation (Malin-Mayor et al., 2021).

In KIT-Sch-GE (Löffler et al., 2021), the proposed tracking algorithm is able
to fix segmentation errors while producing the tracking result. A sparse, directed
graph is firstly built, where the segmented objects are represented as nodes. By
estimating a motion vector between consecutive frames, edges are added between
overlapping segmentations. Next, additional nodes for appearance, disappearance,
movement, and mitosis, as well as segmentation errors: missing-, under- and over-
segmentation are added at each time point, to the graph. By finding optimal paths
through this graph, the segmented objects are linked over time, using coupled
minimum cost flow. Since at this stage, segmentations can be assigned to more
than one predecessor and more than two successors, an untangling optimization
step is employed in order to obtain the final lineage tree.

LineageTracer is the most similar to PointTrack (Xu et al., 2020), where
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by employing contrastive loss, the authors learn a high-dimensional feature vector
per object state such that object states arising from the same tracklet are closer
in this higher dimensional space and more distant from objects arising from other
tracklets. Notable differences in our work from PointTrack include considering
only the foreground pixels to build a unique signature per object instance, employ-
ing a globally constrained optimization procedure to infer the complete lineage
tree, incorporating domain-specific knowledge such as minimum cell-cycle length,
extension to volumetric images etc.

3.3 Our Approach

3.3.1 PointTrack

In PointTrack (Xu et al., 2020), the authors learn instance embeddings based on
instance segmentations by converting the image representation to an unordered
point cloud representation. This approach is inspired by the success of PointNet
(Qi et al., 2017) where features are aggregated from point clouds. Results were
shown on the task of multi object tracking and segmentation (MOTS) in the
context of natural images. Such datasets comprise of RGB images containing
several instances of multiple classes (pedestrians, cars etc.). Hence, each point is
represented by data modalities such as RGB-color of the point, relative position
of a 2D point or offset from the center (x, y) within the instance mask and class of
the point, leading to each point arising from the foreground of the object having
a 6-dimensional space.

Since above-mentioned data modalities emphasize extracting features from
the instance segmentation regardless of the position of the instance segmentation
within the image, the global position is encoded into a 64-dimensional positional
embedding, following Vaswani et al. (2017), and fed into the GNN model in a
separate branch. The GNN model is trained using the margin-based hard triplet
loss (Yuan et al., 2019), which, for any anchor, pushes its hard-negative to an L2

distance greater than the specified magnitude of margin from the hard-positive,
in the instance-embedding space.

During inference, the authors compute an instance similarity between the
latest embeddings of all active tracks and embeddings from instances in the current
frame. Next, they employ the Hungarian Algorithm in order to associate instance
to active tracks. Instances are only assigned to an active track if the matching
similarity is above a certain threshold. Unassigned instances start new tracks,
while active tracks which haven’t been matched for a certain number of frames
are switched off.
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3.3.2 LineageTracer Training

Figure 3.1: Schematic explaining the LineageTracer flow of informa-
tion, during training and inference. During training, a minibatch is con-
structed from t tracklets by considering o instance segmentations per tracklet
and p pixels per instance segmentation. In this schematic figure, the sampled
pixels are shown as white dots, t “ 4 and o “ 3. Low-level features such as rel-
ative pixel position within the instance segmentation, normalized intensity and
convolution response from a trained EmbedSeg model at that pixel location,
in addition to the global position of the instance segmentation within the im-
age (input to the LineageTracer network as the positional encodings) are
mapped to an E-dimensional feature per instance segmentation, by using MLPs,
batch-normalization, average pooling, max pooling and learnable point-weighting
operations.

Images from the bio-medical domain are often gray-scale and not RGB, and
show only two classes (foreground and background). Additionally, the features
output from the bottleneck layer from a trained EmbedSeg model provide ap-
pearance information of the local neighborhood around an image pixel. Hence,
to extend PointTrack to the bio-medical context, each point is now represented
by a 2 (relative position) + 1 (normalized intensity) + 128 (convolutional re-
sponse from EmbedSeg bottleneck layer) -dimensional feature vector for 2D
images and p3` 1` 128q -dimensional feature vector for 3D (volumetric) images,
similarly.

Using a trained EmbedSeg (Lalit et al., 2021) model, instance segmenta-
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tions are inferred in the frames of the time-lapse movie. During the training of
the LineageTracer model, a mini-batch of pixel (voxel) features is obtained,
by considering t tracklets, o instance segmentations per tracklet and p pixels
(voxels) sampled without replacement per instance segmentation. These per-pixel
features are concatenated with the global position of the instance segmentation
and mapped to an E-dimensional vector per instance segmentation, by updating
the model weights using the margin-based hard triplet loss with a margin m. In all
our experiments, we use t “ 24, o “ 3, p “ 1024, E “ 32 and m “ 0.2.

3.3.3 LineageTracer Inference

The PointTrack inference approach does not consider cell divisions as it is designed
for natural images. There is also no enforcing of biological priors such as the
presence of a minimum cell-cycle length 2.

In LineageTracer, the complete lineage tree in the evaluation time-lapse
frames is determined by following three steps: piq Generating track segments piiq

Obtaining a tentative lineage tree, and piiiq Disentangling the obtained lineage
tree to eliminate split (over-) segmentations. These are explained in the following
sections.

Generating track segments

The L2 distance between the hard positive and hard negative instance embeddings
for any anchor is equal to m, during the training phase. This provides a heuris-
tic approach to extract partial track-segments greedily during inference. Track
segments are initialized for all available instance segmentations at time t “ 0.
Next, for any instance segmentation at t “ 0 (referred to as the anchor), the L2

distance between its instance embedding and the instance embeddings from the
segmentations at the next time frame, is computed. If the L2 distance between
the first and second nearest neighbor in the instance embedding space, is more
than m, then the track segment is propagated by associating the anchor to its
first nearest neighbor.

In situations, where the cell is about to divide, or when there is over-
segmentation (such as splits) or under-segmentation (such as missing instance
segmentations), this above-mentioned condition is no longer true for a given an-
chor. Additionally, if two separate anchors have the same first nearest neighbor,
then their track segments are not propagated since any instance segmentation can
only have one parent. In such cases, the active track segment is terminated, and

2 Cells must pass through interphase, prophase, metaphase, anaphase and telophase. Thus,
there is a biological lower bound on the duration of the cell cycle (Kausler et al., 2012).
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new track segments are initialized for any unmatched instance segmentations at
the subsequent time frame. This procedure is repeated similarly for the next frame
by considering all active track segments. Once the entire evaluation time-lapse
movie has been processed, the procedure is completed.

This heuristic approach gives us several short track segments. In order to
specify the parent-daughter relationship between these track-segments, we proceed
next to solving an Integer Linear Program (ILP).

Obtaining a tentative lineage tree

A sparse, directed graph is created by considering each track segment (obtained
in the first step) as a node and linking the end of any track segment to track
segments starting in the next T frames. Connections are allowed in the next T

frames instead of just the next frame in order to handle cases of missing segmenta-
tions. The model contains three types of indicator variables: appearance variables,
disappearance variables and assignment variables.

A binary appearance variable At
i is associated with the ith track segment

starting at time frame t, and A denotes the set of all appearance indicator vari-
ables.

A binary disappearance variable Dt
i is associated with the ith track segment

terminating at time frame t, and D denotes the set of all disappearance indicator
variables.

Binary assignment variables Etets
ij are associated with the ith track segment

terminating at time frame te and the jth track segment starting at ts (te P rts ´

T, . . . , ts´1s), and E denotes the set of all assignment indicator variables.

A few consistency constraints can be imposed by our application towards
development biology.

First of all, each track segment must either appear or it must be associated
with one predecessor, which implies that the sum of the value of the appearance
indicator variable and the sum of the values of the indicator variables for all
incoming edges should equal to 1.

At
i `

T
ÿ

k“1

ÿ

j

Et´k,t
ji “ 1. (3.1)

Secondly, each track segment must either disappear or be associated with at
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most two successors. This is enforced through the two equations below (the second
equation is needed to prevent the value of the disappearance indicator variable
and sum of the values of indicator variables for the outgoing edges, both being
equal to zero).

Dt
i ` 0.5

T
ÿ

k“1

ÿ

j

Et,t`k
ij ď 1, (3.2)

2Dt
i `

T
ÿ

k“1

ÿ

j

Et,t`k
ij ě 1. (3.3)

.

The global optimization problem concerns solving for

Ê , Â, D̂ “ argmin CappA ` CdisappD ` CedgeE , (3.4)

where Cedge is the scaled L2 norm between respective instance embeddings in the
E-dim space. Capp and Cdisapp are set equivalent to 1.0.

Evidently, over-segmentations are not explicitly modeled in this formulation,
and would lead to an undesired solution in certain spatio-temporal regions. Hence,
in the third step, we identify tracklets which are shorter than a duration τ (τ is
calculated from the available training data and represents the minimum cell cycle
length). These identified tracklets are assumed to be faulty. We identify cases of
touching instance segmentations in these tracklets. All such groups of instance
segmentations which are touching, are assumed to be the erroneous group of
segmentations, which should ideally be merged with each other.

But, which edges should be retained as a consequence of this post-
processing?

In order to determine this, only the affected variables are re-solved for (while
freezing the values of the remaining variables), using another ILP with a different
constraints formulation. Details of this disentangling are provided in the next
section.

Disentangling the obtained lineage tree

Firstly, tracklets which are shorter than a certain duration τ , are identified. In-
stance segmentations which currently are included in these suspect tracklets are
checked if they are touching instance segmentations from other tracklets. This
is done by dilating the instance segmentations by a pixel and seeing if there is
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Figure 3.2: Qualitative results in 2D on the Fluo-N2DL-HeLa dataset.
piq A trained EmbedSeg model is used to predict instance segmentations on all
time frames independently (second row). piiq Next, each instance segmentation is
mapped to a higher dimensional feature using a trained LineageTracer model,
which allows extracting non-conflicting track segments (third row). piiiq Then
an ILP is solved which allows connecting these track segments to form a lineage
tree (fourth row). pivq Since over-segmentations were not explicitly modeled in the
previous ILP formulation, these are addressed in the disentangling step (final row)
by identifying track segments which are below a certain duration and re-solving
an ILP with a different set of constraints (see main text). The corresponding green
tiles and red tiles in the second-last and last rows indicate that over-segmentations
have been merged and highlight the benefit of disentangling the lineage tree.
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any area overlap with instance segmentations belonging to other tracklets. If any
such instance segmentations are identified, then these and their neighbors are
considered to be merging and the indicator variables on these and their neighbors
are re-opened for solving. The difference from the previous step is that now for
each set of merged candidates, the sum of the number of incoming edges should be
one or all the merged candidates should appear. Similarly, for each set of merged
candidates, the sum of the outgoing edges should be at most two or all the merged
candidates should disappear.

The benefit of this post-processing step can be seen in the second-last and last
rows in Figure 3.2 (see the highlighted tiles), where some instance segmentations
are detected as being over-segmented in the tentative lineage tree, these are then
merged with their neighbors, which enables the underlying lineage tree to be
disentangled.

3.4 Visualization
In order to display the results of my computational pipeline, I decided to use
threejs (https://threejs.org/). threejs is a light-weight javascript library used
to create and display animated 3D computer graphics on a web browser. Since ex-
isting visualization platforms such as Fiji (Schindelin et al., 2012), napari (napari
contributors, 2019), Amira, Imaris etc. do not currently provide the capability to
project genetic information onto morphological datasets (Leggio et al., 2019), I
decided to benefit from a solution which provides an easy inroad to scripting and
adapting based on user-specifications.

A desirable property of this framework is that it allows one to visualize both
the meshes (obtained from the instance segmentations) and the raw image data
as a texture, which permits the user the possibility to view the underlying gray-
scale image data alongside the nuclei meshes, obtained from the live embryo (see
Figure 3.3).

Another nice property of this framework is that it supports blender (https:
//www.blender.org/) and can import entire scenes prepared in blender, as well
as export scenes which can be worked upon in blender. Lastly, it fosters collab-
oration between groups working remotely, as it is easy to host the javascript
based visualization code and data on a server and share the hyperlink to the
corresponding web-page.

In Figure 3.4, results from applying a trained EmbedSeg and
LineageTracer model on a time-lapse recording of a live Platynereis embryo,
are shown. Nuclei meshes are colored based on the lineages they are assigned to,
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Figure 3.3: Displaying volumetric image data alongside instance segmen-
tations. Volumetric image data and corresponding instance segmentations for a
given time frame are loaded simultaneously. By changing value of the parameters
Slice X, Slice Y and Slice Z in the graphical user interface (top-right), one can
selectively display specific YZ, ZX and XY planes in the volume.

following the inference procedure using a trained LineageTracer model (as
described in the Section 3.3.3).

3.5 Discussion
In this chapter, I described a new learning approach for the task of tracking,
called LineageTracer, which allows learning a function that maps object-level
properties (such as global position of an object in an image) and pixel-level prop-
erties (such as distance of pixels from their object center, intensity etc.) to a
high-dimensional feature, suitable for associating instance segmentations across
time and inferring a lineage tree. The advantages of such an approach is that
the relative contribution of different input properties are implicitly learnt during
the training procedure, and this allows a model to output a context-specific fea-
ture, which adapts to the properties of the dataset at hand. In comparison, other
learning-based approaches for the task of tracking, often learn a flow-field between
a pair of consecutive frames, while not considering the features of the states of
an object constituting a tracklet, jointly. In the future, a more detailed quanti-
tative comparison of these two broad schemes will be performed. Additionally,
the relative impact of ignoring low-level, input features (such as intensity, dis-
tance to object center etc.) systematically will be determined through an ablation
study.
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t “ 0 t “ 50 t “ 100

t “ 150 t “ 200 t “ 250

t “ 300 t “ 350 t “ 400

Figure 3.4: Visualization of instance segmentations of the nuclei in a
Platynereis dumerilii embryo imaged with SPIM imaging from 5 hpf
(t “ 0) to 15 hpf (t “ 400). Each of the initial 38 lineages at time
frame t “ 0 are assigned a unique, distinct color. Instance segmentations
are obtained by using a 3D EmbedSeg model, trained on manually-curated GT
instance segmentation annotations. These predicted instance segmentations per
time frame (each time frame is processed independently) are associated between
time frames by using a trained LineageTracer model, followed by manual
curation of the predicted lineage tree. Next, these instance segmentations are
converted to triangular meshes by executing the Marching Cubes algorithm pro-
vided with PyVista python package (Sullivan and Kaszynski, 2019). Lastly, these
meshes are imported for visualization in the browser, by using a javascript file
which sets up the lighting and staging. Such a visualization enables identifying
the ancestry of a cell at a given time frame. Additionally, by loading each of the
cells (meshes) at a given time frame, with gene expression information, one can
calculate the intra- and inter- lineage variance in transcriptional activity.
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4.1 Introduction

Obtaining gene expression patterns at the single-cell level enables correlating the
gene expression maps with the control circuitry that determines changes in cell
morphology and which leads to cell fate specification and differentiation (Luengo-
Oroz et al., 2011). However, current techniques such as Fluoroscent in situ Hy-
bridization (FISH) allows labeling only a few RNA species at a time. Therefore,
in order to construct a spatial gene expression map, one has to pool information
from multiple fixed specimens. This is done by obtaining an individual transform
for each of these specimens to a canonical space, and this problem we refer to as
the task of Intramodal Registration (See Figure 4.1 A).

Intramodal Registration provides us static snapshots of gene expression of
the embryo at different developmental stages. In order to correlate these static
snapshots with the dynamic changes in cell morphology, one has to combine
information between these fixed specimens and a fully tracked and segmented
developing embryo. This computational problem, we refer to as the task of Inter-
modal Registration (Inter as opposed to Intra, as often the developing embryo and
fixed specimens are imaged through different imaging techniques such as Selective
Plane Illumination Microscopy (SPIM) and Confocal Microscopy, respectively. See
Figure 4.1 B).

Owing to the recent successes of DL-based instance segmentation techniques,
it is possible to determine the locations and morphologies of most cells with high
accuracy. This motivates the use of non-intensity based registration approaches
as a first step. Such techniques can broadly be considered of two types (i) point
cloud matching where instance segmentations of nuclei are considered as points
carrying features such as x,y,z coordinates, size of the nucleus, average intensity
of the nucleus etc and (ii) graph matching, where cells or nuclei are considered
as nodes of a graph and are linked to each other through directed or undirected
edges. Point cloud matching can therefore also be considered as a special case of
graph matching, where the source and target graphs lack any edges.

One popular formulation of graph matching leverages the intuition that if a
certain node a from graph 1 is matched to another node i from graph 2, then
the neighbors of node a must also match to the neighbors of node i (Gold and
Rangarajan, 1996). Despite the attractiveness of this formulation, often what
constitutes the edges of a graph is not directly evident, say if one considers a
volumetric image showing nuclei stained for DAPI. Usually this is averted by fol-
lowing a heuristic such as linking each node (nucleus) to its n nearest neighbors or
by performing a Delaunay triangulation of the complete cloud of nuclei. However,
in the presence of severe local deformation, this could cause difficulties for the
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A B

Figure 4.1: Intra and Intermodal Registration. (A, B) 2-D schematics illus-
trating the two use cases: (A) images of distinct, independent in-situ specimens,
acquired through confocal microscopy are registered to each other, which enables
formation of an average, virtual atlas. (B) images of in-situ specimens, acquired
through confocal microscopy are registered to the appropriate frame (tp: time
point) in a time-lapse movie acquired through SPIM imaging. Nuclei indicated in
darker shades are the ones expressing the gene being investigated. In both cases,
the information about gene expression is transferred from the source nucleus to
the corresponding target nucleus. (Figure modified from Lalit et al. (2020)).

graph matching algorithm. An additional constraint arises due to the computa-
tional complexity of the graph matching algorithm. In presence of graphs with
several nodes, which is common in microscopy images showing several hundred
cells, obtaining the solution becomes intractable.

In this chapter, we will therefore turn our attention towards point-cloud affine
registration and intensity-based non-rigid fine-tuning approaches.

4.2 Related Work
In this section, recent works related to registration of Platynereis dumerilii are
introduced. Next, common baseline methods used in computer vision for point
cloud registration are mentioned. Lastly, recent advancements in deep learning for
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the tasks of piq non-rigid image registration, from the domain of medical imaging
and piiq graph matching, are described.

4.2.1 Platynereis dumerilii
Tomer et al. (2010) developed a computational protocol called PrImR for reg-
istering gene expression images of 48 hours post fertilization (hpf)-old embryos.
A global, affine transform is calculated, followed by the estimation of a local,
non-rigid transform, by using the intensities on the channel carrying information
about the axonal scaffold. The authors used the Mutual Information objective to
guide the registration algorithm.

Vergara et al. (2017) developed an algorithm called ProSPr for generating
a gene expression atlas for 6 days post fertilization (dpf)-old embryos. The gene
expression atlas is produced by firstly registering the DAPI image channel of
multiple individuals (using similarity in voxel intensities, like in PrImR).

In Lalit et al. (2020), I achieved registration of images of 16 hpf-old embryos.
The registration algorithm leveraged the intuition that the nuclei which should
be matched between the two queried images, should have similar local and global
neighborhoods.

Vergara et al. (2021) registered the 6 dpf-old ProSPr gene expression atlas
with an EM image stack, using the intensities in the average ProSPr DAPI image
and a binary mask extracted from performing instance segmentation of the nuclei
in the EM image. The authors used Normalized Mutual Information objective
as a voxel-based similarity measure, with the local motion being described by
Free-Form Deformation (FFD) based on cubic B-splines (Rueckert et al., 1999).
This pipeline allows combining a static gene expression atlas with the morphology
information of cells (with nuclei).

No related work, to my knowledge, has so far addressed fusing static gene
expression snapshots with dynamic changes in cell morphology.

4.2.2 Non-Rigid Point Cloud Registration

In Coherent Point Drift (CPD) (Myronenko and Song, 2010), the authors consider
the alignment of two point clouds as a probability density estimation problem.
The moving point cloud is treated as a cloud of GMM centroids, which moves
coherently as a group, in order to explain the data (the fixed point cloud).

Since it was unclear whether CPD always converges, and additionally to
make the approach more robust to fixed point cloud rotations, Hirose (2021) re-
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formulated it in a Bayesian setting with Bayesian Coherent Point Drift.

4.2.3 DL-based Medical Imaging

In VoxelMorph (Balakrishnan et al., 2019), the authors employ an unsupervised
strategy to learn a function that maps a pair of source and target volumetric
images (and optionally available respective binary segmentation masks) to a de-
formation field. This function is parametererized as the weights of a CNN and
the training procedure is guided by a loss function set equal to the negative of
the local cross correlation between the fixed and the registered moving image
patches.

In Czolbe et al. (2021), the authors optimize the weights of the registration
network by encouraging alignment of respective semantic features of the fixed
and the registered moving image patches. These semantic features are produced
using an additional network pretrained for an auxiliary task such as semantic
segmentation.

Both VoxelMorph and Czolbe et al. (2021) showed best results during evalu-
ation time, when the registration networks were trained with both - the pair of
raw images, and the corresponding binary segmentation masks. Such methods
require the raw image patches during training and evaluation time to be affinely-
registered prior to feeding in the registration network, and hence are suitable
(only) for estimating the non-rigid, local deformation.

4.2.4 DL-based Graph Matching

Current DL-based approaches map input point clouds to permutation, scale, ro-
tation and translation-invariant embeddings by using different flavors of graph
neural networks. Learning such node embeddings for each point (node of a graph)
enables identifying matching pairs of points between the moving and fixed point
clouds.

The intuition behind these approaches is to find a per-point embedding feature
which quotients out the underlying motion between the moving and fixed point
clouds, and which remains sensitive to local neighborhoods required for matching.
In most of these approaches, in the case that graph edges are not known a priori
in the datasets which need to be matched, then points are connected by directed
edges to their k-nearest neighbors.

In Deep Closest Point (DCP) (Wang and Solomon, 2019), the node embed-
dings and the underlying transform are learnt jointly by providing ground truth
rotation and translation matrices as targets during training. In Deep Graph
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Matching Consensus (DGMC) (Fey et al., 2020), the learnt node embeddings are
used to obtain a permutation matrix, which is compared with the ground truth
permutation matrix, provided as a target during training.

4.3 Our Approach

Given two 3D point sets - the moving point set X “ txiu, i “ 1, . . . , M and the
fixed point set Y “ tyju, j “ 1, . . . , N , where xi, yj P R3 are the point coordinates,
one would like to estimate the 3 ˆ 3 affine matrix A and the translation t P R3,
which minimizes the L2 error E,

EpA, tq “
M
ÿ

i“1
eipA, tq “

M
ÿ

i“1
}Axi ` t ´ yj˚}

2, (4.1)

where yj˚ P Y is the optimal correspondence of xi. Provided the optimal
correspondence matrix, a closed form solution to Equation 4.1 exists. A key
challenge, thus, is to identify the corresponding point matches prior to estimating
A and t.

In Lalit et al. (2020), I leverage the intuition that nuclei segmentations which
should be matched between two images of embryos at approximately equivalent
developmental states, should have the same local neighborhoods. This, I consider
as a valid assumption, especially for mosaically-developing embryos, where the
variability in the positions of cells between similarly-aged individuals is low. The
calculated local neighborhood signatures should be translation, rotation and scale
invariant to allow for matching corresponding nuclei found in different poses in
the moving and source images. One example of such geometric descriptors is
Shape Context, which was introduced by Belongie et al. (2002) for measuring
similarity between two-dimensional point clouds. I extend Shape Context features
to handle a three-dimensional, sparse point cloud derived from nuclei instance
segmentations. More details are discussed in the Section 4.3.1.

Another prominent example of geometric descriptor matching inspired by the
computer vision work and applied biological image analysis is the bead-based
registration of multi-view Selective Plane Illumination Microscopy (SPIM) data
(Preibisch et al., 2010). Here, fluorescent beads embedded around a specimen
are used as fiduciary markers to achieve registration of 3D scans of the same
specimen from multiple imaging angles (referred to as views). This is achieved by
building rotation, translation and scale-invariant bead descriptors in local bead
neighbourhoods, which enables identification of corresponding beads in multiple
views and thus allows image registration and subsequent fusion of the views. The
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approach was extended to multi-view registration using nuclei segmented within
the specimen instead of beads (Hörl et al., 2019), however the approach is not
robust enough to enable registration across different specimen and/or imaging
modalities.

4.3.1 PlatyMatch

The core of my method, which I refer to as PlatyMatch, is to match the nuclei
in the various imaged specimens by means of building the shape context descrip-
tors in a coordinate frame of reference that is unique to each nucleus. This makes
the problem of matching rotationally invariant (see Figure 4.2). The descriptors
are then matched in the descriptor space by finding the corresponding closest
descriptor in the two specimens and these initial correspondences are pruned by
Random Sample Consensus (RANSAC) to achieve an initial guess of the regis-
tration. This alignment is next refined by Iterative Closest Point (ICP). At this
point, we diverge from the classical approach and evaluate the correspondences
through a maximum bipartite matching to achieve the goal of matching every
single nucleus from one specimen to a corresponding nucleus in the other. Op-
tionally, after the maximum bipartite matching, the estimated correspondence
can be used to non-linearly deform the actual images to achieve a visually more
convincing overlap of corresponding nuclei. The individual steps of the pipeline
are described in detail in the following subsections.

Finding Corresponding Nuclei between Two Point Clouds

Estimating a Global Affine Transform. In this section, we will provide the details
of our implementation of the 3D shape context geometric descriptor, which is a
signature obtained uniquely for all feature points in the source and target point
clouds. This descriptor takes as input a point cloud P (which represents the nuclei
detections described in the previous section) and a basis point p, and captures
the regional shape of the scene at p using the distribution of points in a support
region surrounding p. The support region is discretized into bins, and a histogram
is formed by counting the number of point neighbours falling within each bin. As
in Belongie et al. (2002), in order to be more sensitive to nearby points, we use
a log-polar coordinate system (see Figure 4.2). In our experiments, we build a
3D histogram with 5 equally spaced log-radius bins and 6 and 12 equally spaced
elevation (θ) and azimuth (ϕ) bins respectively.

For each basis point p, we define a unique right-handed coordinate system: the
Z-axis is defined by the vector joining the centroid of the point cloud to the point
of interest. Then we draw a vector pointing from the queried nucleus detection
to the location of a landmark. For the Platynereis dumerilii data, we notice that
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A B

C D

E F

Figure 4.2: Overview of the how the shape context feature is built for
each nucleus detection. pAq Nuclei instance segmentations are obtained by
inputting a gray-scale volume to a trained EmbedSeg model. These instance
segmentations are represented as a point cloud. pB, C, D, Eq In order to ensure
that the shape context geometric descriptor is rotationally covariant, we modify
the original coordinate system to obtain a unique coordinate system for each
nucleus detection. pBq First, we consider any nucleus detection, represented as a
yellow ellipsoid. pCq Next, we identify the centroid of the complete point cloud
(shown as a pink ball), and draw a vector from the centroid to the queried nucleus
detection. This vector, shown as a yellow arrow, is the local Z axis for the queried
nucleus detection. pDq Then we draw a vector pointing from the queried nucleus
detection to the location of a landmark. For the Platynereis dumerilii data, we
notice that detecting the location of one of the four internal macromere is possible
using an automated, heuristic approach, and therefore we draw a vector pointing
from the queried nucleus detection to this macromere. In the absence of such
a landmark, one can use the vector that represents the direction of the largest
variance of the point cloud detections i.e. the first PCA component corresponding
to the x, y, z positions of the point cloud detections. This vector, shown as a red
arrow, represents the local X axis. pEq The local Y-axis is evaluated as the cross
product of the first two vectors, and is shown as a pink arrow. pF q Next, the
neighbourhood around each nucleus detection is binned in order to compute the
shape context signature for each detection.70
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detecting the location of one of the four internal macromere is possible using an
automated, heuristic approach, and therefore we draw a vector pointing from the
queried nucleus detection to this macromere. In the absence of such a landmark,
one can use the vector that represents the direction of the largest variance of the
point cloud detections i.e. the first PCA component corresponding to the x, y, z
positions of the point cloud detections. The projection of this vector evaluated
orthogonal to the Z-axis, constitutes the local X-axis. The Y-axis is evaluated
as a cross product of the first two vectors (also see Section 4.3.1). Since the
sign of the first principal component vector is a ‘numerical accident’ and thus not
repeatable, we use both possibilities and evaluate two shape context descriptors for
each feature point in the source cloud. Building such a unique coordinate system
for each feature point ensures that the shape context descriptor is rotationally
covariant. Additionally since the chemical fixation introduces shrinking of the
embryo volume (the intermodal registration use case, see Figure 4.1 B) and since
the embryo volume may considerably differ across a population (intramodal use
case, see Figure 4.1 A), an additional normalization of the shape context descriptor
is performed to achieve scale invariance. This is done by normalizing all the radial
distances between p and its neighbours by the mean distance between all point
pairs arising in the point cloud.

Different from Belongie et al. (2002) (where the authors use the χ2 metric to
identify the cost of matching two points pi and qj arising from two different point
clouds i and j), we use the negative of cosine similarity to establish the cost of
matching i.e.

Cij :“ C ppi, qjq “ ´sp,i.sq,j, (4.2)

where sp,i and sq,j denote the L2-normalized shape context vectors at pi and
qj respectively. By comparing shape contexts resulting from the two clouds of cell
nuclei detections, we obtain an initial temporary set of correspondences. These
are filtered to obtain a set of inlier point correspondences using RANSAC (Fischer
et al., 2010). In our experiments, we specified an affine transform model, which
requires a sampling of 4 pairs of corresponding points. We executed RANSAC
for 4000 trials, used the Moore-Penrose Pseudo-Inverse operation to estimate the
affine transform between the two sets of corresponding locations, and calculate
an inlier cutoff from the average sizes of the nuclei segmentations.
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Inferring the underlying rotation matrices by fixing only two
axes

In the discussion above, the local Z-axis vector z for each basis point in the
Platynereis dumerilii data is drawn from the centroid of the point cloud (to
which the basis point belongs) to the basis point itself. Then a vector is drawn
from one (internal) macromere nucleus to the basis point and its perpendicular
projection to the local Z-axis z is considered as the local X-axis vector x. For an
underlying rotation matrix R, I noticed that:

Rpz ˆ xq “ ˘Rz ˆ Rx.

This implies that both the possibilities of the local y-axis should be considered,
in order to calculate the underlying rotation matrix between the moving and fixed
point clouds composed from the instance segmentations. We determine which
is the correct local y-axis with the help of RANSAC (the assumption is that
the correct local y-axis would generate more inliers). An intuitive heuristic, for
example, would be that if a certain vector provides 2 or more times the number
of inliers than the minus of that vector, then the former is chosen to be the valid
y-axis.

Obtaining a tighter fit with ICP.

The previous step provides us a good initial alignment. Next, we employ ICP which
alternates between establishing correspondences via closest-point lookups and re-
computing the optimal transform based on the current set of correspondences.
Typically, one employs Horn’s approach (Horn, 1987) to estimate strictly-rigid
transform parameters. We see equivalently accurate results with iteratively esti-
mating an affine transform, which we compute by employing the Moore-Penrose
Inverse operation between the current set of correspondences.

Estimating the complete set of correspondences.

I build a M ˆN -sized cost matrix C (here, I assume M ă N without loss of gen-
erality) where the entry Cij is the euclidean distance between the ith transformed
source cell nucleus detection and the jth target cell nucleus detection . Next, we
employ the Hungarian Algorithm to perform a maximum bipartite matching and
estimate correspondences X̂:

72



CHAPTER 4. REGISTRATION

X̂ “ arg min
X

M
ÿ

i“1

N
ÿ

j“1
CijXij, where Xij P t0, 1u s.t.

k“N
ÿ

k“1
Xik “ 1,

k“M
ÿ

k“1
Xkj ď 1.

Estimating a Non-Linear Transform

Since the two specimens being registered are distinct individuals, non-linear dif-
ferences would persist despite the preceding, linear (affine) registration. I improve
the quality of the image registration at this stage by implementing an optional
non-linear transform (for example the Free-Form Deformation (FFD) (Rueckert
et al., 1999), in which one tries to maximize the correlation of image intensities
in the transformed moving and fixed images and interpolates by using Cubic
B-Splines).

4.4 Learning Node Embeddings
In PlatyMatch, we partition the region around each nucleus detection in bins
in order to calculate the per-nucleus shape context signature (see Section 4.3.1).
The size and number of these bins are designed to be hyper-parameters. One
wonders if the optimal local neighborhood signature (i.e. node embedding) can
instead be learnt.

One difficulty in pursuing a learning route is that one needs access to multiple
moving and fixed point clouds, with pairs of nuclei which have been manually
annotated to be matching. These would serve as ground truth targets for updating
the model weights during training. I reasoned that one could instead simulate the
underlying motion, and thus obtain a simulated moving point cloud from a fixed
point cloud (corresponding to real biological data) where one has access to all of
the ground truth matches.

I use the Deep Graph Matching Consensus (DGMC) (Fey et al., 2020) frame-
work to validate the hypothesis mentioned above. Nuclei detections (x, y, z co-
ordinates of the centroid) from the live embryo imaged with SPIM imaging, are
available over 598 time points. 60 of these time points are randomly chosen and re-
served for testing. Out of the remaining, 547 time points are randomly chosen and
used for training the model, while 81 time points are used for validation.

In order to prepare training data, moving point clouds are simulated from fixed
point clouds. For each fixed point cloud, nuclei detections are centered, re-scaled to
fit in a unit sphere and rotated by a randomly chosen rotation matrix. Additionally,
I sample noise independently from N p0, 0.04q, clip the noise to r´0.2, 0.2s and add
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Table 4.1: Quantitative evaluation on a simulated and a real biological
dataset. The columns show the Matching Accuracy (0´ 1) obtained by baseline
methods. Best and second best performing methods per column are indicated in
bold and underlined, respectively.

PlatyMatch DGMC DGMC + RANSAC
Simulated Dataset

0.948 0.902 0.942
Real Biological Dataset

0.347 0.215 0.278

it to these transformed and normalized coordinates, in order to obtain the moving
point clouds for the training, validation and testing data subsets. Furthermore,
nuclei detections from both the moving and fixed point clouds are connected to
their k “ 8 nearest neighbors using directed edges, in order to convert the point
clouds into graphs.

For quantifying the performance of the trained model, I report matching ac-
curacy from different baseline methods in Table 4.1. Matching accuracy is defined
as the the number of times a point (nucleus detection) from a moving point cloud
is correctly matched to the corresponding point in the fixed point cloud, divided
by the total number of point detections in the moving point cloud.

For the baseline methods DGMC and DGMC + RANSAC, I employ a 5-layer
Spline-CNN backbone (Fey et al., 2017). The model is trained for 200 epochs and
the state of the model which performs the best in terms of matching accuracy on
the validation dataset, is used for evaluation on the test dataset. The output of
the DGMC model is a permutation matrix (each row and column sums to one).
This permutation matrix is processed to compute the matching accuracy for the
DGMC baseline method.

By following a similar strategy as in PlatyMatch, one can filter the pro-
duced set of correspondences from DGMC using RANSAC, which provides the
numbers for DGMC + RANSAC baseline method.

The DGMC model which was trained on simulated data, was next tested on
real biological data corresponding to pairs of different specimens. One notices a
lowered performance in the case of the real biological data, indicating a failure of
the model to generalize to these datasets.
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Figure 4.3: Using an HMM to decipher to underlying hidden gene ex-
pression states. The results of the registration pipeline lead to normalized scores
(between 0 and 1) per cell in the lineage tree (left). Using an HMM representation
and the Viterbi Algorithm, one can infer the underlying binary, gene expression
states per cell (right).

4.5 Hidden Markov Models

After applying the registration approach elucidated so far, one can transfer the
gene expression information onto an available lineage tree, which is the goal of
this project. But the employed registration approach has matching errors, due to
upstream errors in segmentation and also because of lack of real training data
(e.g. pairs of matching nuclei detections for the moving and fixed images being
registered), which would lead to noisy gene expression estimates for cells in the
lineage tree. To counter this, I propose using an HMM-based strategy to infer
the underlying gene expression states from the noisy estimates (obtained through
registration).

A Hidden Markov Model (HMM) allows talking about the observed events
(like the noisy normalized gene expression scores produced for each cell by the
pipeline) and also the hidden events (like the underlying binary, gene expression
states) that one can think of as causal factors in a probabilistic model (Jurafsky
and Martin, 2018). An HMM is completely specified by:
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H “ h1 . . . hN A set of N hidden states
A “ a11 . . . aNN A transition probability matrix A, each aij representing

the probability of moving from state i to state j

O “ o1 . . . oT A sequence of T observations
B “ bipotq Emission Probabilities, each expressing the probability of

an observation ot being generated from a state i

π “ π1 . . . πN An initial probability distribution over states.

The problem of specific interest for us is the Decoding Problem (Rabiner,
1989), which is described as - given an observation sequence O and an HMM
specified by transition probabilities A and emission probabilities B, one would
like to discover the best, hidden state sequence H. In the current context, N “ 2,
since each cell can either be in a hidden state h “ 0 (i.e. not expressing a given
gene) or h “ 1 (i.e. expressing a given gene). Determining the sequence of hidden
states which provides the highest likelihood in a brute-force manner, would require
NT » 2300ˆ30 evaluations at the developmental stage of 16 hpf (since that stage
in the lineage tree corresponds roughly to 300 nuclei over 30 time points), which
is not possible to compute. Hence, I address this by using the Viterbi Algorithm
to decipher the sequence with the highest likelihood.

For a given state qj at time t, the value vtpjq is computed recursively
as

vtpjq “ maxN
i“1vt´1piqaijbjpotq, (4.3)

where vtpjq represents the probability that the HMM is in state j after seeing
the first t noisy observations.

I use A “

«

0.8 0.2
0.2 0.8

ff

, b0potq “ 1 ´ ot, b1potq “ ot, π0 “ 0.5 and π1 “ 0.5 for

my experiments.

4.6 Discussion

An issue that arises in the elucidated approach for PlatyMatch is related
to the specification of the local X-axis vector (see Section 4.3.1). If the first
vector as suggested by the PCA analysis is used, then in cases when the in situ
specimens are somewhat squished perhaps because of the imaging protocol, would
lead to a different vector than in the fixed (target) point cloud, which would make
calculating the underlying transform unreliable.
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An alternate strategy would be to use a landmark location (or a landmark
instance segmentation) which can be reliably predicted in both the images, say
based on its relative position within the point cloud or morphology etc., and
draw the local X-axis vector from the basis point to the location of the chosen
landmark. A good candidate for such a landmark is one of the four, internal
macromeres. However, since these cells lie deeper within the embryo, they often
have poor resolution and especially in the confocal images of in situ specimens,
the instance segmentation model could at times miss them, again making the
process of calculating the underlying transform unreliable.

In the future, deep learning strategies for graph matching such as Deep
Graph Matching Consensus (DGMC) (Fey et al., 2020) shall be further explored.
There are a couple of reasons why DGMC did not exceed the performance of
PlatyMatch in Table 4.1 piq Graph-based approaches require graphs with edges.
For an embryo, where only the nuclei are tagged with a histone marker and where
one lacks information about the cell membrane, there is no one unique way to
represent connections between the nodes of the graph (instance segmentations
of the detected nuclei), which renders the tasks of training and generalization of
the model to unseen datasets, difficult. piiq Such deep learning models are often
trained in a supervised or semi-supervised fashion, where it is crucial to have
source (moving) and target (fixed) datasets with a few matching key-points for
updating the model weights. In order to counter this shortcoming, I employed
simulated datasets which resemble the spatial arrangement of a live embryo (fixed
specimen) and the in situ specimen (moving specimen) at the developmental stage
of interest, in order to train such models. The underlying motion was assumed
to be a similar transform (i.e. scaling, rotation and translation were considered
for simulating the motion). In the future, I hope to use non-linear, spline-based
transforms for preparing the training data, which would perhaps enable the model
to generalize to unseen datasets better.
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CHAPTER 5. DISCUSSION

5.1 Introduction

In this dissertation, I explained the various components of the computational
pipeline which are necessary for segmenting the nuclei imaged through SPIM and
confocal imaging; associating across time, the predicted, instance segmentations
of nuclei of the live embryo imaged with SPIM imaging; and then finally esti-
mating a transform between the confocal images of the in situ specimen and the
corresponding volume of the live embryo by leveraging local neighborhood as a
feature for matching.

Although the transform matrix which enables aligning the gene expression
image channel of the in situ specimen with the corresponding volume of the live
embryo can be calculated, the question regarding assigning binary expression
states to each cell of the live embryo still remains.

In an ideal setting, one could sum up the intensity of the gene expression
channel within each cell segmentation, but since the cell membrane has not been
tagged for the live embryos which were imaged, I instead use the nuclei instance
segmentation as a proxy for quantifying gene expression per cell. I assume there-
fore that the intensity of the gene expression channel accumulated within each
nucleus instance segmentation correlates with the number of mRNA molecules
per cell. Furthermore, in order to normalize the effect of cell (nucleus) size, the
accumulated intensity per nucleus is divided by the nucleus size (in terms of pix-
els). This provides a score for each cell, where a higher magnitude indicates a
higher probability of gene expression per cell.

These calculated scores would be noisy, due to the upstream errors in the
instance segmentation and registration methods. In order to address this, I con-
sider the predictions so far as noisy observations and infer the underlying binary
gene expression states per cell in the lineage, using an HMM model.

In the following sections, I discuss piq how one could pool information to a
common frame of reference, say if multiple embryos were imaged with SPIM, piiq

how other data modalities such as scRNA-Seq can additionally be included in
this computational framework, and lastly piiiq which are the weaknesses of this
computational pipeline, and upon completion, which potential experiments can
additionally be explored.
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5.2 Pooling Information from Multiple Live Em-
bryos

In order to compare lineage trees arising from several live embryos, firstly the
developmental speed must be normalized w.r.t. temperature, in order to eliminate
the influence of temperature. In Figure 29 of Fischer et al. (2010), the authors
show a uniform increase in the developmental speed of Platynereis dumerilii, by
elevating the temperature above 180 Celsius. Either the suggested scaling factor s

as stated by the authors can be used or a factor equal to the ratio of the difference
in number of cells at any two arbitrarily chosen time points (say time points 0
and 50), between the embryos (say embryos 1 and 2) being compared

s “
pN2

t“50 ´ N2
t“0q

pN1
t“50 ´ N1

t“0q
, (5.1)

can be calculated and uniformally applied to expand (or contract) the devel-
opmental time axis.

Time-lapse movies of Platynereis dumerilii recorded by my collaborators, usu-
ally begin at 5 hpf, at which stage the embryo has 38 cells. Identifying the identity
of each of these 38 cells is manually achievable quickly. Once the lineage labels
(2d112, 4d etc.) are known for the available lineage trees, one needs to only com-
pare the number, morphology and position of cells at any given (temperature-
normalized) time point between corresponding lineages while comparing multiple
embryos.

These steps elucidated above allow investigating whether there is a high vari-
ance observed for certain, specific lineages at any given (temperature-normalized)
time point when comparing between individuals and thus quantifying the level of
stereotypicity in the early development of Platynereis dumerilii. It further allows
building a canonical lineage tree where each cell is positioned at a location, which
is set equal to the mean px, y, zq location as determined from the positions of
the corresponding matching cells and which additionally carries a measure of the
uncertainty regarding its position and presence.

Lastly, in the case that a live embryo has been imaged with additional image
channels such as a membrane marker, by establishing a matching between cells
detected at corresponding time points, one can transfer the corresponding cell
size information to the canonical lineage tree. Having cell instance segmentations
in addition to the corresponding nuclei instance segmentations in the canonical
lineage tree, allows accumulating the mRNA content per cell more accurately (also
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see Section 5.4). It additionally allows representing an embryo at any given time
point, as a spatial graph where cells are represented as nodes and are connected
by edges to other cells which are touching (this is not straight-forward to do if
one has access only to nuclei instance segmentations), which in turn opens up
the application of graph-based approaches such as graph matching and sub-graph
isomorphism to these biological datasets.

5.3 Integrating scRNA-Seq Data
One drawback of employing confocal images of specimens which were fixed and
stained following the norms of WMISH protocol, is that it is limited in throughput
- multiple embryos need to be fixed, and each fixed embryo is stained for the
expression of one (or a few) transcription factors only. This further implies that
for practical purposes, one can have access to an M -dimensional, gene expression
signature for each cell, where M is significantly smaller than N , N being the
number of transcription factors available in reality.

This problem can partially be alleviated by following strategies such as osm-
FISH (Codeluppi et al., 2018) which allows one to quantify the expression of a
large number of genes in tissue sections, but these still do not provide access to
the complete set of genes.

I describe here an alternate approach, inspired by NovoSpaRc (Nitzan et al.,
2019; Moriel et al., 2021) and Peyré et al. (2016), which allows mapping the gene
expression signature (an M -dimensional vector) to an N -dimensional vector, in
case scRNA-Seq data at a certain developmental stage of the embryo is available
in addition to having a few, fixed and stained specimens.

The main objective of NovoSpaRc is to map c single cells (for which a count
of RNA molecules for multiple genes i.e. a gene expression signature obtained
through scRNA-Seq for example, is available) onto l coordinates of a physical
space. This problem is formulated as an optimal transport problem in which
a transport matrix T is calculated, which allows probabilistically mapping the
available c cells to l locations, which in turn allows deciphering spatial information
from the single-cell data.

I reason that instead of mapping single cells to locations (which is implicitly
handled by my pipeline), one can use a similar strategy as NovoSpaRc to infer a
mapping between single cells digitized through imaging (for which my pipeline
calculates a binary, M -dimensional vector) to single cells obtained from other
individuals at roughly the same developmental stage and sequenced (each cell
corresponds to an N -dimensional vector). Once a transport matrix is inferred,
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one has access to the pN ´ Mq genes additionally for each of the single cells of
the live embryo imaged by SPIM.

Typically, in order to amplify the mRNA content per single cell, one sequences
cells from multiple individuals (also see Chapter 1). In order to have a scRNA-
Seq gene expression signature for an average individual, one could run a k-means
clustering in the gene expression space, where k or the number of desired clusters
is equal to the average number of cells per individual. Doing so would convert the
transcriptome data from multiple individuals to that from an average individual,
and then the optimal-transport mapping as described above can potentially be
executed.

5.4 Potential Experiments & Weaknesses
This computational pipeline opens up possibilities for new experiments. It essen-
tially enables deciphering the gene expression state of cells, digitized from the
SPIM image volumes, at the stages for which the confocal images of in situ spec-
imens is available. In the context of the data available from our collaborators, we
have in situ data at the stages of 16, 20 and 24 hpf.

But how does one determine the gene expression state at the intermediate time
points (from 16 to 20, from 20 to 24 hpf)? Due to the presence of the lineage tree,
one is able to assign a prior on the likely gene expression scores for the detected
cells at the intermediate time points. One potential experiment would be to use
a reinforcement learning scheme which would suggest which intermediate time
point should be fixed and stained. This time point should ideally be one which
reduces the maximum uncertainty and following this scheme provides an iterative
approach for doing fixation and staining.

How does one verify the results of the pipeline? To address this, for each gene at
a given developmental stage, we have data for several replicates. These replicates
are processed independently, and their corresponding predictions should ideally
have a consensus. If a consensus is achieved, the data for this gene is retained,
else not.

Currently the transition and emission probabilities of the HMM are hard-
coded. Can these be learnt from the data? This is indeed the case currently (see
Section 4.5). But these probabilities can be learnt through a potential experi-
ment wherein the spatially noisy alignment and the subsequent assignment of
the gene expression scores are corrected for, by a biologist. This enables learning
the transition and emission probability matrices, which would enable the most
optimal mapping from the lineage tree containing noisy scores per cell (node) to
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the lineage tree containing binarized gene expression scores per cell, using the
HMM formulation.

What are the major weaknesses of this pipeline? Post the alignment of the
gene expression channel of the in situ specimen along the SPIM volume, there
is still the open question of how many mRNA molecules are assigned to each
cell. Since we lack the cell membrane information, we use the nuclei instance
segmentations as a proxy for accumulating the gene expression information. This
would introduce some errors for gene expression quantification per cell.

Another weakness is more general in nature, and exposes a pitfall of this
pipeline. In order to spatially pool information from different individuals, and
to align their corresponding nuclei channels, we currently use the intuition that
the corresponding cell in both images should have the same local neighbourhood.
This assumption would not work for non-mosaically developing organisms and in
that context, a different approach to aligning and estimating transform between
volumes arising from different individuals would be needed. One intuition is to
benefit from more features than just using local neighborhood descriptors for find-
ing corresponding matches and thus in turn, estimating the underlying transform
matrix.
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