5,906 research outputs found

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Software Architecture in Practice: Challenges and Opportunities

    Full text link
    Software architecture has been an active research field for nearly four decades, in which previous studies make significant progress such as creating methods and techniques and building tools to support software architecture practice. Despite past efforts, we have little understanding of how practitioners perform software architecture related activities, and what challenges they face. Through interviews with 32 practitioners from 21 organizations across three continents, we identified challenges that practitioners face in software architecture practice during software development and maintenance. We reported on common software architecture activities at software requirements, design, construction and testing, and maintenance stages, as well as corresponding challenges. Our study uncovers that most of these challenges center around management, documentation, tooling and process, and collects recommendations to address these challenges.Comment: Preprint of Full Research Paper, the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE '23

    Software Engineers' Information Seeking Behavior in Change Impact Analysis - An Interview Study

    Get PDF
    Software engineers working in large projects must navigate complex information landscapes. Change Impact Analysis (CIA) is a task that relies on engineers' successful information seeking in databases storing, e.g., source code, requirements, design descriptions, and test case specifications. Several previous approaches to support information seeking are task-specific, thus understanding engineers' seeking behavior in specific tasks is fundamental. We present an industrial case study on how engineers seek information in CIA, with a particular focus on traceability and development artifacts that are not source code. We show that engineers have different information seeking behavior, and that some do not consider traceability particularly useful when conducting CIA. Furthermore, we observe a tendency for engineers to prefer less rigid types of support rather than formal approaches, i.e., engineers value support that allows flexibility in how to practically conduct CIA. Finally, due to diverse information seeking behavior, we argue that future CIA support should embrace individual preferences to identify change impact by empowering several seeking alternatives, including searching, browsing, and tracing.Comment: Accepted for publication in the proceedings of the 25th International Conference on Program Comprehensio

    Lean requirements traceability automation enabled by model-driven engineering

    Get PDF
    Background: The benefits of requirements traceability, such as improvements in software product and process quality, early testing, and software maintenance, are widely described in the literature. Requirements traceability is a critical, widely accepted practice. However, very often it is not applied for fear of the additional costs associated with manual efforts or the use of additional tools. Methods: This article presents a “low-cost” mechanism for automating requirements traceability based on the model-driven paradigm and formalized by a metamodel for the creation and monitoring of traces and an integration process for traceability management. This approach can also be useful for information fusion in industry insofar that it facilitates data traceability. Results: This article extends an existing model-driven development methodology to incorporate traceability as part of its development tool. The tool has been used successfully by several companies in real software development projects, helping developers to manage ongoing changes in functional requirements. One of those projects is cited as an example in the paper. The authors’ current work leads them to conclude that a model-driven engineering approach, traditionally used only for the automatic generation of code in a software development process, can also be used to successfully automate and integrate traceability management without additional costs. The systematic evaluation of traceability management in industrial projects constitutes a promising area for future work.Junta de Andalucía AT17-5904-USEJunta de Andalucía US-1251532Ministerio de Ciencia, Innovación y Universidades PID2019-105455GB-C3

    Software and systems traceability for safety-critical projects: report from Dagstuhl Seminar 15162

    Get PDF
    This report documents the program and the outcomes of Dagstuhl Seminar 15162 on “Software and Systems Traceability for Safety-Critical Projects”. The event brought together researchers and industrial practitioners working in the field of safety critical software to explore the needs, challenges, and solutions for Software and Systems Traceability in this domain. The goal was to explore the gap between the traceability prescribed by guidelines and that delivered by manufacturers, and starting from a clean slate, to clearly articulate traceability needs for safety-critical software systems, to identify challenges, explore solutions, and to propose a set of principles and domain-specific exemplars for achieving traceability in safety critical systems

    Traceability for the maintenance of secure software

    Get PDF
    Traceability links among different software engineering artifacts make explicit how a software system was implemented to accommodate its requirements. For secure and dependable software system development, one must ensure the linked entities are truly traceable to each other and the links are updated to reflect true traceability among changed entities. However, traditional traceability relationships link recovery techniques are not accurate enough. To address this problem, we propose a traceability technique based on refactoring, which is then continuously integrated with other software maintenance activities. Applying our traceability technique to the proven SSL protocol design, we found a significant vulnerability bug in its open-source implementation. The results also demonstrate the level of accuracy and change resilience of our technique that enable reuse of the traceability-related analysis on different implementations

    An investigation of requirements traceability practices in software companies in Malaysia

    Get PDF
    Requirement traceability (RT) is one of the critical activity of good requirements management and an important part of development projects. At the same time, it improves the quality of software products. Nevertheless, industrial practitioners are challenged by this lack of guidance or results which serve as a rule or guide in establishing effective traceability in their projects. The outcome of this is that practitioners are ill-informed as to the best or most efficient means of accomplishing their tasks, such as found in software companies. Notwithstanding the lack of guidance, there are a number of commonly accepted practices which can guide industrial practitioners with respect to trace the requirements in their projects. This study aims to determine the practices of RT through conducting a systematic literature review. Also, this study conducted a survey for investigating the use of RT practices in the software companies at northern region of Malaysia. Finally, a series of interviews with practitioners were carried out to know the reasons that influence on the use of these practices in software development. The findings showed that majority software companies do not use traceability practices for tracing requirements due to financial issues and the lack of knowledge of these practices. This study presented empirical evidence about the use of RT practices among software companies. Thus, the findings of this study can assist practitioners to select RT practices, and also enables researchers to find gaps and pointers for future study in this study domain
    corecore