
Open Research Online
The Open University’s repository of research publications
and other research outputs

Traceability for the maintenance of secure software
Conference or Workshop Item
How to cite:

Yu, Yijun; Jurjens, Jan and Mylopoulos, John (2008). Traceability for the maintenance of secure software. In:
2008 IEEE International Conference on Software Maintenance, p. 297.

For guidance on citations see FAQs.

c© 2008 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/ICSM.2008.4658078

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82911992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/ICSM.2008.4658078
http://oro.open.ac.uk/policies.html

Traceability for the Maintenance of Secure Software

Yijun Yu
1

Jan Jürjens
1

John Mylopoulos
2

1 Department of Computing, The Open University
2 Department of Computer Science, University of Toronto

{y.yu,j.jurjens}@open.ac.uk, jm@cs.toronto.edu

Abstract

Traceability links among different software engineering

artifacts make explicit how a software system was imple-

mented to accommodate its requirements. For secure and

dependable software system development, one must ensure

the linked entities are truly traceable to each other and the

links are updated to reflect true traceability among changed

entities. However, traditional traceability relationships link

recovery techniques are not accurate enough. To address

this problem, we propose a traceability technique based

on refactoring, which is then continuously integrated with

other software maintenance activities. Applying our trace-

ability technique to the proven SSL protocol design, we

found a significant vulnerability bug in its open-source im-

plementation. The results also demonstrate the level of ac-

curacy and change resilience of our technique that enable

reuse of the traceability-related analysis on different imple-

mentations.

Keywords traceability, refactoring, maintenance, security

1 Introduction

Requirements traceability is defined as “the ability to de-

scribe and follow the life of a requirement, in both a for-

wards and backwards direction” [10]. Existing traceability

approaches aim to recover traceability links that connect el-

ements of certain software engineering artifacts in require-

ments, design and implementation [1, 8, 4, 13]. In general,

none of them can recover accurate requirements traceability

links that preserve the semantics of traced elements.

On the other hand, high assurance is required in se-

cure and dependable software systems development. A

single inaccurate requirement traceability link assumed by

developers may already be exploited by malicious attack-

ers. To assure high trustworthiness, software using such

mechanisms must be analyzed thoroughly. In [15], we pro-

posed an approach for establishing that the design of crypto-

based software based on the security extension to UML

(UMLsec[14]) satisfies relevant security requirements us-

ing automated theorem provers. In [16, 17], we showed

how one can link a Java-based implementation of a crypto-

protocol to its representation in UMLsec using assertions.

In such experience, it is however non-trivial to insert the

right assertions at the right place in the program. As the

implementation or the used libraries evolve, the instrumen-

tation may no longer guarantee correct traceability links.

Moreover, it is unclear whether and how such assertions can

be reliably transferred to a different implementation of the

protocol.

This work was motivated by the need to accurately trace

the design to the implementation of a crypto-based soft-

ware. By accurate traceability, we mean that the imple-

mentation is verified to satisfy the specification in the de-

sign, without introducing any false relations between them.

We propose an approach to maintain accurate traceability

through refactoring. We have developed a change resilience

refactoring language and tools in order to maintain accu-

rate traceability in a process continuously integrated with

other software maintenance activities. Through accurate

and change-resilient traceability, the analysis of implemen-

tation errors of a design model can be reused to analyse a

different implementation of the same design.

To demonstrate the effectiveness of our proposal, we

show how to apply refactoring-based traceability to crypto-

graphic protocol implementations. Our method was applied

to JESSIE and JSSE, open-source implementations of the

Java Secure Sockets Extension in order to establish accurate

traceability. For different versions of the implementation as

well as different implementations of the same protocol de-

sign, we demonstrate that our refactoring tool enables reuse

of the test cases for vulnerability analysis and aspects for

security hardening.

The next section presents the properties of traceability

required by secure software maintenance, followed by an

explanation of our refactoring-based traceability approach.

Section 3 illustrates the rationale and implementation of the

tool support by a running example. Section 4 explains the

approach presented at the hand of an application to the In-

, ,

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

ternet security protocol, SSL.

2 Traceability for maintenance

To be useful for maintenance of dependable software

systems, traceability needs to be as accurate as possible.

When a model element is changed, false negative traceabil-

ity may lead to neglects of some updates; whereas false

positive traceability may lead to unnecessary updates. Us-

ing search-based traceability techniques [1, 4], precision

(i.e., whether the keywords match with the selected docu-

ment) and recall (i.e., whether all matching documents are

selected) metrics determine the accuracy of recovered trace-

ability links. When precision and recall are below 100%, as

are in usual cases, false traceability is inevitable.

To support software evolution, accurate traceability also

needs to be as resilient to change as possible, that is, trace-

ability links remain true even when the models change.

With change resilient traceability, one does not need to

update a link as long as it can still accurately relate the

changed artifacts. Otherwise, traceability links have to be

rediscovered whenever changes happen.

Taking advantages of accuracy and change resilience, the

traceability can be applied to secure and dependenable soft-

ware maintenance, in many useful ways: (1) By checking

whether all elements in the design are traced faithfully into

the implementation, one can tell whether an implementa-

tion has correctly carried out a given design. This is a direct

application of traceability. (2) While accurate traceability

to the same design has been established for two implemen-

tations, through transitive relations, one can trace between

elements in these two implementations. Such indirect trace-

ability, whenever possible, can help to derived parts of the

implementation from the other. Consider existing test cases

used to validate correctness of one implementation to the

design. If such test cases do not exist for another implemen-

tation of the same design, one can construct them based on

the ones exist in this implementation. (3) The traceability

process can then be continuously integrated with other in-

teractive and automated maintenance activities. Whenever

changes to the models are committed to a shared repository

as a result of other maintenance activities, necessary trace-

ability steps will be triggered in order to maintain the benefit

of (1) and (2). The change resilience property can help re-

duce the effort in such maintenance due to the fact that the

traceability may not always need to be updated.

Software refactoring [9, 21] changes the internal struc-

ture of an implementation without changing its external be-

havior. Thus in this work, we propose to use refactoring

steps to obtain and maintain accurate traceability. We first

show it possible to obtain accurate traceability among de-

sign and implementation elements using refactoring steps;

then we illustrate how to improve change-resilience of

Functional

Requirements

UML Design

Code

Security

Requirements

ART

JUnit

Security

Aspects

Security

Tests

Test

Cases
JUnitaspectJ

CruiseControl

ant

Continuous integration

config.xml

build.xml

UMLsec

annotations Refactoring

Scripts

UMLsec

FOL

Formulae

Figure 1. Maintain Traceability

refactoring steps using declarative refactoring scripts that

can be translated into context-sensitive ones. Then we use

derived traceability and continuous integration to explain

benefits of refactoring-based traceability support.

Figure 1 shows the big picture of how our tools are in-

tegrated to support traceability for maintenance of secure

software.

2.1 Refactoring for accuracy

Using refactoring, we can create accurate traceability be-

tween design and implementations. In a round-trip, one can

(1) convert the identifiers/methods to names at the design

level, and (2) convert the names on the design level to iden-

tifier/method names in the implementation. Through a se-

quence of refactoring steps, every occurrence of a selection

of program elements can be transformed into their counter-

part design elements.

Since refactoring maintains external behavior un-

changed, one can transform a program entity into another

without worrying about losing accuracy in behavior. Apply-

ing refactoring for a number of steps, the resulting program

produces the same results. Therefore, the traceability tran-

sitively from the original program to the resulting program

remains accurate. The resulting program is typically more

abstract than the original because refactoring steps are used

to improve understandability of the program.

To make sure that the resulting program maps to the de-

sign element accurately, additional program understanding

tasks may need to be performed by the analyst. In our case

study of the security protocol implementation, for example,

a variable named after the design element “R C” should be

a random seed, which can only be verified by finding out

that it was assigned by the returned value of a random num-

ber generation function in the library. Once the relation be-

tween the refactored program element and the design ele-

ment is confirmed by the analyst, the original program en-

tity also accurately traces to this design element, no matter

2

whether it was originally named “Random” or it was origi-

nally a sequence of statements.

2.2 Refactoring for change resilience

Having accurate traceability links between design sym-

bols and program entities established, one would maintain

them even when some design symbols or program entities

change. Due to the fact that refactoring steps can be ap-

plied with a certain precondition, that is, they are applicable

only when the program meet a certain pattern in a certain

context. We need to specify the minimal requirement of

the application context of refactoring steps such that they

are still applicable even if the original program changes.

It is also preferable to have traceability links automatically

maintained.

Modern refactoring-supported IDE’s, e.g., Eclipse, sup-

ports automatically record and replay applied refactoring

steps. When the source code is not changed, in other words,

these recorded steps can be replayed if the code is exactly

the same. However, when code changes slightly, they often

fail to replay. For example, an “Extract Method” refactor-

ing can substitute a selection of statements into a method.

If there is a statement inserted before the selection, then the

refactoring will not be replayed.

In order to allow refactoring on changed code, we

designed a declarative refactoring specification language.

Combining with the changed code, the specification script

pinpoints the exact context for the refactoring steps. In ad-

dition, the declaration can characterise an applicable con-

text using fewer parameters by virtue of regular expressions.

These parameters and expressions were initially generated

from the refactoring steps recorded in the IDE using a trans-

formation utility. By changing all spaces into all possible

separators in the selection criteria, for example, a pretty for-

matting or obfuscation of the program will not block the ap-

plication of the “Extract Method” refactoring. The change

resilience can be further improved by adapting the regular

expressions in the specification, for example, by ignoring

any renaming to local variables. Existing clone detection

algorithms could also be applied to allow for slightly modi-

fied code to match.

2.3 Derived traceability

When there are two implementations of the same design,

accurate traceability may enable reusing the analysis results

of one implementation for the analysis of the other. Arti-

facts including refactoring scripts, test cases, aspects, can

improve the understanding of one implementation, they can

also be useful in analysing the other implementation if the

traceability links between design and both implementations

are bijective. Take a test case for example, if all its pro-

gram elements P can be traced to design elements D, and

all these relevant design elements can be traced to those in

another implementation Q, then it is possible to reuse the

test case by substituting elements in P with the counter-

parts in Q. Suppose that a program element p ∈ P is traced

to a design element d ∈ D through a sequence of refactor-

ing steps R1, and a program element q ∈ Q is traced to the

same design element d through another sequence of refac-

toring steps R2. The substitution of p to q can be achieved

by first applying the refactoring R1 to the test case, then

apply the refactoring R2 inversely.

Most refactoring steps are invertible as they are equiv-

alent transformation of programs. For example, “Rename

variable” from A to B is the invert step to “Rename vari-

able” from B to A. For more complex refactoring steps

(e.g., “Extract Method”), the invert step is a different kind

of refactoring (e.g., “Inlining Method”). Thus it is possi-

ble to allow traceability links to be composed as the derived

traceability.

2.4 Continuous integration

Continuous integration1 has been adopted by our process

where the regression test subprocess is augmented with the

regressive refactoring: whenever code or model changed in

the repository – e.g., a developer committed a set of changes

– the continuous integration script will check out the change

set into a sandbox to conduct various automated build and

tests. Adding our refactoring scripts to the continuous in-

tegration script enable the regression security engineering.

The error report subprocess is also augmented with an ex-

planation of the counter example of potential attack traces

and the mismatch between the UMLsec model and the im-

plementation code.

3 Tool support

In this section, we explain the tools we implemented sup-

port the traceability for our case study. These tools are built

on top of the Eclipse IDE, the CruiseControl continuous in-

tegration tool and our UMLsec tools.

A running example To illustrate, Fig. 2 shows a series

of refactoring steps applied to a small “Hello World” pro-

gram. The example is explained in the context of Eclipse

IDE, where a number of refactoring steps are supported in

the tool.

Assume that the source file abc.java is initially located

at a folder src in the project abc. The refactoring steps

are applied as follows. Step 1: Class abc is renamed to

1See M. Fowler and M. Foemmel. Continuous integration.

http://www.martinfowler.com/articles/ continuousintegration.html

3

�

�

�

�

�

���������	
���
������
���
�
 ��
����	
�
���
� �
����	
����	
���	���
�����������
������ �

�����������	������� �������!
�����������	������� �������!

"
"
#### ���	�$�����
�����	� ####
���������	
���
������%������
�
 ��
����	
�
���%�������& "
#### ���	�����'��
������%�(####
����	
����	
���	���
�����������
��������

	����)%������!
	����)%������!

"
����	
����	
���	��	����)%������ �

�����������	������� �������!
"
#### ���	�*���'��
������	 ####
������������� +� ������!
�����������	��������������!
#### ���	�,��	����������	 ####
����	
����	
 �����������
��+ ������!
����	
����	
���	��	����)%���������

�����������	�����������
���!
"
#### ���	�-�����
������%�(####
����	
�
���%������
����	
����	
 �����������
��+ ������!
����	
����	
���	���
���������
��������
	����)%������!
	����)%������!

"
����	
����	
���	��	����)%���������
�����������	��������������!

"

"

Figure 2. Refactoring for traceability

hello and abc.java is renamed to hello.java accordingly.

This refactoring step is called rename.type. Step 2: The first

statement System.out.println is extracted into the body of

a new method print hello(). All instances of the selected

statement are substituted at once, resulting in a 2-to-1 map-

ping. This step is called extract.method. Step 3: The ex-

pression ”Hello” is explicitly assigned to a new local (tem-

porary) variable string. This step is called extract.temp.

Step 4: The temp variable string is promoted into a field

named as message. Finally, Step 5: The method main2

is renamed to a new method name main. This last step is

called rename.method.

After these steps, the refactored program is traced to the

UML class model intended by the designer, as shown to the

left of Fig. 2. The traceability between the design elements

(class names, method names and field names) and identi-

fier/method names are established. Moreover, each refac-

toring step is a program transformation that preserves the

behavior before the step. Note that the refactoring-based

traceability is not one-to-one mapping between the source

and the target. In other words, a single refactoring step

can update multiple references in the design/program. As

each refactoring step is well-known, one can understand the

traceability between the original design and the final imple-

mentation.

Refactoring support in Eclipse The general refactoring

engine in Eclipse is provided by a set of plugins called the

refactoring Language Toolkit (LTK)2, which allows one (1)

2http://www.eclipse.org/articles/article.php?file= Article-Unleashing-the-Power-

of-Refactoring

to perform refactoring steps, (2) to save the history of refac-

toring steps into an XML-based script, and (3) to apply a

refactoring script automatically. The plugins are applicable

to any programming or specification language. The Java

Development Tool (JDT), for example, instantiates LTK

with a number of Java-specific refactoring steps. Fig. 3

shows a snippet from the refactoring script, which briefly

specifies the rename.type and extract.method steps used at

the first two steps.

<?xml version="1.0"?>

<session version="1.0">

<refactoring comment="..."

id="org.eclipse.jdt.ui.rename.type"

description="Rename type ’abc’"

project="abc" input="/src<abc.java[abc"

name="hello" ... />

<refactoring comment="..."

description="Extract method ’print hello’"

id="org.eclipse.jdt.ui.extract.method"

project="abc" input="/src<{hello.java"
name="print hello" selection="64 28" ... />

...

</session>

Figure 3. Eclipse refactoring script, Cf. Fig. 2

Every refactoring is recorded as an XML element refac-

toring, whose attributes specify the step. Every step has an

identifier attribute ID, indicating the type of the step. For

example, here org.eclipse. jdt.ui.rename.type is a name

internally used by JDT to identify the rename.type refac-

toring. For readability, in the remainder of the paper we

omit the common prefix and simply call it rename.type.

The target of a refactoring step for rename.type is a new

class name, whereas the target for extract.method is a new

method name. They are completely specified by the name

attribute. The source of a refactoring step is suggested by at-

tributes including project, input and optionally selection.

The values of these attributes typically indicate the context

of a step. The project attribute specifies the subject project

of the refactoring step; inherited from LTK, the input at-

tribute is a composite of the source folder, the source pack-

age, and the source class name which are separated by de-

limiters “<”, and “[”; the selection attribute, when used,

specifies the exact offset and length of the string selected

for the refactoring.

In our example the extract.method refactoring is only

applicable if the selection of a substring of 28 characters

starting from the offset 64 in hello.java matches the state-

ment to extract, character by character including the white

spaces. Given such strict specifications of refactoring con-

texts in Eclipse, one can see that existing refactoring scripts

are inadequate if source code has been modified by evolu-

tion or by previously applied refactoring steps, or source

code from different library implementation is used. For ex-

ample, it is required to modify the offset/length value if an

extract.temp step has been applied earlier.

4

@{org.eclipse.jdt.ui.rename.type,
project="abc", source="src", package="",

class="abc", name="hello"

}
@{ org.eclipse.jdt.ui.extract.method,

project="abc", source="src", package="",

class="hello", method="main",

toclass="hello", name="print hello",

regexp="S.*("Hello");", count="1"

}

Figure 4. Our spec. for refactoring (cf. Fig. 3)

Refactoring scripting In the subsection, we present our

new refactoring engine that overcomes the limitation of the

native Eclipse JDT refactoring steps. It makes the refac-

toring steps reusable for maintaining design traceability in

different legacy code.

One would reuse the traceability information discovered

when linking the implementation to the UML model for ex-

ample if one wants to apply the refactoring steps defined for

one implementation (e.g., JESSIE 1.0.1) to a different ver-

sion of that implementation (e.g., JESSIE 1.0), or to a differ-

ent library (e.g., JSSE). To this end, we create a refactoring

plugin that can apply parameterized refactoring steps3. Our

refactoring tool is implemented on top of LTK refactoring

plugins, which supports languages beyond Java. In order

to keep the changes to the existing refactoring engine lim-

ited, we invoke the context-specific refactoring steps in JDT

by instantiating a scripting template with the parameters de-

rived from our specifications.

In [19], Krueger classified software reusability as five

connected facets: abstraction, classification, selection, spe-

cialization and integration. Our traceability refactoring en-

gine supports this view.

Our declarative specification language abstracts away

context-sensitivity of existing refactoring steps and can de-

scribe any refactoring step supported by LTK. Correspond-

ing to Fig. 3, Fig. 4 lists two refactoring steps in our speci-

fication language.

In the record of our refactoring specification, most fields

have evident meaning and usage as they correspond to the

attributes in the Eclipse refactoring scripts. We introduce

new fields to compute the context of the source element,

such as source, package. Optionally, the field condition

indicate a selection to be refactored by a generic condition

(e.g., a regular expression). Such selections increase the

chance of reusability for context-sensitive refactoring steps

when changes happen to the code. We can actually de-

rive the condition from the concrete context. For example,

by replacing white spaces with arbitrary number of white

spaces. In this way, even if a programmer or a code for-

3These automated refactoring tools (ART), including their source code

and examples in the paper, can be fetched from the project subver-

sion repository http://computing-research.open.ac.uk/repos/art (username:

guest, password: checkout).

matter inserted indentation spaces, the selection can still be

matched. Also we introduce the count field to selectively

refactor some instances of matching selection rather than

the first matched one. The selection parameter gets spe-

cialized from the other parameters by parsing the selection

source using existing API in the IDE.

As refactoring consists of a sequence of steps, we

classify existing refactoring steps by context-sensitivity

and discuss its impact on exchangeability and invertibil-

ity. Context-free steps are more reusable whereas context-

sensitive ones require care. For round-trip traceability, all

refactoring steps need to be invertible. Since refactoring

steps are behavior semantics-preserving, inverting them is

generally feasible. Context-free steps are already invertible

without consulting code (e.g., by inverting the source/target

of the rename.type step). For context-sensitive steps, we

made them invertible with the aid of code and the editing

command stack because the information in the refactoring

specification alone is not sufficient.

In Table 1, we list some JDT refactoring steps that have

been parameterized in our refactoring tool. We also show

which JDT steps are considered change resistant and a brief

description on how such limitations are resolved.

Our tool delegates the domain-specific (here Java) refac-

toring integration tasks to LTK. During the integration, we

support programmers to preview the effects of refactoring if

they choose to, and to avoid manually constructing the spec-

ification from the saved refactoring history in Eclipse. The

implementation of our refactoring plugin adds two com-

mand buttons to the Eclipse GUI, one of them performs all

refactoring steps automatically, while the other brings up a

dialogue for each step to preview the effects of refactoring.

This allows us to verify if there are any potential mainte-

nance problems arising from the step. For example, when

renaming a variable to R C, we can see a warning message

from the Eclipse IDE that by programming convention, it is

not recommended to let the name a variable start with cap-

ital letters. Such a renaming does not affect programmers

because they can always edit the original source code. We

also implemented a headless tool to invoke the functionality

of the automated button as a RCP command. The arguments

of the command provides the name of refactoring specifica-

tion file. In this way, our automated refactoring step can be

integrated continuously with other processes.

Another utility program we implemented is a transfor-

mation that converts an XML-based refactoring script from

Eclipse IDE into our own specification language. The trans-

lation is done automatically by converting the XML at-

tributes of the <refactoring> tag into fields of one record

in our specification language. Special parsing to XML at-

tributes such as ”input” is performed as well, to encode the

context to ease reuse. Whitespaces in “selection” attribute

are globally substituted with an equivalent regular expres-

5

Table 1. Some refactoring steps parameterized by our refactoring tool
ID change resilient? context source selection specified in Eclipse our specification

org.eclipse.jdt.ui.rename.project no workspace project project project

org.eclipse.jdt.ui.rename.folder no project folder folder folder

org.eclipse.jdt.ui.rename.package no folder package package package

org.eclipse.jdt.ui.rename.type no package class class class

org.eclipse.jdt.ui.rename.method no class method method method

org.eclipse.jdt.ui.move.method no class method method method

org.eclipse.jdt.ui.extract.method yes class statements (offset, len) (regexp [, count])

org.eclipse.jdt.ui.rename.temp yes method variable (offset, len) (regexp [, count])

org.eclipse.jdt.ui.extract.temp yes method expression (offset, len) (regexp [, count])

org.eclipse.jdt.ui.promote.temp yes method expression (offset, len) (regexp [, count])

sions. After translation, one can further simplify the regular

expressions to enhance change-resilience.

Continuous integration We extend the CruiseControl
system by adding tasks to the ANT build and test scripts. A
daemon process on the build/test machine periodically mon-
itors whether there is any change to the repository. When-
ever changed artifacts (including the code, the model, the
test cases, the refactoring scripts and the security aspects
and assurance test cases) are committed, the event triggered
a run of the extended ANT build.xml script.

<project name="jessie" default="test" basedir="jessie">

<target name="build" depends="refactoring"/>

<target name="test" depends="build"/>

// the following tasks are augmented

<target name="umlsec"/>

<target name="refactoring"/>

<target name="saspect" depends="test"/>

</project>

The dependencies between the targets of the build.xml

are straightforward. Before one can build the new system,

the modified code must be refactored such that the changes

committed by the programmers are synchronised with the

model. The UMLsec security check for model vulnerability

is done after the system is built and refactoring is done. Fi-

nally, security assessment are performed to validate the se-

curity requirements and security hardening aspects are per-

formed to enforce vulnerability checks.

4 Example Application: SSL

We will explain the approach presented in this paper at

the hand of an application to the open source implemen-

tation of the Internet security protocol SSL. SSL is the de

facto standard for securing http connections, which however

has been the source of several significant security vulnera-

bilities in the past and is therefore an interesting target. In

this paper, we concentrate on the fragment of SSL that uses

RSA as the cryptographic algorithm and provides server au-

thentication (cf. Fig. 5). We have used automated theorem

provers to verify the UMLsec model of the SSL protocol

Figure 5. The SSL handshake protocol

against the relevant security requirements such as secrecy

and authenticity using our tools [16].

The JESSIE Project The whole JESSIE project currently

consists of about 5 MB of code, but the part directly rele-

vant to SSL consists of less than 700 KB in about 70 classes.

The implementation of the SSL protocol in JESSIE is only

briefly documented by the comments in the program. Many

important design elements in UMLsec (cf. Fig. 5) are miss-

ing in the program document.

Trace design to implementation After the security anal-

ysis of JESSIE version 1.0.1, we have identified 19 distinct

symbols used in design models for cryptographic handshake

protocols [18]. Table 2 presents 9 instances of such map-

ping. The first column shows the names of symbols as used

in the cryptographic protocol model. The second column

shows the names of corresponding methods in the JESSIE

library. The third column shows the identifiers that are the

6

target names of the refactoring steps. The types of the refac-

toring step is shown in the last column.

For each message in the sequence of an execution of the

SSL handshake protocol (see Fig. 5), we perform a series of

refactoring steps to establish traceability in the JESSIE 1.0.1

implementation. Table 3 lists the first four messages steps

S1 to S4 in the message sequence protocol. One can also see

that in general there does not need to be a one to one corre-

spondence between the design and the code. For all the 19

symbols, 7 messages and 3 checks in Fig. 5, in total we have

defined 27 refactoring steps in the specification to maintain

the traceability between the protocol design and the JESSIE

1.0.1 code. The third column shows count of changed seg-

ments by the refactoring steps. Using diff, each block of

changes, even when it contains multiple lines, is counted as

one. When the number is larger than the number of steps,

changes have happened to more than one places on average.

The last column shows performance, i.e., how much time

in seconds it took to perform the refactoring steps using our

tools. Given the significant pay-off provided by the fact

that the behavior of the code is preserved during the com-

plex refactoring steps, such kind of performance figures do

not impose a bottleneck within the overall process. On the

contrary, much more time is spent on the security analysis

and the manual creation of the refactoring steps, which will

be paid back by reusing the scripts on different implemen-

tations.

The cryptographic protocol analysis requires for exam-

ple that all the messages related to the cryptographic check

Veri(X509Cert s) (see Fig. 5) be intercepted and logged.

The difficulty with applying AOP for such an instrumenta-

tion is that the joinpoint for such a check Veri(X509Cert s)

does not exist in SSLSocket.java as a method. In-

stead, the check is implemented as a group of statements

of the whole doClientHandshake() method (lines 1518

Table 2. Mapping messages to methods
Symbols Program methods Identifiers Refactoring op.

1. C clientHello C rename.type

2. S serverHello S rename.type

3. Pver session.protocol P ver extract.temp

version

4. RC clientRandom R C rename.temp

RS serverRandom R S rename.temp

5. Sid sessionId S id rename.field

sessionId S id rename.temp

6. Ciph[] session.enabledSuites Ciph extract.temp

7. Comp[] comp Comp extract.temp

8. Veri Lines 1518–1557 Veri extract.method

9. Dnb getNotBefore() D nb rename.method

Dna getNotAfter() D na rename.method

Table 3. Refactor the protocol (cf. Fig. 5)
Messages in sequence op. diff Time (sec)

S1: C → S : (Pver, RC , Sid, Ciph[], Comp[]) 7 31 13.891

S2. S → C : (Pver, RS , Sid, Ciph[], Comp[]) 5 20 9.437

S3. S → C : Certificate[X509Certs] 2 2 1.474

S4. C : Veri(X509Certs) 2 2 3.854

...

Total of 7 messages and 3 checks 27 86 40.303

Table 4. Test cases exposing vulnerability
Message Example Test Case

S1

Case1: ClientHello(TLSv1, clientRandom1,

[B@b012a558, enabledSuites1, zlib)

Case2-4: ClientHello(TLSv1, clientRandom2,

[B@b01b0558, enabledSuites2, zlib)

S4
Case1,2: cheVal((107,2,2),(108,3,2))==True

Case3: cheVal((107,2,1),(107,3,1))!=False

Case4: cheVal((107,2,3),(107,3,1))!=False

through 1557 in the JESSIE library version 1.0.1). There-

fore, an “extract.method” refactoring is necessary. Sim-

ilarly, the cheVal joinpoint as a group of statements in

SSLSocket.java (lines 1571–1604) needs to be refactored

as a method.

Vulnerability analysis and hardening Using a number

of test cases, in the JESSIE 1.0.1 implementation, we found

a significant security vulnerability as Veri(X509Cert s) is

not always invoked when the certificate message is received,

which is a required and essential security check according to

the protocol specification. It is needed because otherwise a

man-in-the-middle attacker could insert a forged certificate

containing his own public key into the communication and

thereby decrypt the session key that is encrypted using that

key, and thus eavesdrop on the encrypted communication

in that session without being noticed by the communication

partners. Additional checks can be inserted into the proto-

col to harden its security. For example, using an aspect to

crosscut every joinpoint of the program where a certificate

is received, we found nothing is called by the program to

check the issuing date. Therefore we find it is necessary

to instrument the program with the functionality to check

validity of the certificate against its date range issued by

OpenSSL.

Table 4 highlights the vulnerability by showing the ex-

ecution log of 4 different test cases. If the certificate was

checked, in Case 3 and 4, the cheVal should report false in

a correct implementation. However, we found they reported

true instead.

The vulnerability we found from the refactored program

do exist in the original program, however, it was hidden

from the joinpoint model of our security aspect before refac-

toring. Therefore, fixing such vulnerability by weaving an

7

aspect on the refactored code can also, in fact, improve the

implementation of the original program. After renaming

checkValidity to cheVal, the aspect in Fig. 6 inserts an ad-

ditional check on the validity of certificate date (cheVal).

Also, the refactored Veri is called right after a certifi-

cate is obtained through the pointcut expression certifi-

cate(). Without these refactoring steps, this aspect cannot

be weaved with the original program. This aspect is derived

public aspect CryptoProtocolSecurity {
pointcut certificate():

call(* Certificate.Certificate(..));

Object around(): certificate() {
X509Certificate[] X509Cert s = (X509Certificate[])

proceed();

SSLSocket s = (SSLSocket) thisJoinPoint.getThis();

for (int m=0; m<pCs.length;m++) {
assert cheVal(pCs[m].D_nb(), pCs[m].D_na()):

"+++ The date is invalid +++";

}
s.Veri(X509Cert s);

return X509Cert s;

}
}

Figure 6. A security aspect, cf.Table 4

from the protocol design model introduced earlier assumes

the existence of a method for Veri. This method is cre-

ated from the given implementation using an extract.method

refactoring for the doClientHandshake method to extract

58 lines of code into a new public method Veri in the

SSLSocket class. The extracted Veri method is then called

in the advice to reimplement the already existing check. In

addition to this check, we then first introduced an additional

cheVal method into the SSLSocket class and then moved

it into the aspect module using the Move Method refactor-

ing step. After these refactoring opertaions, the date validity

check is performed before the existing certificate check.

From this example, one can see that refactoring serves

two purposes. First, it reveals the control flow for instru-

menting the program as a joinpoint. Second, it makes it

possible to modularize the check into a security hardening

aspect for reuse.

Reuse derived traceability Having studied one imple-

mentation of the cryptographic protocol in JESSIE 1.0.1, we

aim at reusing our vulnerability analysis in the reference im-

plementation of the same protocol in JESSIE 1.0.0, as well

as in JSSE, a library in the standard JDK since version 1.4.

The source code of JSSE library (after 1.6) can be checked

out from the OpenJDK repository4.

To perform the model-based security analysis as ex-

plained above on a different version of JESSIE or a differ-

ent library (JSSE), one only needs to modify the specifica-

tions of the refactoring steps that provide the traceability of

4https://openjdk.dev.java.net/svn/openjdk/jdk/
trunk/j2se/src/share/classes/sun/security/ssl

Table 5. Reused refactorings, cf. Table 3
Messages JESSIE 1.0.1 JESSIE 1.0.0 JSSE 1.6

op. diff op. diff op. diff

S1 7 31 7 33 5 23

S2 5 20 5 21 4 16

S3 2 2 2 2 2 2

S4 2 2 2 2 2 2

...

Total 27 86 27 89 21 68

the model to the implementation level, without making any

other adjustments to our refactoring engine and the analysis

code, such as test cases and aspects.

We have shown in Table 3 how many refactoring steps

were applied to JESSIE 1.0.1 (released on October 12, 2005

according to its CVS repository) according to a maintain-

able refactoring specification. Table 5 shows how many

steps in Table 3 can be reused on JESSIE 1.0.0 (released

on June 9, 2004 according to its CVS repository), and JSSE

1.6 (released on May 8, 2007).

Inside the org.metastatic.jessie.provider package in

JESSIE the 1.0.1 version has got 24 code block differences

compare to that of 1.0.1 version. Due to these changes,

the selection-sensitive steps in the refactoring history script

saved from Eclipse cannot be applied to JESSIE 1.0.0. After

converting the script into our specification language, all of

them become reusable in our enhanced refactoring engine

(cf. the column JESSIE 1.0.0). The only necessary change

made to our original refactoring specification for JESSIE

1.0.1 was a global substitution of the project attribute for

all steps from jessie-1.0.1 to jessie-1.0.0. Table 5 com-

pares the number of diff blocks for themselves before and

after refactoring. The numbers is differed slightly because

of the evolution changes to the variable Ciph.

On the contrary, even after we performed a global substi-

tution of the project name, for the JSSE 1.6 case, we found

that most of the steps cannot be applied as is. The do-

Handshake protocol is mainly implemented in the class

SSLSocket of the JESSIE 1.0.1 library, whereas in the

JSSE library implementation in the OpenJDK 1.6 (here-

after called JSSE 1.6), the protocol is mainly implemented

in the class sun.security.ssl.HandshakeMessage. Nev-

ertheless, the naming of the symbols can be traced to the

implementation.

Table 6 lists some mapping from the symbols in Table 2

to their naming in the JSSE library. The difference to the

earlier table for the JESSIE project is mainly in the second

column, that is, the source of the refactoring steps given in

the third column.

To reuse the existing refactoring steps, we have to in-

stantiate their specifications with different parameters for

8

Table 6. Traceability in JSSE, cf. Table 2
Symbols JSSE 1.6 op.

1. C HandshakeMessage.ClientHello rename.type

2. S HandshakeMessage.ServerHello rename.type

3. Pver protocolVersion extract.temp

4. RC clnt random rename.temp

RS svr random rename.temp

5. Sid sessionId rename.temp

6. Ciph[] cipherSuites extract.temp

7. Comp[] compression methods extract.temp

8. Veri CertificateVerify.verify() rename.method

9. DnotBefore cert.getNotBefore() rename.method

DnotAfter cert.getNotAfter() rename.method

its source (i.e., project, folder, package, class) and its

context (i.e., regexp, count). In some cases even the type

of refactoring step needs to be changed. For example,

Veri(X509Certs) is refactored by the extract.method step in

JESSIE (Table 2, and by the rename.method step in JSSE

(Table 6). Such changes do not influence the target name

attribute for the steps because they are derived from the

same protocol design.

As part of the library release, two model-based unit tests

for the message sequences in JESSIE 1.0.1 were provided:

testclient.java and testserver.java. After refactoring, we

were able to reuse them for the two other implementation

libraries as well.

Moreover, the model-based security aspect we imple-

mented for JESSIE 1.0.1 can also be reused without change.

When weaving in the security aspect, we could determine

that it did not further harden the security for JSSEbeyond

the existing implementation since the security check imple-

mented in the aspect is already correctly enforced in JSSE.

This is confirmed by the logs of the two test cases that were

reused. These test cases also helped us to verify that the

messages are sent and received in a way consistent with the

message sequence chart (Fig. 5), on both sides of client and

server, regardless of the implementation library.

5 Related work

Traceability and model synchronization Software

maintenance makes use of related models at different

stages of development. Example models are goal trees for

requirements, UML diagrams for design and source code

for implementation. When some model elements change, it

is necessary to synchronize the change on related elements

in order to maintain all models consistent [12]. Existing

traceability approaches aim to recover traceability links that

connect elements of certain software engineering artifacts

in requirements, design and implementation [1, 8, 4, 13].

Search-based techniques recover traceability links between

documents and code with a precision below 100% [1, 13];

a probability-model based approaches relies on a softgoal-

interdependency graph to recover traceability links

between functional and non-functional requirements [4];

a scenario-driven approach generates traceability links

from observations of system executions [8]. Other work

on requirements tracing includes [23]. In general, none of

them can recover accurate requirements traceability links.

Though efficient techniques have been proposed to account

for incremental update of traceability links recovered from

search-based approaches, these incrementally maintained

traceability links are still as inaccurate [13]. Graph

transformation-based techniques [12] may accurately trace

structural semantics, yet another mechanism is required to

trace behavioral semantics.

Reverse engineering Existing reverse engineering frame-

works were proposed to improve accuracy of traceability

for reference architecture [22] and for known design pat-

terns [2]. In our previous work [25], refactoring were pro-

posed to enable accurate abstraction of behavioral imple-

mentations such that they can be compared to the goal-

oriented requirements. In this work, refactoring is not only

used for comparing the source and target, but also for trans-

forming the source into the target.

Refactoring scripts Dig et al [5] first studied the evolu-

tion of component API that can be replayed as refactoring

steps. They argued that the refactoring of library compo-

nents may indeed change the behavior of the overall system

especially when the client of the components are not refac-

tored accordingly. For example, a function ‘foo’ may be re-

named to ‘bar’ in the library, yet the call site of the function

may still try to invoke ‘foo’, only to find broken contracts.

Therefore, it is useful to keep track of (or detect in Dig’s

case) the refactoring steps as a script such that they can be

replayed at the client side. Our tool supports tracking refac-

toring steps by translating the refactoring steps recorded

by the IDE into change resilient refactoring specifications.

Comparing with [5]’s work, our use of refactoring is not for

replaying the changes, rather for maintaining the traceabil-

ity between design elements and implementation regardless

of changes. Though the RefactorCrawler tool [5] cannot be

used directly, we can make use of the refactoring preview

dialog code in the MolhadoRef tool [6].

Refactoring for aspects In [11, 20], specialized refactor-

ing actions are defined mainly for aspect-orientation. In this

work, we expand the scope to any general-purpose refactor-

ing steps supported by existing tools. We have exploited

the opportunity to perform aspect-oriented instrumentation

in order to harden the security that require general-purposed

refactoring actions. In [3], Binkley et al proposed a num-

ber of aspect-aware refactoring transformations to convert

9

object-oriented programs into aspect-oriented ones. If the

design element is implemented by crosscutting code, then

Binkley et al’s technique may be applied to our work to

maintain the traceability between such elements. Since

refactoring alone does not change the behavior of the sys-

tem, aspects derived from such refactoring transformations

must not change the behavior. Consequently, they cannot

improve the security of existing implementation. In our

work, we employ AOP to instrument the code with addi-

tional functionality to enforce security hardening. There-

fore our aspect is introduced by a different purpose.

Tracing and validating aspects In [7], Antonio Castaldo

D’Ursi et al discussed the difficulty of static analysis where

multiple aspects that potentially interfere with each other

through intertype declarations. Such problems are well

known in the AOP community as aspect interference prob-

lems. Our case study only introduced one security hard-

ening aspect for vulnerability check, which certainly did

not expose interference. Yet it is possible in general, if the

software systems have used aspects, or more than one as-

pects were refactored from the legacy system (using e.g.,

Binkley’s [3] methodology). In a separate work [24], we

proposed a goal-based testing framework to trace and vali-

date aspects according to their goal-oriented requirements.

In the security and mission-critical domain, such test-based

validation alone may not be adequate. It is thus an open

research issue to investigate how aspect interference can be

prevented. Our tracing framework presented here helps sim-

plify the task by relating the scope of aspects to the associ-

ated requirement/design elements.

6 Conclusions

We showed that refactoring can be used to support the

maintenance of accurate traceability links. In order to main-

tain such traceability resilient to changing design and im-

plementation, we enhanced the Eclipse refactoring engine

in an automated refactoring tool support. The traceabil-

ity refactoring process, together with our UMLsec analysis

tools, are integrated with other maintenance activities con-

tinuously. Supported by the derived traceability in test cases

and aspects, a traceability-related vulnerability found in one

implementation can be effectively verified in another. The

proposed approach was applied to three implementations

of SSL protocol (i.e., JESSIE1.0.1, 1.0.0 and JSSE1.6) and

actually detected a security vulnerability in JESSIE1.0.1,

which was further confirmed in JESSIE1.0.0, and rejected

in JSSE1.6.

Acknowledgements: This work is partly funded by the Royal
Society through an international joint project with TU Munich.
The authors would like to thank H. Lin and C. Li for discussions on
the Jessie project. Our ART tool uses the LTK refactoring dialog
implemented in by Dig et al in [6].

References

[1] G. Antoniol, G. Canfora, G. Casazza, A. de Lucia, and E. Merlo. Re-

covering traceability links between code and documentation. IEEE

Trans. Softw. Eng., 28(10):970–983, 2002.

[2] D. Beyer, A. Noack, and C. Lewerentz. Efficient Relational Calcula-

tion for Software Analysis. TSE, 31(2):137–149, 2005.

[3] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella. Tool-

supported refactoring of existing object-oriented code into aspects.

IEEE Trans. Software Eng., 32(9):698–717, 2006.

[4] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and

S. Christina. Goal-centric traceability for managing non-functional

requirements. In ICSE’05, pages 362–371. ACM, 2005.

[5] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Automated de-

tection of refactorings in evolving components. In ECOOP, pages

404–428, 2006.

[6] D. Dig, K. Manzoor, R. Johnson, and T. N. Nguyen. Refactoring-

aware configuration management for object-oriented programs. In

ICSE, pages 427–436, 2007.

[7] A. C. D’Ursi, L. Cavallaro, and M. Monga. On bytecode slicing and

aspectJ interferences. In FOAL ’07, pages 35–43, New York, NY,

USA, 2007. ACM.

[8] A. Egyed. A scenario-driven approach to trace dependency analysis.

IEEE Trans. on Software Engineering, 9(2), 2003.

[9] M. Fowler and K. Beck. Refactoring: Improving the Design of Exist-

ing Code. Addison-Wesley Professional, 1999.

[10] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements

traceability problem. In RE, pages 94–101. IEEE, 1994.

[11] J. Hannemann. Role-Based Refactoring of Crosscutting Concerns.

PhD thesis, Univ. Brit. Col., 2005.

[12] I. Ivkovic and K. Kontogiannis. Tracing evolution changes of soft-

ware artifacts through model synchronization. In ICSM ’04, pages

252–261, 2004.

[13] H. Jiang, T. N. Nguyen, and I. Chen. Incremental latent semantic

indexing for effective, automatic traceability link evolution manage-

ment. In ICSE’08, 2008.

[14] J. Jürjens. Secure Systems Development with UML. Springer, 2004.

[15] J. Jürjens. Sound methods and effective tools for model-based se-

curity engineering with UML. In ICSE, pages 322–331. IEEE/ACM,

2005.

[16] J. Jürjens. Security analysis of crypto-based Java programs using au-

tomated theorem provers. In ASE, pages 167–176. IEEE/ACM, 2006.

[17] J. Jürjens and Y. Yu. Tools for model-based security engineering:

Models vs. code. In ASE. IEEE/ACM, 2007.

[18] D. Kirscheneder. Method for comparison of Java implementations

and UML models. Technical report, TU Munich, 2006.

[19] C. W. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183,

June 1992.

[20] R. Laddad. Aspect Oriented Refactoring. Addison-Wesley Profes-

sional, 2006.

[21] T. Mens and T. Tourwe. A survey of software refactoring. TSE,

30(2):126–139, 2004.

[22] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion

models: Bridging the gap between design and implementation. TSE,

27(4):364–380, 2001.

[23] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause. Rule-

based generation of requirements traceability relations. Journal of Sys-

tems and Software, 72(2):105–127, 2004.

[24] Y. Yu, N. Niu, B. Gonzlez-Baixauli, W. Candillon, J. Mylopoulos,

S. Easterbrook, J. C. S. do Prado Leite, and G. Vanwormhoudt. Tracing

and validating goal aspects. In RE’07, pages 53–56. IEEE, 2007.

[25] Y. Yu, Y. Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, and

J. C. S. do Prado Leite. Reverse engineering goal models from legacy

code. In RE’05, pages 363–372, 2005.

10

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
