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Abstract—Software engineers working in large projects must
navigate complex information landscapes. Change Impact Analy-
sis (CIA) is a task that relies on engineers’ successful information
seeking in databases storing, e.g., source code, requirements,
design descriptions, and test case specifications. Several previous
approaches to support information seeking are task-specific,
thus understanding engineers’ seeking behavior in specific tasks
is fundamental. We present an industrial case study on how
engineers seek information in CIA, with a particular focus on
traceability and development artifacts that are not source code.
We show that engineers have different information seeking behav-
ior, and that some do not consider traceability particularly useful
when conducting CIA. Furthermore, we observe a tendency for
engineers to prefer less rigid types of support rather than formal
approaches, i.e., engineers value support that allows flexibility
in how to practically conduct CIA. Finally, due to diverse
information seeking behavior, we argue that future CIA support
should embrace individual preferences to identify change impact
by empowering several seeking alternatives, including searching,
browsing, and tracing.

Index Terms—information seeking; change impact analysis;
traceability; safety-critical systems; case study.

I. INTRODUCTION

The information landscape of a large Software Engineering
(SE) project is complex. First, the sheer volume of informa-
tion that developers maintain in large projects threatens the
overview, as tens of thousands of development artifacts are
often involved. Consequently, the scale of the information
landscape in large SE projects typically exceeds the individual
developer’s comprehension [1].

Second, developers work collaboratively on heterogeneous
development artifacts stored in various software repositories
such as source code repositories, requirements databases,
test management systems, and general document management
systems. Often the databases have poor interoperability [2],
thus they turn into “information silos”, i.e., simple data storage
units with little transparency for other tools.

Third, as source code is easy to modify, at least when
compared to accompanied hardware, the software system
under development continuously evolves during a project. Not
only does the source code evolve, but the related development
artifacts should also co-evolve to reflect the changes, e.g.,
design documents and test case descriptions might require
continuous updates [3]. Large software systems might evolve
for decadesintroducing both versioning problems and obsolete

information. Consequently, staying on top of the information
landscape in large SE projects constitutes a significant chal-
lenge for both developers and managers [1].

This is particularly challenging in the domain of safety-
critical systems, where mandatory practices, such as Change
Impact Analysis (CIA) rely on navigating the information
landscape. If the project environment does not provide suffi-
cient support for navigation and retrieval, considerable effort is
wasted on locating the relevant information [4]. Unfortunately,
large SE projects are threatened by information overload, i.e.,
“a state where individuals do not have the time or capacity
to process all available information” [5]. Consequently, an
important characteristic of a software project is the findability
it provides, i.e., “the degree to which a system or environment
supports navigation and retrieval” [6].

Poor findability has several negative consequences in SE
projects. Freund et al. reported that software engineers spend
about 20-30% of their time consulting various software repos-
itories, but still often fail to fulfil their information needs [7].
Dagenais et al. showed that poor search functionality in
information repositories constitutes an obstacle for newcomers
entering new software projects [8]. Bjarnason et al. discovered
that the sheer volume of information threatens the align-
ment between requirements engineering and testing in large
projects [9].

In this paper, we focus on CIA of development artifacts
that are not source code. We conduct a case study with two
units of analysis on software engineers’ information seeking
in CIA. This contribution is part of an ongoing series of works
to support CIA in a safety-critical context, thus it should be
interpreted along with our previous publications1 [11], [10].
We show that engineers seek information in several ways, in-
cluding searching and browsing databases, asking colleagues,
and consulting formal trace links. With a particular forcus
on traceability and CIA, we report that engineers perceive
the usefulness of trace links differently. Our study identifies
two concrete improvement areas for the case company: 1)
improving the issue tracker, and 2) developing information
policies for the document management systems. Finally, our
empirical findings contribute to the understanding of engi-

1We share the same interviewees and use the same IDs as in [10]: A-N
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neers’ information seeking in a specific task, thus supporting
development of task-specific search solutions [7], [12].

The rest of this paper is organized as follows. Section II
introduces CIA, traceability, and related work on information
seeking in SE. Section III presents CIA in the context of the
case company. Section IV describes the research method, and
Section V presents our findings. Finally, Section VI shares the
main threats to validity, and Section VII concludes the paper
and outlines future work.

II. BACKGROUND AND RELATED WORK

This section reports the fundamentals of CIA and discusses
how the literature proposes traceability as a key solution. We
also present related work on information seeking in SE.

A. Change Impact Analysis and Traceability

A popular definition of CIA is provided by Bohner, stating
that CIA is “identifying the potential consequences of a
change, or estimating what needs to be modified to accom-
plish a change” [13]. CIA can be described as a cognitive
process of incrementally adding items to a set of candidate
impact, which is known to be both tedious and error-prone
for large systems [14], [15]. However, as CIA is mandated by
most safety standards, companies aspiring to release certified
software systems must comply.

Most CIA work in industry is manual [16], although the
importance of improved CIA tools has been highlighted in
research for a long time [17]. Also, two recent reviews of
scientific literature shows that most research on CIA is limited
to impact on source code [15], [18]. However, as stated in
Lehnert’s review: “more attention should be paid on linking
requirements, architectures, and code to enable comprehensive
CIA” [15, pp. 26]. Especially in safety-critical development, it
is critical to also analyze how a change to a software system
affects artifact types that are not source code, e.g., whether
any requirements are affected, or which test cases should be
selected for regression testing.
Traceability has been discussed in SE since the pioneering
NATO Working Conference on SE in 1968. Randall argued
that a developed software system should “contain explicit
traces of the design process” [19]. Boehm mentioned traceabil-
ity as an important contemporary SE challenge in a state-of-
the-art survey from 1976, and predicted traceability to become
a future research trend [20]. Concurrently, industrial practice
acknowledged traceability as a vital part of high-quality soft-
ware, and by the 1980s several development standards had
emerged that mandated traceability maintenance [21].

In the 2000s, the growing interest in agile development
methods made many organizations downplay traceability. Ag-
ile developers often consider traceability management to be
a burdensome activity that does not generate return on in-
vestment [22]. Still, traceability remains non-negotiable in
development of safety-critical systems. Safety standards such
as ISO 26262 in the automotive industry2 and IEC 61511 in the

2ISO 26262-1:2011 Road vehicles – Functional safety

process industry sector3 explicitly requires traceability through
the development lifecycle.

While traceability management is costly, several studies
show that access to trace links support developers’ CIA.
Access to traces can support developers with CIA [23], [24],
which is often often used to motivate mostly traceability efforts
within SE projects. De Lucia et al. state that trace links help
engineers to understand relationships and dependencies among
development artifacts, and that when a feature needs to be
changed “traceability helps to locate the pieces of design, code
and whatever needs to be maintained” [25, pp. 1]. Cleland-
Huang et al. proposed a solution for event-based traceability,
connecting development artifacts through publish-subscribe
relationships [3], i.e., when an artifact is changed, the sub-
scribers are informed. Event-based traceability is an example
of work on how to bring practical value to stored trace links,
another example is our previous work on ANONYMIZED
FOR REVIEW [?]

B. Information Seeking in Software Engineering

As SE work is knowledge-intensive, quick and concise ac-
cess to information is essential. Although information seeking4

has been the target of previous research in SE, most work on
engineers’ information seeking behavior relate to engineering
disciplines in general, e.g., the comprehensive review by King
et al. [26]. One observable behavior is the “principle of least
effort”, i.e., that engineers prefer oral/internal communication
over written/external, typically explained by faster access.
Somewhat more recently, Hertzum and Pejtersen conducted a
multiple case study on information seeking in two engineering
organizations: Novo Nordisk and Danfoss [27]. They found
that engineers intertwine looking for informing documents
and looking for informed people; One often leads to the
other. Also, they found that engineers often interact socially
to get information without engaging in explicit searches. They
conclude that not only document retrieval must be supported,
but also searching for people is important.

SE has some unique characteristics compared to general
engineering disciplines, thus several researchers have targeted
information seeking behavior of software engineers. Hertzum
did an observational study encompassing 16 meetings and in
total 580 instances of information seeking [28]. He argues
that “principle of least effort” does not apply to software
engineers because of quick information access; Instead, the
main reason is that software engineers have more trust in
close-by, internal information sources. Freund et al. conducted
an empirical study of software consultants to understand how
contextual factors shape the information seeking behavior of
software engineers [7]. They found that that how engineers’
seek information is shaped by the variety of document types
and information channels, and presented a four-level model
of their work context, which they consider a prerequisite for
developing task specific search solutions. Grzywaczewski and

3IEC 61511-1 ed. 1.0 Safety Instrumented Systems for the Process Industry
Sector

4Also referred to as: information access, findability, and enterprise search.



Iqbal also did work on task specific search systems [12],
stressing the need to first perform detailed analyses of how
software engineers seek information. Milewski conducted a
survey of 84 software engineers to explore cultural differences
regarding information seeking between the US, Europe, East
Asia, and India/Pakistan [29]. He found a general tendency
for software engineers to favor reading documentation for
tasks where the goal is to seek factual information, but
asking colleagues is preferred when seeking information to
diagnostic tasks. Furthermore, Milewski reports to differences:
1) engineers in the India/Pakistan group were more inclined to
ask colleagues for factual tasks, and 2) Europeans more often
study documentation for diagnostic tasks.

Several studies have targeted information seeking in soft-
ware maintenance. One example is the six-step model of
developers’ information seeking by Buckley et al. [30]. Their
model suggests that developers seek information in a highly
iterative fashion, both skipping steps and returning to previous
steps, as they adapt to the task at hand. In an observational
study of 17 developers over 25 hours, Ko et al. identified 334
instances of information seeking and 21 different information
needs [31]. “Submitting a Change” is one of seven clusters of
information needs reported, but it does not cover CIA. Ko et al.
also studied how developers seek information when correcting
issues [32]. However, neither this study addresses CIA, and in
contrast to our work the focus is on navigating source code.
While Ko et al.’s work is primarily on the source code level,
their early application of Information Foraging Theory (IFT)
in SE created a foundation for later pieces of related work.

IFT explains and predicts how people navigate in response
to the information in their environment [33]. The theory
posits that users adapt their search strategies to maximize
gains of valuable information per time unit. The central
mechanism in IFT is information scent: the perception of
value of information sources based on “proximal cues”, e.g., a
code comment, a hyperlink, or a document ID. Lawrence and
colleagues have repeatedly used IFT in software maintenance,
e.g., to successfully predict how developers navigate source
code when debugging [34]. Again, the research is focused on
source code, and they explicitly state non-code artifacts as a
direction for their future work. Niu et al. also explored IFT in
software maintenance, more specifically in vetting of traceabil-
ity matrices containing trace links between requirements and
source code [35], rather similar to our focus on CIA. They
studied two foundational optimality models in IFT: 1) making
optimal decisions on what information to consume and what
to ignore, and 2) finding the optimal time to seek information.
From our perspective, Niu et al.’s most important finding is
that the six student subjects in their experiment explored more
information scents than what the optimal model suggests, and
that they revisited the same scent several times.

A number of studies on SE information seeking has targeted
issue reports, closely related to our study as the CIA process in
the case company is tightly connected with the issue tracker
(see Section III). The number of incoming issue reports in
large software engineering projects can be overwhelming, and

particularly research on duplicate detection has received much
attention. Runeson et al. pioneered issue duplicate detection
using standard information retrieval techniques [36]. Several
researchers have done similar work, including a replication by
Borg et al. that discusses improving findability in the issue
tracker using the open source software search library Apache
Lucene [37]. Also in issue tracking there is research available
on task specific search solutions, e.g., Baysal et al. developed
customized issue dashboards based on a grounded theory study
of developers’ comments [38].

As presented in this section, tool support for information
seeking is often highly task-dependent, which is also em-
phasized in research on recommendation systems in SE [1].
Hence there is a need for studies that investigate specific
tasks. Our study contributes by specifically investigating such
an important task: software engineers’ non-code information
seeking in CIA.

III. CASE DESCRIPTION

The case company develops safety-critical industrial au-
tomation systems. The system under study has its roots in the
1980s and fulfil the IEC 61511 standard via Safety Integrity
Level (SIL) 2 certification, according to the IEC 61508 stan-
dard5. The developed software system must be of high quality,
therefore all changes to source code have to be analyzed
before committing. Moreover, detailed system documentation
is maintained, mapped to the vertical abstraction layers in
the V-model. The projects follow a rigid development process
with hundreds of collaborating engineers distributed globally,
while the two main development sites are in Sweden and India.
The software system contains over one million lines of code,
dominated by C/C++ and some extensions in C# and VB.

Prioritized features originating from various customers (and
sometimes pre-ordered feature requests) are incrementally
added and extensively tested. When developing new features,
and when fixing issues related to existing features, several
changes are made. When the development is finished, the
development organization needs to present a safety case for an
external assessor, demonstrating that the system is acceptably
safe for a given application in a given operating environment.
The set of documented CIA analyses is a crucial component
of the safety case. Therefore, the safety engineers at the case
company have developed CIA report template (cf. Table I),
containing questions that must be answered for each CIA, to
support the safety case in relation to the IEC 61508 safety
certification. The developers use this template to document
their CIA before committing any source code changes.

The CIA process is tightly connected with the issue manage-
ment process, as all changes to formal development artifacts
require an issue report in the issue repository. All completed
CIA reports are stored in the issue tracker as attachments to
issue reports. Developers typically access the issue tracker
using a simple web interface. Other important components

5IEC 61508 ed 1.0, Electrical/Electronic/Programmable Electronic Safety-
Related Systems



TABLE I
THE CIA TEMPLATE USED IN THE CASE COMPANY, FIRST PRESENTED BY

KLEVIN [39].

Change Impact Analysis Questions
1 Is the reported problem safety-critical?
2 In which versions/revisions does this problem exist?
3 How are general system functions and properties affected by the

change?
4 List modified code files/modules and their SIL classifications,

and/or affected safety safety related hardware modules.
5 Which library items are affected by the change? (e.g., library

types, firmware functions, HW types, HW libraries)
6 Which documents need to be modified? (e.g., product require-

ments specifications, architecture, functional requirements speci-
fications, design descriptions, schematics, functional test descrip-
tions, design test descriptions)

7 Which test cases need to be executed? (e.g., design tests, func-
tional tests, sequence tests, environmental/EMC tests, FPGA sim-
ulations)

8 Which user documents, including online help, need to be modi-
fied?

9 How long will it take to correct the problem, and verify the
correction?

10 What is the root cause of this problem?
11 How could this problem been avoided?
12 Which requirements and functions need to be retested by the

product test/system test organization?

in the information landscape are the Document Management
System (DMS), the source code repository (also containing
test code), and the intranet

IV. METHOD

Four research questions quide this study, all of them studied
in the context of identifying change impact as part of corrective
software maintenance, i.e., resolving open issue reports:

• RQ1. How is traceability used in CIA?
• RQ2. What CIA support is available in the case company?
• RQ3. What information seeking behaviors exist in CIA?
• RQ4. How do engineers conclude a CIA as satisfactory?
We conducted a multiple unit industrial case study since

the studied phenomenon could not be separated from its
context [40]. The case under study is the CIA activity, and
two development teams constitute the units of analysis: Unit
Sweden and Unit India. In addition, we included three senior
engineers that do not belong to any teams, referred to as
Senior Experts. Figure 1 shows an overview of the study.
Four researchers iteratively (step 1) designed the case study
and documented it in a case study protocol. We created an
interview guide6 for semi-structured interviews to be able to
ask both closed and open-ended questions. We asked open
questions in the beginning and end of the interviews, according
to the time glass interview model [40]. Now we analyze a
subset of the questions asked: Pre2 e)-g) in the interview guide.

The data collection (step 2) consisted of interviews in
Swedish or English, for confidentiality reasons conducted
by a single researcher. The same researcher transcribed all
interviews word by word (step 3) and sent them back to

6http://serg.cs.lth.se/fileadmin/serg/ImpRec EvalStudy/

Fig. 1. Overview of the study. Smileys depict the number of researchers
involved in each step.

the interviewees for validation (step 4). We interviewed 14
engineers, referred to as ‘Int A-N’, of whom 10 are developers
that work with source code. More specifically, in Sweden we
interviewed: one R&D manager, one safety engineer, three
senior developers (incl. the team leader), and one junior
developer, and in India: one product manager, one technical
manager, four senior developers (incl. the team leader), and
two junior developers. As a preliminary analysis (step 5), the
transcripts were copied into a spreadsheet structured according
to the interview guide, and longer answers were divided into
smaller chunks. The spreadsheet was then cleaned (step 5.1)
to remove redundancy of spoken language, as well as non-
informative pieces7.

To mitigate researcher bias, the cleaned chunks were an-
alyzed using an exploratory analysis approach by an inde-
pendent researcher, i.e., a researcher that had not been part
of the previous steps. The analysis was performed in three
substeps for each question of the survey. First, the cleaned
chunks for each question were analyzed individually and
summarized (step 5.2) in a compact form. In this substep, the
independent researcher extracted the core perception of the Int,
e.g., the Int appeared knowledgeable about how traceability
was achieved in the project, and that a positive perception was
communicated. The independent researcher then quantified
(step 5.3) the extracted perception on a scale between 1-10
to provide a nuanced view. In the final analysis substep, the
results were synthesized (step 5.4) to draw conclusions based
on the qualitative data; First by the independent researcher,
then validated by the first author. Finally, we report our results
in this publication (step 6).

The qualitative analysis is inspired by grounded theory as
conclusions are compiled from the raw data. In contrast to tra-
ditional grounded theory, however, no traditional coding was
used; The raw data were already organized by the interview
design, i.e., naturally grouped or ‘coded’ by the interview
questions. As is essential in qualitative analysis, we have a
clear chain of evidence from conclusions to RQs down to
individual quotes given by the Ints.

7Examples include: ‘eh’, ‘like’, and ‘you know...’.



TABLE II
OVERVIEW OF RQ1. BLACK BOXES SHOW “VERY USEFUL”, STRIPED

BOXES “MODERATELY USEFUL”, AND WHITE BOXES SHOW “NOT USEFUL”.

V. RESULTS AND DISCUSSION

In this section we present our findings, organized per RQ.

A. Traceability and CIA (RQ1)

As the importance of traceability to CIA has been estab-
lished in several studies, we addressed it first in the interviews;
Our goal was to collect the Ints’ thoughts on the value of
traceability in CIA before influencing them with the rest of
our interview questions. As part of RQ1, we also determine
what types of trace links the engineers use in CIA.

Table II shows the perceived usefulness of traceability in
CIA. Three out of 14 Ints (A, E, G) regard traceability
as very useful. Int A praises the considerable efforts spent
on improving traceability in recent years (triggered by the
second edition of IEC 61508), including bidirectional trace
links often maintained in a new architecture modelling tool:
“when I started here 10 years ago we didn’t have a proper
architecture specification. Now we have two-way traces across
all levels in the V-model... acquired through much effort”.
He explains that the traceability information is complete, but
requests better tools for a subset of the traces, i.e., from
specific source code files to test specifications; those links are
currently maintained manually in a large spreadsheet (hereafter
called the ‘T-sheet’). Ints E and G both report that they trace
effectively using documents; specific tables (hereafter called
‘T-tables’) in Design Descriptions (DD) refers to Detailed
Design Descriptions (DDD), which in turn contains trace links
to individual requirements. Finally, the individual requirements
are mapped to the test specifications that verify them. While
Int E thinks the trace links are easy to find in the documents,
Int G prefers using the new architecture modelling tool.

Three Ints (F, I, M) state that traceability does not support
their CIA work. Int F explicitly complains that traces are
mostly inaccessible, thus not helpful for developers. While
he supports the new architecture modelling tool, he is very
critical about storing trace links in individual documents, i.e.,
the traditional way of storing trace links in the case company,
still used for parts of the system. Furthermore, Int F points out
that the tracing is obstructed by the missing interoperability
between the architecture modelling tool and the DMS: “We
had a better overview at my previous company, you searched
for documents directly in the modelling tool. Here you instead
find a doc-ID, search for it in the DMS... Find other references,
open a second document and then a third”. Int M prefers
to explore how previous issues were resolved rather than
investigating formally maintained traces.

Most Ints consider traceability somewhat helpful in CIA, or
do not have a strong opinion at all. Ints C and H use both trace
links stored in documents and a traceability matrix (hereafter
called the ‘T-matrix’) maintained for a specific part of the
product managed in Unit India. However, they have contrasting
views on the T-matrix’ trustworthiness: Int H trusts the trace
links, but Int C often accepts them although he questions their
completeness. Int J also uses the T-matrix in CIA, but mainly
to report which test cases to execute to verify changes. Int D
prefers to trace on a feature level rather than the more detailed
requirements level, although most traceability effort resides on
maintaining the fine-granular traces links. He mainly follows
traces stored in the architecture model, and only reluctantly
looks for traces in documents. On the contrary, Int K reads the
T-tables in DDDs to identify trace links. Ints L and N do not
value the formally maintained trace links much in their CIA, as
they primarily work will small components, i.e., staying on top
of their development and its documentation is not a problem:
“the [anonymized component’s document space] is not that
big. The requirements are very compact and to the point, so it’s
not difficult to navigate” (Int L). Finally, Int B, representing
a management perspective, argues that the latest revision of
IEC 61508 has made traceability more useful for CIA due
to the introduction of bidirectional traces. On the other hand,
he explains that the costs of traceability maintenance have
increased accordingly, but it is simply a price they must pay
to comply with the IEC 61508 standard.

As part of RQ1, we also explored more concretely what
types of trace links are used by engineers in CIA; Figure 2
depicts an overview of our findings. According to Int A,
the safety engineer, the prescribed process is the following:
Developers start from the source code and navigate to the
design level. For new parts of the system, developers locate
the related component in the architecture model (cf. bold line
in Figure 2) from which you find trace links to requirements
and V&V. For older parts of the system, i.e., not covered by
the architecture model, developers identify the source code
files in the T-sheet specifying the corresponding SIL and its
related DDs (cf. dashed line). From the DDs, the developer
finds trace links to requirements and test case specifications
(cf. V&V in Figure 2). Talking to Int E confirms that the T-
sheet is used to find change impact, and Ints D and G report
tracing via the architecture model.

Several Ints (D, G, H, K) mention also another trace link
path (cf. solid line): from the source code to the DDD. The
DDDs contain a T-table with trace links to the requirements,
and all requirements are mapped to test cases that verify them.
Ints in Unit India report that they map requirements to test
cases using a fairly new T-matrix for their part of the system
(cf. dotted line); it is considered useful but costly to maintain.
Finally, two Ints (B and E) explain that often they already
know the trace links by heart, thus they do not need to consult
any traceability information at all during the CIA.

Our answer to RQ1 is that engineers use several different
types of trace links in CIA (cf. Fig 2). However, the engineers
in the case study do not perceive the trace links as useful



Fig. 2. Overview of trace links used in CIA. Bold line: code-model-
ReqEng/V&V (Ints A, D, G). Dashed line: code-T-sheet-DD-ReqEng/V&V
(Ints A, E). Solid line: code-DDD-ReqEng-V&V (Ints D, G, H, K). Dotted
line: ReqEng-T-matrix-V&V (Ints C, H, J, K).

for CIA as one would expect (cf. Table II), given the widely
positive claims stated in previous work [25], [23], [24]; Since
the case company has spent considerable effort on traceability
in recent years, i.e., highly accurate bidirectional trace links
are maintained, we expected the engineers to value them more
in CIA. Thus, our results show that companies must actively
work on making stored trace links useful to engineers, simply
storing them in documents or databases might not be enough
to get return on investment (ROI).

Our study shows that some engineers prefer to conduct
CIA without consulting formal trace links. Especially the
interviewees in Unit India express that they can overview
their development context also without trace links, i.e., they
are responsible for their documents, and they know when
and how changes impact other artifacts. As components with
fewer dependencies are developed in Unit India, this comes
as no surprise: the challenge of CIA is amplified by increased
complexity [17]. Furthermore, we hypothesize that some de-
velopers consider the trace links to be more of a burden than
a support in the context of CIA. Although further research is
needed to support the claim, traceability maintenance is known
to be tedious [3], [25], and several Ints indicate that they
prefer to navigate in candidate change impact based on their
experience and system comprehension; more formal traces in
combination with a mandated process to manually investigate
them inevitably leads to additional work. Future research is
needed on how to customize cost-effective traceability that
is fit-for-purpose for CIA in an organization, resonating with
Cleland-Huang et al.’s first two goals for future traceability
research [41]: 1) trace links should support stakeholder needs,
and 2) the ROI from using traces should be adequate in relation
to the outlay of establishing it.

Regarding the types of trace links used in CIA, we notice
that forward tracing to the V&V side of the V-model domi-
nates; Although bidirectional traceability is maintained, no Int

TABLE III
OVERVIEW OF RQ2. BLACK BOXES SHOW “VERY USEFUL”, STRIPED
BOXES “MODERATELY USEFUL”, AND CIRCLES SHOW IMPROVEMENT

AREAS. WHITE BOXES MEAN NOT MENTIONED BY INT.

appears to navigate backwards from test case specifications to
design and requirements. Apparently, tracing backwards from
source code to design and requirements, and then forwards to
test cases, is the standard approach in CIA. This is somewhat
surprising, as developers in the same case company have
explained that they are less knowledgeable about require-
ments [?], and Int A explains that developers are primarily
skilled at navigating code: “seeking in the code base... the
developers tend to master the related tools well”. As they are
more comfortable navigating source code and test code, find-
ing requirements from the test side might be a possibility, i.e.,
from test code to their closely related test specifications and
then across the V-model to the requirements side. Future work
should further explore the potential of test-to-requirements
tracing in CIA, which represents a fairly unexplored type of
backwards tracing within traceability research.

B. Current CIA Support (RQ2)

In 12 out of 14 interviews we explicitly asked what kind
of CIA support was currently available (cf. Table III). Two of
the Ints (A and B) were clearly positive about the current
CIA support. Int A complimented the considerable efforts
in recent years to establish traceability from requirements to
the design model to the source code; According to him, the
trace links are maintained properly, and he stated: “our large
traceability effort should be useful [in CIA] now, otherwise
we have a problem”. Int B emphasizes the value of the formal
training provided for new employees, including an explicit
session on CIA as part of the change management training:
“you must master the tools we use, learn how we model the
design, our requirements structure... You must learn why we do
CIA, and what they should contain.” Moreover, Int B explains
that the organization supports informal knowledge transfer
to new employees from senior colleagues covering hands-on
work with development tools, e.g., working according to the
change management process in the source code repository and
tracing from the architecture modelling tool to requirements
and source code. Finally, Int B was confident that the practice
of conducting CIAs guided by a template (cf. Table I) ensures
comprehensive analyses of high quality.

The rest of the Ints expressed neutral opinions of the
CIA support. Three Ints (C, H, I) mention that the CIA



template supports the process. However, some of the Ints are
also slightly negative to the template: Int C considers it too
cumbersome for his part of the system, Int H no longer needs
the template as he already knows its content by heart (“how to
answer the questions is really in the back of my mind”), and
Int N stresses the importance of letting the template evolve.
Three of the neutral respondents (D, L, M) explain that there
are CIA guidelines available on the intranet, providing support
on how to fill in the template. Four Ints (J, L, M, N) appreciate
the support they received as new employees, e.g., Int M: “we
received some quality training, I’m equipped with how to
answer these questions” On the other hand, two Ints would
have preferred even more training, as they still rely too much
on senior peers when conducting CIA. Finally, Ints E and D,
both in Unit Sweden, stated that there is a small tool available
that allows users to write the CIA report using a form with
fixed input fields based on the latest template revision, and it
also runs some basic validity checks of user input.

In relation to RQ2, we found several types of support for
CIA. Apart from traceability, discussed in detail in RQ1,
engineers report CIA support from 1) training, 2) a CIA
template, 3) guidelines, and 4) a prototype tool. We notice a
tendency for the engineers to appreciate the less rigid types of
support rather than more formal approaches, i.e., the training
and the template is considered more useful than trace links
and tool support. Our interpretation is that the engineers prefer
support that allows them flexibility to conduct CIA as they see
fit-for-purpose, rather than strict instructions on how to follow
trace links, or to be forced into using a specific tool. On the
other hand, when it comes to tool support, the engineers have
very limited experience; Thus, we consider them less likely
to bring up tools as as either useful support to CIA or as an
important improvement area. We conclude that the absence of
CIA tool support in the case company is in line with what has
been reported as state-of-practice [16].

C. Information Seeking Behavior in CIA (RQ3)

We asked all but one Int about how the engineers seek in-
formation in relation to CIA, using a combination of open and
closed questions. The Ints commented on seven approaches to
seek information, as listed in Table IV.

Several information seeking options are standard practice
for the Ints: 1) reading documents, 2) asking colleagues, 3)
consulting traceability information, 4) searching in the issue
tracker, and 5) searching in the DMS. All but one Int seek
information by reading documents, at least sometimes; Five
Ints do it as part of most CIAs. Int L explains: “When
conducting CIA, documentation goes side by side. I keep local
copies of the documents, and check them whenever I need, for
example after working a long time with another component”.
Several Ints use local copies of documents, motivating change
alert systems such as suggested by Cleland-Huang et al. [3].

Although development in the case company is far from
agile, the people perspective is evident. Several Ints describe
CIA as a team effort in which asking colleagues is natural,
“especially for old parts with limited documentation or areas

TABLE IV
OVERVIEW OF RQ3. BLACK BOXES SHOW “ALWAYS/OFTEN”, STRIPED

BOXES “SOMETIMES”, AND WHITE BOXES “NEVER/RARELY”.

with dedicated specialists” according to Int B. Only Int H
never asks colleagues as part of CIA, motivated by her being
the most experienced engineer in the team.

Most Ints use traceability when seeking change impact; Five
Ints (A, B, G, H, K) report that it is routinely done (note
that Ints A and G also reported traceability as “very useful”
in RQ1). Ints report different ways to access trace links (see
Section V-A), and many find them useful. Int G uses trace
links not only to identify change impact, but also to identify
colleagues to ask further questions, supporting Hertzum and
Pejtersen’s finding: engineers’ intertwine document and people
searching [27]. Int D uses formal traces between requirements
and test cases, but does not at all like the T-sheet: “It is an
amoeba, I don’t know who is supposed to work with that –
I didn’t request it, I don’t use it”. Another reason for not
exploiting available traceability in CIA is expressed by Int L:
“I rarely refer to the formal trace links, as I already know them.
Also, for older parts of the system the traces are incomplete”.

All but two Ints search in the issue tracker, five Ints (C, D,
H, J, L) do it always or often. We discovered two different
search approaches; First, searching for a unique issue ID, i.e.,
simply extracting information from a known issue. Second,
exploratory searching, i.e., free-text searching, conducted by
most Ints. However, 4 Ints (D, G, L, M) explicitly complain
that the search feature of the issue tracker is inadequate. Ints
D and G complain that only text in the title is indexed, i.e., all
descriptive text and also critical information from crash logs
are completely missed. Int M thinks the search queries rarely
match the content in the titles. On the other hand, Int L thinks
too many results are returned and that skimming search results
in the issue tracker is hard. On the positive side, Int B likes
the filtering options in the tool.

The Ints typically search in the DMS as part of CIA, all
but three Ints do this at least sometimes and four do it for
most cases (A, C, E, G). We identified the same two distinct
types of searching as for the issue tracker: based on document
IDs for quick document extraction and exploratory searching.
Several Ints (D, E, G, L, M) frequently try exploratory free-
text searches, but they report mixed results. Int D estimates
that he does exploratory searching when working with older



parts of the system, maybe for every 10th CIA, in line with
a comment from the safety engineer: “exploratory searching
in the DMS belongs to the past, now you identify document
IDs in the architecture model and then just extract them”. Int
B shares his management perspective, explaining limited need
for exploratory searching: “Due to our static team structure,
developers know their respective areas and its documentation.
There is no need to search for additional documents”. Int
F expresses critical views on the current DMS searching,
sharing that too many results are returned. He asks for a
concrete information policy, especially regarding document
meta-information: “searching using a tag scheme would be
the key to improve our DMS”. Also Int L thinks too many
results are returned when searching, and states “after working
with Google you are not happy [with the DMS]”.

The two least used ways to seek information addressed
in this study both deal with browsing. Ints share contrasting
views on browsing the issue tracker: A, C, D, and I do it
always or often, while E, F, J, K, and L never or rarely do it.
We note that all Ints that typically browse the issue tracker are
senior engineers, suggesting that you need certain experience
to fully value the product history. Motivations for browsing
include: it is an efficient way to seek information using the
tool’s filtering feature (Int C) and it is a useful approach when
you are interested in a broad range of old issues (Int H).
Reasons not to browse the issue tracker include: it is tedious
(Int K), and as Int L puts it “I don’t browse the issue tracker,
I don’t like the look of the tool at all – Just get what you need
and get out”. Only one single Int (C) browses the DMS, but
he does it only for specific parts of the system. All others Ints
never or rarely browses the DMS, typically explaining that the
information structure is highly inaccessible.

We conclude RQ3 by stating that engineers have different
information seeking behavior; All seeking options are used
at least by one Int, and only one Int uses all options. The
identified variation in information seeking was expected, as
similar results have been reported in previous work [28],
[7]. Our finding highlights the importance of establishing
findability in a way that supports different seeking preferences;
People seek differently, thus the information landscape should
offer support accordingly.

Regarding oral communication, we find that it is common
information seeking approach in CIA, in line with general
expectations on engineers’ preferred information seeking [26];
The fact that dedicated specialists are sometimes consulted in
CIA supports Hertzum and Pejtersen’s recommendation to not
only support searching for documents, but also for people [27].
Our results do not support Milewski’s findings on cultural
differences between India and Europe [29]; Ints in Unit India
do not ask colleagues more often, and Ints in Unit Sweden
do not appear more inclined to read documents. One possible
explanation is that CIA is both a factual and diagnostic task,
thus comprehensive information seeking is needed, i.e., using
a combination of information sources.

Our recommendation to enable different ways to informa-
tion seeking is similar to our conclusions for RQ1 and RQ2.

Engineers request flexible support for information seeking in
CIA, i.e., instructions on what to do, but leaving freedom
to choose how to do it – analogous to the nature of both
safety standards and requirements specifications. Trace links
are used in CIA at least sometimes by most engineers, but
some prefer other ways of seeking change impact. This
supports Cleland-Huang et al.’s goal to develop traceability
that is fit-for-purpose for an organization [41]. However, our
recommendation goes beyond the organizational level: we
argue that traceability should be established in ways that let
individual engineers use it in accordance with their preferred
way of working. How this could be practically achieved needs
further research, but we envision maintenance of multifaceted
traceability information that could be accessed in different
ways for different purposes. We argue that making access to
trace links task-based is a promising approach, in the same
way as it has been beneficial in information retrieval [7], [12].

D. Satisfaction Assessment in CIA (RQ4)

When preparing the interviews, we selected (when appli-
cable) two previously completed CIA reports for each Int
representative of: considerable impact on non-code artifacts
(Type 1), and no impact at all on non-code artifacts (Type 2).
We asked the Ints to describe how they conducted the CIAs, as
a preparation for a question on satisfaction criteria; For the two
specific CIA reports, we asked 10 out of 14 Ints to describe
how they assured that they had reported all relevant change
impact in Type 1 and/or how they determined that there was
indeed no non-code change impact in Type 2.

Regarding both completeness of CIA reports of Type 1, and
the validity of reporting no impact in CIA reports of Type 2,
the interviewees rely much on experience. Three Ints (B, C,
F) consider it a a difficult problem. For Type 1, Ints J and M
claim that they already know the related documentation well
prior to the CIA. Int J remembers the content of DDs from
the formal document reviews in earlier phases. Int M explains
that he knows the contents of the test case specifications from
repeatedly running them: “Mostly I know which test cases are
there, I work a lot with them. For each delivery we run half
of the functional test cases”. Int E shares that when he feels
done with the CIA, he concludes with exploratory searching
for keywords to check if any new requirements have been
added to the involved documents.

Most Ints shared their views on reporting no non-code
impact in Type 2 CIAs. Again several Ints emphasize ex-
perience (A, B, E), e.g., Int B: “It’s probably very much
based on experience. You have the whole spectrum from minor
bug fixes to complex changes, that’s the problem. You must
have completed many CIAs to know when answering that ‘no
impact’ is reasonable.” Int B also adds “Our developers are
skilled, if they say no impact I trust them”. Other interviews
(C, H, M) confirm that ‘no impact’ is easy to conclude for
minor bug fixes, including variable initialization and renaming
and adding null pointer checks.

Int A explains that CIAs are mainly conducted by devel-
opers with expertise on the component, typically they have



both implemented the features and authored the accompanying
documentation. However, Ints A and D says that for old parts
of the system there is limited documentation, in particular no
DDs. Ints B and D both stress that DDs should not cover
the finest level of implementation details, Int D also says that
you conclude ‘no impact’ “when you feel that there are no
documents covering the area you are about to change. That is,
you don’t want to author a new document or you don’t think
the documents should cover this level of detail.”

Ints F and G share more hands-on approaches to assure that
‘no impact’ is correct. Int F searches the architecture model,
and also the related documents; He explains that he tries to
trace all the way to where the feature should be described,
and if he finds nothing he also asks colleagues. Nonetheless,
he adds “Either there was nothing to find, or I didn’t find
it” when motivating his Type 2 CIA. Int G also frequently
asks colleagues to conclude a Type 2 CIA, but for the specific
CIA he quickly determined that the change was limited to a
simulated environment tailored for a specific customer: “This
change was mostly politics [sic] to make the simulator more
like the real product”.

Concluding that a CIA report is complete is analogous to
satisfaction assessment as described by Holbrook et al. [42],
i.e., checking that a set of trace links encompasses every
relationship that should be present. They state that satisfaction
assessment is mainly done manually, which is corroborated by
our study; We show that engineers mainly rely on experience
when doing satisfaction assessment, a finding that opens up op-
portunities for complementary tool support. Furthermore, our
study shows that satisfaction assessment is not only important
for entire traceability matrices, but also for smaller tracing
efforts such as CIA. Also Niu et al.’s work on information
seeking when vetting traceability matrices is related to this
RQ [35], but their work focused on confirming candidate trace
links rather missing links.

VI. THREATS TO VALIDITY

This section discusses threats to validity in line with Rune-
son et al. [40], with focus on construct, internal, external
and reliability issues. Construct validity reflects how well the
phenomenon under study is captured. The main researcher in
the study has earlier work experience in one of the studied
sites, and spent more than a month in the other site for
the study to make sure that the constructs were well under-
stood (prolonged involvement). Regarding the constructs under
study, our scope of focusing on non-code artifacts may be too
restrictive. However, interviewees were able to add additional
aspects in the open interviews, although we did not specifically
ask for code aspects. Further, the list of seeking options might
be too limited, but again, there was the option to add more.
The results indicate that the variations are large within the
options we proposed, and we do not conclude anything specific
about the seeking patterns. Cultural differences might also lead
to bias to answers in the two units. However, based on the
analysis, we do not see any of the expected cultural differences

influence the outcome. Probably, the company culture is as
strong as the local culture.

Internal validity relates to causal relationships. We do
not claim any such relations, only hypothesize correlations
between factors. For example, in different patterns between
sites, we add complexity of tasks performed as a hypothetical
difference. This is also mitigated by the researcher’s prolonged
involvement. When it comes to external validity, this is related
to generalization of the findings outside the studied setting. We
do not aim for generalizability beyond the domain of safety-
critical systems, since the demands for CIA is regulated for
this domain. However, since the variation was large within one
company, even within a regulated context, we are confident
that variations between companies may be similar. Validation
studies are always appreciated, for example including other
roles or companies, but we consider this be further work.

The reliability of the study is related to the dependence
on specific researchers. Actions taken in this case to mitigate
threats to reliability include to apply established research
practices to conduct interviews based on a scheme, keep audit
trail of data, including recording, transcription, independent
analysis, traceability of conclusions etc. Specifically, as a
qualitative study focuses on understanding a phenomenon –
in our case information seeking behavior in CIA – other
researchers might find interest in other details, but the core
findings are on a quite high level of detail.

VII. CONCLUSION

Supporting findability in Software Engineering (SE)
projects is essential. The most useful tool support is often task
dependent, thus researchers must first understand engineers’
information seeking behavior in specific tasks. We conducted
a case study with two units of analysis on how engineers seek
information as part of Change Impact Analysis (CIA), known
to be a knowledge-intensive task involving a cognitive process.

We showed that engineers use several different types of trace
links in CIA (RQ1). However, all engineers do not consider
traceability particularly useful when conducting CIA, in con-
trast to the generally positive claims in previous studies [25],
[23], [24]; Some engineers are indifferent, i.e., they do not
recognize a need for trace links in their part of the information
landscape. We conclude that the existence of trace links is
not enough to provide support for CIA – companies should
make an effort to also make traceability accessible. Although
more research is needed, we hypothesize that engineers often
consider trace links to be more of a burden than a help.

Apart from traceability, we identified a handful of other
approaches to support CIA in the case company (RQ2): a
dedicated CIA template, formal training, written guidelines,
and a prototype tool. Thus, in line with previous work [16],
we confirm that CIA is mainly a manual activity in industry.
Moreover, we notice a tendency for the engineers to prefer
less rigid types of support more than formal approaches.
We believe that engineers prefer support that leaves them
flexibility to conduct CIA as they see fit-for-purpose, rather



than a regulated process on how to trace impact, or to be
forced into using a specific tool.

We showed that engineers have different information seek-
ing behavior in CIA (RQ3). The varied individual prefer-
ences stress the importance of supporting different seeking
approaches, such as both searching and browsing in databases,
and following trace links. All but one interviewee seek infor-
mation by asking colleagues, resonating with previous research
stating that engineers are inclined to oral communication [26]
and intertwine looking for documents and people [27].

We identified two opportunities to improve findability in
the case company. First, several interviewees expressed clearly
negative views on the old-fashioned issue tracker in use;
Improving it could be an important investment, e.g., by in-
tegrating full-text indexing of issue reports [37]. Second, only
one single interviewee browses the document management
system, the others complain about its information structure.
Thus, one basic way to seek information, i.e., browsing,
appears to be mostly unused in the case company. Improving
the browsing user experience, combined with developing an
information policy in close collaboration with the engineers
intended to use the database, could improve findability – not
only for CIA, but for SE in general.

Finally, we found that engineers’ CIA satisfaction assess-
ment, i.e., concluding that all relevant change impact has
been identified, primarily is based on experience and gut
feeling (RQ4). This finding is in line with previous work
on satisfaction assessment of traceability matrices, reported
to be mostly a manual activity [42]. As development that
mandate CIA is typically safety-critical, gut feeling appears to
be an insufficient approach. We have previously proposed tool
support for CIA satisfaction assessment [10], but future work
is needed to explore how such tools can be introduced without
reducing engineers’ flexibility as to how they conduct CIA. If
anything, our study points out individual variations of how
engineers prefer to work in CIA; Future CIA support would
benefit from enabling different ways of working, rather than
shoehorning engineers into a single impact seeking process.
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