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Summary

Modern software systems become more complex and the environment where
these systems operate in become more and more dynamic. The number
of stakeholders increase and the stakeholders’ needs change constantly as
they need to adjust to the constantly changing environment. A consequence
of this trend is that the average number of requirements for a software sys-
tem increase and change continually.

Requirements engineering is the process in the software development
life-cycle that deals with specifying the stakeholders’ needs (in require-
ments) and managing the requirements during the whole software develop-
ment life-cycle. So, in contrast to the classical way of thinking, that require-
ments engineering is a up front activity, we see requirements engineering
as a life-cycle wide activity.

In modern software engineering the requirements engineering process
needs to deal with the first (Continuing Change) and second (Increasing
Complexity) law of software evolution defined by Lehman [Lehman, 1998;
Laszlo A. Belady, 1976]. These laws state that 1) software systems must
continually be adapted to new stakeholder requirements or changed envi-
ronments, else they become progressively less satisfactory, and 2) software
systems that evolve, become more complex due to these new or changed
requirements.

Problem
In this research project, we concentrate our work on managing the require-
ments evolution process. Our main goal is to answer the question: How can
we develop a requirements management environment to improve the man-
agement of requirements evolution?

We started this research by identifying the problems companies face
with respect to requirements engineering in general, and requirements
management in specifically. We did that by conducting an inventory at
the industrial partners of the MOOSE and MERLIN projects. In particu-
lar, we concentrated our research on outsourcing and multi-site projects
and focussed on the specific problems these projects face. For example, we
studied an industrial case study at Logica, which focussed particularly on

xv



xvi SUMMARY

developing embedded software systems in an outsourcing context, and a
tool developed by Philips, called SOFTFAB, which is designed for support-
ing distributed software engineering.

The case studies confirmed that monitoring requirements satisfaction
is a major problem in practice. Requirements change continuously making
the traceability of requirements hard and the monitoring of requirements
unreliable. Subsequently, it becomes impossible to manage and monitor the
progress of the requirements within the software development life-cycle:
are the requirements already covered in the design, and are they covered
in the test cases? Ultimately, this can lead to systems that do not comply
to the requirements of the stakeholders.

Results
As a solution, we developed a framework, called RES (Requirements En-
gineering System) that structures the process of requirements evolution.
This framework defined the three main processes relevant for managing
requirements evolution: 1) the interaction with stakeholders, 2) the con-
sistent processing of changes, and 3) the presentation of information using
views.

Next, we developed a methodology, called MAREV (a Methodology for
Automating Requirements Evolution using Views) that improves the trace-
ability and monitoring of requirements. This methodology covers all three
processes defined in the RES framework and consists of 7 steps.

We have implemented the MAREV methodology in a tool suite, called
REQANALYST. It uses Latent Semantic Index (LSI), an Information Re-
trieval (IR) technique to recover the traceability links of the requirements
with other work products produced in the development life-cycle. This
traceability information is used to generate “requirements views” that help
monitoring and managing the requirements. Finally, our MAREV method-
ology is applied in several academic and industrial case studies, which re-
sulted in several lessons learned.



Chapter 1
Introduction1

This chapter introduces a research project concentrating on im-
proving requirements management. The research project starts
with identifying the problems companies face with respect to re-
quirements engineering in general, and requirements manage-
ment in particular. We learned that monitoring requirements sat-
isfaction is a major problem in practice. Requirements change
continuously, making the traceability of requirements hard and
the monitoring of requirements unreliable. In this chapter we ex-
plain the problem of managing requirements evolution using an
example from industry. Then, we define the objective for this re-
search project and finally present a roadmap for this research
project and how to tackle this problem.

1.1 Managing Requirements Evolution
Requirements engineering is the process of analyzing and documenting the
intended functionality of a software system. Although often thought of as
an upfront activity in the construction of a software system, it is in fact
a life cycle wide activity. To accommodate this, we need a requirements
engineering process that is properly integrated into the wider system de-
velopment process [Finkelstein, 2004].

The most important aspects for realizing a life cycle wide requirements
engineering process are the interaction with involved actors and the evolu-
tion of the system. With evolution we primarily mean the changes we need
to deal with during the development of a system, e.g., after the first release.
The term “changes” is very broadly defined; it includes new environments,

1This chapter is based on: Marco Lormans. Monitoring requirements evolution using
views. In Proceedings of the 11th European Conference on Software Maintenance and
Reengineering, Amsterdam, The Netherlands, March 2007
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2 INTRODUCTION

changing expectations, emergent properties, all affecting the requirements
of the system.

As an example, in Chapters 3 and 5, we will encounter a traffic moni-
toring system. Between two releases of this system, more than 500 require-
ments were significantly modified, and around 80 entirely new require-
ments were identified. As is often the case, many of these requirements
changes originate from increased insight and understanding of the prob-
lem domain, rather than from new functionality that is to be added to the
system at hand.

During the whole lifetime of the system, all changes (including changes
to requirements) need to be processed and synchronized among all stake-
holders to keep the development activities consistent. The different per-
spectives (views) on the system not only need to be combined at the start of
development, this harmonization is a continuous activity during the whole
life-cycle. Furthermore, the changes and the progress need to be monitored.

This monitoring of requirements concerns the evolution of the require-
ments and makes sure the whole set of requirements stays consistent, as
well as the relations between requirements and other work products such
as design decisions, and test cases.

1.2 Problem Statement

Requirements evolve during the development life cycle as a result of volatil-
ity and continuous change. If not managed properly, this can cause in-
consistencies, which again can lead to time-consuming and costly repairs,
such as requirements that are not implemented in the final release of the
system. Current requirements management tools support this evolution
of requirements insufficiently, as we will see in Chapters 2 and 3. Fur-
thermore, requirements management (including tracing and monitoring
requirements) is difficult, time-consuming and error-prone when done man-
ually.

Research Hypothesis An automated requirements management environment,
supported by a tool, will improve requirements evolution with respect to
keeping requirements traceability consistent, realizing reliable require-
ments monitoring using views, improving the quality of the documentation,
and reducing the manual effort.
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1.3 Objectives
In the previous section we have discussed the problem we want to tackle in
this thesis and formulated a hypothesis. To address the problem stated in
the previous section, we need to answer the following question:

RQ0 How can we develop a requirements management environment to im-
prove the management of requirements evolution?

To answer this main research question, we decompose this main prob-
lem into four smaller problem areas, each corresponding to a sub-question
that we will tackle in this thesis.

1.3.1 Requirements Evolution in Practice
As we already pinpointed in the problem statement, requirements evolu-
tion is unavoidable in practice. Managing this requirements evolution is
hard. Most companies have no structured approach for dealing with re-
quirements evolution. They simply use an ad-hoc strategy for dealing with
this issue. For small projects this does not have to lead to problems, if one
person can oversee the whole system. For big projects this requirements
evolution will likely lead to unwelcome problems.

In practice, it often happens that functionality is missing or that func-
tionality not documented in the requirements specifications, is implemented
in the system. We suspect that one of the causes for this is the evolution
of requirements. As the requirements are volatile, the functionality de-
scribed in the system specification is instable and is exposed to constant
change. We would like to know what the impact of requirements evolution
is in practice. In this thesis we seek to better understand the approaches
currently used in requirements management, and the problems that arise
from requirements evolution. This leads to our first sub-question:

RQ1 How is requirements management currently done in practice and what
is the impact of requirements evolution?

1.3.2 Requirements Monitoring and Views
Monitoring the evolution of requirements is necessary to avoid unexpected
issues in the system life-cycle. Monitoring of requirements is typically done
by capturing specific information about the requirements in views. The
term “view” is often used in the area of software engineering, especially in
the area of requirements engineering. Views are generally introduced as a
means for separation of concerns [Nuseibeh et al., 1994; Kruchten, 1995]



4 INTRODUCTION

and mostly represent a specific perspective on a system. This perspective
is often a subset of the whole system to reduce the complexity.

For example, each stakeholder is interested in a different part of the
system. This stakeholder can also be a developer, as he/she is often also
only interested in a small part of the complete system. The perspective a
view represents can also be an abstraction of the system giving an overview
of the whole system without too many details.

A “requirements view” on a system or development process offers a per-
spective on that system in which requirements assume the leading role [Nu-
seibeh et al., 1994]. For example, a view can describe project progress in
terms of testing; showing the requirements that have been successfully
tested, in terms of design; showing the requirements that resulted in a de-
sign decision), or in terms of coding; showing the requirements that were
actually implemented.

Requirements views are essential for successful project management, in
order to monitor progress. However, there is no general agreement on what
constitutes a requirements view, and what information it needs to contain.
This leads us to our second research question:

RQ2 Which views do we need to support the process of monitoring require-
ments evolution?

1.3.3 Requirements Traceability and Traceability Reconstruction
In order to reconstruct requirements views from project documentation we
need traceability support. For example, if we want to show which require-
ments are covered by a test case, we need to relate each requirement to at
least one test case. Traceability support ensures that the requirements will
be linked to other work products such as test cases.

In current practice managing traceability support is hard. Within many
projects traceability is not implemented. If it is considered, it is often done
manually. Today’s tools are insufficient to support the traceability activi-
ties.

This leads to our third sub-question:

RQ3 How can we automate the reconstruction of requirements traceability
to support requirements evolution?

1.3.4 Requirements Evolution and Global Software Development
Requirements management is especially important when large software
systems with a long life-cycle are concerned. They are often based on pre-
viously released products and much software is reused and/or extended.
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Besides this, these large software systems are being developed by many dif-
ferent teams on different physical locations. This so called global software
development is introduced by many companies and this trend is expected
to grow for the coming years.

This trend of global software development and outsourcing causes that
requirements management becomes even harder to organise and imple-
ment in a project. This leads to our final sub-question:

RQ4 What is the impact of global software development on the management
of requirements evolution?

1.4 Research Methodology and Evaluation
The research, aimed at addressing the four questions just raised, was initi-
ated as part of an international research project consisting of a consortium
containing academic partners and industrial partners. The main reason for
this is the fact that software engineering can be considered as an applied
science. Most of the previously described problems typically can best be
identified in industry.

The research described is done as part of two ITEA projects, MOOSE1

and MERLIN2. MOOSE aims at improving software quality and develop-
ment productivity for embedded systems, by adapting, tailoring and com-
bining technologies to fit a specific – industrial – situation. MERLIN aims
at developing software systems in collaboration.

This research follows a number of steps:

• In order to further explore the problem domain, we carry out a survey
among the partners of the MOOSE and MERLIN projects. Further-
more, we conduct a descriptive case study in the area of requirements
management in an outsourcing context.

• With this increased insight in the main problems in the area of re-
quirements management as starting point, we define a method for
supporting requirements management, for which we develop tool sup-
port as well.

• Finally, we evaluate the proposed method and tools by means of a
number of case studies.

We conduct the case studies in close collaboration with industry. For ev-
ery case study, we have an employee of the company actively participating

1www.mooseproject.org
2www.merlinproject.org
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in the research work. This person ensures that our approach will be used
by other employers and that we will get feedback about our goals and cri-
teria. For example, in every case study, we ask the users if our approach
improves their way of working, the quality of the delivered work, and re-
duce the effort that is needed to do their job. This approach of working with
industry gives us the feedback we need to evaluate our work.

1.5 Outline of Thesis
This thesis investigates the problem of monitoring requirements evolution.
To realise our objectives this thesis is organized according to four main
themes (related to our research questions). Each theme will be discussed
in relation to their corresponding chapter(s).

Exploring the World Chapter 2 starts our investigation with a survey con-
ducted among the industrial partners of the MOOSE project. The main goal
of this survey was to explore the domain of embedded software development
and identify the main problems concerning requirements engineering and
architectural design. The resulting observations served as a roadmap for
the rest of our research project.

Chapter 3 zooms in on some specific problems concerning requirements
management. In this chapter requirements management systems are in-
troduced and a real-life project is investigated. We focus on the underlying
problems causing requirements management to be difficult in practice, and
explore what the impact of requirements evolution is.

In these first two chapters we show how requirements management is
dealt with in practice and what the implications of requirements evolution
are.

Structuring the World Besides exploring the problems of requirements man-
agement, Chapter 3 also introduces a framework, called RES (Require-
ments Engineering Systems) framework, to structure the problems iden-
tified in the previous chapters. The RES framework that addresses the con-
cerns with respect to requirements monitoring such as 1) the interaction
with stakeholders, 2) consistent processing of changes, and 3) presentation
of information using requirements views.

Then, in Chapter 4 a methodology is defined, called MAREV, which helps
to structure the requirements management process and supports require-
ments evolution. Besides that, Chapter 4 presents a tool suite, called REQ-
ANALYST, that implements the methodology. All three aspects identified in
Chapter 3 are covered by MAREV in seven predefined steps:
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1. Defining the traceability meta-model;

2. Identifying the work products;

3. Pre-processing the work products;

4. Reconstructing the traceability links;

5. Selecting the relevant links;

6. Generating requirements views;

7. Addressing requirements evolution.

The first two steps concern the interaction with stakeholders. Steps 3,
4, 5, and 7 address the consistent processing of changes. Finally, step 6
covers the presentation of information.

In Chapter 4 the focus is primarily on the first five steps of the MAREV
methodology. The underlying technologies for defining the interaction with
stakeholders and the processing of changes are investigated. The first as-
pect is covered by defining meta-models (step 1 of MAREV) and identifying
the concepts in the current way of working (step 2). This approach directly
reflects the approach studied in the case study of Chapter 3.

For steps 3 to 5 of MAREV, information retrieval technologies are stud-
ied to automate the traceability support process. Currently available ap-
proaches are studied and incorporated in MAREV. In particular, we study
how Latent Semantic Indexing (LSI) can be used to reconstruct traceabil-
ity links. In step 3 of MAREV, the predefined concepts are pre-processed for
automated traceability reconstruction (step 4). Then, in step 5 the recon-
structed candidate links are filtered and only the relevant links are selected
as traceability links. Finally, Step 7 deals with the consistent processing of
changes to the predefined concepts. To do this, steps 3 to 5 again need to be
carried out for the concepts that changed. This is exactly what step 7 needs
to support.

In Chapter 4 experiments are carried out with MAREV and REQANALYST.
The experiments are done in three case studies; two lab exercises and one
industrial case study.

Showing the World In Chapter 5, we focus on step 6 of MAREV. In this step
the reconstructed traceability links are used to generate our requirements
views. In this chapter a questionnaire is distributed to learn what project
members expect from a requirements view. This questionnaire resulted
in a number of requirements views that can be useful in practice. These
views are incorporated in REQANALYST and used in a case study. The case
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Table 1.1: Coverage of research questions in chapters
2 3 4 5 6

RQ1 X X
RQ2 X X
RQ3 X X
RQ4 X X

study resulted in a number of observations concerning MAREV and REQ-
ANALYST as discussed in Chapter 4 and the expectations of a requirements
management system discussed in Chapter 3. Each observation is discussed
separately in order to give a clear insight in the applicability of our solution.

Expanding the World In Chapter 6 we discuss a tool suite, called SOFTFAB,
developed by Philips Applied Technologies, which has been successfully ap-
plied in several multi-site projects. In this chapter, we elaborate on the
underlying concepts and define a list of features needed by systems that in-
tend to support distributed software development. We evaluate our list of
features and relate them to our requirements for monitoring requirements
evolution.

Recommendations to the World Finally, to conclude our research project, Chap-
ter 7 looks back to our initial objectives and explains how these are covered
by the thesis. The correspondence between chapters and research ques-
tions is summarized in Table 1.1.

1.6 Origin of Chapters
All chapters in this thesis are based on work that is published in various
international journals, conferences proceedings, book chapters and work-
shops. For each chapter, one or more publications have appeared. For each
chapter, an overview of the publication(s) is given including an explanation
of my contribution per publication and the contribution of each co-author
(except for supervisors Arie van Deursen and Hans-Gerhard Gross).

1.6.1 Chapter 1
This first chapter is based on the following publication:
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• Marco Lormans. Monitoring requirements evolution using views. In
Proceedings of the 11th European Conference on Software Mainte-
nance and Reengineering, Amsterdam, The Netherlands, March 2007

This publication is written to give an overview of the whole research
project; it describes the goal and context, defines the research questions,
and the explains the approach taken in this research project. Furthermore,
it aligns all deliverables produced in this project.

1.6.2 Chapter 2
Chapter 2 is based on three publications:

• Bas Graaf, Marco Lormans, and Hans Toetenel. Software technologies
for embedded systems: An industry inventory. In Product Focused
Software Process Improvement, 4th International Conference, PRO-
FES2002, volume 2559 of Lecture Notes in Computer Science, pages
453–465. Springer-Verlag, 2002

• Bas Graaf, Marco Lormans, and Hans Toetenel. Embedded software
engineering: state of the practice. IEEE Software, 20(6):61–69, Novem-
ber – December 2003

• Päivi Parviainen, Maarit Tihinen, Marco Lormans, and Rini van Solin-
gen. Requirements engineering: Dealing with the complexity of so-
ciotechnical systems development. In José Luis Maté and Andrés
Silva, editors, Requirements Engineering for Sociotechnical Systems.
IdeaGroup Inc., 2004. Chapter 1

[Graaf et al., 2002] and [Graaf et al., 2003] give an overview of the state
of the practice and [Parviainen et al., 2004] gives an overview of the state
of the art. Chapter 2 is primarily based on the work done in the first two
publications. These publications are the result of the work by Bas Graaf
and myself. Together, we visited all companies and wrote the reports, which
finally led to these publications, to which we contributed equally. We chose
to use alphabetic ordering of the authors, making Bas Graaf first author.

1.6.3 Chapter 3
For Chapter 3, we used the following publication:

• Marco Lormans, Hylke van Dijk, Arie van Deursen, Eric Nöcker, and
Aart de Zeeuw. Managing evolving requirements in an outsoucring
context: An industrial experience report. In Proc. of the Int. Workshop
on Principles of Software Evolution (IWPSE’04), Kyoto, Japan, 2004.
IEEE Computer Society
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This publication describes a investigation that I have done within Log-
ica 1. We investigated all issues related requirements within a project at
Logica. It resulted in a conceptual framework for requirements evolution
called RES.

1.6.4 Chapter 4
Chapter 4 is based on three publications:

• Marco Lormans and Arie van Deursen. Reconstructing requirements
coverage views from design and test using traceability recovery via
LSI. In Proc. of the Int. Workshop on Traceability in Emerging Forms
of Software Engineering, pages 37–42, Long Beach, CA, USA, Novem-
ber 2005

• Marco Lormans and Arie van Deursen. Can LSI help reconstruct-
ing requirements traceability in design and test? In Proc. of the 10th
European Conf. on Software Maintenance and Reengineering, pages
47–56, Bari, Italy, March 2006. IEEE Computer Society

• Marco Lormans and Arie van Deursen. Reconstructing requirements
traceability in design and test using latent semantic indexing. Jour-
nal of Software Maintenance and Evolution: Research and Practice,
2008. Submitted for publication

These three publications are the result of our investigation to learn if
and how LSI can help solving our issues regarding automating the pro-
cess of reconstructing requirements traceability. In these publications we
defined the our method MAREV and developed the first release of REQ-
ANALYST.

1.6.5 Chapter 5
Chapter 5 is based on the following two publications:

• Marco Lormans, Hans-Gerhard Gross, Arie van Deursen, Rini van
Solingen, and Andre Stéhouwer. Monitoring requirements coverage
using reconstructed views: An industrial case study. In Proc. of the
13th Working Conf. on Reverse Engineering, pages 275–284, Benevento,
Italy, October 2006

• Marco Lormans, Arie van Deursen, and Hans-Gerhard Gross. An in-
dustrial case study in reconstructing requirements views. Journal of
Empirical Software Engineering, 2008

1At time of executing this project, Logica was still called LogicaCMG
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In these two publications we applied our MAREV approach and REQ-
ANALYST tool suite in an industrial case study. We tried to tune and im-
prove our approach to make it useful in an industrial environment.

1.6.6 Chapter 6
Chapter 6 the following publication:

• Hans Spanjers, Maarten ter Huurne, Bas Graaf, Marco Lormans, Dan
Bendas, and Rini van Solingen. Tool support for distributed software
engineering. In Proceedings of the IEEE International Conference on
Global Software Engineering (ICGSE’06), pages 187–198, Florianop-
olis, Brazil, 2006. IEEE Computer Society

This publication describes an exercise we did to investigate the impact
of global software development in relation to requirements evolution. We
used SOFTFAB as a tool to create an environment for doing our investiga-
tion. SOFTFAB is a product developed by Hans Spanjers and Maarten ter
Huurne. Bas Graaf and myself are the persons who created the environ-
ment to do the experiments with SOFTFAB and SKYFAB. Furthermore, we
documented the ideas behind SKYFAB and derived the features needed for
successfully implementing a MP-DSE support system environment. Again,
Bas Graaf and I contributed equally to the paper, and used the alphabetic
ordering of authors. Dan Bendas supported us with the technical issues.
Finally, many brainstorm sessions were held with Rini van Solingen about
our ideas and he also contributed as reviewer during the production of this
publication.





Chapter 2
Embedded Software Engineering:
The State of the Practice1

The embedded software market has grown very fast the last
decade and will continue to do so in the coming years. The spe-
cific properties of embedded software, such as hardware depen-
dencies, make its development different from non-embedded soft-
ware. Therefore we expected very specific software development
technologies to be used in this domain. The inventory we con-
ducted at several embedded-software-development companies
in Europe remarkably shows that this is not true. However the
inventory results concerning requirements engineering and archi-
tecture design at these companies do suggest that there is a need
for more specifically aimed development technologies. This chap-
ter presents the inventory results and identifies possibilities for
future research to customize existing and develop new software
development technologies for the embedded-software domain.

2.1 Introduction
Many products today contain software (e.g., mobile telephones, DVD play-
ers, cars, airplanes, and medical systems). Because of advancements in
information and communication technology, in the future even more prod-
ucts will likely contain software. The market for these ‘enhanced’ products
is forecasted to grow exponentially in the next 10 years [Eggermont, ed.k,
2002]. Moreover, the complexity of these embedded systems is increasing,
and the amount and variety of software in these products are growing. This
creates a big challenge for embedded-software development. In the years

1This chapter was originally published as: Bas Graaf, Marco Lormans, and Hans Toetenel.
Embedded software engineering: state of the practice. IEEE Software, 20(6):61–69,
November – December 2003

13
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to come, the key to success will be the ability to successfully develop high-
quality embedded systems and software on time. As the complexity, num-
ber, and diversity of applications increase, more and more companies are
having trouble achieving sufficient product quality and timely delivery. To
optimize the timeliness, productivity, and quality of embedded software de-
velopment, companies must apply software engineering technologies that
are appropriate for specific situations.

Unfortunately, the many available software development technologies
do not take into account the specific needs of embedded systems develop-
ment. This development of embedded systems is fundamentally different
from that of non-embedded systems. Technologies for the development of
embedded systems should address specific constraints such as hard tim-
ing constraints, limited memory and power use, predefined hardware plat-
form technology, and hardware costs. Existing development technologies
don’t address their specific impact on, or necessary customization for, the
embedded domain. Nor do these technologies give developers any indica-
tion of how to apply them to specific areas in this domain – for example,
automotive systems, telecommunications, or consumer electronics. Conse-
quently, tailoring a technology for a specific use is difficult. Furthermore,
the embedded domain is driven by reliability factors, cost factors, and time
to market. So, this embedded domain needs specifically targeted develop-
ment technologies.

In industry, the general feeling is that the current practice of embedded
software development is unsatisfactory. However, changes to the develop-
ment process must be gradual; a direction must be supplied. To achieve
this, we need more insight into the currently available and currently used
methods, tools, and techniques in industry.

To gain such insight, we performed an industrial inventory as part of
the MOOSE 1 project. MOOSE is an ITEA 2 project aimed at improving soft-
ware quality and development productivity for embedded systems. Not only
did we gain an overview of which technologies the MOOSE consortium’s in-
dustrial partners use, we also learned why they use or don’t use certain
technologies. In addition, we gained insight into what currently unavail-
able technologies might be helpful in the future.

2.2 Methods and Scope
The inventory involved seven industrial companies and one research insti-
tute in three European countries (see Table 2.1). These companies build a

1MOOSE- software engineering MethOdOlogieS for Embedded systems, www.
mooseproject.org

2ITEA- Information Technology for European Advancement, www.itea-office.org
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Table 2.1: Inventoried companies
Company Products
TeamArteche (Spain) Measurement, control, and pro-

tection systems for electrical sub-
stations

Nokia (Finland) Mobile networks and mobile
phones

Solid (Finland) Distributed-data-management
solutions

VTT Electronics (Finland) Technology services for busi-
nesses

Philips PDSL (Netherlands) Consumer electronics
ASML (Netherlands) Lithography systems for the

semiconductor industry
Océ (Netherlands) Document-processing systems
Logica (Netherlands) Global IT solutions and services

variety of embedded software products, ranging from consumer electronics
to highly specialized industrial machines. We performed 36 one-hour in-
terviews with software practitioners. The respondents were engineers, re-
searchers, software or system architects, and managers, with varying back-
grounds. To get a fair overview of the companies involved (most of which
are very large), we interviewed at least three respondents at the smaller
companies and five or six at the larger companies. These interviews were
conducted in the period April–October 2002.

We based the interviews on an outline specifying the discussion topics
(see Table 2.2). To be as complete as possible, we based this outline on a
reference process model. Because software process improvement methods
have such a (ideal) process model as their core, we used one of them. We
chose the BOOTSTRAP methodology’s (www.bootstrap-institute.com) pro-
cess model because of its relative emphasis on engineering processes com-
pared to other process models, such as those of the Capability Maturity
Model and SPICE (Software Process Improvement and Capability Deter-
mination) [Wang et al., 1999]. BOOTSTRAP’s other advantage for this in-
ventory is that the BOOTSTRAP Institute developed it with the European
software industry in mind.

For every interview we created a report, which the respondent needed
to approve. We consolidated the reports for a company into one report.
We then analyzed the company reports for trends and common practices.
Finally, we wrote a comprehensive report that, for confidentiality reasons,
is available only to MOOSE consortium members. That report forms the
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Table 2.2: A sample of the interview outline
Here are some discussion topics and questions from the outline we
used for the interviews.

Technology
What are the most important reasons for selecting development tech-
nologies?

• Impact of introducing new technologies (cost, time, and so on).
• Why not use modern/different technologies?

Software life cycle
Software requirements engineering
How are the requirements being gathered?

• What are the different activities?
• What documents are produced?
• What about tool support?

How are the requirements being specified?

• What specification language?
• What about tool support? (Consider cost, complexity, automation,

training, acceptance)
• What notations/diagrams?
• What documents are produced?
• How are documents reviewed?
• What are advantages/disadvantages of followed approaches?

Software architecture design
How is the architecture specified?

• What architecture description language?
• What about tool support? (Consider cost, complexity, automation,

training, acceptance)
• Are design patterns used?
• What notations/diagrams?
• What documents are produced?
• How are documents reviewed?
• What are advantages/disadvantages of followed approaches?
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basis for this discussion.

2.3 Embedded Software Development Context
When considering the embedded software development process, you need
to understand the context in which it is applied. After all, most companies
that develop embedded software do not sell it. They sell mobile phones, CD
players, lithography systems, and other products. The software in these
products constitutes only one (important) part. Embedded software engi-
neering and other processes such as mechanical engineering and electrical
engineering are in fact sub-processes of systems engineering. Coordinating
these sub-processes to develop quality products is one of embedded system
development’s most challenging aspects. The increasing complexity of sys-
tems makes it impossible to consider these disciplines in isolation.

For instance, when looking at communication between different devel-
opment teams, we noticed that besides vertical communication links along
the lines of the hierarchy of architectures, horizontal communication links
existed. Vertical communication occurs between developers who are re-
sponsible for systems, subsystems, or components at different abstraction
levels (for example, a system architect communicating with a software ar-
chitect). Horizontal communication occurs between developers who are re-
sponsible for these things at the same abstraction level (for example, a pro-
grammer responsible for component A communicating with a programmer
responsible for component B).

Still, we found that systems engineering was mostly hardware driven
– that is, from a mechanical or an electronic viewpoint. In some compa-
nies, software architects weren’t even involved in design decisions at the
system level. Hardware development primarily dominated system devel-
opment because of longer lead times and logistical dependencies on exter-
nal suppliers. Consequently, software development started when hardware
development was already at a stage where changes would be expensive.
Hardware properties then narrowed the solution space for software devel-
opment. This resulted in situations where software inappropriately ful-
filled the role of integrator; that is, problems that should have been solved
in the hardware domain were solved in the software domain. Embedded
software developers felt that this was becoming a serious problem. So,
in many companies this was changing; software architects were becoming
more involved on the system level.

Depending on the complexity of the product, projects used system re-
quirements to design a system architecture containing multidisciplinary or
monodisciplinary subsystems. A multidisciplinary subsystem will be im-
plemented by different disciplines; a discipline refers to software, or me-
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chanics, or electronics, or optics, and so on. A monodisciplinary subsystem
will be implemented by one discipline. Next, the projects allocated system
requirements to the architecture’s different elements and refined the re-
quirements. This process repeated for each subsystem. Finally, the projects
decomposed the subsystems into monodisciplinary components that an in-
dividual developer or small groups of developers could develop. The level
of detail at which decomposition resulted in monodisciplinary subsystems
varied. In some cases, the first design or decomposition step immediately
resulted in monodisciplinary subsystems and the corresponding require-
ments. In other cases, subsystems remained multidisciplinary for several
design steps.

This generic embedded systems development process resulted in a tree
of requirements and design documents (see Figure 2.1). Each level repre-
sented the system at a specific abstraction level. The more complex the
system, the more evident this concept of abstraction levels was in the de-
velopment process and its resulting artefacts (for example, requirements
documentation).

In the process in Figure 2.1, requirements on different abstraction lev-
els are related to each other by design decisions, which were recorded in ar-
chitecture and design documentation. At the system level, these decisions
concerned partitioning of the functional and non-functional requirements
over software and hardware components. The criteria used for such concur-
rent design (co-design) were mostly implicit and based on system architects’
experience.

2.4 Requirements Engineering Results
Typically, the development of embedded systems involved many stakehold-
ers. This was most apparent during requirements engineering. Figure 2.2
depicts our view of the most common stakeholders and other factors.

In requirements engineering’s first phase, the customer determines the
functional and non-functional requirements. Depending on the product do-
main, the customer negotiates the requirements via the marketing and
sales area or directly with the developers.

The first phase’s output is the agreed requirements specification, which
is a description of the system that all stakeholders can understand. This
document serves as a contract between the stakeholders and developers. At
this point, we noticed a clear difference between small and large projects.
In small projects, the stakeholder requirements also served as developer
requirements. In large projects, stakeholder requirements were translated
into technically oriented developer requirements.

Requirements specify what a system does; a design describes how to
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Figure 2.1: The decomposition of the embedded systems development pro-
cess
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Figure 2.2: Embedded systems-development stakeholders and other fac-
tors

realize a system. Software engineering textbooks strictly separate the re-
quirements and the design phases of software development; in practice, this
separation is less obvious. In fact, the small companies often put both the
requirements and design into the system specification. These companies
did not translate the system requirements explicitly into software require-
ments. The development processes in the larger companies did result in
separate requirements and design documents on different abstraction lev-
els. However, in many cases, these companies directly copied information
from a design document into a requirements document for the next abstrac-
tion level instead of first performing additional requirements analysis.

2.4.1 Requirements Specification
Companies usually specified requirements in natural language and pro-
cessed them with an ordinary word processor. They normally used tem-
plates and guidelines to structure the documents. The templates prescribed
what aspects had to be specified. However, not all projects at a company
used these templates, so requirements specifications from different projects
sometimes looked quite different.

Because embedded software’s non-functional properties are typically
important, we expected these templates to reserve a section on non-functional
requirements next to functional requirements. This wasn’t always the case.
For example, the requirements specification didn’t always explicitly take
into account real-time requirements. Sometimes a project expressed them



REQUIREMENTS ENGINEERING RESULTS 21

in a separate section in the requirements documents, but often they were
implicit. Requirements specification and design also usually didn’t explic-
itly address other typical embedded software requirements, such as those
for power consumption and memory use.

Projects that employed diagrams to support requirements used mostly
free-form and box-line diagrams in a style that resembles the Unified Mod-
eling Language, dataflow diagrams, or other notations. Project members
primarily used general-purpose drawing tools to draw the diagrams. Be-
cause of the lack of proper syntax and semantics, other project members
often misinterpreted the diagrams. This was especially true for project
members working in other disciplines that employ a different type of nota-
tion.

UML was not common practice yet, but most companies were at least
considering its possibilities for application in requirements engineering.
Use cases were the most-used UML constructs in this phase. Some projects
used sequence diagrams to realize use cases; others applied class diagrams
for domain modelling. However, the interpretation of UML notations was
not always agreed on during requirements engineering. It wasn’t always
clear, for instance, what objects and messages in UML diagrams denote
when a sequence diagram specifies a use case realization.

On the lowest levels, projects commonly used pre- and postconditions to
specify software requirements. They specified interfaces as pre- and post-
conditions in natural language, C, or some interface definition language.

Projects rarely used formal specifications. One reason was that formal
specifications were considered difficult to use in complex industrial envi-
ronments and require specialized skills. When projects did use them, com-
munication between project members was difficult because most members
did not completely understand them. This problem worsened as projects
and customers needed to communicate. In one case, however, a project
whose highest priority was safety used the formal notation Z for specifica-
tion.

2.4.2 Requirements Management
When looking at Figures 2.1 and 2.2, you can imagine that it’s hard to man-
age the different requirements from all these different sources throughout
development. This issue was important especially in large projects.

Another complicating factor was that most projects didn’t start from
scratch. In most cases, companies built a new project on previous projects.
So, these new projects reused requirements specifications (even for devel-
oping a new product line). Consequently, keeping requirements documents
consistent was difficult. To keep all development products and documents
consistent, the projects had to analyze the new features’ impact precisely.
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However, the projects frequently didn’t explicitly document relations be-
tween requirements, so impact analysis was quite difficult. This traceabil-
ity is an essential aspect of requirements management. Tracing require-
ments was difficult because the relations (for example, between require-
ments and architectural components) were too complex to specify manually.

Available requirements management tools didn’t seem to solve this prob-
lem, although tailored versions worked in some cases. A general shortcom-
ing of these tools was that the relations between the requirements had no
meaning. In particular, tool users could specify the relations but not the
rationale behind the link.

When projects did document relations between requirements, they used
separate spreadsheets. Some companies were using or experimenting with
more advanced requirements management tools such as RequisitePro (IBM
Rational), RTM (Integrated Chipware), and DOORS (Telelogic). These ex-
periments weren’t always successful. In one case, the tool’s users didn’t
have the right skills, and learning them took too long. Also, the tool han-
dled only the more trivial relations between requirements, design, and test
documents. So, developers couldn’t rely on the tool completely, which is
important when using a tool.

Requirements management also involves release management (manag-
ing features in releases), change management (backwards compatibility),
and configuration management. Some requirements management tools
supported these processes. However, because most companies already had
other tools for this functionality, integration with those tools would have
been preferable.

2.5 Software Architecture Results
Small projects didn’t always consider the explicit development, specifica-
tion, and analysis of the product architecture necessary. Also, owing to
time-to-market pressure, the scheduled deadlines often obstructed the de-
velopment of sound architectures. Architects often said they didn’t have
enough time to do things right.

The distinction between detailed design and architecture seemed some-
what arbitrary. During development, the projects interpreted architecture
simply as high-level design. They didn’t make the distinction between ar-
chitectural and other types of design explicit, as, for example, Eden and
Kazman [2003]. There, the locality criterion is introduced to distinguish
architectural design from detailed design. A design statement is said to
be local when it can’t be violated by mere expansion. The application of
a design pattern is an example of a local design statement. Architectural
design is not local. For instance, an architectural style can be violated by
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simple expansion.

2.5.1 Architecture Design
Designing a product’s or subsystem’s architecture was foremost a creative
activity that was difficult to divide into small, easy-to-take steps. Just as
system requirements formed the basis for system architecture decisions,
system architecture decisions constrained the software architecture.

In some cases, a different organizational unit had designed the system
architecture. So, the architecture was more or less fixed – for instance,
when the hardware architecture was designed first or was already known.
This led to suboptimal (software) architectures. Because software was con-
sidered more flexible and has a shorter lead time, projects used it to fix
hardware architecture flaws, as we mentioned before.

The design process didn’t always explicitly take into account perfor-
mance requirements. In most cases where performance was an issue, the
projects just designed the system to be as fast as possible. They didn’t
establish how fast until an implementation was available. Projects that
took performance requirements into account during design did so mostly
through budgeting. For example, they frequently divided a high-level real-
time constraint among several lower-level components. This division, how-
ever, often was based on the developers’ experience rather than well-funded
calculations. Projects also used this technique for other non-functional re-
quirements such as for power and memory use.

Projects sometimes considered COTS (commercial off-the-shelf) compo-
nents as black boxes in a design, specifying only the external interfaces.
This was similar to an approach that incorporated hardware drivers into an
object-oriented design. However, developers of hardware drivers typically
don’t use OO techniques. By considering these drivers as black boxes and
looking only at their interfaces, the designers could nevertheless include
them in an OO design. For the COTS components, the black box approach
wasn’t always successful. In some cases, the projects also had to consider
the components’ bugs, so they couldn’t treat the components as black boxes.

The software architecture often mirrored the hardware architecture,
which made the impact of changes in hardware easier to determine. Most
cases involving complex systems employed a layered architecture pattern.
These layers made it easier to deal with embedded systems’ growing com-
plexity.

2.5.2 Architecture Specification
UML was the most commonly used notation for architectural modelling.
On the higher abstraction levels, the specific meaning of UML notations in
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the architecture documentation should be clear to all stakeholders, which
was not always the case. Some projects documented this in a reference
architecture or architecture manual (we discuss these documents in more
detail later).

The Rational Rose RealTime modelling tool1 lets developers create ex-
ecutable models and completely generate source code. A few projects tried
this approach. One project completely generated reusable embedded soft-
ware components from Rational Rose RealTime models. However, most of
these projects used Rational Rose RealTime experimentally.

For creating UML diagrams, respondents frequently mentioned only
two tools: Microsoft Visio and Rational Rose. Projects used these tools
mostly for drawing rather than modelling. This means, for instance, that
models weren’t always syntactically correct and consistent.

Other well-known notations that projects used for architectural mod-
elling were dataflow diagrams, entity-relationship diagrams, flowcharts,
and Hatley-Pirbhai diagrams [Hatley and Pirbhai, 1987] to represent con-
trol flow and state-based behaviour. Projects often used diagrams based
on these notations to clarify textual architectural descriptions in architec-
ture documents. Some projects used more free-form box-line drawings to
document and communicate designs and architectures.

One project used the Koala component model [van Ommering et al.,
2000] to describe the software architecture. Compared to box-line draw-
ings, the Koala component model’s graphical notation has a more defined
syntax. Koala provides interface and component definition languages based
on C syntax. A Koala architecture diagram specifies the interfaces that a
component provides and requires. This project used Microsoft Visio to draw
the Koala diagrams.

Projects often used pseudocode and pre- and postconditions to specify
interfaces. Although this technique is more structured than natural lan-
guage, the resulting specifications were mostly incomplete, with many im-
plicit assumptions. This not only sometimes led to misunderstandings but
also hampered the use of other techniques such as formal verification.

Some projects referred to a reference architecture or an architecture
user manual. These documents defined the specific notations in architec-
tural documents and explained which architectural concepts to use and
how to specify them.

2.5.3 Architecture Analysis
Most projects did not explicitly address architecture verification during de-
sign; those that did primarily used qualitative techniques. Few projects

1www.rational.com/products/rosert
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used quantitative techniques such as Petri nets or rate monotonic schedul-
ing analysis [Liu and Layland, 1973]. One reason is that quantitative-
analysis tools need detailed information. In practice, projects often used an
architecture only as a vehicle for communication among stakeholders.

The most commonly employed qualitative techniques were reviews, meet-
ings, and checklists. Another qualitative technique employed was scenario-
based analysis. With this technique, a project can consider whether the pro-
posed architecture supports different scenarios. By using different types of
scenarios (for example, use scenarios and change scenarios), a project not
only can validate that the architecture supports a certain functionality but
also can verify qualities such as changeability.

The respondents typically felt that formal verification techniques were
inapplicable in an industrial setting. They considered these techniques to
be useful only in limited application areas such as communication protocols
or parts of security-critical systems. The few projects that used Rational
Rose RealTime were able to use simulation to verify and validate architec-
tures.

2.5.4 Reuse
Reuse is often considered one of the most important advantages of develop-
ment using architectural principles. By defining clean, clear interfaces and
adopting a component- based development style, projects should be able to
assemble new applications from reusable components.

In general, reuse was rather ad hoc. Projects reused requirements, de-
sign documents, and code from earlier, similar projects by copying them.
This was because most products were based on previous products.

For highly specialized products, respondents felt that using configurable
components from a component repository was impossible. Another issue
that sometimes prevented reuse was the difficulty of estimating both a
reuse approach’s benefits and the effort to introduce it.

In some cases a project or company explicitly organized reuse. One com-
pany did this in combination with the Koala component model. The com-
pany applied this model together with a proprietary method for developing
product families.

Some companies had adopted a product line approach to create a prod-
uct line or family architecture. When adopting this approach, the compa-
nies often had to extract the product line architecture from existing product
architectures and implementations. This is called reverse architecting.

In most cases, hardware platforms served as the basis for defining prod-
uct lines, but sometimes market segments determined product lines. When
a company truly followed a product line approach, architecture design took
variability into account.
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One company used a propriety software development method that en-
abled large-scale, multisite, and incremental software development. This
method defined separate long-term architecture projects and subsystem
projects. The company used the subsystems in short-term projects to in-
stantiate products.

Another company had a special project that made reusable components
for a certain subsystem of the product architecture. The company used
Rational Rose RealTime to develop these components as executable models.

Some companies practiced reuse by developing general platforms on top
of which they developed different products. This strategy is closely related
to product lines, which are often defined per platform.

2.6 Discussion
You might well ask, are these results representative of the whole embed-
ded software domain? By interviewing several respondents with different
roles in each company, we tried to get a representative understanding of
that company’s embedded software development processes. The amount of
new information gathered during successive interviews decreased. So, we
concluded we did have a representative understanding for that company.

With respect to embedded software development in general, we believe
that the large number of respondents and the companies’ diversity of size,
products, and country of origin make this inventory’s results representa-
tive, for Europe at least. However, whether we can extend these results to
other areas (for example, the US) is not proven.

Another point for discussion is that the methods, tools, and techniques
the companies used were rather general software engineering technologies.
We expected that the companies would use more specialized tools in this do-
main. Memory, power, and real-time requirements were far less prominent
during software development than we expected. That’s because most gen-
eral software engineering technologies didn’t have special features for deal-
ing with these requirements. Tailoring can be a solution to this problem,
but it involves much effort, and the result is often too specific to apply to
other processes. Making software development technologies more flexible
can help make tailoring more attractive. So, flexible software development
technologies are necessary.

We noticed a relatively large gap between the inventory’s results and
the available software development technologies. Why isn’t industry using
many of these technologies? During the interviews, respondents mentioned
several reasons. We look at three of them here.

The first reason is compliance with legacy. As we mentioned before,
most projects didn’t start from scratch. Developers always have to deal
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with this legacy, which means that the technology used in current projects
should at least be compatible with the technology used in previous prod-
ucts. Also, companies can often use previous products’ components in new
products with few or no adaptations. This contradicts the top-down ap-
proach in Figure 2.1. Unlike with that approach, components at a detailed
level are available from the start, before the new product’s architecture is
even defined. This would suggest a bottom-up approach. However, because
most available software development approaches are top-down, they don’t
address this issue.

Another reason is maturity. Most development methods are defined at
a conceptual level; how to deploy and use them is unclear. When methods
are past this conceptual stage and even have tool implementations, their
maturity can prevent industry from using them. This was the case for
some requirements management tools. Some respondents said that these
tools weren’t suited for managing the complex dependencies between re-
quirements and other development artefacts, such as design and test doc-
umentation. Also, integrating these tools with existing solutions for other
problems such as configuration management and change management was
not straightforward.

The third reason is complexity. Complex development technologies re-
quire highly skilled software engineers to apply them. But the development
process also involves stakeholders who aren’t software practitioners. For
instance, as we mentioned before, project team members might use archi-
tecture specifications to communicate with (external) stakeholders. These
stakeholders often do not understand complex technology such as formal
architecture description languages. Still, formal specifications are some-
times necessary – for example, in safety-critical systems. To make such
highly complex technologies more applicable in industry, these technologies
should integrate with more accepted and easy-to-understand technologies.
Such a strategy will hide complexity.

2.7 Epilogue
In the previous discussion we explained three reasons for industry not to
adopt state-of-the-art software development technologies (compliance with
legacy, maturity, and complexity). In the remainder of this thesis we take
into account these reasons. Therefore, we try to make use of existing stan-
dards and technologies, which already have been successfully applied in in-
dustrial practice. When these standards and technologies are not directly
applicable, we try to tailor them, or develop new technology.

The observations that software development in practice seldom starts
from scratch, that it is moving more and more towards larger scale, and
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that structured reuse becomes an essential activity, makes our focus on
managing the evolution of systems (and in particular requirements) a le-
gitimate choice, where many improvements can be realised in practice.

Finally, we have discussed only some of the opportunities for improving
embedded software engineering technologies for requirements engineering
and architecture design. Our inventory also considered software engineer-
ing processes that we have not presented in this chapter. As an example, we
also use the results from the inventory to identify cases where new tech-
nologies can be applied and tailored towards industrial needs, such as in
Chapter 6 dealing with globally distributed software engineering.



Chapter 3
Managing Evolving Requirements in
an Outsourcing Context:
An Industrial Experience Report1

In this chapter we discuss several difficulties managing evolv-
ing requirements by means of an industrial case study conducted
at Logica. We report on setting up a requirements management
system in an outsourcing context and its application in real-life.
The experience results in several lessons learned, questions to be
answered in the future on how to manage evolving requirements,
and solution directions. We propose a conceptual framework of a
requirements engineering system tailored for outsourcing environ-
ments, which captures the experience results.

3.1 Introduction
In the IT outsourcing services business it is quite common that the require-
ments of a new product are provided by an external stakeholder, the client.
The client wants a new product and needs you to develop it. In order to
eliminate risks of budget overruns, your client may insist on a fixed price
agreement. The requirements document often forms the contract. This
document typically is the outcome of an elicitation process conducted by
the client.

A key problem in outsourcing development, however, is the evolution of
requirements: no matter how thorough the requirements specification has

1This chapter was originally published as: Marco Lormans, Hylke van Dijk, Arie van
Deursen, Eric Nöcker, and Aart de Zeeuw. Managing evolving requirements in an out-
soucring context: An industrial experience report. In Proc. of the Int. Workshop on Princi-
ples of Software Evolution (IWPSE’04), Kyoto, Japan, 2004. IEEE Computer Society
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been set up, the requirements for any non-trivial system will change, not
only after the system has been built, but also during the process of imple-
menting the system. This evolution of requirements can be due to many
reasons, including changing business needs or market and technology de-
velopments [Lehman, 1998]. In addition to that, the process of designing,
implementing, and writing test cases for requirements will increase insight
in the problem domain, which may well lead to modifications on the initial
set of requirements.

A major risk of evolving requirements is that the requirements docu-
ment itself becomes inconsistent. This may lead to a system that cannot be
implemented, misinterpretations or false assumptions by developers, and
delivery of a system that will not be accepted by the client.

Requirements management is the requirements engineering activity that
aims at controlling changes made to requirements. The purpose of this
chapter is to analyse the impact of outsourcing on requirements manage-
ment. To that end, we study what requirements management techniques
an IT solution provider can adopt when accepting an outsourcing contract.
In particular, we evaluate the various methods and techniques used by
Logica— a major international player in IT services and wireless telecoms
— in order to manage evolving requirements of a traffic monitoring system
they are implementing for an external customer.

This chapter is primarily an experience report. We believe that col-
lecting and organising the experiences obtained by Logica in a case like
this is important for a number of reasons. First, our discussion of require-
ments management problems as occurring in a state of the art industrial
software engineering project may help practitioners in obtaining a better
understanding of the problems in their own projects. Second, we discuss
which requirements management methods and techniques were actually
used, and analyse why these worked well or why they were not satisfactory.
This provides an evaluation of existing techniques, which will be valuable
to researchers as well as practitioners. Last but not least, we establish a
connection between the problems we encountered and the published liter-
ature in the software evolution and requirements management literature.
From this, we derive a number of research questions in the area of require-
ments evolution.

The case study discussed in this chapter was again carried out as part of
the MOOSE project [MOOSE, 2004]. MOOSE is an ITEA project that aims
at improving software quality and development productivity for embedded
systems, by adapting, tailoring, and combining technologies to fit a specific
– industrial – situation.

The remainder of this chapter is organised as follows. In Section 3.2 we
provide background information and discuss the key concepts in require-
ments management. Then, in Section 3.3, we provide an overview of the
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context of the case study, discussing the application domain, as well as
standards and tooling. In Section 3.4 we present issues pertaining to IT
outsourcing including the requirements for a requirements management
system specifically for outsourcing. In Section ?? we zoom in on the Logica
case, and explain how requirements evolution was tackled in this project.
We reflect on this case study in Section 3.6, where we provide a discussion
of the observations and lessons learned. The discussion ends with a pro-
posal for a conceptual framework of a requirements engineering system in
the context of outsourcing, which captures our observations. We conclude
this chapter with a summary of the key contributions and directions for
future research.

3.2 Requirements Management
Requirements engineering is often split into two main activities: require-
ments specification and requirements management [Parviainen et al., 2004].
In our definition, requirements specification concerns activities related to
elicitation, analysis, documentation, and validation of requirements. It pri-
marily deals with the content of the requirements.

Requirements Management concerns activities related to controlling
and tracking of changes to agreed requirements, relationships between
requirements, and dependencies between the requirements specifications
(documents) and other specifications produced during the systems and soft-
ware engineering process [Kontonya and Sommerville, 1998]. We purpose-
fully do not adopt the definition of Leffingwell and Widrig [Leffingwell and
Widrig, 2000], who include elicitation, organisation, and documentation of
requirements under management activities. In our setting, requirements
management is primarily a supportive process, which helps to manage
evolving requirements throughout the system’s lifecycle.

3.2.1 Requirements Management Systems
Because of the growing number and volatility of requirements, require-
ments management systems (RMS) have been developed. Wiegers dis-
cussed various reasons for using a RMS [Wiegers, 1999]. In the context
of outsourcing, status tracking as well as effective communication and in-
teraction with stakeholders are important.

Al-Rawas and Easterbrook emphasize the importance of communica-
tion in the requirements management process [Al-Rawas and Easterbrook,
1996]. According to them consistency checking of newly introduced require-
ments often implies re-establishing communication with the stakeholder
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of the existing requirements. Traceability is of utmost importance for re-
establishing this communication in evolving requirements. The inability to
trace these stakeholders and their related information is the crux of the re-
quirements traceability problem [Gotel and Finkelstein, 1994]. In practice
keeping the traceability links consistent is a serious challenge [Graaf et al.,
2003].

3.2.2 Features of a RMS

A typical RMS stores its requirements repository and provides a number of
features to support requirement management activities related to mainte-
nance, evolution, traceability, and change management. Figure 3.1 depicts
the typical features of a RMS, based on a diagram of a RMS discussed by
Kontonya and Summerville [Kontonya and Sommerville, 1998], extented
with features from a discussion by Wiegers [Wiegers, 1999]. This results in
the following list of features for any RMS:

• a browser; to support navigation in the set of requirements, e.g., view
requirements subsets,
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• a query system; to support retrieval of specific requirements from the
set of requirements or related requirements,

• a traceability support system; to support management of links to
other system elements and the generation of traceability information,

• a report generator; to support generation of all kinds of different re-
ports related to requirements,

• an interface to external documentation; a typical implementation in-
cludes a requirements converter and a word processor (WP) linker, to
support conversion of the natural language representation (NL) of the
requirements to a database format and back again,

• a change control system; to support management of change requests
and links to affected requirements,

• a version control system; to support management of different versions
of single requirements,

• an analysis system; to perform all kind of analysis on the set of re-
quirements, e.g., impact analysis, status tracking, and determining
whether a requirement is an orphan or not,

• an access control system; to control the access rights of users. Not all
users are allowed to browse or edit the complete set of requirements,

• a modularisation support system; to support grouping of requirements,
e.g., related to a specific quality attribute or piece of functionality.

The list is not exhaustive. The environment and situation determine the
features that should be implemented and at what level of detail. For exam-
ple, in many situations it is not required to implement an access control
system.

3.3 Case Study Context
This section introduces the application domain of our case study: a traffic
monitoring system (TMS). Besides the TMS we will also introduce MIL-std
498 and the applied tooling at the outsource vendor’s site.
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3.3.1 Traffic Monitoring System
Our case study involves a traffic monitoring system (TMS 1), which is an
important part of a traffic control and logistics system for a dense traffic
system. The main purpose of TMS is to record the positions of vehicles on
the net. These recordings are used to adjust the schedules of running and
planned vehicles as well as operating the necessary signalling. The system
is business critical, but not safety critical.

TMS retrieves its data from multiple measurement sources. Its func-
tionality includes distribution of information, occupation management, and
track management. Amongst others, the TMS informs client systems with
real-time, consistent, and unambiguous data about vehicle positions. It
maintains vehicle movement information (identification and order) at the
borders of unmonitored areas and maps this information to actual vehicle
movements.

The TMS requirements have been set up by the TMS owner, the design
and implementation is done by Logica. The design makes use of various
UML models, and includes correctness proofs for critical state diagrams.
The implementation is being written in C++.

3.3.2 Documentation Structure and Tooling
The interaction between the outsourcer, the owner of the TMS, and the out-
sourcing vendor, Logica, is organised around the MIL-std 498 documenta-
tion standard. This standard was developed at the United States Depart-
ment of Defence to realize a common software development standard [De-
partment of Defence, USA, 1994]. Only part of the standard is implemented
in our case study (see Section 3.5.1).

The outsource vendor, in our case study, chose to use RationalTM tool-
ing to support the requirement management activities as well as parts of
its development processes. First of all Rational RequisitePro is applied for
managing the requirements. It maintains a repository of requirements:
their identification, description, and relations, augmented with other infor-
mation such as their design rationale, and test criteria. The data is stored
in an external database, in our case a Microsoft Access database. The tool
has a close relation with Microsoft Word to capture and edit the require-
ments. Rational Rose is used to develop various UML diagrams, e.g., activ-
ity diagrams, collaboration diagrams, and class diagrams. These diagrams
primarily describe the system design, but are also used to explain the de-
tails of a requirement. Unlike textual requirements, the diagrams are not

1Details of the case have been modified and made anonymous in order to protect the inter-
ests of the customer. We believe that these changes do not materially affect the experi-
ences and results discussed in the chapter.
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managed by Rational RequisitePro. Rational SoDA is applied for generat-
ing reports according to a prescribed template. The necessary information
is taken from Rose and RequisitePro. Finally configuration management,
including version and change control, is implemented using Telelogic Syn-
ergy, which manages all documents and repositories.

3.4 Outsourcing
In Section 3.2 we discussed requirements management in general, and in
the previous section we provided the necessary background material (on
traffic monitoring, the MIL-std 498, and tool support) required to analyse
the case at hand. In this section, we analyse the implications of adopt-
ing explicit, tool-supported requirements management in an outsourcing
context. We are not aware of other papers discussing these implications,
although some material can be found in [Damian et al., 2003; Prikladnicki
et al., 2003].

Outsourcing of system development, integration, and maintenance is an
important trend in IT services [Abbas et al., 1997; Spanjers et al., 2006].
For a client, the outsourcer, contracting out work is a cost-effective way
to hire expertise at a fixed price and get in return a system (or service)
with a predefined quality, which includes timely delivery. The observable
characteristics of the system, the requirements, are an essential part of the
contract between the client and the outsource vendor. Requirements are
accompanied by acceptance tests providing means to validate their correct
implementation of the requirements.

The details and structure of the specification of the requirements have
significant influence on the way of working for the outsource vendor. The
short-term concern for the vendor is to establish a cost-effective way to com-
ply with the obligations of the contract; covering the set of requirements
and passing the acceptance tests. The vendor, however, also has long-term
concerns, such as winning an extended contract for maintaining the devel-
oped system and winning similar contracts with other customers.

A number of issues have to be resolved for successful outsourcing of
systems, which by Abbas et al. are summarised as: control, ownership, de-
velopment paradigms, assurance, and system decomposition [Abbas et al.,
1997]. Typically these issues are addressed in the contracts and agree-
ments.

Control involves concerns like quality, security, and confidentiality. It
also handles the responsibility of integration. Ownership is a complicat-
ing factor when changes to requirements or implementations are required.
Development paradigms dictate compatibility and communication, while
assurance defines acceptance tests. The responsibility of system decom-
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position has to be clearly communicated because changes occur in every
outsourcing contract. Changing client requirements, clarifications, or de-
sign tradeoffs may induce changes that need a modification to the chosen
decomposition.

3.4.1 Requirements Engineering Process
In an outsourcing context the responsibilities in the requirements engineer-
ing process are distributed over the outsourcer and the outsource vendor.
Figure 3.2 outlines the process and identifies possible hazards using the
MIL-std 498.

The outsourcer executes the elicitation process and is responsible for
the documentation of the requirements in a System Requirements Speci-
fication (SRS). This SRS is the basis of a negotiated contract between the
outsourcer and the outsource vendor. Given the SRS, the actual develop-
ment of the product is then done by the outsource vendor and documented
in a System Design Description (SDD).
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During development of the product the outsource vendor can run into
some conflicting or ambiguous requirements. These are noted as issues and
should be renegotiated with the outsourcer. Concurrently, the outsourcer
develops new ideas that should also be implemented in the system (SRS′).
The synchronisation of these parallel activities is a potential hazard. There
are two basic resolutions: either the outsource vendor holds back the SDD
and issues, or the outsourcer holds back the SRS′. In the first case the
outsource vendor incorporates the SRS′ into the SDD, forming an updated
version of the SDD′. In the second case the outsourcer resolves the issues
of the SDD before releasing the updated version of the SRS. This latter case
is illustrated in the second iteration of Figure 3.2. A hybrid version for
this synchronisation process, although possible, yields a difficult process
for keeping all the system artefacts consistent. Note that the evolution
has two sources: advancing insights from the outsourcer and advancing
insights from the outsource vendor.

3.4.2 Requirements Management Tool Implications
In the ideal case, the input to the RMS is a set of frozen TMS requirements,
laid down in the contract with the client. With these correct, complete,
and non-conflicting requirements, the system is implemented and simply
passes the final system acceptance test. A project leader integrates the
results of all tests to monitor the progress of the project and may instantiate
the final system acceptance test. Passing this test ends the project.

However, practice is obstinate. Generally, the system requirements are
incomplete and ambiguous. This has far reaching consequences: the RMS
must support evolution. During the design process any ambiguity has to
be resolved. This may yield an update, insertion, or deletion of an iden-
tified requirement. In other words the RMS must support a process that
can handle changes effectively, including maintaining a consistent set of
requirements.

With respect to the general features of a requirements management sys-
tem, a RMS in the context of outsourcing must pay special attention to:

• Change management; project members have to be aware of the up-to-
date baseline of requirements, evolutions, and anticipated changes.

• Quality assurance; the coherence and applied terminology of the re-
quirements must be verified before delivering a design. Conflicting
requirements need to be resolved in interaction with the outsourcer.

• Issue tracking; during the project questions and change requests are
communicated (possibly over multiple channels). Their status and
history need to be recorded and accessible.
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• Test reporting; tests are induced by the requirements. The outsource
vendor should be able to show via reporting if and how the require-
ments are fulfilled.

• Status reporting; status and other attributes of requirements should
be translated to numbers and should be used in status reporting.

• Flexible modularisation; the system decomposition of the outsourcer
does not necessarily comply with the preferred decomposition of the
system by the outsource vendor. With flexible modularisation sup-
port the vendor can choose to internally use a different modularisa-
tion than used externally in the communication with the outsourcer.

The above features concern communication and interaction with stake-
holders and is primarily the result of interviews with members of the de-
velopment team of Logica.

3.5 Case Study Implementation
This section describes the requirements management process as imple-
mented at Logica for the TMS case. Two important, previously introduced,
concepts of this RMS are: the document structure MIL-std 498 and the tool-
ing by Rational. In this section we will discuss how Logica applies these
concepts. We first introduce the applicable parts of MIL-std 498, and then
describe the traceability model that helps realising the requirements for
the RMS of the outsource vendor. After that the tooling is discussed, and
some case statistics presented.

3.5.1 Document Structure
The prime responsibility of the client is to provide the requirements, the
prime responsibility of the vendor is to implement these requirements.
Only part of the MIL-std 498 is implemented to provide the requirements
in our case study. The essentials are captured in Figure 3.3.

The client provides the Operational Concept Description (OCD), Sys-
tem/Subsystem Specification (SSS), System/Subsystem Design Description
(SSDD), and the System Requirements Specification (SRS) (see Figure 3.3).
The client also provides the corresponding acceptance tests at super-system
level including the System Test Plan (STP). All documents are plain-text
Microsoft-Word documents.

The documents are the input for the development team of Logica. They
split the documents into smaller units, and add design information. The
SRS is used for creating a System Design Description (SDD) and System
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Test Descriptions (STD). In fact the client and Logica used the SRS, SDD,
and STD as system specifications rather than software specifications as is
usual in the MIL-std 498.

3.5.2 Requirements Traceability Model
The traceability model consists of a number of different requirement types.
We identified a number of them, which we believe are typical for the out-
sourcing business. The requirement types are: system requirement, issue,
design decision, assumption, and non conformance.

A system requirement is a traditional requirement type that describes
what the system should be able to do, but not how the system will do it.
Logica categorised its system requirements into functional, non-functional,
and design constraints, which are part of the SRSs and IRSs.

An issue is a type of requirement introduced by Logica that marks a
point of attention that needs further investigation and possibly negotiation
with the outsourcer. Issues are the communicating vehicle with the client
and other stakeholders. An issue often affects multiple requirements as we
will, e.g., see in Section 3.5.7.

A design decision records how the system will implement one or more
requirements. The decisions recorded in a design decision can be very di-
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verse, for example, decisions related to a technique, certain structure, or
Commercial off-the-shelf (COTS) product.

An assumption articulates an implicit (external) constraint. Non com-
pliance to these constraints would yield an incorrect functioning system.
The relation between the design decision and assumption should be docu-
mented very clearly. Assumptions can result in additional system require-
ments.

The concept of a non conformance explicitly documents exceptions in
choices made earlier in the development process. A reason for introducing
such a non conformance can be that more information becomes available
during the project. Design decisions, assumptions, and non conformances
are all part of the SDDs, and IDDs.

A design rationale records the argumentation for the design choice taken,
but it can also be used to record the argumentation behind an assumption
or non conformance. An example of a design rationale is the argumentation
for preferring a specific piece of middleware, in order to avoid high costs for
licensing. Design rationales are defined as an attribute of a requirement
and are not a requirement type.

The above types of requirements primarily relate to the design of the
system. Similarly, Logica also defined requirement types for testing, namely
test criterion, test case, and test procedure. A test criterion describes the
conditions when a requirement has been successfully implemented in the
system. It is possible to have more than one test criterion per requirement.
A criterion can be met through one or more test cases, which are atomic
tests. A test case describes the exact test situation, including precondi-
tions, actions to be taken, and the condition under which the test case is
successfully executed. Finally, the test procedure is a sequence of multiple
test cases. The test cases and the test procedure are part of the STDs.

All aforementioned types of requirements are stored as uniquely iden-
tifiable entities in the RMS except for the design rationale, which is, as al-
ready mentioned, defined as an attribute of a requirement. Adding design
rationales to the set of identifiable entities helps in two ways: it provides
relations for traceability and it provides the necessary context for proper
modifications.

The traceability relationships between the entities discussed above are
summarised in Figure 3.4. The solid lines indicate the primary traceability
links allowed to be set in the RMS and are n-to-n relations. Thus, each sys-
tem requirement is linked to one or more design decisions, as well as to one
or more test criteria. Likewise, each system requirement can be decorated
with one or more issues concerning that requirement. The dashed lines
give additional traceability links, that bypass the primary traceability re-
lation. Thus, in principle test criteria come from system requirements, but
in some cases a test criterion can be derived from a design decision as well.
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Likewise, a system requirement should in principle be accompanied by a
test criterion, but in some cases it is easier to directly provide the test case
instead. Although advisable, it is not always possible to come up with a
test criterion for every system requirement.

3.5.3 Instantiating the RMS
In order to adopt RequisitePro (see Section 3.3.2) in the TMS setting, it
needs to be configured so that the described document structure and the
traceability model fit in. Moreover, its configuration should support the ap-
propriate entities and relationships as occurring in the traceability model.

For the TMS case, the documents were divided into three levels of ab-
straction. The first and highest level of abstraction includes the OCD, the
SSS, the SSDD, and the STP documents. The second level includes all the
SRS, and IRS documents. The final and most detailed level includes the
SDD, the IDD, and the STD documents. For every requirement attributes
have been defined. Besides the obligatory internal id, also attributes such
as design rationale, priority, status, and stability are defined in the tool.
A particularly important attribute is the identifier provided for each re-
quirement by the client – these identifiers provide the traceability to the
requirements documents from the client. Thus, the internal identifier gen-
erated by the RMS is effectively ignored, and replaced by the client-provided
identifier.

Observe that similar steps are required if another requirements man-
agement tools had been chosen, for example, DOORS from Telelogic.

3.5.4 Populating the RMS
After the RMS has been properly configured, it needs to be populated with
the actual requirements. RequisitePro supports an interactive process in
which paragraphs in MS Word documents can be marked as requirements,
after which the type of requirement and the values for the corresponding
attributes can be provided. In addition to that, traceability links to other
requirements can be declared. Since the original MS Word documents have
no strict structure, this process is largely manual, and hard to automate.

3.5.5 Updating the Requirements
Users of RequisitePro can modify requirements by navigating through the
set of requirements and selecting a particular requirement for modifica-
tion, which opens the requirement in the originating Microsoft Word doc-
ument. Executing such an update, e.g., repair a typo or change a require-
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ment statement, marks that particular requirement as changed. The trace-
ability model now helps to trace the impact of that change through the rest
of the system.

Unfortunately, in the TMS setting the client was the owner of the re-
quirements documents , and changes made by the vendor will lead to in-
consistencies with the version maintained by the client. Hence, changes to
the requirements must come from the client, who provides a full new ver-
sion of the requirements documents. The new set then must be analysed by
hand, and changes to the underlying requirements and traceability links as
stored in the RMS must be carefully executed. Although some help can be
provided by taking the differences between two documents, this remains a
cumbersome and error prone process.

3.5.6 Report Generation
Logica defined various reports to be generated from the RMS to support the
various project team members. These reports are generated to support re-
views, testing, design, and project management. Reports are defined for
actors such as the project manager, test manager, designers, and require-
ments manager. Examples of these reports are generating an overview
of all issues including their status for the project manager, generating an
overview of all system requirements covered by test procedures for the test
manager, generating traceability matrices for the designer, and generating
an overview of all requirements concerning a subsystem for the require-
ment manager.

The generated reports can be used for a basic form of systematic anal-
ysis or, for example, to verify the consistency, or correctness of require-
ments. RequisitePro offers limited functionality for this; if the offered sup-
port is insufficient separate software operating directly on the underlying
database and the traceability links contained therein should be written
(which amounts to bypassing RequisitePro).

3.5.7 Case Statistics
The outsourcer provided the requirements documentation which is decom-
posed into 1 SSS, 3 SRS, 9 IRS, and 3 IDD documents. Subsequently the
outsource vendor used the traceability model of Figure 3.4 to structure the
requirements from the SRS and IRS documents.

The development process involved only one iteration at the time of writ-
ing. During the first phase 160 issues emerged which had to be resolved
with the client. Issues ranged from clarifications through inconsistencies
and from adding and removing modules to restructuring of the modularisa-
tion. The development process particularly did not involve analysis of the
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received requirements, which potentially could have resolved a number of
issues in an early stage of the development. An example of an issue is the
following: One of the requirements explicitly mentioned the version num-
ber of a middleware component, however during design a different (older
!) version of this component was believed to have significant advantages.
The corresponding design decision thus had a different number than the
originating requirement. The issue is easily resolved but has to be clearly
communicated in order to keep the involved SSS consistent.

After the first phase the issues were fed back to the client. The sub-
sequent contract renegotiations yielded a new set of SRS documents that
roughly increased the number identified requirements by 80 and signifi-
cantly modified 560 requirements. Figure 3.5a shows the statistics of the
case study for the first phase, and Figure 3.5b shows the situation after
the first iteration. As an example 120 system requirements that originate
from an SRS were updated or deleted, and 32 new ones were added. As
a result the requirement database holds about 2400 related requirements.
The system holds about 4700 traceability links.

Importing and updating the requirements from the respective SRS and
IRS documents is a partly manual process as described in the previous sub-
section. The initial import as well as the update after renegotiations both
took 5–6 men days.

3.6 Discussion
Having described the way in which requirements management was con-
ducted for the TMS system, we can now discuss selected observations, and
distil a number of key lessons learned. We propose a requirements engi-
neering framework that addresses most of our identified concerns.

3.6.1 Observations
Import of Requirements

Importing and updating of requirements is related to change management.
The import of the semi-structured requirements into the RMS is a trouble-
some process, which is why an automatic process is preferred. It takes
quite some manual work to meet the requested quality. Although the in-
put requirements are structured, they are not formalised. Diagrams, for
instance, play an important role in clarifying requirements. But since they
lack formalisation, diagrams have been left out of the requirements man-
agement system.
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Update of Requirements

Updating the set of requirements is an entirely manual process. It starts
from the differences between the updated and initial version, and changes
are then updated in the RMS manually. The update process typically inter-
feres with the tracing capabilities of the toolset; all links are invalidated,
which makes the update a cumbersome and error-prone process.

Change Management

This problem partly stems from the fact that the change management sys-
tem does not distinguish between types of changes. Thus fixing a typo
propagates through the traceability links in exactly the same manner as
a drastic change such as decimating the available latency for some action.
Categorisation or modularisation of types of changes should be supported
by the RMS.

Issue Management

With respect to issue tracking, and quality assurance, we observed that
Logica uses issues to communicate with its outsourcer. Resolved issues are
signed by both parties to protect them from potential legal conflicts. This
process is satisfactory for both parties, although the problematic update
inside the RMS remains. A risk exists that resolved issues are not correctly
updated in the RMS, which renders the set of requirements inconsistent or
even incorrect.

Reporting

Status reports are an example of a report type that is generated from the
RMS to support the communication with stakeholders. These reports are
used in project management for status tracking and issue tracking. Other
reports are used for reviewing and analysing requirements for correctness,
possible ambiguities, and consistency. The generation of these reports re-
quires tailoring. The available tool, Rational SoDA, has several limitations,
such as poor quality reports, limited flexibility, and long processing times.
These limitations in reporting of Rational SoDa, make Logica to consider
developing a new tool, which uses a more advanced query system than cur-
rently offered by RequisitePro, to overcome these issues.

Navigation and Browsing

As a consequence of this lack of proper reporting capabilities, developers
use the navigation facilities of RequisitePro instead of a generated report to
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locate information about requirements. The browser offers the opportunity
to search through the complete set of requirements. Access control was not
necessary to be implemented in this particular case study. All members
of the development team within Logica are allowed the read and edit the
complete set of requirements in the outsource vendor domain.

Flexibility in Generating Views

Furthermore, the browser, although flexible, is not able to provide all re-
quired views. For example a view of the decomposition of a high-level re-
quirement throughout the system shows the complete traceability path,
whereas developers may only want to see part of it. Flexibility in generat-
ing views is essential, as views play a key role in the communication and
interaction with stakeholders. This especially holds in an outsourcing con-
text where clients have very specific demands for communication.

Tracking and Tracing

Tracking and tracing are important assets of an RMS. The traceability
model helps to avoid a ’spaghetti’ of traceability links. There is however
the risk of inconsistency in the links, in part because of the manual process
of providing the links. Links should also have a rationale that explains
why a particular link exists. Making a link a first class element of the
traceability model would solve this issue and potentially decrease the risk
of an inconsistent set of requirements.

Status Control

The current traceability model (Figure 3.4) supports detailed attributes for
tracking, including a status attribute. In practice, however, the status at-
tribute of every requirement is not used. It is for Logica sufficient to report
the status of a complete requirements document, e.g., a SRS. This means
that status control per requirement is not implemented at Logica. Still, the
need is present to report the status of individual requirements.

Requirements Analysis

The RMS has very limited support for analysis of requirements. Although
the traceability model facilitates impact analysis and coverage control, it
lacks support for other types of analysis such as conformance checking.
Conformance, and correctness checking are now implement by a review pro-
cess. This again emphasises the importance of high quality report genera-
tion.
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Flexibel Modularisation

Flexibility of modularisation is an important feature of an RMS in the con-
text of outsourcing. In our case study, the requirements were already
grouped into subsystems by the client. The outsource vendor executed the
design step from SRS to SDD. During this design step developers objected
to the initial modularisation. However, since the client owns the high-level
design documents, their objections had to be negotiated with the client,
which takes time. Three possible solutions are: 1) the outsourcer hands
over ownership of the high level design documents; 2) the high level design
documents are discarded and issues are resolved in the domain of the RMS;
or 3) the RMS supports flexible modularisations, which makes it easier to
align and synchronise.

Alignment of Development Environments

This previous observation is directly related to our final observation. Both
the client and the outsource vendor have configured their own development
environment, while they are developing one system in collaboration. Taking
into account the previous observations concerning the import of require-
ments, and reporting from a RMS, our final observation is that the syn-
chronisation and alignment data within different environments is hard to
manage.

In the next section, we will map these observation to lessons learned for
developing software systems in an outsourcing context.

3.6.2 Lessons Learned
From our observations the following lessons should be taken in considera-
tion when developing software systems in an outsourcing context:

1. Flexible modularisation and generation of views needs to be supported.
Current tool support is not sufficient to satisfy these needs.

2. Explicit issue notes are an effective means for communication. Their
role needs to be explicit in the requirements management process and
the tracking of these issues should be supported.

3. Tracking can be implemented effectively through an appropriate trace-
ability model. Links between requirements in such a model must be
first class elements.

4. Due to the distributed requirement engineering process in an out-
sourcing context, synchronisation of activities must be addressed ex-
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plicitly. These activities include modifying and updating the set of
requirements.

3.6.3 A Conceptual Framework for Reconciling Requirements Evolution
and Outsourcing

We now propose a conceptual framework of a Requirements Engineering
System (RES) that implements the lessons learned discussed above. The
primary purpose of this framework is to bridge the gap between the need
for evolution of requirements, and the evolution impediments that are gen-
erated by the adoption of outsourcing. Parts of our proposed framework
recur in existing commercial tool sets but none of them satisfies all fea-
tures [Graaf et al., 2003].

We refer to the proposed framework as a requirements engineering sys-
tem because typical specification activities such as analysis are also incor-
porated. The heart of our framework, depicted in Figure 3.6, is the require-
ments model with corresponding traceability model. In general this model
is modularised according to a template, e.g. MIL-std 498 or IEEE-std 830-
1998, used as document structure by the client. For every requirement
entity attributes are defined and these entities are related according to the
traceability model.

The requirements model allows for a structured analysis and updates
through automatic tools. Dynamic modularisation is an important aspect
of the proposed framework. The document structure is one modularisation,
the (software) system decomposition is another. The underlying traceabil-
ity model can generate multiple views, each taking a different perspective
with corresponding partitioning and clustering of requirements and trace-
ability links. This makes a view an ideal means for communicating issues
with the outsourcer.

Traceability links themselves are first class entities in this model. Thus,
in the traceability model the traceability links have a unique identifier as
well as other attributes such as design rationale, and maybe even a descrip-
tion.

Another important aspect of the framework is the ability to transform
the contents of the requirements model to an external structured document
based on a template (e.g., by means of forms). Outsourcers mostly provide
unstructured or semi-structured documents to the outsource vendor.

Incorporating the various changes originating from the unstructured
environment poses a challenge for the structured environment. The out-
source vendor and the customer operate in parallel, and in different devel-
opment environments. Outsource vendors are not in the position to force
outsourcers to adapt to their requirements engineering process, giving rise
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to the need for a conversion process. In our framework the conversion is
done only once. After this conversion process requirements management
and engineering is done in the structured environment. Therefore we need
to reproduce a look-a-like of the initial unstructured document that is struc-
tured and can be edited. We refer to these as forms. To produce these
forms a template is extracted during the conversion process, which is used
to parse the annotated requirements documents, so the changes can auto-
matically be imported into the RES. Forms are used to interact with the
stakeholder, e.g., to facilitate editing. Once edited, the changes made can
easily be interpreted and imported in the RES ensuring consistency of the
set of requirements.

Views cannot be edited by the stakeholders and are primarily a means
for communication and analysis. The process described is repeatable dur-
ing the development life-cycle as well as during maintenance of the system
and supports the management of evolving requirements.

To summarize, our RES framework addresses three essential processes
with respect to managing requirements evolution:

• The interaction with stakeholders. This process is covered by the re-
quirements converter, the editable forms, and the document parser. It
together creates the possibilities to import and export data in a struc-
tured way and corresponds with some of the required the features of
an RMS discussed in Section 3.2.2.

• The consistent processing of changes. The requirements model pro-
vides all features necessary for covering this process. It covers trace-
ability support, an analysis system, modularisation support, etc...

• The presentation of information using views. This last process ad-
dressed by RES is covered by the requirements view / form generator
together with its corresponding views and forms.

If we map the RES framework to the steps Logica implemented in Sec-
tion 3.5, we can recognize that each of the steps is covered by the RES frame-
work. The first process of RES covers the implementation steps “instanti-
ating” and “populating” the RMS (Sections 3.5.3 and 3.5.4). The second
process of RES concern the “document structure”, “traceability model”, and
“updating the requirements” (Sections 3.5.1, 3.5.2, and 3.5.5). Finally, the
third process covers Section 3.5.6, “report generation”.

This mapping shows that our RES framework should cover the problem
of managing evolving requirements in an outsourcing context. The actual
value of the RES framework stays an open issue for the moment and future
work should prove the real value of the RES framework in practice.
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3.6.4 External Validity
We conclude our discussion by analyzing the validity of the proposed RES
framework in a wider context. In the previous section, we stated that RES
covers the software development process for an outsourcing context. How-
ever, this is based on the lessons learned from a single case study at Logica.
Issues to consider when generalizing the lessons learned include:

1. The process adopted in the case did not include steps that are specific
or proprietary to Logica. All steps of the process can be identified
in standard handbooks on software engineering such as [Pressman,
2005; Sommerville, 2001; van Vliet, 2008]. Therefore, we expect the
approach to be applicable in other companies as well.

2. The framework is independent of actual tools used. While the case at
hand made use of Rational RequisitePro, other tools, such as Telelogic
DOORS or Borland Together would easily fit as well.

3. In the case study at hand, the document structure was based on MIL-
std 498. The RES framework does not prescribe a specific document
structure, such as MIL-std 498. However, it does assume a certain
documentation discipline.

4. In outsourcing projects, structured documentation is more likely to
occur than in regular projects. As the framework requires a certain
documentation discipline, it is less suitable to, for example, extreme
programming projects that use test cases as their primary form of
documentation.

3.7 Contributions and Future Work
In this chapter we have discussed how Logica has implemented require-
ments management in order to support requirements evolution for the traf-
fic monitoring system, which Logica is implementing for an external cus-
tomer. The customer took care of requirements elicitation and analysis, and
decided to outsource the development to Logica. The focus of this chapter is
on analysing the implications of outsourcing on requirements management
methods and tools.

We consider the following to be our key contributions. First of all, we dis-
cussed how requirement management was tackled in a fixed price contract
between a client who created the requirements in the first place and an
outsourcing vendor who was responsible for building the system. Relevant
described results include the use of issues, the adopted traceability model,
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and the discussion of features that a requirements management system ap-
plied in an outsourcing context should have. We believe that sharing these
experiences from Logica is valuable for both researchers and practitioners
in the area of requirements management.

Second, we identified a number of problems with the requirements man-
agement methods and tools adopted. These problems concern the transition
of requirements from the unstructured to the structured domain, the need
to redo this transition upon requirements evolution, inadequate reporting
facilities, and lack of sufficiently flexible modularisation support.

Last but not least, we proposed a framework that can be used as a
research vehicle for addressing the concerns raised in this chapter. Our
framework facilitates multiple views, imports by means of forms and tem-
plates, and explicitly separates the structured from the unstructured envi-
ronment. The elaboration of this model is the focus of our current research.

The proposed RES framework and the observations give rise to several
topics to investigate further in future research:

• How to determine the template (structure) of a semi-structured re-
quirements document,

• How to specify the traceability model such that it has clear semantics,

• How to generate views for analysis, and conformance checking,

• How to interpret an annotated form,

• How can we parse an annotated document to a form according to the
derived template, and

• Does this framework reduce the risks of introducing errors during
evolution of requirements.

These research opportunities should be investigated in close coopera-
tion with industry. Logica and other members of the MOOSE and MERLIN
consortium [MOOSE, 2004; MERLIN, 2005] should provide a fertile exper-
imental ground to arrive at answers to these questions.

3.8 Epilogue
In this chapter, we studied an industrial case study in detail. This investi-
gation confirms the results from Chapter 2. Two of the three reasons given
in Chapter 2 can be identified again in this case study, namely maturity
and complexity. Compliance with legacy was not an issue in this case study
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Firstly, the case study showed us that it is indeed difficult to apply a
commercial tool suite in practice. The issues identified in Section 2.6 of
Chapter 2, such as difficulties in managing complex dependencies in a RMS,
and the issues of change management, are problematic in this chapter as
well.

Secondly, the complexity reason can indirectly be identified in this case
study as well. The customers (external stakeholders) of Logica, are not
interested in the complex tooling of Logica. So, the complex development
environment of Logica needs to be hidden from its customer. Consequently,
Logica has difficulties managing the requirements and keeping the docu-
ments consistent as describe in the case study.

The RES framework is a result of the three reasons for not using state-
of-the-art technology discusses in Chapter 2 and the lessons learned of the
case study studied in this chapter. The first process of RES should make
sure that any legacy approach can be imported in the RES framework struc-
ture. Furthermore, complexity is hidden in the internal templates and re-
quirements model. Maturity is not covered by the RES framework as the
framework does not fill in any technology. It only defines process.

In the next Chapter 4, we will focus on the requirements model of our
RES framework, and in particular the traceability model. We will inves-
tigate the possibilities to automate the reconstruction of the traceability
model. A method will be defined that covers this reconstruction process
and it will be implemented in a tool suite.



Chapter 4
Reconstructing Requirements
Traceability in Design and Test
using Latent Semantic Indexing1

Managing traceability data is an important aspect of the soft-
ware development process. In this chapter we define a method-
ology, consisting of seven steps, for reconstructing requirements
views using traceability data. One of the steps concerns the re-
construction of the traceability data. We investigate to what ex-
tent Latent Semantic Indexing (LSI), an information retrieval
technique, can help recovering the information needed for auto-
matically reconstructing traceability of requirements during the
development process. We experiment with different link selection
strategies and apply LSI in multiple case studies varying in size
and context. We discuss the results of a small lab study, a larger
case study and a large industrial case study.

4.1 Introduction
For many organisations, the purpose of requirements management is to
provide and maintain clear agreements between the different stakeholders
involved in developing a product, while still allowing requirements evolu-
tion. Requirements management is a supportive process that starts in the
orientation phase and continues during the rest of the product development
life-cycle.

1This chapter was originally published as: Marco Lormans and Arie van Deursen. Can
LSI help reconstructing requirements traceability in design and test? In Proc. of the 10th
European Conf. on Software Maintenance and Reengineering, pages 47–56, Bari, Italy,
March 2006. IEEE Computer Society
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Managing requirements in such a way that useful information can be ex-
tracted from this requirements set, is hard in practice [Graaf et al., 2003;
Huffman Hayes et al., 2006]. This extracted information can be used for
many applications such as generating requirements views or impact analy-
sis [Cleland-Huang et al., 2003]. The requirements views we will encounter
are coverage views, which include whether or not a requirement is cov-
ered by an acceptance test, by a design artefact, by a system test, and so
on. These requirement views can provide a major asset for developers and
project managers, offering them a way to monitor the progress of the devel-
opment process.

Obtaining accurate information requires that an up-to-date traceabil-
ity matrix is maintained, establishing links between, for example, require-
ments and test cases. Keeping the traceability links consistent during de-
velopment of the product is a time consuming, error-prone, and labour-
intensive process demanding disciplined developers [Brinkkemper, 2004;
Gotel and Finkelstein, 1994; Lormans et al., 2004]. Currently available
tools do not support the feature of automatically recovering traceability
links [Alexander, 2002; Graaf et al., 2003; Huffman Hayes et al., 2006].

In this chapter, we investigate to what extent relevant traceability links
can be reconstructed automatically from available documents using latent
semantic indexing (LSI). LSI is an information retrieval method assuming
there is a latent semantic structure for every document set [Deerwester
et al., 1990]. LSI creates a “semantic” subspace of terms and documents
closely associated using statistical techniques. This subspace can be used
for retrieving information and, in our case, for reconstructing traceability
links. For this reason, our approach assumes a document-oriented require-
ments engineering process based on natural language, which can identify
semantic similarities between different documents produced during the de-
velopment of the product.

The long term objective of our research is to determine how industry
can benefit from using LSI to track and trace requirements and eventually
generate various requirements views. In this chapter, we describe three
exploratory case studies, that give answers to the following questions:

1. Can LSI help in reconstructing meaningful traceability relations be-
tween requirements and design, and between requirements and test
cases?

2. What is the most suitable strategy for mapping LSI document simi-
larities to reconstructed links?

3. What are the most important open issues that need to be resolved
before LSI can be applied successfully in an industrial context?
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To answer these questions we offer, in every case study, an analysis why
the particular links can be reconstructed and what the requirements are
for documenting the related development work products.

The three case studies in which we applied LSI, vary in size and context.
The first is a lab study, Pacman, used in a testing course at Delft University
of Technology. Available documentation includes use cases, design deci-
sions, acceptance test cases, as well as a Java implementation with a JUnit
test suite. The Pacman case gives us the opportunity to explore all the pos-
sibilities of the techniques in a controlled environment. In this study, we
varied the different parameters of our analysis to come to a setting giving
the best results. The second case study is part of a software engineering
course at Eindhoven University of Technology. In this course, a group of
students need to develop a complete new software system from scratch and
properly document requirements, design and test cases including traceabil-
ity links. The last case study is an industrial case study carried out at
Philips Applied Technology. In this study, requirements, design decisions,
and corresponding test suite for a Philips DVD recorder were analyzed.

The remainder of this chapter is organized as follows. In Section 4.2
we give an overview of background information and discuss related work,
followed by a brief survey of latent semantic indexing in Section 4.3. In Sec-
tion 4.4 we describe our link reconstruction methodology, MAREV, and in
Section 4.5 we describe the link selection strategies we use in this method-
ology. Next, in Section 4.6 we describe the tool we developed to support
our approach. The three cases studies are presented in Section 4.7. In Sec-
tion 4.8 we compare and discuss the results of the case studies. We conclude
the chapter by summarizing the key contributions and offering suggestions
for future research.

4.2 Background and Related Work
4.2.1 Requirements Views
The different perspectives on requirements are often represented using
views. Views capture a subset of the whole system in order to reduce the
complexity from a certain perspective. For example, Nuseibeh et al. dis-
cuss the relationships between multiple views of a requirements specifica-
tion [Nuseibeh et al., 1994]. This work is based on the viewpoints frame-
work presented by Finkelstein et al. in [Finkelstein et al., 1992]. This
framework primarily helps organizing and facilitating the viewpoints of
different stakeholders.

Von Knethen also discusses view partitioning, but from a different per-
spective [von Knethen, 2001]. She considers views on the system, distin-
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guishing, e.g., the static structure from the dynamic interactions in the
system.

If we look beyond requirements, the concept of “view” also appears in
the area of architectural design. Kruchten introduced his “4 + 1 view
model” for architecture, where he defined five different concurrent perspec-
tives on a software architecture [Kruchten, 1995]. Each view of this model
addresses a specific set of concerns of interest to different stakeholders.
Other examples are the “Siemens’ 4 views” by Hofmeister et al. [Hofmeis-
ter et al., 1999], the IEEE standard 1471 [IEEE, 2000], and the views dis-
cussed by Clements et al. in their book “Documenting Software Architec-
tures” [Clements et al., 2002, 2003]. Finally, Van Deursen et al. discuss a
number of specific views for architecture reconstruction [van Deursen et al.,
2004].

Although much research is done in the area of (requirements) views,
there is no general agreement on what these views should look like or what
information they should contain. Every project setting seems to have its
own specific information needs concerning requirements.

4.2.2 Requirements Traceability and Reference Models

Managing different requirements perspectives (views) can be supported
through appropriate meta-models, as shown by Nissen et al. [Nissen et al.,
1996]. An important area of research in the domain of traceability is de-
veloping these meta-models. These so called reference models discussed
in [Ramesh and Jarke, 2001; von Knethen, 2001; Toranzo and Castro, 1999;
Maletic et al., 2003; Zisman et al., 2003] define the development artefacts
including their attributes, and the traceability relations that are allowed to
be set between these artefacts.

Von Knethen proposes (conceptual) traceability models for managing
changes on embedded systems [von Knethen, 2001; von Knethen et al.,
2002]. These models help estimating the impact of a change to the system
or help to determine the links necessary for correct reuse of requirements.
According to Von Knethen, defining a workable traceability model is a ne-
glected activity in many approaches. Our earlier research confirms the im-
portance of defining a traceability model [Lormans et al., 2004]. The initial
experiments concerned a static traceability model. New insights suggest
a dynamic model, in which new types of links can be added as the way of
working evolves during the project. The need for information as well as the
level of detail changes [Dömges and Pohl, 1998].
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4.2.3 Traceability Reconstruction
To reconstruct coverage views from project documentation we need some
traceability support. Several traceability recovery techniques already ex-
ist, each covering different traceability issues during the development life-
cycle. Some discuss the relations between source code and documentation,
others the relations between requirements on different levels of abstrac-
tion.

Antoniol et al. use information retrieval (IR) methods to recover the
traceability relations from C++ code onto manual pages and from Java code
to requirements [Antoniol et al., 2002]. Marcus and Maletic, and Di Penta
et al. use latent semantic indexing for recovering the traceability relations
between source code and documentation [Marcus and Maletic, 2003; Mar-
cus et al., 2005a; Di Penta et al., 2002]. The IR methods in these cases
are mostly applied to reverse engineering traceability links between source
code and documentation in legacy systems.

IR methods can also be used for recovering traceability links between
the requirements themselves [och Dag et al., 2004; Huffman Hayes et al.,
2003]. In these cases, traceability recovery is mainly used for managing
the requirements after development when all the documentation needs to
be finalized and released. Both Natt och Dag et al. and Huffman Hayes
et al. have developed a tool to support their approach. In [och Dag et al.,
2005] Natt och Dag et al. discuss their approach and tool, called ReqSimile,
in which they have implemented the basic vector space model and applied
it in an industrial case study. Huffman Hayes et al. have implemented
various methods for recovering the traceability links in their tool called
RETRO [Huffman Hayes et al., 2005, 2006]. They also applied their ap-
proach in an industrial case study.

De Lucia et al. present an artefact management system, which has been
extended with traceability recovery features [De Lucia et al., 2004, 2005].
This system manages all different artefacts produced during development
such as requirements, designs, test cases, and source code modules. De Lu-
cia et al. also use LSI for recovering the traceability links. In [De Lucia
et al., 2006b], they improved their traceability recovery process and pro-
pose an incremental approach. In this approach they incrementally try to
identify the “optimal” threshold for recovering traceability links.

Cleland-Huang et al. define three strategies for improving the dynamic
requirements traceability performance: hierarchical modelling, logical clus-
tering of artefacts and semi-automated pruning of the probabilistic net-
work [Cleland-Huang et al., 2005]. They are implementing their approach
in a tool called Poirot [Lin and et al., 2006]. Furthermore, like De Lucia et
al., they have defined a strategy for discovering the optimal thresholds [Zou
et al., 2004].
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Finally, IR techniques are also used for improving the quality of the
requirements set. Park et al. use the calculated similarity measures for
improving the quality of the requirements specifications [Park et al., 2000].

4.3 Latent Semantic Indexing
Latent Semantic Indexing (LSI) is an information retrieval technique based
on the vector space model and assumes that there is an underlying or la-
tent structure in word usage for every document set [Deerwester et al.,
1990]. This is particularly caused by classical IR issues as synonymy and
polysemy. Synonymy concerns the fact that there are many ways to refer to
the same object. Users in different contexts, or with different needs, knowl-
edge, or linguistic habits will describe the same information using different
terms. Polysemy involves the fact that most words have more than one
distinct meaning. In different contexts or when used by different people
the same term takes on varying referential significance [Deerwester et al.,
1990].

LSI uses statistical techniques to estimate the latent structure of a set of
documents. A description of terms and documents based on the underlying
latent semantic structure is used for representing and retrieving informa-
tion. This way LSI partially overcomes some of the deficiencies of assuming
independence of words, and provides a way of dealing with synonymy au-
tomatically.

LSI starts with a matrix of terms by documents. Subsequently, it uses
Singular Value Decomposition (SVD) to derive a particular latent seman-
tic structure model from the term-by-document matrix [Berry et al., 1999;
Salton and McGill, 1986]. Any rectangular matrix, for example a t ×d ma-
trix of terms and documents, X , can be decomposed into the product of three
other matrices:

X = T0S0DT
0

such that T0 and D0 have orthonormal columns and S0 is diagonal (and DT
0

is the transpose of D0). This is called the singular value decomposition of
X . T0 and D0 are the matrices of left and right singular vectors and S0 is the
diagonal matrix of singular values.

SVD allows a simple strategy for optimal approximate fit using smaller
matrices. If the singular values in S0 are ordered by size, the first k largest
values may be kept and the remaining smaller ones set to zero. The product
of the resulting matrices is a matrix X ′ which is only approximately equal to
X , and is of rank k. Since zeros were introduced into S0, the representation
can be simplified by deleting the zero rows and columns of S0 to obtain a
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new diagonal matrix S, and deleting the corresponding columns of T0 and
D0 to obtain T and D respectively. The result is a reduced model:

X ′ = T SDT ≈ X

which is the rank-k model with the best possible least square fit to X [Deer-
wester et al., 1990].

Note that the choice of k is critical: ideally, we want a value of k that is
large enough to fit all the real structure in the data, but small enough so
we do not also fit the sampling error or unimportant details. Choosing k
properly is still an open issue in the factor analytic literature [Deerwester
et al., 1990]. Our choice will be discussed when we apply LSI in our case
studies.

Once all documents have been represented in the LSI subspace, we can
compute the similarities between the documents. We take the cosine be-
tween their corresponding vector representations for calculating this simi-
larity metric. This metric has a value between [-1, 1]. A value of 1 indicates
that two documents are (almost) identical.

These measures can be used to cluster similar documents, or for iden-
tifying traceability links between the documents. We can also define new
queries and map these into the LSI subspace. In this case, we can identify
which existing documents are relevant to the query. This can be useful for
identifying requirements in the existing document set.

Finally, LSI does not rely on a predefined vocabulary or grammar for
the documentation (or source code). This allows the method to be ap-
plied without large amounts of pre-processing or manipulation of the input,
which drastically reduces the costs of traceability link recovery [Maletic
et al., 2003; De Lucia et al., 2004]. However, some text transformations are
needed to prepare the documentation to form the corpus of LSI. This user-
created corpus will be used as the input for creating the term-by-document
matrix.

4.4 MAREV

The long term objective of our work is an approach that supports large or-
ganizations in the software industry in managing requirements throughout
the life-cycle of, for example, consumer electronics products or document
systems such as copiers. Such products need to fulfil hundreds or thou-
sands of requirements. Furthermore, these requirements can change over
time when new product versions are created and shipped.

Our focus is on reconstructing requirements views, i.e., views on the set
of requirements that can be used to monitor the progress in requirements
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development, design, and testing. In this chapter we focus on the recon-
struction of requirements traceability needed to generate the requirements
views.

In order to answer the questions raised in the introduction, we con-
ducted three case studies, which are described in Section 4.7. In this sec-
tion we discuss 1) the steps of MAREV 1, our methodology to reconstruct the
traceability links and generate requirements views, and 2) the approach we
used to assess the reconstructed links. In Section 4.5 we describe the link
selection strategies (step 5) in more detail and in Section 4.6 we discuss the
tool that we developed in order to carry out these steps.

4.4.1 Link Reconstruction Steps
We have developed an approach for reconstructing our requirements views
automatically. In this particular case we experimented with LSI for recon-
structing the traceability links (step 4), which resulted in reasonably good
traceability recovery results. The steps are:

1. Defining the underlying traceability model;

2. Identifying the concepts from the traceability model in the available
set of documents;

3. Pre-processing the documents for automated analysis;

4. Reconstructing the traceability links;

5. Selecting the relevant links;

6. Generating requirements views;

7. Tackling changes.

In this chapter, we will primarily focus on techniques for executing step
4 and 5 handling the traceability recovery and selection of correct links.
Of course, step 1, 2 and 3 are of major importance for executing step 4
and 5 successfully. We have defined some requirements views for step 6,
and finally, for step 7, we describe how to tackle requirements evolution
(changes in requirements). The last two steps remain future work for now.
We will discuss all steps briefly and then focus on the steps 4 and 5 in the
case studies.

1MAREV: A Methodology for Automating Requirements Evolution using Views
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Issue

System Requirement
(level n+1)

System Requirement
(level n)

Design Decision Test Criterion

Assumption NonConformance

Test Case

Test Procedure

SDD / IDD

SRS / IRS

STP / STD

Figure 4.1: Traceability Model

Traceability Model Definition
Traceability relations establish links between requirements on the one
hand and various types of development work products on the other. A
traceability model defines the work products and the types of links that
are permitted within the development process.

The choice of traceability model mainly depends on the purposes for
which it is to be used. For example, Ramesh and Jarke [Ramesh and Jarke,
2001] discuss a range of different traceability models. Other examples of
reference models can be found in [Maletic et al., 2003; von Knethen, 2001;
Toranzo and Castro, 1999; Zisman et al., 2003].

An example of a traceability model relevant for coverage monitoring is
shown in Figure 4.1. This model and the work products, including their
dependencies, contained in it reflect the way of working at a big indus-
trial company, Philips Applied Technologies, in the embedded systems do-
main. For example, it distinguishes between a customer requirement (cast
in terms familiar by customer representatives) and technical requirements
(cast in terms familiar by developers). Moreover, the model supports eval-
uation of requirements: after shipping the product, field studies are con-
ducted in order to evaluate the working of the requirement in real life.
The evaluation results are taken into account when shipping a new version
of the product. This traceability model enables us to derive, for example,
the following coverage information that can be included in a requirements
view:

• Identification coverage; The information in this view indicates the
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links between customer requirements and technical requirements.
The technical requirements specify the product that actually will be
built. Every system requirement should have a link with at least one
customer requirement, and vice versa.

• Design coverage; Design coverage captures the information to en-
sure that the requirements in the system’s requirements specification
are addressed in the design. This view shows how well the design
reflects the requirements. Note that the presence of a link does not
mean that these requirements are correctly designed or implemented.
Having a requirements coverage of 100% after the design phase tells
management that the system should have all functionality covered in
the design as agreed in the contract.

• Test case coverage; A comparable situation applies to the require-
ments coverage in the test specifications. Most test specifications are
created in the design phase in parallel with the design. This view
shows how well the test specification reflects the requirements. Again
this does not mean the functionality is correctly implemented. Hav-
ing a coverage of 100% tells management that all functionality will be
tested in the test phase.

• Test pass coverage; A system test is an internal test, often called
factory test, to check if the system is working correctly. If all sys-
tem tests pass, the development team can show the customer that all
functionality is implemented and that all functionality is working cor-
rectly as agreed. This view shows which requirements are tested and
ready for the customer acceptance test.

• Acceptance coverage; The customer can approve the results by
means of the final acceptance test. This view shows which require-
ments are accepted by the customer and are ready for release.

• Evaluation coverage; After delivery, the evaluation coverage view
indicates which requirements have been evaluated and are suitable
for reuse in ongoing and future projects.

The above discussed examples of coverage views each reflect a link in
the traceability model depicted in Figure 4.1. Of course other examples can
be defined such as combinations of these views, e.g., capturing information
about the coverage in the test specification and the actual execution of these
system tests.

The work products and traceability links that actually need to be
captured in the traceability model depend on project-specific information
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needs [Dömges and Pohl, 1998], but also on factors such as schedule and
budget [Ramesh et al., 1995].

Concept Identification

Every concept contained in the traceability model should be uniquely iden-
tified in the available documentation. Since the documents are typically
semi-structured (typically being just MS Word files), this requires a certain
amount of manual processing. The more systematically the documents are
organized (for example through the use of templates such as MIL-std 498
or IEEE-1233-1998), the easier it is to make this structure explicit and
identify the texts for each of the entities from the traceability model.

In general, identifying individual requirements and test cases in the
documentation is relatively easy compared to identifying the design arte-
facts. Requirements and test cases in most development approaches are
tagged with a unique identifier. For design decisions it is often not so clear
how they should be documented and identified. Key decisions are often cap-
tured in diagrams, e.g., in UML. Here, we encounter the well known prob-
lem of establishing traceability relations between requirements and de-
sign [Settimi et al., 2004]. Solutions exist to make architectural knowledge
more explicit such as capturing architectural assumptions explicitly [Lago
and van Vliet, 2005]. Unfortunately these solutions are often not yet used
in practice [Graaf et al., 2003].

Text Pre-processing

After defining the entities and the texts belonging to each of them, some
pre-processing of these texts is needed. The first step is extracting the texts
from the original documents, bringing them in the (plain text) input format
suitable for further automated processing. This often is a manual or semi-
automatic task. In the semi-automatic case, scripting techniques using,
e.g., Perl, can be used to transform the original text into the format needed
for further processing. Whether such scripting techniques can be used de-
pends very much on the document structure of the original documentation.
The next step is to conduct typical IR steps such as lexical analysis, stop
word elimination, stemming, index-term selection, and index construction.

The collection of documents (the “corpus”) to be used as input for LSI
may be larger than the texts corresponding to the entities from the trace-
ability model. In fact, LSI analysis may benefit from including additional
documents containing texts about, for example, the application domain. It
allows LSI to collect more terms that are typically used in combination,
helping LSI to deal with, for example, synonyms. If such extra documents
are used, these documents need to be preprocessed as well.
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Figure 4.2: Example of Similarity Matrix

Link Reconstruction

After generating the term-by-document matrix we can reconstruct the trace-
ability links using LSI. First of all, this creates the rank-k model on the
basis of which similarities between documents can be determined. Here
we need to choose the number for k. Secondly, for every link type in the
traceability model (for example tracing requirements to designs) a similar-
ity matrix is created containing the similarities between all elements (for
example between every requirement and design artefact).

The result of our LSI analysis is a similarity matrix containing the re-
covered links, represented as their similarity measures. Figure 4.2 shows
an example of a similarity matrix calculated for 10 use cases and 3 design
components. This similarity matrix allows us to judge the quality for every
recovered link.

Link Selection

Once LSI has created the similarity matrix, a choice has to be made if the
similarity number is indeed a traceability link or not. There are several
different strategies for doing this: the cut point, cut percentage, constant
threshold, and variable threshold strategy [Antoniol et al., 2002; Marcus
and Maletic, 2003; De Lucia et al., 2004].

All these strategies have their strengths and shortcomings. In order
to benefit from the specific characteristics of applying LSI to traceability
reconstruction, we propose two new link selection strategies: a one and
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Figure 4.3: Example of Traceability Matrix

two dimensional vector filter strategy, which we will discuss in detail in
Section 4.5.

The result of the link selection step is a traceability matrix containing
the links not filtered by the chosen link selection strategy. The link selec-
tion strategy and its corresponding parameters determine which similarity
measures will become the final traceability links. In Figure 4.3, an example
of a reconstructed traceability matrix is shown using our two dimensional
vector filter strategy. In Section 4.5, we will explain, using an example, how
to construct this traceability matrix with our link selection strategies.

Requirements View Generation

The final step is to use the reconstructed traceability links to obtain re-
quirements views. Currently we have defined a number of different views
concerning the status and coverage of requirements, as well as a view to
browse the reconstructed traceability links.

For example, given the presence of a link, the status of a requirement
can be appropriately set. Moreover, management information can be ob-
tained by computing percentages of requirements that have reached a cer-
tain status.

The reconstructed traceability matrix can also be used to calculate cov-
erage metrics. Currently, for every link defined in the traceability model
we calculate the percentage of all requirements covered by the specific link.
Thus, we get a list of requirements coverage percentages in the design, test
cases, and so on. Another view shows the requirements that are not covered
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by, e.g., the design or test cases. The developers can use this information
to check if the requirements are indeed not covered and can undertake ap-
propriate action.

Tackling Requirement Changes

Finally, when we have reconstructed a traceability matrix and are able to
generate requirements views, we need to maintain the traceability matrix.
In other words, we need to extend our approach so it is able to tackle re-
quirements evolution. We use an incremental approach for handling this.

In step 5 we have a validated traceability matrix. This matrix can be
used to generate requirements views. This validated traceability matrix is
also the new reference traceability matrix. So, when a requirement changes
during a project, steps 3 – 5 are executed again (automatically) and the
change can be validated by the user using the reference traceability matrix
and the newly generated traceability matrix.

In a new project (started from scratch), the traceability matrix grows as
the project grows. The incremental approach causes the validation steps
to be small, minimizing the manual effort required. When applying the
MAREV approach to a project that is already running, the first full execu-
tion of all steps in the MAREV approach requires quite some manual val-
idation effort. However, once the first run of MAREV has been done, the
incremental approach only requires little manual effort in the next runs.

4.4.2 Assessment of the Results
In order to assess the suitability of the reconstructed links, we conduct a
qualitative as well as a quantitative analysis of the links obtained.

The qualitative assessment of the links is primarily done by experts ex-
ploring the documents. The structure of the documents set is of major influ-
ence on this process. It helps significantly if the documents are structured
according to an (international) standard or template such as IEEE stan-
dard 830-1998, IEEE standard 1233-1998, ESA [European Space Agency,
1991] or Volere [Robertson and Robertson, 2000]. Beforehand, such a struc-
ture helps choosing the concepts and pre-processing the documents. After-
wards it helps in assessing the reconstructed traceability links as it is eas-
ier to browse through the documents. A tool for exploring the links in order
to support the qualitative assessment is discussed in Section 4.6.

The quantitative assessment consists of measuring two well-known IR
metrics: recall and precision [Salton and McGill, 1986; Rijsbergen, 1979;
Frakes and Baeza-Yates, 1992; Baeza-Yates and Ribeiro-Neto, 1999]:
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recall =
|correct ∩ retrieved|

|correct|

precision =
|correct ∩ retrieved|

|retrieved|

The number of correct traceability links are specified in a reference
traceability matrix provided by the experts developing the system. The
number of retrieved traceability links is derived from the LSI analysis.

Both metrics have values between [0, 1]. A recall of 1 means that all
correct links were reconstructed, however the total set of links can contain
incorrect links. A precision of 1 indicates that all reconstructed links are
correct, but there can be correct links that were not reconstructed. The
link selection strategy and its corresponding parameters influence the per-
formance indicators recall and precision, as we will see in the case studies.

4.5 Link Selection Strategies
For selecting the relevant links in a similarity matrix several link selection
strategies are available. In their application of LSI, De Lucia et al. present
a number of strategies for selecting traceability links. The following are
discussed [De Lucia et al., 2004]:

1. cut point; In this strategy we select the top µ links regardless of the
actual value of the similarity measure [Antoniol et al., 2002; Marcus
and Maletic, 2003]. This strategy always returns exactly µ traceabil-
ity links.

2. cut percentage; In this strategy we select a percentage p of the ranked
list to be considered as links regardless of the actual value of the sim-
ilarity measure. This strategy always returns exactly the p% of the
total reconstructed candidate links.

3. constant threshold; In this strategy we select those links that have a
similarity measure higher than c, where c is a constant (a commonly
used threshold is 0.7). Note that the number of returned links is flex-
ible.

4. variable threshold; In this strategy, proposed by De Lucia et al., we se-
lect those links that have a similarity measure higher than ε, where
ε is calculated through a percentage q of the difference between the
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maximum and minimum similarity measures of the total set of simi-
larity measures, e.g., the best q% of the interval defined by the maxi-
mum and minimum [De Lucia et al., 2004]. This strategy is useful if
the difference between the maximum and the minimum is low.

5. scale threshold; In this strategy, proposed by De Lucia et al., the links
are obtained as a percentage of the maximum similarity measures,
i.e., ε = c ∗MaxSimilarity, where 0 ≤ c ≤ 1 [Antoniol et al., 2002; De
Lucia et al., 2004]. This measure is most useful if the maximum sim-
ilarity is low.

In our case studies, we have experimented with each of these strategies,
which again all have their strengths and shortcomings. Except for strategy
constant threshold, all strategies return at least one or more traceability
links as correct links, while in our case studies situations exist where no
links should be found, e.g., when the quality of the document set is poor.
Note however, that it is possible for individual rows or columns to have no
links, since the threshold is calculated using the complete set of similarity
measures in the matrix.

Furthermore, the first two strategies do not take the similarity measure
into account and make a selection independent of the calculated result.
They simply select the µ best or p% best similarity measures as traceability
links. A typical question is what number should we choose for the µ and
p? In most cases, we do not know the exact number of traceability links to
return and it is hard to predict this number.

The last two strategies define an interval containing the selection of
similarity measures that are correct traceability links. Both strategies are
very vulnerable for extremes. For example, if the minimal similarity mea-
sure is very low with respect to the other measures, it is possible that the
top 20% contains almost all measures.

To deal with these issues, we have experimented with a new approach,
that tries to take advantage of the specific characteristics of our setting.
For requirements traceability purposes, it is not very likely that there are,
e.g., requirements that link to all test cases, or design decisions that may
be inspired by all requirements together. For that reason, we propose a
strategy that works on a per column basis.

4.5.1 One Dimensional Vector Filter Strategy
This strategy takes into account each column of the similarity matrix sep-
arately (see 1st dimension in Figure 4.4a). Each column vector of the sim-
ilarity matrix is taken as a new set of similarity measures. Then, for each
column, it combines the constant and variable threshold approaches: if
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(a) Reconstructed Similarity Matrix (b) Applied One Dimensional Vector
Filter Strategy

(c) Applied Two Dimensional Vector
Filter Strategy

(d) The Final Reconstructed Traceabil-
ity Matrix

Figure 4.4: Applying the One and Two Dimensional Vector Filter on the
example Similarity Matrix using c = 0.7 and q = 20%
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there are measures above the constant threshold c, we take the best q%,
e.g., 20% of the similarity measures in that column.

The constant threshold is used to indicate if there is any similarity be-
tween this specific work product (in the example a use case) and the other
work products (in the example the design artefacts)(see Figure 4.4a). If all
similarity measures in the column vector are smaller than c, there is not
enough similarity between the work products and thus there are no trace-
ability links at all. This way we can guarantee a certain level of quality for
our reconstructed traceability links.

If there are measures greater than the constant threshold we take the
variable threshold for selecting the traceability links. With the variable
threshold, a similarity interval is defined by the minimum and maximum
similarity measures of the column vector (taking the original column vector,
including the possible measures smaller than c). We use q to calculate the
variable threshold ε per column. This threshold ε retains the best q% of
the similarity measures in that vector representation and selects them as
traceability links independent of the other column vectors.

In the example, depicted in Figure 4.2 and Figure 4.4a, we can see that
the constant threshold (c = 0.7) has no influence on the result. All the sim-
ilarity measures and higher than c = 0.7. Consequently, every use case in
this example has at least one link (in this case, the variable threshold al-
ways returns a link per column).

The variable threshold ε is calculated per column, and differs for each
column; UC1 ⇒ ε = 0.916, UC2 ⇒ ε = 0.914, UC3 ⇒ ε = 0.912, UC4 ⇒ ε =
0.838,UC5 ⇒ ε = 0.922, etc... We see that the relatively high variable thresh-
old of UC5 would cause UC4 not to return any links, and that the relative
low variable threshold of UC4 would cause that only 2 links of UC2 are
filtered (see Figure 4.4a and Figure 4.4b). Besides that, every column can
have a different number of returned links. Note that the standard variable
threshold strategy would use a single ε for all columns.

With respect to applying only the variable threshold strategy, we will see
in our case studies that our strategy increases the precision of the result
without affecting the recall. The variable threshold ε in case of taking q =
20% results in ε = 0.91 for all columns. Consider, as an example, the effect of
this threshold on UC4. With this threshold, UC4 would have no links, while
for the given example we know there should be two links returned. This
decreases the recall with respect to using our one dimensional vector filter
strategy. On the other hand, our strategy does filter more of the relative
high similarity measures of UC9. Our strategy with a ε = 0.930 for UC9
returns only three links, while with the “normal” variable threshold (ε =
0.91) it returned five links. As we will see in the case studies, the correct
link is indeed in that set of three links.

The benefits of our one dimensional vector filter strategy, compared to
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the strategies discussed by De Lucia et al. [De Lucia et al., 2004], are the
following:

• Our strategy is flexible in the number of returned candidate traceabil-
ity links. Thus, it does not always return an absolute number of links,
like the cut point and cut percentage strategies.

• Our strategy takes into account the calculated similarity measures
and uses a constant threshold to guarantee a certain level of quality.
It is possible that with our strategy no traceability links are returned.

• Our strategy is less vulnerable for extremes in the total set of sim-
ilarity measures. It only takes a subset (the column vector) to set
the variable threshold. For each individual work product, it returns a
more precise set of traceability links that is not affected by the simi-
larity measures in the other column vectors.

We have shown some arguments why our strategy improves the link
selection step compared to the other available strategies. However, there
are still two problems with this strategy: 1) it does not consider the other
dimension (row) of the similarity matrix (in our case example the design
vectors) and 2) it always returns a link for each column if the constant
threshold is too low.

The first is a problem because of the following. Imagine the situation
that a design vector has relatively high values for the similarity measures
compared to the other design vectors in the matrix, e.g., D3.2 compared
to D2.2. In this case, this design artefact returns many traceability links
using our one dimensional vector filter strategy; the similarity measures
are higher than the constant threshold c and also belong to the interval
defined by ε of each column. This is an undesirable situation as one design
artefact (or one test case) should not cover all (or most of the) use cases.

The second is a problem because it should be possible for columns to
return no links. For example, when a use case is not yet covered in the
design, the column of that use case should not return any links. Both prob-
lems are solved using our second strategy, which is an extension to the one
dimensional vector filter strategy.

4.5.2 Two Dimensional Vector Filter Strategy
This two dimensional vector filter strategy is basically the same as our
one dimensional vector filter strategy except that it is executed on both
dimensions of the similarity matrix (see Figure 4.4a). It also filters the
relatively weak similarity measures of the row (in our example the design
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vectors). In general, this should improve the quality of the reconstructed
traceability links; the precision further increases.

When applying our two dimensional vector filter strategy in our exam-
ple we see that for D3.2, four extra links are filtered. The same results can
be observed for, e.g., D3.2.2 and D3.5 (see Figure 4.4c).

However, with this second strategy the risk increases that the filter is
too precise and also eliminates correct links, thus decreasing recall. If we
look again at UC4, we see there only remains one link after applying our
two dimensional vector filter strategy. After applying the two dimensional
vector filter strategy, we transform the remaining similarity measures to
traceability links. Finally, these form the traceability matrix depicted in
Figure 4.4d.

The additional benefits of our two dimensional vector filter strategy with
respect to the benefits discussed in Section 4.5.1 are the following:

• It returns a more precise result for each pair of work products (in our
example; use case - design artefact pairs).

• It possible that a column returns no links even if the constant thresh-
old has no influence on the result. The second filter dimension (per
row) makes this possible.

4.6 The REQANALYST Tool Suite
In order to support the traceability reconstruction approach, we developed
a tool called REQANALYST 1. The objectives of this tool are:

• To offer a test bed for experimenting with different traceability recon-
struction approaches and algorithms;

• To support the application of these approaches to industrial projects.

The tool has been implemented in Java, and follows the Extract-Query-
View approach adopted by many reverse engineering tools [van Deursen
and Moonen, 2006]. In this approach we first extract the relevant data
from the provided documents. This data, the work products and if avail-
able the reference traceability matrices, are stored in a database. For re-
constructing the traceability links, queries can be done on the database.
The reconstructed information combined with the data from the database
is used to generate the requirements views.

1This tool suite replaces the tool support (TMG toolbox, Trace Reconstructor and Trace
Explorer) used in our paper at CSMR 2006 [Lormans and van Deursen, 2006]. The tool is
available from http://swerl.tudelft.nl/bin/view/Main/\reqanalyst.
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4.6.1 Tool Requirements
In order to make REQANALYST useful in practice, it needs to fulfil the
following requirements. One of the key requirements for REQANALYST
is that it should reduce the effort for maintaining consistent traceability
support and reduce the search time for changes, improve impact analy-
sis and coverage analysis. Besides that, REQANALYST should be able to
easily support different development environments and different domains
with a minimum of tailoring effort. This includes environments such as
global distributed software development, offshoring and outsourcing. Also
the deployment of REQANALYST should be simple for such heterogeneous
environments.

The input for REQANALYST consists of the work products that need to be
traced and of which the requirements views should be generated. The tool
should be flexible in the structure of these work products, minimizing the
amount of tailoring required to offer a document as input to REQANALYST.
In addition to that, it should be able to cluster the work products in an easy
and flexible way.

Furthermore, REQANALYST should be scalable. It should be able to
handle a large number of work products, but it should also be easily ex-
pandable with respect to the number of predefined requirements views (or
other views, if necessary).

Since we anticipate that the maintenance of such a traceability matrix
cannot be fully automated, REQANALYST should support manual trace-
ability identification as well. In particular, it should be possible to read
in a hand-written matrix, to compare the manual with the automatically
obtained results, and to easily inspect the documents for which the two
matrices differ.

In order to support the evaluation of reconstruction approaches, the lat-
ter comparison feature can be used for conducting a qualitative analysis of
the reconstruction results. In order to support a quantitative analysis as
well, the tools should be able to compute precision and recall figures from
the traceability matrices.

4.6.2 Technology Used
REQANALYST is implemented using standard web-technology. For storing
the data we use a MySQL1 database. On top of the database we have im-
plemented a Java web application using Java Servlets (for collecting data
and link reconstruction) and Java Server Pages (for presenting the results).
The choice for building a dynamic web application in Java made it easy to

1http://www.mysql.com
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fulfil a number of the practical tool requirements mentioned in the previous
subsection, such as ease of deployment.2 Furthermore, the use of a browser
provides access to the tool from any location, making it suitable for global
distributed software development.

4.6.3 Functionality and Implementation
The functionality of the present version of REQANALYST is still relatively
simple. REQANALYST currently is primarily a research prototype, allow-
ing us to experiment with the use of LSI for requirements coverage view
reconstruction.

A REQANALYST session starts by choosing a project, which can be a new
one, or one that has been stored in the database already. Once the user has
chosen a project, REQANALYST shows a menu with the steps that can be
executed next.

REQANALYST first of all offers a menu to extract the data from the pro-
vided documentation. The work products and the reference traceability
matrices can be extracted. Secondly, it provides a menu for setting the
parameters of the LSI reconstruction and the choice for a link selection
strategy.

Once the tool has executed a reconstruction an intermediate menu ap-
pears showing the reconstructed traceability matrix and some options for
generating various requirements views. These views should make it pos-
sible to obtain continuous feedback on the progress of ongoing software
development or maintenance projects. Furthermore, they facilitate com-
munication between project stakeholders and different document owners.
In addition to that, REQANALYST offers views that support the compari-
son of traceability matrices obtained in different ways, for example manual
versus automatically via LSI. Examples are shown in Figures 4.7 and 4.8
discussed in the next section.

4.7 Case Studies
We have conducted three case studies where we applied our approach for
reconstructing requirements traceability using LSI. The case studies vary
in size and context. The first case study, Pacman, is a small case we de-
veloped within our university. This case study gives us the opportunity to
explore all the possibilities of the techniques in a controlled environment.
We varied the different parameters of our analysis to come to a setting giv-
ing the best results. The second case study, called Calisto, is somewhat

2For our case studies we used the Apache Tomcat 5.5 web server for deployment
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Case Studies Pacman 2.2 Calisto Philips
Number of Requirements 14 12 7
(work products)
Number of Design Artefacts 24 48 16
Number of Test Cases 20 79 326
Total number of indexed terms 1366 2251 2502
Number of “requirement - 28 59 nk
design artefact” links
Number of “requirement - 19 80 nk
test case” links

Table 4.1: Case Study Statistics

bigger. Although developed within a university, the system at hand was
developed for an external (industrial) client. The last case study involves
an industrial project carried out at Philips Applied Technologies. This case
study represents a real life project for commercial purposes.

In our case studies, we will focus mainly on two types of traceabil-
ity links; links between requirements and design, and links between re-
quirements and test. The corresponding traceability model is shown in
Figure 4.5. By combining these two link types we can furthermore ob-
tain traceability from design decisions to system tests, as indicated by the
dashed line in the figure.

An impression of the size of the cases is provided by Table 4.1. It shows
the number of work products involved relevant to our traceability model
for each case, as well as the number of indexed terms for the total set of
documents, including additional context (e.g. Javadoc). Besides that, it
shows the number of links between the different work products as set in
the provided reference traceability matrices1.

For each case study, we will conduct link reconstruction using the follow-
ing link selection strategies: constant threshold, variable threshold, one di-
mensional vector filter and two dimensional vector filter, and reflect on the
lessons learned from this case.

4.7.1 Case Study I: Pacman 2.2
Our first results are obtained from a lab experiment executed at Delft Uni-
versity of Technology. The system at hand is a simple version of the well-
known Pacman game that is used by students in a lab course for testing ob-

1For the Philips case study, we do not have the reference traceability matrices. So we do
not know the number of links and cannot calculate the link density (nk – not known).
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Design
Artifact

System
TestRequirement

Figure 4.5: Traceability Model for our Case Studies

ject oriented software following Binder’s testing approach [Binder, 2000].
An initial implementation for the system is given, and students are ex-
pected to extend the test suite according to Binder’s test design patterns,
and enhance the system with additional features (which they should test
as well).

Case Configuration

The available documentation for Pacman consists of

• A requirements specification including a concise domain analysis, ten
use cases, and a description of the user interface.

• A design document listing the design decisions at architectural as
well as detailed design level. This covers the (model-view-controller)
layering used as reflected in the package structure, the static view
explaining the main classes and their associations, a dynamic view
summarizing the system’s main state machine, and a description of
the implementation of the user interface.

• A testing document explaining the acceptance test suite for the appli-
cation. For each use case one or more test cases are provided as well
as a test case for validating the proper working of the user interface.

Pacman is shipped with a traceability matrix. As can be seen from the
above description, Pacman’s documentation has been organized with trace-
ability in mind. Thus, for the acceptance test suite, there is a natural map-
ping from test case to use case. For the design it is somewhat harder to
setup the documentation with clear traceability objectives. As an example,
to what requirements should the decision to opt for a model-view-controller
architecture be linked?

For the requirements specification the use cases are chosen as main
requirement entities. Besides the use cases we also included the domain
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UC7 Suspend
Actor player
1. Entry condition: The player is alive and playing
2. The player presses the quit button in order to suspend

playing the game
3. During suspension, no moves are possible, neither from the

player nor from the monsters
3a. The user can press undo in order to undo monster and

player moves
4. Pressing the start button re-activates the game

Figure 4.6: Full text for use case UC7 of the Pacman case study

analysis, user interface, and the requirements for the development envi-
ronment. The design is listed according to its design decisions, which we
used as design entities in our analysis. Finally, every test case is consid-
ered as a test case entity for our analysis. In total there are 14 requirement
entities, 24 design artefacts, and 20 test cases. In Figure 4.6 we show an
example of a use case description. The documents were provided in plain
text, and the traceability matrix as an MS Excel spreadsheet. They could
be directly passed as input to REQANALYST.

As corpus, the collection of all documents was used, including the Javadoc
of the implementation. This resulted in a corpus of almost 1366 terms.
Furthermore, for c we took the value 0.7. The other two values k and q we
varied to get an impression of the impact of these values.

Case Results

The recall (R) and precision (P) for this case study are shown in Table 4.2
for the constant threshold, variable threshold, one dimensional vector filter
and two dimensional vector filter strategies discussed in Section 4.5. For
the two dimensional vector filter strategy we also recorded the link density
(LD). In Figure 4.7 and Figure 4.8 the reconstructed traceability matrices
of the Pacman case study are shown using the various filter strategies. Fig-
ure 4.7 shows the reconstructed matrices of the links between the require-
ments and the design, and Figure 4.8 shows the reconstructed matrices of
the links between the requirements and the test cases.

The reconstructed matrices are compared with the provided reference
traceability matrix. The correctly reconstructed links are coloured grey
and each the cell contains an “X”. The empty cells are correctly not recon-
structed links. According to the reference traceability matrix these cells
should not return a link.
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Link Constant Variable One Dim. Two Dim.
Type Threshold Threshold Vector Vector

Filter Filter
c q R P R P R P R P

Use case 0.7 10% 1.0 0.09 0.36 0.25 0.29 0.13 0.21 0.15
to design 0.7 20% 1.0 0.09 0.54 0.15 0.64 0.17 0.46 0.17

0.7 30% 1.0 0.09 0.82 0.13 0.82 0.16 0.71 0.17
0.7 40% 1.0 0.09 0.93 0.11 0.89 0.13 0.82 0.14
0.7 50% 1.0 0.09 0.93 0.09 0.93 0.11 0.86 0.12
0.7 60% 1.0 0.09 1.0 0.09 0.97 0.10 0.93 0.10

Use case 0.7 10% 1.0 0.07 0.42 0.36 0.58 0.27 0.53 0.42
to test 0.7 20% 1.0 0.07 0.74 0.24 0.68 0.19 0.68 0.27

0.7 30% 1.0 0.07 0.95 0.17 0.84 0.18 0.79 0.21
0.7 40% 1.0 0.07 0.95 0.13 0.95 0.14 0.95 0.16
0.7 50% 1.0 0.07 0.95 0.10 0.95 0.11 0.95 0.13
0.7 60% 1.0 0.07 1.0 0.09 0.95 0.10 0.95 0.11

Table 4.2: Recall and precision for the reconstructed traceability matrices
of Pacman 2.2 with rank-k subspace of 20% and c = 0.7

The cells that are coloured light grey are invalid compared to the pro-
vided reference traceability matrices. These cells containing “fp” are the
false positives. These links should not be reconstructed as traceability links
and are therefore incorrectly reconstructed. The dark grey cells containing
“fn” are the false negatives (missing links). A link should have been recon-
structed between these two particular work products, but our approach did
not select this candidate link as a traceability link. In REQANALYST, each
cell in these matrices is clickable leading to the text of both documents.
This makes it easy to analyze why a certain reconstructed link was present
or absent.

Results “Requirements – Design”

The results in Table 4.2 show a relatively low precision of the links between
the requirements and design. This is caused by the many false positives.
The constant threshold strategy returns the most false positives (and this
way returns the lowest precision). The threshold of c = 0.7 has almost no
influence on the result (see Figure 4.7a). Most similarity measures are
above 0.7.

If we apply the variable threshold strategy we filter many of the false
positives. This strategy generally increases the precision, but decreases the
recall, e.g., for q = 30%. Figure 4.7b shows that 5 correct links are filtered



CASE STUDIES 81

using these settings. We can also see that many of the false positives are
located in specific rows and columns. In the case of q = 30%, design artefacts
D0, D3.3 and D3.7 and requirement artefacts DA, UC7 and GUI return
many false positive.

Our one dimensional vector filter strategy filters many of these false
positives in the columns of the traceability matrix. For example for the
column with label DA (Domain Analysis) it filters an additional 8 false pos-
itives compared to the variable threshold strategy (see Figure 4.7b and Fig-
ure 4.7c). The same can be observed for UC7 (4 additional false positives)
and GUI (6 additional false positives). In this case, with q = 30% the filter
increases the precision and does not influence the recall (see Table 4.2 with
q = 30%). However, the filter has limited influence on the rows containing
many false positives such as D0, D3.3 and D3.7.

Using our two dimensional vector filter strategy also affects the rows of
the matrix. Compared with the one dimensional vector filter strategy we
filter an additional 1 false positive for D0, 3 false positives for D3.3, and 4
false positives for D3.7. In this case we did increase the precision a little,
but also decreased the recall; 3 correct links are now filtered (dark grey
cells containing “fn”).

The two dimensional vector filter strategy did also filter one additional
false positive in UC7. Still UC7 contains many false positives. The quan-
titative analysis did not help us to understand this phenomenon so we
needed to explore the text. We used the “browse results view” of REQ-
ANALYST for this. We investigated the text of the correct links and the
returned links with the best score. We manipulated the text to improve
our understanding of these links. Improving the similarity measure of the
correct links was not that difficult, but understanding why the other links
had such a high similarity score was not always that obvious.

To improve the correct similarity measure of UC7 (See Figure 4.6) the
state conditions were made more explicit in the design text. So document-
ing that a state has changed, e.g., to “playing state” again, is not sufficient.
Explicitly documenting that the player is “alive and playing” helps to link
the design artefact to the use case.

Furthermore, in the design artefact the term “pause” was used for in-
dicating a suspension. So we also introduce the term “pause” in the use
case description. The last step of the use case description was changed in:
“4. Pressing the start button ends the pause, and re-activates the game”.
These changes in the text increased the similarity measure of the correct
link. However, this did not influence the total result of use case UC7. UC7
still returned 12 false positives. The other similarity measures did not suf-
ficiently decrease for the link selection strategy to filtered them.
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(a) Constant Threshold Strategy (b) Variable Threshold Strategy

(c) One Dimensional Vector Filter Strat-
egy

(d) Two Dimensional Vector Filter Strat-
egy

Figure 4.7: Reconstructed traceability matrices between requirements
and design using different link selection strategies with rank-k subspace
of 20%, c = 0.7 and q = 30%
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Results “Requirements – Test”

Looking at the links between the requirements and test cases we observed
similar results. The constant threshold strategy does not have much influ-
ence and only filters a small number of candidate links resulting in many
false positives (see Figure 4.8a).

The variable threshold strategy does a much better job and filters many
of the false positives. Again we can see that a number of rows and columns
cause the many false positives. In this case the rows Intro TC, TC6 and
TC11, and the columns DA, UC10 and GUI (see Figure 4.8b).

Our one dimensional vector filter strategy again filters many additional
false positives, but in this case it also filters some correct links causing the
recall to decrease (see Table 4.2 with q = 30%). Two correct links are fil-
tered (see Figure 4.8b and Figure 4.8c). For the variable threshold strategy
the threshold ε = 0.88. For the column UC5 the threshold ε = 0.91, and
for column UC10 the threshold ε = 0.92. So, for both UC5 and UC10 the
threshold is higher filtering more cells in that column. Cell 〈UC5,TC5a〉
has a similarity of 0.9 (< 0.91) and because of that it will be (incorrectly)
filtered using the one dimensional vector filter strategy. The same holds for
cell 〈UC10,TC10a〉, which has a similarity of 0.91 and the threshold for that
column is 0.92.

The two dimensional vector filter strategy shows the expected result. It
filters some additional false positives in the rows of the matrix increasing
the precision. Unfortunately, again one additional correct link is filtered
(see Figure 4.8c and Figure 4.8d).

Lessons Learned

The key lessons learned from this case study are:

• Reconstructing traceability between use cases and test cases is easier
than between use cases and design.

• The design activity and traceability activity is a hard combination.
The designer should structure the design decisions so that clear trace-
ability can be established.

• For larger case studies we do not expect results to become better than
for Pacman. Pacman is designed to incorporate traceability and for
most industrial projects this only limitedly done [Graaf et al., 2003;
Gotel and Finkelstein, 1994].

• Eliminating false positives in columns with many hits is effectively
done by the one dimensional vector filter strategy.
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(a) Constant Threshold Strategy (b) Variable Threshold Strategy

(c) One Dimensional Vector Filter Strat-
egy

(d) Two Dimensional Vector Filter Strat-
egy

Figure 4.8: Reconstructed traceability matrices between requirements
and test cases using different link selection strategies with rank-k sub-
space of 20%, c = 0.7 and q = 30%
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• Eliminating false positives in columns, as well as rows with many hits
is effectively done by the two dimensional vector filter strategy.

4.7.2 Case Study II: Calisto
In this section we discuss our results from the second case study. This case
study involves software developed by students from Eindhoven University
of Technology in a software engineering project where the students needed
to carry out a complete development life-cycle.

In this project an Interface Specification Tool is constructed. This tool
is designed to support the ISpec approach, a specification method in the
context of component technology [Jonkers, 2000]. The purpose of the tool
is to create Interface Specification Documents as well as exporting these
documents to other software components.

Case Configuration

The provided documentation for Calisto consists of:

• A user requirements specification (URD), which states what the prod-
uct is supposed to do according to the client. It is used as the contract
between the client and the developers of the product.

• A software requirements specification (SRS), which formally describes
the functionality of the product to be made. The document translates
all user requirements into software requirements. It defines a logi-
cal model that contains the functionality that was found in the user
requirements. The functional requirements are described using the
classes defined in the logical model including attribute and method
descriptions.

• An acceptance test plan (ATP), which describes the plan for testing
the developed software tool against the user requirements. It lists the
test cases that should cover the user requirements.

The documents all comply with the equally named specifications from
the Software Engineering Standard, as set by the European Space Agency
(ESA) [European Space Agency, 1991]. We consider the SRS as a design
document as it specifies classes and interfaces. Thus, in our analysis we
will refer to the software requirements as our design artefacts.

All requirements have a unique identifier; the user requirements com-
ply to the prefix URCARxx and the software requirements to the prefix
SRFURxx were xx is a unique number. The test cases are directly related
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Link Constant Variable One Dim. Two Dim.
Type Threshold Threshold Vector Vector

Filter Filter
c q R P R P R P R P

Req. 0.4 10% 0.54 0.12 0.07 1.0 0.19 0.39 0.15 0.69
to design 0.4 20% 0.54 0.12 0.10 0.60 0.27 0.28 0.22 0.43

0.4 30% 0.54 0.12 0.15 0.35 0.41 0.21 0.31 0.29
0.4 40% 0.54 0.12 0.31 0.26 0.51 0.17 0.44 0.27
0.4 50% 0.54 0.12 0.41 0.15 0.53 0.14 0.49 0.18
0.4 60% 0.54 0.12 0.58 0.12 0.54 0.13 0.51 0.15
0.3 50% 0.69 0.11 0.41 0.15 0.63 0.14 0.54 0.19
0.3 60% 0.69 0.11 0.58 0.12 0.68 0.12 0.58 0.15

Req. 0.4 10% 0.94 0.16 0.05 1.0 0.23 0.44 0.20 0.70
to test 0.4 20% 0.94 0.16 0.16 1.0 0.51 0.41 0.45 0.69

0.4 30% 0.94 0.16 0.36 0.69 0.71 0.28 0.61 0.50
0.4 40% 0.94 0.16 0.60 0.35 0.83 0.21 0.75 0.37
0.4 50% 0.94 0.16 0.79 0.20 0.85 0.17 0.79 0.25
0.4 60% 0.94 0.16 0.96 0.14 0.94 0.16 0.89 0.20

Table 4.3: Recall and precision for the reconstructed traceability matrices
of Calisto with rank-k subspace of 20%

to the user requirements as they have the same unique identifier, namely
URCARxx.

We did the analysis including with the code included in as well as ex-
cluded from the corpus. In the first case the corpus consisted of almost
5500 terms, in the second case it consisted of almost 2300 terms. The sec-
ond case did contain additional context from the provided documents. This
additional text includes the introductions to specific groups of requirements
or “glue” text to make the document readable and not just a list of require-
ments. In this chapter we discuss the results of the second case not in-
cluding the code. We started with the same values for k, c and q as in the
Pacman case.

Case Results

The precision and recall for all link selection strategies for the Calisto case
study are summarized in Table 4.3. In this case study we observed that
the constant threshold has a major impact on the results. When using the
commonly accepted threshold of c = 0.7 LSI returns only few links. Using
a threshold of c = 0.4 makes that the constant threshold has almost no
influence on the results, but gives the best results. Filtering only on the
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constant threshold (c = 0.4) will cause the recall of design never to exceed
0.54 and the recall of test never to exceed 0.94.

Remarkable is the difference between the variable threshold strategy
and one dimensional vector filter strategy for both link types. This can be
explained by the distribution and the stretch in the data set. For example
when we take the reconstructed links between requirements and design
for q = 10%. In the case of applying the variable threshold strategy the
threshold ε = 0.86 explaining the low recall and high precision. When ap-
plying the one dimensional vector filter strategy the ε = 0.57 for a specific
column. The lower threshold returns more links increasing the recall and
decreasing the precision compared to the variable threshold.

As for Pacman, we can see that the precision obtained using our two
dimensional vector filter strategy is higher in all cases – in fact the im-
provement is even higher than we had for the Pacman case. However, the
recall was consequently lower with respect to the first strategy using sim-
ilar parameters. This can be explained as follows. First, again we have
certain design artefacts containing many false positives. For example, one
has 7 and another has 5 false positives. The second strategy reduced the
number of false positives to 0 for the first case (causing the increase in pre-
cision). For the second case 4 false positives are filtered, but in this case
also 2 correct links are filtered. This causes the recall to decrease.

When looking at the results of the reconstruction of the links between
the requirements and design we can identify a separation between the part
that describes the classes (functionality) and the part that describes the
additional non-functional aspects such as portability and maintainability.
In the part that describes the functionality of the system we have quite a
few missing links (causing the low recall). In the part that describes the
non-functional aspects we have many false positives (causing a decrease in
precision). Looking at the text we see that the structure of the description
is not that different, so this cannot be the reason for this separation. The
cause for this separation should then be in the description itself. Indeed
the non-functional aspects are more extensively described by text, as the
classes are more described by diagrams, pseudo-code and data types.

Lessons Learned

• Reconstructing traceability between requirements and test cases again
performs better than between requirements and design.

• In this case the description of the design was often captured in di-
agrams, pseudo-code or data types. This information is ignored by
our analysis emphasizing the difficulties of tracing requirements to
design.



88 RECONSTRUCTING REQUIREMENTS TRACEABILITY USING LSI

• Eliminating columns with many hits is effectively done by the one
dimensional vector filter strategy.

• Eliminating rows with many hits is effectively done by the two dimen-
sional vector filter strategy.

• The Software Engineering Standard by the European Space Agency
influences the choice for the work products to be analysed and has
a direct impact on the result (see description of functional and non-
functional aspects)

• It is indeed hard to get better results in a real-life industrial project
compared to the Pacman case study. However, the results for “require-
ments – test” return comparable results in both case studies. With a
similar recall the precision for Calisto is even better.

4.7.3 Case Study III: Philips Applied Technologies
For most products Philips Applied Technologies develops, almost 80–90%
is reused from previous projects. The majority of new products has only
limited new functionality that needs to be developed from scratch. The
existing functionality is delivered by various Philips units.

In this case study the document set of an extension of a DVD+RW
recorder is analyzed for requirements coverage. We want to know if all
the requirements agreed in the contract are covered in the product. That
is, we trace the requirements in the rest of the work products.

During product development a large number of requirements initially
identified cannot be traced back to test cases or design documents: in a way
they “get lost”. This gets even worse when the system evolves over time.
First ad-hoc attempts in two case studies showed that less than 10% of the
total requirements can be recovered from the design and test documents
(see Section 4.7.3). Furthermore, as the system evolves, new requirements
are introduced in the system that cannot be traced back to the original
requirements specifications.

Case Configuration

In this case the total set of documentation consists of one general document,
which describes the document structure for this component. Furthermore
there is one requirements document, which describes the requirements of
the component, and an architecture document, which describes the delta
that is introduced due to the new functionality. Finally, there are 5 inter-
face specifications, 11 component specifications, which together form the
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design of the component and one test specification containing all the test
scenarios and test cases.

In total, 20 documents are analyzed in this case study. These documents
are all Microsoft Word documents and are based on the IEEE-1233-1998
standard for system requirements specifications [IEEE, 1998a]. Further-
more, they are not explicitly related. Thus, no reference traceability matrix
is provided or anything comparable.

In this case it was not very obvious how to identify the concepts in the
documentation. The requirements all have a unique identifier, but one of
the problems is that the requirements specification consists of a require-
ments hierarchy. We need to choose the right granularity for our require-
ment concept. In this case study we took the highest level of requirements
including their sub-levels as documents in the LSI analysis. This resulted
in 7 high-level requirements as input for the LSI analysis.

For design artefacts our choice was not very obvious either. Every docu-
ment contains the design of one component or interface in the system. Tak-
ing a component as design artefact makes sense as the internal structure
of the design documents is not really suitable for subdividing into smaller
parts. So each design document will be a design artefact for the LSI analy-
sis. In total this makes it 16 design artefacts.

The identification of concepts in the test specification was not really dif-
ficult. Test scenarios and test cases were easily recognizable in the test
specification and therefore very suitable as input for the LSI analysis. In
total we have 326 test cases. After pre-processing the documents this re-
sulted in a corpus of more than 2500 terms representing the engineering
domain.

Preliminary Analysis of Documents

Before we executed the LSI analysis on the document set we carried out a
simple exploring analysis on the documents using Xpath expressions [Clark
and DeRose, 1999]. In practice often simple search facilities are used to re-
construct links, for example, when a new requirement is agreed and needs
to be processed in the documentation [och Dag et al., 2005]. In this first
analysis we transformed the Microsoft Word documents to XML format and
did some searching on the document set using Xpath expressions. Some-
what surprisingly, this analysis showed no direct links between the require-
ments documents and any other document. The unique identifiers were
not traceable in the rest of the documents. Querying with the labels of a
requirement identified only few links.

Still traceability should be incorporated somehow in the document set;
after all this is the documentation set of one and the same product exten-
sion. Taking a closer look at the documents showed that this is indeed true.
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Figure 4.9: Reconstructed Traceability Matrix for Philips with a rank-k
subspace of 20% and applying the Two Dimensional Vector Filter Strategy
using c = 0.4 and q = 20%

When analyzing the documents and focusing on a specific requirement it
showed that this requirement is transformed to a different technical term
during architectural design. Components in the architecture get a name
not directly related to the requirement.

From this experiment we learned that it is often very hard for non-
experts to understand the documentation and use it effectively. This pre-
liminary analysis emphasizes again that you need an expert to set up the
traceability meta-model (define the concepts that need to be traced) and to
judge the reconstructed traceability matrix.

Case Results

Executing the LSI analysis resulted in more informative results. The first
remarkable result is that the similarity measures between the require-
ments and the design were much better than the similarity measures be-
tween the requirements and the test cases. The first two case studies
showed the opposite results. A reason for this is the choice of the granular-
ity of the concepts for analysis; high-level requirements and complete de-
sign components in combination with the structure of these documents. Ev-
ery design component starts with a general description of the component.
Part of that general description includes its functionality. This function-
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ality matches the functionality described in the requirements description.
Figure 4.9 shows a reconstructed traceability matrix for the requirements
and design components. It has a link density of 13% and should give a
direction for the experts to find their requirements.

The similarity measures between requirements and test cases showed
results that were not as good. In this case there is a mismatch in the granu-
larity of the documents used for analysis. The requirements were the same
high-level requirements, but the test cases can be considered more as unit
tests. These unit tests are written according to the designs and not the
requirements. Clustering the 325 test to 16 higher level “test categories”,
did not improve the reconstruction results. The quality of the similarities
between de requirements and test cases was insufficient. It seems that
the terminology has changed during the design phase making it difficult to
reconstruct traceability between requirements and test.

Finally, in this case we were not able to compare the results with a pro-
vided traceability matrix, so we had to consult experts knowing the system.
Disappointing is the fact that it is hard to validate that the reconstructed
links are indeed correct. We found several links that are correct, but we
did not come to an agreement for all links. For this reason we could not
calculate the recall and precision.

Lessons Learned

The key lessons learned from this case study are:

• The choice for the work products to be traced is essential. The expert
needs to decide on the work products that are most suitable to trace
and the level of granularity to get the best results.

• The IEEE-1233-1998 standard for system requirements specifications
shows a possibility to improve the reconstruction of traceability links
between requirements and design. In IEEE-1233-1998 it is manda-
tory to provide a general description of the component.

• Again we see that is it hard to get better results in a real-life indus-
trial project compared to the Pacman case study, which perhaps can
be considered as an upper bound of the quality that LSI-based link
reconstruction can achieve.
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4.8 Discussion

4.8.1 Link Selection

With respect to the link selection strategies it is very hard to conclude when
a strategy performs better. It very much depends on the application objec-
tives. In the case studies we showed the results of applying LSI using differ-
ent parameter values and compared the available link selection strategies.
If we set our objective to realizing 100% recall, we can say that our two
dimensional vector filter strategy performs best. With a recall of 100% the
corresponding precision is higher for all cases.

We have also seen that the strategies cannot always reduce the number
of false positives successfully. A good example of this is use case UC7 in the
Pacman case. The returned links were all quite similar (between 0.91 and
0.96). The infinity of possible links in our strategies can be a disadvantage.
In this case the cut point and cut percentage strategy will be more success-
ful. They will, regardless of the actual value, simply select only the best x
similarity measures (where x is a natural number).

Another point of attention is the constant threshold, which can also be
disadvantageous. The constant threshold protects against losing too much
quality in similarity measures, since every link should at least have a simi-
larity measure ≥ c. In some cases a correct link will be filtered only because
of the constant threshold. Changing the values for the variable threshold
will not help to recover these links. In this case a recall of 100% can never
be reached as can be seen in the Calisto case and in the Philips Applied
Technologies case concerning the requirements coverage in the test cases.
In this case all similarity measures are simply lower than the constant
threshold. The opposite is also possible, in the Pacman case the constant
threshold was hardly of any influence.

A solution can be to make the constant threshold dependent on the min-
imal and maximal similarity measures or the mean of the entire matrix.
This way it is more related to the actual output and not chosen randomly.
It also represents the quality of the data. If for example the maximum sim-
ilarity measure of the matrix is 0.67 and the constant threshold is 0.7 no
links will be found with both strategies. Taking the mean of the total data
set as constant threshold ensures links will be found. Note that this does
not mean that for every requirement a link will be found, so for individual
requirements the idea behind the constant threshold is kept. The analist
together with the expert should decide on the quality of the data set.
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4.8.2 Link Types
Furthermore, we observe a systematic difference in the performance of LSI
for the different link types; requirements in design and requirements in
test cases. The links between requirements and test case in general per-
formed better than the links between requirements and design. The Philips
Applied Technologies case was an exception, which can be explained by the
wrong choice of granularity of the test cases. In general, the reason why
test cases perform better is unclear and is still an open issue that remains
to be answered.

However, one of the reasons LSI performs worse for “requirement – de-
sign” relations is the fact that for designs many diagrams are used for docu-
mentation (see again [Settimi et al., 2004]). Additionally, the diagrams are
often badly described. Information retrieval techniques are less suitable
for traceability reconstruction in this case. So, it very much depends on the
provided document structure. If many diagrams are used to capture the
information of the design, these should also be accompanied with a clear
description. When defining the traceability model these things need to be
considered and decided upon.

4.8.3 Link Density
We expect that there is a general range in the number of links that should
be in an “ideal high quality” traceability matrix. We call this metric the
link density for a traceability matrix of size N ×M.

Initially, we calculated the link density by dividing the total number of
links set in the reference traceability matrix by the total number of links
that can be set (the total set of possible candidate links). For example, in
our Pacman case we have 28 “requirement - design artefact” links and we
divide that number by 336 (14 requirements x 24 design artefacts). For both
the Pacman and the Calisto case study we calculated the link density 1. We
see that the link density for our case studies is always between 7% and 10%
(see Table 4.4). This observation can be an indication that the link density
should always be situated between the 5% and 15% of the total candidate
links when doing “adequate” traceability. Maybe this link density can be
used as a guideline for traceability reconstruction. For example, in the
Philips case where we do not have a reference traceability matrix. If you
reconstruct a traceability matrix and the link density is 30%, it means that
around 15–20% of the returned links are probably false positives.

This initial number gives only a general view on a traceability matrix.
It gives an indication of how many links there should be in total. This ini-

1Again for the Philips case study we cannot calculate these numbers as we do not have a
reference traceability matrix (nk – not known).
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Case Studies Pacman 2.2 Calisto Philips
Number of Requirements 14 12 7
(work products)
Number of Design Artefacts 24 48 16
Number of Test Cases 20 79 326
Number of “requirement - 28 59 nk
design artefact” links
Number of “requirement - 19 80 nk
test case” links
Link density between “requirement - 0.08 0.10 nk
design artefact” links
Link density between “requirement - 0.07 0.08 nk
test case” links
Link density relation 1:1,7 1:4 nk
“requirement:design artefact”
Link density relation 1:1,4 1:6,6 nk
“requirement:test case”

Table 4.4: Link Density Statistics

tial number does not give any direction on the structure of the traceability
matrix, while in most cases we know that a traceability matrix is struc-
tured around its diagonal; the first requirement is implemented in the first
design artefact and tested by the first test case, and so on...

In the ideal case we want to know the specific relation of the link density
between the requirements and all other work products (design artefacts
and test cases). For example, each requirement has on average a link with
2 test cases. If we assume this number is constant, we know that every
additional requirements has 2 corresponding test cases. In Table 4.4 we
calculated this link density relation for our case studies. It shows that each
requirement in the Calisto case study has on average 4 links to a design
artefact. Future work should confirm if there is indeed an “ideal” constant
link relation between requirements and other work products as we propose
here.

4.8.4 Reserach Issues
On the basis of our case studies we can identify the following research is-
sues that need to be addressed before LSI can be applied for the purpose of
link reconstruction in an industrial context:

• How can we take advantage of the (few) cross references that are typ-
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ically included already in the documents? For example, does it make
sense to give requirement identifiers used in design documents a high
weight in the term-by-document matrix?

• How should the hierarchical structure of, for example, design or re-
quirements documents be dealt with in link reconstruction? In our
present experiments we created a flat set of documents. How can LSI
be adjusted so that if possible links in the most detailed documents
are taken into account, moving up higher in the hierarchy (aggregat-
ing the paragraphs) when this does not lead to a sufficient number of
results?

• What documents should be included in the corpus? For example, do
we get better requirements-to-design links when we also include the
test documents in the corpus? Why (not)?

• Can we come up with link reconstruction techniques tailored towards
specific types of links? For example, do we need different strategies
for reconstructing requirements-to-design and for requirements-to-
test links?

• Are the recall and precision that are achieved sufficient for practical
purposes? Can we make sufficiently accurate predictions of certain
coverage views based on the (incomplete) links we can reconstruct?

• Is the link density a good measure to characterize a “good” traceabil-
ity matrix? If so, what will be the range for the number (5–15%) for
various link types?

4.9 Contributions and Future Work
The objective of this chapter was to investigate the role latent semantic in-
dexing can play in order to reconstruct traceability links. From the previous
discussion we can conclude that LSI can indeed help increasing the insight
in a system by means of reconstructing the traceability links between the
different work products produced during development. We consider follow-
ing to be our main contributions:

• We have provided a methodology, MAREV, for automating the process
of reconstructing traceability and generating requirements views.

• We defined a new two-dimensional vector filter strategy for selecting
traceability links from an LSI similarity matrix.
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• We provided a tool suite, REQANALYST, for reconstructing traceabil-
ity links including support for quantitative and qualitative assess-
ment of the results.

• We applied our approach in three case studies of which one was an
industrial strength case in the consumer electronics domain.

• For each of the case studies, we offered an analysis of factors con-
tributing to success and failure of reconstructing traceability links.

• We identified the most important open research issues pertaining to
the adoption of LSI for link reconstruction purposes in industry.

Our future work will be concerned with the open issues listed in the dis-
cussion section. Furthermore, we would like to extend our work along three
lines. First, we want to study other links than those between requirements
on the one hand and test cases and design decisions on the other. Fur-
thermore, we are in the process of extending our experimental basis. In
particular, we are working on two new case studies in the area of consumer
electronics and traffic monitoring systems. In these case studies we want to
focus more on our last step: the generation of requirements views that are
useful in practice. Finally, we will further explore how to improve the per-
formance of LSI and the link selection strategies in real-life applications.
All can be implemented in REQANALYST.

4.10 Epilogue
This chapter presented our main results, the MAREV approach and the
REQANALYST tool suite, as potential solutions for the observations, and
lessons learned in Chapters 2 and 3. Futhermore, it can be considered as
an implementation of the RES framework also presented in Chapter 3.

In Table 4.5 we depict a mapping of the steps of MAREV to the lessons
learned, and the RES framework discussed in Chapter 3. The reasons for
not using state-of-the-art technologies, as discussed in Chapter 2, are de-
liberately left out of the table as this mapping is already discussed in Sec-
tion 3.8.

When we look at Table 4.5, we see that all lessons learned and RES pro-
cesses are covered by the MAREV steps. So, we can conclude that MAREV
takes into account the lessons learned from our industrial case study, and
covers the three main processes of the RES framework.

The one thing that remains is applying MAREV and REQANALYST in
an industrial case study. In the next Chapter 5, we again use the TMS
case, discussed in Chapter 3, to apply our approach and assess its value for
industry.
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MAREV Steps Lessons Learned RES framework
(Ch3) (Ch3)

Define Traceability Model Lesson 3 Process 2
Identify Work Products Lesson 1 & 2 Process 1 & 2
Preprocess Work Products Lesson 1 & 2 Process 1
Reconstruct Traceability Lesson 3 & 4 Process 2
Select Links Lesson 3 & 4 Process 2
Generate Views Lesson 1 Process 3
Tackle Changes Lesson 3 & 4 Process 2

Table 4.5: Mapping of results Chapter 3





Chapter 5
An Industrial Case Study in
Reconstructing Requirements Views1

Requirements views, such as coverage and status views, are an
important asset for monitoring and managing software develop-
ment projects. We have developed a method that automates the
process of reconstructing these views, and we have built a tool,
REQANALYST, that supports this method. This chapter presents
an investigation as to which extent requirements views can be au-
tomatically generated in order to monitor requirements in indus-
trial practice. The chapter focuses on monitoring the requirements
in test categories and test cases. In order to retrieve the necessary
data, an information retrieval technique, called Latent Semantic
Indexing (LSI), was used. The method was applied in an indus-
trial study. A number of requirements views were defined and ex-
periments were carried out with different reconstruction settings
for generating these views. Finally, we explored how these views
can help the developers during the software development process.

5.1 Introduction
A “requirements view” on a system or development process offers a perspec-
tive on that system in which requirements assume the leading role [Nu-
seibeh et al., 1994]. A requirement view can be a combination of artefacts
such as requirements and design information, showing how a requirement
is transformed into a design artefact, and indicating how and where a re-
quirement is covered by specific design artefacts, or where it is located in

1This chapter was originally published as: Marco Lormans, Hans-Gerhard Gross, Arie van
Deursen, Rini van Solingen, and Andre Stéhouwer. Monitoring requirements coverage
using reconstructed views: An industrial case study. In Proc. of the 13th Working Conf. on
Reverse Engineering, pages 275–284, Benevento, Italy, October 2006

99
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the system architecture. Examples are coverage views, such as “which de-
sign artefacts address which requirement?”, or status views, such as “which
requirements are already implemented?” The various requirements views
help to avoid inconsistencies within the documentation of one kind of work
product (requirements specification) or between the documentation of dif-
ferent types of work products (requirements specification and architectural
design document) [Easterbrook and Nuseibeh, 1995]. Requirements views
help in improving the coherence between the work product documents, and
lead to higher overall quality of the work products.

Requirements views are essential for successful project management,
and for monitoring the progress of product development. In an outsourcing
context, reporting progress in terms of requirements is particularly impor-
tant, since the customer is much less aware of the system breakdown or
of implementation issues, and more likely to be interested primarily in his
requirements.

Unfortunately, capturing, monitoring, and resolving multiple views on
requirements is difficult, time-consuming as well as error-prone when done
by hand [Nissen et al., 1996]. The creation of requirements views neces-
sitates an accurate traceability matrix, which, in practice, turns out to be
very hard to obtain and maintain [Gotel and Finkelstein, 1994; Dömges
and Pohl, 1998; Graaf et al., 2003; Ramesh et al., 1995; Lindvall and San-
dahl, 1996]. The tools currently available on the market, such as Telelogic
DOORS and IBM Rational RequisitePro, are often not sufficient: keeping
the traceability consistent using these tools is hard and involves significant
effort [Lormans et al., 2004; Alexander, 2002].

To remedy this problem, a significant amount of research has been con-
ducted in the area of reverse engineering of traceability links from avail-
able software development work products [De Lucia et al., 2004; och Dag
et al., 2005; Huffman Hayes et al., 2006]. Our own line of research has
focused on the use of information retrieval techniques, in particular latent
semantic indexing (LSI) [Deerwester et al., 1990], for this purpose, and
on the application of the reconstructed matrices for view reconstruction,
specifically. We incorporated our ideas in a method, called MAREV, and
implemented the method in a tool, called REQANALYST [Lormans and van
Deursen, 2005, 2006, 2008].

While significant progress in this area has been documented, a number
of open research issues exist, which we seek to explore in this chapter. An
initial question to be addressed is not related to the case study performed.
It is about which requirements views are most needed in practice. To an-
swer this question, a questionnaire was sent out to a dozen practitioners,
and from the answers three important groups of views were distilled, which
are described in detail.

As unit of analysis, one development project of Logica, an international
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IT services supplier, was scrutinized for the case study. The primary ques-
tion addressed through this exploratory case study was how and to which
extent requirements views can be reverse-engineered from existing work
products. An important question hereby is whether the approach we pro-
posed [Lormans and van Deursen, 2005, 2006, 2008] may be used to recon-
struct these views. To answer this question, it is described how our own
prototype tool (REQANALYST) has been extended to support these views,
offering project stakeholders means to inspect the system and development
progress in terms of these views. Another question to be addressed through
the case study is whether these reconstructed views can help in a real life
software development process.

In the software development project under investigation in this case
study, a traffic monitoring system (TMS) is developed, and it is outsourced
to Logica. In the project, progress reporting to the customer must be done in
terms of requirements, making accurate requirements views an essential
success factor. The chapter discusses the way of working in this project,
and looks at how and to which extent reconstructed links can be used to
support and enhance the way of working. In the case study, the focus lies
on requirements views that are related to testing artefacts.

The remainder of this chapter is organized as follows. Section 5.2 dis-
cusses existing work in the area of requirements views and reverse en-
gineering of traceability matrices. Section 5.3 summarizes the methodol-
ogy for generating requirements views, called MAREV. Sections 5.4, 5.5,
and 5.6 present the requirements views aimed at, the way they are imple-
mented in the REQANALYST tool, and the case study performed at Logica,
respectively. The chapter concludes with a discussion, a summary of con-
tributions, and suggestions for future research.

5.2 Related Work
5.2.1 System Views
The term ’view’ is often used in the area of software engineering, especially
in the area of requirements engineering. Views are generally introduced as
a means for separation of concerns [Nuseibeh et al., 1994] and mostly rep-
resent a specific perspective on a system. This perspective is often a subset
of the whole system in such a way that its complexity is reduced. Each
stakeholder is interested in a different part of the system. A stakeholder
may be a developer who is only interested in a small part (a component, for
example) of the complete system. The perspective that a view represents,
can also be an abstraction of the system. It can give an overview of the
whole system without providing too many details. Such a view from the
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top can be useful for a project manager or a system architect.
Nuseibeh et al. discuss the relationships between multiple views of a

requirements specification [Nuseibeh et al., 1994; Easterbrook and Nu-
seibeh, 1995]. Most systems that are developed by multiple participants
have to deal with requirements that overlap, complement and contradict
each other. Their approach focuses on identifying inconsistencies and man-
aging inconsistencies in the requirements specification. It is based on the
viewpoints framework presented by Finkelstein et al. [Finkelstein et al.,
1992]. This framework helps in organizing and facilitating the viewpoints
of different stakeholders.

Zachman proposes “The Architecture Framework” focusing on informa-
tion system views [Zachman, 1987]. Hay uses the six views of this frame-
work for requirements analysis [Hay, 2003]. In his approach, he uses the
framework to define the requirements analysis process, which can be seen
as the process of translating business owners’ views into an architect’s view.

The concept of a “view” also appears in other areas of software engi-
neering such as architectural design. Kruchten introduced his “4 + 1 view
model for architecture”, where he defined five different concurrent perspec-
tives on a software architecture [Kruchten, 1995]. Each view of this model
addresses a specific set of concerns of interest to different stakeholders.
Other examples are the “Siemens’ 4 views” by Hofmeister et al. [Hofmeis-
ter et al., 1999], the IEEE standard 1471 [IEEE, 2000], and the views dis-
cusses by Clements et al. in their book “Documenting Software Architec-
tures” [Clements et al., 2002, 2003]. Van Deursen et al. also discuss a num-
ber of specific views for architecture reconstruction [van Deursen et al.,
2004].

Finally, Von Knethen discusses view partitioning [von Knethen, 2001].
She considers views on the system, distinguishing, for instance, the static
structure from the dynamic interactions in the system. These views sup-
port the process of impact analysis in two ways: they improve (1) the plan-
ning (estimating costs) as well as (2) the implementation of changes. Fur-
thermore, the views allow the system to incorporate changes in a consistent
way.

Although, much research has been done in the area of system views,
there is no general agreement on what such views should look like, or which
information they should contain. Every project setting seems to have its
own specific information needs. Thus, views must be flexible in meeting
these needs.

5.2.2 Document Standards, Templates and Reference Models
Another approach for separating concerns is to use a well structured docu-
ment set, conforming to known templates such as MIL-std 498 [Depart-
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ment of Defence, USA, 1994], Volere [Robertson and Robertson, 2000],
IEEE-std-830 [IEEE, 1998b], or IEEE-std-1233 [IEEE, 1998a]. These tem-
plates help in getting an overview of what the system does, but they are
often not sufficient. Project managers, but also other team members, need
fast access to this data, and, preferably, they would like only a subset of the
whole pile of documents produced during the development life-cycle. Cur-
rent templates are not sufficiently flexible, and they are difficult to keep
consistent during development.

Nissen et al. show that meta-models help managing different require-
ments perspectives [Nissen et al., 1996]. The meta-models define which
information is available and how it is structured in the life-cycle. This com-
prises the development artefacts, including their attributes, and addition-
ally, the traceability relations permitted to be set between these artefacts.
If the information is not stored sometime in the life-cycle, it can never be
extracted and used in a view. An important area of research is developing
these meta-models [Ramesh and Jarke, 2001; von Knethen, 2001; Toranzo
and Castro, 1999; Maletic et al., 2003; Zisman et al., 2003], constraining
the views to be generated.

Von Knethen proposes traceability models for managing changes on em-
bedded systems [von Knethen, 2001; von Knethen et al., 2002]. These mod-
els help estimating the impact of a change on the system, or help to deter-
mine the the links necessary for correct reuse of requirements. According
to Von Knethen, defining a workable traceability model is a neglected ac-
tivity in many approaches. Our earlier research confirms the importance
of defining a traceability model [Lormans et al., 2004]. Some initial ex-
periments concerned a static traceability model. New insights suggest a
dynamic model, in which new types of links can be added as the way of
working evolves during the project. The need for information as well as the
level of detail change constantly in big development projects [Dömges and
Pohl, 1998].

5.2.3 Traceability Support and Recovery
Traceability support is required in order to reconstruct requirements views
from project documentation. Several traceability recovery methods and
supporting tools already exist, each covering different traceability issues
during the development life-cycle. Some discuss the relations between
source code and documentation, others address the relations between re-
quirements on different levels of abstraction.

De Lucia et al. present an artefact management system, which has
been extended with traceability recovery features [De Lucia et al., 2004,
2007]. This system manages different artefacts produced during develop-
ment such as requirements, designs, test cases, and source code modules.
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The Information Retrieval (IR) technique that De Lucia et al. use for re-
covering the traceability links is Latent Semantic Indexing (LSI). Further-
more, they propose an incremental traceability recovery process in which
they try to identify the optimal threshold for link recovery in an incremen-
tal and iterative way [De Lucia et al., 2006b]. The threshold determines
which links should be considered as candidate links by a tool and which
not.

Natt och Dag et al. [och Dag et al., 2005] and Huffman Hayes et al. [Huff-
man Hayes et al., 2006] use traceability reconstruction primarily for man-
aging requirements of different levels of abstraction, such as reconstruct-
ing links between business and system requirements. Both, Natt och Dag
et al. and Huffman Hayes et al., have developed a tool to support their
approaches. In [och Dag et al., 2005], Natt och Dag et al. discuss their ap-
proach and tool, ReqSimile, that implements the basic vector space model
which also forms the basis for latent semantic indexing. They report their
experiences in [och Dag et al., 2005], and the results are comparable to
what we found.

In their tool called RETRO, Huffman Hayes et al. have implemented
various methods for recovering traceability links [Huffman Hayes et al.,
2006]. They also applied their approach in an industrial case study.

Cleland-Huang et al. define three strategies for improving dynamic re-
quirements traceability performance: hierarchical modelling, logical clus-
tering of artefacts and semi-automated pruning of the probabilistic net-
work [Cleland-Huang et al., 2005]. They are implementing their approach
in a tool called Poirot [Lin and et al., 2006]. They have also defined a
strategy for discovering the optimal thresholds for determining candidate
links [Zou et al., 2004].

Antoniol et al. [Antoniol et al., 2002] use information retrieval methods
to recover the traceability relations between C++ code and documentation
pages, and between Java code and requirements. Marcus and Maletic [Mar-
cus and Maletic, 2003], and Di Penta et al. [Di Penta et al., 2002] use
information retrieval techniques for recovering the traceability relations
between source code and documentation. In addition, Di Penta et al [Di
Penta et al., 2002] augmented their traceability approach with models of
programmer behaviour. The IR methods in these cases are mostly applied
for reverse engineering traceability links between source code and docu-
mentation in legacy systems.

Marcus et al. [Marcus et al., 2005b] discuss how to visualize traceability
links, and they introduce a tool, TraceViz, that implements their proposed
requirements for traceability visualization. IR techniques are also used
for improving the quality of the requirements set. Finally, Park et al. use
the calculated similarity measures for improving the quality of the require-
ments specifications [Park et al., 2000].
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None of the discussed traceability reconstruction methods support the
generation of requirements views for monitoring the requirements in the
other work products. One reason for this is that current methods do not
explicitly discuss the links that can be reconstructed and cannot be recon-
structed. This makes it hard to define specific views and retrieve the infor-
mation needed to manage a project with respect to evolving requirements.

5.3 MAREV and REQANALYST

In our earlier work, we have proposed an approach for reconstructing re-
quirements views [Lormans and van Deursen, 2005] and experimented
with the reconstruction of traceability links in several case studies [Lor-
mans and van Deursen, 2006, 2008]. The method is called MAREV: Method-
ology for Automating Requirements Evolution using Views. Besides that,
the method has been implemented in a tool called REQANALYST. This sec-
tion provides a brief overview of the tool as well as the underlying method.

5.3.1 MAREV: A Methodology for Automating Requirements Evolution
using Views

MAREV consists of the following seven steps (see also Lormans and van
Deursen [2005, 2006, 2008]).

Step 1: Defining the Traceability Meta-model

The underlying traceability meta-model defines the types of work products
(e.g. business requirements, system requirements, design artefacts, or test
cases, and so on) and the type of links that are permitted within the de-
velopment life-cycle. The choices made for defining the meta-model largely
depend on the needs of the application domain. Examples can be found
in [Ramesh and Jarke, 2001; von Knethen, 2001; von Knethen et al., 2002;
Toranzo and Castro, 1999; Maletic et al., 2003; Zisman et al., 2003].

Step 2: Identifying the Work Products

The work products are identified in the provided project documentation
or configuration management system, and mapped onto the traceability
meta-model. Each work product is given a type and unique identifier if it
has not already been assigned one. This unique identifier is a code plus a
unique number, for example, a functional requirement description can have
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an identifier of the type “FRxx”, where xx represents the number. This re-
sults in a set of functional requirement descriptions with the unique iden-
tifiers “FR01”, “FR02”, and so on. This step must be executed for every
work product defined in the traceability meta-model. If requirements man-
agement tools such as Telelogic’s DOORS are used, unique identifiers are
provided automatically.

Step 3: Pre-processing the Work Products

The work products are pre-processed to support automated analysis for
them. The text of each work product needs to be extracted and transformed
into plain text. This step includes typical information retrieval activities
such as lexical analysis, stemming, and so on.

Step 4: Reconstructing the possible Traceability Links

The likely traceability links are reconstructed for which Latent Semantic
Indexing [Deerwester et al., 1990] is used. The result of this step is the
complete set of candidate traceability links.

Latent Semantic Indexing (LSI) is an information retrieval technique
based on the vector space model. It assumes that there is an underlying or
latent structure in word usage for every document set [Deerwester et al.,
1990]. LSI uses statistical techniques to estimate this latent structure.
A description of terms and documents based on the underlying latent se-
mantic structure is used for representing and retrieving information. LSI
starts with a matrix of terms by documents. Subsequently, it uses Singular
Value Decomposition (SVD) to derive a particular latent semantic structure
model from the term-by-document matrix. The result is a reduced model,
the rank-k model with the best possible least square fit to the original ma-
trix of terms by documents [Deerwester et al., 1990]. Subsequently, this
model can be used to determine a similarity matrix.

Once all documents have been represented in the LSI subspace, the sim-
ilarities between the documents can be computed. The cosine between their
corresponding vector representations can be used for calculating this sim-
ilarity metric. The metric has a value between [0,1] with a value of 1 in-
dicating that two documents are (almost) identical. These measures can
be used to cluster similar documents, or for identifying traceability links
between the documents.

Finally, LSI does not rely on a predefined vocabulary or grammar for
the documentation (or source code). This allows the method to be applied
without large amounts of pre-processing (i.e., stemming) or manipulation of
the input, and, therefore, it can reduce the costs of traceability link recovery
considerably [Maletic et al., 2003; De Lucia et al., 2004].



MAREV AND REQANALYST 107

Step 5: Selecting the Relevant Links

The possibly relevant links are selected automatically from the complete
set of candidate links (from the LSI) using various link selection strate-
gies. In our previous work, we proposed two link selection strategies, a one
and a two dimensional vector filter strategy on the similarity matrix [Lor-
mans and van Deursen, 2008]. These link selection strategies combine the
already known strategies constant threshold (represented by the symbol
c) and variable threshold (represented by a percentage q) discussed by De
Lucia et al. [De Lucia et al., 2004]. The one-dimensional filter strategy
considers every single column of the similarity matrix separately. Each
column vector of the similarity matrix is taken as a new set of similarity
measures, and it combines, for each column, the constant and the variable
threshold approaches. The two-dimensional filter strategy extends the one-
dimensional strategy by considering both dimensions of the similarity ma-
trix. The benefits of these strategies are that they guarantee certain level
of quality by using the constant threshold, and, yet, they take only the best
k% of the links for a certain work product. Both strategies are described in
detail in [Lormans and van Deursen, 2008], and they have shown improved
results in terms of recall and precision. As with all information retrieval
techniques, it is not guaranteed that all correct links are indeed found: both
false negatives and false positives may arise.

Step 6: Generating Requirements Views

In this step, the requirements views are generated using the reconstructed
traceability links. This step will be the focus for the rest of this chapter.

Step 7: Tackling Changes

Finally, the reconstructed traceability links and generated requirements
views need to be able to tackle changes in the requirements. Therefore,
the validated traceability matrix and the newly reconstructed traceability
matrix need be compared after each run of the MAREV approach. Users
can then validate the impact of a requirements change in the traceability
matrix.

5.3.2 The REQANALYST Tool Suite
In order to support the MAREV approach, we developed the REQ-
ANALYST1 [Lormans and van Deursen, 2008] tool. This tool can reconstruct

1REQANALYST is available from http://swerl.tudelft.nl/bin/view/Main/ReqAnalyst.
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traceability information and generate requirements views using that recon-
structed traceability information. In this section we summarize our earlier
work on REQANALYST. In Section 5.5 we focus again on generating our
requirements views using REQANALYST.

Extract-Query-View Approach

REQANALYST adopts the Extract-Query-View approach used in many re-
verse engineering tools van Deursen and Moonen [2006]. In this approach,
first, the relevant data from the provided documents is extracted. This
data, the work products, and, if available, the reference traceability ma-
trices, are stored in a database. For reconstructing the traceability links,
queries can be conducted on the database. The reconstructed information,
combined with the data from the database, is used to generate the require-
ments views.

The reference traceability matrix is optional, and contains the correct
links according to the experts in the project. It is only required to assess the
outcomes of the tool, addressing the question as to which extent require-
ments views can be reconstructed automatically. Typical (reengineering)
projects do not have such a matrix, to start with, and the ultimate goal is
to generate this matrix automatically from the existing project documents,
i.e., through using LSI.

Implementation

REQANALYST is implemented using standard web-technology. For storing
the data, a MySQL database is used. It is implemented as a a Java web
application using Java Servlets and Java Server Pages (JSP). For the case
study, the Apache Tomcat 5.5 web server was taken for deployment.

Functionality

A REQANALYST session starts by logging in. Each user of REQANALYST
has specific rights to see certain projects. After authentication the user gets
a list of projects. Once the user has chosen a project, REQANALYST shows
the main menu. This main menu follows the steps from the Extract-Query-
View approach van Deursen and Moonen [2006], including functionality for
extracting the data from the complete set of provided documentation, and
options for setting the parameters of the LSI reconstruction and the choice
for a link selection strategy. Figure 5.1 shows a excerpt of the tool.

Once REQANALYST has executed a reconstruction, a menu appears show-
ing the reconstructed traceability matrix and a number of options for gen-
erating various requirements views. This menu shows all the metrics rel-
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Figure 5.1: Input screen for Traceability Reconstruction

evant for assessing the reconstruction, such as recall, precision and the
number of false positives and missing links in the traceability matrix. This
menu is also used to generate the various requirements views.

Browsing in REQANALYST

An important feature of REQANALYST is the possibility to browse the re-
constructed results. It allows engineers to inspect the reconstructed trace-
ability matrix and browse through the traceability links, implemented as
hyper links. When following the hyper link, all the information concern-
ing the two entities involved becomes available and can be inspected. For
example, the original text of both entities is shown in one view.

Furthermore, the reconstructed matrix can be compared with a refer-
ence matrix, if available. The reference matrix represents the traceability
matrix as determined by the developers of a system and is only required
for evaluation purposes. The correctly reconstructed links (correct posi-
tives) are indicated with an “X” and the cell is coloured green. The false
positives are indicated as “fp” and are coloured yellow. Furthermore, the
false negatives (missing links) are indicated through “fn” and are coloured
red.

5.4 Which Views are Needed in Practice?
While MAREV and REQANALYST provide a method and tool support for
obtaining requirements views, it is less obvious which requirements views
are actually needed in practice. To address this issue, we have set up a
questionnaire and distributed it among various practitioners. Below, the
questionnaire is described, and the three main types of views that emerged
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Questions:
1) What is your role in the software development life-cycle?
2a) What do you expect from a requirements view?
2b) What information would you like to see in a requirements

view?
(Examples: coverage, functionality, status)

3a) What do you think persons in the roles below expect from a
requirements view?
- Project Manager
- Requirements Engineer
- System Architect
- Programmer
- Test Engineer
- Quality Manager
- Other? (please also define the role)

3b) What information do you think they would like to see?
(Do not fill in your own role again)

4) Do you think it is feasible to extract this information from the
work products currently produced during development?
(requirements specifications, design documents, etc.)

Table 5.1: Topics put forward in the Questionnaire

from our survey are discussed.

5.4.1 Requirements View Questionnaire
The goal of our questionnaire was to get an impression of which views
would be helpful and which information these views should represent. The
questions asked to the participants are shown in Table 5.1. The question-
naire was distributed among people of various roles within the software
development life-cycle. The roles distinguished are: project manager, soft-
ware process improvement / quality manager, product marketing manager,
requirements engineer, system/software architect, programmer and test
engineer, as well as more specific roles such as product owner and usability
designer.

The questionnaire was spread among the industrial partners of the
MERLIN project1. The MERLIN project is a European research project in
the area of global software development in which various universities and
companies participate. In total, the questionnaire was spread among all 7

1www.merlinproject.org
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industrial partners. We got a response from 5 of the companies involved,
all of which provided many replies according to their various roles. In total
we had 12 fully filled in questionnaires containing around 100 descriptions
of desirable views for different roles in the life-cycle.

It was also asked if these views could be extracted from the work prod-
ucts they currently produce during the development life-cycle. Most respon-
dents think that this should be possible, because this information should
generally be contained somewhere in the work products. However, the ex-
act location of this information is not always known.

5.4.2 Main Outcomes
The outcome from the questionnaire is that requirements should be able
to be traced into their associated subsequent work products. A challenge
in that respect is that, in many cases, the readability of many of the work
products leaves much to be desired, and that it is often hard to get an
overview of the whole system. In addition to that, stakeholders can easily
get lost when looking for information if there are too many possible links to
follow. Our views should address this issue, and make it easier to deduce
the right information needed for the view in question.

Another lesson learned from the questionnaire is that the following in-
formation is desirable in a requirements view:

• For each requirement, the source, description, motivation, importance,
history, status and dependencies to other work products. This is ac-
tually an obligation of the new safety standard ISO/WD 26262 for sys-
tems in the automotive domain that is currently being developed [Find-
eis and Pabst, 2006].

• For each group of requirements, a list of all requirements, the status
of their implementation and verification (not tested, test passed, test
failed).

• Life-cycle paths; per requirement, the complete path it undergoes
during the life-cycle. Two paths are of interest for the developers:
the Requirements–Implementation path and the Requirements–Test
path.

• For all the requirements, the coverage in a certain work product.
These work products can, for example, be a lower level of require-
ments, the design or the test cases.

From the questionnaire it was concluded that various developers and
managers are interested in specific information about a certain require-
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ment (see first and third bullet) or a group of requirements, sometimes in
relation to other work products (see last bullet).

From the answers to this questionnaire three types of views were dis-
tilled: Coverage views, Life-cycle Path views, and Status views. Below, these
are discussed in detail.

5.4.3 Coverage Views
Requirements coverage views focus on the localization of the requirements
in the rest of the system. These views show whether and where a certain
requirement is associated with another artefact in the system. This can
be coverage in the system architecture, in the detailed design, or in the
test cases, to name only a few instances. The number of different types
of coverage views depends on the meta-model defined for the development
process. It prescribes which phases are defined and which work products
are produced during these phases. This view is often used for tracing re-
quirements changes into subsequent work products [von Knethen, 2001;
Settimi et al., 2004], and it can, therefore, be used for impact analysis in
system evolution [Bohner and Arnold, 1996].

According to Costello et al., requirements coverage is defined as: The
number of requirements that trace consistently to the next level up or down
Costello and Liu [1995]. They originally defined this metric for require-
ment to requirement coverage. As this definition is very general, it is also
suitable for the coverage of requirements to other work products.

Hull et al. also define three so called traceability metrics Hull et al.
[2002]. One of them, Traceability Breadth, relates to coverage. It measures
the extent to which requirements are covered by the adjacent layer above
or below (within the defined meta-model).

We define requirements coverage as follows: If a link between a re-
quirement and another work product, for example a test case, exists, and
this link is correct, then is the requirement covered by that work product.
The requirements coverage view shows which requirements are covered by
work products, as well as the percentage of these requirements with re-
spect to the total number of requirements. For example, the percentage of
requirements (compared to all requirements) covered by a test case can be
defined as follows:

coveragetest = |requirementstest |
|requirementstotal |

,

where coveragetest represents the coverage in the test case specification,
requirementstest the number of requirements traced consistently by test cases
and requirementstotal the total number of requirements.
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Test
CategoryCategory

Requirement Test
CaseRequirement

Figure 5.2: An example of a life-cycle path

This coverage metric is very general and fundamental, and can be used
for requirements coverage in other life-cycle phases as well, such as the
coverage of requirements in the design.

5.4.4 Life-cycle Path Views

Requirements life cycle path views deal with the transformations and de-
compositions that a requirement undergoes throughout the development
process. The questionnaire showed that two life-cycle paths are important:
the Requirements-Implementation path and the Requirements-Test path.
When comparing this to the well-known V-model, it becomes apparent that
these are the horizontal and vertical dimensions of this life-cycle model.

The length of a life-cycle path is captured by the second traceability
metric of Hull et al., called Traceability Depth Hull et al. [2002]. This metric
relates to the number of layers along which the traceability extends, for
example the layers along the left leg of the V-model for capturing software
development. It can also be seen as the number of (model) transformations
between the different types of work products.

As an example, Figure 5.2 shows a Requirements–Test-Path in a trace-
ability meta-model. This example is taken from our case study which will
be discussed in Section 5.6. It shows that the focus of interest lies in fol-
lowing the path of the requirements categories, via requirements and test
categories, to test cases. The path extends along 4 layers according to Hull
et al. Note, that a coverage view addresses only one layer.

In order to further characterize a life-cycle path view, another metric
from Hull et al is relevant as well. This other metric, called Traceability
Growth, measures how a requirement expands down through the layers
of the meta-model (in our case the life-cycle path) Hull et al. [2002]. For
example, a requirement can be covered by one test case or by multiple test
cases. This is also a useful metric for impact analysis, which is why we will
include it in our life-cycle path view.
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5.4.5 Status Views
Requirements Status views concern the status of a (set of) work product(s)
such as a (set of) requirement(s). The view shows a specific status of the
work product in the life-cycle. In other words, if a link exists from a re-
quirement to a source code document, it can be assumed that the status
of the requirement is “implemented”. In addition, this information can be
used in order to obtain a coverage measure for the number of implemented
requirements for project management purposes. For example, status views
may be associated with a measure expressing that 60% of all requirements
have the status “implemented”. A project manager can use this information
to monitor the progress of the project. Other management information can
be obtained by computing percentages of requirements that have reached
a certain status such as “tested successfully”.

Traceability support is often not enough to generate complete status re-
ports of requirements, for example, when a project manager needs to know
whether all requirements have passed a test. Traceability can help identi-
fying the requirements in the test document (the document that describes
the test), and hopefully also in the test report document. The latter con-
tains the information whether the implementation of a specific requirement
has passed its test or not. This information needs to be extracted from the
document and included in the status view as well.

In the case study, this extra status information was monitored in addi-
tion to the normal traceability data. We tried to retrieve “richer informa-
tion” concerning the status of the requirements. For example, a status view
for an individual requirement can show its relations to other work products
(coverage) including its status such as “covered by test, but not tested yet”,
“covered by test, and failed the test” or “covered by design, but not covered
by test”.

5.5 Implementing the Views in REQANALYST

The three views presented should make it possible to obtain continuous
feedback on the progress, in terms of requirements, of ongoing software de-
velopment or maintenance projects. Furthermore, they facilitate communi-
cation between project stakeholders and different document owners. This
section discusses how our REQANALYST tool as described in Section 5.3.2
has been extended to incorporate support for these three views.

Coverage Views
The “Coverage View” as implemented in REQANALYST shows the num-
ber of requirements that are covered (linked correctly) by some other work
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product, and the total number of requirements that are analyzed. It also
shows the coverage percentage as defined in Section 5.4.3, i.e., percentage
of the correctly reconstructed links between requirement and associated
other work product. Furthermore, it lists the requirements with their de-
scription and the related artefacts of the other work product. Besides the
coverage, it is also possible to see which requirements are not covered by
the other work product. We call this view the “Orphans View”. This view
shows the same results as the coverage view, except for the related arte-
facts: as there are none, these cannot be shown. This view is important for
developers as they need to inspect why the requirements in this view are
not yet covered in the system.

Life-cycle path Views

The “Life Cycle Path View” as implemented in REQANALYST displays the
stages involving a requirement. In particular, a tabular view is shown,
illustrating the work products a requirement is related to, such as require-
ments categories or test cases. This table can also be used to obtain the
values for the traceability growth metric at the various levels in the life
cycle path. An example for our case study based on the traceability model
in Figure 5.2 is shown at the end of the chapter in Figure 5.5.

Status Views

The “Status View” as implemented in our REQANALYST tool is based on
the observation that every entity of a work product type can have multiple
status attributes attached to it. So, besides extracting the relevant data for
executing the automated reconstruction, it can also extract the additional
status attributes from the provided documentation. These status attributes
are saved separately in the database. When a user generates a view of a
specific “requirement – test case” relation, for instance, it can also show the
status attributes concerning this relation.

5.6 Case Study: Logica
The previous sections discussed the three most essential views considered
by engineers, and we have proposed a method and a tool for reconstructing
these views automatically from the available work products. This section
presents the case study performed at Logica aimed at illustrating how the
method and the tool work out in practice.

We begin with laying out the case study design, making use of the guide-
lines provided by Yin [Yin, 2003a,b]. Then, after discussing the nature of
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the project and the development process followed, we describe which re-
quirements documents we used as input for the reconstruction effort. Fur-
thermore, we explain the reconstruction approach and its specific parame-
ter settings used, followed by a discussion of the traceability matrices ob-
tained. Finally, we discuss how these matrices lead to the requirements
views considered.

5.6.1 Case Study Design
The study aims at answering the following two essential research ques-
tions: (1) How and to which extent can requirements views be reconstructed
from existing work products, and if this is the case, (2) can these require-
ments views help during development? Addressing question (1), we believe
requirements views can be reconstructed, although, not up to the level de-
sired. So, the question remains, whether the proposed techniques, although
sub-optimal, may have a positive effect on the overall development process
of a software project. The unit of analysis is a large and long-lasting de-
velopment project carried out by Logica which is described in much more
detail below. Question one is assessed by typical measures used in trace-
ability link reconstruction, i.e. recall and precision. Additional measures
are used to indicate the likely effort to assess the reconstructed views, i.e.
validation percentage, and coverage. Addressing question (2) is a lot more
difficult, because comparable data for a fully manual reconstruction ap-
proach are lacking. In that respect, we cannot come to definite objective
conclusions on the performance of the automatic approach for the task un-
der consideration.

5.6.2 Case Study Background
The project in our case study involves a traffic monitoring system (TMS),
which is an important part of a traffic control and logistics system that is
required to operate at its maximum capacity. The main purpose of TMS is
to record the positions of vehicles in the traffic system. These recordings
are used to adjust the schedules of running and planned vehicles as well as
operating the necessary signalling. The TMS owners decided to outsource
the development of TMS to Logica.

Initially, Logica used IBM Rational RequisitePro for managing the re-
quirements and MIL-std-498 Department of Defence, USA [1994] for doc-
umenting their work products. The project consumed 21 man years in the
past 3 years of development. In total, there are over 1200 requirements
and over 700 test cases. All the traceability links between the work prod-
ucts were manually set. This manual effort, which is time-consuming and
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error-prone, is acceptable if it is done once. However, when existing re-
quirements evolve or new requirements come in, the links can become in-
consistent; old links may need to be dropped and new links may need to
be added. These are examples for why tracing becomes inconsistent, and
must be redone, eventually. Sometimes, the large number of changes made
that the effort needed for updating the traceability links was comparable
with completely resetting all the links. Having an automatic technique in
place to reconstruct the inconsistent traceability links may, thus, save a lot
of effort.

Furthermore, the customer was not willing, initially, to operate on the
tagged documentation Logica provided along with the tool, since the cus-
tomer wanted to keep control of their own documents. For managing the
requirements in this particular case, Logica was forced to make separate
requirements documents in which the traceability was manually set by the
requirements engineers. Some of the mechanisms used for managing re-
quirements evolution in this setting are described in Chapter 3 dealing
with the same case study (see also [Lormans et al., 2004]).

This way of working had two important shortcomings. First, it made
the information used for monitoring the progress of the requirements dur-
ing the development process unreliable. This was mainly due to the dif-
ficulty of keeping the traceability links consistent during the evolution of
the project. This increased the risks during the integration phase, such as
requirements that are not implemented, or functionality that should not
be implemented in the system. Second, the manual work for synchronizing
the updates from the client introduced errors, and was time-consuming.

In a later stage of the project, the customer dropped the demand of own-
ership of all documents. Furthermore, Logica decided to reduce the number
of links maintained to the most essential ones. In particular, test documen-
tation and test descriptions were merged, thus simplifying the underlying
meta-model. This reduction of possible traceability links also helped to re-
duce the risk of inconsistencies.

In addition to that, part of the traceability matrix was maintained within
the documentation itself, instead of in a separate spreadsheet. Test docu-
ments include the unique identifiers of the requirements they cover. The
documents are structured in such a way that the Doxygen1 documentation
generator can be used to produce a HTML representation of the full matrix.

In both, the initial, and the current way of working, traceability links
are set manually. Our approach aims at offering partially automated tool
support for this. The case study at hand offers an opportunity to investigate
whether our proposed approach can be useful in practice, and whether it
may reduce the effort needed for consistent traceability support. In the

1www.doxygen.org
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Work product type Number Size in Average terms
terms per document

Requirements Categories 45 1168 183
Requirements 121 695 29
Test Categories 29 589 183
Test Cases 98 886 107

Table 5.2: TMS Case Study Statistics

case study, only the current way of working will be considered.

5.6.3 Available Data
In the TMS case study, we investigate the relation between requirements
and test categories and between requirements and test cases. More specifi-
cally, we focus on the requirements-to-test-coverage and the requirements-
test-path views.

Two main documents are provided: a System/Subsystem Specification
(SSS), containing the requirements, and a Software Test Description (STD),
containing the description of the test categories. Both are MS-Word docu-
ments and they are structured according to MIL-std-498 [Department of
Defence, USA, 1994]. This means that traceability data is incorporated in
these documents and that it is possible to obtain a reference traceability
matrix from this data.

Besides the two MS-Word documents, an HTML document generated
by Doxygen is available. This document is an addition to the STD, and it
contains the description of the test cases. It also comprises the descrip-
tion of the test categories and, in some cases, also the descriptions of the
requirements it refers to (see Section 5.6.2). Doxygen uses this additional
information of the test categories, and, if available, the requirements to
generate the HTML document. The HTML document is accompanied by an
MS-Excel spreadsheet, which contains the traceability links between the
requirements and the test cases. For our LSI analysis, we only extracted
the test case descriptions without the additional data (as this data is some-
times missing).

Our meta-model for this case study is shown in Figure 5.3. It consists
of the following work products. In the SSS, a hierarchy of requirements
can be identified. The uniquely identifiable requirements are clustered ac-
cording to a hierarchy, resulting in categories of requirements. Just like
the individual requirements, these requirements categories have a unique
numbering, so they were taken into account for analysis as well.
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Test
Case

Requirement
Category Category

Test

Requirement

Figure 5.3: Traceability Meta-Model. The bold lines indicate the explicit
traceability links available in the study.

Examples of requirements categories are general ones, such as goal and
domain, as well as more specific ones, such as the use of computer re-
sources, specific system interfaces, and safety. Each of these requirements
categories has one or more uniquely identifiable requirements. The trace-
ability between the requirements categories and requirements can be de-
rived from the hierarchy. This traceability is not incorporated explicitly in
the MS-Word documents.

For the test cases, the same hierarchy can be identified, resulting in the
separate work products “test category” and “test case”. Both are uniquely
identifiable in the provided documentation. The main difference is that the
two documents are not related directly, but only through the requirements.
Thus, the individual test cases are not identifiable in the STD. In order to
work out the hierarchical relations, the HTML files that include the test
case descriptions and test scripts, have to be checked. They contain an
identifier of a test category in the STD. However, the STD does contain the
traceability links between the requirements and the test categories.

The progress of 121 requirements, distributed over 45 categories, was
monitored. As these requirements are provided by MS-Word documents,
some manual processing had to be done, in order to extract the relevant
data from the SSS and store the processed tokens of text in the database.
The requirements consist of a unique identifier and a description. Besides
the requirements, the SSS document contains some context explaining cer-
tain domain knowledge for a group of requirements. This data was ex-
tracted as well and stored in the database, marking it as “context”.

For the other work products, the requirements categories, test cate-
gories and test cases, the same approach for obtaining the relevant data
was used, resulting in 45 requirements categories, 29 test categories and
98 test cases (see Table 5.2, above).

Logica presently maintains two types of links, as indicated by the bold
lines in Figure 5.3. These links between requirements and test cases, and
between requirements and test categories, are maintained in the SSS, STD,
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Link source Link target # Reference # Candidate
links links

Requirements Categories Requirements 121 5445
Requirements Categories Test Categories 31 1305
Requirements Test Categories 110 3509
Requirements Test Cases 297 11858
Test Categories Test Cases 122 2842

Table 5.3: Number of reference links and candidate links in the TMS case
study

and spreadsheet documents. The remaining links in Figure 5.3 can either
be derived from the maintained links, or from the hierarchical structure of
the documents.

Table 5.3 displays, for each link type, the total number of candidate
links that can be reconstructed as well as the total number of links in the
reference traceability matrix. For example, there are 297 reference links
derived for the “requirements – test case” link, whereas the total number
of candidate links is 121×98 = 11858. The objective of our approach is to find
this small number of correct reference links in the complete set of candidate
links.

5.6.4 Reconstruction Approach
Reconstruction Input Parameters

The reconstruction of the traceability matrices for the different link types
can be tuned in several ways. As we will see, the various link types call for
slightly different parameter settings.

In all cases, we adopt a rank-k subspace of 40%. This is the size of the
reduced semantic structure model produced by the singular value decom-
position step of LSI. The new matrix is only 40% of the size of the original
matrix, and, in LSI, it is important for filtering out unimportant details,
while keeping the essential latent semantic structure intact. This step of
LSI can be regarded as compressing the same information in a smaller sub-
space [Gross et al., 2007a], thereby generalizing the information contained.

The constant threshold is set to c = 0.3, i.e., two documents with a sim-
ilarity below this value of c are never related. The variable threshold q is
varied between 20% and 80%, indicating that the best q% of the interval
between the minimum and the maximum of the similarity measures for a
given document are used. The question here is which links are indeed rel-
evant, or, in other words, where do we draw the line between interesting
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links and irrelevant links [Gross et al., 2007b]?
These parameters are chosen according to our experience in applying

LSI (see Lormans and van Deursen [2008] for details on these parameters),
and in the future, we anticipate that further “rules of thumb” for adjusting
these parameters according to the problems at hand will have to be devised.
In the presentation of the results in Tables 5.4–5.8 the first two columns
indicate the values of c and q used.

Obtaining the Reference Matrix

The traceability data maintained manually by the software engineers at
Logica were used as reference matrices in our case study. Maintaining such
matrices and keeping them consistent by hand is hard and error-prone (see
Section 5.6.2), so that the matrices were validated once more by Logica
engineers. The existing matrix was compared with a matrix obtained au-
tomatically using our LSI-based approach. Assessing 100% of the links
was considered too time-consuming. A rank-k subspace of 40%, c = 0.3, and
q = 20% was used as inputs for this comparison. The engineers worked
about 30 minutes to inspect the 29 false positives and 59 missing links is-
sued by the tool (see Table 5.4). This resulted in resetting four missing
links. Initially, they were indicated as link in the original matrix, but be-
cause REQANALYST did not reconstruct them, the engineers reassessed the
links and decided to remove them from the reference traceability data. This
improved the traceability matrix used as reference in our other reconstruc-
tion results.

Reconstruction Output Parameters

For each of the reconstructed matrices in Tables 5.4–5.8 seven results are
shown that help to assess the usefulness of the reconstruction approach.

The set of reconstructed links, generated by REQANALYST, consists of
correct positives, which are correctly reconstructed compared to the refer-
ence traceability matrix, and false positives, which are incorrectly recon-
structed compared to the reference traceability matrix. Next, the missing
links are shown (also known as false negatives), which are the links not
reconstructed by REQANALYST, but identified as links according to the ref-
erence traceability matrix.

Finally, two commonly used metrics in the area of information retrieval
are depicted; recall (correct positives / total reference links) and preci-
sion (correct positives / total reconstructed links) [Baeza-Yates and Ribeiro-
Neto, 1999; Frakes and Baeza-Yates, 1992; Rijsbergen, 1979; Salton and
McGill, 1986]. The ultimate goal would be to achieve a recall of 100% and
a corresponding precision that is as high as possible, since in that case we
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only need to eliminate false positives. A recall below 100% which is often
the case [Marcus and Maletic, 2003], inevitably means there are also false
negatives (missing links). In the worst case, all candidate links need to be
checked to identify these missing links, which takes much effort, but one of
the goals of our approach was to reduce the manual effort needed to support
consistent traceability (see Section 5.6.2).

Besides these metrics two other metrics were calculated, the percentage
of validation work and the coverage percentage. For the application shown,
the results of these last two columns are the most interesting.

The percentage of validation work refers to the effort needed to validate
the reconstructed links manually compared to validating all possible can-
didate links manually (total reconstructed links / total candidate links). A
validation percentage of 2% (see first row Table 5.4) means that the devel-
opers only need to validate 2% of all the candidate links manually.

The coverage percentage establishes a connection between the traceabil-
ity matrix and the coverage views discussed in Section 5.4.3. The cover-
age percentage refers to the percentage of correctly covered work products
compared to the total number of work products of that particular type, for
example, the total number of correctly covered requirements compared to
all the requirements.

5.6.5 Reconstructed Traceability Matrix Results
Given the traceability meta-model from Figure 5.3, five traceability link
types are possible. First, we discuss the quality of reconstruction results
for the link types Logica maintained, “requirements – test categories” and
“requirements – test cases”. Next, we discuss the link types we derived
indirectly, “requirements categories – requirements”, “test categories – test
cases”, and “requirements categories – test categories”.

“Requirements – Test Categories”

Table 5.4 shows the results for the link reconstruction between the require-
ments and test categories. When we increase q we see the recall increasing
and the precision decreasing as expected. The validation percentage also
increases, meaning more links need to be validated. A low validation per-
centage is positive, as it indicates the effort needed to keep the traceability
support consistent after a change, for example. In the case of q = 20%, only
2% of the total candidate links need to be validated. In this example, 98%
of the candidate links do not need to be validated.

However, in the case where the validation percentage is 2%, there are
also 59 correct links missing compared to the reference traceability ma-
trix. We would like to achieve a recall of 100%, so that only false positives
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Link Type: Requirements – Test Categories
c q Reconstructed Links Missing Recall Precision VP CP

Correct False Links
Positives Positives

0.3 20% 51 29 59 0.46 0.64 2 43
0.3 40% 75 324 35 0.68 0.19 11 62
0.3 60% 82 722 28 0.75 0.10 23 68
0.3 80% 82 740 28 0.75 0.10 23 68
0.2 80% 95 1389 15 0.86 0.06 42 77
0.1 80% 107 2152 3 0.97 0.05 64 83

Table 5.4: Reconstruction results for links between requirements and test
categories, where VP = Validation Percentage, and CP = Coverage Per-
centage.

need to be eliminated (see Section 5.6.4). Table 5.4 shows that with a con-
stant threshold of c = 0.3, we never achieve a recall of 100%. Therefore,
c was decreased to 0.2 and 0.1. With c = 0.1, a recall of almost 100% can
be achieved. Unfortunately, the number of false positives increases, and,
accordingly, the validation percentage. Yet, the total effort reduction is
100 − 64 = 36%. Antoniol et al. [Antoniol et al., 2002] used a similar ef-
fort estimation, which they called the Recovery Effort Index (REI). It is not
clear, however, whether such measurements are realistic indicators of ef-
fort, because of lack of empirical data about a manual traceability recovery
process. This will require more comparative studies in the future.

From these results it can be concluded that it is very hard to recover the
last 10–15 missing links with the approach presented, and realize a recall
of 100%. It is an open question whether there are textual revisions to the
documents conceivable (such as an annotation mechanism, or more consis-
tent wording of the requirements) that would enable automatic recovery.

The final column, the coverage percentage, increases as the recall in-
creases. This is expected behaviour as it uses the correct positives as input
and ignores the false positives. As the recall approaches 100%, the cov-
erage percentage will get closer to the coverage that is obtained from the
reference matrix. In the TMS case study, 85% of the requirements are cov-
ered by test categories. The missing links cause the coverage percentage to
be 83% instead of 85%, as expected.

“Requirements – Test Cases”

Table 5.5 shows the results for the links between requirements and test
cases. The results are of lower quality compared to the links between re-
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Link Type: Requirements – Test Cases
c q Reconstructed Links Missing Recall Precision VP CP

Correct False Links
Positives Positives

0.3 20% 66 419 231 0.22 0.14 4 26
0.3 40% 141 2254 156 0.48 0.06 20 45
0.3 60% 186 3938 111 0.63 0.05 35 53
0.3 80% 186 3967 111 0.63 0.05 35 53
0.2 80% 223 6265 74 0.75 0.03 55 67
0.1 80% 260 8508 37 0.88 0.03 74 74

0.05 80% 265 8682 32 0.89 0.03 75 74
0.05 90% 276 10030 21 0.92 0.03 87 74

Table 5.5: Reconstruction results for links between requirements and test
cases, where VP = Validation Percentage, and CP = Coverage Percentage.

quirements and test categories: For every value of the variable threshold q,
the recall and precision are lower in this case. In order to get a reasonable
recall, we need to decrease the constant threshold to c = 0.05. Even then,
the recall is not 100%: again, we are not able to recover the final 20–30
missing links, which, are indicated as traceability links in the reference
matrix.

This result has consequences for the applicability of this link relation.
Looking at the validation percentage, it can be observed that 87% of all
candidate links need to be validated. This means that many false positives
have to be eliminated and almost all (87%) of the links must be checked
manually. Somehow, there seems to be a mismatch between the require-
ments and the test cases.

The coverage of requirements in test cases also confirms this mismatch.
The coverage percentage is 79% in the reference traceability matrix. Our
result approaches that value, as expected. But, comparable to the previous
case, some requirements seem to be hard to link to test cases as indicated
by the difference between our value of 74% and the reference value of 79%.

A way to improve the results can be by incorporating the additional in-
formation of the test categories and requirements in the LSI analysis. This
was not done, since this information is missing for some of the test cases
(see Section 5.6.3). By adding this information, the identifiers of the test
categories and requirements can be included in the LSI analysis, causing
the similarity value to increase. The test categories did contain the unique
identifiers of the requirements in their descriptions. This is probably one
of the reasons why the results for the links between the requirements and
test cases is lower. It also demonstrates the importance to include the iden-
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Link Type: Requirements Categories – Requirements
c q Reconstructed Links Missing Recall Precision VP CP

Correct False Links
Positives Positives

0.3 20% 91 32 30 0.75 0.74 2 75
0.3 40% 113 313 8 0.93 0.27 8 93
0.3 50% 118 699 3 0.98 0.14 15 98
0.3 60% 119 1300 2 0.98 0.08 26 98
0.3 80% 119 1754 2 0.98 0.06 34 98

Table 5.6: Reconstruction results for links between requirements cate-
gories and requirements, where VP = Validation Percentage, and CP =
Coverage Percentage.

tifiers in the LSI analysis.

“Requirements Categories – Requirements”

As discussed in Section 5.6.3, the System/Subsystem Specification (SSS)
consists of a hierarchy of requirements. The higher level structure of re-
quirements is called requirements categories. We investigated whether
this containment relation can be identified using the link reconstruction
approach presented.

Table 5.6 shows the results for the links between the requirements cate-
gories and requirements. These results are promising. Except for the three
missing links, we already realize a recall of almost 100% with q = 50%.
None of the previous results has shown such high quality.

This result can be explained by the fact that a requirements category
consists of one or more requirements plus some extra context. So, the re-
quirements descriptions can literally be found in the description of the re-
quirements category. The extra context is, in most cases, a general descrip-
tion of the requirements category. Our reconstruction approach benefits
directly from the fact that a requirements category contains the individual
requirement descriptions.

When doing a qualitative analysis on the three missing links we find a
plausible explanation for the fact that they are not reconstructed. The two
links we could not reconstruct are cancelled and they have no text describ-
ing the requirements except for the statement “cancelled”.

As a consequence from the current configuration, the effort needed to
validate the links is low. Besides that, the coverage is almost 100%. This
means that all the requirements are covered by a requirements category.
The reference matrix also shows that all the requirements are covered by
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Link Type: Test Categories – Test Cases
c q Reconstructed Links Missing Recall Precision VP CP

Correct False Links
Positives Positives

0.3 20% 43 73 79 0.35 0.37 4 62
0.3 40% 62 324 60 0.51 0.16 14 62
0.3 60% 71 755 51 0.58 0.09 29 66
0.3 80% 71 867 51 0.58 0.08 33 66
0.2 80% 101 1512 21 0.83 0.06 57 83
0.1 80% 105 1682 17 0.86 0.06 63 83

0.05 80% 105 1682 17 0.86 0.06 63 83

Table 5.7: Reconstruction results for links between test categories and
test cases, where VP = Validation Percentage, and CP = Coverage Percent-
age.

a requirements category. Our reconstruction results confirm this (see the
last column of Table 5.6).

“Test Categories – Test Cases”

The same analysis that was done for the requirements categories and re-
quirements was also carried out for the test categories and test cases. The
major difference with the requirements hierarchy is that the test categories
do not contain the test cases. The test categories are described in the Soft-
ware Test Description (STD) and the test cases are described in the gener-
ated HTML document. There are no reference links maintained by Logica
for this relation, so these links had to be derived via the links of the re-
quirements.

Table 5.7 depicts the results of the link between the test categories and
test cases. The results are comparable with the results of the reconstruc-
tion between the requirements and test cases. Again, it is difficult to realize
a recall of 100%, so that the constant threshold must be decreased, which
leads to almost 20 links not being recovered by the tool.

With a recall value of 86% already 63% of all candidate links need to
be validated. If the aim is to achieve a recall of 100%, probably all can-
didate links need to be validated. This makes the effort reduction for this
reconstruction minimal. In the future, we will have to find ways to increase
recall without sacrificing precision.

The coverage of the reference matrix is 83%. A recall of 86%, realises
a coverage of 83% which is equal to the coverage value of the reference
matrix. This can be explained by the definition of the coverage metric. The
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coverage metric takes into account individual requirements. It checks if a
test category is covered in the other work product, that is, the test cases.
Thus, it only needs one consistent link to a test case to be set as covered.
Still, a test category can have multiple links to multiple test cases. If one of
these “extra” links is not reconstructed, this does not influence the coverage
metric. Again, this metric only needs one consistent traceability link.

“Requirements Categories – Test Categories”

We expected the results of the link between the requirements categories
and test categories to be comparable with, or even better than the relation
between the requirements and the test categories. This has the following
reasons. First, the level of granularity should match better. Earlier results
show that if there is a mismatch in the level of granularity, the reconstruc-
tion results of LSI will decrease [Lormans and van Deursen, 2006, 2008].
Second, the requirements categories contain more text, so the vector rep-
resentation of the requirements categories devised during latent semantic
analysis is expected to contain more terms than the one for the require-
ments.

Table 5.8 shows the results of this link type. The results are indeed
comparable with the results depicted in Table 5.4, but the results are not
better. Thus, the clustering of the requirements into categories does not
imply an improvement of the results. In other words, the “richer’ vector
representation of the requirements categories (because of the larger text
size), does not influence the vector representation of the requirements in a
positive way, compared to the vector representation of the test categories.
The vector representations of the requirements and the requirements cat-
egories are comparable, causing the similarity measure to be comparable.

5.6.6 From Traceability Matrices to Requirements Views
The previous section presented the reconstruction results of the different
traceability link types. The generated views were used to fill in the last
two columns of the Tables 5.4, 5.5, 5.6, 5.7, and 5.8. The other metrics such
as recall and precision are not relevant for the users of REQANALYST, and,
thus, will not be depicted in a requirements view. Each view can be tailored
to the needs of the users.

Figure 5.4 depicts an example of a coverage view. This view shows the
number of requirements that are not covered in the test categories. In
this case, 58 requirements are not covered and this results in a coverage of
52%. This view also lists each requirement that is not covered. The user
can scroll this list and take the appropriate action.
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Link Type: Requirements Categories – Test Categories
c q Reconstructed Links Missing Recall Precision VP CP

Correct False Links
Positives Positives

0.3 20% 15 17 16 0.48 0.47 2 52
0.3 40% 17 85 14 0.55 0.17 8 59
0.3 60% 20 212 11 0.65 0.09 18 69
0.3 80% 21 224 10 0.68 0.09 19 72
0.2 80% 27 564 4 0.87 0.05 45 90
0.1 80% 31 795 0 1.0 0.04 63 90

Table 5.8: Reconstruction results for links between requirements cate-
gories and test categories, where VP = Validation Percentage, and CP =
Coverage Percentage.

The views can use the automatically generated traceability links or the
reference traceability matrices stored in the database. Finally, a validated
matrix can be stored in the database as well. This validated matrix is
then the preferred option for generating the views. To create a validated
traceability matrix, all the reconstructed links are listed. The expert can
review the complete list of reconstructed links and confirm or decline each
candidate link. The links that are confirmed form the validated traceability
matrix.

In order to create the Life-Cycle Path views, we can either use the re-
constructed traceability data, or the reference traceability data. Figure 5.5
shows an example of a life-cycle path view, in which the requirements cat-
egories assume a leading role. We have made the identifier unreadable for
confidentiality reasons. Figure 5.5 only shows a subset of 4 requirements
categories. As can be seen, each requirements category results in 3 or more
requirements. The last requirements category even results in 30 require-
ments. Next, the several requirements are again captured in one or more
test categories. Note that in this case, the traceability growth is less than
1 (more artefacts on the lower level, than on the higher level). The first 3
requirements are captured in 1 test category, and the 30 requirements are
captured by only 5 test categories. Finally, the traceability growth between
the test categories and the test cases is greater than 1 (more artefacts on
the lower level than on the higher level). The 5 test categories are covered
by 27 test cases, and the 1 test category is covered by 3 test cases. The first
two test categories do not have test cases related to them.

Finally, we are not able to show an example of a status view. In this case
study, the status attributes are not provided in the documentation. So, we
cannot show whether a requirement is approved, or whether, a test case is
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Figure 5.4: Reconstructed coverage view. Company sensitive details have
been made illegible on purpose.

executed and the system passed the test. Future case studies should pro-
vide this information. If status attributes are maintained, this additional
information can easily be incorporated in a life-cycle path view.

5.7 Discussion
Quality of the Reconstructed Links

The Logica case study, demonstrates that the results for the various link
types differ:

• Linking requirements to test categories worked out reasonably well.
This is an important link type, maintained manually by Logica.

• Linking requirements to individual test cases was harder: apparently
the test case descriptions are too short and too specific to link them
easily to requirements prose.
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Figure 5.5: Reconstructed life-cycle path view. Company sensitive details
have been made illegible on purpose.
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• Linking requirements to their requirements category worked out very
well, thanks to the fact that the requirements text was included in the
category description.

Consistent Traceability Support

Our analysis identified several small inconsistencies. The traceability data
incorporated in the SSS and the traceability data maintained in MS-Excel
show different links compared to the content of the descriptions. For exam-
ple, a requirement that was cancelled, was still included in the traceability
data. The manual synchronization of these work products is, apparently,
error-prone. REQANALYST can identify these inconsistencies, so that the
developer can correct them. In this way, maintaining consistent traceabil-
ity support becomes easier.

Requirements Views

Although more views can be defined in REQANALYST, the current views
already got positive feedback from the developers at Logica. Our views in-
crease developers’ insights in the system and they improve the possibilities
to review and validate the requirements systematically. Individual require-
ments can be inspected with respect to their coverage and their role within
the system, using the life-cycle paths. Therefore, not all possible related
documents need to be checked completely, reducing validation effort.

Currently, the number of views that can be generated using Doxygen is
limited. The hyper links Doxygen is able to generate from its input files
are bound to the information that is captured in those files. Our approach
is more flexible. With the reconstructed traceability data we can generate
the same and additional views compared to the Doxygen approach. So, our
approach extends the current way of working at Logica.

An issue is the fact that our views greatly depend on REQANALYST’s
traceability support (as discussed above). Once the traceability is consis-
tent, monitoring the progress of the requirements is improved by the re-
quirements views proposed.

Effort Reduction

It is difficult to estimate whether and to which extent REQANALYST really
reduces the effort needed for keeping the traceability support consistent.
Is the 35% effort reduction reasonable? In our case, we did a first-time
reconstruction and one increment (the validation session) [De Lucia et al.,
2006b,a, 2007]. Following increments can take into account the validated
reference traceability matrix. So, false positives that are already discarded
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from a previous reconstruction, and that do not relate to a change, are
ignored. We expect that this will, again, reduce the effort for doing a next
update. Only a small number of links, the links that are concerned with the
changes, need to be validated. Initially, our reference traceability data was
updated manually after the validation session, together with the expert. In
order to come to final conclusions, in the future, we will have to pay more
attention to how people are really constructing traceability links manually,
and compare that to the performance of our automatic method.

Quality of the Documentation

Our validation session also improved the quality of the content of the work
products. Normally, the specifications are reviewed by individual persons
after a change. In our validation session, we inspected the false positives
and missing links. Assessing the links, implied reviewing the descriptions
of the related work products. This also led to more harmonized descriptions
in the documentation. It is worth investigating what the documentation re-
quirements are in order to enable full automated traceability with a 100%
recall. If projects could improve their documentation, for example along the
lines proposed in [De Lucia et al., 2006c], and that would enable fully auto-
mated traceability reconstruction, the benefits for practice would increase
considerably.

Reconstruction Technology

The case study shows that in order to get a high recall, we have to live
with a rather low precision – figures which are consistent with earlier
studies [Lormans and van Deursen, 2006; De Lucia et al., 2006b]. This
raises the question whether the information retrieval approach used, la-
tent semantic indexing, can be further refined. Future work is needed to
determine whether there are specific characteristics of the requirements
specification domain that can help to obtain better results. For example,
the hierarchical nature of requirements documents may offer further clues
for reconstructing links.

In addition to that, the specific link selection approach could be fur-
ther refined. Presently, we made use of our two-dimensional link selection
strategy as described in our earlier work [Lormans and van Deursen, 2006,
2008], since in a set of separate case studies this strategy performed best.
It may be worthwhile to investigate alternatives to this approach, possibly
differentiating between various link types.
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Generalizing the Findings

Naturally, many of the details in the case study are specific for the setting
at Logica. Additional case studies are needed to determine to what extent
our results can be truly generalized.

To that end, we have conducted initial experiments in a different indus-
trial development project, this time in the electronics domain. In this case
study, the meta-model is more complex, and the total set of documents is
larger. Yet we can easily see the counterparts for the requirements and
their categories, as well as the test cases and their categories. The initial
results of these case studies yield traceability matrices and requirements
views that are comparable in quality to the results from the Logica case.

Threats to Validity

We conclude our discussion with a brief analysis of potential threats to
validity of the case study findings, conforming with [Yin, 2003a,b].

A first concern to discuss is construct validity, which deals with the
question whether the type of observations made can actually help in an-
swering the case study’s questions. The risks of subjective observations has
been eliminated by the use of the REQANALYST tool suite, which automati-
cally produces the data in the tables as discussed in Section 5.6. Obtaining
an accurate reference matrix is perhaps the most subjective element of the
case study, since the tool findings resulted in discussion on the correctness
of the reference matrices produced. The process to carefully obtain this ma-
trix was described in Section 5.6. A final issue related to construct validity
is whether “validation percentage” is a reasonable measure for effort (re-
duction) – this question was discussed earlier in this section as well. In all
cases, we actively involved various people from Logica in the case study, in
order to minimize the risk of bias and subjective findings.

Since our case study is exploratory in nature, there are no threats to
internal validity. With respect to external validity, we refer to the observa-
tions made above in the discussion on generalizing our findings.

Last but not least, repeatability (“reliability” in terms of Yin [2003a]) is
affected by the closed nature of an industrial case study like ours. Thus,
while all data have been carefully collected and are indeed available, full
repeatability is only possible within Logica. This is, in fact, important for
Logica as well, since they are interested in conducting more studies like
this one.
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Revisiting the Case Study Questions

Before performing the case study, we had a few anticipations and expecta-
tions towards the likely outcome of a project like the one described here.
One question was not initially related to the actual case study, and more
of a general nature: which requirements views are needed in practice? Ac-
cording to the answers obtained from industrial partners, we concentrated
on coverage views, life-cycle views, and status views. In particular, the first
group, coverage views, is gaining importance, in many software domains,
simply through the fact, that engineers want to assess the likely effect of
a change in requirements on all other work products. For some domains,
the automotive domain for example, it will be compulsory in the future to
provide such traceability views for certification.

Other questions, more fundamental to the case study performed, dealt
with the how and the extent to which the traceability views in a system can
be reverse-engineered from the existing work products. We have demon-
strated the “how” sufficiently through application of LSI in our proposed
MAREV method and its associated tool REQANALYST. LSI is capable to
generate traceability links between documents that share the same inher-
ent semantic concepts. It is quite robust with respect to the type and struc-
ture of the documents provided. Our case study is, therefore, successful in
demonstrating the application of our method and tool in such a reconstruc-
tion context.

The question of the extent to which REQANALYST can reconstruct links
correctly cannot be answered sufficiently in a single case study. We have
seen that LSI can reconstruct, sometimes more, sometimes less traceability
links for the required views. This depends on the parameters used, leading
to high recall and low precision, or low recall, with high precision. The ac-
tual question to be answered here is whether and to which extent missed
links or many false positives are acceptable, and that depends on the qual-
ity of the reference matrix provided. The reference matrix is typically pro-
vided by the developers of a system as a result of some tedious manual pro-
cess, and in other projects, we have observed that, sometimes, developers
cannot agree on the right links, or they simply forgot to define links. The
extent to which requirements views are reconstructed correctly is there-
fore still an open question that must be answered empirically through a
number of similar case studies with thorough verification of the reference
matrix, and this leads us the next questions asked earlier in this chapter:
can the approach be used to reconstruct traceability views, and can the re-
constructed views help in real software development. The first question
we answer with a definitive yes, but engineers have to decide whether low
quality of the outcome is a serious hindrance for its application. Industry
is often quite pragmatic in the application of automated tools: any little
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tool support is better than nothing, and only looking at and assessing au-
tomatically generated views might be a lot easier than creating them from
scratch. At least the tool is capable of generating the most obvious links
for views that are easy to establish. However, an aftertaste remains. That
is the number of missed links. At the moment, there is no way to identify
missed links without visiting all links, i.e. if there is no reference matrix.
Therefore, we cannot claim our method is useful for software engineers as
it is, nor can we say how much, effort it can save, if any. We do not have con-
clusive data on the effort of reconstructing views manually. What we can
foresee as future research, however, is an extended iterative reconstruction
method in which the recall is increased gradually, generating many false
positives, which can be filtered through a comparison with false positive
links dismissed earlier. This may lead to a more precise reconstruction for
which only a few new links would have to be assessed per iteration. That
way, the method could bootstrap its own reference matrix and extend that
on the way.

Another improvement could come from including a feedback mechanism
similar to the one described in [De Lucia et al., 2006a; Huffman Hayes
et al., 2006].

5.8 Contributions and Future Work
In this chapter, we have studied the reverse engineering of requirements
views from software development work products, in the context of an in-
dustrial outsourcing project. We consider the following as our key contri-
butions:

• The identification, through a questionnaire among practitioners, of
three relevant requirements views: coverage views, life-cycle path
views, and status views.

• An approach to reconstruct these requirements views from software
development work products, supported by our REQANALYST tool suite;

• The application of our approach to an ongoing project at Logica, illus-
trating

1. how the software development process steers the reconstruction
process and determines the meta-model used;

2. how the quality of the reconstructed traceability matrix can vary
per link type;

3. how the traceability matrices can be used to obtain requirements
views.
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Our future work will concern the following issues. First, we would like
to tune our approach and come to more specific guidelines to reduce the
effort needed to get a validated reference traceability matrix. Further-
more, we would like to expand the number of requirements views for more
complex environments with more sophisticated meta-models. Last but not
least, as mentioned in the previous section, we are presently working on
an industrial case in the area of consumer electronics. This case concerns a
globally distributed software development environment and a product-line,
making it a very complex environment to apply our method.

5.9 Epilogue
In this chapter, we made an inventory of the views that should be relevant
for industrial practitioners. Besides that, we applied our MAREV method
and its newly defined views in an industrial case study.

In the next chapter, we widen our scope and project our problem to the
domain of global distributed software development. We investigate the im-
pact of requirements evolution in that domain by monitoring a case study,
which implemented a tool, called SOFTFAB, for distributed software devel-
opment. From that case study we derive a number of desirable features
for successful software development. One of them is traceability support.
We map our MAREV approach to that situation and investigate if MAREV
is suitable to be applied in a global distributed software development envi-
ronment.



Chapter 6
Managing Software Evolution
in Distributed Software Engineering1

Developing a software system in collaboration with other part-
ners, and on different geographical locations is a big challenge
for organizations. In this article we first discuss a system that
automates build and test processes: SOFTFAB. This system has
been successfully applied in practice in the context of multi-site
projects. Then, we discuss a case where it was applied to a more
challenging type of collaboration: a multi-partner development
environment. Furthermore, we investigate the underlying con-
cepts of SOFTFAB and use them to define a list of features for sys-
tems that support distributed software engineering.

6.1 Introduction
Many forces make software development more and more an activity that is
distributed over multiple geographical locations. Examples of such forces
are acquisitions, outsourcing, mergers, time-to-market (round-the-clock de-
velopment), and the (un)availability of a trained workforce [Carmel, 1999;
Herbsleb and Moitra, 2001]. Additionally, software is more and more de-
veloped in collaboration with partners located at different geographical lo-
cations. For example, within Philips an internal prediction was made that
within the next five years, more than 90% of its software development is
done in some form of collaboration. This does not mean that all software

1This chapter was originally published as: Hans Spanjers, Maarten ter Huurne, Bas
Graaf, Marco Lormans, Dan Bendas, and Rini van Solingen. Tool support for distributed
software engineering. In Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE’06), pages 187–198, Florianopolis, Brazil, 2006. IEEE
Computer Society
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development is outsourced or done by suppliers, but that less than 10% of
Philips’ software will be completely developed internally.

Especially for software the trend towards engineering on different sites
and with different partners is of interest, because software, compared to
hardware, has negligible reproduction and transportation cost. Copying
software code, reusing it, and sending it around the globe can be done in
a split second and free of charge in a multi-site and multi-partner devel-
opment environment. But as simple as it sounds, so difficult it is to apply
this idea in a world where cultural and time differences, intellectual prop-
erty interests, complex development environments, confidentiality issues,
and so on, make collaboration difficult, leading to decreased development
performance [Herbsleb and Mockus, 2003].

Grinter et al. describe a number of problems involved in multi-site
development [Grinter et al., 1999]. It appears that software engineering
largely builds upon informal communication. This informal communica-
tion is essential for creating understanding among developers of what is
going on in their software development processes, also referred to as aware-
ness [Chisan and Damian, 2004]. For multi-site development, a lack of such
awareness leads to unexpected results from other sites, resulting in, for ex-
ample, misalignment and rework [Grinter et al., 1999]. Another problem
for multi-site projects is finding the right experts when they are needed.
Such communication problems not only exist for (remote) multi-site devel-
opment, they already exist when developers are apart as little as 30 me-
ters [Allen, 1977].

Beside communication, also technical issues play a role. The use of dif-
ferent tools and data formats, for instance, makes it difficult to easily ex-
change information and development artefacts [Gao et al., 2002].

Different types of solutions exist for specific distributed software en-
gineering (DSE) problems. Typically improvements can be realized in the
processes, technologies or organization of software engineering [Humphrey,
1989]. Some of the difficulties related to DSE can be addressed by the use
of technical infrastructures that explicitly support DSE. Such DSE support
systems should provide a means to connect the software development en-
vironments of different development organizations in a way that is both
acceptable and convenient for the collaborating partners. This not only in-
volves access to the created software development products, but also access
to technical software development resources, such as tools and test equip-
ment. At the same time the different development organizations should be
able to stay in control of the work products and resources located at their
site.

At Philips a system that was originally developed to automate build and
test processes, called SOFTFAB, is now applied to support multi-site devel-
opment as well. Its web interface makes it particularly suited for such
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projects. Already 40 projects at Philips have used SOFTFAB in a multi-
site setup and the results are promising. Measurements show, for instance,
that projects using SOFTFAB can reduce the budget required for testing by
30-35%. Therefore, we decided to take a closer look at this DSE support
system. We asked ourselves the question: "If projects are so enthusias-
tic about this DSE tooling, what are the underlying concepts that make it
successful?" We investigate the applicability of SOFTFAB to other types of
collaboration that involve multiple partners, and take a closer look at it to
find out the reasons for its success, with the intention to formulate them as
features a DSE system should provide.

The remainder of this chapter is organized as follows. In Section 6.2
we discuss related work. Then, in Section 3 we provide an overview of
SOFTFAB, discussing the main parts of the SOFTFAB infrastructure and
its features that improve distributed software development. In Section 4
we present a case study describing experiences with SOFTFAB and show
the benefits and shortcomings of SOFTFAB in a multi-partner environment.
An extension to SOFTFAB, called SKYFAB, is introduced in Section 5 and
in Section 6 we discuss the features a multi-partner DSE support system,
such as SKYFAB, should have. We end this chapter with a discussion in
Section 7 and some concluding remarks in Section 8.

6.2 Background and Related Work
Research in the area of global and distributed software development mainly
addresses the lack of informal communication in such settings. Proposed
solutions basically follow two strategies: 1) reduce the need for informal
communication, or 2) ease, stimulate, and support informal communica-
tion, often by the use of Internet technologies.

Grinter et al. follow the first strategy by proposing an organizational
solution [Grinter et al., 1999]. They define several coordination models for
dividing the work across the different sites. These models use different
dimensions along which to divide the work. The idea is to co-locate work
by the dimensions for which coordination is most difficult, thus facilitating
informal communication for the coordination along that dimension. Other
types of coordination mechanisms are then required to deal with coordina-
tion along the other dimensions. Such mechanisms can be either technical
or procedural (processes). Interface definitions are an example of such a
mechanism. The dimensions they propose are: functional area of expertise
(co-locate experts), product structure (organization follows software archi-
tecture, c.f. Conway’s Law [Conway, 1968]), and process steps (every site is
responsible for a (series) of development activities).

In practice typically multiple dimensions are important leading to hy-
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brid models. In the customization model, for example, one site develops
the core product and other sites add features specific for a certain customer
base. This model divides work along the process steps as well as the prod-
uct structure dimensions.

The distribution of work across different sites inevitably introduces the
need to transfer work products from one site to the other. Hand-off points
define how and when sites perform these transfers and also specify the
requirements for the involved work products [Grinter et al., 1999]. Many
technical solutions can be found to support the handling of these hand-off
points.

Typically, industrial companies develop their own supporting infras-
tructure for DSE. Fujitsu, for example, has developed such a system [Gao
et al., 1999, 2002]. This solution uses Internet technology to allow for re-
mote access to software development products and resources, within their
company. Their work is focused on the technical challenges and does not
specifically address multi-partner DSE.

Other research work on tool support for distributed software engineer-
ing often uses standard Internet technologies or groupware technologies,
such as peer-to-peer [Lanubile, 2003]. Lanubile et al. present a web-based
support system for distributed software inspection that supports both syn-
chronous and asynchronous communication between the inspectors [Lanu-
bile et al., 2003].

The tool we present not only allows communication by sharing of infor-
mation, but in a sense also alleviates the need for informal communication
by improving awareness in an alternative way [Chisan and Damian, 2004].
Next to an organizational and technological perspective, DSE problems can
also be addressed from a process-based perspective, i.e., by deploying soft-
ware engineering processes that explicitly support DSE. The CMMI, for
instance, addresses some DSE problems in the process areas: Supplier
Agreement Management and Integrated Supplier Management [Chrissis
et al., 2003].

6.3 SOFTFAB and SKYFAB

6.3.1 SOFTFAB: A DSE Infrastructure for Automated Building and Test-
ing

At Philips a software infrastructure is used to automate testing and build-
ing. This infrastructure, which is called SOFTFAB, enables projects to au-
tomate the build and test process, and control them remotely. SOFTFAB
has been applied already in more than 40 projects. Figure 6.1 shows the
SOFTFAB architecture. We call a SOFTFAB installation a "factory"; each
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factory consists of the following major parts:

1. A Control Center (CC) for managing and controlling the factory

2. One or more Factory PC’s (FPC’s) capable of performing one or more
tasks

3. A network for connecting the Control Center and all the Factory PC’s

The Control Center is a central server that manages all the tasks in-
volved in the test and build process. A task can be anything as long as it
is finite and produces a result that can be interpreted by the Control Cen-
ter. Tasks typically compile source code, execute tests, or transfer files. All
defined tasks are stored in a database. SOFTFAB users can interact with
SOFTFAB via a web interface. This interface allows users to define the
properties of tasks (e.g., location of input files), cluster tasks that are often
used together and schedule jobs for execution. Jobs execute a single task or
a group of tasks. The web interface makes it possible to control these pro-
cesses remotely in multi-site environments. The results of build and test
tasks are also available via the web interface, giving all sites access to re-
ports and log files. Role-based access rights ensure that selected users can
manage or operate the SOFTFAB, while others are only allowed to track the
status of jobs.

Figure 6.2 shows the execution queue in the main view of the SOFT-
FAB web interface. It contains a list of recent jobs that are either wait-
ing, currently in execution, or finalized. Jobs are composed from individual
tasks, which are simple, atomic activities, performed on Factory PC’s. The
progress of a job can be tracked by its tasks in the "status" column of the
execution queue, where individual tasks are represented as vertical bars.
A colouring scheme is used to indicate the status of a job. As tasks are
completed, their colour changes from white (waiting), via blue (executing),
to green (complete success), orange (success with warnings) or red (failure).
Failure of a task can prevent other tasks from executing, for example if a
build fails then there is nothing to test.

Each executed job is stored together with all its configuration param-
eters, task results and reports, which can be inspected later. Figure 6.3
shows this job view for a specific job. It shows involved tasks, inputs, and
links to the generated reports. This view represents a single line (job) from
the job list in Figure 6.2 and can be opened by simply clicking that line.

A Factory PC is capable of performing one or more tasks. As such, it
can be seen as a software development resource offering a specific set of
capabilities. The Factory PC’s in a factory are connected via a network to
the Control Center for exchanging information. Factory PC’s are connected
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Figure 6.1: SOFTFAB Architecture

Figure 6.2: Main View of SOFTFAB
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Figure 6.3: Job View of SOFTFAB
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via standard network protocols, making it irrelevant where they are located
and straightforward to set up a distributed factory.

Via Factory PC’s, the SOFTFAB infrastructure interacts with the actual
test and build tools. These tools are used as plug-ins in the SOFTFAB ar-
chitecture. For the integration of specific tools and test equipment (SUT) it
is necessary to develop glue-ware (wrappers) to allow SOFTFAB to interact
with them. Besides tools, also test equipment can be made available via
Factory PC’s. As such, the capabilities a Factory PC offers are determined
by what software is installed on it and what hardware is connected to it. On
the other hand, a task defined on the Control Center requires a certain set
of capabilities. The Control Center uses these capabilities to assign tasks
to appropriate Factory PC’s.

Besides the web interface, a Control Center also offers a programmable
interface (API) that makes it possible to automate the control of a SOFT-
FAB. This makes it possible to integrate SOFTFAB in existing automated
processes.

The Control Center is implemented in Python and the software that
runs on the Factory PC is implemented in Java. It can be deployed on var-
ious operating systems, even multiple operating systems within a single
factory. Furthermore, it is based on an open architecture: wrappers allow
any tool that has a programmable interface (command line, COM, SOAP,
etc.) to be integrated in SOFTFAB, enabling usage of both off-the-shelf de-
velopment tools and in-house developed tools. Many wrappers are already
available for mainstream development tools including Make, Doxygen, and
JUnit. New ones can be developed by users, making SOFTFAB an effective
backbone for tool interoperability.

Features of SOFTFAB that improve distributed software engineering in-
clude:

• The execution view displays the current activities at other locations,
informing about the status of work and thereby increasing awareness.

• Engineers at different sites have access to the same reports and log
files through their web browsers, facilitating communication.

• Work products and resources can be accessed, regardless of location,
local time, language or availability of human resources.

• The Control Center coordinates tasks involving distributed resources,
such as tasks involving building and testing executed on different
computers, possibly on different sites.

• An overview of build and test procedures (tasks) is available on the
Control Center. All details of the procedures are contained in the
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wrappers. This makes implicit knowledge explicit, facilitating new
employees’ training and allowing procedures to be easily transferred
to other project teams.

• In-depth knowledge of a task is only required for initial implementa-
tion and for maintenance of associated wrappers, not for their execu-
tion. Therefore, tasks can be run by any user, without depending on
the availability of an expert.

6.3.2 SOFTFAB Experiences
SOFTFAB’s possibilities for DSE support can best be illustrated by a real-
life example. In Finland we conducted a case study to investigate the appli-
cability of SOFTFAB in collaborations that involve multiple partners. Due
to, for example, intellectual property interests and confidentiality issues
such collaborations pose extra requirements to DSE support systems com-
pared to single-company, multi-site projects. We use this case study to ex-
plain the problems that are encountered in such a collaboration, and how
SOFTFAB is set up and used. The case study involved three partners, each
on a different development site:

• The system integrator. Develops environment aware applications for
smart phones.

• The COTS supplier. Sells a database management system for mobile
and embedded applications.

• The testing subcontractor. A research group at a university, which is
specialized in software testing.

In our case study the system integrator replaces a certain layer of one
of its mobile products with the data management solution developed by
the COTS supplier. The testing subcontractor provides services related to
the validation of the integrated product by executing tests and measuring
performance for different software configurations. This migration project
uses SOFTFAB as infrastructure.

One SOFTFAB factory is distributed over the COTS supplier and system
integrator to share the releases of the COTS components. Another SOFT-
FAB factory is distributed over the integrator and the testing subcontractor.
The first collaboration focuses primarily on the sharing of work products.
The latter also allows the integrator to use the resources of the subcontrac-
tor. In the remainder we will focus on the latter as this application is more
complex.

For deploying the SOFTFAB infrastructure a couple of activities need to
be done at every site:
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• Training of employees and analyzing the existing building and testing
procedures.

• Installation and configuration of the SOFTFAB software on Control
Center and Factory PC’s.

• Development of scripts to automate several tasks previously preformed
manually (e.g., retrieving configurations, or deploying installation pack-
ages to target devices).

• Development of wrappers linking existing automated tasks to SOFT-
FAB.

For the collaboration between the testing subcontractor and the integra-
tor a testing facility is built at the subcontractor’s site, which is connected
to the integrator’s site using SOFTFAB. The SOFTFAB Control Center is
situated at the integrator’s site, in a demilitarized zone (DMZ) that is ac-
cessible from outside of the company’s intranet, and also acts as a bridge for
transferring files over the firewall. One Factory PC is available at the same
location, having access to company specific assets and tools. A computer at
the subcontractor is connected as a second Factory PC. Its capabilities are
limited to importing files from other locations and deploying and executing
applications on target devices.

Via SOFTFAB the testing subcontractor can use Factory PC’s at the inte-
grator’s site to build components from arbitrary versions of the source code,
which can be used to build and test any version of the system. At the other
site, the integrator can remotely execute tests at the subcontractor’s site,
using different versions of target hardware. Without SOFTFAB this would
have required the integrator to request a test from the subcontractor. Then,
the subcontractor has to wait for the right version of the application to be
sent, after which it can be tested and the test results returned. This illus-
trates that SOFTFAB can speed up the integration process significantly.

The mobile application is built at the integrator site from source code
stored in their configuration management system, using their tools, li-
censes and scripts. The parameters for this task, such as product versions,
library versions, and hard-coded constant values can be specified. After
the application is built and packaged as a binary installation file, it is en-
crypted and exported to the subcontractor’s Factory PC. In the final phase
the install package is deployed on a target device via a Bluetooth link, after
which the application can be executed for testing. This complete scenario
can be controlled from a single (remote) location using SOFTFAB’s web in-
terface.

The testing subcontractor and the integrator used different types of
tools that were easily plugged into the local SOFTFAB infrastructure by
writing wrappers using their command line interface.
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The benefits of this setup were especially visible during one specific
experience at the subcontractor during a complete build-deploy-run cycle.
This operation failed at the point where the binary should have been trans-
ferred outside from the integrator’s intranet to the test equipment at the
subcontractor’s site. SOFTFAB’s job view (see Figure 6.3) revealed that one
of the engineers at the integrator’s site was already re-executing some of
the tasks involved in this job. So, somebody already noticed the problem
and was busy fixing it. No telephone or email was required to understand
the situation, to see latest progress, or to know that a solution was on the
way.

This example shows that SOFTFAB increases developers’ awareness,
without the need for informal communication. Partners are able to un-
derstand the situation based on the information shown by SOFTFAB and
take action if needed.

We have used SOFTFAB in this case study in a multi-partner collabora-
tion. This is a different type of collaboration than for which SOFTFAB was
developed until now. Obviously, the partners involved also identified some
shortcomings:

• All partners have the same level of access to all resources. Some part-
ners wanted to have more control over their own Factory PC’s. This
is especially important when a project has to deliver to multiple cus-
tomers.

• All partners have access to all work products. In general, however,
partners require more control on sharing of work products, for in-
stance, the ability to allow sharing between Factory PC’s within one
partner, but to limit sharing between different partners.

• Implementation details of processes of one partner are visible for all
partners. It might take several tasks to produce a particular work
product. This is not relevant for other partners; only the final prod-
uct is. The processes of each partner need to be encapsulated, hiding
its inner workings. Each partner should be able to control which of
its tasks and work products are visible from the outside for reasons
of sensitivity (Intellectual Property) and clarity (abstracting from im-
plementation details).

6.3.3 SKYFAB: A Support System for Multi-Partner DSE
It turned out that the application of SOFTFAB in a collaborative environ-
ment with multiple companies was more difficult than collaboration within
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Scope Terminology Sharing and Collaboration
Multi-site SOFTFAB - “standard SOFTFAB” benefits

- test equipment, tools, test cases
and test data

Multi-project Inter Factory - software licenses
Resource
Sharing

- equipment

Multi-partner SKYFAB - software development processes
and procedures
- test equipment, tools, test cases
and test data
- protection of IP
- respecting firewalls

Table 6.1: Collaboration scope

a single company. This suggests that there are different types of collabo-
ration possible that might require specific support from a DSE infrastruc-
ture. Table 6.1 presents three collaboration levels and summarizes what
is shared at each level. The levels are ordered according to their scope of
sharing: the larger the sharing scope, the more difficult the collaboration.

A standard SOFTFAB setup, as discussed earlier, easily shares several
resources, data, and procedures (e.g., via test scripts). Typically, every
project implements its own factory. At Philips, SOFTFAB has also been used
to share resources between projects. In such a case, each project owns a fac-
tory and the Factory PC controlling the resource is listening to the Control
Centers of both projects, sharing the unique resource transparently for the
end-user. The most challenging level of sharing, the collaboration between
multiple partners (companies, universities, and so on), requires some addi-
tional features. A Multi-Partner DSE (MP-DSE) support system providing
those features is currently being implemented as an extended version of
SOFTFAB, and is called SKYFAB.

The involvement of multiple partners makes software development more
complex, for instance, when partners have their own policies on security
and protection of intellectual property. To address this SKYFAB will allow
each partner to implement its own local factory behind a corporate fire-
wall. A globally shared SKYFAB Control Center is placed in a DMZ and is
connected to the Control Centers of the local factories, thus forming a hier-
archy of multiple SOFTFAB installations. Now one can run a job of which
the tasks are executed in different partners’ factories using the local avail-
able resources without breaking the partner’s security rules. Figure 6.4
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Figure 6.4: SKYFAB Architecture

shows the architecture of a SKYFAB factory. The setup of our case study
can be seen as an intermediate step towards this architecture.

6.4 Features of a MP-DSE Support System
Below we list a set of desirable features for MP-DSE support systems.
These features not only follow from the case study discussed above, but
also from the experience of using SOFTFAB in about 40 different projects
at Philips. Some of these features are supported by SOFTFAB; others are
not supported by SOFTFAB, but appeared to be desirable in practice. These
will be implemented in SKYFAB.

6.4.1 Work Product Sharing
When software is developed collaboratively, work products (designs, docu-
ments, test results, code, executables, etc.) need to be shared among the
different development sites. In our case study, for instance, the testing
subcontractor can only test the application when the executable binaries,
compiled at the integrator’s site, are provided. This does not mean, that ev-
erything needs to be shared, it means that sharing of work products needs
to be decided upon and organized, i.e., handoff points [4] need to be defined.
Sharing can be downloading or uploading of work products.
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In SOFTFAB sharing of work products is already arranged both explic-
itly and transparently (and as extension to SOFTFAB, SKYFAB has this
ability as well). On the one hand, it is possible to explicitly define tasks
that have the purpose of retrieving information from, e.g., a configuration
management system and deliver the result via the web interface. On the
other hand, tasks can be configured to require input from the site of a part-
ner. During task execution this input is then retrieved transparently for
the user.

6.4.2 Development Resource Sharing

Each partner typically has its own development tools and equipment, which
are often even different between sites of one partner. Especially for embed-
ded software development it can be difficult and expensive to replicate test
environments on different sites, which, in turn, makes it difficult to repro-
duce test results on the different locations. In our case study, for instance,
a testing facility was only available at the testing subcontractor’s site. DSE
support systems must be able to deal with these different technical en-
vironments without requiring technical expansions on other sites. In a
collaborative environment, especially in the case of a multi-partner collab-
oration, one cannot expect other partners to rigorously change or expand
their technical development environment.

Therefore, in some cases, collaborating partners should be able to start
and control tasks such as compiling, building, testing, code generation,
static analysis, etc. at other sites. This does not mean that every task
must be fully remotely accessible or controllable, but it does mean that a
dedicated selection of these tasks should be externally executable. As such,
the testing subcontractor was able to compile a specific version of the ap-
plication to test using the integrator’s build environment remotely. The
configuration of the tasks and their required tooling is the responsibility
of the site where a task runs. Executing a task typically produces a work
product, which again can be shared.

In a multi-site SOFTFAB setup, this is supported via the access to and
control over the Factory PC’s in other sites. Each Factory PC declares its ca-
pabilities explicitly: it declares which tasks it is able to perform and which
output it is able to produce based on which inputs. In SKYFAB a hierarchy
of SOFTFAB factories will be introduced, enabling one partner to execute
tasks in the local factory of another partner. This allows a partner to share
its development resources, without releasing all control over them (see also
Section 6.3).
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6.4.3 Product and Resource Access Control
Although it is necessary to share work products and resources between
partners, not everything needs to be shared. A specific partner will need
to allow access to certain work products and resources. However, due to
confidentiality issues, every partner needs to be in control of the accessi-
bility of their work products and resources. Especially, when considering
distributed development with different partners this is an important issue,
as intellectual property or business interests, for instance, need to be pro-
tected. In our case study, for example, the source code of the product under
test was not disclosed to the testing partner.

The role-based access rights mechanism in SOFTFAB currently defines
three fixed roles. This is not sufficient for multi-partner collaborations,
where a specific partner wants to control access to his local factory for each
partner separately. In SKYFAB access rights will be more fine-grained and
will be managed per individual user. SKYFAB uses a local SOFTFAB fac-
tory per partner. Each local Control Center serves as a kind of gatekeeper
to the working environment at a specific site. Certain processes and work
products can be shared with the other partners, while others remain pri-
vate. It allows the other partners to execute operations on certain data and
retrieve the results, without the need to access the data directly.

6.4.4 Heterogeneous Environment Support
Each partner has its own software development infrastructure. Some of the
differences originate in the different role each partner plays in the collabo-
ration, requiring different technical solutions. Homogenization of systems
is not a solution: it would disrupt established ways of working and inval-
idate past investments, in addition to ignoring the fact that the diverse
skills of the different partners are key to making a collaboration perform
better than a single partner could. Thus, DSE tools should be based on an
open architecture, allowing interaction with different systems from multi-
ple vendors running on different platforms. This is especially important for
MP-DSE.

SOFTFAB supports this by storing results in the native format of a tool.
For example, test results are stored in the test report format of the specific
test tool, typically a plain text, HTML or PDF. The resulting document is
then accessible to other sites, for instance, via a web server. Other sites do
not need to have licenses for these other tools but still are able to create and
access the results. Furthermore, SOFTFAB enables a partner to execute
test processes that use tools and equipment at a remote partners’ site. One
partner, for example, can test software in the test environment of other
partners, without having the licenses for the involved tools.
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6.4.5 Real-time Status Updating
Collaboration between sites and especially between partners requires a
continuous insight in the status of work and work products. In a non-
distributed setting this awareness is created by informal communication
via email, telephone and in face-to-face meetings. DSE support systems
should compensate for the lack of informal communication between remote
locations and enable transparency in work carried out and the work prod-
ucts being produced, in order to increase developers’ awareness. An exam-
ple of tool-mediated awareness was presented in Section 6.4.

SOFTFAB supports this by providing on-line insight into the work car-
ried out at other sites, showing status and result overviews of tasks car-
ried out (see again Figure 6.2 and Figure 6.3). Depending on users’ access
rights (see also Section 6.3), they are able to access these overviews to find
out what has been done and what the result are of the tasks executed. As
developers can see for themselves what is going on, there is no need to con-
sult other sites just to know the current status. They do not need to ask;
SOFTFAB simply shows it.

Naturally, for more complex tasks, such as analyzing a difficult bug,
direct communication between partners is still required. In such cases,
SOFTFAB helps by providing a clearly labeled status overview of the tasks
that were executed on all sites, and by providing access to all reports and
log files to all developers involved. This avoids misunderstandings ("which
version are we talking about?") and allows engineers to focus on the prob-
lem only.

6.4.6 Consistency and Timeliness Management
In our case study, the testing subcontractor needed to run its regression
tests against the latest release of the product as well as against previous
versions. As such, the subcontractor needs the correct versions of the ap-
plication to be easily available.

If operations on software development data can be remotely executed,
the need to physically distribute that data disappears. Sites are able to
acquire work products when needed. Version checks will not be necessary,
because the tested product is directly and remotely built from the configu-
ration management system at the development site. Differences and delays
due to development at different continents and time zones are overcome
when a DSE support system is able to manage consistency and timeliness
of work products automatically.

In SOFTFAB consistency is supported by ensuring that the actual devel-
oper or maintainer of a work product has it physically on its own site and
allows sharing it with others. In case of sharing of resources, consistency
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and timeliness is managed by ensuring that the owning site also develops
and maintains its resources. Additionally, the automation of tasks makes
developers independent of the presence of people at other sites.

6.4.7 Knowledge Transfer
The knowledge and experience of developers is incorporated in the work
products they produce. The same applies to automated scripts used in a
DSE support system. As such, the tasks that are incorporated in a DSE
support system should hide complexity from their users. When this is done
correctly, the transferability of work processes and sometimes of complete
projects increases. When tasks are not automated, not archived and not
documented in a standardized way, transferability of work products is only
feasible face-to-face by teaching and handing over. By putting the knowl-
edge in a standardized way into scripts, users can (remotely) control and
execute these work processes without the need to understand their content.
As such, complexity is hidden, increasing the transferability of work.

SOFTFAB supports this by standardized scripts (wrappers) that can be
executed remotely, but are maintained locally.

6.4.8 Traceability Support
In a MP-DSE environment many work products are being developed by
teams that are working at various locations. In many cases only one system
needs to be produced. Therefore in a MP-DSE environment, integration
is especially important. To realize successful integration of the system,
you need to be able to trace the work products that are being developed
by the various teams. Besides that, project progress and coverage can be
monitored during the project. The total control of a MP-DSE project and
the quality of a MP-DSE project improves when implementing traceability
support.

SOFTFAB does not explicitly implement traceability support. However,
implicitly some traceability support is implemented in SOFTFAB via its hi-
erarchy of tasks and jobs. All tasks can be traced to their corresponding
job.

Besides that, SOFTFAB has implemented interfacing to known version
control tooling. This way changes to the code can be managed and moni-
tored. Finally, build settings are managed in SOFTFAB. Using these set-
tings, each release of the software can be rebuilt using the corresponding
source code and test cases.
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6.5 SOFTFAB and Monitoring Requirements Evolution
In our experiment we tried to align our MAREV approach and REQANALYST
tool suite with SOFTFAB. Our experience shows that both tools can work
together easily. The reason for this is that both tools are able to import
and export data in a structure way. In other words, they implement one of
the identified processes in the RES framework (see Section 3.6.3), namely
the process of interaction with stakeholders annex importing and exporting
data in a structured way.

In Section 6.4.4, we have already explained that SOFTFAB supports the
sharing of documentation in formats that are accessible by multiple plat-
forms (plain text, HTML, and PDF). REQANALYST can parse these docu-
ments and import the data. Then, REQANALYST can process this data and
produce its predefined views using this data. If necessary, REQANALYST
can export this data to SOFTFAB.

At the time this research was carried out, a plug-in that completely
integrated both tools was not available. We started to build a complete tool
chain using Eclipse1 that contains both SOFTFAB and REQANALYST, but at
the time of writing this, it has not been completed yet and remains future
work.

6.6 Discussion
A set of features for MP-DSE has been introduced in Section 6.4 of this
chapter. The need for each individual feature differs for each application
of MP-DSE. Naturally, the ability to share information is a necessary con-
dition for any collaboration. However, many solutions offer that feature: a
simple FTP-server would suffice. The other features are more specifically
aimed at support for distributed software engineering.

For instance, the ability to share technical software development re-
sources - together with work product sharing the most important feature
of SOFTFAB- solves a number of practical problems often encountered in
multi-site development project, such as the difficulty of replicating build
and test environments on multiple sites. The ability to share both work
products and resources, sets SOFTFAB apart from many other systems that
can be used to support distributed software development, such as group-
ware systems.

Support for heterogeneous development environments is obviously only
necessary in situations where the technical environments used at the dif-
ferent sites in a collaboration are actually different. A similar argument

1www.eclipse.org
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holds for fine-grained control of access to work products and resources,
which is primarily relevant in cases were intellectual property is an issue.

Real-time status updates and consistent and timely access to work prod-
ucts are features that are not absolutely necessary, but they are very useful
to increase the awareness of developers at different sites.

Finally, support for transfer of work processes makes it easier to hand-
over a project to another site or to a customer, for instance, when a product
has been delivered and enters the maintenance phase of the software life-
cycle. Thus, indirectly such a feature improves its maintainability.

The need for the above features potentially exists in every phase of the
software life-cycle, not only for building and testing. Currently, SOFTFAB
mainly supports the build and test phases of a software project. Support for
other phases is constrained by one limitation: if the phase cannot be con-
trolled remotely (and hence at least partly automated), SOFTFAB cannot
deal with it. Therefore, the applicability of SOFTFAB to other development
phases strongly depends on the usage of automated tools in those phases.
Previous research shows that in the early phases of the life-cycle, i.e., re-
quirements engineering and architecture development, tool support is still
limited (See [Graaf et al., 2003] and Chapter 2 of this thesis). During later
phases usage of automated tools is more common. As SOFTFAB builds upon
remote control and access, it largely builds upon automated tooling. There-
fore, it may seem that the applicability and benefit of SOFTFAB lies in later
phases of the life-cycle.

However, more tools are expected to be used in earlier phases as well.
For instance, if we consider the trend of model-driven development, and
OMG’s model-driven architecture (MDA) [OMG, 2007] in particular, we see
that tool vendors develop more and more tools to be applied during architec-
ture development. These tools automate development tasks, such as model
transformation and code generation.

Also in the area of requirements engineering some software engineer-
ing activities are amenable to support by SOFTFAB. One of them is cov-
erage analysis: determining the extent to which requirements are covered
by other (downstream) work products. Tools for doing this automatically
are being developed, as discussed in Chapter 4 and 5 of this thesis. By
connecting such tools, a DSE support system could help to provide up-to-
date status views of the requirements coverage of a software system under
development. The underlying (potentially confidential) information does
not have to be shown in a shared report, but it can be used for generating
the coverage view. This way the actual progress of a project in terms of
addressed requirements can constantly be monitored during the life-cycle.

SOFTFAB and SKYFAB support such future developments by sharing
the control and results of automated software engineering tasks. However,
it should be remembered that even when the features discussed in this
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chapter are all fully supported by a DSE support system, successful collab-
oration cannot be guaranteed. The success lies in the way the DSE support
system is used, which is largely determined by the willingness of companies
to collaborate, and their openness towards and confidence in each other.

6.7 Contributions and Future Work
DSE support is of large interest for today’s industry. Software has an in-
trinsic power due to its relatively cheap reproduction and transportation
cost. To fully benefit from this strength, DSE support systems need to be
deployed, even across company borders. The SOFTFAB infrastructure dis-
cussed in this chapter is based on industrial multi-site practice. It has
been applied many times to full satisfaction of the involved partners. Fur-
thermore, we discussed SKYFAB based on the application of SOFTFAB as a
MP-DSE support system.

Based on Philips’ experience, using a system such as SOFTFAB to con-
nect the development environments of partners that develop software in
collaboration, while they maintain self-control, has great potentials to speed
up software development. As such, we conclude that the road towards prof-
itable, faster and more reliable software development lies in collaboration.
DSE support systems are needed for that, preferably developed and built
upon industrial best-practices.

We consider the following to be the key contributions of this chapter:

• We discussed SOFTFAB, an infrastructure for automating the build
and test process.

• We illustrated the possibilities of SOFTFAB in a case study, reveal-
ing the strengths and the weakness of SOFTFAB in a multi-partner
setting.

• We proposed an extended version of SOFTFAB, SKYFAB, that ad-
dresses the issues revealed in the multi-partner case study, and iden-
tified three levels of collaboration that are relevant for MP-DSE sup-
port systems

• We introduced and analyzed seven features of a MP-DSE support sys-
tem, giving a good overview of the requirements for developing or se-
lecting such a support system.

In future research we will expand and implement the SKYFAB con-
cept. Currently, we are further evolving SOFTFAB into SKYFAB. In this
industrial case study we implement the features we identified to overcome
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the difficulties we encountered when applying SOFTFAB as-is in a multi-
partner environment. After that we intend to investigate how to extend
SKYFAB to support other software development phases, as discussed in
Section 6.4. We are already developing an application for analyzing and
monitoring requirements in a distributed software development setting.

6.8 Epilogue
This chapter has given an overview of features that are essential for suc-
cessful tool support in MP-DSE projects. We mapped our MAREV and its ac-
companying tool REQANALYST to this domain and learned that our MAREV
approach can easily be combined without spending much effort on integrat-
ing the both tools. A prerequisite is that the import and export features of
both tools are mature, so data exchange is possible. Then the real integra-
tion depends on the structure of the data itself as defined in the traceability
model.

In the next chapter, we finalize our research work and reconsider the
research questions defined in Chapter 1.





Chapter 7
Conclusions

This chapter concludes our research project concentrating on
monitoring requirements evolution and improving requirements
management. We recall our research objectives and reflect on the
results presented in each chapter in relation to our research ob-
jectives. Finally, we provide recommendations and discuss future
work.

7.1 Recalling the Research Objectives
In this dissertation we addressed the problem of monitoring requirements
evolution during the software engineering life-cycle. We defined four themes
in Chapter 1: exploring, structuring, showing, and expanding the world.
These four themes cover our research sub-questions also defined in Chap-
ter 1:

RQ1 How is requirements management currently done in practice and what
is the impact of requirements evolution?

RQ2 Which views do we need to support the process of monitoring require-
ments evolution?

RQ3 How can we automate the reconstruction of requirements traceability
to support requirements evolution?

RQ4 What is the impact of global software development on the management
of requirements evolution?

We investigated these themes in order to answer our main research
question:

RQ0 How can we develop an automated requirements management envi-
ronment to improve the management of requirements evolution?

159
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7.2 Contributions
We consider the following to be our key contributions:

• We gave an overview of software engineering technologies used in
practice for the development of embedded software (see Chapter 2).

• We listed a number of features a requirements managements system
should consider, investigated how these requirements management
features are tackled in an industrial case study, and identified a num-
ber of problems currently adopted requirements management meth-
ods and tools have when applied in practice (see Chapter 3).

• We proposed a framework that addresses the concerns with respect
to monitoring requirements evolution such as the interaction with
stakeholders, consistent processing of changes, and presentation of
information using requirements views(see Chapter 3).

• We provided MAREV, a methodology for reconstructing requirements
traceability and generating requirements views (see Chapter 4).

• We defined a new filter strategy for selecting traceability links from a
LSI similarity matrix (see Chapter 4).

• We implemented MAREV in our REQANALYST tool suite (see Chap-
ter 4).

• We applied our approach in several academic and industrial case stud-
ies (see Chapters 4 and 5).

• We defined a number of views, which are useful for monitoring re-
quirements evolution(see Chapter 5).

• We studied the global software engineering domain and defined fea-
tures tool support for multi-partner distributed software engineering
should consider (see Chapter 6).

7.3 Discussion and Evaluation
Now that we have revisited our research objectives and listed our contribu-
tions, we will discuss each of them in a separate section, using our research
objectives to guide the discussion.



DISCUSSION AND EVALUATION 161

7.3.1 Exploring the World (R1)
Our first research question concerning requirements management in prac-
tice, is mainly answered in Chapters 2 and 3. Our main observation from
Chapter 2 is the gap between the state of the practice and the state of the
art. In the embedded software domain, industry is cautious with using new
technology. The main reason for this appears to be the fact that these or-
ganisations are avoiding risks. To do so, they only introduce small changes
in their organisation and all technology needs to have a certain maturity;
in other words, they have proven to be reliable.

In our research, we took this observation into account by minimizing the
use of new technologies. In our solution we tried to use existing technolo-
gies, such as Latent Semantic Indexing (LSI), an established information
retrieval method.

7.3.2 Structuring the World (R2)
For structuring the process of requirements evolution, in Chapter 3 we de-
fined our RES framework. This framework captures all relevant processes
for managing and controlling requirements evolution. Both managing and
controlling the structure of requirements evolution are captured in two RES
processes: Exchanging Data, and Processing Changes to that data. Both
processes will be discussed separately.

The Exchange of Data This process concerns the interaction with the stake-
holders. We need to exchange data and as this data is changing continu-
ously, we need to control this process. Mainly, this is a configuration issue;
a meta-model needs to be defined and mapped to the current way of work-
ing. A key problem is that each project has a different configuration. The
document structure is different for most projects, complicating any form of
automation. In practice this means that for most projects we need to man-
ually configure the data that needs to be exchanged (the work products
defined in the meta-model).

The result of the first step, the meta-model, should be communicated
with and agreed upon by all stakeholders. Next, the current project setting
needs to be transformed to the input needed for an automated analysis ap-
proach. The concepts in the meta-model need to be identified in the current
document structure. Once that is done a pre-processor can automatically
process the documents. Thus, the first two steps of our MAREV method are
hard to automate and will, in most cases, remain a manual activity.

The identification of the concepts that need to be traced can be auto-
mated by using project-specific scripts. For running projects the configura-
tion has already been established and these scripts need to be developed
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from scratch. This typically is a one-time investment that can be used
throughout a project’s life-time. Projects that start from scratch can take
into account these MAREV requirements when defining their configuration.
When doing this, the project can benefit from the MAREV possibilities dur-
ing the rest of its life-time.

Processing Changes This process concerns automating traceability support
when changes occur. We have learned that it is difficult to keep a project
configuration consistent, especially regarding traceability. Our MAREV ap-
proach aims at providing a solution for this problem, by generating candi-
date traceability links automatically. With respect to this link reconstruc-
tion two conclusions can be drawn.

The first conclusion relates to link types. The performance of LSI for the
different link types differs systematically. The links between requirements
and test cases, in general, performed better than the links between require-
ments and design. One of the reasons LSI performs worse for “requirement
– design” relations is the fact that for designs many diagrams are used for
documentation (see Chapter 4). These diagrams are often hardly described
using text. Information retrieval techniques are less suitable for traceabil-
ity reconstruction in this case.

The second conclusion relates to the link selection strategies. With re-
spect to the link selection strategies it is not always easy to determine when
a strategy performs better. This very much depends on the application ob-
jectives. In the case studies we showed the results of applying LSI us-
ing different parameter values and compared the available link selection
strategies. We have also seen that the link selection strategies cannot al-
ways avoid generating more links than desirable, for example, generating
false positives.

One lesson learned is the fact that people make mistakes when updating
information. In all case studies, we found inconsistencies during our anal-
ysis. The traceability data incorporated in the documents and the trace-
ability data maintained separately (if maintained at all) show differences
compared to the content of the descriptions. The manual synchronization
is apparently error-prone. REQANALYST can identify these inconsistencies,
after which the developer can correct them. This way, maintaining consis-
tent traceability support becomes easier.

7.3.3 Showing the World (R3)
Our final process defined in our RES framework, was presenting the data.
This process is directly related to our third research question. If we want
to manage and control requirements evolution we need a way to monitor it.
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In our approach we defined a number of views to realize this.
Although the number of views in REQANALYST can be extended, the

views incorporated already increase developers’ insights in the system. Our
stakeholders (developers, project managers, etc...) are satisfied with the
views that can be generated. They show improvements with respect to
other requirement management tools. Our views improve the possibilities
to systematically review and validate the requirements; individual require-
ments can be inspected with respect to their coverage and their role within
the system.

An issue is the fact that our views greatly depend on REQANALYST’s
traceability support (as discussed above). Once the traceability is consis-
tent, the progress of requirements can easily be monitored with the defined
requirements views. Our incremental approach in MAREV helps managing
the evolution of the reconstructed and validated traceability links.

7.3.4 Expanding the World (R4)
In our last research sub-question we considered global software engineer-
ing and investigated the impact for monitoring requirements evolution. In
Chapter 6 we showed that global software development requires some ad-
ditional features for tooling or requires more attention to specific features
compared to “normal” software development.

One of the features, which had our special interest, was traceability
support. In SOFTFAB this feature was not implemented. However, file
transfer is implemented in SOFTFAB and so the files could easily be shared
and imported in REQANALYST. Therefore, our MAREV approach can be
used in a global software development project. In such a project SOFTFAB
and REQANALYST can be combined and complement each other without
spending much effort on integrating the both tools.

7.4 Recommendations and Future Work
In this thesis we discussed the monitoring of requirements evolution. How-
ever, not all discussed issues have been solved. In each chapter, we raised
a number of questions that need to be investigated further. In this section
we recall these open issues and discuss the possibilities for future research.

The first issue we need to discuss is the use of LSI and preparing
the data for LSI analysis. The pre-processing of the provided documents
requires quite some manual work. The first step involves mapping and
transforming the documents to the traceability meta-model defined for the
project.
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In an ideal situation, the document structure is already in the format
needed for pre-processing and executing the LSI analysis. If not, the in-
teraction process as described in the RES framework should be followed.
Then the manual activities only need to be executed once. In the current
situation, changes to the documents are done in the original document for-
mat. Next, they still need to be process in transformed documents. This
whole process of preparing the documentation for LSI analysis needs to be
optimized.

A second issue is that the current processing of large data sets via LSI
requires quite some resources (time and computing power). For (near) real-
time analysis of the requirements it is not acceptable that the analysis
takes more than 10 minutes. In addition to that, in our current implemen-
tation of REQANALYST the traceability reconstruction is done during a web
session. To make the tool more user-friendly and scalable, this processing
needs to be done earlier or faster. Future research should provide these
technological improvements.

In Chapter 6, we discussed a tool called SOFTFAB, which currently does
not support the requirements monitoring as discussed in Chapters 3, 4,
and 5. In Chapter 6, we defined the features needed for distributed soft-
ware engineering and included traceability support. REQANALYST pro-
vides this feature, so in future research SOFTFAB and REQANALYST should
be combined to provide distant requirements monitoring.

Finally, in this research we have discussed a number of case studies.
These were academic case studies as well as industrial case studies each
varying is size and complexity. Still more case studies need to be done to
tune the MAREV approach and to make it more user-friendly, practical, and
scalable.
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Samenvatting

Moderne software-systemen worden steeds complexer. Ook de omgeving
waarin deze systemen opereren wordt steeds dynamischer. Het aantal be-
langhebbenden neemt tevens toe en ook de wensen en eisen (requirements)
van de belanghebbenden veranderen constant als gevolg van de als maar
veranderende omgeving. Een consequentie van deze trend is dat het aantal
eisen aan een software-systeem toeneemt. Daarnaast veranderen de eisen
van een belanghebbende continue.

Binnen het software-ontwikkelproces is requirements-engineering het
process dat er voor moet zorgen dat de wensen en eisen aan het software-
systeem van alle belanghebbenden worden gespecificeerd. Tevens behoort
het managen van deze wensen en eisen gedurende het totale software-
ontwikkelproces tot de activiteiten van dit proces. In tegenstelling tot de
klassieke manier van software-ontwikkeling, waar het proces requirements-
engineering enkel in de beginfase van het totale software-ontwikkelproces
is gepositioneerd, zijn wij van mening dat deze activiteit het totale software-
ontwikkelproces omvat, van begin tot eind.

Het requirements-engineeringproces moet in de moderne aanpak van
software-ontwikkeling om kunnen gaan met de eerste twee wetten van
software-evolutie gedefineerd door Lehman: Continue verandering en Toen-
emende complexiteit [Lehman, 1998; Laszlo A. Belady, 1976]. Deze twee
wetten zeggen dat 1) software-systemen continue aangepast moeten wor-
den aan de nieuwe wensen en eisen van de belanghebbenden of de ve-
randeringen in hun omgeving om niet nutteloos te worden en 2) software-
systemen die evolueren worden steeds complexer door de nieuwe of veran-
derende wensen en eisen van belanghebbenden.

Probleem
In dit onderzoeksproject hebben we ons geconcentreerd op het managen
van het requirements-evolutieproces. De hoofdvraag die we willen beant-
woorden is: Hoe kunnen we een requirements-managementomgeving on-
twikkelen die het managen van requirements-evolutie verbeterd?

In dit onderzoeksproject zijn we begonnen met het identificeren van de
problemen die organisaties typisch ondervinden met betrekking tot de ac-
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tiviteiten gerelateerd aan requirements-engineering en meer specifiek, tij-
dens het managen van requirements. Hiervoor hebben we een vragenlijst
opgesteld en verschillende interviews gehouden bij de industriële partners
van de MOOSE- en MERLIN-projecten. We hebben ons binnen het onder-
zoek specifiek geconcentreerd op het uitbesteden van software-ontwikkeling
en het ontwikkelen van software op verschillende locaties (beter bekend on-
der de naam Global Software Development). De problemen op het gebied
van het managen van wensen en eisen aan een software-systeem zijn an-
ders voor deze type projecten. We hebben bijvoorbeeld een project bij Logica
ter hande genomen waarbij de software-ontwikkeling was uitbesteed aan
een derde partij. Daarnaast hebben we een software-ontwikkeltool (gereed-
schap), genaamd SOFTFAB en ontwikkelt door Philips, bestudeerd dat er
speciaal voor bedoeld is om gedistribueerde software-ontwikkeling te on-
dersteunen.

De praktijkstudies bevestigden dat het managen van wensen en eisen
een groot probleem is in de praktijk. De wensen en eisen aan een software-
systeem veranderen continue waardoor de traceerbaarheid van wensen en
eisen moeilijk is. Dit leidt er toe dat het managen van deze eisen on-
betrouwbaar wordt. Dit leidt er vervolgens weer toe dat het onmogelijk
wordt om de voortgang te monitoren van de eisen binnen het software-
ontwikkelproces: zijn de eisen en wensen al in het ontwerp meegenomen
en worden ze al afgedekt in de testgevallen? Uiteindelijk kan dit er toe lei-
den dat het opgeleverde systeem niet voldoet aan de vooraf gestelde eisen
van de belanghebbenden.

Resultaten

Als oplossing hebben we een raamwerk gedefinieerd, genaamd RES (Re-
quirements Engineering System). RES definieert drie hoofdprocessen die
relevant zijn voor het managen van requirements-evolutie: 1) de interactie
met belanghebbenden, 2) het consistent verwerken van veranderingen en
3) het presenteren van de informatie die betrekking heeft op de wensen en
eisen van de belanghebbenden, daarbij gebruikmakend van zogenaamde
“requirements views”.

Daarnaast hebben we een methodologie ontwikkelt, genaamd MAREV
(Methodology for Automating Requirements Evolution using Views), die
het proces van traceerbaarheid van wensen en eisen automatiseert. De
methodologie dekt alle drie de processen die gedefinieerd zijn in het RES-
raamwerk af en bestaat uit een totaal van 7 stappen.

We hebben de MAREV-methodologie geïmplementeerd in een software-
produkt (tool suite), genaamd REQANALYST, voor het ondersteunen van
software-ontwikkeling. REQANALYST gebruikt “Latent Semantic Index-
ing” (LSI), een “Information Retrieval”-techniek voor het reconstrueren
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van traceerbaarheidsrelaties tussen de wensen en eisen van belanghebben-
den naar andere werkproducten, die tijdens het ontwikkelproces gepro-
duceerd worden, zoals ontwerpen en testgevallen. Deze traceerbaarhei-
dsinformatie wordt vervolgens gebruikt bij het genereren van “require-
ments views”. Deze views helpen bij het monitoren en managen van de
wensen en eisen waaraan het software-systeem moet voldoen.

Tot slot, hebben we onze MAREV-methodologie toegepast in verschil-
lende academische en industriële praktijkstudies welke hebben geresul-
teerd in tal van leer- en verbeterpunten.
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