159,881 research outputs found

    C-Arc: A Novel Architecture for Next Generation Context- Aware Systems

    Get PDF
    Computing is becoming increasingly mobile and ubiquitous. This implies that applications and services must be aware and adapt to highly dynamic environments. However, building contextaware mobile services is currently a complex and time consuming task. The emergence of truly ubiquitous computing, enabled by the availability of mobile and heterogeneous devices and an increasing number of commercial off-the-shelf sensing technologies, is hampered by the lack of standard architectural support for the development of context-aware systems. In this paper, the common architecture principles of context-aware systems are presented and the crucial contextaware architecture issues to support the next generation context-aware systems which will enable seamless service provisioning in heterogeneous, dynamically varying computing and communication environments are identified and discussed. Furthermore, a novel architecture, CArc,is proposed to aid in the development of the next generation context-aware systems. A prototype implemented of C-Arc is also presented to demonstrate the architecture. C-Arc provides support for most of the tasks involved in dealing with context, namely acquiring context from various sources, interpreting context and disseminating context.Keywords: Context-aware architecture, context-aware systems, context-aware mobile services,mobile and ubiquitous computing

    Toward a multidisciplinary model of context to support context-aware computing

    Get PDF
    Capturing, defining, and modeling the essence of context are challenging, compelling, and prominent issues for interdisciplinary research and discussion. The roots of its emergence lie in the inconsistencies and ambivalent definitions across and within different research specializations (e.g., philosophy, psychology, pragmatics, linguistics, computer science, and artificial intelligence). Within the area of computer science, the advent of mobile context-aware computing has stimulated broad and contrasting interpretations due to the shift from traditional static desktop computing to heterogeneous mobile environments. This transition poses many challenging, complex, and largely unanswered research issues relating to contextual interactions and usability. To address those issues, many researchers strongly encourage a multidisciplinary approach. The primary aim of this article is to review and unify theories of context within linguistics, computer science, and psychology. Summary models within each discipline are used to propose an outline and detailed multidisciplinary model of context involving (a) the differentiation of focal and contextual aspects of the user and application's world, (b) the separation of meaningful and incidental dimensions, and (c) important user and application processes. The models provide an important foundation in which complex mobile scenarios can be conceptualized and key human and social issues can be identified. The models were then applied to different applications of context-aware computing involving user communities and mobile tourist guides. The authors' future work involves developing a user-centered multidisciplinary design framework (based on their proposed models). This will be used to design a large-scale user study investigating the usability issues of a context-aware mobile computing navigation aid for visually impaired people

    Context-Aware Recommendation Systems in Mobile Environments

    Get PDF
    Nowadays, the huge amount of information available may easily overwhelm users when they need to take a decision that involves choosing among several options. As a solution to this problem, Recommendation Systems (RS) have emerged to offer relevant items to users. The main goal of these systems is to recommend certain items based on user preferences. Unfortunately, traditional recommendation systems do not consider the user’s context as an important dimension to ensure high-quality recommendations. Motivated by the need to incorporate contextual information during the recommendation process, Context-Aware Recommendation Systems (CARS) have emerged. However, these recent recommendation systems are not designed with mobile users in mind, where the context and the movements of the users and items may be important factors to consider when deciding which items should be recommended. Therefore, context-aware recommendation models should be able to effectively and efficiently exploit the dynamic context of the mobile user in order to offer her/him suitable recommendations and keep them up-to-date.The research area of this thesis belongs to the fields of context-aware recommendation systems and mobile computing. We focus on the following scientific problem: how could we facilitate the development of context-aware recommendation systems in mobile environments to provide users with relevant recommendations? This work is motivated by the lack of generic and flexible context-aware recommendation frameworks that consider aspects related to mobile users and mobile computing. In order to solve the identified problem, we pursue the following general goal: the design and implementation of a context-aware recommendation framework for mobile computing environments that facilitates the development of context-aware recommendation applications for mobile users. In the thesis, we contribute to bridge the gap not only between recommendation systems and context-aware computing, but also between CARS and mobile computing.<br /

    Multi-Sensor Context-Awareness in Mobile Devices and Smart Artefacts

    Get PDF
    The use of context in mobile devices is receiving increasing attention in mobile and ubiquitous computing research. In this article we consider how to augment mobile devices with awareness of their environment and situation as context. Most work to date has been based on integration of generic context sensors, in particular for location and visual context. We propose a different approach based on integration of multiple diverse sensors for awareness of situational context that can not be inferred from location, and targeted at mobile device platforms that typically do not permit processing of visual context. We have investigated multi-sensor context-awareness in a series of projects, and report experience from development of a number of device prototypes. These include development of an awareness module for augmentation of a mobile phone, of the Mediacup exemplifying context-enabled everyday artifacts, and of the Smart-Its platform for aware mobile devices. The prototypes have been explored in various applications to validate the multi-sensor approach to awareness, and to develop new perspectives of how embedded context-awareness can be applied in mobile and ubiquitous computing

    Towards a multidisciplinary user-centric design framework for context-aware applications

    Get PDF
    The primary aim of this article is to review and merge theories of context within linguistics, computer science, and psychology, to propose a multidisciplinary model of context that would facilitate application developers in developing richer descriptions or scenarios of how a context-aware device may be used in various dynamic mobile settings. More specifically, the aim is to:1. Investigate different viewpoints of context within linguistics, computer science, and psychology, to develop summary condensed models for each discipline. 2. Investigate the impact of contrasting viewpoints on the usability of context-aware applications. 3. Investigate the extent to which single-discipline models can be merged and the benefits and insightfulness of a merged model for designing mobile computers. 4. Investigate the extent to which a proposed multidisciplinary modelcan be applied to specific applications of context-aware computing

    Context-aware personalization environment for mobile computing

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaCurrently, we live in a world where the amount of on-line information vastly outstrips any individual’s capability to survey it. Filtering that information in order to obtain only useful and interesting information is a solution to this problem. The mobile computing area proposes to integrate computation in users’ daily activities in an unobtrusive way, in order to guarantee an improvement in their experience and quality of life. Furthermore, it is crucial to develop smaller and more intelligent devices to achieve this area’s goals, such as mobility and energy savings. This computing area reinforces the necessity to filter information towards personalization due to its humancentred paradigm. In order to attend to this personalization necessity, it is desired to have a solution that is able to learn the users preferences and needs, resulting in the generation of profiles that represent each style of interaction between a user and an application’s resources(e.g. buttons and menus). Those profiles can be obtained by using machine learning algorithms that use data derived from the user interaction with the application, combined with context data and explicit user preferences. This work proposes an environment with a generic context-aware personalization model and a machine learning module. It is provided the possibility to personalize an application, based on user profiles obtained from data, collected from implicit and explicit user interaction. Using a provided personalization API (Application Programming Interface) and other configuration modules, the environment was tested on LEY (Less energy Empowers You), a persuasive mobile-based serious game to help people understand domestic energy usage

    A model for context awareness for mobile applications using multiple-input sources

    Get PDF
    Context-aware computing enables mobile applications to discover and benefit from valuable context information, such as user location, time of day and current activity. However, determining the users’ context throughout their daily activities is one of the main challenges of context-aware computing. With the increasing number of built-in mobile sensors and other input sources, existing context models do not effectively handle context information related to personal user context. The objective of this research was to develop an improved context-aware model to support the context awareness needs of mobile applications. An existing context-aware model was selected as the most complete model to use as a basis for the proposed model to support context awareness in mobile applications. The existing context-aware model was modified to address the shortcomings of existing models in dealing with context information related to personal user context. The proposed model supports four different context dimensions, namely Physical, User Activity, Health and User Preferences. A prototype, called CoPro was developed, based on the proposed model, to demonstrate the effectiveness of the model. Several experiments were designed and conducted to determine if CoPro was effective, reliable and capable. CoPro was considered effective as it produced low-level context as well as inferred context. The reliability of the model was confirmed by evaluating CoPro using Quality of Context (QoC) metrics such as Accuracy, Freshness, Certainty and Completeness. CoPro was also found to be capable of dealing with the limitations of the mobile computing platform such as limited processing power. The research determined that the proposed context-aware model can be used to successfully support context awareness in mobile applications. Design recommendations were proposed and future work will involve converting the CoPro prototype into middleware in the form of an API to provide easier access to context awareness support in mobile applications

    Sociology Paradigms for Dynamic Integration of Devices into a Context-Aware System

    Get PDF
    Ubiquitous and m obile context - aware computing is an essential component of the smart cities infrastructure. Widely available wireless networks, the maturity level of distributed computing and the increasing number of mobile devices have significantly influenced the human experience with computing. In the present paper, we discuss the need for a model that will be able to represent a formal structure of a context - aware system in a device . The core functionality of the model is expected to expose context - aware behaviour and support dynamic integration of mobile devices and context - aware behaviour. The major contribution of this work is to identify deficiencies of the existing model which is using the notions from sociology such as Role, Ownership and Responsibility.The authors gratefully acknowledge funding from the European Commission through the GEO-C project (H2020-MSCA-ITN-2014, Grant Agreement Number 642332, http://www.geo-c.eu/)
    • …
    corecore