
 

 
 

 

 

A Model for Context Awareness for Mobile 

Applications using Multiple-Input Sources 

 

 

Direshin Pather 
 

Supervisor: Prof. JL Wesson 

Co-Supervisor: Dr NLO Cowley 

Department of Computing Sciences 

 

 

 

 

 

 

January 2015 

 

 

 

 

 

Submitted in fulfilment of the requirements for the degree of  

Magister Commercii (Computer Science and Information Systems) in the Faculty of 

Science at the Nelson Mandela Metropolitan University 

 

 

 



ii 

 

Declaration 
 

I, Direshin Pather, hereby declare that the dissertation for the degree Magister Commercii 

is my own work and that it has not previously been submitted for assessment or completion 

of any postgraduate qualification to another University or for another qualification.  

 

 

 

Direshin Pather



 

iii 

 

Acknowledgements 
 

I would like to take this opportunity to thank my supervisors, Prof. Janet Wesson and Dr 

Lester Cowley for their inspiring guidance, continuous encouragement, friendly advice and 

lively enthusiasm throughout this two year journey of continuous learning. 

 

I would especially like to express my sincere gratitude to them for assisting and providing 

valuable feedback to improve this dissertation.  

 

I would also like to thank the staff of the Department of Computing Sciences for their 

expertise and support throughout my research.  

 

I would also like to thank the generous funders of this research, namely the Telkom / NMMU 

Centre of Excellence and THRIP. 

 

Lastly, I would like to thank my family and close friends for their continuous and 

unconditional support and understanding throughout this research. 

 

Thank you, 

Direshin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

Summary 
 

Context-aware computing enables mobile applications to discover and benefit from valuable 

context information, such as user location, time of day and current activity. However, 

determining the users’ context throughout their daily activities is one of the main challenges 

of context-aware computing. With the increasing number of built-in mobile sensors and other 

input sources, existing context models do not effectively handle context information related 

to personal user context.  

 

The objective of this research was to develop an improved context-aware model to support 

the context awareness needs of mobile applications. An existing context-aware model was 

selected as the most complete model to use as a basis for the proposed model to support 

context awareness in mobile applications. 

 

The existing context-aware model was modified to address the shortcomings of existing 

models in dealing with context information related to personal user context. The proposed 

model supports four different context dimensions, namely Physical, User Activity, Health and 

User Preferences. A prototype, called CoPro was developed, based on the proposed model, to 

demonstrate the effectiveness of the model. Several experiments were designed and 

conducted to determine if CoPro was effective, reliable and capable. CoPro was considered 

effective as it produced low-level context as well as inferred context. The reliability of the 

model was confirmed by evaluating CoPro using Quality of Context (QoC) metrics such as 

Accuracy, Freshness, Certainty and Completeness. CoPro was also found to be capable of 

dealing with the limitations of the mobile computing platform such as limited processing 

power. 

 

The research determined that the proposed context-aware model can be used to successfully 

support context awareness in mobile applications. Design recommendations were proposed 

and future work will involve converting the CoPro prototype into middleware in the form of 

an API to provide easier access to context awareness support in mobile applications. 

 

Key words: Context awareness, mobile applications, sensors, personal user context, Design 

Science Research. 
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 Chapter 1: Introduction 

1.1 Background 

Real-time access to context information can support time-critical applications, such as 

emergency healthcare and location-based services (Fisher & Monahan 2012). This is due to 

the extensive adoption of phones with powerful context awareness features enabled through 

sensors and personal information. Context awareness can be defined as the work that results 

in the automation of a software system, which is based on the information about the user's 

context (Dey & Abowd 1999). Another factor contributing to this trend is the tendency of 

individuals to carry their phones with them everywhere (Klasnja & Pratt 2011). 

 

Context awareness is a key concept to achieve ubiquitous computing, which enables 

information technology to be invisible whilst still being integrated within our daily lives (Zhu 

et al. 1992). By facilitating context awareness in mobile devices such as smart phones, richer 

human-computer interaction and less usability issues can be achieved (Mihalic, Tscheligi & 

Unit 2006). 

 

Dey and Abowd (2001) define context as any information that can be used to characterize the 

situation of an entity. An important aspect of context awareness that is needed to characterize 

the situation of an entity is location awareness. 

 

Location awareness enables services to provide or access information relevant to the current 

situation such as a patient's location. Patient location is important contextual information that 

is required in healthcare systems and especially in remote health monitoring (Liu, Zhu, 

Holroyd & Seng 2011; Elgazzar, Aboelfotoh, Martin & Hassanein 2012). Location becomes 

a crucial attribute for patients who suffer from memory loss diseases such as Alzheimer’s 

disease. Having access to the patient's location can help to provide timely medical assistance 

in emergency and life-threatening situations (Bricon-Souf & Newman 2007). 

 

Location-based services are an essential aspect of context awareness. A key factor in location 

awareness is the accuracy of location estimation (Lo et al. 2010). In the case of outdoor 

environments, the Global Positioning System (GPS) suffices as a location finding technique. 
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In the case of indoor environments, GPS is not sufficient as it does not give an accurate 

enough reading to be accurate, or even no reading. There are, however, several other new 

technologies and techniques being used such as using RFID and Wi-Fi signals. However, 

none of these stand out as a standard solution for locating indoor position accurately as they 

each have their own limitations (Kerr, Duncan, Schipperijn & Schipperjin 2011). 

 

Mobile phones can make it possible to capture contextual information to help individuals to 

better understand the circumstances that affect their daily lives. Location, which is part of the 

environmental context of an entity, can usually be acquired by accessing the mobile phone's 

sensors such as the GPS (Google Inc 2014e). Other sources of contextual information can 

also include information in a user's calendar. Such information would help to develop the 

user's profile and could be used with other contextual information to help determine the user's 

context. However determining the user's context throughout their daily activities is one of the 

main challenges in this research area (Santos et al. 2009). Using multiple-input sources to 

identify and predict context for given situations, such as being at home could help to solve 

this problem as suggested by Mitchell (2011). 

1.2 Problem Statement 

Mobile applications do not currently incorporate multiple-input sources to accurately 

determine the context. Context is essential in cases such as anti-theft or near-emergency 

services (Santos et al. 2009). To provide these types of services mobile devices need to be 

able to clearly identify specific contexts of the user. Mobile devices with their increasing 

capabilities include sensors from which data such as position, lighting or sound can be 

obtained, which can help to determine the user's context.  

 

Using sensors it could be possible to determine whether an elderly person has fallen at home 

and has been unable to move for a period of time, consequently triggering an emergency call. 

However, there are multiple sources of data with unique patterns that need to be captured and 

processed timeously, which is difficult (Santos et al. 2009). Other challenges include the 

battery life of a mobile device as the energy required by context sensors is significant and can 

drain the battery quickly (Rahmati, Shepard, Tossell, Zhong & Kortum 2012).  

 



   Chapter 1: Introduction 

3 

 

Barkhuus and Dey (2003) conducted a study on how participants evaluated three levels of 

interaction including personalization, passive context awareness and active context 

awareness. This study concluded that users are willing to accept a large degree of automation 

in applications as long as the application’s usefulness is greater than the cost of limited 

control. 

 

The main objective of this research is to develop a context-aware model to support the 

context awareness needs of mobile applications. This context-aware model will then be 

implemented as a prototype in order for the feasibility of the context-aware model to be 

evaluated. The prototype will be evaluated in terms of its effectiveness, reliability and 

capability. The prototype will be considered effective if it can produce different levels of 

context. The reliability of the model will be confirmed through evaluating the prototype using 

evaluation metrics (i.e. QoC metrics). The prototype's capabilities will also be assessed in 

terms of dealing with the limitations of the mobile computing platform such as limited battery 

power. However, in order to achieve this objective, developments and shortcomings related 

to context awareness in mobile applications need to be identified and understood. Existing 

solutions and literature related to context awareness will be reviewed in detail. This review 

will form the basis of facilitating context awareness in mobile applications and the 

development of the context-aware model. 

1.3 Aim of Research 

The aim of the research is to develop a context-aware model that can support context 

awareness in mobile applications using multiple-input sources. 

1.4 Research Outline 

This section provides an outline of how the research will be structured to meet the research 

objectives. The outline is described by identifying the research objectives, research questions, 

scope and constraints and the research methods, which will be used to address the research 

questions.  
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1.4.1 Research Questions  

The following main research question will be addressed by this research: 

How can an improved context-aware model be developed for mobile 

applications using multiple-input sources? 

 

The above research question will be answered by addressing the following sub-questions: 

RQ 1. What are the context awareness problems and requirements of mobile 

applications? 

RQ 2. What are the problems and requirements of existing context awareness 

solutions used in mobile applications? 

RQ 3. How can an improved context-aware model be developed? 

RQ 4. How effective, reliable and capable is the proposed context-aware model and 

to what extent does it support context awareness in mobile applications? 

1.4.2 Research Objectives 

The main research objective is thus: 

To develop an improved context-aware model for mobile applications using 

multiple input sources. 

 

The sub-objectives that will assist in achieving the main research objective are: 

RO 1. To identify the existing problems and requirements of context awareness in 

mobile applications (Chapter 2). 

RO 2. To identify the existing problems of context awareness solutions that relate to 

mobile applications (Chapter 3) 

RO 3. To develop a context-aware model using multiple input techniques and 

implement this model in a prototype (Chapter 4). 

RO 4. To evaluate the utility, quality and efficacy of the prototype developed based 

on the proposed model (Chapter 5). 
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1.4.3 Research Methodology 

This research will focus on the development and performance of the model and prototype. 

This relates to the main aim of developing a context-aware model for mobile applications, 

which will be applied to address the problems identified in context awareness. Thus, the 

Design Science Research (DSR) methodology will be used for the project (Hevner, March, 

Park & Ram 2004). 

 

DSR is a methodology, which requires the creation of innovative, purposeful artefacts that 

address a specified problem in a specific problem domain. The artefacts constructed in DSR 

comprise of: 

 Constructs - the language that helps to define and communicate the problems and 

solutions. 

 Models - constructs used to represent a realistic scenario involving the problem design 

and corresponding solution space.  

 Methods - solution processes that can vary from formal to informal. 

 Instantiations - indications of how to implement constructs, models and methods in a 

functional system (Hevner, 2007). 

 

These artefacts must be evaluated in order to ensure their utility (i.e. if it is a solution to the 

problem) for the specified problem. Furthermore the artefacts must also either solve a 

problem that has not yet been solved, or provide a more effective solution to produce an 

innovative research contribution. 

 

Both the construction and evaluation of the artefacts must be done rigorously and the results 

of the research presented effectively. This is in order to demonstrate the extent to which the 

artefacts produced solve the identified problem in the specified application domain, which is 

the main goal of DSR. 

 

Hevner et al. (2004) provide a set of seven guidelines (Table 1.1) which help conduct, 

evaluate and present DSR. 
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Table 1.1: A summary of the Design Science Research guidelines (Hevner et al. 2004) 

Table 1.1. Design-Science Research Guidelines 

Guideline 
Description 

Guideline 1: Design as an Artefact 
Design science research must produce a viable 

artefact in the form of a construct, a model, a 

method, or an instantiation. 

Guideline 2: Problem Relevance 
The objective of design-science research is to 

develop technology-based solutions to 

important and relevant business problems. 

Guideline 3: Design Evaluation 
The utility, quality, and efficacy of a design 

artefact must be rigorously demonstrated via 

well-executed evaluation methods. 

Guideline 4: Research Contributions 
Effective design-science research must provide 

clear and verifiable contributions in the areas of 

the design artefact, design foundations, and/or 

design methodologies. 

Guideline 5: Research Rigor 
Design-science research relies upon the 

application of rigorous methods in both the 

construction and evaluation of the design 

artefact. 

Guideline 6: Design as a Search 

Process 

The search for an effective artefact requires 

utilizing available means to reach desired ends 

while satisfying laws in the problem 

environment. 

Guideline 7: Communication of 

Research 

Design-science research must be presented 

effectively both to technology-oriented as well 

as management-oriented audiences. 

 

These guidelines are based on procedures, principles and practices and address each of the 

key phases in the DSR process. These guidelines also facilitate good DSR practice and 

guarantee that rigorous and good quality deliverables are produced, for each phase of the 

DSR process. 

 

Design Science Research is pragmatic in nature and is an embodiment of three closely related 

cycles of activities (Figure 1.1): the relevance, design and rigor cycles (Hevner 2007). 
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Figure 1.1 Design Science Research cycles (Hevner 2007)  

 

Figure 1.1 above illustrates the three research cycles from the IS research framework, which 

include the relevance, rigor and design cycles (Hevner et al. 2004). 

 

The Relevance Cycle initiates the DSR, identifying opportunities and problems that not only 

provide the input requirements for this research, but also identifying acceptance criteria for 

the final evaluation of the research results. The problem identified for the research is that 

mobile applications do not use multiple inputs to accurately determine context and therefore 

lack context awareness. The research results will be obtained when the research artefacts are 

introduced into the environmental field testing. This cycle will help to determine the 

requirements for the context-aware model and the criteria to be used during its evaluation 

(Hevner 2007). 

 

Once the main problem has been identified, the Rigor Cycle can provide past knowledge to 

this research in the form of grounding theories and methods along with domain experience 

and expertise to ensure its innovation. The Rigor Cycle also enables new knowledge that is 

produced by this research to be added to the growing knowledge base (Hevner 2007). This 

cycle will help the literature studies to be done on the two knowledge bases of this research, 
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namely context awareness and mobile computing. It will also allow the results of the 

evaluation of the context-aware model to be added to the growing knowledge base. 

 

The central Design Cycle supports the core activities of building and evaluating the context-

aware model and prototype of this research. The Design Cycle iterates more rapidly between 

the related research activities and uses the generated feedback to refine the design of the 

model and prototype (Hevner 2007). This cycle will enable the design of the context-aware 

model and implementation of a mobile application based on the context-aware model. 

 

Another crucial component of DSR, if not the most important aspect, is the proposed DSR 

contribution. The DSR contribution needs to meet several criteria, these include: 

 Identification and clear description of the problems surrounding context awareness in 

mobile applications.  

 Demonstration that no existing model in the present IT knowledge is sufficient. 

 Construction and presentation of an innovative context-aware model (i.e. prototype) 

that addresses the lack of support for context awareness. 

 The context-aware model (i.e. prototype) needs to be rigorously evaluated in order to 

assess its utility in the application domain. 

 Communication of the value added from the results of evaluating the prototype to the 

IT knowledge-base and to practice. 

 Description of the implications of the context-aware model (i.e. prototype). (Hevner et 

al. 2004) 

1.4.4 Scope and Constraints 

The focus of the research will be on developing a context-aware model by using multiple-

input sources. The input sources and related input gathering techniques will be selected and 

used to develop a context-aware model. The input gathering techniques will be evaluated to 

establish which techniques will be the most appropriate techniques to adopt. An innovative 

artefact will then be developed using this context-aware model.  The artefact will be 

evaluated in order to determine the effectiveness of the proposed context-aware model. The 

research will include developing a context-aware model and using this model to develop a 

mobile application to help determine the context of a user. 
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1.4.5 Envisaged Contribution 

Context awareness in current mobile applications has been found to be limited and does not 

fully take multiple-input sources for context determination into account (David, Endler, 

Barbosa & Filho 2011). The main contribution of this research will be an improved artefact 

that will be designed and implemented to facilitate context awareness in mobile applications 

by using multiple-input sources. This artefact will be evaluated to determine whether it can 

facilitate context awareness in mobile applications and will provide a basis for future research 

in this area. 

1.5 Dissertation Outline 

The dissertation outline presents an overview of the contents of each chapter in a narrative 

descriptive form. The DSR methodology used will also assist in structuring the dissertation. 

 

The introduction of the topic, problem identification and motivation for the research is 

covered in Chapter 1. This chapter also introduces several concepts specific to the research. 

The problem statement, aim of the research and research questions and objectives are 

addressed. The limitations of the research are addressed in order to determine and identify the 

scope and constraints. The use of DSR is highlighted. Envisaged contributions conclude the 

chapter. 

 

Chapter 2 discusses the literature for the first DSR knowledge base (i.e. context awareness) 

by focusing on the mobile computing aspects of context awareness, including location 

awareness. The concept of context awareness is defined. Global Positioning Systems (GPS) 

and Indoor Positioning Systems (IPS) are discussed as part of location awareness. The 

existing issues and possible solutions of context awareness are also discussed to conclude the 

chapter. 

 

The literature study in Chapter 3 covers the second DSR knowledge base (i.e. mobile 

computing), which discusses the application domain of mobile computing. Chapter 3 

introduces and discusses the need for context awareness support within mobile applications. 

Context awareness in m-health as a possible sub-domain is discussed. Advantages and 

shortcomings of existing mobile context models are identified, which help justify the 

relevance of the research. 
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Chapter 4 addresses the design of the context-aware model. The context-aware model uses 

multiple input sources and was used to create a mobile application prototype to provide 

context information. The chapter discusses each of the components of the proposed model 

and how it was incorporated into an innovative prototype. The design processes involved in 

implementing the innovative prototype are discussed to conclude the chapter. 

 

The evaluation of the model is discussed in Chapter 5. The evaluation methods and metrics 

used are selected to evaluate the objectives of the context-aware model. The context-aware 

model was evaluated by evaluating the context-aware application using the evaluation 

metrics. The experimental design used for the evaluation is discussed in detail. The results 

and analysis of these results are presented in this chapter. Design implications from the 

literature chapters are compared with the evaluation results. Design recommendations are 

made to conclude the chapter. 

 

Chapter 6 discusses and presents the conclusions and contributions of the research. 

Conclusions are made as to whether the model can facilitate context awareness in mobile 

applications by using multiple inputs. Contributions of this research in terms of theoretical 

and practical contributions are recognized. The initial goals of the research are reviewed to 

determine whether the research met its projected objectives. An outline of the problems and 

limitations in conducting the research are also discussed. Lastly, future research is identified 

to conclude the chapter. 
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 Chapter 2: Context Awareness 

2.1 Introduction 

This chapter together with the Relevance and Rigor Cycle, aims to answer Research Question 

1: "What are the context awareness problems and requirements of mobile applications?" This 

chapter discusses the first DSR knowledge base by focusing on the mobile computing aspects 

of context awareness. An explanation of context and context awareness will be given. 

Determining the context of a mobile application and how context awareness is related to 

location awareness and ambient intelligence will be discussed. Each of the crucial design 

steps to facilitate context awareness in mobile applications will be dealt with in detail. 

Existing issues and possible solutions for context awareness will also be discussed to 

conclude the chapter. 

2.1.1 Definition 

Context awareness can be defined as: 

 “...any information that can be used to characterize the situation of an entity. An entity is a 

person, place, or object that is considered relevant to the interaction between a user and an 

application, including the user and applications themselves” (Dey & Abowd 1999). 

 

This definition makes no assumptions about the types of information, which are relevant to 

context such as time, location, identity and activity.  

 

Context is usually the location, identity and state of people, groups and computational and 

physical objects (Dey & Abowd 1999). Three entities including places, people and things 

were recognized by Dey, Abowd and Salbeer (2001). The term “places” refers to physical 

locations such as rooms, offices and buildings. People refers to individuals or groups. Things 

refer to tangible objects or software components (Debes, Lewandowska & Seitz 2005). To 

describe these entities, four categories were introduced by Debes et al. (2005) as follows :  

 Identity – describes the entity with a clear identifier, which has to be unique in the 

domain of the application.  

 Location – contains positioning data and orientation as well as information about 

regional relations to other entities such as neighboring entities. This comprises 

physical location data, i.e. geographical data, as well as spatial relations.  
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 Status – includes properties which can be perceived by a user. For a place, this can be, 

for example, the current temperature, the ambient lighting or the noise level. For 

persons this refers to physical factors like vital signs, tiredness or the current 

occupation.  

 Time – is both date and time. 

 

Another important dimension concerning context is activity, as it relates to the user's current 

task (Kaenampornpan 2004). Activity would refer to what is happening in the situation, for 

example the user is walking.  

 

Context can be useful in terms of mobile users, if used correctly for the right person, at the 

right place and at the right time. However in order to use context in computing systems, these 

systems need to be context-aware. 

 

Context awareness in computing can be understood as the existence of computer systems and 

applications, which can collect and understand “information about the immediate situation 

such as the people, roles, activities, times, places, devices, and software that define the 

situation” (Traynor, Xie & Curran 2010) . Based on this perceived context, the systems and 

applications should perform appropriate and related actions. These actions can involve the 

presentation of customized or specially formatted information or the performance of some 

action to avoid a potentially dangerous situation or assistance in the case of an emergency 

(Traynor et al. 2010). As a result context needs to be managed and interpreted correctly, as it 

may be acquired from multiple and heterogeneous sources. 

 

Context awareness usually involves several complex steps including (Bessi & Bruni 2009; 

Demeester 2010; Hardian 2011): 

 Acquisition of contextual information 

 Monitoring contextual information 

 Filtering contextual information 

 Storing of contextual information 

 Representation of contextual information 

 Interpreting contextual information. 

 

In order for context awareness to be effectively facilitated and managed, an underlying 

architecture needs to be in place.  
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Figure 2.1: Typical architecture to support context-aware applications (Hardian 2011) 

 

The typical architecture shown in Figure 2.1 includes elements such as the context gathering 

and processing layer, the middleware layer and the context-aware applications layer (Hardian 

2011). The context gathering and processing layer, also known as the context provider, 

involves the acquiring, monitoring, filtering of contextual information. The middleware layer 

involves the storing, representation and interpreting of contextual information. The context 

manager stores and manages the context obtained from the context provider layer. The 

preference manager stores the user's preferences, which are used to tailor the context 

contained in the context manager. The context-aware application layer can be seen as the 

consumer layer, the layer in which context becomes an input for applications to use via the 

programming toolkit (i.e. application programming interface (API)), in order to appropriately 

change the application's behaviour. 

 

Future work in the area of context awareness has the potential to significantly improve the 

way in which ubiquitous and intelligent computing environments support our everyday 

activities. Context awareness can also provide richer experiences in human-computer 

interaction and is closely related to location awareness and ambient intelligence (Traynor et 

al. 2010). 
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2.1.2 Location Awareness 

An important sub-set of context awareness is location awareness. In order to provide context 

awareness, limitations in location awareness need to be addressed first in order to address 

context awareness.  

 

Location awareness was primarily a notion of static user location (Trifa, Guinard & Mayer 

2011); the concept was later extended to incorporate movement (Liu & Karimi 2006). 

Context models proposed by Bolchini et al. (2007) provide support for context-aware 

applications, which use location as a basis to adapt interfaces, refine application-relevant 

data, increase the accuracy of information retrieval, discover services, make user interaction 

implicit and build smart computing environments. For instance, a location-aware mobile 

device may verify that it is currently inside a building (Schmidt et al. 1999). 

 

Users carry their mobile devices with them wherever they go, outdoors and indoors (Mitchell 

2011). One of the unique functionalities available to mobile applications is location 

awareness. Thus, knowing the location of users and using this information appropriately can 

generate a more contextual experience to mobile users. Location awareness can essentially be 

understood as being the outdoor and indoor position and movement of a particular user or 

device. In order to obtain location awareness, two main technologies are used, namely Global 

Positioning Systems (GPS) and Indoor Positioning Systems (IPS).  

 

GPS suffices as an outdoor location finding technique, but does not work very well when 

used in indoor environments such as buildings or heavily built-up environments. GPS 

requires consistent line-of-sight to orbiting satellites to avoid missing data (Kerr et al. 2011). 

This is a result of factors such as: 

 Slow connectivity – If a user enters a building with a limited satellite view this can 

cause missing data or show that the user has not travelled at all.  

 Physical structures – Satellite communication is interfered with by surrounding high 

buildings and building materials such as indoor locations. 

 

GPS accuracy decreases (typical error of 40-50 m) when communication with satellites is 

compromised (Kerr et al. 2011). IPS tries to address this problem; however no standard 
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solution currently exists for determining indoor position accurately. Some indoor positioning 

solutions work similarly to GPS (Schutzberg 2013), such as: 

 

 Locata offers beacons, which send signals that cover large areas and can penetrate 

walls. Locata receivers work similarly to GPS receivers. 

 Nokia uses beacons that send Bluetooth signals. Any Bluetooth device can read these 

signals, but the signals from beacons only cover a few square meters. 

 TruePosition offers a cell tower locating solution. 

 Other solutions involve RFID tags and Wi-Fi signals. 

 

No single solution works perfectly in all environments; the best solution for indoor and 

outdoor positioning may be a hybrid (Schutzberg 2013). Ambient intelligence can help to 

assist with this problem as it is characterized by systems and technologies that are embedded, 

personalized, context-aware, adaptive and anticipatory. 

2.1.3 Ambient Intelligence 

Ambient Intelligence (AmI) deals with the problem of how to create context-aware, 

computing environments which promote seamless human-computer interaction (Traynor et 

al. 2010). AmI incorporates the areas of ubiquitous computing, artificially intelligent systems 

and context awareness, among others.  

 

Context awareness is an important function of AmI as context awareness facilitates AmI, by 

using sensors to communicate and help identify movements and actions (Traynor et al. 2010). 

Current mobile devices have the necessary sensors to support AmI and are frequently 

required to respond to changes in the environment, for example a change in location or 

context (Traynor et al. 2010). 

 

Context and context awareness have been the main problems in AmI research in the past 

decade (Oh, Schmidt, Woo & Korea 2007; Lee, Lunney, Curran & Santos 2009). These 

problems involve issues such as combining inputs from multiple sensors in areas of reasoning 

and context. As a result, context awareness has been seen as a crucial concept in addressing 

automatic behaviours in pervasive and predictive systems. A key requirement for successful 

transparent interaction is up-to-date and valid context information. For example, a system that 
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senses a user’s condition, location or physical actions and adapts to maximize user 

convenience is utilizing context awareness (Curran 2011). 

 

There is currently a need for context-aware AmI systems to meet evolving user expectations 

by constantly and implicitly adapting to the surrounding environment (Curran 2011). This 

was highlighted by Lee and Chen (2009) whose research focused on discovering the latest 

developments in ubiquitous multimedia computing. The context-aware trends that were 

revealed were m-health, which includes health information systems, ubiquitous computing in 

health care and smart homes for older persons. Other context-aware areas include context 

awareness applications, context-aware computing technology in intelligent decision-making 

and context-aware proactive services.  

 

Curran (2011) believes that context awareness and ambient intelligence will become more 

significant in the future. AmI, however, requires the development of innovative solutions that 

make use of context-aware technologies. These technologies are seen as a vital part of these 

developments in order to perceive valuable insight from the context and react upon it 

autonomously (Curran 2011). 

 

AmI is presently being improved to build intelligent systems that support human activities in 

key problem domains, such as healthcare, ambient assisted living, and disaster recovery 

(Curran 2011). Access to accurate information is important and the pervasive nature of AmI 

technology ensures that users will have constant access to up-to-date information regardless 

of their location (Kosta, Pitkänen, Niemelä & Kaasinen 2010). In order to ensure that users 

have constant access to up-to-date information regardless of their context, their context needs 

to be acquired. 

2.2 Acquiring Context  

Context acquisition is the most basic level of context awareness. There are a number of ways 

of acquiring the context of a mobile application (Schmidt et al. 1999). One of these is that the 

mobile device itself can determine its own context (also known as sensed context). Another is 

that the network that the mobile device is connected to can determine the device's context. 

Integrating these two approaches, such as sensory data from the mobile device and the 
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network enables a clearer understanding of the context to be determined (Brander & Wesson 

2007). 

 

The first approach can be achieved by using the on-board sensors of a mobile device, either 

individually or by using multiple sensors, also known as sensor fusion (Mitchell, 2011). 

Sensor fusion involves combining sensors into more useful and abstract high-level sensors. 

These higher level sensors will provide more useful information. Examples of single sensors 

that could be used include the accelerometer, compass and gyroscope. An example of a 

higher level sensor is the rotation vector, which is an integration of the accelerometer, 

gyroscope and magnetometer. Other contextual data that can collectively help define the user, 

his/her behaviour and environment can include the user's calendar and preference data.  

 

The second approach could involve the network providing context (downloaded context) via 

web services such as the weather or news (Mitchell 2011). The network approach could also 

be used to monitor user interaction and to listen for system events from the device. Context 

can also be explicitly provided; for example a user’s preferences can be acquired directly 

from the user via the application user interface (Huang, Liu & Li 2011). Another approach 

could be to compute context information at run-time (i.e. derived context) (Huang et al. 

2011). 

 

Examples of derived context identified by Mitchell (2011) include:  

 Movement - walking, running, driving. 

 Location - home, work, travel 

 Local environment - weather, ambient noise, ambient light 

 Time of day, day of week 

 

These derived contexts relate to context items identified by Antila, Polet and Sarjanoja (2011) 

which include: 

 Activity – physical activity of the user  

 Applications – currently open applications  

 Device – device information, such as the device type 

 Location – using GPS, network and Wi-Fi scan data, current street address and cell ID 
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 Surroundings – aspects of physical surroundings using ambient light detector and 

weather. 

 

Information can also be acquired from machine-learning techniques, information extraction 

and retrieval programs (Lukowicz et al. 2012). There is a need for better hybrid knowledge 

representation and reasoning systems that can use logic-orientated representations such as 

OWL (Chen, Finin & Joshi 2003; Syed & Finin 2011). 

 

In order to effectively determine the context of the user, multiple sources of inputs need to be 

used, such as sensors, calendar and web services. Multiple sources of inputs are needed to 

give a clearer picture of the context that is to be determined (Brander & Wesson 2007). Using 

multiple input sources requires the context to be monitored to ensure relevance and quality. 

2.2.1 Monitoring Context 

To actively support context awareness the multiple input sources of the users’ context needs 

to be continuously monitored. Context monitoring is a process that involves continuously 

detecting changes in the users’ context. This process requires continuous collection of data 

from the multiple input sources, processing the data to obtain context and managing changes 

to the users’ context. This notion of context monitoring is different from the usual context 

recognition, which only identifies the current context. After a change in context is discovered, 

recognizing the context again would be redundant if the context has not changed. Context 

monitoring frequently involves several complex procedures such as feature extraction and 

context recognition spread across the multiple input sources all at the same time. Therefore, it 

is fairly difficult for each mobile application to perform the complicated context monitoring 

process on their own. The limited resources of mobile devices and the sharing of these 

resources amongst mobile applications support the idea of a central context-aware service to 

provide context information. To successfully support context monitoring as a part of 

facilitating context awareness, a central context monitoring solution is needed (Kang et al. 

2010). 

 

Context monitoring is used for measuring the relevance of the current context of an 

application. It can also support analysing the validity and quality of the context information it 

receives. Setting up mobile context monitoring involves dealing with complex, multi-
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dimensional challenges that cover different technical and research issues. Applications need 

diverse contexts that differ in levels of awareness and accuracy. Users have unique 

requirements and preferences for context-aware applications such as those that address 

privacy concerns. Continuous context monitoring places additional emphasis on efficient 

resource consumption and management. Infrastructural support is essential to facilitate 

different context-aware applications with ease and efficiency (Kang et al. 2010). 

 

Monitoring of context information can be done via a context monitoring agent such as the 

context manager, which will be responsible for this functionality (Pantsar-syvaniemi, Simula 

& Ovaska 2010). This context monitoring agent will listen or poll for changes in context 

information from the multiple inputs. The thresholds for the battery level is an example of the 

context information that the context monitoring agent will monitor for changes. The context 

information to be monitored is set during design time, however it can be changed at run-time 

by the application or the owner of the context monitoring agent. 

 

The monitoring agent can enable subscribing in order to get a notification when the 

information changes or it can allow polling for the information by querying for it at certain 

time intervals (Pantsar-syvaniemi et al. 2010). Such a monitoring agent is illustrated in 

Figure 2.2. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Context manager queries and subscribes to the current context (Álamo & Vilariño 2012)  
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Apart from monitoring context information, context information contains noise and needs to 

be filtered to ensure relevance and quality. The next section will highlight approaches that 

can assist in filtering context information. 

2.2.2 Filtering Context 

Context information that is gathered such as raw data after sensing is solitary, unstable and 

inaccurate. This context information is usually unfiltered and ambiguous, for example 

accelerometer data, GPS coordinates and vague text (Antila et al. 2011). Unfiltered context 

information contains a lot of noise and is not meaningful to users, especially low-level 

unfiltered data (Antila et al. 2011; Huang et al. 2011). Noise in context information 

represents random unwanted fluctuations in the measured context values. Context 

information that is unfiltered can also cause an error known as drift, which occurs when the 

actual values slowly increase or decrease from their true values over time. Another error that 

can occur with unfiltered data is called offset, whereby the initial sensing does not start at a 

zero point when it is meant to (Milette & Stroud 2012). Thus it is essential to use filters and 

match conditions to perform functions such as noise screening in order to effectively use the 

acquired sensed data. 

 

One method to filter the errors that occur in context information is by using low-pass and 

high-pass filters. Even though sensors in mobile devices are continually improving, in many 

instances mobile applications may rely on some type of smoothing or averaging, known as 

low-pass filtering. Low-pass filtering passes slowly varying changes by filtering out high-

frequency noise. In contrast, high-pass filtering emphasizes the higher-frequency and ignores 

the slow varying changes, which helps deal with offset and drift errors. Using both a low-pass 

and a high pass filter may be useful to highlight a specific frequency and ignore unwanted 

lower and higher frequencies. The use of a high-pass filter with a low-pass filter is known as 

a bandpass filter. Using a bandpass filter would first involve applying the high-pass filter and 

then the low-pass filter (Milette & Stroud 2012).  

 

Another method to deal with the errors contained in the context information is by using 

Quality of Context metrics (Zheng, Wang & Kerong 2012). 
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Quality of Context (QoC) can be defined as: 

 "...any information that describes the quality of information that is used as context 

information. Thus, QoC refers to information and not to the process nor the hardware 

component that possibly provides the information" (Buchholz, Küpper & Schiffers 2003). 

 

Quality of Context (QoC) is a measurable metric that provides information about the quality 

of context, which can assist in resolving uncertain and conflicting situations about context 

information. Context-aware applications can therefore benefit from using practical QoC 

metrics that are aligned with the requirements of the applications in terms of collecting, 

processing and provisioning of context information (Manzoor, Truong & Dustdar 2010). For 

example, using QoC metrics can help eliminate unwanted context data (e.g. sensor data) that 

does not meet the minimum quality levels. These quality levels can be explicitly set in the 

form of QoC thresholds or by comparing the quality of new data to previous data. The quality 

levels will ensure that only high-quality context information that meet the quality 

requirements are produced. As a result, the QoC metrics will also improve the context-aware 

reasoning and decision making of the context-aware application (Filho, Miron, Satoh, Gensel 

& Martin 2010; Manzoor et al. 2010).  

 

QoC information can be implicitly gathered from mobile devices in pervasive environments. 

Implicitly sensing to provide context from a mobile device is a core activity in making a 

system context-aware (i.e. mobile application), which according to Mostefaoui, Pasquier-

Rocha and Brezillon (2004), and Gray and Salber (2010) is far more complicated than 

explicit input to the system. 

 

QoC information deteriorates during the process of sensing to provide context, as the QoC 

can be affected by the shortcomings of the sensors and the environment of a particular 

measurement. As a result, QoC information can be ambiguous, inaccurate and incomplete 

(Dey & Abowd 1999). Context-aware systems can suffer from poor performance without 

being able to identify the actual problem, if there is insufficient information about QoC 

(Manzoor et al. 2010). Existing context-aware applications rarely consider QoC information 

(Baldauf, Dustdar & Rosenberg 2007). Context-aware applications also need to make 

additional effort to deal with the uncertainty of context information (Ranganathan, Al-

Muhtadi & Campbell 2004). 
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Manzoor et al. (2010) highlighted that existing definitions of QoC only consider it as an 

objective quality measure and completely disregard the multi-facetted nature of QoC in terms 

of being both objective and subjective. Considering both the objective and subjective natures 

of the QoC will assist in identifying the true quality of the context information. QoC 

information that is independent of the consumer's requirements is seen as the objective view 

of QoC. On the other hand, QoC information that is determined or derived using the context 

consumer's requirements is considered as the subjective view of QoC (Manzoor, Truong & 

Dustdar 2008; Manzoor et al. 2010). 

 

The lack of context-aware applications that evaluate QoC metrics and provide them with the 

context information to context consumers was also emphasized by Manzoor et al. (2010). 

QoC metrics can enrich context information, which would improve the capabilities of 

context-aware applications to successfully use the context information to adapt to the 

changing situations in mobile computing environments (Manzoor et al. 2008). 

 

QoC metrics can be used to identify the quality of context information from several different 

perspectives, such as the degree to which the context is considered fresh. QoC metrics can be 

measured as a decimal number with values ranging between [0..1], as quality is relative and 

typically matched against certain standards. A minimum value of 0 indicates that the QoC 

metric is in complete non-compliance to the quality requirements. A maximum value of 1, 

however, indicates complete compliance of the QoC metric with the quality requirements 

(Manzoor et al. 2010). 

 

Considering the quality of the context information is an important step towards using context 

information effectively and achieving the capability of context awareness. Buchholz et al. 

(2003), Zheng et al. (2012) and Manzoor et al. (2010) show that the most important QoC 

metrics are the following: 

 Freshness: Indicates validity of the context information in terms of the objective view 

of timeliness.  

 Up-to-dateness: Indicates validity of the context information in terms of the subjective 

view of timeliness. 

 Reliability: Indicates the extent to which context can be considered credible. 

 Granularity: Indicates the precision of the context. 
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 Confidence Interval: Indicates the confidence in the context produced. 

 Significance: Indicates the subjective importance of the context produced based on 

the context consumer's requirements.   

 

Extracting simple semantic information from the sensor data and discarding the unwanted 

information is another vital step, which is also one of the aims of using filters (Huang et al. 

2011). The key to extracting clear and meaningful semantic context is to develop 

relationships between context elements, for example the relationship between lighting 

conditions and temperature conditions. 

 

Information from multiple input sources is often undesirable and sometimes even 

contradictory (Huang et al. 2011). For example, attempting to obtain the temperature from 

weather web services and the temperature sensor could yield unexpected and unmatched 

results. Context fusion enables one to maximize the effectiveness of inconsistent information 

from a variety of sources based on specific knowledge and rules. This knowledge and rules 

are needed to avoid incorrect decisions being made by the system.  

 

Context elements that are related to or combined with other contextual elements have a 

greater impact and directly influence the high-level context information used by applications 

for the end-user. Context information whether filtered or unfiltered, needs to be stored 

effectively for further processing and accessibility (Huang et al. 2011). 

2.2.3 Storing Context 

Raw context data as well as filtered and combined context information can be stored in a 

number of places such as on a mobile device for later retrieval (Huang et al. 2011). This 

concept of making the context information persistent for the user to retrieve later is related to 

the passive nature of context awareness. 

 

Context needs to be well organized into several data structures such as tables or object trees 

(Huang et al. 2011).  Storing of context information is fundamental when keeping a history of 

context information, which will be used for further processing or needs to be accessed in the 

future. 
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The architecture for the storage of context information can be either distributed or centralized 

or both (Huang et al. 2011). For example, a distributed storage architecture could store the 

current context on the mobile device while storing the context history on a remote server. On 

the other hand, a centralized storage architecture could store both the current context and 

context history on a remote server or on the mobile device. The most suitable architecture for 

context storage is dependent on the type of application and the manner in which it will 

communicate with the storage mechanism. Context storage is closely linked to the modelling 

of context and the representation of context (Huang et al. 2011). 

2.3 Representation of Context 

2.3.1 Modelling Context 

Context modelling and representation in context awareness computing is needed in order to 

represent a user’s situation and environment (Huang et al. 2011). Context recognition is a 

process that extracts useful information from input sources (i.e. low-level context) into a 

representation (i.e. high-level context) that can be used by applications. Once the initial low-

level context data retrieved from the input sources are pre-processed (i.e. filtered), the data 

can then be used in the extracting of useful information. The utilisation of thresholds-based 

classifiers can be used to exact the useful information. The process of performing this 

extraction is called feature extraction. Feature extraction is a well-known term in the area of 

pattern recognition. The thresholds that are used to determine extracted features provide a 

solution for the context recognition problem and facilitate excellent classification 

performance (Matyjarvi 2003). Features extracted from sensors describe context information, 

which are called features (Clarkson, Mase & Pentland 2000). Features can be considered a 

high-level view of the low-level context information obtained from the input sources 

(Matyjarvi 2003).  

 

Once context recognition mechanisms are producing meaningful information, several 

challenges arise concerning how to represent and use contextual information (Lukowicz et al. 

2012). Modelling each piece of context information independently is not a problem; however 

there is a challenge when trying to handle all the various types of context (Huang et al. 2011). 

Context modelling needs to be handled in a unified and generic context modelling manner, 

which is complex in today’s technology conditions. 
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Unified modelling of context, however, can be separated into two levels. The first level is 

where unrelated contexts use the same data structure, such as key-value models, which would 

have a key and an associated value for each context. The second level can facilitate universal 

representation of context by means of ontology based models (Huang et al. 2011). 

 

Other models such as spatial context models are considered suitable for context-aware 

applications that are primarily location-orientated such as mobile applications (Pantsar-

syvaniemi et al. 2010). One thing to consider with the spatial context model is which core 

location model to use. Geographic location models are harder to build up than relational 

location models as these relational models allow simple mapping to GPS sensor data and map 

data. The only shortcoming is the amount of effort that the spatial model takes in order to 

collect and keep the latest location context information. After modelling context, contextual 

data is normally not in a format that can be used directly by applications and thus needs to be 

interpreted. 

2.4 Interpreting Context 

Contextual data needs to be in a usable format in order for applications to utilize it, which can 

be achieved via context reasoning and interpretation (Pantsar-syvaniemi et al. 2010). There 

has been an increasing availability and growing interest in ontologies (Lukowicz et al. 2012). 

These ontologies are an approach of encoding meaning and using this computationally 

understandable encoding to build intelligent applications. Several applications utilize open-

source or application-generated ontologies (Lukowicz et al. 2012). W3C recommends the 

Web Ontology Language (OWL), which has been available since 2004. 

 

According to Lieberman, several knowledge representation and reasoning tools and 

techniques are available (Lukowicz et al. 2012). One of these is a knowledge source 

developed by Lieberman called OpenMind Commonsense.  

 

Emerging data collections such as Cycorp’s online encyclopaedia, which uses knowledge 

representation techniques, could facilitate intelligent applications on mobile devices 

(Lukowicz et al. 2012). For example, information about the current environment could be 

provided to help improve location-aware applications. These data collections could also make 
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context-aware applications smarter by assisting them in prioritizing and filtering options 

shown to the user. 

 

Context reasoning can also be used to facilitate the interpretation of context, which can be 

handled by a context reasoning agent (Pantsar-syvaniemi et al. 2010). Context reasoning 

involves using the received context information to justify the decision making done by an 

application using the contextual information. The reasoning is based on the requirements, 

which are normally set at design time but can also be given by the application or the user at 

run time. Therefore the controlling rules of the context reasoning agent are configurable. The 

received context information such as the high-level context information can be combined to 

form inferred context. An inferred context is a context that can be inferred automatically from 

sensors in a physical environment. Inferred context can be useful to context-aware 

applications (Dey, Abowd & Salber 2001). 

 

Additional information such as global time can be used by the reasoning agents to improve 

the context data of the surroundings with the external data of the context space (Pantsar-

syvaniemi et al. 2010). Even with this improved context information there are still several 

issues that exist when supporting context awareness.  

2.5 Existing Issues 

2.5.1 Sensor-based Context Recognition 

Taking into account device, user and environmental information using advanced sensors and 

sensor networks is still a major challenge (Demeester 2010). Some researchers who used 

sensor-based systems have merely displayed the sensor information without actually 

expressing or defining what it means in terms of high-level context (Ntawanga, Calitz & 

Barnard 2013). For example, displaying context as separate variables, such as the current 

time and the current GPS coordinates, to the user. Furthermore these context variables are not 

discussed in terms of the integration of the different sensor information or what they mean at 

a higher level. 
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2.5.2 Activity Recognition 

Determining high-level context information such as the user’s current activity is a major 

challenge (Huang et al. 2011). The error-prone outputs from sensors that contain errors, such 

as noise, emphasises this challenge in sensor-based activity recognition (Ravi, Dandekar, 

Mysore & Littman 2005; Choudhury et al. 2008). 

2.5.3 Outdoor-orientated Context Awareness 

Current context-aware solutions are primarily outdoor focused and are based on location 

information provided by GPS or GSM networks (Demeester 2010). A possible reason for 

context-aware solutions only being outdoor-orientated is the difficulty of determining indoor 

positioning accurately. 

2.5.4 Automated Situation Space Definition (Sensory Data to Situation) 

Situations in context awareness are currently defined manually. This process can be 

challenging and subject to errors. Existing knowledge bases (e.g. ontologies of the subject 

area) may already have the necessary information to generate the situations and extracting the 

situations from knowledge bases can eliminate the need for manual work. 

2.5.5 Context Prediction and Proactive Adaptation 

Some papers addressed the problem of context prediction and acting on predicted context in 

context spaces theory. Context spaces theory is an approach to context awareness that 

involves using metaphors (i.e. light level - bright) for both low/high-level context. However, 

there are still opportunities for improvement in the field of context and situation awareness. 

Situations of interest at the time of system start up can be ambiguous. Identifying the areas of 

context that are potentially situations of interest is a topic of future work (Boytsov & 

Zaslavsky 2011). 

2.5.6 Situation Awareness in Absence of Information 

Data obtained from sensors can become invalid or missing as a result of sensors being 

uncertain and unreliable. The goal of situation-aware systems is to maintain as much situation 

awareness as possible under these conditions (Boytsov & Zaslavsky 2011). 
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2.5.7 Appropriate Storage of Context 

Effective storage and retrieval of context information requires addressing several problems 

such as efficiency, reliability and relevance between context and objects, and context retrieval 

using ranges instead of single query conditions (Huang et al. 2011). 

2.5.8 Balance of User Control 

Lack of user control negatively affects the adoption of context-aware models and applications 

(Demeester 2010). This phenomenon of weak user adoption is due to the relationship 

between the user's expectations of the context-aware solution and the output of the context 

solution. 

 

Figure 2.3: Continuum of user control versus application automation (Hardian 2011) 

 

Context-aware solutions might not adapt as the user expects and can cause the user to 

experience a perceived loss of control over the behaviour of the solution. Autonomous 

context-aware solutions need to provide mechanisms that enable a balance between system 

automation and user control, as shown in Figure 2.3 (Bessi & Bruni 2009). 

2.6 Possible Solutions 

One approach to dealing with high-level context information such as the user’s current 

activity is machine vision, which is focused on image processing and camera technology. 

Another potential approach is to check the user’s calendar in order to identify what the user is 

meant to be doing at a specific time (Huang et al. 2011). Utilizing artificial intelligence 

techniques to recognize complex context by integrating several available low-level sensors is 

another promising approach. These techniques can include rules or machine learning.  
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Context-aware applications are generally designed using a set of if-then rules. For example, if 

the application senses a particular situation, then it should perform a particular action. Rules 

are simple to create as all the knowledge for each rule is represented in a similar format and 

rule-based systems are relatively simple to develop as there are several existing rule engines 

that determine when a rule has been satisfied. Rules are also relatively intuitive and easy to 

work with. 

 

A common alternative approach is to apply machine learning. Instead of creating a sequence 

of rules about how an application should adapt its behaviour, an application developer can 

gather data on the types of situations or contexts that a user will experience and the types of 

desired adaptations. Machine learning can then be applied to learn the probabilistic 

relationships between the situations and adaptations, instead of having these relationships 

being hardcoded and deterministic. This still requires that the application or supporting 

infrastructure provides the ability to perform context inferencing to map the sensor data to 

user situations.  

 

Incorporating indoor location information provided by Wi-Fi and other indoor technologies 

to cater for indoor context spaces such as at home or at the office can help extend context-

aware applications (Demeester 2010). Using context models based on ontologies such as a 

Service-Oriented Context-Aware Middleware (SOCAM) can help address generating 

situations of interest. These models can also allow for situations to be extracted from 

knowledge bases without the need for manual work in defining these situations (Demeester 

2010). 

 

A context history can facilitate context predictions and pro-active adaptions by looking at the 

previously encountered context situations to aid future inferences of situations. Maintaining 

and managing a context history can address run-time situation inference when situations of 

interests are unknown before run-time. For example, this can be achieved by clustering 

context states history.  

 

One approach to dealing with context ambiguity is to combine multiple disparate sources of 

the same type of context to improve the accuracy or dependability of the provided context. 

This is commonly known as sensor fusion (Wu 2003). For example, in activity recognition, a 
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Hidden Markov Model can be used with different sensors and the fused results can be 

represented in a table for the set of possible activities (Lester, Choudhury & Borriello 2006).  

 

An alternate approach is to allow users to manually disambiguate ambiguity in context (Dey 

& Mankoff 2005). Instead of relying on an automated approach, this approach leverages a 

user’s knowledge of the situation to help resolve and remove any ambiguity in the sensed or 

inferred context. A user may be presented with, for example, a list of the N most likely 

interpretations of context, ranked by probability and asked to select the correct interpretation. 

Storage of context information received from context providers can either be centralized, 

distributed or both. Centralized storage could utilize a server to store data such as the context 

history for a particular user. Distributed storage could instead store data such as user 

preferences and the current context on a particular user’s device.  

 

 By giving users greater control over the disclosure and abstraction level of the contextual 

information a stronger adoption of context-aware solutions can be attained (Demeester 2010). 

Taking into account how the user impacts their own context, what context the user wants and 

what is acceptable are important questions with regards to context awareness adoption.  

 

 Table 2.1: Summary of problems matched to possible solution (Demeester 2010; Huang et al. 2011) 

 

Table 2.1 provides a summary of the possible solutions to the existing issues when dealing 

with context awareness as described in Section 2.5. The overall trend in the possible solutions 

tend to favour AI techniques such as machine learning, use of multiple input sources such as 

calendar information and user feedback whereby the user can select the correct output. 

Problems 
Solutions 

Sensor-based Context Recognition Multiple input sources, AI techniques and 

Context history 

Activity Recognition AI techniques 

User Control and Automation User Feedback 

Context Ambiguity AI techniques and User Feedback 

Indoor Location Awareness Indoor localization technologies 
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2.7 Conclusion 

This chapter aimed to answer Research Question 1: "What are the context awareness 

problems and requirements of mobile applications?" An explanation of context and context 

awareness was given. Context is essentially any information that can be used to describe the 

situation of an object, person or place. Context awareness refers to the idea that computers, in 

this case mobile devices, can both sense and react based on their environment. 

 

Determining the context of mobile applications and how context awareness is related to 

location awareness and ambient intelligence was discussed. Several context dimensions were 

discovered, which included identity, location, status, time, device and activity. Location 

awareness was found to refer to devices that can passively or actively determine their 

location. Ambient Intelligence, on the other hand, builds upon ubiquitous computing, 

pervasive computing, context awareness and human-computer interaction, which is 

characterized by systems and technologies that are embedded, personalized, context-aware, 

adaptive and anticipatory. 

 

Each of the crucial design steps to facilitate context awareness in mobile applications were 

discussed in detail. These steps included acquiring, monitoring, filtering, storing, representing 

and interpreting context.  

 

Existing issues in context awareness were discussed, such as sensor-based context 

recognition, activity recognition, user control automation, context ambiguity and indoor 

location awareness. Possible solutions to match these issues were explored and identified. 

The majority of these solutions included using AI techniques, user feedback and multiple 

input sources. For context-aware applications to be fully supported, an underlying 

architecture or model is needed. This architecture or model will need to deal with the steps 

identified in Section 2.1 as well as address the current problems in context awareness 

highlighted in Section 2.5. 

 

The next chapter will help determine the structure of the proposed model by reviewing the 

second DSR knowledge base identified in Section 1.4.3, which will discuss the application 

domain of mobile computing. Chapter 3 will discuss the need for context awareness within 

mobile applications. It will also discuss the medical health-care context as a potential domain 
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that could benefit from the proposed context-aware model and briefly review mobile 

applications in this domain that could benefit from facilitated context awareness. 

Contributions and shortcomings of existing context awareness models will be identified. 

Relevant context attributes and dimensions will be identified and summarized, which will 

assist the development of the proposed model. 
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 Chapter 3: Mobile Solutions 

3.1 Introduction 

This chapter aims to answer Research Question 2: "What are the problems and requirements 

of existing context awareness solutions used in mobile applications?" This chapter also uses 

the Relevance and Rigor Cycle and covers the second DSR knowledge base by discussing the 

application domain of mobile computing. The relevance of mobile devices to support context 

awareness and mobile context modelling will be discussed. Context awareness in m-health as 

a possible sub-domain will be discussed. Existing mobile context models will be reviewed in 

terms of their advantages and shortcomings. The most suitable model/s that can be extended 

will be identified. Context attributes relevant to personal user context to facilitate context 

awareness in mobile applications will be identified and summarized. 

3.2 Mobile Devices Supporting Context Awareness 

Context information is one of the most significant information sources for mobile 

applications and the development of mobile devices with embedded sensors has made context 

data widely available (Wolf, Herrmann & Rothermel 2010). Real-time information and 

services anytime and anywhere has developed into a real need for people on the move. 

Context information such as location and calendar data, obtained from mobile phones can 

greatly improve the user experience in the current situation. Mobile smart phones have 

become the central device of users’ day-to-day activities and since the context of mobile 

users dynamically change, so do the current needs of the users (Eichler, Lüke & 

Reufenheuser 2009). 

 

Mobile smart phones incorporate a set of sensors that make it possible to capture contextual 

information to help individuals to better understand the surroundings that affect their daily 

lives (Marcu, Ghiata & Cretu 2013). The built-in sensors in modern smart phones range from 

GPS (for location context monitoring), image and video sensors (camera), audio sensors 

(microphones), light sensors, temperature sensors, direction sensors (magnetometer and 

gyroscope sensors), and movement sensors (accelerometers and rotation sensors) (Otebolaku 

& Andrade 2013). 
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Some of the most common sensors include the accelerometer, GPS and camera (Elgazzar et 

al. 2012). An accelerometer measures movement resulting from forces, including the force of 

gravity, applied to a device. This movement can also come from the environment wherein the 

device is located. The device’s tilt, shake, motion, or swing can be determined from this 

movement data (Otebolaku & Andrade 2013). 

 

The rotation vector sensor, which is similar to an accelerometer, is a synthetic sensor, which 

is most commonly used for motion detection and monitoring. The rotation vector sensor is 

flexible and can be used for a wide range of motion detection and related tasks such as 

monitoring angular change (Otebolaku & Andrade 2013). 

 

Collecting and analysing data from sensors requires increased processing, storage and energy 

resources on mobile devices (Marcu et al. 2013). Lee, Ju, Min, Yu, and Song (2012) suggest 

that future developers should not only extract high-level context from raw sensing data but 

also make an effort to achieve optimization to support continuous sensing and processing. 

This optimization process is quite challenging since the resource availability of sensor 

devices and demands from other concurrent applications change dynamically (Lee et al. 

2012).  

 

Extracting of useful and meaningful high-level user contextual information from low-level 

smart phone sensor data has not been fully explored (Otebolaku & Andrade 2013). This gap 

has provided a new opportunity for mobile applications to leverage user contexts more 

actively, such as their location, activity, social relationship, health status (Lee et al. 2012).  

 

Mobile devices are an exceptional source of context information about mobile users. Both 

explicit and implicit context information can be gathered from the calendar, the camera, 

embedded sensors or native applications (Martin, Lamsfus & Alzua 2011). 

 

Location can usually be acquired by accessing the GPS, Cell-ID and Wi-Fi (Google Inc 

2014e). Other sources of contextual information can also include information in a user's 

calendar or to-do list. Such information would help to develop the user's profile and could be 

used with other contextual information to help determine the user's context. However 

determining the user's context throughout their daily activities is one of the main challenges 

in this research area (Santos et al. 2009). Using multiple-input sources to identify and predict 
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context for given situations, such as being at home could help to solve this problem (Mitchell 

2011). 

 

Context is essential in cases such as anti-theft or near-emergency services (Santos et al. 

2009). To provide these types of services mobile devices need to be able to clearly identify 

specific contexts of the user. Mobile devices with their increasing capabilities include sensors 

from which data such as position, lighting or sound can be obtained, which can help to 

determine the user’s context. However, this raw context data is meaningless for computers so 

a suitable data model is required to represent and manage it (Martin et al. 2011). 

 

An example medical healthcare (m-health) scenario for using sensor data could be to 

determine whether an elderly person has possibly fallen at home and has been unable to move 

for a period of time, consequently triggering an emergency call. However, there are multiple 

sources of data with unique patterns that need to be captured and processed timeously (Santos 

et al. 2009). Other challenges include the battery life of a mobile device as the energy 

required by context sensors is significant and can drain the battery quickly (Rahmati et al. 

2012). M-health is a critical area in which context awareness can play an important part in 

assisting and providing solutions for the problems that face m-health. 

3.3 Medical Context 

This section introduces medical health-care as a potential domain that could benefit from the 

proposed context-aware model and briefly discusses several mobile applications in this 

domain that could benefit from facilitated context awareness. This section will help clarify 

the significant need that this domain has to facilitate context awareness.  

3.3.1 Medical Health-care 

Medical health-care can be seen as an important area for top-quality research, as it has many 

critical issues and problems that still need to be addressed (Bilyeu, Hardy, Katz, Kennelly & 

Warshawsky 2009). One of these problems is the increasing number of chronically ill 

patients. As a result, there is a growing burden on long-term healthcare facilities and the cost 

of maintaining these facilities has become unsustainable. 
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Patients who have chronic conditions need 24/7 monitoring. Conventional methods for 

monitoring of these patients typically involve the use of large, fixed equipment that restrict 

the mobility of the patient (Elgazzar et al. 2012). An important aspect of monitoring patients 

is the ability to track them. Locating patients can be significantly crucial, especially if they 

get lost as they are moved from one location to the next. Remote patient health monitoring 

using mobile devices can help address these constraints as mobile devices can cater for 

location awareness (Agarwal & Lau 2010). 

 

Location awareness allows services to offer or access information relevant to the current 

situation. Patient location is an important part of contextual information that is essentially 

needed in healthcare systems and in particular, remote health monitoring. Location becomes a 

crucial context for patients who suffer from memory loss diseases such as Alzheimer’s. 

Having access to the patient location can help to provide timely medical assistance in 

emergency and life-threatening situations (Elgazzar et al. 2012). 

 

Understanding the context that affects health behaviour change and chronic disease 

management can be very important for developing effective health management practices 

(Klasnja & Pratt 2011). Patients can find it difficult to manage their health information if that 

information is in multiple locations (i.e. multiple healthcare providers) or in different formats 

(i.e. paper vs. electronic). A personal health record (PHR) can assist with this as it is a health 

record that a patient can use to store their most important health information (Health IT Inc. 

2013).  

 

An example of the data that can be contained in a PHR include (AHIMA 2013):  

 Personal identification of the patient, including name and date of birth. 

 Individuals to contact in case of an emergency 

 Names, addresses, and phone numbers of the patient's physician, dentist, and 

specialists 

 Health insurance information 

 Living wills, advance directives, or medical power of attorney 

 Organ donor authorization 

 A list and dates of significant illnesses and surgical procedures 

 Current medications and dosages 
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 Immunizations and related dates 

 Allergies or sensitivities to drugs or materials, such as latex 

 Important events, dates, and hereditary conditions in the patient's family history 

 Results from a recent physical examination 

 Opinions of specialists 

 Important tests results; eye and dental records 

 Correspondence between the patient and their health-care provider(s) 

 Any information that the patient would like to include regarding their health such as 

exercise regimen or dietary preferences. 

 

Mobile devices can make it possible to capture contextual information such as a patient's 

PHR to help patients and their healthcare providers. This contextual information can assist 

them to better understand the circumstances that affect their health and to create strategies to 

address those trends (Klasnja & Pratt 2011).  

 

Mobile devices, specifically smart phones, are becoming an increasingly popular platform for 

the creation of health interventions (Klasnja & Pratt 2011). This phenomenon is due to the 

rapid developments in mobile and wireless technologies (Elgazzar et al. 2012).  

 

Other factors contributing to smartphones becoming a platform for health interventions 

include: 

 Broad adoption of mobile phones with increasingly powerful capabilities (Klasnja & 

Pratt 2011), 

 Tendency of individuals to carry their mobile phones with them everywhere, 

 Relationships that individuals build with their mobile phones, which was shown in a 

study conducted in Europe and India (Ventä, Isomursu, Ahtinen & Ramiah 2008), 

 Context awareness features enabled through sensing and phone-based personal 

information. 

 

Caregivers are showing great interest in utilizing mobile technologies that provide convenient 

and responsive health monitoring. A recent study conducted in the United States of America 
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(PricewaterhouseCoopers’ Health Research Institute 2010) revealed that consumers are 

willing to pay for remote mobile health monitoring solutions. 

 

It is clear that mobile devices could bring significant benefits to a vast number of individuals, 

such as patients who suffer from Alzheimer’s disease, elderly people who are vulnerable to 

falling, women with high-risk pregnancies, patients who have chronic conditions that require 

24/7 attention and people who need medical attention in remote and inaccessible locations or 

in emergency situations (Elgazzar et al. 2012). 

 

With the increasing number of advancements in mobile phones such as built-in 

accelerometers and GPS, users' behaviours can be detected without the use of external 

devices (Klasnja & Pratt 2011). These technologies allow ubiquitous computing to facilitate 

mobility and data access anywhere and anytime (Elgazzar et al. 2012). User acceptance of 

health interventions that use mobile devices with sensor capabilities will likely increase, due 

to the decreasing need for users to keep track of, charge, and wear an additional device  

(Klasnja & Pratt 2011). 

 

Mobile devices have become accepted as an important platform in medical health care. 

However, in order to fully utilise this platform and address the issues and problems in 

healthcare, intelligent solutions need to be built. As a result, mobile healthcare (m-health) 

applications could be used in order to address problems in the medical health care domain. 

3.3.2 Context Awareness in M-health 

Context-aware computing allows for more opportunities in application domains such as 

homes, offices, hotels, community areas, healthcare, campuses and military applications. 

These application areas are mainly intelligent spaces where users can interact with each other 

and conventional systems using their mobile devices (Malik, Mahmud & Javed 2007). 

 

Smart mobile devices enable context-aware features that are significantly useful and have 

become an attractive platform for electronic-health (e-health) applications turning them into 

m-health applications (Liu et al. 2011).  
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An illustration of this is shown by Liu et al. (2011). Their research focused on examining 

from a developer’s perspective, the top 200 healthcare related applications from an app store.  

This provided a summary of the current status and trends of iOS m-health applications and 

helped to identify developer implications in terms of related technology, architecture, and 

user interface design issues. However, only the top 100 healthcare related applications from 

the medical category will be discussed as they are more relevant to m-health research than the 

other 100 applications in the fitness category. 

 

Liu et al. (2011) categorized the 100 applications into different groups according to their 

purposes, functions, and user satisfaction. However only 80 of those applications in the 

medical category were relevant to the different classes of apps. 

 

Table 3.1: A classification of the 80 relevant applications (Liu et al. 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 shows that medical information reference was the largest class with twenty-seven 

applications followed by educational tools with nineteen. However, tracking tools only 

ranked fifth, which are generally developed for keeping track of blood pressure, diabetes 

factors, remote patient monitoring information and personal medical information (Liu et al. 

2011). 
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Table 3.2: A classification of the 14 five-star applications (Liu et al. 2011) 

 

 

 

 

 

 

 

 

 

 

Out of the 80 applications in Table 3.1 only 14 applications were five-star applications, as 

shown in Table 3.2. A five star application is an application, which was rated by users on a 

scale from 1 to 5 and scored an average of 5. A significant difference can be seen as tracking 

tools are now ranked first in Table 3.2 as opposed to fifth in Table 3.1. The cause of this trend 

could be interpreted as users favouring applications that could take advantage of unique 

features of smart phones and bring real convenience or benefits (Liu et al. 2011). 

 

Context-aware systems aim to provide a context-specific service to their users by 

automatically adapting and staying aware of their changing contexts (Hong, Suh & Kim 

2009). This is important as users with a mobile device tend to move around in their daily 

lives. This creates both the need and opportunity for context-aware mobile applications, 

which will improve services and bring added value by utilizing contextual information (Liu et 

al. 2011). 

 

Broens et al. (2007) presented a framework to support the development of context-aware m-

health applications. The requirements for the framework included, mobility support, context 

awareness and adaptation support. This context-aware framework makes the development of 

m-health applications feasible and improves the usability of these applications. Frameworks 

such as the one by Broens et al. (2007) enable well-designed context-aware m-health 

applications to be readily accepted by end users by providing mobility support, context 

awareness and adaptation support (Liu et al. 2011). 
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Even though few context awareness research groups focus on healthcare as a research area 

(Bricon-Souf & Newman 2007), it is clear that context-aware systems combined with mobile 

devices add significant value and could improve usability significantly (Baldauf et al. 2007). 

This was shown in a study conducted by Guerri et al. (2008) who developed a mobile 

application for assessing the muscular activity of patients with a lower back disorder. The 

results of the study revealed that the system was easy to use and that the users were satisfied 

with the usability of the application in terms of interactivity and functionality (Liu et al. 

2011). 

 

The results of the application survey conducted by Liu et al. (2011) identified several trends 

and important implications for app developers. One of these implications was that m-health 

applications that took advantage of unique smart phone features, such as context awareness, 

were more popular. This was validated by the trend of users giving high ratings to innovative 

applications such as tracking tools that took advantage of mobile device features (Liu et al. 

2011). 

3.4 Mobile Context Modelling 

The current revolution of mobile devices, such as smart phones has driven a rising need for 

mobile services. As mobile services (applications), keep developing, the demand for context 

modelling of mobile users will increase (Bao, Cao, Chen, Tian & Xiong 2010). 

 

Mobile context modelling is a process of recognizing and reasoning about contexts and 

situations in a mobile environment. This process is a fundamental research problem with 

regards to successfully leveraging the rich contextual information of mobile users while on 

the move (Bao et al. 2010).  

 

Context information from mobile devices is primarily in the form of low-level sensor data 

that are not suitable for mobile applications to use (Otebolaku & Andrade 2013). In spite of 

vast improvements, context-aware applications still require a significantly increased context 

recognition accuracy for high-level context information based on imprecise sensor data to 

enable the robust execution of context-aware applications (Wolf et al. 2010).  
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Robust context models can help solve this problem as they capture the relevant contextual 

information to be considered in context-aware applications. This contextual information can 

be categorized into different dimensions, such as social relationships, location, time and 

environments. These dimensions can be seen as the fundamental primitive elements in a 

context model (Chang, Barrenechea & Alencar 2010).  

 

New applications and usage scenarios have developed and will develop, such as social 

community services including Facebook and LinkedIn. These applications and scenarios will 

require a scalable, extensible context provisioning framework, e.g. new context 

types/domains and evolving context models. However building new context-aware 

applications is still complex and lengthy due to the lack of a suitable model or middleware-

level support (Fausto & Alberto 2010).  

 

A suitable model for context-aware applications needs to be well established and should 

provide support for several tasks dealing with context. These tasks include performing 

context interpretation and dealing with acquiring context from various sources such as device 

sensors, databases and web services (Fausto & Alberto 2010). In order to manage and use 

context information it must be represented and stored in some form that can be used by 

machines to derive higher-level context, as well as communicated and modelled. Context is 

just a special type of metadata and so it is open to all the techniques used in meta-modelling.  

 

Since high-level context is derived from relationships between more primitive contexts, 

storing context in a relational database and querying the database to derive this higher-level 

context is a common approach (Fausto & Alberto 2010). Using unsupervised artificial 

intelligence learning techniques is also another approach, which has the ability to learn 

personalized contexts of mobile users, which are difficult to predefine (Bao et al. 2010).  

 

Bao et al. (2010) suggested that incorporating domain knowledge for common contexts, such 

as "having dinner" with unsupervised approaches for mobile context modelling could be 

future work. This semi-supervised approach has the potential to improve the learning 

performances of common contexts while keeping the flexibility of supervised approaches for 

learning personalized contexts. 
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Existing context models, however, do not effectively deal with dynamic aspects of contextual 

information such as location, time, social relationships, and changing preferences. These 

current models lack a suitable design or focus on modelling static aspects of context, as user 

context is by its very nature highly dynamic (Chang et al. 2010).  

3.5 Existing Mobile Context Models and Infrastructures 

Research on context-aware systems has focused on many different areas. This research 

ranges from application-level implementations to frameworks and context models, and its 

applications cover various domains. Several models and infrastructures have been developed, 

which each focus on their own set of attributes and dimensions. Each of these will be 

discussed below in terms of their overall completeness to fully support the personal user 

context of a mobile user. 

 

Gehlen, Aijaz, Sajjad, and Walke (2007) introduced a context dissemination middleware 

based on a mobile Web Services framework. Their mobile context dissemination middleware 

focused mainly on context attributes including, location, time, task, network, user context and 

social circumstance. They did not incorporate a health context, which could be seen as part of 

user context and instead only included a health scenario where their model could be useful. 

 

Falchuk, Loeb, and Panagos, (2008) focused on the challenges of creating middleware that 

offers rich context-aware event logic to address a spectrum of issues across many verticals. 

The context attributes that they addressed include: 

 Personal information (e.g. interests, expertise) 

 Social information (e.g. contacts, relationship, medical) 

 Subscriptions (e.g. traffic alerts, various feeds) 

 Device states 

 Presence and availability (e.g. willingness to communicate) 

 Privacy and access control 
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 Schedule (e.g. calendar, to-do lists). 

 

Figure 3.1: Classification of user and situation context parameters (Eichler et al. 2009) 

 

Eichler et al., (2009) addressed an approach to service offering and usage on mobile phones. 

They focused on a typical scenario in public transport and classified their context parameters 

into semi-static and dynamic contexts, as well as into user and situation specific, as shown in 

Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Context-sensitive composition framework (Eichler et al. 2009) 



   Chapter 3: Mobile Solutions 

45 

 

Eichler et al.'s (2009) situation model highlighted the importance of separating situation 

specific and user specific contexts to support the right services being provided at the right 

time based on the current context, as shown in Figure 3.2. Other than the aggregated situation 

context, the extracted user preferences serve as additional input for an improved adaption of 

the service offering to the actual requirements of the user. However, the user specific context 

of the model does not include a health context parameter, which can be seen as a part of a 

mobile user's personal user context. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Situation-aware user model (Fausto & Alberto 2010) 

 

Fausto and Alberto (2010) developed a situation-aware user model to make context-aware 

mobile services possible and for these services to adapt to changing contexts and user needs. 

The situation-aware user model sets preferences for the user for a given context and has 

elements such as social network preferences, situational preferences, physical context and 

user-activity context, as depicted in Figure 3.3.  

 

Their model suggested that by including social network information as part of context, the 

user's personal context, metadata of information and recommendations provided to users 

could be enhanced. This situation-aware user model focused on more context dimensions 

than Eichler et al.'s (2009) situation model. However, it also does not include the health 

context of the user.  
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Figure 3.4: Context detection service architecture (Christoph, Krempels, Stulpnagel & Terwelp 2010) 

 

Christoph et al. (2010) introduced an integrated approach for the automatic detection of a 

user’s context.  Their Context Detection Service Architecture as shown in Figure 3.4, was 

however, primarily sensor and behaviour-based and made no reference to a personal user 

profile or user and situation preferences.  

 

The Context Detection Service Architecture proposes that detection of a mobile user's context 

should be provided by the mobile device as a service. This would act as an API, so that all 

applications can have access to the context information and adapt their behaviour 

accordingly. 

 

 

 

 

 

 

Figure 3.5: The mobile health context prediction scenario (Hassani & Seidl 2011) 
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Hassani and Seidl (2011) introduced one of the first methods for predicting an added health 

context of a mobile user. Unfortunately, the model used required users not only to have a 

mobile device but also to be equipped with body sensors, which is impractical and could lead 

to poor user acceptance. 

 

Alidin and Crestani (2012) utilized a “just-in-time” approach, in which the relevant 

information is retrieved without the user requesting it. They provided more details in terms of 

how context could be identified and captured but their infrastructure does not support the use 

of non-sensor data such as calendar and preferences. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Four levels interpretation of context model (Alidin & Crestani 2012) 

 

They developed their own context interpretation model in order to translate sensor data into 

the description of user context. This model consists of four different levels of context 

interpretation, as depicted in Figure 3.6. This model, however, is too high-level and is 

missing other user specific context data sources such as user profiles and preferences. 
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Figure 3.7: JIT-MobIR conceptual architecture (Alidin & Crestani 2012) 

 

Figure 3.7 helps to clarify the missing data sources in their context interpretation model and 

separates sensor data from user data. It unfortunately does not incorporate a health context as 

part of the user data. This architecture does highlight different context retrieval processes that 

could be used in order to retrieve the user's context, the first being a query-based retrieval and 

the second a pro-active retrieval. 

 

Figure 3.8 explores the context dimensions that Alidin and Crestani (2012) focused on, which 

highlight the fact that context attributes also comprise of several states. For example, the 

location context has three states including: home, workplace and unknown. 
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Figure 3.8: General sensors analysis for the context dimensions (Alidin & Crestani 2012) 

 

Reviewing the existing context models and additional literature highlighted that there are 

many context dimensions and attributes. However, not all dimensions and attributes are seen 

as relevant in terms of personal mobile user context. Key trends in existing models include 

the use of preferences as well as separating context information regarding the physical 

environment from information about the user. From the existing models that were reviewed, 

the situation-aware model proposed by Fausto and Alberto (2010) appears to be the most 

complete in comparison to the other models. However, this model does lack several 

components including a health context dimension as well as context attributes such as device 

states. 

3.6 Context Dimensions and Attributes 

The context dimensions identified in Chapter 2, including identity, location, status (user 

perceived properties such as environmental), time, device and activity, were used as a basis 

for the building blocks (i.e. dimensions and attributes) of the proposed model. Building upon 

these dimensions with previous literature in this chapter, a combination of the most relevant 

and common dimensions and attributes were synthesized. A summary of the most relevant 

dimensions and examples of associated attributes appears in Table 3.3. 
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 Table 3.3: A summary of relevant context attributes and dimensions for personal user context 

 

3.7 Conclusion 

Mobile smart phones incorporate several sensors that make it possible to capture contextual 

information to help individuals to better understand the surroundings that affect their daily 

lives. The most important sensors among these instruments are the accelerometer, GPS and 

Context  

Dimensions 

Context Attributes Input Source Available 

Location Current location, 

destination 

GPS, Time, Calendar, 

IPS, Wi-Fi 

Yes 

Time Time, day of week, date Mobile device Yes 

Activity Walking, running, 

driving 

Sensors Yes 

Schedule Appointments, task list, 

travel plan 

Calendar, To-do list Sometimes 

Physiological Body temperature, 

mood, hunger 

Body Sensors No 

Identity Age, gender, stereotype User input Yes 

Interest & 

needs 

Preferences, history, 

habits, profile 

repository 

User input, Sensors Yes 

Points of 

interest 

Locations of interest Location, Interests, 

Sensors 

Sometimes 

Social Contacts, relationships Mobile device Sometimes 

Device States Features, Sensors Mobile device Yes 

Availability Willingness to 

communicate 

User input, Sensors Sometimes 

Environmental Temperature, noise, 

light,  humidity, 

forecast 

Sensors Yes 

Spatial Speed, orientation, 

acceleration  

Accelerometer, compass, 

gyroscopes. 

 

Yes 

Network Selected network, 

available networks 

Wi-Fi, 3G Yes 

Subscriptions Traffic alerts, various 

feeds 

Web services Sometimes 

Health Conditions, Blood type, 

Allergies 

Personal Health Records 

(PHRs), user input 

Sometimes 
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camera. Extracting useful and meaningful high-level user contextual information from low-

level smart phone sensor data has not been fully explored. This research gap has provided a 

new opportunity for mobile applications to leverage user contexts more actively, such as the 

users' location, activity, social relationship and health status. Some researchers suggest that 

future developers should not only extract high-level context from raw sensing data but also 

make an effort to optimise the context solution to support continuous sensing and processing. 

 

Medical health-care can be seen as an important area for research, as it has many critical 

issues and problems that still need to be addressed. Patients who have chronic conditions 

need 24/7 monitoring. An important aspect of monitoring patients is the ability to track them. 

Locating patients can be crucial, especially if they get lost as they move from one location to 

the next.  

 

Understanding the context that affects health behaviour change and chronic disease 

management can be very important for developing effective health management practices. 

Mobile devices can make it possible to capture contextual information such as PHRs to help 

patients and their healthcare providers. This contextual information will assist them to better 

understand the circumstances that affect their health and to create strategies to address those 

trends. Mobile devices, specifically smart phones are becoming an increasingly popular 

platform for the creation of health interventions. This phenomenon is due to the rapid 

developments in mobile and wireless technologies. 

 

The results of the application survey conducted by Liu et al. (2011) identified several trends 

and important implications for application developers. One of these implications was that m-

health apps that took advantage of unique smart phone features, such as context awareness, 

were more popular. This is validated by the trend whereby users gave high ratings to these 

new, innovative apps such as tracking tools that took advantage of these  mobile device 

features (Liu et al. 2011).  

 

Mobile context modelling is a fundamental research problem with regards to successfully 

leveraging the rich contextual information of mobile users whilst on the move. Context-aware 

apps still require a significantly increased context recognition accuracy for high-level context 

information on inaccurate and imprecise sensor data to enable the robust execution of 

context-aware apps. Robust context models that capture contextual information can be 
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categorized into different dimensions, such as location, time and environments. These 

dimensions can be seen as the fundamental primitive elements in a context model. 

 

Suggestions that incorporate domain knowledge for common contexts, such as "having 

dinner" with unsupervised approaches for mobile context modelling could be topics for future 

research. This semi-supervised approach has the potential to improve the learning 

performances of common contexts while keeping the flexibility of supervised approaches for 

learning personalized contexts. Existing context models do not effectively deal with dynamic 

aspects of contextual information such as location, time, social relationships and changing 

preferences. These current models lack a suitable design or focus on modelling static aspects 

of context, but user context is by its very nature highly dynamic. 

 

Eichler et al.'s (2009) situation model highlighted the importance of separating the user and 

situation specific contexts. It also had a well-structured classification of the context attributes 

utilized within the situation model. Their model did not, however, include a health context. 

The situation model by Fausto and Alberto, (2010), also highlighted the separation of user 

and situation specific contexts, but more importantly it emphasizes the need to have a set of 

preferences. Alidin and Crestani's (2012) model on the other hand provides an overall picture 

of context interpretation but lacks specific details in terms of other sources of context 

including user profile and preference information. The underlying conceptual architecture 

associated with Alidin and Crestani's (2012) model provides a useful structure whereby 

sensor data is separated from user data. 

 

These  models and infrastructures were considered the top three of those reviewed, with the 

most complete model being the situation-aware model proposed by Fausto and Alberto 

(2010). Their model contained the key aspects highlighted from the other two models 

including separation of situation/physical from user context and an overall picture of the 

different context dimensions involved. However, their model still lacked several key aspects 

to successfully model personal user context of a mobile user. Fausto and Alberto's (2010)  

model together with other additional elements such as an added health context and the 

context attributes (Table 3.3) can be used as the basis of a new and improved mobile context-

aware model.  
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This chapter aimed to answer Research Question 2: "What are the problems and 

requirements of existing context awareness solutions used in mobile applications?" The 

relevance of mobile devices to support context awareness and mobile context modelling were 

discussed. Existing mobile context models were reviewed and suitable model/s that can be 

extended were identified. Context attributes relevant to personal user context to facilitate 

context awareness in mobile applications were also identified and summarized. 

 

The next chapter will address Research Question 3: "How can an improved context-aware 

model be developed?" It will also discuss the design and implementation of the proposed 

context model for a personal user, which will use multiple input sources. 
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 Chapter 4: Design and Implementation 

4.1 Introduction 

This chapter addresses Research Question 3 that was identified in Chapter 1: "How can an 

improved context-aware model be developed?" The main aim of this chapter is to discuss the 

design and implementation of the context-aware model. This design and implementation falls 

into the Design Cycle of the DSR methodology. This Design Cycle allows for generated 

feedback to be used to iteratively refine the design of the context-aware model and the 

development of the prototype. The typical context awareness architecture (Figure 2.1) 

discussed in Chapter 2 can be improved to support context awareness in mobile applications 

using multiple input sources.  The most suitable existing context model that was selected in 

Chapter 3 will be used as the basis for the proposed model and will be extended to address its 

shortcomings. The context attributes that were also identified in Chapter 3 that are relevant to 

personal user context will be matched against the existing context model and its context 

attributes from each context dimension. The contents of this chapter were incorporated in a 

paper presented at the Southern Africa Telecommunications Networks and Applications 

Conference in 2014 (Pather, Wesson & Cowley 2014). The feasibility of the artefact is an 

important aspect of DSR (Hevner et al. 2004). 

 

The next section of this chapter will discuss the design of the proposed context-aware model. 

Each of the components that form part of the proposed model will be discussed. The 

improvements incorporated in each component will also be highlighted during the discussion. 

The implementation of the context-aware model will follow the design section. The 

implementation section will address each of the processes required to implement the 

proposed model. The tools and techniques used for each of the processes will also be 

discussed. The main deliverables of this cycle are the design of the context-aware model and 

the implementation of this model in the form of a prototype, named CoPro. The prototype 

was named CoPro as the prototype is meant to act as a context provider. The prototype will 

be developed in an iterative manner, whereby changes will be made based on constant 

feedback as the prototype is implemented. 
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4.2 Design  

The requirements and outcomes from Chapters 2 and 3 play an important role in the design of 

the proposed context-aware model. To ensure that the proposed model can support context 

awareness in mobile applications using multiple input sources these requirements and 

outcomes need to be addressed. This section highlights how each of the components that 

form part of the proposed model should be designed to support context awareness in mobile 

applications. 

4.2.1 Context Attributes 

One of the outcomes from Chapter 2 is that several crucial design steps are required to 

facilitate context awareness in mobile applications. The first of these steps involves acquiring 

the context of a mobile application. Context data can be gathered from multiple input sources, 

such as sensors, the calendar and web services. Context data can be broken down into context 

attributes and context dimensions. Context attributes are the building blocks of context 

dimensions. Context dimensions include a set of context attributes that define the specific 

context dimension. For example, the model depicted in Figure 4.1 has a Physical Context 

dimension with context attributes, which are environment, location, time, spatial, network 

and device states. Several context attributes for personal user context exist in related 

literature. The most frequent context attributes were synthesized and summarized, as depicted 

in Table 4.1. 

 

These summarized context attributes are listed with the multiple input sources required to 

gather data for that attribute. For example, in order to obtain an accurate user location, inputs 

from the GPS, calendar and web services can be used. Each attribute was also given example 

values. The example values can be classified as actual or fuzzy, depending on the values. If 

the raw data is sufficient, the value type will be actual, or if a semantic meaning can be used 

to better represent the raw values, then the value type will be classified as fuzzy. For example 

the attribute time can have a value of 04:47 PM, which would be classified as an actual value. 

This value can be further processed to obtain a more high-level context meaning by applying 

a threshold to derive a fuzzy value of Afternoon based on the absolute value of 04:47 PM. 

The application of thresholds to these context attributes will be discussed in detail in the 

section which deals with the feature extraction process of implementation. 
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Table 4.1: Summarized context attributes for personal user context 

 

All of the above-mentioned context attributes are considered to be part of the personal user 

context of a mobile user. This research focuses on supporting context awareness in mobile 

applications by only using the capabilities and resources accessible on a single smart phone 

mobile device. Thus some of these attributes will not be implemented in the prototype, but 

will still be included in the proposed model. For example the attribute Physiological, can 

currently only be obtained via body sensors. This attribute is seen as an input source that 

would require more than one device to capture and thus will be excluded during the 

implementation of the proposed model. The remaining context attributes will be used in the 

design of the proposed model. 

Attribute Input Source Example Value 

Environment Ambient temperature sensor, sound 

sensor, light sensor, pressure sensor, 

web services. 

32 degrees, cloudy, 120 lux 

Location GPS, time, calendar, IPS, Wi-Fi, web 

services. 

lat 35 long 24/ Summerstrand 

Time & Date Mobile device 04:47 PM/ Afternoon/ 14 

March 2014/ Friday 

Spatial Accelerometer, linear acceleration, 

orientation sensor, gyroscope, rotation 

vector and GPS. 

34km/h, North-East 

Network Wi-Fi, 3G Wi-Fi, 3G/ NMMU student 

Wi-Fi, MTN 

Device States Mobile device Battery level, charging state 

Activity Accelerometer, linear acceleration. Driving, still, on foot. 

Task To-do list Bake cake 

Schedule Calendar Masters Meeting, Cake day 

Identity Facebook, user input (profile) Male, Tom, 7 Jan 

Social Facebook, mobile device Richard, Friend 

Physiological Body sensors 64 degrees 

Medical User input (profile), PHRs Type 2 Diabetes, A+, Hay 

fever  

Situation Mobile device Silent, Loud 

Interest & Needs User input (preferences), Facebook The Beatles, Pizza 

Points of Interest User input (preferences) KFC, Boardwalk 

Availability Calendar, accelerometer, linear 

acceleration. 

Available, Busy 
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4.2.2 Proposed Model 

The proposed model was designed based on the synthesized context attributes illustrated in 

Table 4.1 and contained in the Situation-Aware User Model identified in Chapter 3 as the 

most suitable to be extended. The synthesized context attributes were matched to the context 

attributes of the original model and the remaining context attributes that were not in the 

original model were categorized and added to a related dimension. 

 

This proposed model extended the original model to include a health context with 

physiological and medical as context attributes. The context attributes spatial, network and 

device states were also added to the Physical Context. All of the preferences of the original 

model were combined into one preference dimension, which included a social attribute. The 

preferences were combined in order to consolidate all the preferences into one dimension, 

which could then be managed by the preference manager in the adapted architecture shown in 

Section 4.2.3. Finally the remaining context attributes were also added to preferences, which 

included interests and needs, points of interest and availability. The situation attribute was 

classified as a preference in the existing model, however, as the ringer state forms part of the 

device's state it was moved to device states in the Physical context. The proposed model is 

depicted in Figure 4.1 with the changes to the original model highlighted in light blue for new 

context dimensions and in dark red for the new context attributes. 
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Figure 4.1: Proposed model with four core dimensions 

 

The proposed model consists of four main context dimensions: Physical, User-activity, 

Health and Preferences. These four dimensions are described in more detail below to indicate 

what context information they cover.  

 

The Physical Context dimension has six context attributes, namely: 

 Environmental - Light level, temperature level, humidity level, proximity level sound 

level. 

 Location - Current location. 

 Time/Date - Time of day, day of the week. 

 Spatial - Device orientation, movement speed. 

 Network - Network status. 

 Device States - Battery level, charging state, ringer state. 
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The User-Activity Context dimension has three context attributes, specifically: 

 Activity - Movement activity. 

 Task - General goals. 

 Schedule - Current calendar event. 

 

The Health Context dimension has two context attributes, namely: 

 Physiological - Bodily measurements.  

 Medical - Personal Health Record (PHR). 

 

The Preferences dimension has five context attributes: 

 Identity - User profile. 

 Social - Friends list. 

 Interests & needs - Books, music, movies. 

 Points of interest - Places of interest. 

 Availability - User availability. 

 

The proposed model provides a comprehensive approach to modelling personal user context. 

The proposed model alone, however, is not sufficient to support context awareness and thus 

the underlying typical architecture discussed in Chapter 2 needs to be adapted to suit the 

proposed model. 

4.2.3 Adapted Architecture 

The typical architecture identified in Chapter 2 (Figure 2.1) has several aspects, such as the 

middleware layer with a context and a preference manager, that are necessary to support the 

proposed context model. This architecture, however, does not cater for multiple input sources 

and does not clearly illustrate the different context dimensions supported by the proposed 

model. Thus this architecture was adapted by adding additional input sources including 

calendar, GPS/IPS and web services, to the gathering and pre-processing layer as shown in 

Figure 4.2. These inputs, together with the sensor inputs, will be processed and combined to 

form context dimensions, which will represent outputs from the gathering and pre-processing 

layer. The middleware layer has the typical context manager with a context model but also 
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has the preferences dimension, which was added to the preference manager. The red lettering 

used in Figure 4.2 highlights the additional changes that were made to the original 

architecture (Figure 2.1). The core of the research was focused on the middleware, and 

context gathering and pre-processing layers as these layers form the foundation for 

supporting context awareness. The context-aware applications layer including the 

programming toolkit is part of future work in which the implemented prototype would be 

converted into an Application Programming Interface (API) for mobile developers to use in 

their mobile applications.   

 

Figure 4.2: Adapted architecture with multiple-input sources and context dimensions 

 

The adapted architecture consists of three main layers: context gathering and processing, 

middleware and context-aware applications. These three layers will be highlighted in more 

detail below to indicate the context processes that they handle. 
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The Context Gathering and Processing layer is responsible for: 

 Gathering the raw context data from the multiple input sources that are accessible 

only from a single mobile device. These include sensors, calendar, GPS/IPS and web 

services. 

 Pre-processing the raw context data by using filters to filter out noise and drift, 

Quality of Context (QoC) metrics to evaluate the quality of the data and applying 

thresholds to derive a higher-level abstract meaning. 

 Categorizing the processed context data into three dimensions, namely physical, user-

activity and health.  

 Handing over the processed context data within the three dimensions as inputs to the 

middleware layer. 

 

The Middleware layer is responsible for: 

 Using the processed context data from the context gathering and pre-processing layer 

and the preferences from the preference manager as inputs. 

 Feeding the processed dimensions and context data into the context-aware model and 

using the preferences to tailor the outputs. 

 Finally providing the inferred context outputs to the context-aware applications layer. 

 

The Context-Aware Applications layer is responsible for: 

 Interacting with the middleware layer via a programming toolkit such as an API in 

order to retrieve the inferred context data outputs. 

 Use the inferred context data to improve the user experience of the mobile application 

that uses the context outputs. 

 

The adapted architecture better supports the proposed model as it now caters for multiple 

input sources and also supports the four context dimensions of the proposed model. This 

research is primarily focused on the context gathering and pre-processing layer and the 

middleware layer. However, in order for the context-aware applications layer to communicate 

effectively with the middleware layer, a data design is needed. This data design will provide 
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an easy access point to the context-aware applications attempting to obtain inferred context 

data. 

4.2.4 Data Design 

Using the proposed model, the data design was formulated as an UML class diagram, as 

illustrated in Figure 4.3. As personal user context is focused on the context of a person, the 

data design was structured around a Person class. This Person class is associated with each 

dimension class with a multiplicity of 1..1. Each dimension class will be accessible from the 

Person class. For example, to access the data from the Physical Context class, a method 

person.getPhysicalContext() will be called. The person.getCurrentContext() will provide 

access to all of the dimension classes with a single call. The User-Activity and Health 

Context Classes also includes a date and time attribute in the data model as these two classes 

are also dependent on date and time. 

 

Figure 4.3: UML class diagram data design 

 

The UML Class Diagram provides a logical data design that will enable the context-aware 

applications to easily access the inferred context data provided by the middleware through an 

API. 
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4.3 Implementation 

The previous section highlighted the design of the proposed model and the supporting 

underlying architecture. The design of the proposed model was discussed, which was based 

on a set of context attributes, a situation-aware user model and a typical architecture to 

support context-aware applications. This section discusses the implementation of the 

proposed model by describing how the design of the proposed model was implemented as a 

prototype, named CoPro, the main screen of which is shown in Figure 4.4. The main screen 

highlights the key functionality provided by CoPro, which includes:  

 Gather Data - Gathers and displays raw data from multiple inputs. 

 Available Sensors - Displays list of available sensors on the device. 

 Quality of Context - Calculates and displays QoC metrics. 

 Feature Extraction - Generates and displays features from the gathered data. 

 Infer Context - Generates and displays inferred context from features. 

 Preferences - Displays user preferences including health preferences. 

 

 

Figure 4.4: Main screen of CoPro prototype 
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CoPro was developed to handle all the complex processes required to support context 

awareness that were highlighted in Section 2.1.1 in Chapter 2. These complex processes 

involved as well as the tools and techniques used during the implementation will be discussed 

in detail. 

 

The implementation of the prototype based on the proposed model involved the following 

steps: 

 Gathering of context data from multiple-input sources. 

 Filtering of the gathered context data with QoC metrics (Section 2.2.2). 

 Defining and applying thresholds to the filtered data for feature extraction.  

 Collecting and training of processed context data to produce context models.  

 

The implementation of the prototype followed an iterative development process following the 

rigor cycle of the DSR methodology. Following this iterative development process made the 

development of the prototype more manageable as each complex process was reliant on the 

previous process functioning properly. The physical context dimension was implemented 

first, followed by the user-activity context, the health context and finally the preferences 

context dimension. The prototype was developed on a Samsung Galaxy S4, which had an 

Android operating system of Version 4.1.2 (Jelly Bean) (Google Inc. 2014c). The Samsung 

Galaxy S4 was selected as it contains a large number of built-in sensors that are applicable to 

this research. These sensors included a variety of new sensors that were not previously 

available on the Samsung Galaxy S3, such as the ambient temperature and humidity sensors. 

After the mobile device and targeted platform were selected, the next step was to start 

gathering the context data. 

4.3.1 Data Gathering 

The gathering of context data involves two of the significant steps identified in Chapter 2, 

namely acquisition and monitoring of context data. Context acquisition is focused on 

gathering an instance of the current context data, while monitoring of context deals with 

checking for changes in the context data. For example, when dealing with location data, 

acquiring the user's location provides a single instance of the location data. However, if 

wanting to monitor the user's location as his/her location changes, one has to actively monitor 

it by requesting to receive periodic location updates. To receive periodic location updates two 
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update parameters need to be specified. The first parameter is the update interval, which is set 

in milliseconds. Once set, the update interval is not guaranteed as it is dependent on other 

location services requests, which are competing for time slices on the smart phone. If there 

are no other requests the periodic location updates will be received at the preferred update 

interval that was set (Google Inc. 2014i). The second parameter determines the accuracy 

required for the location request. If a location request of high-accuracy is needed the priority 

is set to high accuracy. The choice in update parameters can significantly affect the battery 

life of the mobile device and thus needs to be handled accordingly (Google Inc. 2014e). 

 

The data gathered for the four contexts were obtained from multiple input sources. The 

integrated approach discussed in Chapter 2, of using sensory data from the mobile device and 

the network in the form of web services, was followed. The multiple input sources used are 

highlighted below for each dimension according to the design of the proposed model. The 

web services used as input sources will also be discussed and motivated for each of the web 

services selected. 

 

The Physical Context dimension used the following input sources: 

 Environmental - Light sensor, temperature and humidity sensor, proximity sensor, 

microphone, web services (OpenWeatherMap). 

 Location - GPS, Wi-Fi, GSM, sensors, web services (Google APIs). 

 Time/Date - Mobile device. 

 Spatial - Accelerometer, gravity sensor, magnetometer, gyroscope, rotation vector 

sensor, GPS. 

 Network - Mobile device. 

 Device States - Mobile device. 

 

The User-Activity Context dimension utilized the following input sources: 

 Activity - Low-power sensors (Google API). 

 Task - To-do list. (Out of scope) 

 Schedule - Calendar on mobile device. 
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The Health Context dimension used the following input sources: 

 Physiological - External wearable sensors. (Out of scope) 

 Medical - Personal Health Record (PHR). 

 

The Preferences dimension utilized the following input sources: 

 Identity - web service (Facebook). 

 Social - web service (Facebook). 

 Interests & needs - web service (Facebook). 

 Points of interest - Places of interest. (Out of scope) 

 Availability - Calendar, activity. 

 

As mentioned before, the physiological context attribute will not be implemented as it is out 

of scope. The additional context attributes that will also not be implemented include tasks and 

points of interest context attributes. The task attribute cannot be implemented at this stage as 

there is currently no generic to-do list that is found on mobile devices such as the calendar. 

For this reason it was considered out of scope. The points of interest attribute requires input 

directly from the user as highlighted in Table 4.1 in Section 4.2.1. Since there is no other 

identified input source for this attribute, it has also been classified as out of scope. 

 

The main input sources that were used during the data gathering process consisted of the 

input from the built-in sensors and elements within the mobile device such as the date and 

time. The other most significant input sources included the web services and APIs used. Web 

services are a type of API, which usually operates over HTTP, however, not all APIs are web 

services (Cholakian 2009). 

 

The most suitable web services and APIs were selected based on the input data required and 

the output data returned. The selected web services and APIs include: 

 OpenWeatherMap API for obtaining weather data; 

 Google Geocoding API for determining addresses; 

 Google Location APIs (Fused Location provider and Activity Recognition); 

 Facebook API for obtaining most of the preference data. 
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In order to handle the battery life of the mobile device more efficiently, several data gathering 

strategies were implemented in CoPro. The first strategy implemented involved combining 

movement awareness with location awareness. If the mobile device has not yet moved, then 

the location would still be the same. However, if the device has moved, the location would 

have changed. This initial strategy was achieved by using the values of the activity 

recognition API in determining when to request new location updates from the fused location 

provider API. For example, if an activity of value of "Driving" was detected with a high 

confidence (i.e. 100%), then the request for new location updates with a high-accuracy were 

made. On the other hand, if an activity of value of "Still 100%" was detected, no further 

location updates were made. Alternatively, if an activity of value of "Unknown" was 

detected, new location updates with a balanced-accuracy (i.e. balance between power and 

accuracy) were made. This initial strategy not only preserved battery life, but also made 

effective use of movement awareness with location awareness in CoPro (Google Inc. 2014e). 

 

The second strategy implemented involved creating a dependency between the request for 

weather data and request for location updates. This dependency was identified as significant 

as the request of current weather data is reliant on a single location (OpenWeatherMap Inc. 

2014). This second strategy was achieved by only requesting weather data when an updated 

location was received. The implementation of this second strategy was enhanced further by 

only requesting a weather update if the weather data had not yet been set or if the weather 

data was older than ten minutes (i.e. 600,000 milliseconds). The age of the weather data was 

captured in milliseconds, highlighting the importance of this unit of measure. 
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Figure 4.5: Example of low-level data gathered by CoPro 

 

Once all the data was gathered by CoPro, as shown in Figure 4.5, some of this data needed to 

be filtered in order to be more useful. An example would be the sensor data that is acquired 

from the built-in sensors of the mobile device, which are regarded as raw sensor data. In most 

cases raw sensor data needs to be pre-processed or filtered in some way to cater for any 

reading errors. There are several tools and techniques available that can overcome these 

errors. The selected techniques used during the implementation of the proposed model will be 

highlighted in the next section. 

4.3.2 Data Filtering 

The most suitable tools and techniques were selected and used based on the gathered context 

data. These tools and techniques were also selected based on the errors that they deal with 

and the amount of processing required for the raw data to become useful as the processing 

was done on the mobile device.  

 

Initially, a bandpass filter was selected to filter the motion data (i.e. accelerometer data) as it 

consists of a high-pass filter as well as a low-pass filter (Milette & Stroud 2012). The high-

pass filter would filter out slow drift (i.e. slow increasing or decreasing of values) and offset 
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(i.e. initial reading not starting at 0) while giving higher frequency changes. The low-pass 

filter would have a smoothing effect (i.e. averaging) on the data and filter out high-frequency 

signals or noise. The bandpass filter would therefore filter out both low-frequency and high-

frequency data and keep the data at a frequency range with fewer errors. However, a 

bandpass filter was not used as the rotation vector sensor, as identified in Section 3.2 in 

Chapter 3, was used for implementing motion-related tasks such as monitoring angular 

change. By using the rotation vector, no further calibration or filtering was needed. This 

deduction was supported by the rotation vector sensor itself, which is an integration of 

accelerometer, gyroscope and magnetometer readings. The combination of these different 

sensor readings allowed for the errors from one sensor to be mitigated by the other. For 

example the rotation vector uses a gyroscope and an accelerometer as its main orientation 

change inputs. The gyroscope, however, is not perfect as it has a drift error and thus a 

magnetometer input is needed to compensate for this gyroscope error. Drift describes the 

slow, long-term wandering of returned sensor data away from the real-world value (Milette & 

Stroud 2012). 

 

The microphone was not part of the other sensors and thus needed to be handled and 

processed independently. For example, the sound values obtained from the mobile device's 

microphone was not only filtered by using a simple moving average (i.e. mean of every 10 

values reported), but also had to be calibrated. This calibration involved calibrating the sound 

values with a sound level meter in order to accurately report the actual ambient sound level. 

This calibration was needed to report valid sound level values as the mobile device's 

microphone did not report the actual sound level. 

 

The raw environmental data collected from the light, pressure and temperature sensors 

usually require no calibration, filtering or modification (Google Inc. 2014a). Other raw data 

from sensors such as the proximity sensor also typically require no filtering. However, when 

assessing the accuracy attribute provided with the environmental and proximity sensor 

readings, a value of 0 was returned, which is also represented as 

"SENSOR_STATUS_UNRELIABLE". This value indicated that some calibration was 

needed (Google Inc. 2014h). In order to address this issue and to produce optimal results, a 

fixed buffer window was used.  
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After gathering data from each sensor, a sensor data object for each reading was created to 

handle the multiple values obtained from the sensor readings. For example, the light sensor 

reported several values, including light level, accuracy, type of sensor and timestamp (Google 

Inc. 2014g).  

 

The timestamp of each sensor reading did not produce accurate data regarding when that 

specific sensor reading was actually measured. This is a known issue regarding the timestamp 

information provided from mobile device sensors (Google Inc. 2014b). In order to solve this 

problem, the following programming method System.currentTimeMillis() was used to 

capture the current time at the time a specific sensor reading was measured (Sam 2012). This 

captured time was used as the measured time of that specific sensor reading and was then 

used to create the sensor data object together with the other reported values (i.e. light level, 

accuracy and type of sensor). This sensor data object was then added to the fixed buffer.  

 

The size of each buffer varied depending on the type of sensor and the frequency with which 

the sensor reported new sensor readings. For example, the light sensor has a minimum delay 

(i.e. minDelay) of 0, which indicates that it receives a new reading as soon as a change in the 

light level is detected. The occurrences of light sensor readings were tested during 

development, which reported between seven to eight sensor readings per second. Based on 

this number of readings per second, the size of the buffer was set to eight for the light sensor. 

This buffer size ensured that enough light sensor data objects were collected for further 

processing. 

 

To further process the sensor data objects in the fixed buffers, a set of QoC metrics as 

identified in Section 2.2.2 in Chapter 2, were used to evaluate the quality of the data in order 

to filter the values. The objective of filtering the values in the buffer, was to determine the 

best sensor data object by assessing the quality of those objects gathered with QoC metrics. 

The best sensor object was determined by first taking every sensor object out the buffer and 

creating a new context data object (e.g. a light data object). On the creation of the second 

context data object, the QoC metrics for both context objects were calculated with those QoC 

values then being compared. The values from the QoC metrics are between 0 and 1, as 

highlighted in Section 2.2.2, making them easier to compare. A calculate and compare 

process was repeated for all sensor objects in the buffer, whilst temporarily storing the 
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current best context data object of the two. Using the light sensor as an example, the 

implemented filter process is highlighted in the pseudo code shown as Figure 4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Pseudo-code representing QoC filter process 

 

As illustrated in Figure 4.6, each QoC result (e.g. result1) was determined by subtracting the 

next object's QoC value from the current object's QoC value. Each result was greater than 0 if 

the current object's QoC value was higher than the next object's QoC value or if vice versa, 

then the result would be less than 0. These QoC results were then summed and if that overall 

summed value was less than 0 then the current best context data object would be the next 

object. If the overall summed value was greater than 0, the current best object remained the 

same and was then compared with the next context object created from the buffer. 

 

All the QoC metrics used in this filter process as well as those implemented for assessing the 

quality of other non-sensor inputs (e.g. network state, calendar, weather) are discussed below, 

highlighting how each metric was calculated. The calculated values of the QoC metrics were 

also stored in each context data object. The QoC metrics implemented as identified in Section 

2.2.2 in Chapter 2, included freshness, up-to-dateness, reliability, granularity, confidence 

interval and significance 
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The first QoC metric was freshness, which was a quality measure that was used to calculate 

the objective timeliness of each context object. The freshness metric was considered 

objective as it was measured independent of specific user requirements (Manzoor et al. 

2010). The freshness QoC metric was calculated using the ratio of age of context object O 

and the time period, which was determined by using Equation 1. 

 

                         Age(O)                                                                                               (1) 

 

The age of context, as shown above, was calculated by subtracting the measured time t meas of 

context object O from the current time t curr. The age of context highlighted how old the 

context object was based on the current time. 

 

The second part needed to calculate the freshness QoC metric was the time period. The time 

period as defined by Manzoor et al. (2010) was the time interval between sensor reading 

measurements. This definition, however, only compensates for sensor inputs and not all 

context inputs. This deduction was further supported by Manzoor et al. (2010) who suggested 

using the sensor configuration (i.e. minDelay) as the time period. The minDelay value, 

however, is only provided by sensors and not provided by other context inputs, such as 

calendar and network state. Another issue with the minDelay, is that it only reports the 

minimum time that the sensor can produce new sensor reading measurements but not the 

actual time between readings (Google Inc. 2014f). Manzoor et al. (2014) later reworded their 

time period definition as the time interval between two readings of context. Nonetheless, this 

reworded definition still only referred to sensors as it was classified under sensor 

characteristics. By taking this reworded definition of time period into consideration, a 

possible solution was derived for calculating the time period for all context inputs. The 

solution for calculating the new time period is highlighted by Figure 4.7 shown in Code 

Extract 1. 
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Figure 4.7: Code extract of code used to calculate time period for network state 

 

The code extract in Figure 4.7 is an example of how the new time period was calculated for 

the non-sensor network state context, which would be used for calculating the network's 

freshness. Line 1 shows the code used to keep a reference to the measured time of the 

previous network context object. The current time was then obtained and assigned to a 

variable (i.e. ct) in Line 2. Line 3 updated the measured time for the previous network object 

with the new measured time (i.e. ct). Line 4 shows the code used to keep a reference to the 

updated measured time of the current network object (i.e. updated with ct). The time period 

was then calculated by subtracting the measured time of the previous network object from the 

measured time of the current network object in Line 5. Finally the current network object's 

time period was set in Line 6. 

 

The freshness QoC metric was then finally calculated for each input context object O with 

Equation 2: 

  

Freshness(O)                                                                                                           (2) 

 

As shown in Equation 2, if the age of context object O was less than the time period of 

context object O, freshness was then calculated by the normalized (i.e. subtracted from 1) 

ratio of age to time period. However, if the age of context object O was not less than the time 

period of context object O, the freshness was reported as 0. 

 

The up-to-dateness was the second QoC metric used, which measured the subjective 

timeliness of each context object. In contrast to the freshness metric, up-to-dateness was 
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considered subjective as it was measured based on specific user requirements (Manzoor et al. 

2010). The only difference between calculating the up-to-dateness and freshness was the use 

of a subjective validity time value instead of an objective time period value. This validity 

time value was set for each individual input source based on the maximum time interval in 

which the input source was considered stable (Manzoor et al. 2010). The up-to-dateness was 

calculated for each input context object O using Equation 3: 

 

Up-to-dateness(O)                                                                                         (3)    

 

The structure of the up-to-dateness formula as shown in Equation 3, was similar to that of the 

freshness formula as shown in Equation 2 with the only exception being the use of the 

validity time value as a substitute for the time period value. 

 

The third QoC metric used was reliability. Reliability measured the reliance in the correctness 

of the context information. Manzoor et al. (2014) identified and calculated reliability by 

using the accuracy provided by the sensor, and the distance between the context source and 

the user for which that information was collected. However, there were two issues regarding 

their calculation of reliability for this research.  

 

The first issue was that the accuracy value provided by the sensors was not reliable as 

identified at the beginning of this section (Section 4.3.2). The second issue was that the 

reliability calculation considered context sources (i.e. sensors) that were remotely located 

sensors, such as temperature sensors distributed around a city. As this research only focused 

on the input sources (e.g. sensors) provided on the mobile device, the distance between the 

context source and user was negligible. Therefore a new method to calculate the reliability 

for each input context object O was produced and is shown in Equation 4: 

 

       Reliability(O)  =  (Freshness(O) + Up-to-dateness(O)) / 2                    (4)      

 

The produced reliability formula as shown in Equation 4, used the mean of the freshness and 

up-to-dateness QoC metrics of context object O in order to determine the reliability of 
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context object O. Using the freshness and up-to-dateness metrics together provided both an 

objective and subjective view of the reliability of context object O. 

 

Granularity of a context object measures the precision of the context data in terms of the 

maximum precision level that the context object can obtain (Zheng et al. 2012). For example, 

a sound value of 32.22 dB would have a granularity of 1 if the maximum precision level for 

sound was 3. The maximum precision value of sound of 3 in this example was calculated by 

adding 1 to the maximum number of decimals a sound value could contain (i.e. 2). 

Granularity was only calculated for contexts with multiple levels of precision, which included 

the location context as well as the streaming sensors consisting of light, temperature, 

humidity and sound context. Each context identified, had a unique maximum precision value, 

which was dependent on the highest precision level that context could produce. The 

granularity for each input context object O of the identified contexts was calculated using 

Equation 5: 

 

                   Granularity(O)                                                                            (5)      

 

Granularity of context object O was calculated by using the ratio of the current precision 

level to the number of precision levels (i.e. maximum). The current precision was calculated 

at runtime when the granularity of context object O was calculated. 

 

The next QoC metric used was the confidence interval of a context object. Although the 

confidence interval was not a typical QoC metric, it was still used as one. This was because 

the confidence interval provided valuable insight into the quality of the context information 

produced, which is the purpose of a QoC metric (Section 2.2.2). The confidence interval was 

only obtained for the location and activity context as the context providers of these input 

sources provided a confidence interval with the context data (Google Inc 2014d). Therefore 

no calculation of the confidence interval was needed. 

 

The final QoC metric used during the implementation was the significance QoC metric. The 

significance QoC metric measured the extent to which the context information was 

considered important for a specific situation (Zheng et al. 2012). The significance of a 

context object was determined by considering the critical value of the context object in 
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relation to a maximum critical value of that context. The significance QoC metric is based on 

user requirements and was classified as a subjective QoC metric (Manzoor et al. 2010). The 

significance of context object O was determined by means of Equation 6. 

 

               Significance(O)                                                                              (6)      

 

As illustrated in Equation 6, the significance of context object O was determined by the ratio 

of the current critical value of the context object O to the maximum critical value of context 

object O (Manzoor et al. 2010).  

 

All the above QoC metrics formed the basis of the evaluation metrics used for the evaluation 

of the prototype, CoPro, which was developed based on the proposed model. The use of QoC 

metrics as evaluation metrics will be discussed in the next chapter, Chapter 5.     

 

Once the best context data object was obtained based on the QoC metric filtering, the data 

object was then prepared for feature extraction, as identified in Chapter 2 (Section 2.3). This 

process was used to extract high-level context from the low-level context, which is described 

in the next section. 

4.3.3 Feature Extraction 

Determining the user's context throughout their daily activities is one of the main challenges 

in this research area, as identified in Chapter 3. Extracting useful and meaningful high-level 

contextual information about the user from raw low-level data of a mobile device (i.e. smart 

phone) is a step towards solving this problem.  

 

Feature extraction is achieved by setting thresholds for the processed data, which allow for a 

high-level meaning to be obtained rather than simply reporting the absolute value. For 

example, the light sensor reports its readings in lux and has a dynamic range between 0 and 

30,000 lux. The smallest difference in light that the sensor can detect is 1 lux. A value of 

10,000 lux is regarded as an overcast day (i.e. high-level). The following numbers represent 

typical values that can be expected (Milette & Stroud 2012): 

 No moon - 0.001 lux 
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 Full moon - 0.25 lux 

 Cloudy - 100 lux 

 Sunrise - 400 lux 

 Overcast - 10000 lux 

 Shade - 20000 lux 

 Sunlight - 110000 lux 

 Sunlight max - 120000 lux 

 

The high-level meanings used for multiple input sources gathered are shown below for each 

dimension according to the design of the proposed model. The feature extraction was only 

applied to the dynamic data and not the static data, as the dynamic data has multiple states as 

opposed to the static data that only has one state (i.e. actual value). Only the physical and the 

user-activity dimensions had dynamic data and therefore feature extraction was only applied 

to these two dimensions to obtain high-level meanings. The high-level meanings that were 

used were based on the data collected as well as existing thresholds (Santos, Cardoso, 

Ferreira, Diniz & Chaínho 2010; OpenWeatherMap Inc 2014; Google Inc 2014d). 

 

The Physical Context dimension used the following high-level meanings (Santos et al. 2010; 

OpenWeatherMap Inc 2014): 

 Environmental  

o Light level - Very Dark, Dark, Normal, Bright, Very Bright 

o Temperature level - Very Cold, Cold, Mild, Hot, Very Hot 

o Humidity - Low, Medium, High 

o Proximity level - Near, Far 

o Sound level - Very Silent, Silent, Moderate, Loud, Very Loud 

o Weather Conditions - Overcast clouds, Clear sky, Scattered clouds, Broken 

clouds, Shower rain, Rain, Thunderstorm, Snow, Mist.  

 Location  

o Current Location - Actual Address 

 Time/Date 

o Time of day - Dawn, Morning, Afternoon, Night 

o Day of the week - Monday, Tuesday, Wednesday, Thursday, Friday, 

Saturday, Sunday. 
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 Spatial  

o Orientation level - Face up, Face down 

 Network  

o Network Status  - Wi-Fi & Mobile Enabled, Wi-Fi enabled, Mobile 

Enabled, No Internet access 

 Device States  

o Battery level - Low, Okay, High, Full 

o Charging State - Charging with USB, Charging with AC, Discharging 

o Ringer State - Silent, Vibrate, Normal 

 

The User-Activity Context dimension utilized the following high-level meanings (Google Inc 

2014d): 

 Activity  

o Detected Activity - Unknown, Still, Tilting, on Foot, Cycling, Driving 

 Schedule 

o Current Event - Actual Event 

 

Extracting features from the multiple-input sources helped to provide more meaningful high-

level information such as providing the location address instead of reporting only the GPS 

coordinates. This provided insight into the user's current context rather than simply reporting 

absolute values and addressed the first existing issue identified in Section 2.5 in Chapter 2. 

The high-level context that was produced for CoPro as a result of the feature extraction 

process is highlighted in Figure 4.8. The feature extraction process (i.e. settings thresholds) 

was one step towards addressing the problem of determining the user's context throughout 

their daily activities. The next step, as suggested in Section 3.2 in Chapter 3, was to not only 

identify high-level context from multiple-input sources (i.e. low-level), but to predict context 

for specified situations, such as being at home, which could help to solve this problem. 
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Figure 4.8: High-level contexts reported by CoPro using feature extraction 

 

Two approaches were used to overcome this problem. The first mapped the preferences data 

to the extracted features. For example, the address feature for the current location was 

mapped on to the preference for the user's home. So if the predicted address matched the 

address specified in the preferences, this would then further infer that the user was at home. 

Making use of user preferences allowed the user to have some level of control over the 

context recognition and prediction process. This addressed the issue of balancing the user’s 

control, identified in Section 2.5, with preferences while still performing automated context 

recognition.  

  

The second approach was to combine the extracted features (i.e. high-level context) data with 

context rules to generate context models, as highlighted in Section 2.6, which inferred the 

specified context situations. Identifying these context situations of interest was highlighted as 

future work in Section 2.5. The context situation predication techniques and algorithms used 
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in CoPro for deriving inferred context are discussed in the next section. The inferred context 

situations that were determined are also identified in the next section. 

4.3.4 Context Situation Prediction 

The complex problem of predicting context situations identified in Section 2.5 was initially 

addressed using the first approach by means of preferences. The importance of preferences 

was emphasised during the analysis of existing mobile context models and infrastructures in 

Section 3.5. This analysis concluded (Section 3.7) that having user preferences was essential, 

with some context existing models, such as the one by Fausto and Alberto (2010) having two 

out of four core dimensions dedicated purely for user preferences. Supplementing context 

information with preferences was also highlighted in Section 2.2, which would help define 

the user, their behaviour and environment.  

 

In order to obtain user preferences, Section 2.2 identified that user preferences could be 

explicitly provided from the user via the application user interface. For the purpose of this 

research a dummy Facebook account was created for testing purposes to simulate a user with 

a Facebook account. The use of the Facebook API identified in Section 4.3.1, allowed CoPro 

to obtain several preset preferences for the user by simply letting the user log in to Facebook 

via CoPro. This approach would require less effort from the user in providing their 

preferences, as opposed to the user entering each of their preferences manually.  

 

Other preferences that could not be obtained from Facebook or if the user had no Facebook 

account would then have to be obtained directly from the user. In order to simulate this 

scenario, CoPro manually set two sets of preferences that would require input from the user. 

The first set of preferences were location preferences, including a work address and a home 

address. These location preferences were derived from Figure 3.8, which had a location 

context with values of home and workplace. Once these location preferences were set in 

CoPro, they were matched against the location context if a location address was obtained to 

determine if the location context was "At Home" or "At Work". The second set of 

preferences were derived from a medical PHR identified in Section 3.3.1. These medical 

preferences were combined with the Facebook preferences to form a single user profile of 

preferences. An example screenshot of the CoPro app is shown in Figure 4.9, which 

illustrates several of the preferences that were collected. 
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Figure 4.9: Example of user preferences obtained by CoPro 

 

The following preferences were collected by CoPro: 

 Preferences - Name, Birthday, Gender, Relationship status, Location, Currency, 

Languages, Education, Work, Movies, Music, Books. 

 Medical profile - Emergency Contact (Name, number), Doctor (Name, number, 

hospital address), Medical Insurance (Medical aid, medical plan), Allergies. 

 

The second approach used to deal with predicting context situations was to make use of 

inferred context rules. A total of five context situations of interest were identified and derived 

based on existing inferred context shown in Table 4.2 and the high-level context information 

highlighted in Section 4.3.3.  
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Table 4.2: Existing inferred contexts identified from literature 

Paper Title Identified Inferred Contexts 

Context and Bio-Aware Mobile Applications Place, Activity, Mood, OnPerson. 

Extracting High-Level User Context from Low- 

Level Mobile Sensors Data 

Home, School, Work. 

Bayesian Network-Based High-Level Context 

Recognition for Mobile Context Sharing in 

Cyber-Physical System 

 

Activity (Move, study, meal, sleep, sport, play, 

rest), Emotion, and User Relationship. "Related 

Work" Walking, Running, Idle and Resting. 

An Ecosystem For Learning and Using Sensor-

Driven IM Status Messages 

Place (At lunch, out of the office, at home, 

library, in lab). 

On Uncertainty in Context-Aware Computing: 

Appealing to High-Level and Same-Level  

Context for Low-Level Context Verification 

In a Meeting, Sleeping. 

Context Inference for Mobile Applications in 

the UPCASE Project? 

Sleeping, Resting, Working, Meeting, Walking 

Outside, Walking Inside, Running Inside, 

Running Outside. Driving, Exercising. 

Monitoring Natural Motions to Determine User 

Contexts and Intents 

Walking Upstairs, Standing or Sitting. 

CASS - Middleware for Mobile Context-Aware 

Applications 

Rain Brightness Temp Goal 

Wet  dull             cold   indoor 

Activity Zones for Context-Aware Computing Meeting, Reading. 

 

Each paper and the associated inferred contexts are highlighted in Table 4.2. The existing 

inferred contexts are associated with either an activity, a location, a posture or a mood. As the 

high-level contexts of CoPro did not cater for mood, the mood inferred contexts were not 

taken into consideration. 

 

The use of the produced high-level context to identify the five inferred context situations to 

be determined by CoPro, formed part of the context reasoning process highlighted in Section 

2.4 in Chapter 2. The five inferred context situations that were identified are illustrated in 

Table 4.3. 
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Table 4.3: Identified inferred context situations 

Inferred Context Input sources Values 

1. Availability Calendar, Activity, Ringer 

State, Network State. 

Free, Semi-Busy, Busy, 

Unknown. 

2. Indoor/Outdoor Location Proximity, Location, Light, 

Calendar, Time of Day, 

Activity. 

Indoor[H], Outdoor[H], 

Outdoor/Semi-outdoor[H], 

Indoor[L], Outdoor[L], 

Outdoor/Semi-outdoor[L] 

3. Posture Orientation, Proximity, 

Activity. 

Upright, Lying Down, 

Sitting/Standing, Unknown. 

4. Inferred Activity Activity, Calendar, Location, 

Time of Day, Light, Sound, 

Proximity. 

Sleeping, Resting, Working, In 

Meeting, Watching TV, 

Calendar Event, Going to 

Work, Going Home. 

5. Device Location Proximity, Activity, Charging 

State, Orientation. 

On Charge, In Hand, In 

Pocket/In Bag, Unknown. 

 

The inferred context situations shown in Table 4.3, are each paired with the input sources 

required for that situation's context rule to determine and report a value. The possible values 

that the context rule for each inferred context could produce are also listed in Table 4.3. Only 

the context rules for the second and fourth inferred context situations were developed based 

on existing context rules. The context rules for the remaining three inferred context situations 

were designed and implemented from this research. An example of the inferred contexts 

derived by CoPro is shown in Figure 4.10. 
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Figure 4.10: Example of user preferences obtained by CoPro 

 

The first inferred context was availability, which was initially classified as a low-level 

context. However, as highlighted in Section 4.3.1, availability was a combination of two 

input sources - the activity and calendar. Therefore, availability was changed into an inferred 

context situation. Other factors were also later identified that could assist in determining the 

availability of the user, including the network and ringer state.  

 

Indoor/Outdoor (I/O) location was identified as an inferred context situation as the lack of 

indoor positioning was one of the existing issues highlighted in Section 2.5 in Chapter 2. The 

I/O location context rule was designed by using an existing context rule as a basis (Zhou, 

Zheng, Li, Li & Shen 2012). The existing context rule used is shown in Figure 4.11. 
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Figure 4.11: Existing context rule of light detector (Zhou et al. 2012) 

 

The existing context rule was selected as a basis for the design of the context rule for the I/O 

location context as it used input sources that CoPro already supported. These input sources 

included the proximity, light and time of day. This context rule, however, only used three 

inputs and was therefore enhanced with three other inputs including the location, activity and 

calendar. 

 

Posture was the third inferred context identified from the existing inferred contexts 

highlighted in Table 4.2. Posture refers to the posture of the user and was inferred by using 

the high-level values of orientation, proximity, activity. 

 

Inferred activity was also identified from the existing inferred contexts highlighted in Table 

4.2. Inferred activity represented a more abstract meaning (e.g. working) than a high-level 

physical activity (e.g. walking) identified in Section 4.3.3. Inferred activity's context rule 

used the most inputs in order to determine the actual inferred activity. These inputs included 

activity, calendar, location, time of day, light, sound, and proximity.  

  

The final inferred context was the device location, which represents the location of the 

mobile device in relation to the user. The device location context was identified based on the 

high-level inputs and on the first row of existing inferred contexts highlighted in Table 4.2. 

The device location had the same inputs that were used for the posture context excluding the 

charging state.  
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4.4 Conclusion 

This chapter addressed Research Question 3 that was identified in Chapter 1: "How can an 

improved context-aware model be developed?" This chapter discussed the design (Section 

4.2) and implementation (Section 4.3) of the context-aware model, which was centred on the 

second cycle of the DSR methodology. The typical context awareness architecture (Fig 2.1) 

identified in Chapter 2 was extended (Section 4.2.3) to support context awareness in mobile 

applications using multiple input sources. The proposed context-aware model (Section 4.2.2) 

was based on the most complete existing context model that was selected in Chapter 3. The 

proposed model was then extended to address the shortcomings of the selected model. These 

extensions included the addition of context attributes identified in Section 3.6 that were not 

part of the existing context model and the addition of a health context. The contents of this 

chapter were incorporated in a paper presented at the Southern Africa Telecommunications 

Networks and Applications Conference in 2014 (Pather et al. 2014), supporting the feasibility 

(i.e. viability) of the artefact, which is an important aspect of DSR (Hevner et al. 2004). 

 

The main deliverables of this cycle were the design of the context-aware model and the 

implementation of a prototype, called CoPro. The prototype was developed in an iterative 

manner, through which changes were made based on constant feedback as the prototype was 

implemented. CoPro was implemented effectively as it produced low-level, high-level and 

inferred context information simultaneously. 

 

The next chapter will discuss the evaluation of the prototype to determine the extent to which 

CoPro can support the context awareness needs in mobile applications. The purpose of 

evaluating CoPro will be to assess the feasibility of the proposed model. CoPro will be 

evaluated in terms of utility, quality and efficacy by conducting several experiments. The 

results of these experiments will be presented, analysed and the findings will be used to refine 

the design and implementation of CoPro. The results will then be matched to the 

requirements from both literature Chapters 2 and 3 to determine the extent to which CoPro 

supported those design implications. Finally, design recommendations will be made based on 

the results and matched requirements to conclude the chapter.  
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 Chapter 5: Evaluation 

5.1 Introduction 

The design and implementation of the proposed context-aware model as a prototype, called 

CoPro was discussed in Chapter 4. The design of the proposed model formed the basis for the 

implementation of the CoPro prototype. CoPro was implemented for the purpose of 

evaluating the feasibility of the proposed model. 

 

This chapter addresses the evaluation phase of the DSR methodology and the fourth research 

question identified in Chapter 1: "How effective, reliable and capable is the proposed 

context-aware model and to what extent does it support context awareness in mobile 

applications?" As with the design and implementation of the proposed model, the evaluation 

of the proposed model was also a core activity of the Design Cycle in DSR. The Design 

Cycle allowed for re-evaluations to be conducted to refine the design artefact until the final 

design artefact was produced. Experimental evaluation methods, including controlled 

experiments and simulation, were used to demonstrate well-executed evaluation methods, as 

proposed by Hevner et al. (2004). The experimental evaluation methods rigorously 

demonstrated the utility, quality and efficacy of CoPro.  

 

The chapter first identifies evaluation techniques, which can be used to evaluate CoPro. The 

goals of the evaluation are then described. A suitable evaluation technique is then selected 

and motivated based on the evaluation goals. The experimental design is then described in 

detail, which includes the evaluation objectives, evaluation metrics, evaluation instruments 

and evaluation procedure. The analysis of results as well as the design improvements for each 

evaluation are presented. Lastly, the design implications and the design recommendations are 

discussed to conclude the chapter. 

5.2 Evaluation Techniques 

Selecting the right evaluation techniques to evaluate the CoPro artefact was crucial in 

answering the fifth research question identified in Chapter 1. As CoPro is a DSR artefact, 

previous DSR literature could provide insight into which techniques would be the most 

appropriate for evaluating CoPro. A number of techniques for evaluating DSR artefacts have 

been identified by DSR researchers (Ostrowski & Helfert 2012). 
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March and Smith (1995) highlighted that evaluation should be a build and evaluate process. 

This process would involve the development of criteria and evaluating the artefact's 

performance based on the developed criteria. Determining not only if the artefact works but 

why and how it works was also emphasized by March and Smith (1995).   

 

Hevner et al. (2004) proposed five evaluation techniques: 

 Observational  

o Field Study - Observe use of artefact in multiple projects 

o Case Study - Examine artefact in depth in environment 

 Analytical  

o Static analysis - Identify static qualities (e.g., complexity) by studying artefact 

structure  

o Dynamic analysis - Identify dynamic qualities (e.g., performance) by 

examining artefact while in use 

o Architecture analysis - Examine fit of artefact into technical architecture 

o Optimization - Show artefact's optimal properties or supply optimality bounds 

on artefact behaviour 

 Experimental   

o Simulation - Execute artefact with artificial data 

o Controlled Experiments - Examine artefact in controlled environment for 

qualities  

 Testing   

o Structural (White Box) Testing - Execute coverage testing of specific metric in 

artefact implementation  

o Functional (Black Box) Testing - Identify failures and flaws by testing artefact 

interfaces 

 Descriptive  

o Scenarios - Demonstrate artefact's utility through well-designed scenarios  

o Informed Argument - Construct a convincing argument showing artefact's 

utility by using information from knowledge base (e.g., relevant research).  

 

Peffers, Tuunanen, Rothenberger and Chatterjee (2007) suggested that evaluation should 

consist of two activities including demonstration and evaluation. The demonstration activity 

would involve showing that the artefact achieved its intended purpose and works in at least 

one context. The evaluation activity involves demonstrating how well the artefact solves the 

identified problem. 

 

Venable (2006) also separated evaluation into two distinct and independent evaluation 

techniques including naturalistic and artificial. Testing the performance of an artefact in its 
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real environment is considered a naturalistic evaluation technique. A naturalistic evaluation 

includes several methods for evaluation such as action research, surveys, field studies and 

case studies. Artificial evaluation involves evaluating an artefact in a rigorously controlled, 

"scientific" manner. The artificial evaluation methods included in this technique are 

simulations, mathematical proofs, theoretical arguments, criteria-based analysis, field 

experiments as well as laboratory experiments.  

5.3 Evaluation Goals 

A key goal of DSR is to produce a viable artefact in the form of a construct, a model, a 

method, or an instantiation (Hevner et al. 2004). CoPro was developed with the goal of 

evaluating the proposed context-aware model. Determining the feasibility of this model by 

evaluating CoPro is aligned with the above mentioned DSR goal and is thus the main goal of 

the evaluation.  

 

The proposed model focuses on the process of dealing with context awareness from multiple-

input sources. This process forms the underlying middleware layer and context gathering and 

pre-processing layer, as illustrated in Section 4.2.3 of Chapter 4. These two layers produce 

and would ultimately provide context information to mobile applications to utilise.  

 

Sensor-based context recognition was identified as an existing issue in context awareness in 

Section 2.5 of Chapter 2. Evaluating whether or not the CoPro prototype can actually perform 

sensor-based context recognition will validate if the proposed model works, as well as 

rigorously demonstrating the utility of the artefact (Ostrowski & Helfert 2012). Evaluating 

the effectiveness of CoPro in producing context information formed part of the main goal of 

the evaluation. 

 

In order for mobile app developers to use the produced context information in their mobile 

applications, the context information needs to be reliable and useful. However, context 

information might not always be reliable or useful, which is seen as a problem related to the 

quality of the context information. The nature of context allows context information to be 

constantly changing, incomplete, uncertain, and obtained from multiple distributed input 

sources. To produce reliable context information when dealing with context awareness, the 

quality of the context information needs to be ensured (Kim & Lee 2006). The extent to 
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which the proposed model objectively provides quality context information also formed part 

of the main goal of the evaluation.  

 

As the proposed model was aimed at mobile applications running on mobile devices, the 

limitations of mobile devices needed to be considered. These limitations included limited 

battery power, limited processing power and dealing with the absence of information, which 

was highlighted in Section 2.5. Evaluating how CoPro took these aspects into account will 

demonstrate how capable the proposed model is in solving the identified problem in Section 

1.6. Determining the efficacy of the proposed model was the final part of the main goal of the 

evaluation. 

 

The main evaluation goal together with each of the three sub-goals addresses the fifth 

research question identified in Chapter 1. The evaluation goals are also aligned with the DSR 

evaluation activity of the design cycle, in which the utility, quality, and efficacy of a design 

artefact must be rigorously demonstrated (Hevner et al. 2004). 

5.4 Selection of Techniques 

A strong basis for the selection process of the most suitable evaluation techniques was 

provided by matching the evaluation goals with the fifth research question identified in 

Chapter 1 and aligning those goals with the DSR methodology. Several evaluation techniques 

were identified in Section 5.2 from DSR literature; however, the DSR literature provides very 

little guidance in selecting amongst evaluation techniques and methods for evaluation in DSR 

(Pries-Heje, Baskerville & Venable 2008; Ostrowski & Helfert 2012). 

 

Pries-Heje et al. (2008) proposed a framework to assist Design Science researchers in 

building strategies for evaluating their research outcomes as well as to achieve improved 

rigor in DSR. Their framework recommended looking into the two perspectives of general IS 

evaluation to provide some guidance in forming a strategy for DSR evaluation. The first 

perspective is ex ante, whereby potential technologies or systems are evaluated prior to being 

implemented, acquired or even selected. The second perspective is ex post, which involves 

evaluating the selected technology or system after it has been implemented or acquired. The 

ex post perspective seemed the most relevant as CoPro had already been implemented, based 
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on the proposed model and was ready to be evaluated. Yang and Padmanabhan (2005) 

classified ex post into four categories, as illustrated in Table 5.1. 

 

Table 5.1: Categories of ex post evaluation methods (Yang & Padmanabhan 2005; Pries-Heje et al. 2008) 

 

As the proposed model was designed to support the context awareness process in mobile 

applications, it was appropriate to determine if the model could achieve this goal. Using the 

subjective opinions of users would not have validated if the proposed model worked from an 

objective point of view and thus eliminated the use of users for the evaluation. CoPro was 

developed with the intention of recognizing the current context. This intention suggested that 

CoPro needed to be tested within a real setting, which eliminated the abstract setting. 

 

The first category of experimental designs was the only remaining category and appeared to 

match the designed and implemented artefact. Appropriately matching the designed artefact 

with the selected evaluation techniques and methods was the only guideline provided by 

Hevner et al. (2004). Experimental designs illustrates the collection and the calculation of 

quantitative data in real situations (Pries-Heje et al. 2008). 

 

The experimental designs classified by Yang and Padmanabhan (2005) indicated that data 

collecting experiments would need to be conducted; however, they did not mention how this 

could be achieved. Matching experimental design with Hevner et al.'s (2004) experimental 

evaluation methods, namely controlled experiments and simulation, could assist in suggesting 

how these experiments should be done. Evaluating CoPro in a controlled environment would 

facilitate an objective evaluation. Simulation, as defined by Hevner et al. (2004), did not 

appear to be relevant at this stage as it is concerned with artificial data. 

 

Peffers et al. (2007) also provided further insight that could be incorporated into the strategy 

for evaluating CoPro. Evaluating CoPro in at least one context would show that the proposed 
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 Real Abstract 
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artefact solves the identified problem in Section 1.6 of Chapter 1. The second activity of the 

two step process would involve demonstrating how well CoPro solves the identified problem. 

 

Part of the guidelines suggested by Hevner et al. (2004) emphasized that the selection of 

evaluation techniques must not only be matched to the artefact but also to the selected 

evaluation metrics as well. The evaluation metrics that were selected stem from the Quality 

of Context Metrics (QoC) in Section 4.3.2 in Chapter 4.The selected evaluation metrics of the 

evaluation strategy for CoPro will be discussed in detail in Section 5.5.2. The evaluation 

metrics formed part of the design of the proposed model and were incorporated into the 

implementation of CoPro. Using and testing of the quality of context within the implemented 

model aligns with the structural testing evaluation method identified by Hevner et al. (2004). 

This testing method formed the final part of the strategy for evaluating the implemented 

artefact.  

5.5 Evaluation Design 

An experimental evaluation technique was selected as the most suitable technique based on 

the proposed artefact and was used for the evaluation of the artefact. Conducting experiments 

in DSR also supported the goal of objectively evaluating the overall quality of the artefact 

(Mettler, Eurich & Winter 2014). Ostrowski and Helfert (2012), however, emphasized the 

fact that DSR researchers are provided with very few examples of how one can actually 

execute evaluation at an operational level. Using the strategy formulated in Section 5.4 

assisted in designing and conducting the evaluation at an operational level.  

 

The evaluation design of the experimental evaluation technique was executed by performing 

controlled experiments in at least one context, which demonstrated if the artefact worked and 

how well it worked. The experiments collected, calculated and logged quantitative data for 

each context. The quantitative data was collected from inferred, high-level and low-level 

context values as well as from the structural testing (i.e. evaluation metrics) that was 

implemented in the artefact. The collected data was then analysed and the results were 

reported per evaluation conducted. 

 

This section discusses the experimental evaluation that was conducted in two different 

contexts. Two different contexts were chosen to rigorously demonstrate the goals of the 
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evaluation that were highlighted in Section 5.3. As location awareness is an important aspect 

of context awareness as identified in Section 2.1.2, an indoor context and an outdoor context 

were selected. The selected contexts were related to the mobile user's physical location.  

 

A significant aspect of using experiments in DSR evaluation is to evaluate the artefact under 

different conditions (Mettler et al. 2014). To ensure that the artefact was evaluated under 

different conditions, the device's location was selected as an independent variable based on 

the available inferred contexts. This independent variable was actively changed between 

being either in the hand or in the pocket of the evaluation administrator (the author). To 

ensure control during the experiments, the rest of the inferred, high-level and low-level 

context values were not actively manipulated. Mettler et al. (2014) support this by stating that 

only the independent variables are subject to deliberate manipulation in a controlled 

environment.  

 

Combining the different independent variable states with the different contexts produced four 

distinct evaluation scenarios. Each scenario represented a real situation in which the proposed 

artefact can be used. 

 

The following evaluation scenarios were used: 

 Indoor - In Hand (IIH) 

 Indoor - In Pocket (IIP) 

 Outdoor - In Hand (OIH) 

 Outdoor - In Pocket (OIP) 

 

The state changes for all context values were collected and logged for each scenario. The 

evaluation metrics for each value were also collected, calculated and logged for each 

scenario. The data logged for both context values and evaluation metrics were then analysed 

with the results used to refine and improve the artefact. The artefact was re-evaluated and 

improved upon multiple times. This iterative evaluation process is a core characteristic of 

DSR, which improved the quality of the design and was iterated several times before the final 

design artefact was produced (Markus, Majchrzak & Gasser 2002; Hevner 2007). 
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5.5.1 Evaluation Objectives 

The objective of the experimental design was to determine if the proposed model was feasible 

by objectively assessing the implemented artefact's ability to produce low-level, high-level 

and inferred context. Part of assessing CoPro's context recognition ability included whether it 

could produce context, the quality of the produced context and how it dealt with the 

limitations of context on a mobile computing platform. This assessment helped to identify 

design issues as well as implementation issues concerning the proposed model and CoPro. 

These issues could be factors that affected the artefact's ability to solve the problem it was 

intended to address of supporting context awareness in mobile applications. Identifying these 

issues as well as providing recommendations to overcome these issues thus formed a critical 

part of the evaluation objectives. 

5.5.2 Evaluation Metrics 

Mettler et al. (2014) identified that because there are no guidelines available for design 

experiments, Design Science researchers need to develop quality criteria for their 

experiments. This quality criteria will help other researchers understand the validity and 

reliability of the design experiments. 

 

The evaluation metrics selected for the evaluation strategy for CoPro were derived from the 

QoC metrics in Section 4.3.2. Only the objective QoC metrics were selected for evaluation 

purposes in order to match the goals set out in Section 5.3. By only considering the objective 

QoC metrics, four QoC metrics remained, namely freshness, reliability, granularity and 

confidence interval, as illustrated in Table 5.2. 
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Table 5.2: Remaining objective QoC metrics for low level context 

Quality of Context Metric Measures Source 

Freshness Indicates validity of context in 

terms of timeliness 

Time period, Age 

Reliability Indicates the extent to which 

context can be considered credible 

Freshness, Uptodateness 

Granularity Indicates the precision of the 

context 

Max_granlevel, 

Cur_granlevel 

Confidence Interval Indicates the confidence in the 

context produced 

Context provider 

 

The freshness, granularity and confidence QoC metrics remained the same for the evaluation. 

Reliability, however, used up-to-dateness as an input source, which is a subjective QoC 

metric. The algorithm for the reliability metric was therefore changed to provide a more 

objective view of reliability. Zheng et al. (2012) suggested that reliability may be affected by 

the freshness of the context as well as the trustworthiness of the environment. Taking this 

suggestion into consideration and the lack of overall QoC metrics, additional QoC metrics 

were implemented as shown in Table 5.3. 

 

Table 5.3: Additional objective QoC metrics for low/high level context 

Quality of Context Metric Measures Source 

Accuracy Indicates the extent to which data 

is correct and reliable 

Error of sensor, context 

values, t-distribution table  

Trustworthiness Indicates the trustworthiness of 

the context provider 

Completeness, Context 

object 

Completeness Indicates the extent to which the 

available context information are 

present 

Available context 

providers, Weightings of 

providers 

 

Accuracy was defined as the extent to which context information was correct and reliable. 

However, it was difficult to identify the true value for the evaluated context information. A 

statistical estimation method identified by Kim and Keumsuk Lee (2006) was used to 

determine the accuracy of the context information. This method involved estimating a 

confidence interval for the sensor values produced. If the sensor value was within the 

confidence interval then that sensor value can be regarded as accurate. The method suggested 

by Kim and Keumsuk Lee (2006) was used as it was compatible with the underlying 

implementation of CoPro. As discussed in Section 4.3.2 in Chapter 4, a buffer was already 

used to capture the sensor values, which were needed for the statistical estimation method. 
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The estimation method was used to determine the accuracy of sensors that provided 

continuous context information such as the light sensor. In order to determine the accuracy, a 

root mean square error (RMSE) was calculated, which was then used to calculate the upper 

and lower limit of the confidence interval. The RMSE was calculated using Equation 7 (Kim 

& Lee 2006). 

 

                                        (7)  

 

 

 

N represented the total number of sensor values in the buffer.       the current sensor value and  

the mean of the sensor values in the buffer. 

 

The next step was to calculate the confidence interval of the true value of a sensor      with 

which the current sensor value was compared. This confidence interval was calculated using 

Equation 8 (Kim & Lee 2006). 

 

                                 (8) 

 

 

V represented the calculated RMSE value.             indicated the t-distribution with v = N-1 

representing the degrees of freedom. By using                    ,                 was then obtained from 

the t-distribution table (Appendix A).                  was used as it represented a confidence of 

95% on the t-distribution table. This 95% value indicated that at 95% confidence, the true 

value was within the estimated interval (Walpole, Myers, Myers & Ye 2002). 

 

Trustworthiness was defined as the trustworthiness of the context provider that produced the 

context information. A trustworthiness rating was assigned to each context object that 

indicated the reliability of the provider of that context object. To remain consistent with the 

other QoC metrics, the rating assigned ranged between 0 and 1. For example the network 

context object was assigned a trustworthiness rating of 0.9 as its context provider supplied the 

network objects value as soon as it was detected. The closer the rating was to 1, the higher 

level of trustworthiness that context provider had in producing good quality context 

information. The trustworthiness was also re-calculated for context information, such as the 
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network context that had a completeness metric. The mean of the trustworthiness and 

completeness was used to determine a new value for trustworthiness. 

 

Completeness was defined as the extent to which the available context information were 

present for a particular context object (Manzoor et al. 2008). The completeness QoC metric 

was only used to evaluate those context objects that had more than one context attribute and 

was calculated using Equation 9 (Manzoor et al. 2010).  

 

 

(9) 

 

The total number of the attributes of the context object O that had been allocated a value was 

symbolized by m. The weight of the jth attribute of O that had been allocated a value was 

represented by Wj(O) (Manzoor et al. 2008). The numerator was calculated by summing up 

each jth attribute multiplied by their assigned weighting. Similarly, the total number of the 

attributes of context object O was symbolized by n and Wi(O) represented the weight of the 

ith attribute of O (Manzoor et al. 2008). The denominator was calculated by summing up 

each ith attribute multiplied by their assigned weighting. The completeness QoC metric was 

then calculated by dividing the numerator with the denominator.  

 

If n = m then the completeness would be equal to 1, which indicated that all the attributes of 

context object O had been assigned a value. For example, the network context object had a 

total of two context attributes including mobile data and Wi-Fi. The completeness of the 

network object would therefore be: 

 

C(O) = (m * mobile weight + w * wi-fi weight)/(1 * mobile weight + 1 * wi-fi weight); 

 

The availability of mobile and Wi-Fi in the above equation was represented as m and w 

respectively. In the denominator m and w were indicated as 1 to denote all attributes. The 

weights assigned to mobile and Wi-Fi indicate each attribute's significance to the total 

attributes. Both weights were assigned a weighting of 0.5 for the network context object as 

both the mobile and Wi-Fi enables internet connectivity and were therefore considered 

equally important. 
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Based on the new QoC metrics and the suggestion by Zheng et al. (2012), the reliability 

algorithm was reworked and was calculated for each streaming context value, such as the 

light values, using Equation 10. 

 

                    R(O) = (Trustworthiness + Freshness + Accuracy)/3;                                       (10) 

 

For other context objects that are not streaming context values such as the network 

connectivity values, reliability was calculated by using Equation 11. 

 

                    R(O) = (Trustworthiness + Freshness + 1)/3;                                                    (11) 

 

As the network connectivity was detected as soon as there was any change in value, the 

confidence interval value was set to 1, which represented 100% confidence in the value 

reported. 

 

The above QoC metrics were used to evaluate the low/high-level context values. The QoC 

metrics that were used to evaluate the inferred context are shown in Table 5.4. 

 

Table 5.4: Objective QoC metrics for inferred context 

Quality of Context Metric Measures Source 

Freshness Indicates validity of context in 

terms of timeliness 

Time period, Age 

Completeness Indicates the extent to which the 

available context information are 

present 

Available context values, 

Weightings of context 

values 

Certainty Indicates the confidence in the 

context information produced 

Freshness, Completeness 

 

Freshness of inferred context values were calculated in same manner in which the freshness 

for the low/high-level context values were calculated. This interoperability of the freshness 

QoC metric by being able to be applied to all contexts, further highlights that the change 

made to the time period in Section 4.3.2 was significant. This change involved using the 

actual time between context readings instead of using minDelay. This change was also 

supported by the fact that the inferred context was produced with context rules and not a 

sensor, which produced the minDelay value. 
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Completeness was calculated in the same manner as with the completeness used for the 

low/high context values. Each attribute of each inferred context was assigned a weighting 

value and was used to calculate the inferred context's completeness. 

 

Certainty was defined as the confidence in the context information produced. Certainty was 

calculated using Equation 12 (Kim & Lee 2006). 

 

 

 

(12)  

 

 

 

Certainty was calculated using the number of inferred context requests and the number of 

those inferred context requests that were answered. Certainty also used the freshness metric 

as well as the completeness of the context object. If the inferred context produced was 

considered fresh (i.e. F(O) > 0) at the time that certainty was calculated, the request for 

inferred context was considered as answered. The ratio of number of answered requests or 

replies to number of requests was multiplied by the completeness of the context object to 

calculate the certainty of that inferred context object.   

 

All the QoC metrics discussed in this section were used as the evaluation metrics for 

evaluating CoPro. These QoC metrics were used to help determine the feasibility of the 

proposed model. Mettler et al. (2014) suggested that derived QoC metrics may represent a 

valuable contribution to DSR. 

5.5.3 Evaluation Instruments 

The main instruments used during the evaluation of CoPro consisted of two devices. The first 

device was the initial Samsung S4 identified in Section 4.3, which was used during 

implementation of the proposed model. The Samsung S4 was the primary device for the 

evaluation and was used in all the experiments conducted. The second device was a 

Blackberry Curve 8520, which was used as a timing device. The Blackberry device was used 

to time the individual runs of each experiment in order to ensure more control over the 

experiments. Utilizing a timing device for the experiments ensured that the data collected 

were not influenced by external factors. One factor would be when the evaluator came to 
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check to see whether that particular experiment run had completed. Checking the device 

before the experiment had completed could affect the results by detecting the evaluator's 

presence. For example, the proximity sensor could indicate a value representing something is 

near the device as the evaluator approached the device. The timing device therefore 

guaranteed that the device was only disturbed after each particular run was complete ensuring 

consistent data throughout each experiment. 

 

Systematic logging was the final instrument that was used during the evaluation. Systematic 

logging was used to log each context value and the structural testing (i.e. QoC metrics) 

associated with each context value. The data were logged into two comma-separated values 

(CSV) files. CSV files were used as they supported tabular storing of the data in plain-text 

form (Dunwiddie 2014). The first file logged only the actual context values, which included 

inferred, high-level and low level context values. The second file logged the actual context 

values as well as the associated QoC metrics. Logging the data into two separate files allowed 

for easier analysis of the data. For example, analysing and identifying any discrepancies in 

the context values was easier using the first file as it only contained context values. Analysing 

the QoC metrics associated with those values in the first file were easier using the second file, 

as this file was structured to highlight the QoC metrics.    

5.5.4 Evaluation Procedure 

The experimental evaluation took place at the author's home. CoPro was not dependent on a 

specific location as the prototype was run on two mobile devices and thus could be used 

anywhere. However, to provide more control over the experiments the same location was 

used throughout the evaluation of CoPro. The location allowed for the experiments to be 

conducted both indoors and outdoors. Each experiment involved testing CoPro in the four 

scenarios identified in Section 5.5. CoPro was tested for three consecutive runs in each 

scenario, which entailed conducting a total of twelve test runs per experiment. Each scenario 

was tested at least three times to ensure that the context data collected were consistent. Each 

test run logged context data as mentioned in Section 5.5.3 and ran for five minutes. The 

context data were logged with a sampling rate of one sample per second. This sampling rate 

resulted in a total of three hundred rows of context values being logged per run in the first 

file. The second file contained each value in the first file on a separate row with the 

associated QoC metrics next to each value. As there were twenty-one context values logged 
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every second a total of three-thousand six-hundred rows of values were logged in the second 

file per run.  

 

A total of four experiments were conducted by the evaluation administrator (the author) for 

the evaluation of CoPro. Each experiment was conducted separately and followed an iterative 

evaluation process. This process involved re-evaluating CoPro by performing one experiment 

after the previous experiments results were analysed and used to refine CoPro. 

 

The first experiment focused on evaluating only the low-level and high-level context values. 

This was done in order to verify that the context values produced were feasible before 

performing experiments with the inferred contexts and QoC metrics. The first three 

experiments followed the same procedure. This procedure first required one device to be in 

the evaluation scenario either indoors or outdoors and then placed either in hand or in pocket. 

Once the device was in position, the logging of the current context was initiated by pressing 

of a button. The starting of the timing device commenced thereafter. The context data was 

then automatically logged for a period of five minutes before stopping. At this point, the 

timing device would notify the evaluation administrator that the logging process had finished. 

Once the logging process finished, CoPro provided a dialogue, which allowed the 

administrator to email the logged context data for further analysis. 

  

This procedure was followed for each of the twelve runs per experiment of the first, second 

and third experiments. The third and fourth experiments, however, focused on evaluating all 

of the context values including low-level, high-level, inferred and QoC metrics. All the 

context data and QoC metrics were finally collected and analysed to be discussed in the 

evaluation results. 

5.6 Evaluation Results  

The evaluation results obtained from the collected and analysed data are presented in this 

section. The evaluation results were initially going to be presented per context dimension; 

however, because there was an inter-dependency of context variables between different 

dimensions they were not. By analysing the inter-dependency between context variables more 

significant results could be obtained than simply analysing the context variables per 

dimension.  



   Chapter 5: Evaluation 

102 

 

All of the data collected was logged in tabular form into CSV files (samples of data from the 

fourth experiment are shown in Appendices B and C) as described in Section 5.5.3 and 

analysed using Microsoft Excel Version 2007. A total of 165,600 rows of data were collected 

for all experiments conducted. As the tabulated data was considered a reasonably large 

dataset, tools and techniques were needed to assist the analysis of this data. Pivot tables and 

samples of the tabular data were used to explain and support the motivation for the results 

obtained. A pivot table is a data summarization tool, which was selected as it was useful in 

analysing tabulated data and also supports the creating of cross tabulations (Phillips 2014). 

Cross tabulation is a statistical process that creates a contingency table by summarizing 

categorical data, which is frequently used in scientific research (Verial 2014). Samples of the 

tabular data were also used as they provided direct insight into the context data to identify 

significant results.  

 

The results for the evaluation metrics (i.e. QoC metrics) used for the evaluation are discussed 

and interpreted in the next section. This section discusses the performance, quality and 

capability results for the evaluation of CoPro. 

5.6.1 Utility Results 

The utility results are discussed in terms of the effectiveness of CoPro. The aim of these 

results are to determine the utility of CoPro by providing evidence that CoPro can indeed 

perform sensor-based context recognition. 

5.6.1.1 Effectiveness 

The results that indicated the effectiveness of CoPro in supporting context awareness were 

identified by analysing the low/high-level and inferred data produced from three of the four 

experiments that were conducted. This analysis was focused on the process of producing 

context values in terms of obtaining initial context, detecting changes in context and tailoring 

context with the use of preferences. CoPro was tested in four evaluation scenarios consisting 

of three test runs per scenario, as discussed in Section 5.5.4.  

 

The first experiment was first conducted in the indoor - in hand scenario. All the low/high-

level context data were collected and logged as well as one inferred context variable; the 

device location. The device location was also collected and logged as this was the 
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independent variable selected in Section 5.5, and should report a matching value to the 

manipulated state (i.e. in hand). The results for the three consecutive runs of the indoor - in 

hand scenario are presented below. 

 

The first run of the first experiment in the scenario (i.e. indoor - in hand) indicated the state of 

the independent variable as "In Hand" as expected. The first run also showed that CoPro 

could detect the initial context for 15 out of 16 context values as soon as the data logging 

commenced. No initial value was reported for the weather context, which continued for the 

remainder of the test run as shown in Table 5.5.   

 

Table 5.5: Values for activity, location and weather for first run of first experiment (IIH) 

Log Activity Location Weather 

1 Standing still. 100%: At Home 16.97m null 

2 Standing still. 100%: At Home 16.97m null 

3.. Standing still. 100%: At Home 16.97m null 

..298 Standing still. 100%: At Home 16.97m null 

299 Standing still. 100%: At Home 16.97m null 

300 Standing still. 100%: At Home 16.97m null 

 

The lack of weather data was due to the fact that the weather was only updated when the 

location was updated. As denoted in Table 5.5 the location was reported once and did not 

update for the remainder of the test run. Location was only updated when the device was 

moving (i.e. not Still), which was not the case as activity was reported as still throughout the 

test run. The dependency of weather on location and location on activity was part of the 

design and implementation of the proposed model, which was discussed in Section 4.3.1. 

 

The reported location values as seen in Table 5.5 also indicate that the location address was 

successfully retrieved from the location's latitude and longitude coordinates. More 

significantly, the reported location values demonstrate the successful use and matching of 

preferences with the location address and therefore reported a high-level but more meaningful 

value of "At Home". 

 

The context values for proximity, orientation, network, battery level, charging state, ringer 

state, calendar event and day of the week reported the same initial values throughout the test 

run. The reporting of the same initial values was expected as these variables were not actively 

manipulated or triggered. The light, temperature, humidity and sound context values 
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fluctuated throughout the test run even though they were also not actively manipulated or 

triggered. These context variables reported fluctuating values due to the nature of their 

context providers (i.e. hardware sensors) of actively sensing changes in the environment. The 

light values did not change by much starting at 41.0 lux and ending at 42.0 lux with 

fluctuations ranging between 39.0 lux and 45.0 lux, with 42.0 lux being the most frequently 

reported value, as shown in Table 5.6. 

 

Table 5.6: Pivot table showing occurrences of light values for first run of first experiment (IIH) 

Light value  Occurrences 

39.0 lux 22 

40.0 lux 50 

41.0 lux 6 

42.0 lux 112 

43.0 lux 82 

44.0 lux 26 

45.0 lux 2 

Total number of values 300 

 

The temperature values started at 24.46 °C and ended at 24.25 °C with minor fluctuations 

indicating a slight drop in temperature. The humidity values, however, decreased over time 

starting at 59.72% and ending at 57.54%, signifying a more noticeable drop in humidity. The 

sound values fluctuated the most, ranging between 34.4 dB and 50.4 dB throughout the five 

minute run. The significant changes in sound values could indicate noise or that sound values 

change frequently due to the sensitive nature of the device's microphone. Overall no real 

signs of drift were identified; however, additional runs were needed to verify that there were 

no elements of drift as well as to identify the true cause of the constant sound fluctuations. 

 

The second run of the first experiment (indoor - in hand) showed similar results to the first 

run including the minor variations in light and temperature values. The second run also 

highlighted a noticeable drop in humidity (from 59.74% to 56.96%). A significant 

phenomenon that did not occur in the first run was that temperature, humidity and activity 

took 3 seconds longer than other context variables to start producing values. 

 

The third run showed similar results to the first run but also had the same phenomenon as in 

the second run, however only temperature and humidity took 3 seconds longer to start 

producing values. The delay in activity values could be caused due to the delay in connecting 
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with the activity client API. The temperature and humidity values are reported from the same 

sensor providing an explanation for the same delay in reporting values. The actual delay of 

temperature and humidity values are possibly due to a slow sensor start-up. 

 

The sound values in both the second and third run as in the first run, fluctuated just as rapidly. 

Analysing a sample of the data illustrated in Table 5.7, during a significant change in sound 

values, provided some clarification for the rapidly fluctuating values. 

 

Table 5.7: Sample of sound values for second and third run of first experiment (IIH) 

Second run Third run 

Log Sound value  Log Sound value  

143 Silent 38.1 dB 13 Silent 36.5 dB 

144 Silent 39.5 dB 14 Silent 44.4 dB 

145 Moderate 56.8 dB 15 Silent 42 dB 

146 Silent 50.5 dB 16 Silent 38.8 dB 

147 Silent 45 dB 17 Silent 37.8 dB 

148 Silent 36.5 dB 18 Silent 40.3 dB 

149 Silent 41.1 dB 19 Silent 42.6 dB 

 

During the second run, a significant jump in sound value occurred from the 144th value (39.5 

dB) to the 145th value (56.8 dB). The subsequent values including the 146th (50.5 dB), 147th 

(45 dB) and 148th (36.5 dB) value indicate a gradual decrease in sound level. This decrease 

in sound level values after a significant jump in sound illustrates that a moderate ambient 

sound was indeed detected, which slowly dissipated. Sample values from the third run show a 

similar pattern. An increase in sound level occurred between the 13th and 14th values (36.5 

dB to 44.4 dB), which then dissipated over the 15th (42 dB), 16th (38.8 dB) and 17th (37.8 

dB) values. These sound level results illustrate the sensitive nature of the device's 

microphone in detecting changes in ambient sound level and thus account for the high 

frequency of sound value fluctuations.  

 

All of the data collected showed no signs of drift as continued fluctuations in values were 

identified. However, even though humidity did have minor fluctuations in values, humidity 

values showed possible elements of drift as values started high then gradually decreased over 

time.   
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CoPro was then tested in the second scenario (indoor - in pocket) of the first experiment. The 

state of the independent variable was not reported as "In Pocket" as expected during the first 

and second run. The device location was instead reported as "Unknown", which was due to 

the orientation value not being "Face down" but rather "Face up" whilst in the pocket of the 

evaluator. As identified in Chapter 4, the "In Pocket" state was triggered when the orientation 

of the device was considered "Face down" and proximity denotes a value of "Near". This 

unexpected result highlighted that when the device was on its side as it was during the first 

two runs of the experiment in the "Indoor - In pocket" scenario, device location was not 

reported as "In Pocket".    

 

Similarly to the first run of the first scenario, all three runs of the second scenario also 

showed that CoPro could detect the initial context values for 15 out of 16 context variables. 

This instance; however, no initial value was reported for the activity context instead of the 

weather context. For the first run the no value was reported for activity until the 13th second 

of the test run as shown in Table 5.8. 

 

Table 5.8: Sample of activity values for first run of first experiment (IIP) 

First run : Indoor - In Pocket (IIP) 

Log Activity value 

1.. null 

..13.. Unknown. 38%: 

..30.. Standing still. 97%: 

..34 Standing still. 100%: 

 

Activity values for all three test runs took longer than in the first scenario to stabilize and 

produce a "standing still" state. This delay was possibly due to initial device movement of 

when the device was placed into the pocket. This device moment was also probably 

responsible for the weather value being set from the start as opposed to no value in the first 

scenario. 

 

The overall trend for temperature and humidity values were the same for all three runs. This 

trend was that temperature values increased while humidity values decreased. The humidity 

however, decreased by a far greater range than when in the "In Hand" scenario. For example 

the drop in humidity for the last run of the "In Hand" scenario was 3.62%, whereas the drop 

in humidity for the first run of the "In Pocket" scenario was 8.75%. 
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For the third run the device was placed face down to try ensure more control over the 

independent variable. The activity value was affected slightly as the value changed to tilting 

then unknown and then back to a standing still state. Activity changes took time to process 

but when the most probable state was detected it only took 4 seconds to validate the state 

with an accuracy from 77% to 100% for standing still state. The orientation also indicated a 

value of "Face Down", however, the placing of the device face down as opposed to on its side 

whilst in the pocket had no real effect on the data. 

 

At the time when CoPro was to be tested in the third scenario (outdoor - in hand), the outside 

weather conditions were not ideal as it was raining. The last run of the previous test in the 

second scenario did suggest possible shower rain as a value of "light intensity shower rain" 

was reported for the weather context. Although the weather conditions were poor for testing 

CoPro on the mobile device, the test was still conducted with the mobile device covered for 

protection purposes. This covering of the device; however, did trigger the proximity sensor, 

which indicated a value of "Near" throughout the three runs in the outdoor in hand scenario. 

The shower rain weather condition was later confirmed by CoPro when the weather context 

reported a value of "shower rain" in the second and third run of the third scenario. To ensure 

more control over the experiments, the device was also placed on a table for subsequent test 

runs and experiments. With the device being face up when considered to be in hand and the 

device face down in the pocket of a pair of shorts when considered to be in pocket. This can 

be noted as a form of simulation, which was one of the methods for an experimental 

evaluation identified by Hevner et al. (2004). 

 

A consistent result that was highlighted in all three runs, was that the temperature was 

considerably colder and the humidity was considerably higher outdoors as compared to 

indoors, as seen in Table 5.9. 
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Table 5.9: Sample of temperature and humidity values of first experiment (IIP and OIH) 

 Indoor (IP) Outdoor (IH) 

Log Temperature Humidity Temperature Humidity 

 

1 Hot 27.18°C Medium 59.28% Mild 18.19°C Medium 69.92% 

 

2.. Hot 27.18°C Medium 59.28% Mild 18.19°C Medium 69.92% 

 

..150.. Very hot 30.27°C Medium 48.84% Mild 15.39°C High 71.30% 

 

..299 Very hot 30.79°C Medium 46.60% Cold 14.86°C High 70.09% 

 

300 Very hot 30.79 °C Medium 46.60% Cold 14.94°C Medium 69.87% 

 

The temperature and humidity values of the last indoor test run were compared with the first 

outdoor test run in order to compare the closest values in terms of logged time for both 

contexts. The initial temperature from the indoor run was classified as Hot 27.18°C, which 

increased and ended at Very Hot 30.79 °C. The temperature then dropped by 12.6°C for the 

outdoor run, with an initial value classified as Mild 18.19°C, which decreased and ended at 

Cold 14.94°C. The humidity values on the other hand increased when comparing the indoor 

run to the outdoor run. The humidity increased by 23.32% when comparing the last reported 

humidity value of the indoor run and the initial humidity value of the outdoor run. Overall 

these results showed that the temperature was colder and humidity was higher outdoors as 

compared to indoors.  

 

The only other significant changes for the third scenario (OIH) involved the sound context. 

The sound values reported were moderately higher when outdoors with 169 occurrences of a 

moderate fuzzy value than when indoors, which reported only 2 occurrences of the moderate 

fuzzy value. A number of factors that could have affected the results for this scenario include 

the weather condition, which was reported as "shower rain" and the device location, which 

was in the evaluator's pocket for the indoor scenario. 

 

The fourth and final scenario involved testing CoPro outdoors with the device in pocket. As 

highlighted when discussing the third scenario, the device for this scenario was placed on a 

table face down in the pocket of a pair of shorts to simulate the device being in pocket. The 

most noticeable change as compared to previous scenarios, was delays in reporting initial 
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context values for temperature, humidity, activity of about 2 to 3 seconds and weather of 

about 3 to 5 seconds.  

 

In order to verify the results in the first experiment a second experiment was conducted with 

the more controlled and simulated approach. All the low/high-level context data were 

collected and logged as well as one inferred context variable, the device location. The results 

for the second experiment were compared to the results of the first experiment to identify any 

noteworthy discrepancies and changes.  

 

The second experiment was first conducted in the outdoor in-hand scenario. Device location 

was reported as "In-Hand" as expected as compared to "Unknown" in the first experiment. 

Weather reported a value of "Sky is clear" as opposed to "shower rain". The temperature 

values had minor fluctuations instead of decreasing. Humidity values, however, decreased as 

opposed to increasing over time. The light values were reported as "Very bright" instead of 

"Very dark". These changes in reported values could be a result of the different weather 

conditions as well as the time of day as the first experiment was conducted at night and 

second experiment during the day. 

 

Similarly, for the outdoor in-pocket scenario, humidity decreased over the 5 minutes (from 

59.39% to 48.42%) with small fluctuations of ±1%. Temperature in this case increased (from 

24.82°C to 30.22°C) with small fluctuations of ±1°C. The light values showed that the values 

decreased considerably by 45142 lux from being in-hand to in-pocket. A noteworthy 

observation, however, was that the light values still reported a value of "Bright" ranging 

between 170-156 lux for the first run. The second and third runs reported light values of 

"Normal" between 35-29 lux and 27-19 lux. This observation is significant as one would 

expect the light values to indicate a value of either "Dark" or "Very dark" when face down 

and in the pocket of a pair of shorts, which it did not. This significant observation was used to 

help improve the context rules for determining the outdoor and indoor position of the user by 

using the resultant light value ranges with the time of day. 

 

For the indoor in-hand scenario no significant changes were discovered from both sets of 

results from the first two experiments. For example, the delays in reporting the initial 

temperature, humidity as well as activity values were consistent with the first experiment. 
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For the final scenario indoor in-pocket of the second experiment, the device location was 

reported as in-pocket as expected, which was a result of using a more controlled and 

simulated approach. The only other significant result was that between the 10th and 14th 

second of the first test run Wi-Fi/internet connectivity was lost and only restored at the 15th 

second of the run. This resulted in no weather value being reported until the 15th second of 

the run when Wi-Fi/internet connectivity was restored. 

 

As the first and second experiment provided sufficient results to support the effectiveness of 

CoPro in terms of low/high-level context, further analysis focused on the inferred contexts. 

The results of these inferred contexts of the third experiment are highlighted below.  

 

The third experiment was first performed in the outdoor - in hand scenario, followed by the 

outdoor - in pocket, the indoor - in hand and finally the indoor - in pocket scenario. All the 

low/high-level and inferred context data were collected and logged. The inferred results for 

the three consecutive runs of all four evaluation scenarios are presented below. 

 

All three runs of the outdoor - in hand scenario consistently reported the same values for four 

of the five inferred context variables from start of the run to the end as shown in Table 5.10. 

 

Table 5.10: Sample of inferred context values of first run of third experiment (OIH) 

Log Device Location Availability  Posture  Indoor/Outdoor Location 

1.. In Hand Free Upright Outdoor/Semi-outdoor[H] 

..150.. In Hand Free Upright Outdoor/Semi-outdoor[H] 

..300 In Hand Free Upright Outdoor/Semi-outdoor[H] 

 

All five of the inferred context values were determined by the context rules described in 

Section 4.3.4 in Chapter 4. The device location state was reported as "In Hand", which was 

expected as device location was the independent variable. The availability was described as 

"Free", which was correct and expected as there was no calendar event specified for that time 

period and the device remained still for all three test runs. An "Upright" value for posture was 

also an expected result as the orientation was described as "Face Up" and the proximity level 

was expressed as "Far". The indoor/outdoor location was described as "Outdoor/Semi-

outdoor [H]", which indicates that the device was detected outdoors or semi-outdoors with a 

high confidence based on the context rule used for Indoor/Outdoor (I/O) location. A semi-

outdoor value was paired with the outdoor value as a semi-outdoor context can represent 
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similar conditions to an outdoor context. For example, when a user is on a balcony the 

context conditions will denote the user location as being outdoors, which could be better 

represented and thus a semi-outdoor state was introduced for the indoor/outdoor location 

context as identified in Section 4.3.4. 

 

Inferred activity, the fifth inferred context, was initially described as "Working" in all three 

test runs, however changed back and forth between "Resting" and "Working". These changes 

in inferred activity occurred when the sound values fluctuated between "Silent" and values 

classified louder than "Silent" as illustrated in Table 5.11. 

 

Table 5.11: Sample of inferred activity values of second run of third experiment (OIH) 

Log Inferred Activity Sound value 

50 Working Moderate 62.1 dB 

51 Working Moderate 65 dB 

52 Resting Silent 56 dB 

53 Working Moderate 58.1 dB 

54 Resting Silent 56 dB 

 

The inferred activity state changes were correct based on the context rule used to determine 

this inferred context. However, these jumps between values indicate that it can be difficult to 

determine the inferred activity that matches the true context. 

 

The outdoor in-pocket scenario highlighted three key results regarding the posture, inferred 

activity and I/O location. For all three runs the posture context was indicated as "Unknown", 

which was caused by the context rule for posture not handling the situation when proximity 

was expressed as "Near" and orientation was represented as "Face Down". This result was 

used to improve the design and implementation of the context rule used for inferring the 

posture context. Similarly to the first scenario, the inferred activity was affected by the 

fluctuating sound values but were also affected by the activity context when it was reported 

as "Tilting". This result showed that even though determining the inferred activity can be 

considered difficult, multiple inputs were used to try and address this problem. Finally the 

last key result regarding the I/O location demonstrated the improvement made to the I/O 

location context rule, which was identified in the second experiment (OIP). The improved I/O 

context rule uses a combination of the light (Bright and Normal), proximity (Near) and time 

of day (Morning and Afternoon) values when inferring I/O location. 
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For the indoor-in hand scenario inferred contexts reported expected values for the scenario; 

however, key relationships between inferred contexts and inputs for inferred contexts were 

identified. These relationships were identified when context values were missing, as shown in 

Table 5.12.  

Table 5.12: Sample of context values of second run of third experiment (IIH) 

Log  Inferred 

Activity 

 I/O 

Location Light Temperature Humidity Activity Location 

1 null null null null null null null 

 

2 null Indoor[H] Bright 162.0 lux null null null 

At Home 

23.0m 

 

3 null Indoor[H] Bright 161.0 lux null null null 

At Home 

23.0m 

 

By analysing the data from the second run denoted in Table 5.12, a possible relationship can 

be seen between the inferred activity and temperature, humidity and activity values. 

However, by analysing the data from the third run shown in Table 5.13, it was clear that 

inferred activity only has a relationship with activity values. This was highlighted by the fact 

that a value for inferred activity was still reported even though both temperature and humidity 

did not report any values (i.e. null). 

 

Table 5.13: Sample of context values of third run of third experiment (IIH) 

Log  Inferred 

Activity 

 I/O 

Location Light Temperature Humidity Activity Location 

 

1 Resting Indoor[H] 

Bright  

238.0 lux null null 

Still. 

100% 

At Home 

23.0m 

 

2 Resting Indoor[H] 

Bright  

238.0 lux null null 

Still. 

100% 

At Home 

23.0m 

 

3 Resting Indoor[H] 

Bright  

241.0 lux null null 

Still. 

100% 

At Home 

23.0m 

 

Another possible relationship from Table 5.12 can be identified between the I/O location and 

light and location values. The data from the third run presented in Table 5.13, does not 

provide assistance in determining the true relationship as both light and location provide 

values. On the other hand, by analysing the context rule in Section 4.3.4 for the I/O location it 

was clear that the light context has a relationship with the inferred I/O location. The 

relationship between inferred activity and activity was also verified when analysing the 

context rule for the inferred activity. 
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The final scenario, the indoor in-pocket scenario, highlighted the same key result regarding 

the posture context, which was described as "Unknown" for all three runs. The other major 

result was that the I/O location context reported no value (i.e. null) during all three runs of the 

IIP scenario. After analysing the context rule that infers the I/O location context, it was 

identified that the context rule did not cater for the conditions detected in all three runs. As a 

result this finding was used to further refine and improve the context rule in inferring the I/O 

location. 

 

The results presented indicated the effectiveness of CoPro in supporting context awareness, 

which was identified by analysing the low/high-level and inferred context data produced from 

the first three of the four experiments that were conducted. The analysis of the first three 

experiments, demonstrated that CoPro could not only produce context values in terms of 

obtaining initial context but also detect changes in context as well as tailor context using 

preferences.  

5.6.2 Quality Results 

The quality results described the reliability of the context data produced by CoPro. The 

evaluation metrics helped in determining the quality of the context and thus the extent to 

which the context produced was reliable and useful. 

5.6.2.1 Reliability 

The results that demonstrated the reliability of CoPro in supporting context awareness were 

identified by analysing the QoC metrics of the context produced from the third and fourth 

experiments that were performed. The focus of this analysis was on the quality of the context 

values produced in terms of freshness, reliability, granularity, confidence interval, accuracy, 

trustworthiness, completeness and certainty. CoPro was tested for two experiments in four 

evaluation scenarios consisting of three test runs per scenario, as discussed in Section 5.5.4.  

 

The QoC metrics used to evaluate the low/high-level contexts included freshness, reliability, 

granularity, confidence interval, accuracy, trustworthiness and completeness. For assessing 

the quality of the inferred contexts the QoC metrics freshness, completeness and certainty 

were used. 
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The third and fourth experiment collected and logged both context values as well as the 

associated QoC metrics for each of the context values. The QoC metrics that were used for 

both the low/high-level and inferred contexts were analysed first, followed by the QoC 

metrics specific to the low/high-level contexts. Finally the QoC metrics specific to the 

inferred contexts were analysed last. The QoC values for all metrics for each run of every 

scenario were combined and summarized using a consolidated Excel PivotTable, which 

contained all the data (i.e. three runs of data) for that specific scenario. The consolidated 

PivotTable was then filtered, analysed per QoC metric and the results for the third and fourth 

experiments are presented in Tables 5.14 to 5.21 below.   

 

For all the low/high-level and inferred contexts, freshness was the first QoC metric that was 

analysed. Freshness was calculated by using the age of the context and the time period as 

described in Section 4.3.2. Age of the context represented the difference between the current 

time and when that context was measured. Time period was identified from literature as the 

time interval between two readings (Manzoor et al. 2008). For example, if the first context 

reading was taken now and the second context reading was taken five seconds later, the time 

period would be five seconds. Although there are several time period definitions discovered 

in literature (Section 4.3.2), the definition of time period by Manzoor et al. (2008) was used 

as they distinguished between both the objective and subjective nature of context. The time 

period was therefore represented by the difference between the second context's measurement 

time and the first context's measurement time. The freshness results for all context values 

from both experiments are illustrated in Table 5.14. 

 

Table 5.14: Pivot table of freshness results for all runs of third and fourth experiments 

 Freshness 

 3rd Experiment 4th Experiment 

Scenario 0 1 0 1 

OIH 11189 7083 6533 11757 

OIP 11087 7787 6145 11823 

IIH 11235 7038 6152 12112 

IIP 11044 7521 6818 12010 

Total 44555 29429 25648 47702 

 

The freshness values from both experiments were only represented as either 0 or 1, with 0 

indicating that the data was not objectively fresh and 1 demonstrating that the data was 
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indeed fresh. The results in Table 5.14 highlight the occurrences of each particular freshness 

value (i.e. 0 or 1).  

 

The results for the third experiment show that freshness reported more values that were 

regarded as not fresh, with a total of 44555 occurrences of 0 compared to 29429 occurrences 

of 1. This result could be due to the actual data not being fresh or the algorithm used not 

correctly calculating the freshness. The latter was assumed and thus an assessment of the 

freshness algorithm was done. By assessing the algorithm used, it was discovered that the 

value calculated to represent the time period was not producing the correct value.  

 

A significant problem that was identified from the lack of QoC literature regarding the 

implementation of time period, was how the most optimal value for time period could be 

obtained. For example, by using the sensor configuration (i.e. minDelay provided by sensor) 

or calculating the time period once and then using the same value repeatedly for all of those 

specific context readings or calculating the time period dynamically at run time using a 

unique time period per value pair (i.e. two values). (Manzoor et al. 2010; Zheng et al. 2012) 

suggest the first option and possibly the second for obtaining a value for the time period; 

however, none of them have provided evidence in testing the freshness formula with the time 

period that they defined. Therefore, none of the above literature sources have validated if the 

time period as defined by them worked when calculating the freshness of context. Another 

important issue that needed to be taken into consideration was the time period for the first 

context value obtained. The definition for time period highlighted the time between two 

values but did not consider the first value. 

 

The first option of using the minDelay provided by the sensor would not be an ideal value for 

time period as this is the minimum time period and not the actual time period between 

reported context values (Google Inc 2014f). The first option is also limited as it can only be 

used for contexts provided by sensors. The second option is also flawed as it would involve 

consistently using the same time period for all value pairs, which in reality have varying time 

periods. The third option is the best suited for obtaining the actual time period for each 

individual value pair. 
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After an extensive process of reworking the way that the time period was determined, a 

possibly accurate algorithm for calculating the time period was produced. The final process 

used to identify how the time period was calculated is illustrated in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Final process used to calculate time period for context values 

 

The final process in Figure 5.1 identified how the time period should be calculated, which 

was used in calculating the freshness of context. Not only was the algorithm for dynamically 

calculating the time period, identified but also how to calculate the time period for the first 

context value was identified. 

 

The time period for the first value (TP1) was calculated not based on the time interval 

between two values but on the time interval from the start of the context recognition process 
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(T0) to the first value obtained (V1). Based on the logging sampling rate of 1 second as 

mentioned in Section 5.5.4, the age of the first value was the time interval between when the 

first value was obtained (V1) and when that first value was logged (T1). TP1 was then 

calculated by subtracting the age of the first value (Age (V1)) from 1 second, which was 

represented as 1000 milliseconds to match the unit of the age value. An example of the code 

that calculates the time period of the first I/O location value is shown in Figure 5.2 as Code 

Extract 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Code extract of code used to calculate time period for I/O location 

 

The time period for the subsequent values (TP2) was dynamically calculated based on the 

time interval between value pairs (V1 and V2). From Figure 5.1 it is clear that the time period 

between V1 and V2 was equal to Age (V1) plus the time interval between T1 and V2. This 

time interval between T1 and V2 was calculated by subtracting the age of the second value 

(Age (V2)) from 1 second (i.e. 1000 milliseconds). The time period between V1 and V2 was 

therefore calculated by adding the age of the first value (Age(V1)) to the period between T1 

and V2. An example of the code that dynamically calculates the time period for subsequent 

I/O location values is shown in Figure 5.2 as Code Extract 2. 

 

The code extract (Figure 5.2) is an example of how the new time period was calculated, 

which in this example would be used for calculating the freshness of the Indoor/Outdoor 

location. Line 1 shows the code used to keep a reference to the age of the previous context 

value. The current I/O location object's measured time is then updated with the current time 

(i.e. ct) in Line 2. Line 3 sets the new age for the current I/O location object with the new 
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measured time. The time period was then calculated by adding the age of the previous context 

object to the difference between 1000 (1 sec in milliseconds) and the current age in Line 4. 

Finally the current I/O location object's time period was set in Line 5. 

 

Another assessment of the freshness algorithm showed that it did not consider the situation 

when the age of the context and time period were equal. Therefore, the freshness algorithm 

was also improved to deal with the situation age = time period, whereby the freshness of the 

context would still be considered fresh and assigned a freshness value of 1. The values from 

the third experiment also revealed that the age of certain values remained the same even 

though they did not change. A change of re-calculating the age of context objects over time 

was implemented to ensure that the age of context objects increased if no change in value had 

occurred to represent the true age of those context objects. 

 

The above changes were made to CoPro before the fourth and final evaluation experiment 

was conducted. The fourth experiment helped to determine whether these changes were 

actual improvements based on the results obtained from the final experiment. 

 

The results for the fourth experiment as illustrated in Table 5.14 highlight that more values 

were considered as fresh at the time they were logged, with a total of 47702 occurrences of 1 

compared to 25648 occurrences of 0. These results compared to the freshness results of the 

third experiment show an improvement of 25.26% in freshness. These result demonstrate that 

the changes made to the freshness and time period algorithm, and re-calculating of age are in 

fact significant improvements made to the design of CoPro. 

 

Completeness was another shared QoC metric that was used for some low/high-level contexts 

and all inferred contexts. Completeness was calculated as described in Section 5.5.2, which 

uses the available context attributes and the weightings assigned to those attributes. The 

completeness results are presented in Table 5.15 for both the third and fourth experiments. 

These results were categorized into ranges to illustrate the results more clearly. 

 

The completeness results from the third experiment highlighted that the overall completeness 

for most of the context values evaluated (71%) were reported as 1 with 17880 occurrences. 

Seventy one percent of the values reported a completeness value of 100%, which indicated 

that those values met the completeness requirements. 
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Table 5.15: Pivot table of completeness results for all runs of the third and fourth experiments 

 Completeness 

 3rd Experiment 4th Experiment 

Scenario 0.3 0.5 0.5 - 1 1 0.3 0.5 0.5 - 1 1 

OIH 900 900 65 4435 900 900 0 4500 

OIP 900 900 15 4485 899 903 21 4173 

IIH 900 905 20 4475 900 900 28 4463 

IIP 900 900 15 4485 899 903 127 4361 

Total 3600 3605 115 17880 3598 3606 176 17497 

 

As the results for the third experiment did not highlight any problems no further 

improvements were made to the completeness algorithm. Comparing these completeness 

results with those of the fourth experiment, no significant changes were identified as the 

results appeared to be similar with some variation as presented in Table 5.15. 

 

The reliability QoC metric was only used for all the low/high-level contexts. The new more 

objective reliability metric formula as described in Section 5.5.2 was used in both the third 

and fourth experiments. The evaluation results of reliability are presented in Table 5.16. 

 

Table 5.16: Pivot table of reliability results for all runs of the third and fourth experiments 

 Reliability 

 3rd Experiment 4th Experiment 

Scenario 0 - 0.5 0.5 - 0.75 0.75 - 1  0 - 0.5 0.5 - 0.75 0.75 - 1  

OIH 4486 3565 5721 1625 5121 7044 

OIP 4493 3636 6245 1615 4799 7357 

IIH 4494 3660 5619 1614 4714 7445 

IIP 4184 3780 6101 1610 5332 7395 

Total 17657 14641 23686 6464 19966 29241 

 

The reliability results of both experiments were categorized into three ranges including 0 

(incl.) to 0.5, 0.5 (incl.) to 0.75 and 0.75 (incl.) to 1 (incl.). The third experiment showed that 

31.54% of the results were in the first range, 26.15% of the results were in the second range 

and 42.31% of the results were in the third range. These results indicate that more than half of 

the results (57.69%) had a reliability of less than 75%. On the other hand the results from the 

fourth experiment showed that 11.61% of the results were in the first range, 35.86% of the 

results were in the second range and finally 52.53% of the results were in the third range.  
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Comparing the reliability results of both the third and the fourth experiments, highlighted a 

noticeable improvement in each range, with 19.93% less results in the first range (0-0.5), 

9.71% more results in the second range (0.5-0.75) and 10.22% more results in the third range. 

The fourth experiment had 88.13% of its values above 50% reliability as opposed to 68.46% 

of the third experiment.  

 

This improvement shows that values in the fourth experiment were considerably more 

reliable than the values of the third experiment. The reliability improvement from experiment 

three to four was due to the fact that the QoC metric reliability was dependent on freshness. 

This dependability is significant as the calculation of freshness as a whole was improved after 

the results of the third experiment was analysed. These enhanced reliability results in the 

fourth experiment provide further evidence that the previous changes made to CoPro 

improved the overall design and implementation of the proposed model. 

 

Granularity was only evaluated for contexts with multiple levels of precision, which included 

the location context as well as the streaming sensors consisting of light, temperature, 

humidity and sound context. The granularity was calculated based on the precision of the 

actual data compared to the maximum precision that specific value could achieve. For 

example, a sound value of 32.22 dB would have a granularity of 1 if the maximum precision 

for sound was 3. The maximum precision value of sound, which is 3 in this example, is 

calculated by adding 1 to the max number of decimals a sound value could contain (i.e. 2). 

 

Table 5.17: Pivot table of granularity results for the third and fourth experiments 

 Granularity 

 3rd Experiment 4th Experiment 

Scenario 0 - 0.5 0.5 - 0.9 0.9 - 1  0 - 0.5 0.5 - 0.9 0.9 - 1  

OIH 1800 553 2137 0 441 4047 

OIP 1800 529 2163 0 885 3598 

IIH 1800 570 2113 0 532 3951 

IIP 1800 533 2155 0 531 3949 

Total 7200 2185 8568 0 2389 15545 

 

The granularity results of the both experiments as highlighted in Table 5.17, were broken up 

into three ranges including 0 (incl.) to 0.5, 0.5 (incl.) to 0.9 and 0.9 (incl.) to 1 (incl.). The 

third experiment had the following results per range: 40.11% (first), 12.17% (second) and 

47.72 (third). After analysing the results of the third experiment it was clear that some values 
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incorrectly reported a granularity value of 0. The location and sound values were identified as 

reporting a granularity value of 0. This result was due to the granularity for each location and 

sound value not being set. Changes were made to ensure that the granularity for both the 

location as well as the sound contexts were set at run time. The changes made to CoPro after 

analysing the results of the third experiment were evident in the results of the fourth 

experiment. The fourth experiment provided evidence that the changes improved the quality 

for granularity values produced by having no values report a granularity value of 0. A more 

significant improvement was that 86.86% of the granularity results for the fourth experiment 

were between 90 and 100% in comparison with the granularity results of the third 

experiment, which were only 47.68%. 

 

The confidence interval was only obtained for the location and activity context as the context 

providers of these input sources provided a confidence interval with the context data. 

Therefore no calculation of the confidence interval was needed. These results for the 

confidence intervals of the third and fourth experiments are presented in Table 5.18. 

 

Table 5.18: Pivot table of confidence interval results of the third and fourth experiments 

 Confidence Interval 

 3rd Experiment 4th Experiment 

 Activity Location Activity Location 

Scenario 0.3 - 0.9 0.9 - 1  < 20m >= 20m 0.3 - 0.9 0.9 - 1  < 20m >= 20m 

OIH 0 887 4 896 0 900 600 300 

OIP 56 841 579 321 19 875 0 899 

IIH 0 895 0 900 0 895 300 600 

IIP 11 886 0 900 12 863 0 899 

Total 67 3509 583 3017 31 3533 900 2698 

 

The confidence interval results for the third and fourth experiments were tabulated into 

ranges of 0.3 (incl.) to 0.9, 0.9 (incl.) to 1 (incl.) for Activity and less than 20m, greater than 

or equal to 20m for Location. The third experiment's results showed that most activity values 

(98.14%) were reported with a confidence of 90 to 100%. The location results of the third 

experiment highlighted that 83.81% of the location values were reported with a confidence of 

greater than or equal to 20m. The remaining 16.19% of the location values reported a 

confidence of below 20m. Compared to the results of the fourth experiment there was a slight 

improvement in confidence for both activity values above 90% (99.13%) and location values 

below 20m (25.01%). No changes were made to CoPro after the third experiment that would 
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have affected the confidence interval results of the fourth experiment. Overall the activity 

values reported by CoPro were fairly accurate with 98.63% of them reported with a 

confidence above 90%. Although the overall location values reported only 41.2% of values 

with a confidence of below 20m, the majority of the values accurately reported a location 

address that matched the true value of location (i.e. At Home). 

 

The accuracy QoC metric was used to evaluate the quality of the low/high-level contexts 

including light, temperature, humidity, sound and orientation. Accuracy was only used for 

these contexts as they were collected in a buffer, which contained an array of values for each 

context needed for the statistical method described in Section 5.5.2. The identified statistical 

method was used to calculate the accuracy QoC using the error of the sensor and an array of 

sensor values. The results for both the third and fourth experiments are presented in the 

consolidated Pivot table below (Table 5.19). 

 

Table 5.19: Pivot table of accuracy results of the third and fourth experiments 

 Accuracy 

 3rd Experiment 4th Experiment 

Scenario 0 1 0 1 

OIH 206 4284 213 4275 

OIP 203 4289 259 4225 

IIH 372 4112 182 4301 

IIP 218 4270 125 4356 

Total 999 16955 779 17157 

 

The results of the third experiment indicated that 94.44% of the context values were reported 

as accurate by having an accuracy value of 1, with only 5.56% reported as not accurate by 

having an accuracy value of 0. Similar results were obtained from the fourth experiment with 

95.66% of values considered accurate and only 4.34% of values determined as not accurate. 

This minor improvement from the third to the four experiment is not significant as no 

changes were made after the third experiment that could have affected the accuracy results of 

the fourth experiment. Overall the accuracy results indicate that CoPro produced accurate 

context values with 95.05% of all values collected in both experiments determined as 

accurate based on the statistical method described in Section 5.5.2. 

 

Trustworthiness was evaluated for all low/high-level context values produced by CoPro in the 

third and fourth experiments conducted as part of the evaluation process of CoPro. A 
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trustworthiness value was assigned to all context values to indicate the reliability of the 

context provider that produced the context. This trustworthiness value was also re-calculated 

based on the completeness QoC metric, which only applied to those contexts with a 

completeness metric (i.e. location and network). Trustworthiness results are presented in 

Table 5.20, which denote the occurrences of trustworthiness values in particular ranges. 

These ranges are 0.6 (incl.) to 0.9 and 0.9 (incl.) to 1 (incl.). 

 

Table 5.20: Pivot table of trustworthiness results of the third and fourth experiments 

 Trustworthiness 

 3rd Experiment 4th Experiment 

Scenario 0.6 - 0.9 0.9 - 1  0.6 - 0.9 0.9 - 1  

OIH 2982 10790 3002 10788 

OIP 3582 10792 2987 10784 

IIH 2990 10783 2990 10783 

IIP 3277 10788 3556 10781 

Total 12831 43153 12535 43136 

 

Both experiments produced similar trustworthiness results with the third experiment reporting 

the following results per range: 22.92% (first) and 77.08% (second). The fourth experiment 

reported the following results per range: 22.52% (first) and 77.48% (second). The similarity 

between trustworthiness results was due to the fact that no changes were made between the 

third and fourth experiments. The overall trustworthiness results of CoPro for both 

experiments highlighted that 77.28% of all context produced can be considered trustworthy 

as they had a trustworthiness value of between 90 to 100%. 

 

The only specific QoC metric that was used to evaluate the inferred contexts was the 

certainty QoC metric. Certainty was calculated using freshness, completeness, request for 

context made and replies for those context requests, as described in Section 5.5.2. The 

certainty results for both experiments are presented in a consolidated Pivot table shown in 

Table 5.21. These results were categorized into the following ranges, 0 (incl.) to 0.5, 0.5 

(incl.) to 0.9 and 0.9 (incl.) to 1 (incl.).    
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Table 5.21: Pivot table of certainty results for inferred context of the third and fourth experiments 

 Certainty 

 3rd Experiment 4th Experiment 

Scenario 0 - 0.5 0.5 - 0.9 0.9 - 1  0 - 0.5 0.5 - 0.9 0.9 - 1  

OIH 0 0 0 0 3 4497 

OIP 0 0 0 4 24 4472 

IIH 0 0 0 1 32 4467 

IIP 0 0 0 4 127 4369 

Total 0 0 0 9 186 17805 

 

The results of the third experiment indicated that all the certainty values were reported as 0.  

By analysing the values obtained from the third experiment and implementation of the 

certainty QoC metric algorithm, the problem causing no certainty values to be reported was 

identified. This problem was a simple division problem when trying to divide the requests 

and replies, which were specified as integers, which resulted in no remainder being reported. 

The certainty algorithm was changed specifying the requests and replies as doubles in order 

to correctly calculate the certainty value for each inferred context.  

 

However, when running minor tests the certainty values reported were all below 50%, which 

indicated there was another issue in calculating the certainty. Upon further investigation the 

fact that certainty was dependent on the freshness value being greater than 0 in order to 

signify that a request had been replied to was identified as the issue. As discussed before the 

freshness QoC metric was improved after the third experiment was conducted and results 

were analysed. The fourth experiment showed significant improvements in the certainty 

values of all the inferred contexts. Table 5.21 highlights these improvements by denoting the 

occurrences of certainty values within the specified ranges consisting of 98.92% of all 

certainty values within the 90 to 100% range. This result of 98.92% represented the certainty 

of inferred contexts produced by CoPro. 

 

The quality results presented highlighted the reliability of the context data produced by 

CoPro in supporting context awareness. The objective evaluation metrics used to evaluate the 

quality of context produced by CoPro were derived from the QoC metrics in Section 4.3.2. 

The evaluation metrics determined the quality of the context produced in the third and fourth 

experiments performed in terms of reliability and usefulness. The analysis of the last two 
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experiments demonstrated that CoPro produced quality context in terms of low/high-level 

context as well as inferred context. 

5.6.3 Efficacy Results 

The efficacy results indicated the capability of CoPro when performing context recognition. 

Identifying the extent to which CoPro dealt with the limitations of the mobile computing 

platform validated how capable CoPro was in supporting context awareness. 

5.6.3.1 Capability 

The results that indicated the capability of CoPro in supporting context awareness were 

identified by analysing the low/high-level and inferred data produced from all four 

experiments that were conducted. CoPro was tested in four evaluation scenarios consisting of 

three test runs per scenario as described in Section 5.5.4. This analysis focused on the process 

of dealing with limitations of mobile computing in terms of provisioning for limited battery 

power, limited processing power and dealing with the absence of information. The situations 

in which CoPro provisioned for the limitations of mobile computing platform were identified. 

 

The first limitation that CoPro needed to consider was limited battery power of a mobile 

device (Lee, Min, Ju, Pushp & Song 2011). As a mobile device is entirely reliant on battery 

power, the less battery used the longer the device can be used without needing to recharge it. 

A situation in which CoPro provisioned to use less battery power was when it dealt with 

updating the location context. Location context is concerned with the current location of the 

user. Updating of the user's current location frequently would have a highly negative effect 

on the battery life of the mobile device. CoPro was thus designed to only update the user's 

location when they are moving (i.e. not still). An illustration of this can be seen by analysing 

the samples of data from the first run of the second experiment (OIP) in Table 5.22 below. 

 

Table 5.22: Values for activity and location for first run of second experiment (OIP) 

Log Activity Location 

1 null At Home 40.0m 

3 Tilting. 100%: At Home 40.0m 

4 Tilting. 100%: At Home 28.28m 

12 Tilting. 100%: At Home 23.09m 

29 Standing still. 85%: At Home 23.09m 

30 Standing still. 85%: At Home 23.09m 
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The initial location with a confidence of 40m was obtained before a value for activity was 

reported as seen in Table 5.22. At the 3rd second an initial value for activity was reported 

(i.e. Tilting 100%) with the location reporting the same initial value. A second after the first 

initial value for activity was obtained, it was clear that the location confidence had changed 

from 40m to 28.28m. This change indicates that the location context was updated due to the 

activity reporting a value of "Tilting". At the 12th second an additional location update was 

received as indicated by the improved confidence of 28.28m to 23.09m, with activity still 

reporting a value of "Tilting". This additional location update confirms that when the device 

was "Tilting" periodic location updates were requested and received. At the 29th second 

activity reported a new value of "Still 85%" with the location reporting the same value. At the 

30th second, the same value for both the activity and location was reported. The same value 

being reported at the 30th second indicates that no location update was requested when 

activity was indicated as "Still 85%". This result shows that when activity was not indicated 

as "Still", location updates were requested and when activity was reported "Still", no location 

updates were requested. This result therefore demonstrates that CoPro dynamically requested 

location updates only when needed (i.e. when not "Still"), which would preserve the mobile 

device's battery life by not making unnecessary location updates. 

 

The second limitation that CoPro needed to consider was limited processing power of a 

mobile device (Lee et al. 2011). This was an important provision to plan for as CoPro would 

need to perform many tasks simultaneously to support context awareness. These tasks as 

identified in Section 2.1.1, included acquiring, monitoring, filtering, storing, representing and 

interpreting context.  In order to support all these task of context awareness simultaneously, 

CoPro made use of a thread pool to manage the execution of each task. A thread pool was 

used as it allowed individual tasks to execute in multiple threads that were available on the 

mobile device (i.e. Samsung S4). These individual tasks were added to a queue until such 

time that a thread was available to process a new task, which would then take the next task to 

be processed from the queue and execute it. This process of fetching new tasks from the 

queue to execute, continues until all tasks have been completed. The thread pool used in 

CoPro had to be managed correctly to avoid increased resource usage. One of the main 

challenges was to effectively create and destroy new tasks (Garg & Sharapov 2002). 
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Problems that could have affected the performance of CoPro are highlighted below: 

 Creating too many task threads would have wasted resources as well as the time for 

creating unused task threads. 

 Destroying too many task threads would have caused time to be wasted in creating 

new task threads again. 

 Creating task threads too slowly would have resulted in poor performance (lengthy 

wait times) 

 Destroying threads too slowly would have exhausted resource usage that could have 

been used for other tasks.  

 

The results highlighted in Section 5.6.1 and 5.6.2 demonstrated that the thread pool 

implementation in CoPro successfully managed all the tasks involved in supporting context 

awareness simultaneously.  

 

The third and final limitation that CoPro needed to make provision for was the absence of 

information, which was an existing issue highlighted in Section 2.5. A situation in which 

CoPro dealt with a lack of information is presented in Table 5.23. 

 

Table 5.23: Values for temperature, humidity and weather for the third run of fourth experiment (OIH) 

Log Temperature Humidity Weather 

1 20.0°C 52% broken clouds 

2 Very hot 31.73°C Low 28.73% broken clouds 

 

As highlighted in Table 5.23, the values for temperature and humidity at Log 1 (i.e. after 1 

second elapsed) and Log 2 (i.e. after 2 seconds elapsed) are different. This result is significant 

as it indicates that at Log 1 no values were reported for both the temperature and humidity 

context. However, because a value was obtained for the weather at Log 1, both temperature 

and humidity were assigned values. The values assigned for both the temperature and 

humidity context at Log 1 came from the weather context obtained, which not only reported 

the weather condition but also the related temperature and humidity values. The provision 

demonstrates that CoPro successfully dealt with the lack of information from sensors (i.e. 

temperature and humidity) with other sources of information such as a web service (i.e. 

weather). 
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Another noticeable capability of CoPro, which can be seen as dealing with the absence of 

information, was provisioning for ambiguous context. This provisioning was highlighted 

when CoPro was able to enhance the precision of the location context by combining it with 

preferences. This enhancement of the location context is evident in Table 5.22, whereby the 

location values are reported as "At Home", which signifies that the location address produced 

by the GPS was matched with the location preferences. 

5.6.4 Discussion 

The main goal of the evaluation was to determine the feasibility of the proposed model by 

evaluating the extent to which CoPro supports context awareness. The three sub-goals formed 

part of the main goal and together were used to address the fifth research question identified 

in Chapter 1. The sub-goals specifically focused on the effectiveness, reliability and 

capability of the prototype, CoPro. 

 

From the utility results, it can be concluded that CoPro can effectively produce current 

context information, detect changes in context information and enhance context information 

by using preferences. This conclusion is supported by the extensive analysis of the context 

information described in Section 5.6.1. This analysis showed that frequent and consistent 

context values were produced in three of the four experiments that were conducted. The 

results presented in Table 5.6 to Table 5.9 provided further evidence that CoPro can 

effectively detect changes in context information. The results in Table 5.5 also showed that 

context information such as location can be enhanced with preferences such as being at home 

instead of only providing an address of the location.  

 

CoPro's ability to produce quality context information was validated by the quality results 

presented in Section 5.6.2. These quality results showed that the freshness of the context 

values produced was improved by 25.26% with the additional improvements made to the 

design and implementation of CoPro. The completeness results demonstrated that 71% of all 

the values reported for the third and fourth experiment had a completeness value of 1 meeting 

the completeness requirements.  

 

The reliability results highlighted an improvement in context information reliability of 

19.67% for values above 50% reliability from the third to fourth experiment. This 
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improvement further validates the previous changes made to CoPro, which resulted in the 

fourth experiment producing 88.13% of its values with a reliability above 50%. The 

granularity results were also enhanced by the experiments from 47.68% to 86.86% for values 

with a granularity between 90 to 100%.  

 

The confidence interval values for activity were reasonably accurate with 98.63% of them 

indicated with a confidence of above 90%. Although 41.2% of the location values reported 

had a confidence of  less than 20m, most of the location values were correctly reported and 

represented the true value of location (i.e. At Home). Overall the accuracy results indicated 

that 95.05% of the values produced by CoPro from both the third and fourth experiments 

were considered as accurate based on the statistical method described in Section 5.5.2. 

 

The results for the trustworthiness evaluation metric indicated that 77.28% of the overall 

context produced by CoPro in the last two experiments were between 90 to 100%. This result 

highlights that the context providers that produced 77.28% of the context values for CoPro in 

those two experiments can be considered to be trustworthy. Lastly the certainty results 

showed that 98.92% of the inferred contexts determined in the fourth experiment had a 

certainty of between 90 to 100%. 

 

CoPro can successfully deal with the mobile computing platform limitations identified in 

Section 5.6.3.1. The efficacy results provided evidence to support this statement, which 

highlighted CoPro's ability to only request location updates when the device is moving to 

preserve the life of the mobile device's battery. These results also emphasized CoPro's 

parallel processing pattern with the use of a thread pool to efficiently perform the tasks 

needed as identified in Section 2.1.1 to support context awareness. Finally the efficacy results 

also showed the capability of CoPro in using other sources of data (i.e. web services) to 

compensate when there was lack of information provided from the preferred context 

providers (i.e. sensors). 

 

Overall these results addressed the main goal as well as the sub-goals identified in Section 

5.3, which were aligned with the DSR evaluation activity of the design cycle. As a result, 

these results also rigorously demonstrated the utility, quality and efficacy of the prototype, 

CoPro, in supporting context awareness. 
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5.7 Design Implications and Recommendations 

Both literature chapters (Chapters 2 and 3) concluded with requirements, which were 

identified in order for a context-aware model to support context awareness in mobile 

applications. These requirements can be compared with the results of the evaluations 

conducted consisting of four experiments to identify design recommendations for a context-

aware model. 

 

The following section will first compare the extent to which the proposed model 

implemented as the CoPro prototype supported the requirements identified in Chapters 2 and 

3. This section will then compare the requirements with the results of the evaluation 

experiments discussed in Section 5.6 to determine the final design recommendations for a 

context-aware model to support context awareness in mobile applications. 

5.7.1 Support for Requirements 

The requirements identified in Chapter 2 highlighted the existing issues in context awareness. 

The extent to which CoPro supported these issues are described in Table 5.24 for each of the 

existing issues identified. 

 

Table 5.24: Extent of support for existing issues in context awareness  

Design Implication Supported? Extent of Support 

1. Sensor-based Context Recognition Yes CoPro successfully performed sensor-based 

as well as non-sensor-based context 

recognition. The available inputs (i.e. 

sensors) on the device were detected at run-

time before commencing the context 

recognition process. 

2. Activity Recognition Yes With the use of the Google Activity 

Recognition API, CoPro was able to detect 

six different physical activities. CoPro 

could further determine several inferred 

activities by using multiple inputs. 

3. Indoor Location Awareness Partially CoPro was able to detect whether the 

device was indoor or outdoor. However, 

detecting room level precision could not be 

achieved as this is still a major challenge of 

location awareness.  
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4.  Automated Context Situation Prediction Yes CoPro automated the process of 

determining inferred context at run time by 

combining several low/high-level contexts. 

5. Context Ambiguity Yes Dealing with context ambiguity was 

highlighted when CoPro made use of 

available weather data to provide values for 

temperature and humidity. Use of location 

preferences also enhanced the precision of 

location values. 

6. Appropriate Storage Partially As the current context needed to be as fresh 

as possible, the context was stored within 

the application for further use. 

Improvements could involve storing a 

context history on a remote server or cloud 

computing platform. 

7. User Control and Automation Yes Context recognition processes needed to be 

automated as much as possible, however by 

allowing preferences to be set enabled a 

balance between user control and 

automation. 

 

The requirements identified in Chapter 3 described the shortcomings in existing context-

aware models. As the CoPro prototype was based on the proposed model, the extent to which 

CoPro supported these shortcomings are highlighted in Table 5.25 for each shortcoming 

identified. 

Table 5.25: Extent of support for shortcomings in existing context-aware models 

Design Implication Supported? Extent of Support 

1. Extract High-Level Context Yes CoPro could not only extract high-level 

context from low-level context (raw data) 

but also combined this high-level context to 

produced inferred context. 

2. Optimisation Support for Continuous 

Sensing and Processing 

Yes Provisions for continuous sensing and 

processing of context were made by CoPro 

by using a thread pool to manage context 

related tasks. 

3. M-health Context Partially As the proposed model focused on 

obtaining context with only one device, 

CoPro incorporated a set of health 

preferences. Bodily sensor readings were 

not detected as this would have required 

additional wearable devices to be used. 



   Chapter 5: Evaluation 

132 

 

4. Dimension-based Context Modelling  Yes The proposed model categorized and 

modelled all context inputs into four key 

dimensions including physical, user-

activity, health and user preferences. 

5. Personalized Context Yes The use of user preferences allowed for 

contexts such as location to be tailored (i.e. 

location value of "At Home").   

6. Dynamic Context Yes CoPro considered both the dynamic and 

static nature of context by using streaming 

sensor data as well as non-steaming data as 

input sources 

5.7.2 Final Design Recommendations 

The final design recommendations are discussed in this section. The results of the iterative 

evaluation experiments validated all of the requirements identified in Chapters 2 and 3. As a 

result, the evaluation results and requirements were subsequently used to derive the design 

recommendations. These design recommendations provide valuable insight to future 

researchers when designing a model to support context awareness in mobile applications.  

 

The final design recommendations are: 

 When trying to develop a model to support context awareness, the use of an existing 

model that is the most suitable based on the requirements can form a strong starting 

point. The existing model would have already solved certain issues that would 

possibly have to be solved again if one chose to develop a context-aware model from 

scratch. 

 Using multiple-input sources when trying to recognize context can help alleviate 

issues such as when there is an absence of information (an example can be viewed in 

Section 5.6.3.1). 

 Context is multi-dimensional and should be considered in both its static and dynamic 

form (i.e. steady context like gender vs. changing context such as physical activity). 

 In terms of the quality of context, the objective and subjective view of the context 

quality needs to be considered as each evaluate different aspects of context. (i.e. 

perceived value versus objective value). 

 Considering the limitations of the mobile computing platform is a must when 

designing for mobile devices. Not considering these limitations could lead to poor 

performance such as draining the device's battery life unnecessarily. 
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 Extracting high-level abstract meanings from low-level context data can provide more 

useful insight about the context, instead of merely reporting the absolute values (i.e. a 

value of 100 lux could be better represented as "Normal" for the ambient light level). 

 Tailoring produced context preferences allows for some user control over the 

automated context recognition process. This personalization of context can improve 

the adoption and acceptance rate of context-aware provisions in mobile applications. 

5.8 Conclusion 

This chapter addressed the evaluation phase of the DSR methodology and the fourth research 

question identified in Chapter 1: "How effective, reliable and capable is the proposed 

context-aware model and to what extent does it support context awareness in mobile 

applications?" The evaluation of the proposed model was noted as a core activity of the 

Design Cycle in DSR. Experimental evaluation methods including controlled experiments 

and simulation were used to demonstrate well-executed evaluation methods, as proposed by 

(Hevner et al. 2004). The experimental evaluations were conducted in an iterative evaluate 

and re-design process as this is an important characteristic of DSR. The experimental 

evaluation methods rigorously demonstrated the utility, quality and efficacy of CoPro.  

 

The chapter first identified evaluation techniques, which could be used to evaluate CoPro. 

The goals of the evaluation were then described. A suitable evaluation technique was then 

selected and motivated based on the evaluation goals. The experimental design was then 

described in detail, which included the evaluation objectives, evaluation metrics, evaluation 

instruments and evaluation procedure.  

 

The analysis of results as well as the design improvements for each repeated experiment were 

presented. The utility results (Section 5.6.1) highlighted that CoPro was effective in not only 

obtaining initial context but also at detecting changes in the current context and tailoring 

context where applicable with preferences. The quality results (Section 5.6.2) demonstrated 

that the quality of context produced by CoPro was of high-quality and reliable. The efficacy 

results showed that CoPro dealt with the limitations of the mobile computing platform by 

making provisions for limited battery power, limited processing power and absence of 

information.     
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Lastly, design implications and design recommendations were discussed to conclude the 

chapter. CoPro supported all the design implications that were identified from Chapters 2 and 

3. Based on these design implications and the results obtained from the evaluation 

experiments, design recommendations were made for the benefit of future researchers in this 

area of research.  

 

The final chapter, Chapter 6, concludes this dissertation by providing an overview of the 

research conducted. The final chapter will highlight the contributions of this research 

conducted using a DSR methodology in order to add value to the DSR knowledge base as 

highlighted in Section 1.4.3. Future work for continuation of this research will also be 

presented in the final chapter. The concluding chapter will complete the DSR process by 

communicating the findings of this research to the appropriate audience. 
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 Chapter 6: Conclusions 

6.1 Introduction 

The main objective of this research was to develop a context-aware model to support the 

context awareness needs of mobile applications. The Design Science Research methodology 

was used during this development. Implementation of the context-aware model as a prototype 

formed part of the main objective. The prototype, named CoPro, was implemented for the 

purpose of assessing the feasibility of the proposed context-aware model in order for it to be 

considered a viable DSR artefact. Other deliverables of this research included the context-

aware model, the evaluation of the prototype and the final design recommendations 

highlighted in Chapter 5. 

 

This chapter concludes this dissertation by presenting the conclusions and contributions of 

the research. Conclusions will be inferred about whether the model can facilitate context 

awareness in mobile applications using multiple inputs. Contributions of this research in 

terms of theory and practice will be identified. The initial goals of the research will be 

reviewed to determine whether the research met its planned objectives. A summary of the 

problems and limitations encountered in conducting this research will be discussed. Lastly, 

future research will be identified to conclude the chapter. 

6.2 Achievement of Research Objectives 

This research has shown that a context-aware model can be developed to support the context 

awareness needs of mobile applications. The implementation of the proposed model can be 

used to support context awareness in mobile applications and enable mobile applications to 

take advantage of this valuable information. Context-aware mobile applications could assist 

in time-critical situations, such as emergency healthcare and location-based services as 

identified in Section 1.1 in Chapter 1. 

 

The main research objective of this research was to develop a context-aware model for 

mobile applications using multiple input sources. A discussion of how this research achieved 

this objective is highlighted in this section. In order to achieve the main objective, several 

sub-objectives were identified in Section 1.4.2 in Chapter 1, which are shown below: 
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RO 1. To identify the existing problems and requirements with context awareness in 

mobile applications (Chapter 2). 

RO 2. To identify the existing problems with context awareness solutions that relate 

to mobile applications (Chapter 3) 

RO 3. To develop a context-aware model using multiple input techniques and 

implement this model into a prototype (Chapter 4). 

RO 4. To evaluate the utility, quality and efficacy of the prototype developed based 

on the proposed model (Chapter 5). 

 

The Relevance Cycle of DSR initiated this research allowing for opportunities and problems 

to be identified. The problem identified for this research was that mobile applications do not 

use multiple data inputs to accurately determine context and therefore lack context 

awareness. This problem is in line with the problem relevance guideline highlighted in 

Section 1.4.3, as this problem can be applicable to mobile applications created by businesses. 

 

Once the main problem of this research was identified, the Rigor Cycle of DSR allowed for 

consideration of past knowledge in the form of grounding theories and methods along with 

domain experience and expertise. The Relevance and Rigor Cycle allowed for Research 

Objectives 1 and 2 (RO 1 and RO 2) to be addressed by conducting literature studies on the 

two knowledge bases of this research, namely context awareness and mobile computing. 

These two literature studies were addressed in Chapter 2 and Chapter 3, which addressed the 

sub-objectives RO 1 and RO 2. Chapter 2 highlighted the requirements involved when 

dealing with context awareness as well as the existing issues with context recognition. 

Chapter 3 discussed context awareness in terms of mobile device, medical health (m-health) 

as a potential problem domain and problems with existing models that deal with context 

awareness. Chapter 2 achieved RO 1 by helping to identify requirements that would not only 

be used to design the proposed model but to also match these requirements to the existing 

context models identified in Chapter 3. This matching of the findings from Chapter 2 with the 

findings of Chapter 3 allowed for RO 2 to be achieved as an existing model, which was 

considered the most complete was used as a basis for the proposed model.  

 

The requirements from successfully achieving RO 1 and the selected existing model as a 

basis from successfully achieving RO 2 allowed for the third research objective (RO 3) to be 

addressed. RO 3 was addressed in Chapter 4, which used the deliverables of both RO 1 and 
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RO 2 to design the proposed model and implement the CoPro prototype based on this model. 

Chapter 4 embodied the central Design Cycle of DSR, which supported the building and 

evaluating of the design artefacts. The Design Cycle allowed for an iterative process to be 

followed in which generated feedback was used to further refine the design of the artefact. 

After several iterations, the designed model and implemented prototype, CoPro was ready to 

be evaluated achieving RO 3. Although this build and evaluate process was followed during 

the initial design of the context-aware model and initial implementation of CoPro, this 

process is meant to be used more formally in the evaluation of the design artefact. This notion 

is supported by a characteristic of DSR whereby re-evaluations are conducted to refine the 

design artefact until a final design artefact is produced. Therefore, the build and evaluate 

process was also followed during the DSR evaluation phase through performing several 

evaluation experiments that addressed the fourth and final research objective (RO 4). 

 

To achieve the fourth research objective (RO 4), a total of four experiments were conducted 

in four evaluation scenarios highlighted in Section 5.5. These experiments evaluated the 

utility (effectiveness), quality (reliability) and efficacy (capability) of CoPro to determine if 

the main objective of this research was met. The results of these four experiments highlighted 

in Section 5.6, concluded that CoPro was indeed effective in producing, detecting and using 

context with preferences. These results in terms of quality of context also demonstrated the 

88.13% of values in the fourth experiment had a reliability of above 50%. The results also 

highlighted that all the context values that were evaluated in terms of accuracy in both the 

third and fourth experiments 95.05% of them were determined as accurate using a statistical 

method. The final results of the repeated evaluation experiments successfully demonstrated 

the capability of CoPro in dealing with the limitations of the mobile computing platform 

including, limited battery power, limited processing power and missing information.  

 

The results of all the experiments and particularly the fourth experiment validated that the 

design decisions made for producing the final prototype were correct as CoPro effectively 

supported the context awareness process that would be used in mobile applications. 

Therefore, the evaluation results demonstrated the achievement of all the sub-objectives and 

as a result, the main objective was achieved, which was to develop a context-aware model for 

mobile applications using multiple input sources. 
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The requirements identified in Chapters 2 and 3 were also validated by the results of the 

evaluation of CoPro and the design of the proposed model. Design recommendations for 

future researchers interested in designing and implementing a context-aware model were also 

provided. These design recommendations form part of the contributions of this research and 

will be described in the next section. 

 

This section has demonstrated the successful achievement of all the research objectives 

identified forth for this research. The contributions of this research are described in the next 

section in term of theoretical and practical contributions. 

6.3 Research Contributions 

Several research contributions were made by successfully achieving the research objectives. 

These research contributions were categorized into theoretical and practical contributions. 

The process of developing and designing the proposed model produced theoretical 

contributions. The implementation of the proposed model into a prototype, named CoPro and 

evaluation of CoPro produced practical contributions.  

6.3.1 Theoretical Contribution 

The first theoretical contribution includes the requirements of context awareness in terms of 

existing issues (Section 2.5) and possible solutions (Section 2.6) to address these problems. 

These requirements provide further understanding of context awareness and the issues that 

exist in this research area. The context awareness requirements can thus be used as criteria to 

assist future researchers when forming solutions to address the problems in context 

awareness. These requirements represent a significant theoretical contribution in the 

enhancement of context awareness research. 

 

The second theoretical contribution was made by designing the proposed model based on the 

highlighted requirements in Chapter 2 and the existing model selected in Chapter 3. The 

proposed model was designed by taking both the context awareness requirements and the 

shortcomings of the existing model into consideration. The final design of the proposed 

model was described in Section 4.2.2 and forms another theoretical contribution in terms of 

modelling of personal user context. 

 



   Chapter 6: Conclusions 

139 

 

The third theoretical contribution is related to the second theoretical contribution, namely the 

design of the proposed model. An underlying context awareness architecture (Section 2.1.1) 

was adapted and highlighted in Chapter 4 (Section 4.2.3), to form a solid foundation in 

assisting the proposed model in supporting context awareness in mobile applications. The 

context awareness architecture assisted in converting the proposed model into a prototype 

called CoPro. This architecture provides valuable insight into the underlying layers needed to 

support context-aware applications from the initial sourcing of multiple low-level inputs. This 

architecture therefore is another significant theoretical contribution.  

 

The fourth and final theoretical contribution are the design recommendations for developing 

an effective context-aware model described in Section 5.7.2. These design recommendations 

were derived from the design implications (i.e. context awareness and model requirements) 

and evaluation results, which were matched in Section 5.7.1. These design recommendations 

provide valuable knowledge and insight into successfully developing a context-aware model, 

which were validated by the results of the repeated experiments. Therefore, the set of design 

recommendations is the final noteworthy theoretical contribution of this research. 

6.3.2 Practical Contribution 

The first practical contribution of this research is the CoPro prototype that was developed 

based on the proposed model (Section 5.7.2) to support the context awareness needs in 

mobile applications. CoPro performed all of the complex tasks involved in both the lower and 

middle layers of the context awareness architecture. Implementing each of the components of 

these two layers (i.e. context gathering and pre-processing, and middleware) form part of this 

contribution. The second part of this contribution was using the proposed model to model the 

multiple-input sources into the identified context dimensions, including physical, user-

activity, health and user-preferences. The combined prototype, CoPro, forms the first 

substantial practical contribution of this research.   

 

The second practical contribution are the evaluation metrics (Section 5.5.2) that were 

developed and implemented in the context recognition process within CoPro, and also used 

for the multiple evaluations conducted. These evaluation metrics were derived from QoC 

metrics identified in literature (Section 4.3.2). Since only the objective QoC metrics were 

considered, additional QoC metrics were identified and developed to be used to ensure a 
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rigorous evaluation. The results of the third evaluation experiment revealed that some QoC 

metrics were not producing accurate values such, as the freshness metric. This highlighted 

that those QoC metrics defined in literature were not validated in a practical manner to see if 

they actually work. These QoC metrics were thus reworked to produce new QoC metrics to 

be used for evaluation of CoPro. The results of the fourth experiment confirmed the accuracy 

and correctness of the updated QoC metrics. Therefore, all the QoC metrics used for 

evaluating the feasibility of CoPro form the second practical contribution to the DSR 

knowledge base (Section 1.4.3). 

 

The third practical contribution is the evaluation design and the results of this evaluation. The 

evaluation design is a noteworthy part of this contribution as there is limited DSR evaluation 

literature on how an experimental DSR evaluation should be conducted at an operational 

level. The evaluation design can therefore help future researchers in conducting DSR 

evaluations using experimental design. The evaluation results that were obtained from the 

four evaluation experiments performed to evaluate CoPro are also part of this contribution. 

These results rigorously demonstrated the effectiveness, quality and efficacy of the CoPro 

prototype and the proposed model. These conclusions show that both CoPro and the proposed 

context-aware model support the context awareness needs in mobile applications and are 

therefore viable artefacts. 

6.4 Encountered Problems and Limitations 

Several problems were encountered during the design, implementation and evaluation cycles 

of this research. One of these problems involved dealing with the multiple input sources 

reported from different context providers (i.e. sensors, web services, calendar). During the 

proposal of this research topic, this aspect of the research was considered reasonable. 

However, when actually conducting the research this task was identified as inherently 

complex. Information provided from the sensors, web services and calendar all needed to be 

handled and processed individually. For example, the sound values obtained from the mobile 

device's microphone had to be calibrated as highlighted in Chapter 4 (Section 4.3.2). This 

calibration involved calibrating the sound values with a sound level meter in order to 

accurately report the actual ambient sound level. This calibration was needed to report valid 

sound level values as the mobile device's microphone did not report the actual sound level. 
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Another problem encountered was when some QoC metrics identified from literature were 

used during the evaluation, but did not produce valid results as discussed in Chapter 5 

(Section 5.6.2.1). For example the freshness QoC metric did not report expected values for 

the freshness of the context data. The time period of the freshness QoC formula had to be 

calculated in a completely new way compared to its initial definition in order to produce valid 

freshness values. A limitation also related to the evaluation was the limited research available 

for guiding and performing the experimental design evaluation at an operational research 

level. 

 

The last problem that was faced occurred after the logging of the evaluation context data 

(Section 5.5.4). There was a problem in extracting the logged data from the mobile device. In 

general, it should be possible to download the logged data directly from the mobile device; 

however, this was not the case. In order to solve this problem, the logged data was emailed 

for further analysis by the evaluator (author) after being transferred into CSV files. 

 

The next section will highlight potential future research that could be conducted for the 

purposes of making further significant developments in this research area. 

6.5 Future Research 

This section concludes this chapter and this dissertation by highlighting future research that 

can potentially improve the developments made by this research. CoPro and the proposed 

model were designed to effectively handle at least sixteen different input sources (excluding 

preferences). However, because of the robust design of the proposed model, additional input 

sources could be easily included to provide even more valuable context information. An 

example could be to add geomagnetic field data from the magnetic field sensor. Using the 

magnetic field sensor with some algorithms could assist in determining in which direction the 

user is facing, such as magnetic north. With new sensors being constantly added to mobile 

devices, such as the Samsung S5 with its heart rate monitor sensor, there is real potential for 

future research in this area. 

 

It would also be valuable to test the proposed model with users by generating scenarios in 

which the users perform specific tasks and CoPro would then provide information based on 

the users' context. The users' opinions and their perceived value of the context-aware services 



   Chapter 6: Conclusions 

142 

 

could then be captured via user surveys and questionnaires. These tests could be performed in 

two ways, either controlled by using pre-determined tasks or in a more natural environment 

and allowing the user to use the system freely over a period of time. This would also allow 

the subjective QoC metrics identified such as the validity and significance of context, to be 

used according to the user requirements. Using these subjective QoC metrics would provide a 

higher level of personalization of context, which would support the adoption of context-

aware services. 

 

Another possible avenue for extending this research could be to convert CoPro into an 

application programming interface (API) to allow mobile application developers to use this as 

a context-aware service. As CoPro can reliably and accurately perform context recognition 

for low-level and high-level as well as inferred context, mobile application developers could 

use the CoPro API to develop context-aware applications. Assessing how the developers use 

the API and whether they find it simple and easy to use and useful could represent a 

significant contribution as part of future research in this area. 
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Log Device LocationAvailability Posture  Inferred Activity I/O LocationLight Temperature Humidity Proximity Sound OrientationNetwork Battery Charging

1 In Hand Free Upright null Indoor[H] Normal 21.0 lux null null Far 8.0 cm Silent 39.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

2 In Hand Free Upright null Indoor[H] Normal 21.0 lux null null Far 8.0 cm Silent 32.2 dB Face Up Connected Wifi enabledHigh 75% Discharging

3 In Hand Free Upright null Indoor[H] Normal 21.0 lux null null Far 8.0 cm Silent 31.9 dB Face Up Connected Wifi enabledHigh 75% Discharging

4 In Hand Free Upright null Indoor[H] Normal 21.0 lux Mild 24.450014 Â°C Medium 52.399574 % Far 8.0 cm Silent 31.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

5 In Hand Free Upright null Indoor[H] Normal 21.0 lux Mild 24.450014 Â°C Medium 52.399574 % Far 8.0 cm Silent 31.5 dB Face Up Connected Wifi enabledHigh 75% Discharging

6 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.450014 Â°C Medium 52.399574 % Far 8.0 cm Silent 29.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

7 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.450014 Â°C Medium 52.399574 % Far 8.0 cm Silent 29.9 dB Face Up Connected Wifi enabledHigh 75% Discharging

8 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.302956 Â°C Medium 53.076973 % Far 8.0 cm Silent 30 dB Face Up Connected Wifi enabledHigh 75% Discharging

9 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.302956 Â°C Medium 53.076973 % Far 8.0 cm Silent 31 dB Face Up Connected Wifi enabledHigh 75% Discharging

10 In Hand Free Upright Working Indoor[H] Normal 22.0 lux Mild 24.302956 Â°C Medium 53.076973 % Far 8.0 cm Silent 31.3 dB Face Up Connected Wifi enabledHigh 75% Discharging

11 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.302956 Â°C Medium 53.076973 % Far 8.0 cm Silent 30.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

12 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.20088 Â°C Medium 52.27246 % Far 8.0 cm Silent 28.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

13 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.20088 Â°C Medium 52.27246 % Far 8.0 cm Very silent 27.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

14 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.20088 Â°C Medium 52.27246 % Far 8.0 cm Silent 32.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

15 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.143864 Â°C Medium 51.015217 % Far 8.0 cm Silent 31.2 dB Face Up Connected Wifi enabledHigh 75% Discharging

16 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.143864 Â°C Medium 51.015217 % Far 8.0 cm Silent 32.2 dB Face Up Connected Wifi enabledHigh 75% Discharging

17 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.143864 Â°C Medium 51.015217 % Far 8.0 cm Silent 32.8 dB Face Up Connected Wifi enabledHigh 75% Discharging

18 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.143864 Â°C Medium 51.015217 % Far 8.0 cm Silent 31.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

19 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.044235 Â°C Medium 49.968376 % Far 8.0 cm Silent 32.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

20 In Hand Free Upright Working Indoor[H] Normal 21.0 lux Mild 24.044235 Â°C Medium 49.968376 % Far 8.0 cm Silent 36.9 dB Face Up Connected Wifi enabledHigh 75% Discharging

21 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.044235 Â°C Medium 49.968376 % Far 8.0 cm Silent 38.6 dB Face Up Connected Wifi enabledHigh 75% Discharging

22 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.044235 Â°C Medium 49.968376 % Far 8.0 cm Silent 31.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

23 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.073217 Â°C Medium 48.994293 % Far 8.0 cm Silent 35.8 dB Face Up Connected Wifi enabledHigh 75% Discharging

24 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.073217 Â°C Medium 48.994293 % Far 8.0 cm Silent 33.5 dB Face Up Connected Wifi enabledHigh 75% Discharging

25 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.073217 Â°C Medium 48.994293 % Far 8.0 cm Silent 34.3 dB Face Up Connected Wifi enabledHigh 75% Discharging

26 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.073217 Â°C Medium 48.994293 % Far 8.0 cm Silent 33.3 dB Face Up Connected Wifi enabledHigh 75% Discharging

27 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.140835 Â°C Medium 48.041428 % Far 8.0 cm Silent 37.1 dB Face Up Connected Wifi enabledHigh 75% Discharging

28 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.140835 Â°C Medium 48.041428 % Far 8.0 cm Silent 33.8 dB Face Up Connected Wifi enabledHigh 75% Discharging

29 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.140835 Â°C Medium 48.041428 % Far 8.0 cm Silent 32 dB Face Up Connected Wifi enabledHigh 75% Discharging

30 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 24.140835 Â°C Medium 48.041428 % Far 8.0 cm Silent 28.6 dB Face Up Connected Wifi enabledHigh 75% Discharging

31 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.999842 Â°C Medium 47.395092 % Far 8.0 cm Silent 29.9 dB Face Up Connected Wifi enabledHigh 75% Discharging

32 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.999842 Â°C Medium 47.395092 % Far 8.0 cm Silent 28.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

33 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.999842 Â°C Medium 47.395092 % Far 8.0 cm Silent 31.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

34 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.999842 Â°C Medium 47.395092 % Far 8.0 cm Very silent 27.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

35 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.94588 Â°C Medium 46.798546 % Far 8.0 cm Silent 28.5 dB Face Up Connected Wifi enabledHigh 75% Discharging

36 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.94588 Â°C Medium 46.798546 % Far 8.0 cm Silent 30.2 dB Face Up Connected Wifi enabledHigh 75% Discharging

37 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.94588 Â°C Medium 46.798546 % Far 8.0 cm Silent 29.2 dB Face Up Connected Wifi enabledHigh 75% Discharging

38 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.94588 Â°C Medium 46.798546 % Far 8.0 cm Silent 29.1 dB Face Up Connected Wifi enabledHigh 75% Discharging

39 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.890684 Â°C Medium 46.322037 % Far 8.0 cm Silent 28.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

40 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.890684 Â°C Medium 46.322037 % Far 8.0 cm Silent 28.3 dB Face Up Connected Wifi enabledHigh 75% Discharging

41 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.890684 Â°C Medium 46.322037 % Far 8.0 cm Silent 28.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

42 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.793808 Â°C Medium 45.98972 % Far 8.0 cm Very silent 27.2 dB Face Up Connected Wifi enabledHigh 75% Discharging

43 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.793808 Â°C Medium 45.98972 % Far 8.0 cm Silent 29 dB Face Up Connected Wifi enabledHigh 75% Discharging

44 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.793808 Â°C Medium 45.98972 % Far 8.0 cm Silent 28.5 dB Face Up Connected Wifi enabledHigh 75% Discharging

45 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.793808 Â°C Medium 45.98972 % Far 8.0 cm Silent 28.6 dB Face Up Connected Wifi enabledHigh 75% Discharging

46 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.821136 Â°C Medium 45.5402 % Far 8.0 cm Very silent 27.9 dB Face Up Connected Wifi enabledHigh 75% Discharging

47 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.821136 Â°C Medium 45.5402 % Far 8.0 cm Very silent 27.5 dB Face Up Connected Wifi enabledHigh 75% Discharging

48 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.821136 Â°C Medium 45.5402 % Far 8.0 cm Very silent 27.4 dB Face Up Connected Wifi enabledHigh 75% Discharging

49 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.821136 Â°C Medium 45.5402 % Far 8.0 cm Very silent 26.7 dB Face Up Connected Wifi enabledHigh 75% Discharging

50 In Hand Free Upright Resting Indoor[H] Normal 21.0 lux Mild 23.766895 Â°C Medium 45.356182 % Far 8.0 cm Very silent 27 dB Face Up Connected Wifi enabledHigh 75% Discharging

Appendix B: Sample of Context Data Collected from 

Fourth Experiment (IIH) 
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Appendix C: Sample of QoC Data Collected from 

Fourth Experiment (IIH) 

 

 

 

 

2 Light Normal 21.0 lux 418 -1 0 0.633333 0.9 1 1 21.40153 20.84847

2 Temperature

2 Humidity

2 Proximity Far 8.0 cm 1418 417 0 0.633333 1

2 Sound Silent 32.22 dB 206 1206 1 0.966667 0.9 1 1 32.4653 31.9747

2 OrientationFace Up -0.48486477 0.015658317 -0.0019932466264 1264 1 0.966667 0.9 1 0 0

2 Network Wifi enabled 1420 380 0 0.566667 0.7 0.5

2 Battery 0.75% 1420 297 0 0.5 1

2 Charging Discharging 1420 300 0 0.666667 1

2 Ringer Silent 1421 302 0 0.666667 1

2 Calendar None Set for 18/11/2014 at 12:07:172428 60000 1 0.966667 0.9

2 Activity

2 Location 238 Haworthia Dr; Port Elizabeth; South Africa1426 1000 0 0.426667 0.6 0.3 0.8 1471.0m

2 Weather

2 Time of DayAfternoon 1000 1000 1 1 1

2 Day of the WeekTuesday 1000 1000 1 1 1

2 Device LocationIn Hand 267 1000 1 0.7 0.665 20 19

2 AvailabilityFree 270 998 1 0.7 0.675 28 27

2 Posture Upright 272 999 1 0.7 0.665 20 19

2 Inferred Activity

2 I/O LocationIndoor[H] 277 998 1 0.7 0.646154 13 12

3 Light Normal 21.0 lux 705 1705 1 0.966667 0.9 1 1 21 21

3 Temperature

3 Humidity

3 Proximity Far 8.0 cm 2425 417 0 0.633333 1

3 Sound Silent 31.860000000000003 dB416 416 1 0.966667 0.9 1 1 32.32489 31.39511

3 OrientationFace Up -0.47716194 0.022459162 0.009425942223 1222 1 0.966667 0.9 1 0 0

3 Network Wifi enabled 2427 380 0 0.566667 0.7 0.5

3 Battery 0.75% 2427 297 0 0.5 1

3 Charging Discharging 2428 300 0 0.666667 1

3 Ringer Silent 2428 302 0 0.666667 1

3 Calendar None Set for 18/11/2014 at 12:07:173435 60000 1 0.966667 0.9

3 Activity

3 Location 238 Haworthia Dr; Port Elizabeth; South Africa2429 1000 0 0.426667 0.6 0.3 0.8 1471.0m

3 Weather

3 Time of DayAfternoon 1000 1000 1 1 1

3 Day of the WeekTuesday 1000 1000 1 1 1

3 Device LocationIn Hand 419 1000 1 0.7 0.677419 31 30

3 AvailabilityFree 422 1000 1 0.7 0.682051 39 38

3 Posture Upright 424 999 1 0.7 0.677419 31 30

3 Inferred Activity

3 I/O LocationIndoor[H] 426 999 1 0.7 0.670833 24 23

4 Light Normal 21.0 lux 150 2150 1 0.966667 0.9 1 1 21 21

4 TemperatureMild 24.450014 Â°C841 1000 1 0.966667 0.9 1 1 24.57539 24.44855

4 Humidity Medium 52.399574 %841 1000 1 0.966667 0.9 1 1 52.40976 51.30528

4 Proximity Far 8.0 cm 3430 417 0 0.633333 1

4 Sound Silent 31.389999999999997 dB224 223 0 0.633333 0.9 1 1 31.70741 31.07259

4 OrientationFace Up -0.5437522 0.02470541 0.012415289961 961 1 0.966667 0.9 1 0 0

4 Network Wifi enabled 3433 380 0 0.566667 0.7 0.5

4 Battery 0.75% 3434 297 0 0.5 1

4 Charging Discharging 3434 300 0 0.666667 1

4 Ringer Silent 3435 302 0 0.666667 1

4 Calendar None Set for 18/11/2014 at 12:07:174419 60000 1 0.966667 0.9

4 Activity Tilting. 100% 1419 4000 1 0.9 0.7 100%

4 Location 238 Haworthia Dr; Port Elizabeth; South Africa3435 1000 0 0.426667 0.6 0.3 0.8 1471.0m

4 Weather

4 Time of DayAfternoon 1000 1000 1 1 1

4 Day of the WeekTuesday 1000 1000 1 1 1

4 Device LocationIn Hand 225 1000 1 1 0.97561 41 40

4 AvailabilityFree 227 999 1 1 0.979592 49 48

4 Posture Upright 228 999 1 1 0.97561 41 40


