49 research outputs found

    Efficient Depth-aware Image Deformation Adaptation for Curved Screen Displays

    Full text link

    Evaluation and optimization of central vision compensation techniques

    Get PDF
    Non-costly, non-invasive, safe, and reliable electronic vision enhancement systems (EVES) and their methods have presented a huge medical and industrial demand in the early 21st century. Two unique, vision compensation and enhancement algorithms are reviewed and compared, qualitatively optimizing the view of a restricted (or truncated) image. The first is described as the convex or fish-eye technique, and the second is the cartoon superimposition or Peli technique (after the leading author for this research). The novelty in this dissertation is in presenting and analyzing both of these with a comparison to a novel technique, motivated by characterization of quality vision parameters (or the distribution of photoreceptors in the eye), in an attempt to account for and compensate reported viewing difficulties and low image quality measures associated with these two existing methods.;This partial cartoon technique is based on introducing the invisible image to the immediate left and right of the truncated image as a superimposed cartoon into respective sides of the truncated image, yet only on a partial basis as not to distract the central view of the image. It is generated and evaluated using MatlabRTM to warp sample grayscale images according to predefined parameters such as warping method, cartoon and other warping parameters, different grayscale values, as well as comparing both the static and movie modes. Warped images are quantitatively compared by evaluating the Root-Mean-Square Error (RMSE) and the Universal Image Quality Index (UIQI), both representing image distortion and quality measures of warped, as compared to original images for five different scenes; landscape, close-up, obstacle, text, and home (or low-illumination) views. Remapped images are also evaluated through surveys performed on 115 subjects, where improvement is assessed using measures of image detail and distortion.;It is finally concluded that the presented partial cartoon method exhibits superior image quality for all objective measures, as well as for a majority of subjective distortion measures. Justification is provided as to why the technique does not offer superior subjective detail measures. Further improvement is suggested, as well as additional techniques and research

    Constrained parameterization with applications to graphics and image processing.

    Get PDF
    Surface parameterization is to establish a transformation that maps the points on a surface to a specified parametric domain. It has been widely applied to computer graphics and image processing fields. The challenging issue is that the usual positional constraints always result in triangle flipping in parameterizations (also called foldovers). Additionally, distortion is inevitable in parameterizations. Thus the rigid constraint is always taken into account. In general, the constraints are application-dependent. This thesis thus focuses on the various constraints depended on applications and investigates the foldover-free constrained parameterization approaches individually. Such constraints usually include, simple positional constraints, tradeoff of positional constraints and rigid constraint, and rigid constraint. From the perspective of applications, we aim at the foldover-free parameterization methods with positional constraints, the as-rigid-as-possible parameterization with positional constraints, and the well-shaped well-spaced pre-processing procedure for low-distortion parameterizations in this thesis. The first contribution of this thesis is the development of a RBF-based re-parameterization algorithm for the application of the foldover-free constrained texture mapping. The basic idea is to split the usual parameterization procedure into two steps, 2D parameterization with the constraints of convex boundaries and 2D re-parameterization with the interior positional constraints. Moreover, we further extend the 2D re-parameterization approach with the interior positional constraints to high dimensional datasets, such as, volume data and polyhedrons. The second contribution is the development of a vector field based deformation algorithm for 2D mesh deformation and image warping. Many presented deformation approaches are used to employ the basis functions (including our proposed RBF-based re-parameterization algorithm here). The main problem is that such algorithms have infinite support, that is, any local deformation always leads to small changes over the whole domain. Our presented vector field based algorithm can effectively carry on the local deformation while reducing distortion as much as possible. The third contribution is the development of a pre-processing for surface parameterization. Except the developable surfaces, the current parameterization approaches inevitably incur large distortion. To reduce distortion, we proposed a pre-processing procedure in this thesis, including mesh partition and mesh smoothing. As a result, the resulting meshes are partitioned into a set of small patches with rectangle-like boundaries. Moreover, they are well-shaped and well-spaced. This pre-processing procedure can evidently improve the quality of meshes for low-distortion parameterizations

    A model-aware inexact Newton scheme for electrical impedance tomography

    Get PDF
    This work gives new insights into the EIT model. Firstly, a novel relation between the conductivity and the data is derived, giving quantitative insights about the instability of the inverse problem. Secondly, a reconstruction framework is introduced which estimates unknown model parameters and then solves the problem with a tailored Newton method. Additional problem-specific optimizations are incorporated into the framework. Simulations verify its efficiency for simulated and measured data

    Quad Meshing

    Get PDF
    Triangle meshes have been nearly ubiquitous in computer graphics, and a large body of data structures and geometry processing algorithms based on them has been developed in the literature. At the same time, quadrilateral meshes, especially semi-regular ones, have advantages for many applications, and significant progress was made in quadrilateral mesh generation and processing during the last several years. In this State of the Art Report, we discuss the advantages and problems of techniques operating on quadrilateral meshes, including surface analysis and mesh quality, simplification, adaptive refinement, alignment with features, parametrization, and remeshing

    Cartography

    Get PDF
    The terrestrial space is the place of interaction of natural and social systems. The cartography is an essential tool to understand the complexity of these systems, their interaction and evolution. This brings the cartography to an important place in the modern world. The book presents several contributions at different areas and activities showing the importance of the cartography to the perception and organization of the territory. Learning with the past or understanding the present the use of cartography is presented as a way of looking to almost all themes of the knowledge

    Surface Deformation Potentials on Meshes for Computer Graphics and Visualization

    Get PDF
    Shape deformation models have been used in computer graphics primarily to describe the dynamics of physical deformations like cloth draping, collisions of elastic bodies, fracture, or animation of hair. Less frequent is their application to problems not directly related to a physical process. In this thesis we apply deformations to three problems in computer graphics that do not correspond to physical deformations. To this end, we generalize the physical model by modifying the energy potential. Originally, the energy potential amounts to the physical work needed to deform a body from its rest state into a given configuration and relates material strain to internal restoring forces that act to restore the original shape. For each of the three problems considered, this potential is adapted to reflect an application specific notion of shape. Under the influence of further constraints, our generalized deformation results in shapes that balance preservation of certain shape properties and application specific objectives similar to physical equilibrium states. The applications discussed in this thesis are surface parameterization, interactive shape editing and automatic design of panorama maps. For surface parameterization, we interpret parameterizations over a planar domain as deformations from a flat initial configuration onto a given surface. In this setting, we review existing parameterization methods by analyzing properties of their potential functions and derive potentials accounting for distortion of geometric properties. Interactive shape editing allows an untrained user to modify complex surfaces, be simply grabbing and moving parts of interest. A deformation model interactively extrapolates the transformation from those parts to the rest of the surface. This thesis proposes a differential shape representation for triangle meshes leading to a potential that can be optimized interactively with a simple, tailored algorithm. Although the potential is not physically accurate, it results in intuitive deformation behavior and can be parameterized to account for different material properties. Panorama maps are blends between landscape illustrations and geographic maps that are traditionally painted by an artist to convey geographic surveyknowledge on public places like ski resorts or national parks. While panorama maps are not drawn to scale, the shown landscape remains recognizable and the observer can easily recover details necessary for self location and orientation. At the same time, important features as trails or ski slopes appear not occluded and well visible. This thesis proposes the first automatic panorama generation method. Its basis is again a surface deformation, that establishes the necessary compromise between shape preservation and feature visibility.Potentiale zur Flächendeformation auf Dreiecksnetzen für Anwendungen in der Computergrafik und Visualisierung Deformationsmodelle werden in der Computergrafik bislang hauptsächlich eingesetzt, um die Dynamik physikalischer Deformationsprozesse zu modellieren. Gängige Beispiele sind Bekleidungssimulationen, Kollisionen elastischer Körper oder Animation von Haaren und Frisuren. Deutlich seltener ist ihre Anwendung auf Probleme, die nicht direkt physikalischen Prozessen entsprechen. In der vorliegenden Arbeit werden Deformationsmodelle auf drei Probleme der Computergrafik angewandt, die nicht unmittelbar einem physikalischen Deformationsprozess entsprechen. Zu diesem Zweck wird das physikalische Modell durch eine passende Änderung der potentiellen Energie verallgemeinert. Die potentielle Energie entspricht normalerweise der physikalischen Arbeit, die aufgewendet werden muss, um einen Körper aus dem Ruhezustand in eine bestimmte Konfiguration zu verformen. Darüber hinaus setzt sie die aktuelle Verformung in Beziehung zu internen Spannungskräften, die wirken um die ursprüngliche Form wiederherzustellen. In dieser Arbeit passen wir für jedes der drei betrachteten Problemfelder die potentielle Energie jeweils so an, dass sie eine anwendungsspezifische Definition von Form widerspiegelt. Unter dem Einfluss weiterer Randbedingungen führt die so verallgemeinerte Deformation zu einer Fläche, die eine Balance zwischen der Erhaltung gewisser Formeigenschaften und Zielvorgaben der Anwendung findet. Diese Balance entspricht dem Equilibrium einer physikalischen Deformation. Die drei in dieser Arbeit diskutierten Anwendungen sind Oberflächenparameterisierung, interaktives Bearbeiten von Flächen und das vollautomatische Erzeugen von Panoramakarten im Stile von Heinrich Berann. Zur Oberflächenparameterisierung interpretieren wir Parameterisierungen über einem flachen Parametergebiet als Deformationen, die ein ursprünglich ebenes Flächenstück in eine gegebene Oberfläche verformen. Innerhalb dieses Szenarios vergleichen wir dann existierende Methoden zur planaren Parameterisierung, indem wir die resultierenden potentiellen Energien analysieren, und leiten weitere Potentiale her, die die Störung geometrischer Eigenschaften wie Fläche und Winkel erfassen. Verfahren zur interaktiven Flächenbearbeitung ermöglichen schnelle und intuitive Änderungen an einer komplexen Oberfläche. Dazu wählt der Benutzer Teile der Fläche und bewegt diese durch den Raum. Ein Deformationsmodell extrapoliert interaktiv die Transformation der gewählten Teile auf die restliche Fläche. Diese Arbeit stellt eine neue differentielle Flächenrepräsentation für diskrete Flächen vor, die zu einem einfach und interaktiv zu optimierendem Potential führt. Obwohl das vorgeschlagene Potential nicht physikalisch korrekt ist, sind die resultierenden Deformationen intuitiv. Mittels eines Parameters lassen sich außerdem bestimmte Materialeigenschaften einstellen. Panoramakarten im Stile von Heinrich Berann sind eine Verschmelzung von Landschaftsillustration und geographischer Karte. Traditionell werden sie so von Hand gezeichnet, dass bestimmt Merkmale wie beispielsweise Skipisten oder Wanderwege in einem Gebiet unverdeckt und gut sichtbar bleiben, was große Kunstfertigkeit verlangt. Obwohl diese Art der Darstellung nicht maßstabsgetreu ist, sind Abweichungen auf den ersten Blick meistens nicht zu erkennen. Dadurch kann der Betrachter markante Details schnell wiederfinden und sich so innerhalb des Gebietes orientieren. Diese Arbeit stellt das erste, vollautomatische Verfahren zur Erzeugung von Panoramakarten vor. Grundlage ist wiederum eine verallgemeinerte Oberflächendeformation, die sowohl auf Formerhaltung als auch auf die Sichtbarkeit vorgegebener geographischer Merkmale abzielt
    corecore