276 research outputs found

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules

    Printed document integrity verification using barcode

    Get PDF
    Printed documents are still relevant in our daily life and information in it must be protected from threats and attacks such as forgery, falsification or unauthorized modification. Such threats make the document lose its integrity and authenticity. There are several techniques that have been proposed and used to ensure authenticity and originality of printed documents. But some of the techniques are not suitable for public use due to its complexity, hard to obtain special materials to secure the document and expensive. This paper discuss several techniques for printed document security such as watermarking and barcode as well as the usability of two dimensional barcode in document authentication and data compression with the barcode. A conceptual solution that are simple and efficient to secure the integrity and document sender's authenticity is proposed that uses two dimensional barcode to carry integrity and authenticity information in the document. The information stored in the barcode contains digital signature that provides sender's authenticity and hash value that can ensure the integrity of the printed document

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    Augmented watermarking

    Get PDF
    This thesis provides an augmented watermarking technique wherein noise is based on the watermark added to the watermarked image so that only the end user who has the key for embedding the watermark can both remove the noise and watermark to get a final clear image. The recovery for different values of noise is observed. This system may be implemented as a basic digital rights management system by defining a regime of partial rights using overlaid watermarks, together with respectively added layers of noise, in which the rights of the users define the precision with which the signals may be viewed

    SECURITY AND PRIVACY ISSUES IN MOBILE NETWORKS, DIFFICULTIES AND SOLUTIONS

    Get PDF
    Mobile communication is playing a vital role in the daily life for the last two decades; in turn its fields gained the research attention, which led to the introduction of new technologies, services and applications. These new added facilities aimed to ease the connectivity and reachability; on the other hand, many security and privacy concerns were not taken into consideration. This opened the door for the malicious activities to threaten the deployed systems and caused vulnerabilities for users, translated in the loss of valuable data and major privacy invasions. Recently, many attempts have been carried out to handle these concerns, such as improving systems’ security and implementing different privacy enhancing mechanisms. This research addresses these problems and provides a mean to preserve privacy in particular. In this research, a detailed description and analysis of the current security and privacy situation in the deployed systems is given. As a result, the existing shortages within these systems are pointed out, to be mitigated in development. Finally a privacy preserving prototype model is proposed. This research has been conducted as an extensive literature review about the most relevant references and researches in the field, using the descriptive and evaluative research methodologies. The main security models, parameters, modules and protocols are presented, also a detailed description of privacy and its related arguments, dimensions and factors is given. The findings include that mobile networks’ security along with users are vulnerable due to the weaknesses of the key exchange procedures, the difficulties that face possession, repudiation, standardization, compatibility drawbacks and lack of configurability. It also includes the need to implement new mechanisms to protect security and preserve privacy, which include public key cryptography, HIP servers, IPSec, TLS, NAT and DTLS-SRTP. Last but not least, it shows that privacy is not absolute and it has many conflicts, also privacy requires sophisticated systems, which increase the load and cost of the system.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Image steganography applications for secure communication

    Get PDF
    To securely communicate information between parties or locations is not an easy task considering the possible attacks or unintentional changes that can occur during communication. Encryption is often used to protect secret information from unauthorised access. Encryption, however, is not inconspicuous and the observable exchange of encrypted information between two parties can provide a potential attacker with information on the sender and receiver(s). The presence of encrypted information can also entice a potential attacker to launch an attack on the secure communication. This dissertation investigates and discusses the use of image steganography, a technology for hiding information in other information, to facilitate secure communication. Secure communication is divided into three categories: self-communication, one-to-one communication and one-to-many communication, depending on the number of receivers. In this dissertation, applications that make use of image steganography are implemented for each of the secure communication categories. For self-communication, image steganography is used to hide one-time passwords (OTPs) in images that are stored on a mobile device. For one-to-one communication, a decryptor program that forms part of an encryption protocol is embedded in an image using image steganography and for one-to-many communication, a secret message is divided into pieces and different pieces are embedded in different images. The image steganography applications for each of the secure communication categories are discussed along with the advantages and disadvantages that the applications have over more conventional secure communication technologies. An additional image steganography application is proposed that determines whether information is modified during communication. CopyrightDissertation (MSc)--University of Pretoria, 2012.Computer Scienceunrestricte

    Multimedia security and privacy protection in the internet of things: research developments and challenges

    Get PDF
    With the rapid growth of the internet of things (IoT), huge amounts of multimedia data are being generated from and/or exchanged through various IoT devices, systems and applications. The security and privacy of multimedia data have, however, emerged as key challenges that have the potential to impact the successful deployment of IoT devices in some data-sensitive applications. In this paper, we conduct a comprehensive survey on multimedia data security and privacy protection in the IoT. First, we classify multimedia data into different types and security levels according to application areas. Then, we analyse and discuss the existing multimedia data protection schemes in the IoT, including traditional techniques (e.g., cryptography and watermarking) and emerging technologies (e.g., blockchain and federated learning). Based on the detailed analysis on the research development of IoT-related multimedia security and privacy protection, we point out some open challenges and provide future research directions, aiming to advance the study in the relevant fields and assist researchers in gaining a deeper understanding of the state of the art on multimedia data protection in the IoT
    corecore