374 research outputs found

    Automated generation of constructive ordering heuristics for educational timetabling

    Get PDF
    Construction heuristics play an important role in solving combinatorial optimization problems. These heuristics are usually used to create an initial solution to the problem which is improved using optimization techniques such as metaheuristics. For examination timetabling and university course timetabling problems essentially graph colouring heuristics have been used for this purpose. The process of deriving heuristics manually for educational timetabling is a time consuming task. Furthermore, according to the no free lunch theorem different heuristics will perform well for different problems and problem instances. Hence, automating the induction of construction heuristics will reduce the man hours involved in creating such heuristics, allow for the derivation of problem specific heuristics and possibly result in the derivation of heuristics that humans have not thought of. This paper presents generation construction hyper-heuristics for educational timetabling. The study investigates the automatic induction of two types of construction heuristics, namely, arithmetic heuristics and hierarchical heuristics. Genetic programming is used to evolve arithmetic heuristics. Genetic programming, genetic algorithms and the generation of random heuristic combinations is examined for the generation of hierarchical heuristics. The hyper-heuristics generating both types of heuristics are applied to the examination timetabling and the curriculum based university course timetabling problems. The evolved heuristics were found to perform much better than the existing graph colouring heuristics used for this domain. Furthermore, it was found that the while the arithmetic heuristics were more effective for the examination timetabling problem, the hierarchical heuristics produced better results than the arithmetic heuristics for the curriculum based course timetabling problem. Genetic algorithms proved to be the most effective at inducing hierarchical heuristics

    Hybridising heuristics within an estimation distribution algorithm for examination timetabling

    Get PDF
    This paper presents a hybrid hyper-heuristic approach based on estimation distribution algorithms. The main motivation is to raise the level of generality for search methodologies. The objective of the hyper-heuristic is to produce solutions of acceptable quality for a number of optimisation problems. In this work, we demonstrate the generality through experimental results for different variants of exam timetabling problems. The hyper-heuristic represents an automated constructive method that searches for heuristic choices from a given set of low-level heuristics based only on non-domain-specific knowledge. The high-level search methodology is based on a simple estimation distribution algorithm. It is capable of guiding the search to select appropriate heuristics in different problem solving situations. The probability distribution of low-level heuristics at different stages of solution construction can be used to measure their effectiveness and possibly help to facilitate more intelligent hyper-heuristic search methods

    A Classification of Hyper-heuristic Approaches

    Get PDF
    The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research

    A stochastic local search algorithm with adaptive acceptance for high-school timetabling

    Get PDF
    Automating high school timetabling is a challenging task. This problem is a well known hard computational problem which has been of interest to practitioners as well as researchers. High schools need to timetable their regular activities once per year, or even more frequently. The exact solvers might fail to find a solution for a given instance of the problem. A selection hyper-heuristic can be defined as an easy-to-implement, easy-to-maintain and effective 'heuristic to choose heuristics' to solve such computationally hard problems. This paper describes the approach of the team hyper-heuristic search strategies and timetabling (HySST) to high school timetabling which competed in all three rounds of the third international timetabling competition. HySST generated the best new solutions for three given instances in Round 1 and gained the second place in Rounds 2 and 3. It achieved this by using a fairly standard stochastic search method but significantly enhanced by a selection hyper-heuristic with an adaptive acceptance mechanism. © 2014 Springer Science+Business Media New York

    Hybridizations within a graph based hyper-heuristic framework for university timetabling problems

    Get PDF
    A significant body of recent literature has explored various research directions in hyper-heuristics (which can be thought as heuristics to choose heuristics). In this paper, we extend our previous work to construct a unified graph-based hyper-heuristic (GHH) framework, under which a number of local search-based algorithms (as the high level heuristics) are studied to search upon sequences of low-level graph colouring heuristics. To gain an in-depth understanding on this new framework, we address some fundamental issues concerning neighbourhood structures and characteristics of the two search spaces (namely, the search spaces of the heuristics and the actual solutions). Furthermore, we investigate efficient hybridizations in GHH with local search methods and address issues concerning the exploration of the high-level search and the exploitation ability of the local search. These, to our knowledge, represent entirely novel directions in hyper-heuristics. The efficient hybrid GHH obtained competitive results compared with the best published results for both benchmark course and exam timetabling problems, demonstrating its efficiency and generality across different problem domains. Possible extensions upon this simple, yet general, GHH framework are also discussed

    A genetic programming hyper-heuristic approach for evolving 2-D strip packing heuristics

    Get PDF
    We present a genetic programming (GP) system to evolve reusable heuristics for the 2-D strip packing problem. The evolved heuristics are constructive, and decide both which piece to pack next and where to place that piece, given the current partial solution. This paper contributes to a growing research area that represents a paradigm shift in search methodologies. Instead of using evolutionary computation to search a space of solutions, we employ it to search a space of heuristics for the problem. A key motivation is to investigate methods to automate the heuristic design process. It has been stated in the literature that humans are very good at identifying good building blocks for solution methods. However, the task of intelligently searching through all of the potential combinations of these components is better suited to a computer. With such tools at their disposal, heuristic designers are then free to commit more of their time to the creative process of determining good components, while the computer takes on some of the design process by intelligently combining these components. This paper shows that a GP hyper-heuristic can be employed to automatically generate human competitive heuristics in a very-well studied problem domain

    Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach

    Get PDF
    عادة ما تكون مشكلة الجدول الزمني للمحاضرات الجامعية (UCTP) هي مشكلة تحسين الإندماجية. يستغرق الأمر جهود يدوية لعدة أيام للوصول إلى جدول زمني مفيد ، ولا تزال النتائج غير جيدة بما يكفي. تُستخدم طرق مختلفة من (الإرشاد أو الإرشاد المساعد) لحل UCTP بشكل مناسب. لكن هذه الأساليب عادةً ما تعطي حلول محدودة. يعالج إطار العمل الاسترشادي العالي هذه المشكلة المعقدة بشكل مناسب. يقترح هذا البحث استخدام محسن سرب الجسيمات استنادا على منهجية الإرشاد العالي (HH PSO) لمعالجة مشكلة الجدول الزمني للمحاضرات الجامعية (UCTP) . محسن سرب الجسيمات PSO يستخدام كطريقة ذات مستوى عالي لتحديد تسلسل الاستدلال ذي المستوى المنخفض (LLH) والذي من ناحية أخرى يستطيع توليد الحل الأمثل. لنهج المقترح يقسم الحل إلى مرحلتين (المرحلة الأولية ومرحلة التحسين). قمنا بتطوير LLH جديد يسمى "أقل عدد ممكن من الغرف المتبقية"  لجدولة الأحداث. يتم استخدام مجموعتي بيانات مسابقة الجدول الزمني الدولية (ITC)  ITC 2002 و ITC 2007 لتقييم الطريقة المقترحة. تشير النتائج الأولية  إلى أن الإرشاد منخفض المستوى المقترح يساعد في جدولة الأحداث في المرحلة الأولية. بالمقارنة مع LLH الأخرى ، الطريقة LLH المقترحة جدولت المزيد من الأحداث لـ 14 و 15 من حالات البيانات من 24 و 20 حالة بيانات من ITC 2002 و ITC 2007 ، على التوالي. تظهر الدراسة التجريبية أن HH PSO تحصل على معدل خرق أقل للقيود في سبع وستة حالات بيانات من ITC 2007 و ITC 2002 ، على التوالي. واستنتج هذا البحث أن LLH المقترحة يمكن أن تحصل على حل معقول وملائم إذا تم تحديد الأولوياتThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized
    corecore