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A Genetic Programming Hyper-Heuristic Approach
for Evolving 2-D Strip Packing Heuristics

Edmund K. Burke, Member, IEEE, Matthew Hyde, Member, IEEE, Graham Kendall, Member, IEEE, and
John Woodward

Abstract—We present a genetic programming (GP) system to
evolve reusable heuristics for the 2-D strip packing problem. The
evolved heuristics are constructive, and decide both which piece
to pack next and where to place that piece, given the current
partial solution. This paper contributes to a growing research
area that represents a paradigm shift in search methodologies.
Instead of using evolutionary computation to search a space of
solutions, we employ it to search a space of heuristics for the
problem. A key motivation is to investigate methods to automate
the heuristic design process. It has been stated in the literature
that humans are very good at identifying good building blocks
for solution methods. However, the task of intelligently searching
through all of the potential combinations of these components is
better suited to a computer. With such tools at their disposal,
heuristic designers are then free to commit more of their time
to the creative process of determining good components, while
the computer takes on some of the design process by intelligently
combining these components. This paper shows that a GP hyper-
heuristic can be employed to automatically generate human
competitive heuristics in a very-well studied problem domain.

Index Terms—2-D stock cutting, genetic programming, hyper-
heuristics.

1. INTRODUCTION

YPER-HEURISTICS can be thought of as heuristics

which search a space of heuristics, as opposed to search-
ing a space of solutions directly [1] (which, of course, is the
conventional approach to employing evolutionary algorithms).
We employ genetic programming (GP) as a hyper-heuristic
to search the space of heuristics that it is possible to con-
struct from a set of building blocks. The output is a set of
automatically designed heuristics that can be reused on new
problems, and which are competitive with the best human
designed constructive heuristic.

This paper presents such a hyper-heuristic system for the
2-D strip packing problem, where a number of rectangles must
be placed onto a sheet with the objective of minimizing the
length of sheet that is required to accommodate the items. The
sheethasafixed width, and therequiredlength of the sheetis

measured as the distance from the base of the sheet to the piece
edge furthest from the base. This problem is known to be NP
(non-deterministic polynomial-time) hard [2], and has many
industrial applications as there are many situations where a
series of rectangles of different sizes must be cut from a sheet
of material (for example, glass or metal) while minimizing
waste.

Indeed, many industrial problems are not limited to just
rectangles (for example textiles, leather, etc.) and this presents
another challenging problem [3]. There are many other types
of cutting and packing problems in one, two and three dimen-
sions. A typology of these problems is presented by Wascher
et al. in [4]. As well as their dimensionality, the problems are
further classified into different types of knapsack and bin pack-
ing problems, and by how similar the pieces are to each other.

In this paper, the rectangular pieces are free to rotate by
90°, and there can be no overlap of pieces. The guillotine
version of this problem occurs where the cuts to the material
can only be made perpendicular to an edge, and must split
the sheet into two pieces, then those same cutting rules apply
recursively to each piece. However, we are interested here in
the nonguillotine version of the problem, which has no such
constraint on how the pieces are cut.

The motivation behind this paper is to develop a hyper-
heuristic GP methodology which can automatically generate
a novel heuristic for any class of problem instance. This
has the potential to eliminate the time consuming process of
manual problem analysis and heuristic building that a human
programmer would carry out when faced with a new problem
instance or set of instances. Work on automatic heuristic
generation has not been presented before for this problem.
However, work employing such systems for other problem
domains has been published (see Section III-B).

Many of the heuristics created by humans are reliant on the
presented order of the pieces before the packing begins. Often,
the pieces are pre-ordered by size, which can achieve better
results [5]. However, it is not currently possible to say that
this will result in a better packing, in the general case, than a
random ordering.

Metaheuristics have been successfully employed to generate
a good ordering of the pieces before using a simple placement
policy to pack them [5], [6]. These hybrid metaheuristic
approaches have shown that it is possible for one heuristic
to gain good results on a wider range of instances because
of the ability to evolve a specific ordering of the pieces for a



given instance. However, they are still limited by the fact that
their packing heuristic may not perform well on the instance
regardless of the piece order, which would make it difficult
for the hybrid approach to find a good solution. As we will
show, the heuristics we evolve decide which piece to place next
in the partial solution and where to place it. So the evolved
heuristics’ performance is independent of any piece order.

The outline of this paper is as follows. In Section II, we
discuss some of the motivations and philosophy behind this
line of research. In Section III, we introduce the background
literature on GP, hyper-heuristics, and 2-D stock cutting
approaches. Section IV presents our algorithm. Section V
describes the benchmark problem instances used in this paper,
and Section VI presents the results of the evolved heuristics
on new problem instances not used during their evolution. The
results of the best evolved heuristic are analyzed and compared
against recent results in the literature on benchmark instances.
Finally, conclusions and ideas for future work are given in
Sections VII and VIIIL.

II. MOTIVATION FOR THIS RESEARCH AREA

The “No Free Lunch” theorem [7], [8] shows that all search
algorithms have the same average performance over all possi-
ble discrete functions. This would suggest that it is not possible
to develop a general search methodology for all optimization
problems as, over all possible discrete functions, “no heuristic
search algorithm is better than random enumeration” [9].
However, it is important to recognize that this theorem is not
saying that it is not possible to build search methodologies that
are more general than is currently possible. It is often the case
in practice that search algorithms are developed for a specific
group of problems, for instance timetabling problems [10],
[11]. Often the algorithms are developed for a narrower set
of problems within that group, for instance university course
timetabling [12] or exam timetabling problems [13]. Indeed,
algorithms can be specialized further by developing them
for a specific organization, whose timetabling problem may
have a structure very different to that of another organization
with different resources and constraints [14]. At each of these
levels, the use of domain knowledge can allow the algorithms
to exploit the structure of the set of problems in question.
This information can be used to intelligently guide a heuristic
search.

In the majority of cases, humans develop heuristics which
exploit certain features of a problem domain, and this allows
the heuristics to perform better on average than random search.
Hyper-heuristic research is concerned with building systems
which can automatically exploit the structure of a problem they
are presented with, and create new heuristics for that problem,
or intelligently choose from a set of pre-defined heuristics.
In other words, hyper-heuristic research aims to automate the
heuristic design process, or automate the decision of which
heuristics to employ for a new problem.

The subject of this paper is a hyper-heuristic system which
automatically designs heuristics, using a GP algorithm. The
heuristics are automatically designed by using GP to intelli-
gently combine a set of human defined components. While the

specification of the components themselves is not automated,
the methodology as a whole requires less human input than
would be required to manually design fully functional heuris-
tics. Fukunaga states that humans can readily identify good
potential components of methods to solve problems, but that
the task of combining them could benefit from automation
[16]. As problems in the real world become more complex,
identifying ways to automate this process may become fun-
damental to the design of heuristics, because it will become
more difficult to manually combine their potential components
in ways that fully exploit the structure of a complex problem.

There are a number of advantages of developing a methodol-
ogy to automatically design heuristics. There is a possibility of
discovering new heuristics that are unlikely to be invented by
a human analyst, due to their counterintuitive nature. Another
advantage is that a different heuristic can be created for
each subset of instances, meaning that the results obtained
on each are more likely to be better than those obtained by
one general heuristic. Human created heuristics are designed
to perform well over many problem instances, because it
would be too time consuming to manually develop a new
heuristic specialized to every subset of instances. A hyper-
heuristic approach, such as the one described in this paper,
can specialize heuristics to a given problem class, at no extra
human cost. The evolutionary algorithm need only be run
again to produce a new heuristic.

One of the long term goals of this research direction is
in making optimization tools and decision support systems
available to organizations who currently solve their problems
by hand, without the aid of computers. Examples of such
organizations could be, for example, a primary school with
a timetabling problem, or a small delivery company with a
routing problem. It is often prohibitively expensive for them
to employ a team of analysts to build a bespoke heuristic,
which would be specialized to their organization’s problem.
A more general system that automatically creates heuristics
would be applicable to a range of organizations, potentially
lowering the cost to each. It may be that there is a trade-off
between the generality of such a system, and the quality of
the solutions it obtains. However, organizations for whom it
is too expensive to commission a bespoke decision support
system, are often not interested in how close their solutions
are to optimal. They are simply interested in how much better
the solutions are than those they currently obtain by hand. For
example, consider a small organization that currently solves
its delivery scheduling problem by hand. This organization
may find that the cost of commissioning a team of humans
to design a heuristic decision support system, would be far
greater than the benefit the company would get in terms of
better scheduling solutions. However, the cost of purchasing
an “off the shelf” decision support system which can auto-
matically design appropriate heuristics, may be lower than
the resulting reduction in costs to the organization. If the
solutions are good enough, and they are cheap enough, then it
begins to make economic sense for more organizations to take
advantage of heuristic search methodologies. Hyper-heuristic
research aims to address the needs of organizations interested
in “good enough, soon enough, cheap enough” [17] solutions



to their optimization problems. Note that “good enough” often
means solutions better than currently obtained by hand, “soon
enough” typically means solutions delivered at least as quick
as those obtained by hand, and “cheap enough” usually means
the cost of the system is low enough that its solutions add value
to the organization.

III. BACKGROUND
A. Genetic Programming

GP (see [18]-20]) is a technique used to evolve popu-
lations of computer programs represented as tree structures.
An individual’s performance is assessed by evaluating its
performance at a specific task, and genetic operators such
as crossover and mutation are performed on the individuals
between generations. A list of GP parameters used in this
paper is given in Section IV-E.

B. Hyper-Heuristics

Hyper-heuristics are defined as heuristics that search a space
of heuristics, as opposed to searching a space of solutions
directly [1]. Research in this area is motivated by the goal of
raising the level of generality at which optimization systems
can operate [17]. In practice, this means researching systems
that are capable of operating over a range of different prob-
lem instances and sometimes even across problem domains,
without expensive manual parameter tuning, and while still
maintaining a certain level of solution quality.

Many existing metaheuristics have been used successfully as
hyper-heuristics. Both a genetic algorithm [21] and a learning
classifier system [22] have been used as hyper-heuristics for
the 1-D bin packing problem. A genetic algorithm with an
adaptive length chromosome and a tabu list was used in
[23] as a hyper-heuristic. A case based reasoning hyper-
heuristic is used in [24] for both exam timetabling and course
timetabling. Simulated annealing is employed as a hyper-
heuristic in [25] for the shipper rationalization problem. A tabu
search hyper-heuristic [26] is shown to be general enough to
be applied to two very different domains: nurse scheduling and
university course timetabling. A graph based hyper-heuristic
for timetabling problems is presented in [27]. Three new
hyper-heuristic architectures are presented in [28], treating
mutational and hill climbing low-level heuristics separately. A
choice function has also been employed as a hyper-heuristic,
to rank the low-level heuristics and choose the best [29]. A
distributed choice function hyper-heuristic is presented in [30].

The common theme to the hyper-heuristic research men-
tioned above is that all of the approaches are given a set of low-
level heuristics, and the hyper-heuristic chooses the best one or
the best sequence from those. Another class of hyper-heuristic,
which has received less attention in the literature, generates
low-level heuristics from a set of building blocks given to it by
the user. Examples of other work in this growing research area
are as follows. The “CLASS” system presented in [16], [31],
and [32] is an automatic generator of local search heuristics
for the satisfiability (SAT) problem, and is competitive with
human-designed heuristics. A different methodology for SAT
is presented in [33], where heuristics are more parsimonious

and faster to execute. 1-D bin packing heuristics, evolved in
[34]-[36], have superior performance to the human-designed
best-fit heuristic, even on new instances much larger than those
in the training set. A hyper-heuristic approach has also been
applied to the traveling salesman problem [37], and to evolve
dispatching rules for the job shop problem [38].

C. 2-D Stock Cutting Approaches

1) Exact Methods: Gilmore and Gomory [39] first used a
linear programming approach in 1965. Tree search procedures
have been employed to produce optimal solutions for small
instances of the 2-D guillotine stock cutting problem [40]
and 2-D nonguillotine stock cutting problem [41]. The method
used in [40] has since been improved in [42] and [43]. Recent
exact approaches can be found in [44]-[47]. It is recognized
that, in general, these methods do not provide good results on
large instances, due to the problem being NP-hard.

2) Heuristic Methods: Baker et al. define a class of pack-
ing algorithms named “bottom up, left justified” (BL) [48].
These algorithms maintain bottom left stability during the
construction of the solution. This means that every piece
cannot move further downward or to the left. The heuristic
presented in [48] has come to be named “bottom-left-fill”
(BLF) because it places each piece in turn into the lowest
available position, including any “holes” in the solution, and
then left justifies it. While this heuristic is intuitively simple,
implementations are often not efficient because of the difficulty
in analyzing the holes in the solution for the points where a
piece can be placed [49]. Chazelle presents an optimal method
for determining the ordered list of points that a piece can be put
into, using a “spring” representation to analyze the structure
of the holes [49].

These heuristics take, as input, a list of pieces,
and the results rely heavily on the pieces being in a
“good” order [48]. Theoretical work presented by Baker
et al. [48] and Brown et al. [50] show the lower bounds
for heuristic algorithms both for pre-ordered piece lists by
decreasing height and width, and non pre-ordered lists. Results
in [5] have shown that pre-ordering the pieces by decreasing
width or decreasing height before applying bottom-left (BL)
or BLF results in performance increases of between 5% and
10%.

Zhang et al. [51] use a recursive algorithm, running in
O(n?) time, to create good strip packing solutions, based on
the “divide and conquer” principle. Two heuristics for the
strip cutting problem with sequencing constraint are presented
by Rinaldi and Franz [52], based on a mixed integer linear
programming formulation of the problem.

A “best-fit” style heuristic was presented in [53]. This
algorithm is shown to produce better results than previously
published heuristic algorithms on benchmark instances [53].
The details of this heuristic are given in Section IV-A. This
heuristic is hybridized with simulated annealing in [54].
The methodology involves using best-fit to pack most of
the pieces, and then using simulated annealing to iteratively
reorder the remaining pieces, and repack them with bottom-
left-fill. This approach obtains significantly better results than
previously published methodologies, on almost all of the



benchmark problems. We use the nonhybridized version of
best-fit for comparison in this paper, because our evolved
heuristics are contructive, and best-fit is the best human
created constructive heuristic in the literature.

3) Metaheuristic Methods: Metaheuristics have been suc-
cessfully employed to evolve a good ordering of pieces for
a simple heuristic to pack. For example, Jakobs [6] uses a
genetic algorithm to evolve a sequence of pieces for a simpler
variant of the BL heuristic. This variant packs each piece by
initially placing it in the top right of the sheet and repeating
the cycle of moving it down as far as it will go, and then
left as far as it will go. Liu and Teng [55] proposed a simple
BL heuristic to use with a genetic algorithm that evolves the
order of pieces. Their heuristic moves the piece down and to
the left, but as soon as the piece can move down it is allowed
to do so. However, using a BL approach with a metaheuristic
to evolve the piece order is somewhat limited. For example it
is shown in [48] and [56] that, for certain instances, there is
no sequence that can be given to the BLF heuristic that results
in the optimal solution.

Ramesh Babu and Ramesh Babu [57] use a genetic al-
gorithm in the same way as Jakobs, to evolve an order of
pieces, but they use a slightly different heuristic to pack the
pieces, and different genetic algorithm parameters, improving
on Jakobs’ results.

Valenzuela and Wang [58] employ a genetic algorithm
for the guillotine variant of the problem. They use a linear
representation of a slicing tree as the chromosome. The slicing
tree determines the order that the guillotine cuts are made
and between which pieces. The slicing trees bear a similarity
with the GP trees in this paper, which represent heuristics.
However, the slicing trees are not heuristics. They only have
relevance to the instance they are applied to, while a heuristic
dynamically takes into account the piece sizes of an instance
before making a judgement on where to place a piece. If the
pattern of cuts dictated by the slicing tree were to be applied
to a new instance, the pattern does not consider any properties
of the new pieces. For example, if the slicing tree defines a cut
between piece one and piece nine, then this cut will blindly be
made in the new instance even if these pieces now have wildly
different sizes. A heuristic would consider the piece sizes and
the spaces available before making a decision.

Hopper and Turton [5] compare the performance of several
metaheuristic approaches for evolving the piece order, each
with both the BL constructive algorithm of Jakobs [6], and the
BLF algorithm of [48]. Simulated annealing, a genetic algo-
rithm, naive evolution, hill climbing, and random search are all
evaluated on benchmark instances, and the results show that
better results are obtained when the algorithms are combined
with the BLF decoder. The genetic algorithm and BLF decoder
(GA+BLF) and the simulated annealing approach with BLF
decoder (SA+BLF) are used as benchmarks in this paper.

Other approaches start with a solution and iteratively im-
prove it, rather than heuristically constructing a solution. Lai
and Chan [59] and Faina [60] both use a simulated annealing
approach in this way, and achieve good results on problems
of small size. Also, Bortfeldt [61] uses a GA which operates
directly on the representations of strip packing solutions.

A reactive greedy randomized adaptive search procedure
(GRASP) is presented in [62] for the 2-D strip packing
problem. The method involves a constructive phase and a
subsequent iterative improvement phase. To obtain the final
overall algorithm, four parameters were chosen with the results
from a computational study, using some of the problem sets
used in the paper: 1) one of four methods of selecting the
next piece to pack is chosen; 2) a method of randomizing
the piece selection is chosen from a choice of four; 3) there
are five options for choosing a parameter §, which is used
in the randomization method; and 4) there are four choices
for the iterative improvement algorithm after the construction
phase is complete. The method is a complex algorithm with
many parameters, which are chosen by hand.

Belov er al. have obtained arguably the best results in
the literature for this problem [56]. Their sequential value
correction (SVC) algorithm is based on an iterative process,
repeatedly applying one constructive heuristic, “SubKP,” to the
problem, each time updating certain parameters that guide its
packing. The results obtained are very similar to those obtained
by the GRASP method. They obtain the same overall result
on the “C,” “N,” and “T” instances of Hopper and Turton,
but SVC obtains a slightly better result on ten instance sets
from Berkey and Wang, and Martello and Vigo. Together,
SVC(SubKP) and the reactive GRASP method represent the
state of the art in the literature, and SVC(SubKP) seems to
work better for larger instances [56].

We compare with the results of the reactive GRASP in
Section VI, because they represent some of the best in the
literature, and their reported results cover all of the data sets
that we have used here. It must be noted, however, that the
aims of the hyper-heuristic methodology presented in this
paper differ in certain respects from the aims of other work
in the literature.

The aim of the vast majority of the literature is to generate
good quality solutions. The aim of this paper is to focus on a
methodology capable of generating good quality heuristics.
The quality of the results obtained by the automatically
designed heuristics is of high importance, but we do not aim
only for better results than the state of the art hand crafted
heuristics. Therefore, the contribution of this paper is to show
that automatically generated constructive heuristics can obtain
results in the same region as the current state of the art human
developed heuristics in 2-D strip packing [56], [62], which use
a constructive phase and an iterative phase. We also show
that the automatically generated constructive heuristics can
obtain better results than the human designed state of the art
constructive heuristic, presented in [53].

IV. METHODOLOGY

In Section IV-A, we explain the functionality of the best-fit
heuristic from [53], [54], to which we compare our evolved
heuristics, and which provides the inspiration for our packing
framework. In Section IV-B, we explain the representation of
the problem that we use, and how it is updated each time a
piece is placed into the solution. Section IV-C explains how the
heuristic decides which piece to pack next and where to place



it. A step by step packing example is given in Section IV-D
to further clarify this process. Section IV-E explains how the
heuristics themselves are evolved, detailing the GP parameters
and the method by which the heuristics are trained.

A. Best-Fit Heuristic

The best-fit heuristic [53] is explained here because it
provides the inspiration for the framework described in Sec-
tion IV-C and Fig. 5. We also compare our evolved heuristics
to this heuristic in Section VI.

The heuristic returns the result of three separate attempts
at packing, once with each of three placement policies. For
each policy, the pieces are packed one at a time, each into the
current lowest available slot on the sheet. The pieces are free
to be rotated by 90°, and the piece chosen to be packed is the
one which fills the most of the width of the slot. Note that
the piece can be placed in the left or right sides of the
slot, and it is the current placement policy that determines
which side the piece is placed. The first placement policy
is to always put the piece into the lower left corner of the
slot. The second policy is to put the piece next to the tallest
neighboring piece. Finally, the third policy is to put the piece
next to the shortest neighboring piece. The three policies result
in different solutions, and the best of the three solutions is
returned as the result of the heuristic.

Our evolved heuristics pack the pieces in a similar way to
the best-fit heuristic, because all the pieces are considered for
packing at each step, not just the first in the sequence given to
it. However, in contrast, best-fit only considers one slot for the
pieces, whereas the heuristics evolved in this paper consider
all slots. We also give our evolved heuristics three attempts at
packing, once with each placement policy, as is the case with
best-fit.

B. Representation of the Problem

Our hyper-heuristic system evolves a constructive heuristic,
which considers the strip packing problem to be a sequence
of steps, where a piece must be placed at each step. At every
step, the heuristic chooses a piece, and the position to place
it, according to the state of the sheet and the pieces already
placed on it. To this end, the sheet is represented as a set
of dynamic “slots,” the number and configuration of which
will change at every step. Each slot has a height (the distance
from the base of the sheet to the base of the slot), a lateral
position, and a width. Each slot represents a position in the
solution where a piece can be placed, and the slot structure is
refreshed after a piece is placed.

At the beginning of the packing process the sheet will be
represented as just one slot, with height zero and width equal
to the width of the sheet. As an example, Fig. 1 shows the
slot configuration (two slots, with different heights and widths)
when one piece has been placed onto the sheet in the lower
left corner. The slots are shown by horizontal lines, and the
left and right limits of the slot are shown by black squares.
The dashed line extending from the highest slot signifies that
the width of the slot extends beyond the top of the piece and
continues until it reaches the right hand side of the sheet.

. _—
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Fig. 1. Two slots after one piece has been packed, the highest slot extends
out to the right as far as the edge of the sheet.

n |

Fig. 2. New slot extends out to the left, as far as the edge of the first piece.

Figs. 1-4 show a step by step example of three more
pieces being packed and how the slot structure changes as
each piece is packed. Fig. 2 shows the slot structure after a
second piece has been placed into the lower right corner. One
can observe that the bold black horizontal lines represent the
highest horizontal surfaces at any given horizontal position
in the packing. The slots are defined by these black lines, by
extending their widths in both directions to the nearest vertical
edge of a piece or the edge of the sheet (this is shown by the
dashed lines). There are now three slots in the partial solution.

Fig. 3 shows the slot structure after a piece has been placed
into the lower left corner of the lowest slot. There are now
four slots, and one can see that the widths of the slots extend
as far as the nearest vertical edge in both directions. After the
fourth piece has been placed into the second highest slot, Fig. 4
shows the slot structure. There are now two slots, as the height
of the fourth piece matches that of its neighbor to the right. As
the fourth piece hangs over the right edge of the piece below
it, the narrowest slot from Fig. 3 is not generated this time, as
the surface is no longer the highest at this horizontal position.



Fig. 3. There are now four slots after the third piece is placed. The black
squares show the limits of the slot width.

Fig. 4. When the fourth piece is placed, two slots remain because the height
of the piece matches that of the piece to its right.

The slot structure is refreshed after each piece is placed,
and the process is analogous to pointing a laser vertically
downward onto the solution and sweeping it from left to
right. All of the surfaces hit by the laser become the bold
black horizontal lines, and from these the slots are defined, by
extending them left and right to the nearest vertical edges.

C. How the Heuristic Decides Where to Put a Piece

This section is a general explanation of the process by which
the heuristic decides which piece to pack next and where to
put it. This is also summarized in the pseudocode of Fig. 5.
Section IV-D then goes into more detail on this process, using
a specific example.

A piece can adopt two orientations in a slot. Given a
partial solution, we will refer to a combination of piece, slot,
and orientation as an “allocation.” Therefore, there are two
allocations to consider for each piece and slot combination,
provided that the piece’s width in each orientation is smaller
than the width of the slot. An allocation therefore represents
one of the set of choices (of a piece and where to put it) that

FOR each of three placement policies
WHILE pieces exist to be packed
IF at least one piece can fit in any slot
FOR each allocation
evaluate heuristic on allocation
obtain a score from the evaluation
save highest scoring allocation

END FOR
perform the best allocation on the solution
END IF
update slot structure
END WHILE

END FOR
RETURN best solution from the three placement policies

Fig. 5. Pseudocode showing the overall program structure within which a
heuristic operates. Packing policies are explained in Section IV-A.

a heuristic could make at the given decision step. A heuristic
in this hyper-heuristic system is a function that rates each
allocation. The heuristic is evaluated once for each allocation
to obtain a score for each allocation.

The heuristic scores an allocation by taking into account
a number of its features, which are represented as the GP
terminals shown in Table I. There are three terminal values
describing the piece width (W), height (H), and area (A) in its
given orientation. There are two representing the slot width
(SW) and the slot height (SH), and one which represents the
slot width left (SWL), the remaining horizontal space in the
slot if the piece were to be put in. The sheet dimensions are
represented by terminals for the sheet width (SHW) and sheet
height (SHH). The sheet height is calculated as the height of
the optimum solution multiplied by 1.5. Constants are included
for the heuristics to use, in the form of ephemeral random
constants, detailed in [18].

For each possible allocation, the values of the terminals
are calculated, and the heuristic is evaluated. The allocation
for which the heuristic returns the highest value is deemed to
be the best, and therefore that allocation is performed on the
solution at the current step. In other words, the piece from
the allocation is put in the slot from the allocation, in the
orientation dictated by the allocation. This process is shown
in the example given in Section IV-D.

In a similar way to the human created best-fit heuristic
(see Section IV-A), an evolved heuristic obtains a result by
returning the best of three complete attempts at packing, one
with each of three placement policies. When an allocation has
been chosen by the heuristic, the piece can either be placed in
the left or right of the chosen slot. The location of the piece is
determined by the current packing policy. The first placement
policy is to always put the piece into the lower left corner
of the slot. The second policy is to put the piece next to the
tallest neighboring piece. Finally, the third policy is to put the
piece next to the shortest neighboring piece. The three policies
result in different solutions, and the best of the three solutions
is returned as the result of the heuristic.

D. Packing Example

This section works through an example of how the heuristic
chooses a piece from those which remain to be packed, and
where to put it in the partial solution. It goes into further detail
than Section IV-C. The heuristic we will use in this example is



TABLE I
FUNCTIONS AND TERMINALS, AND DESCRIPTIONS OF THE VALUES THEY

RETURN
Name Label | Description
+ + Add two inputs
- - Subtract second input from first input
* * Multiply two inputs
% % Protected divide function
Width w The width of the piece
Height H The height of the piece
Area A The area of the piece
Slot Height SH Slot height, relative to base of sheet
Slot Width Left | SWL | Difference between the slot and piece
widths
Sheet Width SHW | Width of the sheet
Sheet Height SHH | Height of optimum solution multiplied by
Constant ERC | Ephemeral random constant

A

SH H

%
7N

SWL -

SHW W

Fig. 6. Example heuristic.

shown in Fig. 6. It consists of nodes from the GP function and
terminal set shown in Table I. A heuristic in the population
could contain any subset of the nodes available. Recall that
the heuristic performs three complete packings, one for each
placement policy (described in Section IV-A), and returns the
best solution of the three. This example will use the first
placement policy, where the piece is always put into the lower
left corner of the slot. For the other two placement policies, the
same methodology is used, but the rules of the other placement
policies will govern whether the piece is placed into the left
or right of the slot.

We will use the heuristic shown in Fig. 6 to choose a piece
from those which remain to be packed (shown in Fig. 7) and
choose where to place it in the partial solution shown pre-
viously in Fig. 2. The partial solution shows that two pieces
have already been packed by the heuristic, one to the left and
one to the right. We do not show this process, because it is
the same as the one we will explain, and the example will be
more descriptive if we show the process in the middle of the
packing. There are three slots in the partial solution, which
are defined by the pieces already packed.

For each placement policy, the algorithm takes each piece
in turn, and evaluates the tree for every possible allocation of
that piece. So, first we will consider piece one from Fig. 7.
A piece can be placed into a slot in either orientation, as long

o
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Fig. 7. Pieces we will consider for packing.
"""" i
Fi
I
[
[
|
I
[
[
R =
F=1===== E |
| 1 |
I 1 |
4
i
I
)
B e e
i 1
) 1
i 1
I 1
L ’ n
80 : »aa oy
Bi
i
1
i
....... E——— 45
| Al
i i
1 i
N | - ' R
154 55 *—30 —i
Fig. 8. All of the places where piece one from Fig. 7 can go.

as it does not exceed the width of the slot. Piece one does not
exceed the width of any of the slots, so it can be considered
for allocation into all three slots. Fig. 8 shows these six valid
allocations for piece one in the partial solution, labeled A to F.
Each of these six allocations will receive a score, obtained
by evaluating the tree once for each allocation. The tree will
give a different score for each allocation because the GP
terminal nodes will evaluate to different values depending on
the features of the allocation. One can see that two of these six
allocations represent placing the piece suspended in the middle
of the solution, with no piece below it. This is permitted
by the representation, because of the possibility of an even
wider piece being chosen to be placed across a gap, and we
expect that a good evolved heuristic will never choose such an
allocation when it can be placed further down in the solution.

The process of evaluating the tree is explained here, by
taking the examples of allocations A and B from Fig. 8. Fig. 9
shows allocation A in detail. To evaluate the tree for alloca-
tion A, we will first determine the values of the terminal nodes
of the tree. The W and the H terminals will take the values
50 and 20, respectively. The SWL terminal will evaluate to 5
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Fig. 10. Allocation B from Fig. 8 in detail.

because that is the horizontal space left in the slot after the
piece is put in. The SH terminal evaluates to zero, because the
base of the slot is at the foot of the sheet. The SHW terminal
evaluates to 100, because this is the width of the entire sheet.

Expression 1 shows the tree written in linear form. If we
substitute the terminal values into the expression, we get
expression 2. This simplifies to expression 3, which evaluates
to —19.9. This value is the score for the allocation of piece
one in the lowest slot, in a horizontal orientation

(SWL >— SH + H 1
SHEW — W (SH+ H) (D
(100 — 50) — (0+20) 2)

5
(50> — 20. 3)

Fig. 10 shows allocation B in detail. Again, we will calculate
the values of the terminal nodes for this allocation in order to
evaluate the tree. W and H are now 20 and 50, respectively,
they are different from their values in allocation A because
the piece is now in the vertical orientation. SWL evaluates
to 35, as this is the horizontal space left in the slot after the
piece has been placed, shown in Fig. 10. SH evaluates to zero,
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Fig. 11. Three potential allocations for piece two.

TABLE 11
INITIALIZATION PARAMETERS OF EACH GENETIC PROGRAMMING RUN

Population Size 1000

Maximum Generations 50

Crossover Probability 0.85

Mutation Probability 0.1

Reproduction Probability 0.05

Tree Initialization Method | Ramped half-and-half
Selection Method Tournament selection, size 7

as before, because the allocation concerns the same slot. The
SHW terminal still evaluates to 100.

When the terminal values have been substituted in, the tree
simplifies to expression 4, which evaluates to —49.56 to two
decimal places. This is the score for the allocation of piece
one in the lowest slot, in a horizontal orientation

35
(80) —50. “)

Of these two allocations, the first has been rated as better by
the heuristic, because it received a higher score. The other four
allocations for this piece are scored in the same way. Then the
allocations possible for piece two are scored, of which there
are essentially three, shown in Fig. 11. There are, in fact, six
allocations that are scored for this piece, but it has identical
width and height so both orientations will produce the same
result from the heuristic.

The rest of the pieces that remain to be packed have all of
their allocations scored in the same way. Finally, the allocation
which received the highest score from the heuristic is actually
performed. In other words, the piece from the allocation is
committed to the partial solution in the orientation and slot
dictated by the allocation. Then the slot structure is updated
because a new piece has been put into a bin. For example,
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Fig. 12. New partial solution after the allocation that received the highest
score has been performed.

the allocation involving piece one in position “A” from Fig. 8
received a score of —19.9. If no subsequent allocation (involv-
ing the same piece or any other piece) received a higher score
than this, then this will be the allocation that is performed.
The slots will then be configured as shown in Fig. 12.

The process of choosing a piece and where to put it is
now complete, and the next iteration begins. All the remaining
pieces are scored again in the same way, and there will be
new positions available due to the change in slot structure that
has occurred. When all of the pieces have been packed, the
result for the first placement policy is stored, and the process
begins again for the second placement policy, starting with an
empty sheet again (the details of the placement policies can be
found in Section IV-A). The packing process for the second
placement policy will be the same as for the first, but the piece
could be placed in the right side of a slot if the neighboring
piece to the right is larger than the piece to the left.

E. How the Heuristic is Evolved

The hyper-heuristic GP system creates a random initial
population of heuristics from the function and terminal set.
The individual’s fitness is the total of the heights of the
solutions that it creates when the algorithm in Fig. 5 is run
for each instance in the training set. The fitness is to be
minimized, because lower and more compact solutions are
better. Table II shows the GP initialization parameters. During
the tournament selection, if two heuristics obtain the same
fitness, and therefore have achieved the same total height on
the training instances, the winner will be the heuristic which
results in the least waste between the pieces in the solutions,
not counting the free space at the top of the sheet. Therefore,
there is selection pressure on the individuals to produce solu-
tions where the pieces fit next to each other neatly without any
gaps. The individuals are manipulated using the parameters
shown in Table II. The mutation operator randomly selects a
node, internal nodes are selected with 90% probability, and
leaf nodes with 10% probability. The subtree that the selected
node defines is replaced with a randomly generated subtree
using the “grow” method explained in [18], with a minimum

TABLE III
DETAILS OF THE EIGHT TRAINING INSTANCE CLASSES

Class | Number of | Sheet | Optimum | Training
Name Pieces Width Height Instances
N1 10 40 40 10
N2 20 30 50 10
N3 30 30 50 10
N4 40 80 80 10
N5 50 100 100 10
N6 60 50 100 10
N7 70 80 100 10
N8 80 100 80 10

and maximum depth of 5. The crossover operator produces
two new individuals with a maximum depth of 17.

We wish to evolve general heuristics, applicable to more
than the instance(s) they are evolved on. To achieve this aim,
we use a training set to evolve the heuristics, and then report
the results on a separate test set. The instances currently in
the literature are varied and numerous enough to compare
solution methods, but they are not adequate for the automatic
training or evolution of solution methods (heuristics). To train
a heuristic, one needs a large set of training instances which
are similar to each other in some way. We have created such a
set using the generation method for the existing benchmark
instances referred to as N1-N12 (introduced in [53]). Our
aim is to investigate if the evolved heuristics are capable of
maintaining their performance on new instances of the same
class as those they were evolved on, and on different classes.
We only evolve heuristics on the instances from the NI1-
N8 classes, because of the run times involved in repeatedly
packing larger instances during the evolution process. It is
also interesting to investigate if the evolved heuristics maintain
their performance on instances larger than those they were
trained on.

The training instances from the classes N1-N8 were each
created with a known optimum solution, because they are gen-
erated by iteratively making guillotine cuts across rectangles,
starting with a rectangle of the dimensions given in Table III.
After the first cut is made, there are two rectangles, and the
next cut is made across one of those. Then the next cut is
made across one of the three, and so on. We generate ten
training instances for each class in this way, so each of the
ten instances in a class is generated from the same starting
rectangle. The N1-N12 benchmark instances are widely used
in the literature, and so we compare the performance of our
evolved heuristics with that of other approaches, on these
instances. We perform ten runs for each problem instance
class, resulting in 80 heuristics.

V. BENCHMARK PROBLEMS

In this paper, we use 46 benchmark instances from the
literature to test our evolved heuristics. The instances used
are summarized in table IV. All of the instances were created
from known optimal packings. The Hopper and Turton dataset
contains seven classes of three problems each, and each class
was constructed from a different sized initial rectangle and
contains a different number of pieces. All pieces have a



TABLE IV
BENCHMARK INSTANCES USED IN THIS PAPER

Instance Set Number of | Number of Sheet Optimal
Name Instances Rectangles Width Height
Hopper and

Turton (2001) 21 16-197 20-160 | 20-240
Valenzuela and

Wang (2001) 12 25-1000 100 100
Burke et al. (2006) 12 10-500 40-100 | 40-300
Ramesh Babu and

Ramesh Babu (1999) 1 50 1000 375

maximum aspect ratio of 7. Valenzuela and Wang created
two classes of problem, referred to as “nice” and “path.”
The nice dataset contains pieces of similar size, and the path
dataset contains pieces that have very different dimensions.
The dataset from Burke, Kendall and Whitwell contains 12
instances with increasing numbers of rectangles in each. We
also use an instance created by Ramesh Babu and Ramesh
Babu, containing 50 rectangles all of similar size. The dimen-
sions of the pieces in this instance are given in [57].

The Valenzuela and Wang dataset uses floating points to rep-
resent the dimensions of the rectangles. Our implementation
uses integers, so to obtain a dataset we can use, we multiplied
the data by 10°, the results are then divided by 10° so they
can be compared to the other results in the literature. This
procedure never reduces the accuracy of the values, and so it
is fair to compare the results with others in the literature.

VI. RESULTS AND DISCUSSION

In this section, we compare our evolved constructive heuris-
tics mainly to the best-fit heuristic, as it is the best human
created constructive heuristic in the literature. The best-fit
heuristic was proposed in two papers [53], [54] with the latter
using an improved representation to handle floating point data
without rounding. Due to the implementation differences, the
two papers report some variance in the results. In our result
tables here, we refer to the two implementations as “version
1” and “version 2.”

The results section is divided into four subsections.
Section VI-A reports the results of evolved heuristics on new
instances of the same class as those they were evolved on.
Section VI-B reports the results of those same heuristics on
different classes of problem instance. Section VI-C shows the
results of heuristics evolved on more than one problem class,
which leads to much more general heuristics. The best evolved
heuristic is then analyzed in greater detail in Section VI-D.

A. Performance on New Instances of the Same Class

In this section, we report the results of the heuristics when
tested on instances from the same class as those they were
evolved on. Table V summarizes the results. Each row of the
table represents the results of ten heuristics, each evolved on
ten instances from the class in the first column. The values are
the results on the benchmark instance of that class from the
literature. The second and third columns represent the results
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TABLE V
RESULTS OF THE EVOLVED HEURISTICS WHEN TESTED ON THE
BENCHMARK INSTANCE OF THE SAME CLASS AS THOSE ON WHICH IT
WAS EVOLVED

Instance Best-Fit Best-Fit Best Evolved Average
Version 1 Version 2 Heuristic Performance
N1 45 45 44 455
N2 53 53 54 54.3
N3 52 52 52 52.7
N4 83 86 83 84.5
N5 105 105 106 105.2
N6 103 102 105 103
N7 107 108 102 104
N8 84 83 83 82.8

Instance is unseen by the heuristic during its evolution, and thus these results
represent the ability of the heuristics to generalize to new instances.

of the two implementations of best-fit, from [53] and [54]. The
fourth shows the result of the best heuristic from the ten which
were evolved, and the fifth column shows their average result.
Note that the “best” heuristic is the heuristic that obtained the
best result on the training set, not the test set, so it is valid to
say that Table V shows how the heuristics generalize to new
instances of the same type.

The average results in the table show that the evolved heuris-
tics have roughly the same performance, and are sometimes
better than best-fit on these benchmark problems. Indeed, the
average results for the heuristics evolved on classes N7 and N8
are better than both implementations of best-fit, which means
that the GP can successfully evolve heuristics which can beat
a human created heuristic on new instances. This shows that
heuristics can be evolved with this system to be specialized
on a particular class of problem. The next section shows the
results of the heuristics when tested on problems of a different
class.

B. Performance on New Instances of Different Classes

Table VI shows the results of applying the evolved heuristics
to instances of a different class to those they were evolved
on. Each row of the table represents the ten heuristics that
were evolved on the training set from the class in the first
column. The values in a row represent the average results of
the ten heuristics on the benchmark test instances named in
the top row. One can see from this table that the heuristics
are consistent and robust on new instances of the same class
as those they were evolved on. The values highlighted in bold
represent the results on the benchmark instance from the same
class as the heuristics’ training set.

The results shown so far indicate that evolving on instances
of only one class does not produce general heuristics. The
heuristics appear to be specialized to one class of instance, at
the expense of their reliability on other classes of instance.

C. Improving Generality by Evolving Heuristics on Three
Classes
To investigate if we could increase the level of generality

of the evolved heuristics, new heuristics were evolved on
instances from three different classes. We evolved heuristics



TABLE VI
RESULTS OF THE EVOLVED HEURISTICS WHEN TESTED ON THE BENCHMARK INSTANCES OF ALL CLASSES

Training Class Test Instance

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Class N1 45.5 55 54.3 91.5 107.5 108.1 117.5 87.8 157.5 158.8
Class N2 49.3 54.3 53.1 95.2 118.9 105.4 116 93.1 161.5 158.4
Class N3 44.1 54.5 52.7 84.5 109.8 104.5 106.4 83.3 157.2 155.4
Class N4 46.2 54.7 56 84.5 105.3 106.2 122 83.6 168.8 157.5
Class N5 49.1 54.6 60.3 87.7 105.2 103.2 119.9 82.9 168.8 156.5
Class N6 42.8 54.8 53.2 83.9 106.8 103 106.2 84.2 156.6 157
Class N7 41.9 54.6 53.3 83.5 106.7 104 104 83 157.7 153.7
Class N8 45.8 56.7 61 84.8 105.2 108.1 118 82.8 178.2 160.1

Bold values indicate the results where the heuristics are tested on instances of the same class, and so they match the values in Table V.

on three sets of classes. Five instances were included in the
training set from each class, making 15 instances in total.
The first set of ten heuristics was evolved on instances of
classes N3—-NS5. The second set was evolved on classes N4-N6,
and the third set was evolved on instances from N5-N7. The
evolved heuristics were then tested on the N1-N10 benchmark
instances from the literature, and compared against the human
created best-fit heuristic.

Table VII shows a summary of the results obtained by
the heuristics. The first column shows the test instances,
and the second and third columns show the results of the
two implementations of best-fit. The remaining six columns
represent the results of the best heuristics and the average
results of the ten heuristics. The “best” heuristic of the ten
is defined as the heuristic that achieves the best results on
the training set, not on the test set, so the results display the
ability of the GP methodology to produce heuristics which can
generalize to new instances.

The table shows that the evolved heuristics can now obtain
results that are competitive with, and often better than, best-fit
across all of the N1-N10 benchmark instances. It is important
to emphasize that these heuristics are being reused on new
instances of classes different to those they were evolved on,
and, in contrast to the heuristics presented in Table VI they
maintain their performance on these different instances. They
have evolved to be more general because they have seen
more than one type of instance during their evolution. It is
interesting to note that this level of generality can be evolved
by exposing the heuristics to just three different classes.
Furthermore, recall that the evolved heuristics do not perform
any postprocessing on the solution after it is completed. For
example, any pieces which are extending vertically out of the
top of the solution are not taken out and replaced horizontally,
as is the case with the best-fit heuristic [53]. If postprocessing
was perfomed, then in some cases the solutions would be one
or two units better. Specific examples of this can be seen in
Section VI-D.

D. Analyzing the Best Evolved Heuristic

This section provides some additional results from the best
evolved heuristic for the N4+N5+N6 classes. This is the
heuristic which performed best on the N1-N10 instances out
of the three best evolved heuristics in Table VII. In this section,
we test the heuristic on further benchmark datasets from the
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(=(=(+ (+ (=(* (+ SH SHH) (+ (+ (= (* (+ SH SHH) (+ (*
(+ SHH (+ SHH H)) (=(+ H W) (* 2 SH))) (+ SHH (+ SHH
H)))) H) (% (+ (* —4.839 SH) (* 4 SHH)) (* SWL (+ SHH
H)))) (+ (+ (* (% SWL SHH) (+ (% SHW 0.963) (% 0.963
SH)))(-(+ H W) (* 3 SH))) (+ SHH H)))) H) (% (+ (-(-H
SH) SH) (+ SHH SHH)) (+ (* (+ SHH (+ SHH H)) (-(+ H
W) (* 2 SH))) (-W (=1 SH)))) (+ (+ (* (% SWL SHH) (-
H SH)) SH) (* (= (+ (+ (= (* (+ SH SHH) (+ (* (+ SHH (+
SHH H)) (- (+ H W) (* 2 SH))) (+ SHH (+ SHH H)))) H)
(% (+ (* —4.839SH) (* 6 SHH)) (* SWL (+ SHH H)))) (+
(+ (* (% SWL SHH) (+ (% SHW 0.963) (% 0.963 SH))) (+
(- (=H SH) SH) (% SHW 0.963))) (+ SHH H))) (% SWL
SHH)) SHH))) (- H SH)) SHH)

Fig. 13. Best evolved heuristic, with some obvious simplifications made.

literature, and compare it against the best-fit heuristic, direct
metaheuristic approaches, and a reactive GRASP approach.
We then analyze three results from this heuristic in detail using
graphical representations of the solutions.

Fig. 13 shows the evolved heuristic, expressed in prefix
notation, with the obvious simplifications made from its raw
form. Note that it contains two large repeated sections of code.
It also contains many repeated subtrees. For example (+ (¥
—4.839 SH) (* X SHH)) is repeated twice, where X is 4 and
6. This expression increases when the slot height is lower,
and so could contribute to prioritizing lower slots. Another
example that has this property is (+ (% SHW 0.963) (% 0.963
SH)), which occurs twice.

Table VIII shows the results that the best evolved heuristic
obtains. We compare its results to two metaheuristic meth-
ods described in Section III-C3, a genetic algorithm with
bottom-left-fill decoder, and a simulated annealing approach
with bottom-left-fill decoder. Table VIII shows only the best
result of the two on each instance. These two metaheuristic
approaches are also described in [5], and the results evaluated
using a density measure rather than the length of sheet measure
used in this paper. To obtain the results that we compare
with here, the metaheuristic methods were implemented again
in [53]. The results of the best-fit algorithm from [53], which
has achieved superior results to BL and BLF, is used as a
constructive heuristic benchmark, and we also compare with
the reactive GRASP presented in [62]. The GRASP method
does not allow piece rotations, while they are allowed for the



TABLE VII
RESULTS OF THE HEURISTICS EVOLVED ON THREE CLASSES; WHEN TESTED ON BENCHMARK INSTANCES OF ALL CLASSES, THIS TABLE SHOWS
THE GENERALITY OF THE EVOLVED HEURISTICS

Best-Fit Best Evolved Heuristic Average of 10 Heuristics
Version 1 | Version 2 | N3+N4+N5 | N4+N5+N6 | N5+N6+N7 | N3+N4+N5 | N4+N5+N6 | N5+N6+N7
N1 45 45 45 40 43 43.3 42.1 44.1
N2 53 53 54 56 56 54.5 55 56.2
N3 52 52 53 52 52 52.7 52.9 52.3
N4 83 86 82 84 82 83.2 83.3 83.6
N5 105 105 106 105 109 106.2 107.4 107.8
N6 103 102 103 102 104 103 103.1 103.5
N7 107 108 104 103 104 105.6 105.1 104.6
N8 84 83 84 83 83 82.8 82.9 82.9
N9 152 152 157 153 156 156.8 155.2 156.2
N10 152 152 153 153 153 155.8 153.2 154.5
TABLE VIII

RESULTS OF OUR BEST EVOLVED HEURISTICS ON BENCHMARK DATA SETS, COMPARED TO RECENT METAHEURISTIC AND CONSTRUCTIVE HEURISTIC
APPROACHES, AND THE STATE OF THE ART REACTIVE GRASP APPROACH

Name | Number of Pieces | Optimal Height | Meta-heuristic | BF Heuristic | Reactive GRASP Best Evolved
Result | Time (s)
N1 10 40 40 45 40 40 <0.01
N2 20 50 51 53 51 56 0.01
N3 30 50 52 52 51 52 0.04
N4 40 80 83 83 81 84 0.12
N5 50 100 106 105 102 105 0.25
N6 60 100 103 103 101 102 0.15
N7 70 100 106 107 101 103 0.39
N8 80 80 85 84 81 83 0.61
N9 100 150 155 152 151 153 0.391
N10 200 150 154 152 151 153 1.09
N11 300 150 155 152 151 152 2.28
N12 500 300 312 306 303 307 4.65
clpl 16 20 20 21 20 22 0.02
clp2 17 20 21 22 20 22 0.02
clp3 16 20 20 24 20 24 0.02
c2pl 25 15 16 16 15 18 0.05
c2p2 25 15 16 16 15 26 0.06
c2p3 25 15 16 16 15 17 0.05
c3pl 28 30 32 32 30 32 0.06
c3p2 29 30 32 34 31 34 0.12
c3p3 28 30 32 33 30 36 0.09
cdpl 49 60 64 63 61 63 0.30
cdp2 49 60 63 62 61 62 0.31
c4p3 49 60 62 62 61 63 0.25
c5pl 73 90 94 93 91 92 0.47
c5p2 73 90 95 92 91 93 0.59
c5p3 73 90 95 93 91 93 0.53
copl 97 120 127 123 121 123 1.19
c6p2 97 120 126 122 121 122 1.23
cop3 97 120 126 124 121 123 1.12
c7pl 196 240 255 247 244 244 6.34
c7p2 197 240 251 244 242 244 7.72
c7p3 196 240 254 245 243 245 7.64
NiceP1 25 100 108.2 107.4 103.7 108.9 0.06
NiceP2 50 100 112 108.5 104.6 110.1 0.33
NiceP3 100 100 113 107 104 108.1 1.97
NiceP4 200 100 113.2 105.3 103.6 107.5 10.59
NiceP5 500 100 111.9 103.5 102.2 104.4 110.5
NiceP6 1000 100 - 103.7 102.2 104.1 654.1
PathP1 25 100 106.7 110.1 104.2 111.0 0.08
PathP2 50 100 107 113.8 101.8 106.5 0.45
PathP3 100 100 109 107.3 102.6 104.3 3.34
PathP4 200 100 108.8 104.1 102 104.1 19.44
PathP5 500 100 111.11 103.7 103.1 103.5 194.70
PathP6 1000 100 - 102.8 102.5 104.9 1207.85
RBP1 50 375 400 400 375 400 0.06

12



Fig. 14. Packing obtained by the best evolved heuristic on instance N11, to
a height of 152. In contrast to its usual packing strategy, the first three pieces
are laid horizontally, perhaps because they fit exactly into the width of the
slot.

heuristics evolved here. The GRASP results would probably
not be worse if rotations were allowed, so while we are aware
of the difference, we believe the comparison with GRASP is
still valuable, as it is a comparison with a complex human
designed heuristic with many parameters.

The table shows that the automatically designed heuristic
has a performance roughly the same as the best-fit heuristic.
It is noticably better than the metaheuristic methods, and
noticably worse than the reactive GRASP approach. This is
an appropriate place for the evolved heuristic, as the reactive
GRASP method is the state of the art in 2-D strip packing,
and is a complex algorithm with many parameters, which
are chosen by hand to enable the algorithm to obtain the
best results in the literature. We would not expect simple
constructive heuristics to perform better than such a method,
whether they are designed by hand or by GP.

The “time” column displays the time that the heuristic takes
to produce a solution. The run times are worth noting for the
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Fig. 15. Packing obtained by the best evolved heuristic on instance c7p2,
to a height of 244. Note that if we applied a postprocessing stage such as
the one used by best-fit, the small piece at the top would be laid flat and the
solution would be one unit better.

Fig. 16. Packing obtained by the best evolved heuristic on instance PathP4,
to a height of 104.1. Similar to Fig. 15, postprocessing would improve this
solution further, by laying the tallest piece on its side.

two largest instances from each of the nice and path sets.
This is due to the methodology of iterating through all of
the possible piece and slot combinations at every decision
point. These instances have two characteristics that result in
very large run times. The first is that the sheet width is large
compared to the average width of the pieces. This means
that many more slots are created, as more pieces fit into the
sheet width, and each potentially creates a new slot. This is
combined with the fact that the heuristic prefers to place long
thin pieces vertically, which creates more slots as all of the
pieces stack up next to each other, and when their heights do
not quite match up, each one will produce a separate slot. In
this situation, the heuristic is evaluated a significant number
of times more than is necessary. If the exact strategy of the
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Fig. 17. Scores returned by the heuristic for different piece sizes in the first

slot of N11. For the “width” plot, the width is increased to 70 as the height
is fixed to 20. The converse is true for the “height” plot.

evolved heuristic can be extracted and reimplemented, then
the process of packing can be made much more efficient, and
this forms part of our future work (see Section VIII for more
discussion of this issue).

1) Example Packings: Three example packings, obtained
by the best evolved heuristic, are shown in Figs. 14-16. They
show the scalability of the heuristic, as it was trained on
instances with 40-60 pieces, and the instances shown contain
197-300 pieces.

The heuristic has a tendency to pack pieces vertically rather
than horizontally, especially at the beginning of the packing,
and this behavior can be seen in Figs. 15 and 16. Indeed, it is
this behavior that results in the very poor solution to instance
c2p2 (see Table VIII), which is very wide compared to its
optimal height, and which contains one very long piece which
must be laid horizontally. In contrast, Fig. 14 shows the first
three pieces packed horizontally, and the reason for this can
be seen in the graph in Fig. 17.

In Fig. 17, the two lines represent the scores returned by the
heuristic for the first slot in N11, for different sized pieces. The
first line represents the score returned by the heuristic when
the piece height increases to 70 (the width is fixed to 20).
The second line represents the score returned by the heuristic
when the width increases to 70 (the height is fixed to 20).
These two lines represent possibilities for placing pieces into
the first slot, and the scores that the heuristic gives to those
possibilities. The two lines represent the fact that pieces can
take two orientations, and we only extend the dimensions up
to 70 because the width of the sheet is 70.

One can see from the width line that the score increases
in a linear fashion until the width hits 70, in which case the
score increases dramatically, taking it above the score when
the height is 70. A possible reason for this is that when the
piece fits a slot exactly, the “SWL” terminal takes a value of
zero, and this may render sections of the heuristic redundant,
especially if they involve a multiplication with SWL.

This means that the heuristic scores the piece higher in
its horizontal orientation than its vertical orientation. In the
absence of any other pieces in this instance with a dimension
greater than 70, this piece receives the highest score in its
horizontal orientation. If there existed pieces with a height
greater than 70, these would receive an even higher score,
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because the line in Fig. 17 representing height would extend
to its next point at a height of 75. Thus, the reason for
the heuristic placing pieces vertically at the beginning of the
packing is that there rarely exists a piece that fits the width of
the sheet exactly, as is the case in instance N11.

VII. CONCLUSION

Traditionally, heuristics have been human designed, which
is a highly appropriate approach for many situations, especially
where the importance of obtaining a solution close to the
optimum is paramount. However, there are situations where
the cost of employing a human heuristic designer may be too
high, and where a solution which is as close to the optimum
as possible is not required. It is in these situations that the
solutions are often obtained by hand, because the cost of
a computer aided decision support system is too high. In
these situations, it is less important that the solution quality
is as close to optimal as possible, and more important that
the solutions are simply better than that currently obtained
without computer support. Organizations with such a goal
would benefit from this type of methodology, where the cost of
a heuristic for their problem would be made cheaper through
automation of the heuristic design process.

This paper has shown that an evolutionary hyper-heuristic
approach can automatically generate very good quality
reusable heuristics for the 2-D strip packing problem. The
approach represents a change in the way that evolutionary
approaches are employed for this problem, and represents the
first attempt at automated heuristic design for this problem.
The contribution of this paper is not to show that this method-
ology obtains better results than the best in the literature, or
that it can obtain results more quickly, although the results
of the evolved heuristics are highly competitive with the
best human created constructive heuristic in the literature.
The contribution is to show that the design process can be
automated for this problem with evolutionary computation,
and show the quality of the heuristics that can be designed
by evolution.

VIII. FUTURE WORK

In practical real world situations where variants of the 2-D
strip packing problem occur, the problem instances will not
be constructed from a known optimum in which the pieces
fit neatly together. The instances will often contain a few
types of pieces, with lots of copies of each piece. This is
because one organization will produce the same product many
times, which will require many copies of identical pieces of
material. We hypothesize that this methodology will excel in
such a situation. We have already shown that the heuristics
can be specialized to a class of problems where the pieces
are not identical, and so we believe this phenomenon will be
more pronounced if the instances are even more specialized.
We intend to test this by creating instances with few piece
types, but many copies of each, and testing the quality of the
solutions produced.



Another potential research direction would be to determine
whether the existing functions and terminals represent the
best set for evolving generalizable heuristics, or if they need
to be modified to incorporate more general information. For
example, the “piece width” terminal currently encodes the
absolute value of the width of the piece, but it may be
necessary to redefine this terminal. The redefined terminal may
encode the piece width as a fraction of the sheet width, or as a
fraction of the maximum piece width in the instance. Then the
heuristic may be more applicable to new problem instances,
and be easier to interpret and understand. To express the issue
a different way, if one was to take a problem instance, and
create a new instance by reducing the size of all the dimensions
by half, then one would expect that applying a heuristic
to both instances would produce two solutions that look
identical. Currently, because the terminals encode absolute
values, it is not clear whether an evolved heuristic would
produce identical results for instances which are scaled up or
down.

This GP methodology is costly to produce an immediate
solution, and while the aim is not to evolve solutions to
individual instances, we would still wish to make the process
as efficient as possible. The reason for the lengthly run times
is a combination of code bloat and the many times that the GP
tree must be evaluated for each packing. We use the tarpeian
wrapper method [63] to reduce bloat, but this is a general
solution that may not be the most effective for this problem.
We aim to investigate if there are methods more specific to
2-D packing which can reduce the redundant code, without
compromising the variety of the heuristics in the population.

Once they are evolved, the heuristics are not optimized, and
therefore look slower than existing heuristics such as best-fit.
We would like to investigate the possibility of extracting a
method from the evolved tree and then optimize the implemen-
tation of it. For example, if it can be shown that the evolved
tree always scores lower slots much higher, appropriate data
structures can be used to ensure that the lowest slot is obtained
in the most efficient way. To give another example, if the
pieces with a greater height are always scored more highly
then the evolved strategy can be reimplemented as a hand
programmed heuristic which preorders the pieces. These reim-
plementations would remove unnecessary calculations that are
sure to make no difference to the result. However, this can
only be done once the heuristic strategy has been evolved.
The very general process of iterating through every piece and
slot looks inefficient when the strategy of an evolved heuristic
is examined, but keeping the process very general is necessary,
to ensure that it is possible to evolve a variety of strategies.
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