
Qu, Rong and Pham, Duc Nam Trung and Bai, Ruibin
and Kendall, Graham Hybridising heuristics within an
estimation distribution algorithm for examination
timetabling. Applied Intelligence . ISSN 0924-669X (In
Press)

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28270/1/APIN15.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573367?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

Hybridising Heuristics within an Estimation Distribution
Algorithm for Examination Timetabling

Rong Qu*1, Nam Pham1, Ruibin Bai2, Graham Kendall1,3
1Automated Scheduling, Optimisation and Planning, School of Computer Science

University of Nottingham, Nottingham, NG8 1BB, UK
*rxq@cs.nott.ac.uk

2School of Computer Science, University of Nottingham Ningbo, China
Ningbo, 315100, China

3University of Nottingham Malaysia Campus, Malaysia

Abstract

This paper presents a hybrid hyper-heuristic approach based on estimation distribution algorithms. The main
motivation is to raise the level of generality for search methodologies. The objective of the hyper-heuristic is to
produce solutions of acceptable quality for a number of optimisation problems. In this work, we demonstrate
the generality through experimental results for different variants of exam timetabling problems. The hyper-
heuristic represents an automated constructive method that searches for heuristic choices from a given set of
low-level heuristics based only on non-domain-specific knowledge. The high-level search methodology is based
on a simple estimation distribution algorithm. It is capable of guiding the search to select appropriate heuristics
in different problem solving situations. The probability distribution of low-level heuristics at different stages of
solution construction can be used to measure their effectiveness and possibly help facilitate more intelligent
hyper-heuristic search methods.

Keywords: estimation distribution algorithm; hyper-heuristic; exam timetabling; graph colouring

1 Introduction

Within search methodologies, meta-heuristics have shown to be particularly effective for many combinatorial
optimisation problems [21]. However, from a practical point of view, there are still challenging issues for
practitioners to use meta-heuristics successfully. Firstly, meta-heuristics usually require complicated and crucial
parameter tunings. These often demand intensive knowledge resulting in higher costs of implementation and
maintenance. Secondly, meta-heuristics tend to be finely tuned for solving specific problems or even specific
instances. This often leads to limited reusability for other problem domains or even other instances of the same
problem. In fact, most meta-heuristics are designed only for a narrow class of a specific problem. For example, a
meta-heuristic to construct examination timetables can be designed to effectively generate high quality
timetables with respect to specific requirements supplied by a university. However, that meta-heuristic very
likely requires significant adjustment to work effectively for other universities with different requirements.
Thirdly, in many industries, there are requirements for quick solutions. Many meta-heuristics often require
extensive research, development and parameter tuning. A more detailed discussion of these issues can be found
in [10].

In early timetabling research, constraint based techniques and simple heuristics were widely studied. In
constraint based techniques, problem specific constraints are modelled, and various propagation techniques are
used to reduce the computational expense, leading to more efficient search. Such models with specific
constraints are often not reusable for variants of the problems. In practice, many users thus often employ simple
heuristics which are much easier to implement and adapt. However, such heuristics are often of inferior
performance, and often cannot even produce feasible solutions to highly constrained problems.

Therefore, there is a demand from many small and medium sized companies for cheaper problem solvers which
are capable of producing good-enough solutions instead of high-cost, complex and domain-intensive systems.
One such approach to address this issue is hyper-heuristics which are “an automated methodology for selecting
or generating heuristics to solve hard computational search problems” [8]. Unlike many existing search
methodologies which work in the search space of solutions, hyper-heuristics work in the search space of
heuristics. Hyper-heuristic algorithms are operated on heuristics, at a higher level of abstraction. This is
fundamentally different to meta-heuristics, where heuristics are used to guide neighbourhood moves or
evolutionary operators to directly operate on solutions in the search space. This means there are two levels of

search in hyper-heuristics, one at the problem solution space, and the other at a higher level of heuristic space
which then operates on the solution space. In our previous work [11], we have established the fundamental
definitions of these two search spaces, which can have different representations (encoding), evolutionary or
move operators, and an upper bound on the size of the search spaces.

Hyper-heuristic research can be categorised in two main categories [8], namely heuristic-selection and heuristic-
generation. Heuristic-selection approaches use high-level search methodologies to choose from a set of given
(usually simple) low-level heuristics to construct or improve a solution. Heuristic-generation approaches focus
on generating novel heuristics whose components are building blocks or parts of known heuristics. This paper
focuses on heuristic-selection based hyper-heuristics, which can be considered as either constructive or
perturbative. Constructive methods build a complete solution from scratch through a number of decision steps.
Constructive-based hyper-heuristics can be understood as methodologies that repeatedly select suitable
constructive heuristics from a given set and apply them to the partial solution being constructed. Perturbative-
based hyper-heuristics start with a complete solution, and then select from a given set of neighbourhood
operators, and an acceptance criteria, to iteratively improve that solution.

Compared to most of the problem specific meta-heuristics and constraint based techniques, hyper-heuristics
represent a class of knowledge poor methods [17] with the aim of selecting appropriate heuristics from a pre-
defined set of heuristics during the search, rather than examining specific information such as constraints in the
problem. The success of hyper-heuristics depends on how they adapt a problem solving situation based on non-
domain-specific information, and associate it with a number of given low-level heuristics, which then operate at
the solutions of the problem. Examples of domain-independent criteria include computational time and previous
choices of heuristics. Therefore, hyper-heuristics are often regarded as a search methodology of higher
generality compared to other heuristics or meta-heuristics. They can help facilitate the development of systems
which can operate on a range of related problems. Moreover, such systems can be deployed by non-specialised
users who have little knowledge of the problem domain.

This paper investigates a hyper-heuristic, based on estimation distribution algorithms, that is capable of
generalising well over different problems. The exam timetabling domain is used as an experimental testbed due
to its rich set of variants. The outline of this paper is as follows. Section 2 describes the exam timetabling
problem and briefly reviews related work in exam timetabling including constructive hyper-heuristics. The
proposed hyper-heuristic is presented in Section 3. Section 4 demonstrates experimental results on two variants
of the exam timetabling problem, the uncapacitated exam timetabling problem and the graph colouring problem.
Discussion on the capability of the hyper-heuristic in identifying the effectiveness of low-level heuristics is also
provided in this section. Finally, Section 5 presents conclusions and future work.

2 The Exam Timetabling Problems

Exam timetabling problems concerns assigning a set of exams: E = { e1, e2, ..., ee } into a limited number of
ordered timeslots: T = { t1, t2, ..., tt }, subject to a set of constraints. Almost all institutions encounter challenging
exam timetabling problems. The problems are often highly constrained, with a large number of different
constraints which vary from institution to institution. Moreover, producing timetables manually becomes
particularly hard in large educational institutions with hundreds or thousands of exams and students. Those
challenges have motivated research effort to seek automated solutions to construct exam timetables and also
develop approaches for different exam timetabling scenarios. The constraints for exam timetabling problems can
be classified into two types: hard constraints and soft constraints which, in some cases, are in conflict with each
other.

 Hard Constraints must be satisfied in order for a timetable to be feasible. An example of a common hard

constraint is that a student cannot sit for two exams at the same time (student-conflict). Another common
hard constraint is that the number of students must be less than or equal to the seating capacity of the
assigned room. A timeslot that an exam e can be assigned in without causing any hard constraint conflict
(i.e. no students in e are siting other exams in this timeslot) is called a valid timeslot for that exam.

 Soft Constraints are not compulsory but the degree of satisfaction of the soft constraints indicates the quality
of solutions. The exam timetabling scenario in this paper has an objective of minimising the penalty caused
by students taking exams too close together (exam-spread). The penalty of the timetable is calculated by the
function given in the Appendix.

The exam timetabling problem with only the student-conflict constraint can be represented as a graph colouring
problem [31], which can be defined as finding the smallest number of colours (the chromatic number) needed to
obtain a feasible vertex colouring for a given graph. Feasible vertex colouring is a colouring where adjacent
vertices connected by an edge are assigned different colours. The basic exam timetabling problem can be
modelled by a graph representation, where exams are represented by vertices and the student-conflict hard
constraint between two exams, so they should be assigned different timeslots, is represented by an edge between
the corresponding vertices. If we associate each timeslot with a colour, then creating a conflict-free timetable is
equivalent to constructing a feasible vertex colouring. However, all soft constraints are ignored in the graph
colouring problem. This paper concerns both the uncapacitated exam timetabling problem and the graph
colouring problem.

The graph colouring optimisation problem is NP-hard [19], significant research effort has been devoted in
timetabling to the design of approximate algorithms. These sacrifice the guarantee of optimality but produce
good solutions in a reasonable amount of computational time. The most popular constructive algorithm, based
on graph colouring, involves repeatedly making two simple decisions: exam-selection and timeslot-selection.
Early approaches for exam timetabling focussed on using different exam-selection heuristics. Such heuristics
represent different strategies to sort exams by their level of difficulty to assign them to timeslots in later stages.
In each step, the most difficult exam (according to the order produced by the heursitics) will be selected and
assigned to a timeslot that causes the least constraint penalty. However, there was no comparison between
approaches until the introduction of a set of 13 exam timetabling benchmark instances by Carter [16]. Details of
the Carter benchmark dataset can be found in the Appendix.

In exam timetabling, room capacity is not usually seen as crucial, as additional seats or rooms can be added if
needed. Even without the room capacity constraint, the Carter benchmark problems are difficult to solve, and is
still widely studied in the scientific literature. We focus on Carter uncapacitated benchmark exam timetabling
dataset in this research. We also evaluate our proposed algorithm on graph colouring problems to demonstrate
their generality. Instead of designing a new algorithm or fine tuning an algorithm to achieve the best
performance, we demonstrate that our algorithm, without much adaptation, is effective in addressing this
different problem. Our future work may consider extensions and different research issues in the proposed
algorithm to other problems.

Since the introduction of the Carter benchmark dataset, many approaches have been proposed to solve exam
timetabling problems. A comprehensive survey of automated search methodologies for exam timetabling on the
Carter dataset can be found in [31]. Several methodologies have obtained the best results for one or more
instances in the dataset. In [15] a greedy scheduler is used to create a feasible solution which is then iteratively
improved using two local-search procedures, a penalty decreaser and a penalty trader. A case based reasoning
methodology is developed in [11] to select appropriate exam-selection heuristics during the solution
construction process. A late acceptance strategy is proposed in [7] to improve timetables by comparing the new
solution and the solution several steps earlier in the search. In [22] the Carter benchmark problems have been
studied from a different aspect, where patterns of high and low quality timetables are recognised by neural
networks to speed up the evaluation. The method was also tested on nurse rostering problems.

Recently, there has been an increased research attention in developing hyper-heuristics for exam timetabling
problems, both constructively [1][2][8][28][29][30][32][33] and perturbatively [6][8][25]. Hyper-heuristics in
other domains can be found in a comprehensive survey [8]. In this paper, we focus on hyper-heuristics that work
on constructive exam-selection heuristics. We review below the hyper-heuristics applied to the Carter dataset for
comparison purposes.

A graph-based hyper-heuristic framework (GHH) is introduced in [11]. A tabu-search is used at the high level to
search for good sequences of low-level exam-selection heuristics. Heuristics are applied sequentially to
construct a solution. Within the same framework, an automated heuristic construction approach is presented in
[30] to adaptively hybridise Saturation Degree heuristic with Largest Weighted Degree heuristic at different
stages of the solution construction. Promising results have been obtained using these hybridisations in short
computational times. The GHH framework is extended in [29] to add local improvements to timetables both
during and after the process of selecting heuristics. The authors also investigated and analysed several different
high-level search techniques in GHH.

In [34], in addition to graph colouring heuristics, bin packing heuristics have also been integrated as low level
heuristics in the hyper-heuristic framework for solving the International Timetabling Competition problems with
room capacity constraints. Within a constructive hyper-heuristic in [33], graph colouring heuristics have been

utilised to calculate a difficulty index, which is used to order exams. The selected exams are then scheduled into
a timeslot chosen by using a roulette wheel selection mechanism.

In [2][4] fuzzy weights are used on a pair of ordering criteria to determine the difficulty of exams which are
sorted and scheduled in constructing the timetable solutions. In [3] the fuzzy strategy is extended to three
ordering criteria. The effects of altering fuzzy rules instead of fixing them are investigated. In [26] crossover and
mutation operators are employed within a genetic programming approach to evolve a population of sequences of
exam-selection heuristics.

This paper investigates the performance of a hyper-heuristic based on estimation distribution algorithms (EDA).
We analyse the algorithm by utilising Carter’s benchmark exam timetabling dataset and its graph colouring
variant. The EDA based hyper-heuristic has been applied to the two different problems without any fine tuning
at the high level, and with the minimum adaptation of low level heuristics to demonstrate the generality of the
algorithm. Results are promising for both problems compared against the existing approaches which are tailored
for the problems.

3 The Estimation Distribution Algorithms-based Hyper-heuristic (EDA-HH)

In this work, we have developed a new hyper-heuristic based on the idea of estimation distribution algorithms
(EDA) [24]. EDA is a branch of evolutionary algorithms that replaces genetic operators (crossover and
mutation) with the estimation of gene distribution and samples new individuals from that distribution. The aim
is to avoid the likely disruption of building blocks caused by genetic operators in favour of explicit modelling by
exploiting the gene distribution of promising individuals.

In our proposed EDA based hyper-heuristic (EDA-HH) framework, the EDA, at the higher level, searches for
sequences of low level exam-selection heuristics. Each of these sequences of genes, where each gene represents
one low-level heuristic, is used to construct a timetable. These heuristic sequences are generated based on the
knowledge collected during the evolution. More details can be found in Section 3.3. The motivation of applying
a high-level search mechanism based on EDA are as follows.

 In our previous work [11], it was observed that the way a high level search performs in the search space of

constructive low level heuristics is not crucial as long as the high level search is able to explore large regions
of the search space. In our proposed EDA-HH, a sequence of promising low level heuristics are sampled and
evolved based on the estimation of gene distribution of promising individuals i.e. the collected knowledge,
rather than by search algorithms. This novel idea is different from those studied in our previous work
[11][13][30].

 During the evolution of EDA, the estimation of gene distribution naturally provides insights into how low
level heuristics are hybridised. This helps not only to analyse the effectiveness of low-level heuristics, but
also to design more intelligent search mechanisms which explore the search space more effectively and
adaptively based on knowledge collected during the evolution. In our previous work [11][13][30], only the
resulting sequences of low level heuristics are available, which provide rather limited insights of the
evolution process.

3.1 Heuristic-Choice Solution Representation and Fitness Measure

The hyper-heuristic approach in this paper focuses on the search space of exam-selection heuristics. It follows
many other approaches in the literature where a heuristic-choice solution is represented by a sequence of low-
level heuristics. Note that the following terms are used interchangeably within the context of our EDA-HH
approach. An individual is equivalent to a sequence or a heuristic choice solution. A gene is equivalent to a low-
level heuristic.

Each low-level heuristic provides one decision on the most difficult exam to be scheduled. The selected exam
will be scheduled into a timeslot using a fixed strategy depending on the problem. After all low-level heuristics
in a sequence are consecutively applied, we obtain a complete solution. In this paper, the fitness of a heuristic-
choice solution in the high-level search is simply set as the evaluation of the solution obtained at the low level.

For the uncapacitated exam timetabling problem, with the student-conflict hard constraint and the exam-spread
soft constraint, the strategy is to choose a timeslot for a selected exam that causes no conflict and the least
penalty. The penalty is calculated based on violations of the soft constraints. If there are ties, the strategy will

choose the one that reduces the least number of valid timeslots for those unassigned neighbours of the remaining
exams. The evaluation of a feasible timetable in the Carter dataset is given in the Appendix. If a feasible
timetable cannot be found (i.e. the assignment of a selected exam e to a timeslot t causes conflict at some point
during solution construction, due to students in e already sitting other exams scheduled in t), the fitness for that
heuristic sequence s will be calculated as f(s) = M + (L - p), where M is a large value, i.e. greater than any
possible evaluation of a feasible solution; L is the length of heuristic sequence s while p represents the first
position in s where infeasibility occurs.

For the exam timetabling problem with only the student-conflict hard constraint (i.e. the graph colouring
problem), the fitness of the timetable is the number of timeslots which can fit in all exams without causing
violations of the hard constraints. When an exam is selected, we identify the minimum number of remaining
valid timeslots for its neighbours, Tmin. The timeslot-selection strategy will select a timeslot with the highest
Tmin. Ties are broken by choosing the timeslot which reduces the least number of valid timeslots for other
neighbours. If there is no valid timeslot for an exam, the total number of timeslots is increased by one. However,
experimental observations show that a significant number of sequences produce the same fitness, i.e. timetables
using the same number of timeslots. Using the above evaluation function provides little distinction on the
quality of solutions. Therefore, we employ an evaluation function for graph colouring proposed by Culberson
(1992). It concerns not only the number of colours, k, but also the colouring sum in a given colouring ヾ:

Vv
vkVf)()(

where V is the set of all vertices and ヾ(ち) is the colour assigned to vertex ち. This evaluation function prefers
solutions having larger size colour classes, thus, reducing smaller size colour classes and the overall number of
colours used. Colour class is defined as a set of all vertices with the same colour. This function also takes into
account information of the colouring, not just the number of colours in the colouring.

3.2 Low-level heuristics

Apart from those traditional constructive exam-selection heuristics in Table 1, in EDA-HH we also include a set
of new heuristics, namely H12, H13, H22, H23, H32, H33, H42, H43, H52, H53 into the set of low-level heuristics.
H12, H13 use the same ordering strategy as H1 in Table 1, but take the second and the third vertex respectively
in the ordering list instead of the first one. The same idea applies to the other new heuristics based on H2, H3,
H4 and H5. A larger set of low-level heuristics provides a larger search space of heuristics and improves the
decision diversity.

Table 1
Constructive low-level heuristics for the exam timetabling problems.

H1 Largest Degree (LD) - Exam in conflict (i.e. share common students) with the highest number of other exams is
considered to be more likely to cause conflict if deferred until later.

H2 Largest Weighted Degree (LWD) – Exam in conflict with the highest number of other exams, weighted by the
number of students in conflict, are more likely to cause high penalty.

H3 Saturation Degree (SD) - Exam with the least number of valid timeslots should be scheduled earlier since it may
not have any timeslots available at a later stage.

H4 Largest Enrolment (LE) - Exam with largest enrolment should be selected first since its high number of students
may cause high penalty if scheduled at a later time.

H5 Largest Coloured Degree (LCD) - Exam with the largest number of conflicts with those already scheduled would
be difficult to schedule since it would have less choice of valid timeslots.

For the uncapacitated exam timetabling problem, the set of low-level heuristics consists of all 15 exam-selection
heuristics. For the graph colouring problem, the set includes only 9 heuristics (H1, H12, H13, H3, H32, H33, H5,
H52, H53). Those using the ordering strategies of H2 and H4 are excluded as there is no corresponding penalty
from the soft constraint in the graph colouring problem.

3.3 High-level Search Methodologies

Our high-level search methodology is based on a Univariate Marginal Distribution Algorithm (UMDA) [24] -
one of the simplest EDA in the literature. It assumes no dependency between genes in an individual, thus is easy
to implement compared with more complicated EDAs. Future work on more advanced EDAs, however,
represents a promising research direction. Unlike in a standard UMDA, we estimate the distribution of blocks of
genes, instead of a single gene, in individuals. The selection of individual genes (heuristics), without considering
the search process before and afterwards, is not likely to be much use in constructing promising timetables. We
therefore divide an individual into blocks of genes, i.e. blocks of heuristics in sequences which correspond to
stages of solution construction.

The pseudo-code for EDA-HH is showen in Algorithm 1. In EDA-HH, the stopping condition is either a pre-
assigned number of generations or a set running time. In step 3, the probability of heuristic i appears in stage j,
pij, is calculated using the Laplace correction (addition of 1 on the numerator, respectively) to avoid situations
where a low-level heuristic disappears in a particular stage in all sequences in the previous generation.

Algorithm 1. The EDA-HH Framework
Generate a population of N random sequences of length L. Each stage contains a fixed number of genes Ls
(with the exception in the last stage).
Repeat

1. Evaluate the population.
2. Use tournament selection of size TOURx to select Nselect sequences of the population.
3. pij represents the probability that the jth low-level heuristic appears in the ith stage of the Nselect selected

sequences. It is estimated as:

HCN

jX

p
iselect

N

k

e

st
tk

ij

select i

i

1)(
1

where 0 ≤ i ≤ (L - 1) / Ls; 0 ≤ j ≤ H, where H represents the number of low-level heuristics; Ci
represents the total number of low-level heuristics needed for the ith stage, which equals to Ls with a
possible exception in the last stage; si and ei represent the first and last position of the ith stage in a
sequence:

si = i × Ls

ei = min(L – 1, (i +1) × Ls – 1);
ɷk (Xt = j) equals 1 if the jth low-level heuristic appears at position t of the kth selected sequence; equals

0 otherwise.
4. Generate N new sequences using the probability distribution estimated in step 3. The probability of a

gene in the ith stage receiving value j is pij. Replace all sequences in the old generation with these
newly generated sequences.

Until the stopping condition is met.

The aim of this hyper-heuristic is not to solve a specific class of problems. By online learning only the
probability of low-level heuristics being used at different stages of solution construction, the high-level search
relies only on non-domain-specific information, thus can be generalised to different problems. We demonstrate
in the next section the generality of our EDA-HH by applying it to two variants of exam timetabling problems.

4 Experimental Results and Discussions

The EDA-HH approach has been tested on the 13 Carter benchmark instances (see the Appendix) in both the
uncapacitated exam timetabling and the graph colouring context.

4.1 Experimental Setup

To demonstrate the generality of the hyper-heuristic approach, the parameters for the high-level search are the
same across all experiments. Some parameter values (including the population size, number of generations, and
tournament size) were selected empirically by performing several trial runs. We then carry out extensive
experiments on six sets of parameters presented in Table 2. In all experiments, EDA-HH is executed 10 times
for each instance to conduct statistic analysis. The algorithm was implemented in Java using JDK 1.6.0 and
experiments were conducted on a PC Pentium IV 3.4GHz with 2GB memory.

Table 2
EDA-HH parameter values. TOURx: tournament size of x% of the population.

Parameters EDA-HH-TOUR6 EDA-HH-TOUR9 EDA-HH-TOUR12
Population N – No. of Generations G (100 – 20000), (1000 – 2000)

Selection amount Nselect 20% of N
Tournament size 6% of N 9% of N 12% of N

Lblock 10
Maximum running time 24 hours

4.2 Results on the Uncapacitated Exam Timetabling Problem

4.2.1 Comparisons of Different Variants of EDA-HH

In all runs using any set of parameters, the hyper-heuristic found feasible solutions. Table 3 presents the best,
the average and the standard deviation of penalty cost, with the average running time of each run on the Carter
uncapacitated examination timetabling benchmark instances.

Table 3
Experimental results on the Carter uncapacitated exam timetabling benchmark instances. Bold values represent the best
results obtained from our EDA-HH.

Instance

EDA-HH
(100-20000)

EDA-HH
(1000-2000)

Approx.
Average
Running

Time
(hours)

TOUR6 TOUR9 TOUR12 TOUR6 TOUR9 TOUR12

Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. Best Sd. Avg.
car91 I 5.13 0.05 5.17 5.14 0.01 5.17 5.13 0.02 5.16 4.98 0.02 5.00 4.95 0.02 4.99 4.96 0.03 5.00 10.05
car92 I 4.36 0.02 4.38 4.33 0.02 4.36 4.29 0.02 4.33 4.12 0.03 4.16 4.16 0.03 4.17 4.09 0.03 4.16 6
ear83 I 36.41 0.06 36.65 35.93 0.23 36.37 35.91 0.22 36.30 35.11 0.37 35.59 34.99 0.35 35.38 34.97 0.38 35.56 1.03
hec92 I 11.59 0.15 11.79 11.75 0.08 11.85 11.73 0.10 11.85 11.25 0.10 11.34 11.11 0.10 11.32 11.25 0.11 11.37 0.33
kfu93 I 14.93 0.22 15.25 14.81 0.15 15.12 14.75 0.16 15.11 14.09 0.32 14.49 14.19 0.33 14.50 14.15 0.35 14.32 1.93
lse91 10.97 0.16 11.12 10.91 0.11 11.05 10.89 0.11 11.06 10.77 0.08 10.89 10.77 0.09 10.90 10.71 0.11 10.87 1.64
pur93 4.78 0.07 4.89 4.78 0.06 4.91 4.76 0.08 4.9 4.76 0.05 4.81 4.73 0.06 4.77 4.74 0.08 4.75 24
rye92 9.86 0.15 10.03 9.87 0.13 10.03 9.9 0.12 10.02 9.23 0.10 9.31 9.2 0.12 9.33 9.25 0.15 9.32 2.95
sta83 I 157.64 0.23 157.95 157.82 0.12 157.96 157.81 0.22 157.97 157.75 0.12 157.92 157.81 0.12 157.92 157.76 0.15 157.91 0.58
tre92 8.5 0.04 8.56 8.49 0.03 8.53 8.51 0.04 8.54 8.28 0.02 8.31 8.27 0.05 8.34 8.29 0.06 8.33 1.91

uta92 I 3.43 0.02 3.45 3.43 0.02 3.45 3.43 0.03 3.44 3.35 0.02 3.37 3.33 0.04 3.36 3.34 0.06 3.36 8.27
ute92 26.77 0.26 27.06 26.91 0.24 27.19 27.05 0.21 27.21 26.18 0.26 26.79 26.68 0.32 26.85 26.68 0.39 26.82 0.61

yor83 I 40.23 0.79 41.11 40.45 0.63 41.26 40.81 0.59 41.26 38.25 0.39 38.79 37.88 0.48 38.58 38.31 0.45 38.91 1.02

Table 3 shows a clear preference to use a larger population size with smaller number of generations in EDA-
HH. With population of 1000, tournament selections of TOUR6, TOUR9 and TOUR12 obtain the best results
on 2, 7 and 3 instances, respectively. A Students’ t-test on TOUR9 and TOUR12 shows no statistical difference.
We therefore employ TOUR9 in our analysis in Section 4.3. The standard deviation among different variants of
EDA-HH is similar. Among different instances, the standard deviation ranges [0.01-0.79], and is instance
dependent.

EDA-HH has different computational times for different instances. As the same number of evaluations (100 ×
20000, 1000 × 2000) has been used in EDA-HH with different population sizes, there is no significant
difference over the average running time. Among different tournament selections TOUR6, TOUR9 and
TOUR12, TOUR6 has slightly shorter computational times when compared with TOUR9 and TOUR12.

4.2.2 Comparisons of EDA-HH Against the Best Approaches in the Literature

We also compare our hyper-heuristic with other hyper-heuristics tested on the same benchmark dataset in the
literature. The main objective of a hyper-heuristic algorithm is to raise the level of generality over all instances
rather than fine tuning the algorithms to find the best solution for some instances. Thus, we evaluate all hyper-
heuristic approaches by calculating their average percentage differences to the best results reported in the
literature. The algorithms producing the best results for the 13 uncapacitated exam timetabling problem
instances are listed in Table 4 and descriptions of the algorithms can be found in Section 2.

Table 4
Best results reported in the literature on the Carter uncapacitated exam timetabling benchmark. Bold font indicates best
results. ‘-’ represents the corresponding instance is not tested.

Instance
Caramia et al.

(2001)
Yang and

Petrovic (2005)
Burke and

Bykov (2008)
car91 I 6.6 4.5 4.58
car92 I 6.0 3.93 3.81
ear83 I 29.3 33.7 32.65
hec92 I 9.2 10.83 10.06
kfu93 I 13.8 13.82 12.81
lse91 9.6 10.35 9.86
pur93 3.7 - 4.32
rye92 6.8 8.53 7.93
sta83 I 158.2 158.35 157.03
tre92 9.4 7.92 7.72

uta92 I 3.5 3.14 3.16

ute92 24.4 25.39 24.79
yor83 I 36.2 36.35 34.78

Table 5 presents the soft constraint penalty costs for EDA-HH and other hyper-heuristic approaches. As
described in Section 2, these approaches work on the search space of heuristics. They either search for good
combinations of low-level heuristics and apply them sequentially, or find good combinations of ordering criteria
to measure exam difficulty. Table 6 shows the average percentage differences of the hyper-heuristic approaches
to the best results reported in the literature. The approaches in Tables 5 and 6 include the following:

(1) The tabu-search developed in [11]
(2) The linear combination of ordering criteria by [14]
(3) The automated heuristic construction using heuristic hybridisation [30]
(4) Four different high-level search techniques based on local search [29]
(5) The fuzzy logic system on a pair of ordering criteria in [2]
(6) The fuzzy logic system with tuning [2]
(7) The extended fuzzy logic system on three ordering criteria [3]
(8) The evolutionary algorithm on variable-length sequences [26]
(9) The approach that combines heuristics as tie-breakers [27]
(10) The genetic programming to evolve functions to order exams [28]

From Tables 5 and 6, the EDA-HH has produced promising results over all instances compared to the best
results reported in the literature for each of the instances. It also demonstrates high generality over all instances
compared to other hyper-heuristic approaches. We obtained the lowest average percentage differences compared
to the best results cited in the literature.

In the literature, timetabling problems have been extensively studied since 1996 [31]. Different algorithms have
been developed on different platforms over the years, thus it is difficult to compare computational times. It is
also recognized that computing time is not a crucial issue in timetabling. Universities often spend days or even
weeks preparing timetables before the semesters. Therefore, papers published in the literature often do not cite
the computing time of the algorithms being compared. We therefore do not compare computational time of all
the algorithms being compared.

Table 5.
Penalty costs for hyper-heuristic approaches on the Carter uncapacitated exam timetabling benchmark. Bold font indicates
best results from hyper-heuristic approaches. ‘-’ represents the corresponding instance is not tested.

Instance Best reported EDA-HH (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
car91 I 4.5 4.95 5.36 5.03 5.11 5.3 5.29 5.29 5.19 - 4.97 -
car92 I 3.81 4.09 4.53 4.22 4.32 4.7 4.56 4.54 4.32 - 4.28 -
ear83 I 29.3 34.97 37.92 36.06 35.56 35.54 37.02 37.02 36.16 36.74 36.86 37.39
hec92 I 9.2 11.11 12.25 11.71 11.62 12.23 11.78 11.78 11.6 11.55 11.85 11.43
kfu93 I 12.81 14.09 15.2 16.02 15.18 15.09 15.81 15.8 15.03 14.22 14.62 -
lse91 9.6 10.71 11.33 11.15 11.32 12.71 12.09 12.09 11.35 10.90 11.14 -
pur93 3.7 4.73 - - - - - - - 4.73 -
rye92 6.8 9.2 - 9.42 - - 10.35 10.38 9.75 9.35 9.65 -
sta83 I 157.03 157.64 158.19 158.86 158.88 159.2 160.42 160.42 158.64 158.22 158.33 158.38
tre92 7.72 8.27 8.75 8.37 8.52 8.67 8.67 8.67 8.47 8.48 8.48 -

uta92 I 3.14 3.33 3.88 3.37 3.21 3.32 3.57 3.57 3.52 - 3.4 -
ute92 24.44 26.18 28.01 27.99 28.0 30 27.78 28.07 27.55 26.65 28.88 27.31

yor83 I 34.78 37.88 41.37 39.53 40.71 40.24 40.66 39.80 39.25 41.57 40.74 39.96

Table 6.
Percentage differences between hyper-heuristic approaches and the best reported results in the literature on the Carter
uncapacitated exam timetabling benchmark. ‘-’ represents the corresponding instance is not tested.

Instance EDA-HH (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
car91 I 10.00 19.11 11.78 13.56 17.78 17.56 17.56 15.33 - 10.44 -
car92 I 7.35 18.90 10.76 13.39 23.36 19.69 19.16 13.39 - 12.34 -
ear83 I 19.35 29.42 23.07 21.37 21.30 26.35 26.35 23.41 25.39 25.80 27.61
hec92 I 20.76 33.15 27.28 26.30 32.93 28.04 28.04 26.09 25.54 28.80 24.24
kfu93 I 9.99 18.66 25.06 18.50 17.80 23.42 23.34 17.33 11.01 14.13 -
lse91 11.56 18.02 16.15 17.92 32.40 25.94 25.94 18.23 13.54 16.04 -
pur93 27.84 - - - - - - - - 27.84 -
rye92 35.29 - 38.53 - - 52.21 52.65 43.38 37.50 41.91 -

sta83 I 0.39 0.74 1.17 1.18 1.38 2.16 2.16 1.03 0.76 0.83 0.86
tre92 7.12 13.34 8.42 10.36 12.31 12.31 12.31 9.72 9.84 9.84 -

uta92 I 6.05 23.57 7.32 2.23 5.73 13.69 13.69 12.10 - 8.28 -
ute92 7.12 14.61 14.53 14.57 24.06 13.67 14.85 12.73 9.04 18.17 11.74

yor83 I 8.91 18.95 13.66 17.05 15.70 16.91 14.43 12.85 19.52 17.14 14.89
Average 13.21 18.95 16.48 14.22 18.61 20.99 20.87 17.13 16.91 17.81 15.87

4.3 Results on the Graph Colouring variant

4.3.1 Comparisons of Different Variants of EDA-HH

Table 7 shows the best and average number of required colours with the average running time on the dataset.
We also compare our EDA-HH with the results obtained by using a hyper-heuristic that randomly selects
heuristics (RS-HH).

Table 7.
Experimental results on the Carter graph colouring benchmark. Underlined and bold instances are easy and hard instances,
respectively. Bold values represent the best results obtained from our EDA-HH.

Instance

EDA-HH
(100-20000)

EDA-HH
(1000-2000) Approx.

Average
Running

Time (hours)

RS-HH
(2*106

evaluations
with time

limit =
24hrs)

Max
Clique

(Battiti, 2001)
TOUR6 TOUR9 TOUR12 TOUR6 TOUR9 TOUR12

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg.

car91 I 28 28 28 28 28 28 28 28 28 28 28 28 11.25 29 23
car92 I 28 28 28 28 28 28 27 27 27 27 27 27 6.76 28 24
ear83 I 22 22 22 22 22 22 22 22 22 22 22 22 1.08 22 21
hec92 I 17 17 17 17 17 17 17 17 17 17 17 17 0.21 17 17
kfu93 I 19 19 19 19 19 19 19 19 19 19 19 19 3.48 19 19
lse91 17 17 17 17 17 17 17 17 17 17 17 17 2.89 17 17
pur93 32 32 32 32 32 32 32 32 32 32 32 32 24 33 29
rye92 21 21 21 21 21 21 21 21 21 21 21 21 3.12 21 21
sta83 I 13 13 13 13 13 13 13 13 13 13 13 13 0.51 13 13
tre92 20 20 20 20 20 20 20 20 20 20 20 20 1.87 20 20

uta92 I 29 29 29 29 29 29 29 29 29 29 29 29 9.24 30 26
ute92 10 10 10 10 10 10 10 10 10 10 10 10 0.7 10 10

yor83 I 19 19 19 19 19 19 18 18 18 18 18 18 1.21 19 18

It is well known that the size of the maximum clique of a graph can be used as the lower bound to find the
chromatic number of that graph [19]. A clique in a graph is a subset of vertices where every two vertices are
connected. The maximum clique found by a reactive local search technique [5] on this benchmark is also listed
in Table 7 for comparison purposes.

For 8 easy instances underlined in Table 7, the optimal colourings can be found after generating only a few
sequences. Although the best found result for ear83 I is greater than the maximum clique, we know that it is the
optimal colouring by running a complete search on the solution search space. For the remaining five hard
instances, we observe the same superiority of evolving sequences on a larger population as for the uncapacitated
exam timetabling problem. Moreover, EDA-HH is always at least as good as the hyper-heuristic that randomly
selects heuristics. This demonstrates the effectiveness of the learning process from the estimation distribution
algorithm in the high-level search.

4.3.2 Comparisons of EDA-HH Against the Best Approaches in the Literature

Table 8 shows the EDA-HH performance in comparison with other constructive approaches in the literature
including the following:

(1) The constructive approach by [16]
(2) The sequential construction method by [15]
(3) The automated heuristic construction using heuristic hybridisation [30]

EDA-HH obtained better results than the best results reported in the literature for four hard instances.

Table 8.
The minimum number of colours found by constructive approaches on the Carter graph colouring benchmark. Bold values
indicate new best solutions while optimal results are underlined. ‘-’ represents the corresponding instance is not tested.

Instance EDA-HH (1) (2) (3)
car91 I 28 28 28 30
car92 I 27 28 28 29
ear83 I 22 22 22 22
hec92 I 17 17 17 17
kfu93 I 19 19 19 19
lse91 17 17 17 17
pur93 32 35 36 -
rye92 21 21 21 -
sta83 I 13 13 13 13
tre92 20 20 20 20

uta92 I 29 32 30 31
ute92 10 10 10 10

yor83 I 18 19 19 19

4.4 An Observation on the Probability Distribution Learning Capability in EDA-HH

With a larger set of low-level heuristics, hyper-heuristics are likely to more effectively explore larger regions of
the search space and eventually find better solutions. However, this is at the cost of longer computational times.
On the other hand, given a shorter computational time, on a smaller set of effective low-level heuristics, hyper-
heuristics are more likely to achieve better results. By selecting a subset of effective low-level heuristics during
the evolution, the intensification and diversification of the search can be adaptively adjusted. The issue here lies
on the selection of low-level heuristics, at different stages of the evolution.

We further investigate EDA-HH to understand its learning capability. This could help facilitate the design of
more intelligent hyper-heuristics in the future to adaptively balance between the performance and computational
time demands.

During the evolution of EDA-HH, pij (see Algorithm 1) represents the probability of low level heuristic j which
appearing in stage i in the promising results. This probability distribution pij thus represents useful information
and knowledge of which effective low level heuristics are employed in which stage. Our EDA-HH hyper-
heuristic is thus capable of naturally identifying the effectiveness of specific low-level heuristics by simply
examining the probability distribution obtained. We carry out two experiments to examine the learning ability of
EDA-HH to learn effective and ineffective heuristics at the end of evolution. It is worth noting that by
examining the probability distribution during the evolution, more knowledge could be learned to manage the
diversification and intensification of the search. This remains interesting and challenging research issues for our
future work.

4.4.1 Probability Distribution of the Best Results

Figure 1 shows the plots of the probability distribution of low-level heuristics from the runs which obtain the
best results for four sample instances: hec92 I, sta83 I, ute92 and yor83 I. To obtain generally useful knowledge,
we group related low level heuristics (i.e. H1, H12, H13 as group of H1, and H2, H22, H23 as group H2, etc.).
The probability of a heuristic in pij (e.g. Saturation Degree – H1) is represented by the summed probability of its
related heuristics. This probability distribution is recorded after the last generation of the evolutionary process.
In Figure 1, the probability at each stage on a curve represents the average probability of its last five stages.

From Figure 1, we can observe that saturation degree is an effective heuristic for the exam timetabling problem
over a large period of solution construction. However, it is rarely used in the early stages. For instance sta83 I,
the saturation degree heuristic is not particularly stronger than other low-level heuristics. This can be illustrated
by the fact that in the early stage of solution construction, almost all timeslots are available, thus saturation
degree which measures the remaining feasible timeslots cannot distinguish the difficulty of scheduling exams
into the timetable, thus is not an effective heuristic in the early stages. Our EDA-HH is able to automatically
learn this by evolving the probability distribution in pij.

Figure 1. Plots of the final probability distribution of low-level heuristics obtained for the exam timetabling instances hec92
I, sta83 I, ute92 and yor83 I.

Figure 2 presents the probability distribution of low-level heuristics from the runs which obtain the best results
of four hard graph colouring instances: car91 I, car92 I, uta92 I and yor83 I. This probability distribution is
recorded similarly as for the exam timetabling problem. The charts support the argument that different heuristics
are suitable for different stages of the colouring process. Saturation degree has proven to be among the most
preferred heuristics for the graph colouring variant. However, applying it at the beginning of the colouring
process is likely to produce a significant number of ties. Largest degree is most likely to be chosen at the very
beginning of a colouring. Note that this observation applies to all other instances of the benchmark.

Figure 2. Plots of the probability distribution of heuristics at the end of the evolutionary process for the hardest graph

colouring instances in the Carter dataset.

4.4.2 Adaptive Learning of Probability Distribution in EDA-HH

To demonstrate the learning ability of EDA-HH, we conduct experiments on the car92 I graph colouring
instance with the parameter settings of EDA-HH-TOUR9 (1000-2000). This EDA-HH setting was shown to
perform well compared to the others in Section 3.2.1.

In the first experiment, we include only the Largest Degree heuristic (H1) and nine other heuristics based on the
Saturation Degree heuristic (H3, H32 ... H39) as the low level heuristics. Figure 3(a) shows the probability
distribution obtained on the largest degree heuristic at each stage at the end of the evolutionary process.
Although the largest degree heuristic is placed into a set of many saturation degree based heuristics, EDA-HH
still learned to select it frequently at the very beginning of the colouring process.

Similarly, the second experiment is conducted on the pool of nine largest degree based heuristics (H1, H12 ...
H19) and only one saturation degree heuristic (H3). Even being put into a set of nine largest degree based
heuristics, the saturation degree heuristic can still be chosen regularly by EDA-HH at the appropriate stages of
the colouring process. Figure 3(b) illustrates this learning ability, especially from stages 4 to 16. In graph
colouring, the decisions to select difficult vertices in that early part have a strong influence to the overall
colouring.

 (a) (b)

Figure 3. The learning capability of EDA-HH on the selection of appropriate low-level heuristics at different stages.

5 Conclusions and Future Work

In this paper we have developed a simple yet effective EDA-based hyper-heuristic. The algorithm was tested on
13 benchmark instances for both the uncapacitated exam timetabling problem and the graph colouring problem.
The quality of solutions produced by EDA-HH are competitive to other hyper-heuristic approaches and was
found to generalise well over both problems and all instances. Given that our EDA-HH involves only combining
constructive heuristics without using back-tracking or iterative local improvement, we found the results
encouraging. Moreover, EDA-HH is also capable of learning which heuristic is more suitable than the others for
specific problem solving situations.

There are several directions for our further research:

 Integrating simple backtracking or local improvement into the evolutionary process to further improve
the performance.

 Further investigating the probability distribution of the low level heuristics across other problem
domains.

 Investigating a hyper-heuristic that adjusts the intensification and diversification in the high-level
search by removing or adding low-level heuristics.

 Implementing more complex estimation distribution algorithms at the high level, which take into
account the dependency between stages of heuristic sequences.

Appendix – The Carter Benchmark Dataset

The Carter examination timetabling benchmark dataset [16] (publicly available at
http://www.cs.nott.ac.uk/~rxq/data.htm) is one of the most widely tested sets in timetabling research
community. Since its introduction in 1996, it has attracted much research effort from the community. During the
years, researchers are reporting the best results obtained along with the development of advanced algorithms.
This dataset still remains an interesting challenge as optimal solutions for all instances have not been found yet.
Therefore, we evaluate our method on this dataset to compare results against many other existing
methodologies. Table A-1 shows characteristics of the instances.

Table A-1
Details of the Carter benchmark dataset [16][31].

Instances No. of Exams No. of Students Enrolments Density Timeslots
car91 I 682 16925 56877 0.13 35
car92 I 543 18419 55522 0.14 32
ear83 I 190 1125 8109 0.27 24
hec92 I 81 2823 10632 0.42 18
kfu93 I 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18
pur93 2419 30029 120681 0.03 42
rye92 482 11483 45051 0.07 23
sta83 I 139 611 5751 0.14 13
tre92 261 4360 14901 0.18 23

uta92 I 622 21266 58979 0.13 35
ute92 184 2749 11793 0.08 10

yor83 I 181 941 6034 0.29 21

Two versions of the dataset have been circulated under the same name over the last ten years. We used the
naming convention provided in [31]. An extensive survey is also provided in [31] on all search methodologies
with associated best reported results for this dataset.

The hard constraint requires that any two exams having common students must be assigned to two different
timeslots. The soft constraint concerns the spread of exams for students. If two exams are assigned into two
timeslots ti and tj, then each student taking both of these exams will cause a penalty of: 25-|i-j| if 0 < | i – j | ≤ 5.
The objective is to minimise the soft constraint penalty cost: total_penalty / number_of_students. This objective
represents a preference to timetables where fewer students have to take exams too close together.

References

[1]. AHMADI, S., BARRONE, P., CHENG, P., BURKE, E. K., COWLING, P., MCCOLLUM, B. (2003) Perturbation
based variable neighbourhood search in heuristic space for examination timetabling problem. In Proceedings of
Multidisciplinary International Scheduling: Theory and Applications (MISTA 2003), 155–171.

[2]. ASMUNI, H., BURKE, E. K. & GARIBALDI, J. M. (2005) Fuzzy Multiple Ordering Criteria for Examination
Timetabling. IN BURKE, E. K. & TRICK, M. (Eds.) Practice and Theory of Automated Timetabling V: Selected
Papers from the 5th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2004),
Lecture Notes in Computer Science, 3616, 147-160.

[3]. ASMUNI, H., BURKE, E. K., GARIBALDI, J. M. & MCCOLLUM, B. (2007) Determining Rules in Fuzzy Multiple
Heuristic Orderings for Constructing Examination Timetables. In Proceedings of the 3rd Multidisciplinary International
Scheduling: Theory and Applications Conference (MISTA 2007), 59-66.

[4]. ASMUNI, H., BURKE, E. K., GARIBALDI, J. M., MCCOLLUM, B., PARKES, A. J. (2009) An Investigation of
Fuzzy Multiple Heuristic Orderings in the Construction of University Examination Timetables. Computers and
Operations Research, Elsevier, 36(4), 981-1001.

[5]. BATTITI, R., & PROTASI, M. (2001) Reactive local search for the maximum clique problem. Algorithmica, 29(4),
610-637. Implementation from http://intelligent-optimization.org/.

[6]. BILIGAN, B., OZCAN, E. & KORKMAZ, E. E. (2007) An Experimental Study on Hyper-heuristics and Exam
Timetabling. In BURKE. E. K. & RUDOVA, H. (Eds.) Practice and Theory of Automated Timetabling VI: Selected
Papers from the 6th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2006),
Lecture Notes in Computer Science, 3867, 394-412.

[7]. BURKE, E. K. & BYKOV, Y. (2008) A Late Acceptance Strategy in Hill-Climbing for Examination Timetabling
Problems. In Proceedings of Practice and Theory of Automated Timetabling (PATAT 2008), 2008.

[8]. BURKE, E. K. ECKERSLEY, A. J., MCCOLLUM, B., PETROVIC, S., QU, R. (2010) Hybrid Variable
Neighbourhood Approaches to University Exam Timetabling. European Journal of Operational Research, 206: 46-53.

[9]. BURKE, E. K., HYDE, M., KENDALL, G., OCHOA, G., OZCAN, E. & QU, R. (2013) Hyper-heuristics: A Survey
of the State of the Art, Journal of the Operational Research Society, 64: 1695-1724.

[10]. BURKE, E. K. & KENDALL, G. (Eds). (2005) Search Methodologies: Introductory Tutorial in Optimization and
Decision Support Techniques. Springer.

[11]. BURKE, E. K., PETROVIC S., QU R., (2006) Case Based Heuristic Selection for Timetabling Problems. Journal of
Scheduling, 9: 115-132.

[12]. BURKE, E.K., QU, R. (2009) Hybridisations within a Graph Based Hyper-heuristic Framework for University
Timetabling Problems, Journal of Operational Research Society, 60: 1273-1285.

[13]. BURKE, E. K., MCCOLLUM, B., MEISELS, A., PETROVIC, S., QU, R. (2007) A graph-based hyperheuristic for
educational timetabling problems. European Journal of Operational Research, 176: 177–192.

[14]. BURKE, E. K., PHAM, N., QU, R. & YELLEN, J. (2011) Linear Combinations of Heuristics for Examination
Timetabling. Annals of Operations Research, 194(1): 89-109, 2012.

[15]. CARAMIA, M., DELLOLMO, P. & ITALIANO, G.F. (2001) New algorithms for examination timetabling. In:
NAHER, S. & WAGNER, D. (Eds.) Algorithm Engineering 4th International Workshop, Proceedings WAE 2000.
Lecture Notes in Computer Science, 1982, 230-241.

[16]. CARTER, M. W., LAPORTE, G., LEE, S.T. (1996) Examination Timetabling: Algorithmic Strategies and
Applications. Journal of the Operational Research Society, 47, 373-383

[17]. COWLING, P., KENDALL, G. & SOUBEIGA, E. (2000) A Hyper-heuristic Approach to Scheduling a Sales Summit,
LNCS 2079, PATAT III, Konstanz, Germany, selected papers BURKE, E. K. & ERBEN, W. (Eds.), 176–190.

[18]. CULBERSON, J. C. (1992) Iterated Greedy Graph Coloring and the Difficult Landscape. Technical Report [1992-07],
Dept. Comp. Sci., Univ. Alberta, Canada, 1992.

[19]. De WERRA, D. (1985) An introduction to timetabling. European Journal of Operational Research, 19: 151-162.

[20]. GAREY, M. R. & JOHNSON, D. S. (1979) Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.

[21]. GLOVER, F., & KOCHENBERGER, G. (Eds). (2003) Handbook of Metaheuristics. Kluwer Academic Publishers.

[22]. LI, J., BURKE, E.K., QU, R. (2012) A pattern recognition based intelligent search method and two assignment
problem case studies. Applied Intelligence, 36(2): 442-453.

[23]. MCCOLLUM, B., SCHAERF, A., PAECHTER, B., MCMULLAN, P., LEWIS, R., PARKES, A. J., DI GASPERO,
L., QU, R. & BURKE, E. K. (2010) Setting the research agenda in automated timetabling competition. INFORMS
Journal on Computing, 22, 120-130.

[24]. MÜHLENBEIN, H. & PAAß, G. (1996) From recombination of genes to the estimation of distributions I. binary
parameters. In EIBEN, A., BÄCK, T., SHOENAUER, M. & SCHWEFEL, H. (Eds.) Parallel Problem Solving from
Nature—PPSN IV, 178-187.

[25]. OZCAN, E., MISIR, M., OCHOA, G. & BURKE, E. K. (2010) A Reinforcement Learning – Great-Deluge Hyper-
heuristic for Examination Timetabling. International Journal of Applied Metaheuristic Computing, 1(1), 39-59.

[26]. PILLAY, N. & BANZHAF, W. (2007) A Genetic Programming Approach to the Generation of Hyper-Heuristics for
the Uncapacitated Examination Timetabling Problem. In NEVES et al. (Eds.) Progress in Artificial Intelligence.
Lecture Notes in Artificial Intelligence, 4874, 223-234.

[27]. PILLAY, N. & BANZHAF, W. (2009) A Study of Heuristic Combinations for Hyper-Heuristic Systems for the
Uncapacitated Examination Timetabling Problem. European Journal of Operational Research (EJOR), 482-491.

[28]. PILLAY, N. (2009) Evolving Hyper-heuristics for the Uncapacitated Examination Timetabling Problem. In
Proceedings of the 4th Multidisciplinary International Scheduling Conference: Theory and Applications (MISTA
2009), 447-457.

[29]. QU, R. & BURKE, E. K. (2009) Hybridisations within a Graph Based Hyper-heuristic Framework for University
Timetabling Problems. Journal of Operational Research Society, 60: 1273-1285.

[30]. QU, R., BURKE, E. K. & MCCOLLUM, B. (2009a) Adaptive Automated Construction of Hybrid Heuristics for Exam
Timetabling and Graph Colouring Problems. European Journal of Operational Research, 198(2): 392-404.

[31]. QU, R., BURKE, E. K., MCCOLLUM, B., MERLOT, L. T. G. & LEE, S. Y. (2009b) A Survey of Search
Methodologies and Automated Approaches for Examination Timetabling. Journal of Scheduling, 12(1): 55-89.

[32]. ROSS, P., MARÍN-BLAZQUEZ, J. G., HART, E. (2004) Hyper-heuristics applied to class and exam timetabling
problems. In Proceedings of the 2004 IEEE Congress on Evolutionary Computation, IEEE Press, Portland, Oregon,
1691–1698

[33]. SABAR, N.R., AYOB, M., QU, R., KENDALL, G. (2012) A graph coloring constructive hyper-heuristic for
examination timetabling problems. Applied Intelligence, 37(1): 1-11.

[34]. SOGHIER, A., QU, R. (2013) Adaptive selection of heuristics for assigning time slots and rooms in exam timetables.
Applied Intelligence, 39(2), 438-450.

[35]. TERASHIMA-MARÍN, H., ROSS, P., VALENZUELA-RENDÓN, M. (1999) Evolution of constraint satisfaction
strategies in examination timetabling. In Genetic and Evolutionary Computation Conference (GECCO 1999), 635–
642.

