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Abstract 

This paper presents a hybrid hyper-heuristic approach based on estimation distribution algorithms. The main 
motivation is to raise the level of generality for search methodologies. The objective of the hyper-heuristic is to 
produce solutions of acceptable quality for a number of optimisation problems.  In this work, we demonstrate 
the generality through experimental results for different variants of exam timetabling problems. The hyper-
heuristic represents an automated constructive method that searches for heuristic choices from a given set of 
low-level heuristics based only on non-domain-specific knowledge. The high-level search methodology is based 
on a simple estimation distribution algorithm. It is capable of guiding the search to select appropriate heuristics 
in different problem solving situations. The probability distribution of low-level heuristics at different stages of 
solution construction can be used to measure their effectiveness and possibly help facilitate more intelligent 
hyper-heuristic search methods. 
 
Keywords: estimation distribution algorithm; hyper-heuristic; exam timetabling; graph colouring 

1 Introduction 

Within search methodologies, meta-heuristics have shown to be particularly effective for many combinatorial 
optimisation problems [21]. However, from a practical point of view, there are still challenging issues for 
practitioners to use meta-heuristics successfully. Firstly, meta-heuristics usually require complicated and crucial 
parameter tunings. These often demand intensive knowledge resulting in higher costs of implementation and 
maintenance. Secondly, meta-heuristics tend to be finely tuned for solving specific problems or even specific 
instances. This often leads to limited reusability for other problem domains or even other instances of the same 
problem. In fact, most meta-heuristics are designed only for a narrow class of a specific problem. For example, a 
meta-heuristic to construct examination timetables can be designed to effectively generate high quality 
timetables with respect to specific requirements supplied by a university. However, that meta-heuristic very 
likely requires significant adjustment to work effectively for other universities with different requirements. 
Thirdly, in many industries, there are requirements for quick solutions. Many meta-heuristics often require 
extensive research, development and parameter tuning. A more detailed discussion of these issues can be found 
in [10]. 
 
In early timetabling research, constraint based techniques and simple heuristics were widely studied. In 
constraint based techniques, problem specific constraints are modelled, and various propagation techniques are 
used to reduce the computational expense, leading to more efficient search. Such models with specific 
constraints are often not reusable for variants of the problems. In practice, many users thus often employ simple 
heuristics which are much easier to implement and adapt. However, such heuristics are often of inferior 
performance, and often cannot even produce feasible solutions to highly constrained problems. 
 
Therefore, there is a demand from many small and medium sized companies for cheaper problem solvers which 
are capable of producing good-enough solutions instead of high-cost, complex and domain-intensive systems. 
One such approach to address this issue is hyper-heuristics which are “an automated methodology for selecting 
or generating heuristics to solve hard computational search problems” [8]. Unlike many existing search 
methodologies which work in the search space of solutions, hyper-heuristics work in the search space of 
heuristics. Hyper-heuristic algorithms are operated on heuristics, at a higher level of abstraction. This is 
fundamentally different to meta-heuristics, where heuristics are used to guide neighbourhood moves or 
evolutionary operators to directly operate on solutions in the search space. This means there are two levels of 



search in hyper-heuristics, one at the problem solution space, and the other at a higher level of heuristic space 
which then operates on the solution space. In our previous work [11], we have established the fundamental 
definitions of these two search spaces, which can have different representations (encoding), evolutionary or 
move operators, and an upper bound on the size of the search spaces. 
 
Hyper-heuristic research can be categorised in two main categories [8], namely heuristic-selection and heuristic-
generation. Heuristic-selection approaches use high-level search methodologies to choose from a set of given 
(usually simple) low-level heuristics to construct or improve a solution. Heuristic-generation approaches focus 
on generating novel heuristics whose components are building blocks or parts of known heuristics. This paper 
focuses on heuristic-selection based hyper-heuristics, which can be considered as either constructive or 
perturbative. Constructive methods build a complete solution from scratch through a number of decision steps. 
Constructive-based hyper-heuristics can be understood as methodologies that repeatedly select suitable 
constructive heuristics from a given set and apply them to the partial solution being constructed. Perturbative-
based hyper-heuristics start with a complete solution, and then select from a given set of neighbourhood 
operators, and an acceptance criteria, to iteratively improve that solution.  
 
Compared to most of the problem specific meta-heuristics and constraint based techniques, hyper-heuristics 
represent a class of knowledge poor methods [17] with the aim of selecting appropriate heuristics from a pre-
defined set of heuristics during the search, rather than examining specific information such as constraints in the 
problem. The success of hyper-heuristics depends on how they adapt a problem solving situation based on non-
domain-specific information, and associate it with a number of given low-level heuristics, which then operate at 
the solutions of the problem. Examples of domain-independent criteria include computational time and previous 
choices of heuristics. Therefore, hyper-heuristics are often regarded as a search methodology of higher 
generality compared to other heuristics or meta-heuristics. They can help facilitate the development of systems 
which can operate on a range of related problems. Moreover, such systems can be deployed by non-specialised 
users who have little knowledge of the problem domain.  
 
This paper investigates a hyper-heuristic, based on estimation distribution algorithms, that is capable of 
generalising well over different problems. The exam timetabling domain is used as an experimental testbed due 
to its rich set of variants. The outline of this paper is as follows. Section 2 describes the exam timetabling 
problem and briefly reviews related work in exam timetabling including constructive hyper-heuristics. The 
proposed hyper-heuristic is presented in Section 3. Section 4 demonstrates experimental results on two variants 
of the exam timetabling problem, the uncapacitated exam timetabling problem and the graph colouring problem. 
Discussion on the capability of the hyper-heuristic in identifying the effectiveness of low-level heuristics is also 
provided in this section. Finally, Section 5 presents conclusions and future work. 

2 The Exam Timetabling Problems 

Exam timetabling problems concerns assigning a set of exams: E = { e1, e2, ..., ee } into a limited number of 
ordered timeslots: T = { t1, t2, ..., tt }, subject to a set of constraints. Almost all institutions encounter challenging 
exam timetabling problems. The problems are often highly constrained, with a large number of different 
constraints which vary from institution to institution. Moreover, producing timetables manually becomes 
particularly hard in large educational institutions with hundreds or thousands of exams and students. Those 
challenges have motivated research effort to seek automated solutions to construct exam timetables and also 
develop approaches for different exam timetabling scenarios. The constraints for exam timetabling problems can 
be classified into two types: hard constraints and soft constraints which, in some cases, are in conflict with each 
other.  
 
 Hard Constraints must be satisfied in order for a timetable to be feasible. An example of a common hard 

constraint is that a student cannot sit for two exams at the same time (student-conflict). Another common 
hard constraint is that the number of students must be less than or equal to the seating capacity of the 
assigned room. A timeslot that an exam e can be assigned in without causing any hard constraint conflict 
(i.e. no students in e are siting other exams in this timeslot) is called a valid timeslot for that exam. 

 Soft Constraints are not compulsory but the degree of satisfaction of the soft constraints indicates the quality 
of solutions. The exam timetabling scenario in this paper has an objective of minimising the penalty caused 
by students taking exams too close together (exam-spread). The penalty of the timetable is calculated by the 
function given in the Appendix. 

 



The exam timetabling problem with only the student-conflict constraint can be represented as a graph colouring 
problem [31], which can be defined as finding the smallest number of colours (the chromatic number) needed to 
obtain a feasible vertex colouring for a given graph. Feasible vertex colouring is a colouring where adjacent 
vertices connected by an edge are assigned different colours. The basic exam timetabling problem can be 
modelled by a graph representation, where exams are represented by vertices and the student-conflict hard 
constraint between two exams, so they should be assigned different timeslots, is represented by an edge between 
the corresponding vertices. If we associate each timeslot with a colour, then creating a conflict-free timetable is 
equivalent to constructing a feasible vertex colouring. However, all soft constraints are ignored in the graph 
colouring problem. This paper concerns both the uncapacitated exam timetabling problem and the graph 
colouring problem. 
 
The graph colouring optimisation problem is NP-hard [19], significant research effort has been devoted in 
timetabling to the design of approximate algorithms. These sacrifice the guarantee of optimality but produce 
good solutions in a reasonable amount of computational time.  The most popular constructive algorithm, based 
on graph colouring, involves repeatedly making two simple decisions: exam-selection and timeslot-selection. 
Early approaches for exam timetabling focussed on using different exam-selection heuristics. Such heuristics 
represent different strategies to sort exams by their level of difficulty to assign them to timeslots in later stages. 
In each step, the most difficult exam (according to the order produced by the heursitics) will be selected and 
assigned to a timeslot that causes the least constraint penalty. However, there was no comparison between 
approaches until the introduction of a set of 13 exam timetabling benchmark instances by Carter [16]. Details of 
the Carter benchmark dataset can be found in the Appendix. 
 
In exam timetabling, room capacity is not usually seen as crucial, as additional seats or rooms can be added if 
needed. Even without the room capacity constraint, the Carter benchmark problems are difficult to solve, and is 
still widely studied in the scientific literature. We focus on Carter uncapacitated benchmark exam timetabling 
dataset in this research. We also evaluate our proposed algorithm on graph colouring problems to demonstrate 
their generality. Instead of designing a new algorithm or fine tuning an algorithm to achieve the best 
performance, we demonstrate that our algorithm, without much adaptation, is effective in addressing this 
different problem. Our future work may consider extensions and different research issues in the proposed 
algorithm to other problems. 
 
Since the introduction of the Carter benchmark dataset, many approaches have been proposed to solve exam 
timetabling problems. A comprehensive survey of automated search methodologies for exam timetabling on the 
Carter dataset can be found in [31]. Several methodologies have obtained the best results for one or more 
instances in the dataset. In [15] a greedy scheduler is used to create a feasible solution which is then iteratively 
improved using two local-search procedures, a penalty decreaser and a penalty trader. A case based reasoning 
methodology is developed in [11] to select appropriate exam-selection heuristics during the solution 
construction process. A late acceptance strategy is proposed in [7] to improve timetables by comparing the new 
solution and the solution several steps earlier in the search. In [22] the Carter benchmark problems have been 
studied from a different aspect, where patterns of high and low quality timetables are recognised by neural 
networks to speed up the evaluation. The method was also tested on nurse rostering problems. 
 
Recently, there has been an increased research attention in developing hyper-heuristics for exam timetabling 
problems, both constructively [1][2][8][28][29][30][32][33] and perturbatively [6][8][25]. Hyper-heuristics in 
other domains can be found in a comprehensive survey [8]. In this paper, we focus on hyper-heuristics that work 
on constructive exam-selection heuristics. We review below the hyper-heuristics applied to the Carter dataset for 
comparison purposes. 
 
A graph-based hyper-heuristic framework (GHH) is introduced in [11]. A tabu-search is used at the high level to 
search for good sequences of low-level exam-selection heuristics. Heuristics are applied sequentially to 
construct a solution. Within the same framework, an automated heuristic construction approach is presented in 
[30] to adaptively hybridise Saturation Degree heuristic with Largest Weighted Degree heuristic at different 
stages of the solution construction. Promising results have been obtained using these hybridisations in short 
computational times. The GHH framework is extended in [29] to add local improvements to timetables both 
during and after the process of selecting heuristics. The authors also investigated and analysed several different 
high-level search techniques in GHH. 
 
In [34], in addition to graph colouring heuristics, bin packing heuristics have also been integrated as low level 
heuristics in the hyper-heuristic framework for solving the International Timetabling Competition problems with 
room capacity constraints. Within a constructive hyper-heuristic in [33], graph colouring heuristics have been 



utilised to calculate a difficulty index, which is used to order exams. The selected exams are then scheduled into 
a timeslot chosen by using a roulette wheel selection mechanism. 
 
In [2][4] fuzzy weights are used on a pair of ordering criteria to determine the difficulty of exams which are 
sorted and scheduled in constructing the timetable solutions. In [3] the fuzzy strategy is extended to three 
ordering criteria. The effects of altering fuzzy rules instead of fixing them are investigated. In [26] crossover and 
mutation operators are employed within a genetic programming approach to evolve a population of sequences of 
exam-selection heuristics. 
 
This paper investigates the performance of a hyper-heuristic based on estimation distribution algorithms (EDA). 
We analyse the algorithm by utilising Carter’s benchmark exam timetabling dataset and its graph colouring 
variant. The EDA based hyper-heuristic has been applied to the two different problems without any fine tuning 
at the high level, and with the minimum adaptation of low level heuristics to demonstrate the generality of the 
algorithm. Results are promising for both problems compared against the existing approaches which are tailored 
for the problems.  

3 The Estimation Distribution Algorithms-based Hyper-heuristic (EDA-HH) 

In this work, we have developed a new hyper-heuristic based on the idea of estimation distribution algorithms 
(EDA) [24]. EDA is a branch of evolutionary algorithms that replaces genetic operators (crossover and 
mutation) with the estimation of gene distribution and samples new individuals from that distribution. The aim 
is to avoid the likely disruption of building blocks caused by genetic operators in favour of explicit modelling by 
exploiting the gene distribution of promising individuals.  
 
In our proposed EDA based hyper-heuristic (EDA-HH) framework, the EDA, at the higher level, searches for 
sequences of low level exam-selection heuristics. Each of these sequences of genes, where each gene represents 
one low-level heuristic, is used to construct a timetable. These heuristic sequences are generated based on the 
knowledge collected during the evolution. More details can be found in Section 3.3. The motivation of applying 
a high-level search mechanism based on EDA are as follows. 
 
 In our previous work [11], it was observed that the way a high level search performs in the search space of 

constructive low level heuristics is not crucial as long as the high level search is able to explore large regions 
of the search space. In our proposed EDA-HH, a sequence of promising low level heuristics are sampled and 
evolved based on the estimation of gene distribution of promising individuals i.e. the collected knowledge, 
rather than by search algorithms. This novel idea is different from those studied in our previous work 
[11][13][30]. 

 During the evolution of EDA, the estimation of gene distribution naturally provides insights into how low 
level heuristics are hybridised. This helps not only to analyse the effectiveness of low-level heuristics, but 
also to design more intelligent search mechanisms which explore the search space more effectively and 
adaptively based on knowledge collected during the evolution. In our previous work [11][13][30], only the 
resulting sequences of low level heuristics are available, which provide rather limited insights of the 
evolution process. 

3.1 Heuristic-Choice Solution Representation and Fitness Measure 
 
The hyper-heuristic approach in this paper focuses on the search space of exam-selection heuristics. It follows 
many other approaches in the literature where a heuristic-choice solution is represented by a sequence of low-
level heuristics. Note that the following terms are used interchangeably within the context of our EDA-HH 
approach. An individual is equivalent to a sequence or a heuristic choice solution. A gene is equivalent to a low-
level heuristic.  
 
Each low-level heuristic provides one decision on the most difficult exam to be scheduled. The selected exam 
will be scheduled into a timeslot using a fixed strategy depending on the problem. After all low-level heuristics 
in a sequence are consecutively applied, we obtain a complete solution. In this paper, the fitness of a heuristic-
choice solution in the high-level search is simply set as the evaluation of the solution obtained at the low level. 
 
For the uncapacitated exam timetabling problem, with the student-conflict hard constraint and the exam-spread 
soft constraint, the strategy is to choose a timeslot for a selected exam that causes no conflict and the least 
penalty. The penalty is calculated based on violations of the soft constraints. If there are ties, the strategy will 



choose the one that reduces the least number of valid timeslots for those unassigned neighbours of the remaining 
exams. The evaluation of a feasible timetable in the Carter dataset is given in the Appendix. If a feasible 
timetable cannot be found (i.e. the assignment of a selected exam e to a timeslot t causes conflict at some point 
during solution construction, due to students in e already sitting other exams scheduled in t), the fitness for that 
heuristic sequence s will be calculated as f(s) = M + (L - p), where M is a large value, i.e. greater than any 
possible evaluation of a feasible solution; L is the length of heuristic sequence s while p represents the first 
position in s where infeasibility occurs. 
 
For the exam timetabling problem with only the student-conflict hard constraint (i.e. the graph colouring 
problem), the fitness of the timetable is the number of timeslots which can fit in all exams without causing 
violations of the hard constraints. When an exam is selected, we identify the minimum number of remaining 
valid timeslots for its neighbours, Tmin. The timeslot-selection strategy will select a timeslot with the highest 
Tmin. Ties are broken by choosing the timeslot which reduces the least number of valid timeslots for other 
neighbours. If there is no valid timeslot for an exam, the total number of timeslots is increased by one. However, 
experimental observations show that a significant number of sequences produce the same fitness, i.e. timetables 
using the same number of timeslots. Using the above evaluation function provides little distinction on the 
quality of solutions. Therefore, we employ an evaluation function for graph colouring proposed by Culberson 
(1992). It concerns not only the number of colours, k, but also the colouring sum in a given colouring ヾ: 

 


Vv
vkVf )()(    

where V is the set of all vertices and ヾ(ち) is the colour assigned to vertex ち. This evaluation function prefers 
solutions having larger size colour classes, thus, reducing smaller size colour classes and the overall number of 
colours used. Colour class is defined as a set of all vertices with the same colour. This function also takes into 
account information of the colouring, not just the number of colours in the colouring. 

3.2 Low-level heuristics 
 
Apart from those traditional constructive exam-selection heuristics in Table 1, in EDA-HH we also include a set 
of new heuristics, namely H12, H13, H22, H23, H32, H33, H42, H43, H52, H53 into the set of low-level heuristics. 
H12, H13 use the same ordering strategy as H1 in Table 1, but take the second and the third vertex respectively 
in the ordering list instead of the first one. The same idea applies to the other new heuristics based on H2, H3, 
H4 and H5. A larger set of low-level heuristics provides a larger search space of heuristics and improves the 
decision diversity.  
 
Table 1 
Constructive low-level heuristics for the exam timetabling problems. 

H1 Largest Degree (LD) - Exam in conflict (i.e. share common students) with the highest number of other exams is 
considered to be more likely to cause conflict if deferred until later. 

H2 Largest Weighted Degree (LWD) – Exam in conflict with the highest number of other exams, weighted by the 
number of students in conflict, are more likely to cause high penalty. 

H3 Saturation Degree (SD) - Exam with the least number of valid timeslots should be scheduled earlier since it may 
not have any timeslots available at a later stage. 

H4 Largest Enrolment (LE) - Exam with largest enrolment should be selected first since its high number of students 
may cause high penalty if scheduled at a later time. 

H5 Largest Coloured Degree (LCD) - Exam with the largest number of conflicts with those already scheduled would 
be difficult to schedule since it would have less choice of valid timeslots. 

 
For the uncapacitated exam timetabling problem, the set of low-level heuristics consists of all 15 exam-selection 
heuristics. For the graph colouring problem, the set includes only 9 heuristics (H1, H12, H13, H3, H32, H33, H5, 
H52, H53). Those using the ordering strategies of H2 and H4 are excluded as there is no corresponding penalty 
from the soft constraint in the graph colouring problem.  

3.3 High-level Search Methodologies 
 
Our high-level search methodology is based on a Univariate Marginal Distribution Algorithm (UMDA) [24] - 
one of the simplest EDA in the literature. It assumes no dependency between genes in an individual, thus is easy 
to implement compared with more complicated EDAs. Future work on more advanced EDAs, however, 
represents a promising research direction. Unlike in a standard UMDA, we estimate the distribution of blocks of 
genes, instead of a single gene, in individuals. The selection of individual genes (heuristics), without considering 
the search process before and afterwards, is not likely to be much use in constructing promising timetables. We 
therefore divide an individual into blocks of genes, i.e. blocks of heuristics in sequences which correspond to 
stages of solution construction.  



 
The pseudo-code for EDA-HH is showen in Algorithm 1. In EDA-HH, the stopping condition is either a pre-
assigned number of generations or a set running time. In step 3, the probability of heuristic i appears in stage j, 
pij, is calculated using the Laplace correction (addition of 1 on the numerator, respectively) to avoid situations 
where a low-level heuristic disappears in a particular stage in all sequences in the previous generation. 
 

Algorithm 1. The EDA-HH Framework 
Generate a population of N random sequences of length L. Each stage contains a fixed number of genes Ls 
(with the exception in the last stage). 
Repeat 

1. Evaluate the population. 
2. Use tournament selection of size TOURx to select Nselect sequences of the population. 
3. pij represents the probability that the jth low-level heuristic appears in the ith stage of the Nselect selected 

sequences. It is estimated as: 
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where 0 ≤ i ≤ (L - 1) / Ls; 0 ≤ j ≤ H, where H represents the number of low-level heuristics; Ci 
represents the total number of low-level heuristics needed for the ith stage, which equals to Ls with a 
possible exception in the last stage; si and ei represent the first and last position of the ith stage in a 
sequence: 

si = i × Ls 

ei = min(L – 1, (i +1) × Ls – 1); 
ɷk (Xt = j) equals 1 if the jth low-level heuristic appears at position t of the kth selected sequence; equals 

0 otherwise. 
4. Generate N new sequences using the probability distribution estimated in step 3. The probability of a 

gene in the ith stage receiving value j is pij. Replace all sequences in the old generation with these 
newly generated sequences. 

Until the stopping condition is met. 
 
The aim of this hyper-heuristic is not to solve a specific class of problems. By online learning only the 
probability of low-level heuristics being used at different stages of solution construction, the high-level search 
relies only on non-domain-specific information, thus can be generalised to different problems. We demonstrate 
in the next section the generality of our EDA-HH by applying it to two variants of exam timetabling problems. 

4 Experimental Results and Discussions 

The EDA-HH approach has been tested on the 13 Carter benchmark instances (see the Appendix) in both the 
uncapacitated exam timetabling and the graph colouring context. 

4.1 Experimental Setup 
 
To demonstrate the generality of the hyper-heuristic approach, the parameters for the high-level search are the 
same across all experiments. Some parameter values (including the population size, number of generations, and 
tournament size) were selected empirically by performing several trial runs. We then carry out extensive 
experiments on six sets of parameters presented in Table 2. In all experiments, EDA-HH is executed 10 times 
for each instance to conduct statistic analysis. The algorithm was implemented in Java using JDK 1.6.0 and 
experiments were conducted on a PC Pentium IV 3.4GHz with 2GB memory. 
 

Table 2 
EDA-HH parameter values. TOURx: tournament size of x% of the population. 

Parameters EDA-HH-TOUR6 EDA-HH-TOUR9 EDA-HH-TOUR12 
Population N – No. of Generations G (100 – 20000), (1000 – 2000) 

Selection amount Nselect 20% of N 
Tournament size 6% of N 9% of N 12% of N 

Lblock 10 
Maximum running time 24 hours 

4.2 Results on the Uncapacitated Exam Timetabling Problem 
 
4.2.1 Comparisons of Different Variants of EDA-HH 



 
In all runs using any set of parameters, the hyper-heuristic found feasible solutions. Table 3 presents the best, 
the average and the standard deviation of penalty cost, with the average running time of each run on the Carter 
uncapacitated examination timetabling benchmark instances. 
 

Table 3 
Experimental results on the Carter uncapacitated exam timetabling benchmark instances. Bold values represent the best 
results obtained from our EDA-HH. 

Instance 

EDA-HH 
(100-20000) 

EDA-HH 
(1000-2000) 

Approx. 
Average 
Running  

Time 
(hours) 

TOUR6 TOUR9 TOUR12 TOUR6 TOUR9 TOUR12 

Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. Best Sd. Avg. 
car91 I 5.13 0.05 5.17 5.14 0.01 5.17 5.13 0.02 5.16 4.98 0.02 5.00 4.95 0.02 4.99 4.96 0.03 5.00 10.05 
car92 I 4.36 0.02 4.38 4.33 0.02 4.36 4.29 0.02 4.33 4.12 0.03 4.16 4.16 0.03 4.17 4.09 0.03 4.16 6 
ear83 I 36.41 0.06 36.65 35.93 0.23 36.37 35.91 0.22 36.30 35.11 0.37 35.59 34.99 0.35 35.38 34.97 0.38 35.56 1.03 
hec92 I 11.59 0.15 11.79 11.75 0.08 11.85 11.73 0.10 11.85 11.25 0.10 11.34 11.11 0.10 11.32 11.25 0.11 11.37 0.33 
kfu93 I 14.93 0.22 15.25 14.81 0.15 15.12 14.75 0.16 15.11 14.09 0.32 14.49 14.19 0.33 14.50 14.15 0.35 14.32 1.93 
lse91 10.97 0.16 11.12 10.91 0.11 11.05 10.89 0.11 11.06 10.77 0.08 10.89 10.77 0.09 10.90 10.71 0.11 10.87 1.64 
pur93 4.78 0.07 4.89 4.78 0.06 4.91 4.76 0.08 4.9 4.76 0.05 4.81 4.73 0.06 4.77 4.74 0.08 4.75 24 
rye92 9.86 0.15 10.03 9.87 0.13 10.03 9.9 0.12 10.02 9.23 0.10 9.31 9.2 0.12 9.33 9.25 0.15 9.32 2.95 
sta83 I 157.64 0.23 157.95 157.82 0.12 157.96 157.81 0.22 157.97 157.75 0.12 157.92 157.81 0.12 157.92 157.76 0.15 157.91 0.58 
tre92 8.5 0.04 8.56 8.49 0.03 8.53 8.51 0.04 8.54 8.28 0.02 8.31 8.27 0.05 8.34 8.29 0.06 8.33 1.91 

uta92 I 3.43 0.02 3.45 3.43 0.02 3.45 3.43 0.03 3.44 3.35 0.02 3.37 3.33 0.04 3.36 3.34 0.06 3.36 8.27 
ute92 26.77 0.26 27.06 26.91 0.24 27.19 27.05 0.21 27.21 26.18 0.26 26.79 26.68 0.32 26.85 26.68 0.39 26.82 0.61 

yor83 I 40.23 0.79 41.11 40.45 0.63 41.26 40.81 0.59 41.26 38.25 0.39 38.79 37.88 0.48 38.58 38.31 0.45 38.91 1.02 

 
Table 3 shows a clear preference to use a larger population size with smaller number of generations in EDA-
HH. With population of 1000, tournament selections of TOUR6, TOUR9 and TOUR12 obtain the best results 
on 2, 7 and 3 instances, respectively. A Students’ t-test on TOUR9 and TOUR12 shows no statistical difference. 
We therefore employ TOUR9 in our analysis in Section 4.3. The standard deviation among different variants of 
EDA-HH is similar. Among different instances, the standard deviation ranges [0.01-0.79], and is instance 
dependent. 
 
EDA-HH has different computational times for different instances. As the same number of evaluations (100 × 
20000, 1000 × 2000) has been used in EDA-HH with different population sizes, there is no significant 
difference over the average running time. Among different tournament selections TOUR6, TOUR9 and 
TOUR12, TOUR6 has slightly shorter computational times when compared with TOUR9 and TOUR12. 
 
4.2.2 Comparisons of EDA-HH Against the Best Approaches in the Literature 
 
We also compare our hyper-heuristic with other hyper-heuristics tested on the same benchmark dataset in the 
literature. The main objective of a hyper-heuristic algorithm is to raise the level of generality over all instances 
rather than fine tuning the algorithms to find the best solution for some instances. Thus, we evaluate all hyper-
heuristic approaches by calculating their average percentage differences to the best results reported in the 
literature. The algorithms producing the best results for the 13 uncapacitated exam timetabling problem 
instances are listed in Table 4 and descriptions of the algorithms can be found in Section 2. 
 

Table 4 
Best results reported in the literature on the Carter uncapacitated exam timetabling benchmark. Bold font indicates best 
results. ‘-’ represents the corresponding instance is not tested. 

Instance 
Caramia et al. 

(2001) 
Yang and 

Petrovic (2005) 
Burke and  

Bykov (2008) 
car91 I 6.6 4.5 4.58 
car92 I 6.0 3.93 3.81 
ear83 I 29.3 33.7 32.65 
hec92 I 9.2 10.83 10.06 
kfu93 I 13.8 13.82 12.81 
lse91 9.6 10.35 9.86 
pur93 3.7 - 4.32 
rye92 6.8 8.53 7.93 
sta83 I 158.2 158.35 157.03 
tre92 9.4 7.92 7.72 

uta92 I 3.5 3.14 3.16 



ute92 24.4 25.39 24.79 
yor83 I 36.2 36.35 34.78 

 
Table 5 presents the soft constraint penalty costs for EDA-HH and other hyper-heuristic approaches. As 
described in Section 2, these approaches work on the search space of heuristics. They either search for good 
combinations of low-level heuristics and apply them sequentially, or find good combinations of ordering criteria 
to measure exam difficulty. Table 6 shows the average percentage differences of the hyper-heuristic approaches 
to the best results reported in the literature. The approaches in Tables 5 and 6 include the following: 
 
(1) The tabu-search developed in [11] 
(2) The linear combination of ordering criteria by [14] 
(3) The automated heuristic construction using heuristic hybridisation [30] 
(4) Four different high-level search techniques based on local search [29] 
(5) The fuzzy logic system on a pair of ordering criteria in [2] 
(6) The fuzzy logic system with tuning [2] 
(7) The extended fuzzy logic system on three ordering criteria [3] 
(8) The evolutionary algorithm on variable-length sequences [26] 
(9) The approach that combines heuristics as tie-breakers [27] 
(10) The genetic programming to evolve functions to order exams [28] 
 
From Tables 5 and 6, the EDA-HH has produced promising results over all instances compared to the best 
results reported in the literature for each of the instances. It also demonstrates high generality over all instances 
compared to other hyper-heuristic approaches. We obtained the lowest average percentage differences compared 
to the best results cited in the literature. 
 
In the literature, timetabling problems have been extensively studied since 1996 [31]. Different algorithms have 
been developed on different platforms over the years, thus it is difficult to compare computational times. It is 
also recognized that computing time is not a crucial issue in timetabling. Universities often spend days or even 
weeks preparing timetables before the semesters. Therefore, papers published in the literature often do not cite 
the computing time of the algorithms being compared. We therefore do not compare computational time of all 
the algorithms being compared. 
 

Table 5. 
Penalty costs for hyper-heuristic approaches on the Carter uncapacitated exam timetabling benchmark. Bold font indicates 
best results from hyper-heuristic approaches. ‘-’ represents the corresponding instance is not tested. 

Instance Best reported EDA-HH (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
car91 I 4.5 4.95 5.36 5.03 5.11 5.3 5.29 5.29 5.19 - 4.97 - 
car92 I 3.81 4.09 4.53 4.22 4.32 4.7 4.56 4.54 4.32 - 4.28 - 
ear83 I 29.3 34.97 37.92 36.06 35.56 35.54 37.02 37.02 36.16 36.74 36.86 37.39 
hec92 I 9.2 11.11 12.25 11.71 11.62 12.23 11.78 11.78 11.6 11.55 11.85 11.43 
kfu93 I 12.81 14.09 15.2 16.02 15.18 15.09 15.81 15.8 15.03 14.22 14.62 - 
lse91 9.6 10.71 11.33 11.15 11.32 12.71 12.09 12.09 11.35 10.90 11.14 - 
pur93 3.7 4.73 -  - - - - - - 4.73 - 
rye92 6.8 9.2 - 9.42 - - 10.35 10.38 9.75 9.35 9.65 - 
sta83 I 157.03 157.64 158.19 158.86 158.88 159.2 160.42 160.42 158.64 158.22 158.33 158.38 
tre92 7.72 8.27 8.75 8.37 8.52 8.67 8.67 8.67 8.47 8.48 8.48 - 

uta92 I 3.14 3.33 3.88 3.37 3.21 3.32 3.57 3.57 3.52 - 3.4 - 
ute92 24.44 26.18 28.01 27.99 28.0 30 27.78 28.07 27.55 26.65 28.88 27.31 

yor83 I 34.78 37.88 41.37 39.53 40.71 40.24 40.66 39.80 39.25 41.57 40.74 39.96 

 

Table 6. 
Percentage differences between hyper-heuristic approaches and the best reported results in the literature on the Carter 
uncapacitated exam timetabling benchmark. ‘-’ represents the corresponding instance is not tested.

Instance EDA-HH (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
car91 I 10.00 19.11 11.78 13.56 17.78 17.56 17.56 15.33 - 10.44 - 
car92 I 7.35 18.90 10.76 13.39 23.36 19.69 19.16 13.39 - 12.34 - 
ear83 I 19.35 29.42 23.07 21.37 21.30 26.35 26.35 23.41 25.39 25.80 27.61 
hec92 I 20.76 33.15 27.28 26.30 32.93 28.04 28.04 26.09 25.54 28.80 24.24 
kfu93 I 9.99 18.66 25.06 18.50 17.80 23.42 23.34 17.33 11.01 14.13 - 
lse91 11.56 18.02 16.15 17.92 32.40 25.94 25.94 18.23 13.54 16.04 - 
pur93 27.84 - - - - - - - - 27.84 - 
rye92 35.29 - 38.53 - - 52.21 52.65 43.38 37.50 41.91 - 



sta83 I 0.39 0.74 1.17 1.18 1.38 2.16 2.16 1.03 0.76 0.83 0.86 
tre92 7.12 13.34 8.42 10.36 12.31 12.31 12.31 9.72 9.84 9.84 - 

uta92 I 6.05 23.57 7.32 2.23 5.73 13.69 13.69 12.10 - 8.28 - 
ute92 7.12 14.61 14.53 14.57 24.06 13.67 14.85 12.73 9.04 18.17 11.74 

yor83 I 8.91 18.95 13.66 17.05 15.70 16.91 14.43 12.85 19.52 17.14 14.89 
Average 13.21 18.95 16.48 14.22 18.61 20.99 20.87 17.13 16.91 17.81 15.87 

4.3 Results on the Graph Colouring variant 
 
4.3.1 Comparisons of Different Variants of EDA-HH 
 
Table 7 shows the best and average number of required colours with the average running time on the dataset. 
We also compare our EDA-HH with the results obtained by using a hyper-heuristic that randomly selects 
heuristics (RS-HH).  
 

Table 7. 
Experimental results on the Carter graph colouring benchmark. Underlined and bold instances are easy and hard instances, 
respectively. Bold values represent the best results obtained from our EDA-HH. 

Instance 

EDA-HH 
(100-20000) 

EDA-HH 
(1000-2000) Approx. 

Average  
Running  

Time (hours) 

RS-HH  
(2*106 

evaluations  
with time 

limit = 
24hrs) 

Max  
Clique  

(Battiti, 2001) 
TOUR6 TOUR9 TOUR12 TOUR6 TOUR9 TOUR12 

Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best Avg. 

car91 I 28 28 28 28 28 28 28 28 28 28 28 28 11.25 29 23 
car92 I 28 28 28 28 28 28 27 27 27 27 27 27 6.76 28 24 
ear83 I 22 22 22 22 22 22 22 22 22 22 22 22 1.08 22 21 
hec92 I 17 17 17 17 17 17 17 17 17 17 17 17 0.21 17 17 
kfu93 I 19 19 19 19 19 19 19 19 19 19 19 19 3.48 19 19 
lse91 17 17 17 17 17 17 17 17 17 17 17 17 2.89 17 17 
pur93 32 32 32 32 32 32 32 32 32 32 32 32 24 33 29 
rye92 21 21 21 21 21 21 21 21 21 21 21 21 3.12 21 21 
sta83 I 13 13 13 13 13 13 13 13 13 13 13 13 0.51 13 13 
tre92 20 20 20 20 20 20 20 20 20 20 20 20 1.87 20 20 

uta92 I 29 29 29 29 29 29 29 29 29 29 29 29 9.24 30 26 
ute92 10 10 10 10 10 10 10 10 10 10 10 10 0.7 10 10 

yor83 I 19 19 19 19 19 19 18 18 18 18 18 18 1.21 19 18 

 
It is well known that the size of the maximum clique of a graph can be used as the lower bound to find the 
chromatic number of that graph [19]. A clique in a graph is a subset of vertices where every two vertices are 
connected. The maximum clique found by a reactive local search technique [5] on this benchmark is also listed 
in Table 7 for comparison purposes. 
 
For 8 easy instances underlined in Table 7, the optimal colourings can be found after generating only a few 
sequences. Although the best found result for ear83 I is greater than the maximum clique, we know that it is the 
optimal colouring by running a complete search on the solution search space. For the remaining five hard 
instances, we observe the same superiority of evolving sequences on a larger population as for the uncapacitated 
exam timetabling problem. Moreover, EDA-HH is always at least as good as the hyper-heuristic that randomly 
selects heuristics. This demonstrates the effectiveness of the learning process from the estimation distribution 
algorithm in the high-level search. 
 
4.3.2 Comparisons of EDA-HH Against the Best Approaches in the Literature 
 
Table 8 shows the EDA-HH performance in comparison with other constructive approaches in the literature 
including the following: 
  
(1) The constructive approach by [16] 
(2) The sequential construction method by [15] 
(3) The automated heuristic construction using heuristic hybridisation [30] 
 
EDA-HH obtained better results than the best results reported in the literature for four hard instances. 
 



Table 8. 
The minimum number of colours found by constructive approaches on the Carter graph colouring benchmark. Bold values 
indicate new best solutions while optimal results are underlined. ‘-’ represents the corresponding instance is not tested. 

Instance EDA-HH (1) (2) (3) 
car91 I 28 28 28 30 
car92 I 27 28 28 29 
ear83 I 22 22 22 22 
hec92 I 17 17 17 17 
kfu93 I 19 19 19 19 
lse91 17 17 17 17 
pur93 32 35 36 - 
rye92 21 21 21 - 
sta83 I 13 13 13 13 
tre92 20 20 20 20 

uta92 I 29 32 30 31 
ute92 10 10 10 10 

yor83 I 18 19 19 19 

 
4.4 An Observation on the Probability Distribution Learning Capability in EDA-HH 
 
With a larger set of low-level heuristics, hyper-heuristics are likely to more effectively explore larger regions of 
the search space and eventually find better solutions. However, this is at the cost of longer computational times. 
On the other hand, given a shorter computational time, on a smaller set of effective low-level heuristics, hyper-
heuristics are more likely to achieve better results. By selecting a subset of effective low-level heuristics during 
the evolution, the intensification and diversification of the search can be adaptively adjusted. The issue here lies 
on the selection of low-level heuristics, at different stages of the evolution. 
 
We further investigate EDA-HH to understand its learning capability. This could help facilitate the design of 
more intelligent hyper-heuristics in the future to adaptively balance between the performance and computational 
time demands. 
 
During the evolution of EDA-HH, pij (see Algorithm 1) represents the probability of low level heuristic j which 
appearing in stage i in the promising results. This probability distribution pij thus represents useful information 
and knowledge of which effective low level heuristics are employed in which stage. Our EDA-HH hyper-
heuristic is thus capable of naturally identifying the effectiveness of specific low-level heuristics by simply 
examining the probability distribution obtained. We carry out two experiments to examine the learning ability of 
EDA-HH to learn effective and ineffective heuristics at the end of evolution. It is worth noting that by 
examining the probability distribution during the evolution, more knowledge could be learned to manage the 
diversification and intensification of the search. This remains interesting and challenging research issues for our 
future work. 
 
4.4.1 Probability Distribution of the Best Results 
 
Figure 1 shows the plots of the probability distribution of low-level heuristics from the runs which obtain the 
best results for four sample instances: hec92 I, sta83 I, ute92 and yor83 I. To obtain generally useful knowledge, 
we group related low level heuristics (i.e. H1, H12, H13 as group of H1, and H2, H22, H23 as group H2, etc.). 
The probability of a heuristic in pij (e.g. Saturation Degree – H1) is represented by the summed probability of its 
related heuristics. This probability distribution is recorded after the last generation of the evolutionary process. 
In Figure 1, the probability at each stage on a curve represents the average probability of its last five stages. 
 
From Figure 1, we can observe that saturation degree is an effective heuristic for the exam timetabling problem 
over a large period of solution construction. However, it is rarely used in the early stages. For instance sta83 I, 
the saturation degree heuristic is not particularly stronger than other low-level heuristics. This can be illustrated 
by the fact that in the early stage of solution construction, almost all timeslots are available, thus saturation 
degree which measures the remaining feasible timeslots cannot distinguish the difficulty of scheduling exams 
into the timetable, thus is not an effective heuristic in the early stages. Our EDA-HH is able to automatically 
learn this by evolving the probability distribution in pij. 
 



  

  

Figure 1. Plots of the final probability distribution of low-level heuristics obtained for the exam timetabling instances hec92 
I, sta83 I, ute92 and yor83 I. 

 
Figure 2 presents the probability distribution of low-level heuristics from the runs which obtain the best results 
of four hard graph colouring instances: car91 I, car92 I, uta92 I and yor83 I. This probability distribution is 
recorded similarly as for the exam timetabling problem. The charts support the argument that different heuristics 
are suitable for different stages of the colouring process. Saturation degree has proven to be among the most 
preferred heuristics for the graph colouring variant. However, applying it at the beginning of the colouring 
process is likely to produce a significant number of ties. Largest degree is most likely to be chosen at the very 
beginning of a colouring. Note that this observation applies to all other instances of the benchmark. 
 



  

  
Figure 2. Plots of the probability distribution of heuristics at the end of the evolutionary process for the hardest graph 

colouring instances in the Carter dataset. 

 
4.4.2 Adaptive Learning of Probability Distribution in EDA-HH 
 
To demonstrate the learning ability of EDA-HH, we conduct experiments on the car92 I graph colouring 
instance with the parameter settings of EDA-HH-TOUR9 (1000-2000). This EDA-HH setting was shown to 
perform well compared to the others in Section 3.2.1. 
 
In the first experiment, we include only the Largest Degree heuristic (H1) and nine other heuristics based on the 
Saturation Degree heuristic (H3, H32 ... H39) as the low level heuristics. Figure 3(a) shows the probability 
distribution obtained on the largest degree heuristic at each stage at the end of the evolutionary process. 
Although the largest degree heuristic is placed into a set of many saturation degree based heuristics, EDA-HH 
still learned to select it frequently at the very beginning of the colouring process. 
 
Similarly, the second experiment is conducted on the pool of nine largest degree based heuristics (H1, H12 ... 
H19) and only one saturation degree heuristic (H3). Even being put into a set of nine largest degree based 
heuristics, the saturation degree heuristic can still be chosen regularly by EDA-HH at the appropriate stages of 
the colouring process. Figure 3(b) illustrates this learning ability, especially from stages 4 to 16. In graph 
colouring, the decisions to select difficult vertices in that early part have a strong influence to the overall 
colouring.  
 

  



                                     (a)                                                                               (b) 

Figure 3. The learning capability of EDA-HH on the selection of appropriate low-level heuristics at different stages. 

5 Conclusions and Future Work 

In this paper we have developed a simple yet effective EDA-based hyper-heuristic. The algorithm was tested on 
13 benchmark instances for both the uncapacitated exam timetabling problem and the graph colouring problem. 
The quality of solutions produced by EDA-HH are competitive to other hyper-heuristic approaches and was 
found to generalise well over both problems and all instances. Given that our EDA-HH involves only combining 
constructive heuristics without using back-tracking or iterative local improvement, we found the results 
encouraging. Moreover, EDA-HH is also capable of learning which heuristic is more suitable than the others for 
specific problem solving situations. 
 
There are several directions for our further research: 

 Integrating simple backtracking or local improvement into the evolutionary process to further improve 
the performance. 

 Further investigating the probability distribution of the low level heuristics across other problem 
domains. 

 Investigating a hyper-heuristic that adjusts the intensification and diversification in the high-level 
search by removing or adding low-level heuristics. 

 Implementing more complex estimation distribution algorithms at the high level, which take into 
account the dependency between stages of heuristic sequences. 

Appendix – The Carter Benchmark Dataset 

The Carter examination timetabling benchmark dataset [16] (publicly available at 
http://www.cs.nott.ac.uk/~rxq/data.htm) is one of the most widely tested sets in timetabling research 
community. Since its introduction in 1996, it has attracted much research effort from the community. During the 
years, researchers are reporting the best results obtained along with the development of advanced algorithms. 
This dataset still remains an interesting challenge as optimal solutions for all instances have not been found yet. 
Therefore, we evaluate our method on this dataset to compare results against many other existing 
methodologies. Table A-1 shows characteristics of the instances. 

Table A-1 
Details of the Carter benchmark dataset [16][31]. 

Instances No. of Exams No. of Students Enrolments Density Timeslots 
car91 I 682 16925 56877 0.13 35 
car92 I 543 18419 55522 0.14 32 
ear83 I 190 1125 8109 0.27 24 
hec92 I 81 2823 10632 0.42 18 
kfu93 I 461 5349 25113 0.06 20 
lse91 381 2726 10918 0.06 18 
pur93 2419 30029 120681 0.03 42 
rye92 482 11483 45051 0.07 23 
sta83 I 139 611 5751 0.14 13 
tre92 261 4360 14901 0.18 23 

uta92 I 622 21266 58979 0.13 35 
ute92 184 2749 11793 0.08 10 

yor83 I 181 941 6034 0.29 21 
 
Two versions of the dataset have been circulated under the same name over the last ten years. We used the 
naming convention provided in [31]. An extensive survey is also provided in [31] on all search methodologies 
with associated best reported results for this dataset. 
 
The hard constraint requires that any two exams having common students must be assigned to two different 
timeslots. The soft constraint concerns the spread of exams for students. If two exams are assigned into two 
timeslots ti and tj, then each student taking both of these exams will cause a penalty of: 25-|i-j| if 0 < | i – j | ≤ 5. 
The objective is to minimise the soft constraint penalty cost: total_penalty / number_of_students. This objective 
represents a preference to timetables where fewer students have to take exams too close together. 
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