17 research outputs found

    Using automata to characterise fixed point temporal logics

    Get PDF
    This work examines propositional fixed point temporal and modal logics called mu-calculi and their relationship to automata on infinite strings and trees. We use correspondences between formulae and automata to explore definability in mu-calculi and their fragments, to provide normal forms for formulae, and to prove completeness of axiomatisations. The study of such methods for describing infinitary languages is of fundamental importance to the areas of computer science dealing with non-terminating computations, in particular to the specification and verification of concurrent and reactive systems. To emphasise the close relationship between formulae of mu-calculi and alternating automata, we introduce a new first recurrence acceptance condition for automata, checking intuitively whether the first infinitely often occurring state in a run is accepting. Alternating first recurrence automata can be identified with mu-calculus formulae, and ordinary, non-alternating first recurrence automata with formulae in a particular normal form, the strongly aconjunctive form. Automata with more traditional Büchi and Rabin acceptance conditions can be easily unwound to first recurrence automata, i.e. to mu-calculus formulae. In the other direction, we describe a powerset operation for automata that corresponds to fixpoints, allowing us to translate formulae inductively to ordinary Büchi and Rabin-automata. These translations give easy proofs of the facts that Rabin-automata, the full mu-calculus, its strongly aconjunctive fragment and the monadic second-order calculus of n successors SnS are all equiexpressive, that Büchi-automata, the fixpoint alternation class Pi_2 and the strongly aconjunctive fragment of Pi_2 are similarly related, and that the weak SnS and the fixpoint-alternation-free fragment of mu-calculus also coincide. As corollaries we obtain Rabin's complementation lemma and the powerful decidability result of SnS. We then describe a direct tableau decision method for modal and linear-time mu-calculi, based on the notion of definition trees. The tableaux can be interpreted as first recurrence automata, so the construction can also be viewed as a transformation to the strongly aconjunctive normal form. Finally, we present solutions to two open axiomatisation problems, for the linear-time mu-calculus and its extension with path quantifiers. Both completeness proofs are based on transforming formulae to normal forms inspired by automata. In extending the completeness result of the linear-time mu-calculus to the version with path quantifiers, the essential problem is capturing the limit closure property of paths in an axiomatisation. To this purpose, we introduce a new \exists\nu-induction inference rule

    Logical methods for the hierarchy of hyperlogics

    Get PDF
    In this thesis, we develop logical methods for reasoning about hyperproperties. Hyperproperties describe relations between multiple executions of a system. Unlike trace properties, hyperproperties comprise relational properties like noninterference, symmetry, and robustness. While trace properties have been studied extensively, hyperproperties form a relatively new concept that is far from fully understood. We study the expressiveness of various hyperlogics and develop algorithms for their satisfiability and synthesis problems. In the first part, we explore the landscape of hyperlogics based on temporal logics, first-order and second-order logics, and logics with team semantics. We establish that first-order/second-order and temporal hyperlogics span a hierarchy of expressiveness, whereas team logics constitute a radically different way of specifying hyperproperties. Furthermore, we introduce the notion of temporal safety and liveness, from which we obtain fragments of HyperLTL (the most prominent hyperlogic) with a simpler satisfiability problem. In the second part, we develop logics and algorithms for the synthesis of smart contracts. We introduce two extensions of temporal stream logic to express (hyper)properties of infinite-state systems. We study the realizability problem of these logics and define approximations of the problem in LTL and HyperLTL. Based on these approximations, we develop algorithms to construct smart contracts directly from their specifications.In dieser Arbeit beschreiben wir logische Methoden, um über Hypereigenschaften zu argumentieren. Hypereigenschaften beschreiben Relationen zwischen mehreren Ausführungen eines Systems. Anders als pfadbasierte Eigenschaften können Hypereigenschaften relationale Eigenschaften wie Symmetrie, Robustheit und die Abwesenheit von Informationsfluss ausdrücken. Während pfadbasierte Eigenschaften in den letzten Jahrzehnten ausführlich erforscht wurden, sind Hypereigenschaften ein relativ neues Konzept, das wir noch nicht vollständig verstehen. Wir untersuchen die Ausdrucksmächtigkeit verschiedener Hyperlogiken und entwickeln ausführbare Algorithmen, um deren Erfüllbarkeits- und Syntheseproblem zu lösen. Im ersten Teil erforschen wir die Landschaft der Hyperlogiken basierend auf temporalen Logiken, Logiken erster und zweiter Ordnung und Logiken mit Teamsemantik. Wir stellen fest, dass temporale Logiken und Logiken erster und zweiter Ordnung eine Hierarchie an Ausdrucksmächtigkeit aufspannen. Teamlogiken hingegen spezifieren Hypereigenschaften auf eine radikal andere Art. Wir führen außerdem das Konzept von temporalen Sicherheits- und Lebendigkeitseigenschaften ein, durch die Fragmente der bedeutensten Logik HyperLTL entstehen, für die das Erfüllbarkeitsproblem einfacher ist. Im zweiten Teil entwickeln wir Logiken und Algorithmen für die Synthese digitaler Verträge. Wir führen zwei Erweiterungen temporaler Stromlogik ein, um (Hyper)eigenschaften in unendlichen Systemen auszudrücken. Wir untersuchen das Realisierungsproblem dieser Logiken und definieren Approximationen des Problems in LTL und HyperLTL. Basierend auf diesen Approximationen entwickeln wir Algorithmen, die digitale Verträge direkt aus einer Spezifikation erstellen

    Reasoning About Strategies: On the Model-Checking Problem

    Full text link
    In open systems verification, to formally check for reliability, one needs an appropriate formalism to model the interaction between agents and express the correctness of the system no matter how the environment behaves. An important contribution in this context is given by modal logics for strategic ability, in the setting of multi-agent games, such as ATL, ATL\star, and the like. Recently, Chatterjee, Henzinger, and Piterman introduced Strategy Logic, which we denote here by CHP-SL, with the aim of getting a powerful framework for reasoning explicitly about strategies. CHP-SL is obtained by using first-order quantifications over strategies and has been investigated in the very specific setting of two-agents turned-based games, where a non-elementary model-checking algorithm has been provided. While CHP-SL is a very expressive logic, we claim that it does not fully capture the strategic aspects of multi-agent systems. In this paper, we introduce and study a more general strategy logic, denoted SL, for reasoning about strategies in multi-agent concurrent games. We prove that SL includes CHP-SL, while maintaining a decidable model-checking problem. In particular, the algorithm we propose is computationally not harder than the best one known for CHP-SL. Moreover, we prove that such a problem for SL is NonElementarySpace-hard. This negative result has spurred us to investigate here syntactic fragments of SL, strictly subsuming ATL\star, with the hope of obtaining an elementary model-checking problem. Among the others, we study the sublogics SL[NG], SL[BG], and SL[1G]. They encompass formulas in a special prenex normal form having, respectively, nested temporal goals, Boolean combinations of goals and, a single goal at a time. About these logics, we prove that the model-checking problem for SL[1G] is 2ExpTime-complete, thus not harder than the one for ATL\star

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Cyclic proof systems for modal fixpoint logics

    Get PDF
    This thesis is about cyclic and ill-founded proof systems for modal fixpoint logics, with and without explicit fixpoint quantifiers.Cyclic and ill-founded proof-theory allow proofs with infinite branches or paths, as long as they satisfy some correctness conditions ensuring the validity of the conclusion. In this dissertation we design a few cyclic and ill-founded systems: a cyclic one for the weak Grzegorczyk modal logic K4Grz, based on our explanation of the phenomenon of cyclic companionship; and ill-founded and cyclic ones for the full computation tree logic CTL* and the intuitionistic linear-time temporal logic iLTL. All systems are cut-free, and the cyclic ones for K4Grz and iLTL have fully finitary correctness conditions.Lastly, we use a cyclic system for the modal mu-calculus to obtain a proof of the uniform interpolation property for the logic which differs from the original, automata-based one
    corecore