
Using Automata to Characterise
Fixed Point Temporal Logics

Roope Kai vol a

Doctor of Philosophy
University of Edinburgh

1996

(Graduation date:July 1997)

Abstract
This work examines propositional fixed point temporal and modal logics called
mu-calculi and their relationship to automata on infinite strings and trees. We

use correspondences between formulae and automata to explore definability in

mu-calculi and their fragments, to provide normal forms for formulae, and to

prove completeness of axiomatisations. The study of such methods for describing

infinitary languages is of fundamental importance to the areas of computer science

dealing with non-terminating computations, in particular to the specification and

verification of concurrent and reactive systems.

To emphasise the close relationship between formulae of mu-calculi and

alternating automata, we introduce a new first recurrence acceptance condition

for automata, checking intuitively whether the first infinitely often occurring state

in a run is accepting. Alternating first recurrence automata can be identified

with mu-calculus formulae, and ordinary, non-alternating first recurrence auto-

mata with formulae in a particular normal form, the strongly aconjunctive form.
Automata with more traditional Büchi and Rabin acceptance conditions can be

easily unwound to first recurrence automata, i.e. to mu-calculus formulae.

In the other direction, we describe a powerset operation for automata that

corresponds to fixpoints, allowing us to translate formulae inductively to ordinary

Bflchi and Rabin-automata. These translations give easy proofs of the facts that

Rabin-automata, the full mu-calculus, its strongly aconjunctive fragment and the

monadic second-order calculus of n successors SnS are all equiexpressive, that
Büchi-automata, the fixpoint alternation class 112 and the strongly aconjunctive

fragment of 112 are similarly related, and that the weak SnS and the fixpoint-

alternation-free fragment of mu-calculus also coincide. As corollaries we obtain

Rabin's complementation lemma and the powerful decidability result of SnS.

We then describe a direct tableau decision method for modal and linear-time

mu-calculi, based on the notion of definition trees. The tableaux can be inter-

preted as first recurrence automata, so the construction can also be viewed as a

transformation to the strongly aconjunctive normal form.

Finally, we present solutions to two open axiomatisation problems, for the

linear-time mu-calculus and its extension with path quantifiers. Both completeness

proofs are based on transforming formulae to normal forms inspired by automata.

In extending the completeness result of the linear-time mu-calculus to the version

with path quantifiers, the essential problem is capturing the limit closure property

of paths in an axiomatisation. To this purpose, we introduce a new v-induction
inference rule.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Cohn Stirling, for

setting an example of intellectual clarity and encouraging me to tackle problems

I otherwise would not have ventured to take up. I would also like to thank

other members of the Edinburgh concurrency community, in particular Julian

Bradfield, for helpful discussions at various stages of the work, and my examiners

Mark Jerrum and Damian Niwiiiski for their constructive and insightful comments.

The Laboratory for Foundations of Computer Science provided a stimulating

environment for my work.

My stay in Edinburgh was made possible by generous funding from the

Academy of Finland, the British Council, the CVCP Overseas Research Students

Awards Scheme and the Finnish Cultural Foundation.

On a more personal note, I would like to thank Neil Ghani, Ally Hume,

Christoph Lflth, Alex Mifsud, Simon McPartlin, Claudio Russo, Jitka Stiibrná,

numerous members of the Finnish community and other friends in Edinburgh for

their company, especially during those days when the sun was not shining (includ-

ing most of Hibs' away games). Thanks are also due to my family and friends

in Finland for their support. Finally, I would like to thank Marjukka Barron for

refusing to give up the belief that one day this thing would be finished, and for

making my life more complete in the meanwhile.

Declaration

I declare that this thesis was composed by myself, and the work contained in it

is my own, unless otherwise stated. Some of the material has been published in

[47, 48, 49, 50] and [51].

Table of Contents

Chapter 1 Introduction 	 i

	

1.1 	Background 1

	

1.2 	Synopsis6

Chapter 2 	Logical calculi 10
2.1 	Preliminaries 11
2.2 	Linear structures 13

2.2.1 	Linear time mu-calculus 13
2.2.2 	Fixpoints and approximants 18
2.2.3 	Fixpoint alternation 22
2.2.4 	Tableaux for linear structures 29
2.2.5 	Strong second-order quantifiers 39
2.2.6 	Weak second-order quantifiers 46

2.3 	Branching structures 50
2.3.1 	Modal mu-calculus 50
2.3.2 	Generalising linear-time concepts and results 52
2.3.3 	Second-order quantifiers 55

2.4 	Summary 58

Chapter 3 Automata 60
3.1 Automata on infinite objects 63

3.1.1 	Ordinary automata 63
3.1.2 	Alternating automata 68

3.2 First recurrence automata 73
3.2.1 	Preliminaries 73
3.2.2 	First recurrence automata and mu-calculi 75
3.2.3 	First recurrence vs. Büchi and Rabin acceptance 79
3.2.4 	Decidability of ordinary FR-automata 85

3.3 Quantification and ordinary automata 89
3.4 Fixpoints for ordinary automata 95

1

3.4.1 Fixpoints and Biichi acceptance 	 95
3.4.2 Fixpoints and Rabin acceptance106

	

3.5 	Linear vs. branching structures115

	

3.6 	Summary 121

Chapter 4 Deciding mu-calculi 	 123

	

4.1 	Definition trees 125

	

4.2 	Tableaux with definition trees128

	

4.3 	Satisfiability tableaux134

4.4 Extension to branching structures140

	

4.5 	Discussion142

Chapter 5 	Axiomatising linear time mu-calculus 144
5.1 	Axiomatisation 145
5.2 	Normal form 146
5.3 	Completeness 148
5.4 	Discussion 153

Chapter 6 	Axiomatising path quantifiers 156
6.1 Preliminaries 158

6.1.1 	Path quantifiers 158
6.1.2 	Extended models 160

6.2 Axiomatisation 162
6.3 Normal form 166
6.4 Completeness 168
6.5 Discussion 176

Chapter 7 Conclusion 	 178

Bibliography 	 181

Index 	 189

Appendix A Technical proofs 	 193
A-1 Ordinary vs. restricted alternating automata193

A.2 Bundled tableaux vs. definition tree tableaux196

11

Chapter 1

Introduction

1.1 Background

This work examines propositional fixed point temporal and modal logics called

mu-calculi and their relationship to automata on infinite strings and trees. We

point out various correspondences between classes of formulae of mu-calculi and

different types of automata, and show how understanding the relationship between

the different formalisms allows us, on the one hand, to use techniques from the

realm of logic in addressing traditionally automata-theoretic problems, and on the

other hand, to take advantage of automata-theoretic insights in solving problems

related to logics. For example, using the modal mu-calculus we obtain a simple

proof of Rabin's complementation lemma, and using automata-like normal forms

for formulae, we show the completeness of axiomatisations for various mu-calculi.

Besides the theoretical interest, the study of infinitary languages is of funda-

mental importance to the areas of computer science dealing with non-terminating

computations. In particular, in recent years a lot of research interest has been

shown towards applying work on infinitary languages to understanding the be-

haviour of concurrent and reactive systems. In the traditional sequential input-

output model of computation a program can be viewed as computing a function or

transformation between its starting and terminating states. In contrast, a normal

behaviour of a reactive program, e.g. an operating system, is a non-terminating

computation which maintains an ongoing interaction with the environment. There-

fore, the transformation-based semantic models that are used to model sequential

programs, and the specification and verification techniques such as Hoare-logics

[43] or preconditions [38] that are geared towards such transformational models

are not suitable for describing concurrent and reactive systems. Instead, it is nat-

ural to base the semantics either on the infinite sequences of events a system can

perform, or on an infinite tree representing the sequences of events and choices

1

Chapter 1 -Introduction 	 2

between different courses of execution, and consider specification techniques that

can be used to describe such infinite structures.

Temporal and modal logics are a class of logic-based formalisms that can be

used to describe properties of infinite computations. Their use for specifying

and verifying concurrent systems was first advocated by Pnueli in [74], and the

approach has subsequently been extensively studied. Temporal logics extend an

underlying propositional or first-order logic by a set of temporal operators such

as always or sometimes that allow describing how the truth of assertions varies

over time. Similarly, modal logics contain operators that allow expressing the

possibility or necessity of situations or events. For surveys and introductions of

temporal and modal logics in computer science see [25, 83], and in the setting of

more traditional philosophical logic see [18, 21, 44, 79].

Propositional mu-calculi, the formalisms discussed in the current work, arise in

the framework of modal and temporal logics. The distinguishing feature of these

languages is explicit minimal and maximal fixpoint operators p z and vz. The two

main variants considered here are the modal mu-calculus [55], obtained by adding

fixpoints to modal logic and interpreted over branching structures, and the linear-

time mu-calculus [9, 6, 95], obtained similarly from standard linear-time temporal

logic and interpreted over linear structures. Usually modal mu-calculus is based on

the Hennessy-Milner logic [40], a poly-modal logic containing operators <a> 0, it

is possible to execute an a-action leading to a state where 0 holds and [a] , every

a-action leads to a state where 0 holds. However, to make the comparison with

automata technically easier, we discuss here mainly a variant based on indexed

modalities 0, to distinguish the successors of a node in a tree [45].

The modal and linear mu-calculi hold a rather special position among the

multitude of existing modal and temporal logics. On the one hand, they are

syntactically succinct, elegant and tractable, and on the other hand, expressively

very powerful so that most other propositional temporal and modal logics can be

translated into them. The factor behind both these features is the incorporation

of explicit fixpoint constructs in the language.

Using formalisms with fixpoint operators for describing computational phe-

nomena can be traced back at least to the early work of Park [72], de Bakker

and de Roever [5]. A basic observation that has lead to such formalisms is that

first-order logics are not powerful enough to express many important properties

of programs, such as totality and termination [41]. Fixpoints are also one of the

central notions that appear in various forms all over computer science: denota-

tional semantics, logics of computation, descriptive complexity theory, database

theory, bisimulations etc.

Chapter 1 -Introduction 	 3

Another construct close to fixpoints is second-order quantification over propos-

itions. As shall be seen later, in the calculi and models considered in the current

work, there is no difference between fixpoints and second-order quantifiers as far as

expressivity is concerned. However, in a sense fixpoints have a more constructive

flavour than quantifiers. This is reflected, for example, by the fact that determin-

ing satisfiability for the fixpoint calculi can be done in exponential time, whereas

the same problem for the related quantifier-based calculi is non-elementary, i.e.

not bounded by any fixed composition of exponential functions.

In the formalisms considered in the current work we start from a propositional

language and extend it with a second-order construct, either fixpoints or second-

order quantifiers allowing quantification over properties. Effectively this can be

viewed as jumping from a propositional or 'O-th order' formalism directly to a

second-order one, without going via a first order language, with quantification over

individuals. We could naturally also extend first-order formalisms with similar

second-order constructs [88]. However, in particular with fixpoints, this would

lead to less tractable and less well researched formalism [42].

The quantifier-based formalisms considered in the current work are very closely

related to two important calculi with second-order quantification which have been

examined in the context of decision problems in mathematical logic: the monadic

second-order theory of one successor S1S, studied by Büchi [15], and the monadic

second-order theory of n successors SnS, studied by Rabin [76]. The decidability

of these calculi, SnS in particular, is a fundamental result to which large classes

of other decidability results can be reduced [76, 78]. To quote Gurevich and

Barrington [39] on this: If you worked on decision problems you did most probably

use Rabin's result.

Originally, one of the main reasons to study automata on infinite objects was

as a tool to show the decidability of these second-order calculi. To this end, Bflchi

introduced a type of finite automata on infinite strings as an easy-to-handle normal

form for S1S formulae in his seminal 1962 paper [15]. These automata, nowadays

known as Büchi automata, generalise the notion of ordinary nondeterministic finite

automata on finite strings by attaching to them an acceptance condition specifying

which infinite executions of the automaton count as accepting. In a similar way,

to show the decidability of SnS, Rabin [76] defined the notion of finite automata

on infinite trees, generalising the notion of automata on finite trees [91, 37]. For

a survey of automata on infinite strings and trees, see [93].

The core point of the decidability proof for both S1S and SnS is showing

that the automata in question are closed under boolean operations, especially

complementation. Already nontrivial for Biichi automata on strings, comple-

Chapter 1 -Introduction 	 4

mentation is notoriously hard for Rabin automata on trees. Due to the central

nature of this result, known as Rabin's complementation lemma, several research-

ers [16, 17, 39, 66, 67, 33] have endeavoured to explain and simplify the original

proof [76].

In the area of temporal and modal logics, and mu-calculi in particular, auto-

mata on infinite objects have been long applied as a tool for decidability results.

For example, the decision procedure of Streett and Emerson [86, 87] for modal

mu-calculus works by translating formulae of the logic to Rabin tree automata,

and reducing the satisfiability problem of the formula to the emptiness problem

for the corresponding automaton. Similarly, the decision procedure of Vardi [95]

for linear-time mu-calculus is based on mapping formulae to Büchi automata.

Translations from formulae to automata have also been used for model-checking,

i.e. determining the validity of a formula over a particular model, especially for

linear-time logics [98, 94].

The advantage of translating formulae to automata, thereby reducing a lo-

gical problem to an automata-theoretic problem, is that this makes available a

whole body of results that have already been established concerning automata,

in particular algorithmic and complexity-theoretic results. Thanks to their sim-

pler, non-hierarchic structure, automata are easier to handle automatically than

formulae, so once we have managed to translate a formula to an automaton, the

rest usually follows easily. Because of this, automata have been proposed as a

uniform framework to which various logical formalisms can be translated, and as

a specification formalism in their own right [98, 94]. It should be pointed out

here that the research on applying automata as a tool for deciding logics has also

produced new results concerning automata, in the form of improved algorithms

and new types of acceptance conditions.

The drawback in using automata directly as a specification formalism is that

they lack a structural theory that the logic-based calculi have, and by which prop-

erties can be composed from sub-properties by operators of the language. The

reduction of logical problems to automata-theoretic ones has also the negative con-

sequence that results concerning logics tend to be rather indirect. For example,

although the decision methods using automata certainly answer the question of

whether a formula is satisfiable or not, the required rather complex translations

and automata constructions mean that the answer does not give an insight into

why or how the formula is satisfiable. Related to this, although decision meth-

ods often yield complete axiomatisations, the automata constructions are not very

helpful in this respect, and the question of axiomatising linear-time and modal

mu-calculi was an open problem until very recently [49, 101].

Chapter 1 -Introduction 	 5

The technical gap between automata and mu-calculi has lately been narrowing

due to a new type of automata on infinite objects called alternating automata [66,

67, 68, 64]. The concept of alternation in automata, introduced in [19], generalises

the notion of nondeterminism by allowing states to be existential or universal. This

means that in addition to being able to represent disjunction, which naturally

corresponds to nondeterminism, such automata have also the means to represent

conjunction, and consequently they resemble logical formulae more than ordinary

automata do. In particular, the structure of alternating automata is very similar

to formulae of mu-calculus, to the extent that, quoting Emerson [26], mu-calculus

formulae are really representations of alternating finite-state automata on infinite

trees. An advantage of alternating automata over ordinary ones is that they are

easy to complement by dualization. In the case of automata over trees, alternating

automata also appear a more natural formalism than ordinary nondeterministic

automata [10]. However, since alternating automata have a more complicated

structure than ordinary ones, in some respects they are also more difficult to

analyse and manipulate. In particular, although trivial for ordinary automata,

projection or existential quantification is hard for alternating ones and effectively

requires translating them back to ordinary automata. As closure under projection

is essential for Rabin's decidability result for SnS, this means that we cannot

escape the complications of Rabin's proof by simply using alternating automata

instead of ordinary ones. Deciding emptiness is also harder for alternating than

for ordinary automata.

The second-order calculi and automata on infinite objects discussed in this

work have also deep connections with the theory of infinite games. One of the main

lines of research on the complementation problem of Rabin automata, pursued by

Biichi [16, 17] and Gurevich and Harrington [39], has been the formulation of the

problem in the framework of infinite games. In short, a run of a tree automaton

on an input can be viewed as a strategy in an infinite game, where one of the

players plays for acceptance and the other for rejection. Conversely, a finite state

winning strategy in such a game can be viewed as an automaton. The question of

complementation can then be reduced to a theorem about the determinacy of these

games and the existence of finite state winning strategies [39]. This approach and

the G urevich- Harrington theorem is also the easiest way to translate alternating

automata to ordinary ones. In addition to the complementation problem, games

have been used more recently by Stirling to examine the model-checking problem

of modal mu-calculus [84]. However, as the developments in the current work are

independent of the game-theoretic approach, in the following we will address the

issue only in passing.

Chapter 1 - Introduction 	 11

1.2 Synopsis

A main theme going through the whole work here is following Büchi's idea and

viewing ordinary nondeterministic automata as useful normal forms for formulae,

or as the means of transforming formulae to such normal forms.

Chapter 2 is a brief introduction to infinite linear and branching structures and

some logical languages which can be used to describe these. The most important

formalisms are the linear-time mu-calculus 1uTL and its branching time counter-
part, the (indexed) modal mu-calculus pKn, which is interpreted over trees with

a fixed branching degree n. In addition to these fixpoint-based languages we ex-

amine another second-order construct, second-order quantification, and the linear

and branching languages 3TL and 3Kn based on quantifiers instead of fixpoints.
The languages 2TL and 3Kn can be viewed as alternative formulations of the

monadic second-order calculus of one successor SJS and that of n successors SnS
mentioned earlier. Furthermore, we define the weak versions nTL and nKn of
these calculi, corresponding to the weak calculi WS1S and WSnS, with quantific-
ation over finite sets only.

Chapter 3 concentrates on automata and on relating various types of automata

and fragments of mu-calculi to each other. We first define the usual notions of

ordinary and alternating automata on infinite strings and trees, and the standard

Büchi and Rabin acceptance conditions. In Section 3.2 we introduce a new type

of automata, the first recurrence automata, providing a common ground on which

mu-calculi and automata can be related to each other. First recurrence auto-

mata are particularly appropriate for understanding mu-calculi, since alternating

first recurrence automata correspond precisely to formulae of mu-calculi and vice

versa, via easy syntactic translations. Ordinary, non-alternating first recurrence

automata correspond to formulae in a restricted normal form, where the most

important restriction is the so-called strong aconjunctivity. The close connection

between first recurrence automata and mu-calculus formulae allows us to rephrase

the statement above about mu-calculus formulae being alternating automata in the

other direction: alternating automata are really mu-calculus formulae.

In Section 3.4 we describe fixpoint constructions for ordinary Büchi and Rabin

automata, based on [22, 76, 77]. These allow us to translate mu-calculus formulae

inductively to such automata. Using them and translations between Rabin and

Biichi automata on the one hand and first recurrence automata on the other, we

show the equiexpressivity of ordinary Rabin automata and the full mu-calculus,

and that of ordinary Blichi automata and the fixpoint alternation class 11 2 . Since
the full mu-calculus is trivially closed under complementation, this implies that

Chapter 1 -Introduction 	 7

Rabin automata are closed under complementation, as well. As a corollary we

get an easy inductive translation from 3Kn or SriS to Rabin automata, and the

decidability of all the calculi mentioned above. We believe that this provides the

simplest proof of Rabin's result so far; in fact, as Rabin's original proof [76] uses
constructions which have a close resemblance to the fixpoint constructions used

here, although not called as such, we can view the use of mu-calculus and the

current approach as a way of structuring Rabin's proof in a more transparent

fashion. As side products of the results, we show the equiexpressivity of the

languages I Kn, WSnS and the fixpoint alternation class L2 of mu-calculus, and

obtain one half of Rabin's fundamental correspondence between Biichi recognisable

languages and existentially quantified Kn or WSnS. Although none of these

correspondence or decidability results are new in themselves, we feel that the

contribution of the current work is that all these results, shown previously by

a variety of tools, arise here uniformly from two rather simple concepts: the

first recurrence automata, and the fixpoint constructions for ordinary Büchi and

Rabin automata. We also believe that first recurrence automata are an interesting

formalism in their own right, since they have the same expressive power as Rabin

automata, but emptiness is decidable in linear time for them.

The constructions and results listed above work for both linear and branch-

ing structures and formalisms. In Section 3.5 we examine differences between

the linear and the branching case. In linear case it is easy to see that Büchi

and Rabin recognisability coincide, which allows us to show that the full linear-

time mu-calculus and its fragment L2 without any proper fixpoint alternation are

equiexpressive. For the branching case none of this is true. Another distinguishing

feature is determinisation of automata, which leads us to discuss what determin-

ism means in formulae, and define a deterministic normal form for linear-time

mu-calculus.

Based on the understanding of the intimate relationship between mu-calculi

and automata provided by Chapter 3, the rest of the work examines deciding and

axiomatising mu-calculi. In Chapter 4 we describe an elementary tableau decision

method for modal and linear-time mu-calculi'. The approach is based on the no-

tion of definition trees, related to the definition lists of Stirling and Walker [85],

and is influenced by the works of Safra [80], Emerson and Jutla [32, 33], and

Walukiewicz [100, 101]. The tableau construction also yields a direct translation

from any mu-calculus formula to an equivalent strongly aconjunctive one. This

provides yet another proof of the fact that Rabin automata are closed under com-

'Formulating such a tableau method was stated as an open problem in Jutla's thesis [46]

Chapter 1 -Introduction 	 8

plementation. What may be more interesting, though, is that the translation to the

strongly aconjuctive normal form allows us show the decidability of the quantifier-

based calculi 3Kn and SnS by translating them inductively to the mu-calculus

,aKn without having to explicitly invoke automata in the process. Compared to

the decidability proof of 3Kn above, which uses fixpoint constructions for auto-

mata, the current translation has the added elegance that it only requires the use

of one auxiliary formalism jtKn instead of two.

In Chapter 5 we present a solution to the previously open problem of com-

pletely axiomatising the linear-time mu-calculus pTL. The axiomatisation of pTL

has been attempted before by at least Lichtenstein [59] and Dam [22], and the re-

lated axiomatisation for the modal mu-calculus by Kozen [55] and Walukiewicz

[100, 101]. The axiomatisation of ,uTL used here is essentially the one proposed

by Kozen in [55]. The completeness proof in Chapter 5 is based transforming for-

mulae provably to a new normal form, the bi-aconjunctive non-alternating form,

inspired by restricted weak alternating automata. The crucial property of such for-

mulae is that not only is it easy to construct a model of a consistent formula, but

the same holds also of its negation. Moreover, the semantic equivalence between

the full uTL and the normal form can be lifted to the level of provability rather

easily on the basis of what is already known about aconjunctivity.

In 1995 Walukiewicz presented a completeness proof for an axiomatisation of

the modal mu-calculus [101]. This result naturally carries over from the modal mu-

calculus to the the linear mu-calculus, as well. However, the proof requires a rather

complex argument using games between tableaux, which can be avoided here using

the easy negatability of formulae in the bi-aconjunctive non-alternating normal

form. Bar one observation that was used in passing in Walukiewicz's work, the

work presented here (published originally in [49]) was carried out independently.

In Chapter 6 we depart slightly from the framework of the rest of the work

and examine an extension of the linear-time mu-calculus pTL to a branching

time formalism using path quantifiers 10 and VO , for some path q and for all

paths 0 . This way of extending a linear formalism to a branching one is familiar

from various temporal logics; probably the best example is the full computation

tree logic CTL* [28, 29], which extends the standard linear-time temporal logic

TL with path quantifiers. We call the formalism consisting of 11TL and path

quantifiers here the extended computation tree logic In general, due to the

interaction of path quantifiers with other operators of the logic, it has turned out to

be difficult to axiomatise logics with path quantifiers, even though axiomatisations

for the underlying linear-time formalisms would be known. This holds also for the

extended computation tree logic ,aTL.

Chapter 1 - Introduction 	 9

Chapter 6 presents a solution to the axiomatisation problem of LTL with re-

spect to the so-called R-generable structures, basically normal transition systems

where every maximal sequence of pairwise connected states counts as a path. The

essential difficulty in such an axiomatisation is characterising limit closure. This

has become apparent e.g. with the standard computation tree logic, for which the

axiomatisation problem has been open for some while [35, 25, 83]. Here limit

closure is characterised by a a new inference rule, the 'v-induction. The com-

pleteness proof is is based on transforming formulae to a strongly aconjunctive

deterministic normal form.

An intriguing aspect in this completeness proof is that the ability to transform

a formula to the deterministic form requires an arbitrary level of fixpoint alterna-

tion. which means that the approach is not directly applicable for the formulation

of extended computation tree logic with w-regular expressions, although this is

semantically equiexpressive with IpTL. The same holds also for CTL*, so the

axiomatisation problem for it remains open. Nevertheless, we believe that the

current work outlines one potential way of approaching the completeness problem

for CTL*; first, the presence of the Iv-induction rule here leads us to believe

that some similar proof principle will be needed for CTL* as well, and secondly,

we believe that it should be possible to reformulate the current proof so that the

transformation of formulae to the deterministic normal form can take place impli-

citly, in which case the same principles might be used for CTL*, as well. However,

at the current stage this is still speculation.

Chapter 2

Logical calculi

In this chapter we introduce formally the languages of linear and modal mu-

calculi and some other logical formalisms examined in later parts of the work.

Although modal mu-calculus is probably more widely known than the linear-time

one, we discuss the latter first in Section 2.2, as the linear framework is technically

somewhat simpler. In Section 2.3 the concepts introduced for the linear calculus

are extended to deal with branching tree structures.

Some standard concepts and notations are listed in Section 2.1. After this,

Section 2.2 concentrates on linear structures and calculi interpreted over them.

First, the linear models, the language of linear-time mu-calculus ATL and the

related basic notions are introduced in Subsection 2.2.1. The important concept

of alternation of minimal and maximal fixpoints is examined in Subsection 2.2.3.

Analogous to the analytical and arithmetical hierarchies based on alternation of

quantifiers, the alternation of fixpoints leads to a hierarchy of classes E i , I'l i and
Ai of formulae, and is one of the main sources, if not the main source, of difficulty

in understanding mu-calculi. In Subsection 2.2.4 we give a more syntactic account

of truth of a formula in a model, by describing an infinitary tableau construction

in the spirit of [85].

Subsection 2.2.5 studies some aspects of the relationship of fixpoints and

second-order quantification over propositions. We introduce a calculus 3TL which

corresponds to the linear-time mu-calculus pTL, but is based on second-order

quantifiers instead of fixpoints, and show that the fixpoint-based calculus can be

translated to the quantifier-based one. The language 3TL can be viewed as an

alternative formulation of the monadic second-order calculus of one successor S1S
mentioned earlier; 3TL and S1S can be straightforwardly translated syntactically

to each other. In Subsection 2.2.6 we discuss the weak versions I TL and WS1S of

these calculi, with quantification over finite sets only, and point out the important

relation between these languages, non-alternating fixpoints and continuity.

10

Chapter 2 	Logical calculi 	 11

Section 2.3 extends the ideas of the previous section from linear structures to

branching ones. The language of the indexed modal mu-calculus jtKn, with mod-
alities ®q, for the i-th successor q, is introduced in Subsection 2.3.1, and related

basic concepts and techniques are generalised from the linear to the branching

case in Subsection 2.3.2. The second-order quantifier based linear calculus EI TL
and its weak variant nTL are extended to branching formalisms Kn and nKn

in Subsection 2.3.3. Analogous to the situation above, the calculus 3Kn is essen-

tially an alternative formulation of the important monadic second-order calculus

of n successors SnS, studied above all by Rabin, and nKn a formulation of the
weak calculus WSnS.

2.1 Preliminaries

Let us first list some notations for sets and strings.

Definition 2.1.1 We use IN = {O, 1, 2 } to denote the set of natural numbers.

For any n E IN the expression [n] denotes the set [ri] = {O,. . . , m - 1}.

For any set A, we use 2A to denote the powerset of A, i.e. the set of all subsets
of A. For any sets A and B, we use A -+ B to denote the set of functions and

A - B the set of partial functions from A to B. If f : A - B is a partial function,
the domain of f, denoted by dom(f) is the subset of A on which f is defined.

We use the notation q to denote a vector and i7 i to refer to its elements. 	U

Definition 2.1.2 Let A be an arbitrary set. We use A* and AW to denote
the sets of finite and infinite strings of elements of A, respectively, and define

= A* U Aw. The symbol e denotes the unique empty string and I sl the
length of s. If s = a0a1 . . . a 1 ..., s(i) is the element a, s[i... j] the finite string

aa+1 . . . a, and s[i...] the finite or infinite string aa+ia+2... If t and s are
strings, t s the concatenation of t and s, and s - t (s - t) means that s is a prefix
(a proper prefix) of t. If s -< t, s't is the s' such that s s' = t. U

Notice that the first element of a strings is s(0), not s(1). Let us then introduce

some standard concepts and notation for trees and labelled trees. In the current

work we only deal with trees which are ordered and at most countably branching.

Definition 2.1.3 A tree is a set T C N' such that for all t E IN* and i e TN,

• ift•iETthentET, and

• ift.(i±1) ETthen t•iET.

Chapter 2 - Logical calculi 	 12

Let T be a tree.

• We call every teTa node ofT.

• The root node of T is e.

• For every t e IN* and i E TN, if t . i is a node of T, we call t the parent of

t i, and t - i a child of t.

• If t i and t j are children of node t and i < j, we say that the node t i is
older than the node t . j, and that t j is younger than t i.

• If t is a node of T and t has no children, t is called a leaf. Otherwise, t is
called an interior node.

• We say that a node t is an ancestor of node t' and t' a descendant of t if
t - t'. We call t is a proper ancestor of t' and t' a proper descendant of t if
t-<t, .

• Let t be a node of T. A finite or infinite sequence p = t0 t 1 t2 ... of nodes of
T is a path of T from node t if to = t, each t 1 is a child of t, and if the

sequence is finite then its last element is a leaf.

• The set of nodes of T on a path p = t0 t 1 t2 ... of T is denoted by
St(P) = {t0,t1,t2....

• The set of all paths from a node t of T is denoted by paths(T, t). The set

of all paths of is denoted by paths(T). 	 D

Definition 2.1.4 Let T be a tree. We extend the older/younger ordering between

children of any node to a total ordering on the nodes of T as follows:

• if t is a proper ancestor of t', then t is older than t', and

• if t 1 is a descendant of t, t 2 is a descendant of t, t and t'2 are both children

of some node t, and t'1 is older than t, then t 1 is older than t 2 . 	El

Definition 2.1.5 Let A be an arbitrary set. An A-labelled tree T is a partial
mapping T:]N* -i A such that dom(T) is a tree.

Let T be an A-labelled tree. If t is a node of T, the subtree of T rooted at

node t, denoted by Tt, is the A-labelled tree defined by Tt(t/) = T(t. t'), for all

E TN* . If p = t0 t 1 t2 ... is a path of T, we use T[p] to denote the corresponding
string T(t 0)T(t 1)T(t 2) . . . of elements of A.

We classify trees according to their level of branching and the number of nodes.

Definition 2.1.6 We say that a tree T is finitely branching if every node of has

only finitely many children. For every n E TN, we say that a tree T is n-branching
or is of branching degree n if every node of T is either a leaf or has exactly n
children. If T is finite as a set, we call T a finite tree and if it is infinite, we call

Chapter 2 - Logical calculi
	

13

T an infinite tree. If a tree T has no leaves, we say that T is total. The depth of
a finite tree T is the length of the longest path in T. 	 0

Notice that every total tree is infinite, but not necessarily vice versa, and that

a total and infinite tree T is n-branching if T = []*.

2.2 Linear structures

2.2.1 Linear time mu-calculus

The linear-time mu-calculus and linear-time temporal logics in general are logic

based languages that can be used to describe properties of linear sequences of

situations. Assuming some level of atomicity in a program's actions, an execution

of a program or system can be modelled by a linear sequence of execution states.

The use of linear-time temporal logics in specifying properties of programs is

based on viewing these execution sequences as temporal logic models, i.e. linear

structures on which temporal logic formulae can be interpreted.

Let us first define the concept of a linear-time model.

Definition 2.2.1 Fix a countable set Z, the elements of which are called

atomic propositions, and define the set Z of negated atomic propositions by

Z={-'zzEZ}.

Definition 2.2.2 A linear model M is an infinite sequence of sets of propositions,

M e (22)w

A state s of a linear model M is any s E IN, and the set of states, denoted by
st(M), is st(M) = IN. The set of all linear models is denoted by MTL. 	0

Notice that we assume for simplicity that all linear models are infinite.

The idea that execution sequences can be viewed as temporal logic models,

and that temporal logic formulae can be used to specify required properties of

the executions of a system, was first proposed by Pnueli in [74]. Temporal logics

take an underlying propositional or first-order language, which is used to describe

characteristics of individual states or moments of a model, and extend it with a

set of temporal operators. In the current work we will only discuss propositional

temporal logics.

Chapter 2 - Logical calculi 	 14

In the framework of linear time, the most traditional temporal operators are

sometime/always in the future, denoted by Fq and Gq5, and their past counter-

parts. The truth definitions for these operators are

• F0 is true at moment/state i of model M if there is some j> i such that

0 is true at moment j of M

• Gçb is true at moment i of model M if for all j > i, q' is true at moment j
of M

These two operators are duals, i.e. -F--iq 	Gç.

As far as applications in computer science are concerned, the most common

linear-time temporal logic TL is based on the nexttime and 'until operators O
and bUq. The truth definitions of these are

• Qq is true at moment i of model M if q is true at moment i + 1 of M
• V)U0 is true at moment i of model M if there is some j > i such that 0 is

	

true at moment j of M and for all i < i' < 	is true at moment i' of M
Often past temporal operators are omitted, since this does not affect the expressive

power of the language [36]. It is easy to see that the sometime and always operators

can be expressed in terms of the until operator 	by Fçb 	TUq and Gq
-'(TU-q), where T denotes the everywhere true proposition. The reverse does

not hold; there are properties which can be expressed using the until operator,

but which cannot be captured by the sometime and always operators alone [52].

Applications of these logics to specification and verification of programs have

been extensively studied, and form one of the main research trends in the field. For

example, simple safety properties of the type q never happens can be expressed

by formulae of the type G-'q, and simple liveness properties 0 eventually happens

by formulae of the type F.

However, there are some rather straightforward properties that cannot be ex-

pressed in terms of the until and nexttime operators, for example at every even
moment 0 [102]. Because of this, various more expressive formalisms have been

studied, most notably Wolper's extended temporal logic ETL [102, 103], and the

linear-time mu-calculus. Wolper's ETL is based on an infinite family of temporal

operators, one corresponding to each regular grammar.

The linear-time mu-calculus was first introduced by Barringer, Kuiper and

Pnueli in [7, 8, 9], to define temporal semantics for recursive procedures. It has

also been explicitly examined at least by Banieqbal and Barringer [6], and Vardi

[95]. As already mentioned in several occasions, the characteristic feature of mu-

calculi is the incorporation of explicit fixpoint operators vz.q'i and iz.cb in the

language. We only need to take one of these as a primitive operator, since the

other can be introduced as a dual.

Chapter 2 - Logical calculi 	 15

Definition 2.2.3 The formulae of the linear-time mu-calculus pTL are defined
by the abstract syntax:

::=zII1 A2 100 I1Lz.

where z varies over Z. In /1z.çb, each occurrence of z in q is required to be positive,

i.e. in the scope of an even number of negations. 	 D

Let us then state the standard truth definitions for the linear-time mu-calculus.

Definition 2.2.4 Let M E MTL be a linear model. The set of states of M

satisfying a TL-formula 0, denoted by IIIIM, is defined by

IIZMM = Is e st(M) I z E M(s)}

IIIIM = st(M) \ IIIIM
IIA'IIM = 	IIIIMflIIIIM

IIOcIIM = { s E st(M) S + 1 e IIIIM}
IIPIIM = fl{w c st(M) IIIIM[W/z] c W}

where M[W/z] is defined by:

M[W/z](s) = { M(s) U {z}
if SEW

M(s)\{z} ifsst(M)\W

We say that a formula q is true at state s of M and write M, s 	if
S E 1 10 1 1m. We say that 0 is initially true in M and write M J= q if M, 0 = q.

We say that a formula q is universally valid and write = q if M, s = çb for all
models M and all states s of M. A formula q is satisfiable if there exists a model

M and a state s of M such that M, s = q.
The language characterised by a formula 1 denoted by L(0), is defined by

L(q)={MeMTLlM= O f. 	 D

Before discussing the intuitions behind the truth definitions, let us introduce

some standard concepts and derived operators, which will be used for all the

logical formalisms in the current work.

Definition 2.2.5 We use the notation 1 ' to mean that qY is a subformula of

, and q i qY that 0' is a proper subformula of q. We use 101 to denote the length
of a formula 0, considered as a string.

An occurrence of a variable z in a formula 0 is bound if it is within a subformula
1az.0' of 0 and free otherwise.

Chapter 2 - Logical calculi 	 16

Definition 2.2.6 Let 0 , q50 ,.. . , çbj be formulae and Zk,. . . , Zk distinct variables.
Then q[q5o/zo ,.. . , qk/zk] is the result of simultaneously textually substituting

each Oi for all free occurrences of zi in q.

The notation q[q o /z o ,. . . , cb,/z,] denotes the same substitution operation,

but with the following exception: If some free variable z' of qj would be
captured by a fixpoint tz' of 0 in the substitution, the bound variable z' in q is

systematically renamed. We extend this notation to a set of formulae by

F[o/zo, . .. , q/z k] = {[O/ZO,.. . , OklZkj 10 E F}. 0

Definition 2.2.7 We use the derived operators V, =, 	, T, I and vz, the
semantics of which are defined by the translations:

cbvçb' = — (—'çA —'qY)

= - (A-')

(')A(')

T = a V —'a where a is some fixed atomic proposition

I= -T

vz.çb =

The following precedence order is used to reduce the number of parentheses:

-', A, V, 	, 	, vz, pz

where 0 has the highest precedence and z the lowest, i.e. [lz.a V Oz stands for
iz.(a V (Oz)).

The symbol a refers to both the ii and v-operators. If F = {qo,. . . , } is
a finite set of formulae, we use the abbreviation A F to stand for 00 A ... A çb,.

Define inductively the syntactic abbreviation 0Th0 for every n E IN by: 00 =
and 0' = Q(0q) We call a formula q atomic if q is T, I, an atomic
proposition z e 2 or a negated atomic proposition -z E 2. 	 0

Notice that the scope of a fixpoint extends as far to the right as possible. As

has been already done informally above, we write q 	'b to mean that =
i.e. that q and 0 are semantically equivalent. With slight abuse of notation, we

use the expression q 	'/' to denote the semantical equivalence of 0 and 'L' also
when 0 and 'b are formulae of different languages. The following lemma states the

obvious fact that we can replace subformulae of a formula with equivalent ones

without affecting its truth value.

Chapter 2 - Logical calculi 	 17

Lemma 2.2.8 Let 0, 0' and 'J be formulae and z a variable. If = q 	qY, then

= çb[/z] 	O'[/z], and if = q = qY, then = q['b/z] = q'['/z].

Furthermore, if we assume that both '[/z] and [0'/z] are well-defined, then

= 0 	qY implies j= [/z] 4z [0'/z]. If in addition z occurs only positively in

then J= 0 = qY implies 	''[/z] = b[0'/z].

Proof: Easy. 	 D

Notice that the operator Q is self-dual, i.e. -'c--' 	Oc, and consequently

there is no need to introduce a dual modality for it. However, if we interpreted the

language not only over infinite sequences but also over finite ones, this would not

hold. Assuming that the interpretation of 00 in this framework would be there is

a next moment and q holds at that moment, the dual modality for Q would have

the interpretation if there is a next moment, then 0 holds at that moment.

An easy, although not entirely accurate way of understanding the meaning

of the fixpoint operators is viewing the minimal fixpoint ,uz4 as finite looping,

and the maximal fixpoint vz.çb as infinite looping. For example, the sometime,

always and until operators of the standard until-based linear-time temporal logic

TL correspond to the following expressions

	

FO 	z.qVQz

	

Gq 	vz.qAz

	

Uç 	/iz.q V (0 A Oz)

This shows that TL can be easily embedded in the linear-time mu-calculus. The

view of minimal and maximal fixpoints as finite and infinite looping, respectively,

is especially clear if we look at how w-regular expressions could be characterised

by fixpoints [73]. For example

	

a*.b 	,az.aAOzVb

	

(a .b)w 	vz.aAQbAQQz

For a definition of w-regular expressions, see e.g. [93, p. 1361.

As a somewhat more complex example, the property a is true infinitely often

can be expressed by either of the following formulae

vz.(ux.a V Ox) A Oz
vz.,ux.(a A Oz) V Ox

The former of these corresponds directly to the formula GFa of TL. The latter

formula, where the inner fixpoint formula makes reference to the outer fixpoint

variable, has no such direct counterpart in TL.

Chapter 2 - Logical calculi 	 18

The dual property only finitely often not a or almost always a can be expressed

by either of the following formulae

z.(vx.a A Ox) V Oz

uz.ux.(a V Oz) A Ox

As above, the first of these corresponds directly to the formula FGa of TL, and

the second has no direct counterpart in TL.

Above we mentioned that the property at every even moment q cannot be

expressed by any formula of the standard linear-time temporal logic TL. In linear-

time mu-calculus it can be characterised by the formula vz.q A OOz.

2.2.2 Fixpoints and approximants

To address the issue of fixpoints with some more rigour, the idea behind the

minimal fixpoint operation is viewing 0 as a function mapping the set of

states where z is true to the set of states where 0 is true, i.e. considering the

functional
f : 2st(M) 	2st(M); 	

MMM{W/zJ

and defining the semantics of z4 as the least fixpoint of this functional. Similarly

the meaning of vz.q is the greatest fixpoint of this functional. Since 2st(M), ordered

by C, is a complete lattice and since f is monotonic due to the assumption that

z only occurs positively in q, the least and greatest fixpoints of f exist by the

Knaster-Tarski fixpoint theorem [90] (for an introduction to fixpoints, see e.g. [62,

Chapter 4]). The least fixpoint coincides with the intersection of all post-fixpoints,

i.e. sets W for which f(W) C W, which justifies the formal definition of 11pz.011M
above.

If we spell out the semantics of vz4 directly, this is

IVZ.IM = U{W C st(M) I W C I1011M[W/z]}

i.e. the semantics is determined as the union of all pre-fixpoints of the functional

f, which coincides with the greatest fixpoint of f by the Knaster-Tarski theorem.

For future reference, let us state formally an easy reformulation of the truth

conditions for fixpoints.

Lemma 2.2.9 Let M be a linear model, s a state of M and [tz.q a minimal

fixpoint formula of 1TL. Then

M, s = [tz.çb if for all W C st(M), if jllIM[W/zJ ç W then s E W.

Chapter 2 - Logical calculi 	 19

Symmetrically,

M, s = vz.qf.' if there exists W c st(M) such that s e W and W C I0IIM[W/1.

Proof: Immediate from definitions. 	 U

From the fact that the semantics of az.q and vz.çb are defined as fixpoints of

the functional f mapping W c st(M) to IkIMM[iv/z) it is easy to see validity of the

following lemma.

Lemma 2.2.10 For any linear model M and any TL-formula 0,

IIPIM = II[1Lz.141M

II'IIM = I1[vz./z1IIM

Proof: Easy. 	 Fol

Let us give a particular name to this operation of replacing all free occurrences

of the fixpoint variable in the body of a fixpoint formula by the fixpoint formula

itself.

Definition 2.2.11 The unfolding of a fixpoint formula uz.0 is the formula

çb[crz.çb/z].

Let us also define the concept of the closure set of a formula, which is like the

set of subformulae except that fixpoints are unfolded.

Definition 2.2.12 The closure of a formula q, denoted cl(q), is the minimal set

of formulae that contains q and fulfils:

• ifJAJecl(q) then

• if'/'V 	e cl(q) then '/',b' E cl(q),

• if - J' e cl(q) then 0 e cl(q),

• if O' E cl(q5) then 0 E cl(q), and

• if az..' E c1() then 'b[az.//z] E cl(ç). 	 E

By the Knaster-Tarski fixpoint theorem, the least fixpoint of the functional

f can be determined by defining W0 = 0, Wi = f(W0) = f(0), W2 = f(W 1) =
f(f(0)) and so on, until we reach the first W0, such that Wa = f(Wa). The number

of iterations required depends on the size of the model M and the structure of the
formula q. In the general case, iteration up to an arbitrary ordinal is required.

Chapter 2 - Logical calculi 	 20

However, as here all models M are countable, we only need iteration up to the

first uncountable ordinal.

To formulate this idea precisely, let us define the notion of a fixpoint approxi-

mant for minimal and maximal fixpoints. As a technical tool we need to introduce

a variant of the mu-calculus with infinitary disjunction and conjunction.

Definition 2.2.13 We use Ord to denote the class of ordinals, -< their standard

ordering, w = w 0 the first infinite ordinal, and w 1 the first uncountable ordinal.

0

Definition 2.2.14 The language of infinitary uTL extends pTL by an infinitary

conjunction operator AEI çb, where I is any class. The semantics of the new

operator are defined by

II A Oillm = fl IkbiHr
iEI 	 iEI

Define also the derived operator V1 qi 	A2 -'ç.

Definition 2.2.15 Let us introduce the derived fixpoint approximant operators

z.q' and 	for every ordinal a e Ord, the semantics of which are defined

by the inductive translations:

iz °z.cb = I

= 	[pfz.q/z]

= V ILz.cb

v °z.q5 = T

=
v'z.q = A v'z.q

where) is a limit ordinal. 	 U

Proposition 2.2.16 For any linear model M e MTL and any pTL or infinitary

TL formulae 1tz.0 and vz.q,

IIP45 IIM = 11 V ILZ.cbM = II V /1cz.011M = II1IIM
cEOrd 	 c-<w1

I 1'z4IM = II A VZ.blIM = II A VZ.IIM = 	V 1 Z.IM
aEOrd

Proof: Immediate from the Knaster-Tarski fixpoint theorem [90] and the fact

that the model M is countable. 	 11

Chapter 2 - Logical calculi 	 21

Corollary 2.2.17 Let M be a linear model, s a state of M and pz.q a minimal

fixpoint formula of pTL or infinitary pTL. We have M, s j= vz.0 if there is an

ordinal a -< w 1 such that M, s = and this holds if for every ordinal 6 -< a

there is a set Wp such that

• S E Wa

• wo =O

• w101 c k/5IIM[W1z] for every ,8 - a

• WA c U<,\ Wp for every limit ordinal) -< a.

Proof: Immediate from 2.2.16. 	 D

Example 2.2.18 We can use approximants to substantiate the earlier claim that

z.a V Oz corresponds to Fa and iiz.a A Oz to Ga. We have:

°z.aVQz = I

1 z.a V Qz = (a V Qz)[I/zJ = a V 01 a

2z.aVQz = (avQz)[(avOI)/z]=avQ(avOI)avQa

i'z.a V Oz = (a V OZ)[(An V Oz)/z] 	V 02a

izavQz 	V0a
iEIN

/2w+lza V Oz = (a V Qz)[(pYz.a V Oz)/z} a V C V 0a V 0a
iEIN 	iEIN

Since pw za V Oz 	w+lz.a V Oz, we have

1uz.a V Ca 	IJWza V Oz 	V Qa 	Fa
iEIN

Similarly

v ° z.aAQz = T

	

v'z.aAOz 	a

	

v 2 z.aAQz 	aAQa

	

vn+lzaAOz 	A02a

iiz.a A Oz 	i!"z.a A Oz 	A 02 a 	Ga
iEIN

Chapter 2 - Logical calculi 	 22

Example 2.2.19 To give an example of a situation where ordinals beyond w are

required in the approximants, let jiz.q be the following formula

pz. (a A O(vx.(a V z) A Ox) V a A Q(a V z))

and let M be the linear model defined by

M(s)
= { {a} if s = 2 for some i e IN

otherwise

Notice that

Iii z.cbIIM={sETNI 2ZEIN such that s=2-1 and s>2'}

and that for every n E TN,

[LZ.cIPM = Is E IN I Eli E IN such that > s > - n and s > 2i_11

which implies

Iz.IIM = Is E IN J 3 i E IN such that 2 >s > 2i_1}

However,

= I/LZ4IIM = IN

Al

2.2.3 Fixpoint alternation

In recursion theory the alternation of existential and universal quantification res-

ults in the arithmetical and analytical hierarchies. A related phenomenon takes

place in mu-calculi in the form of alternation of minimal and maximal fixpoints.

Besides the theoretical questions related to fixpoint alternation, such as whether

the alternation depth hierarchy is proper or not, the issue has also practical signific-

ance, as fixpoint alternation appears to be a key ingredient in the model-checking

problem.

The simplest way we can approach alternation is by just looking at the syn-

tactic nesting of fixpoint formulae. To make it clearer what constitutes a maximal

and what a minimal fixpoint inside a formula, we use a particular normal form

where all negations are pushed inwards in a formula so that they only apply to

atomic propositions.

Definition 2.2.20 A j.tTL-formula 0 is in the positive normal form (abbr. pnf)

if it only contains atomic propositions, their negations, and the T, I, V, A, O i
and v-operators.

Chapter 2 - Logical calculi 	 23

If 0 is a formula, pnf(q) is the unique formula in positive normal form ob-

tained from q by pushing negations inwards using DeMorgan's laws and fixpoint

dualities:

-'T=±

=
v'1') 	= -'qA -'

= Oc
—ijz.q5 	= uz. -içb[- z/z]

= ,uz. -, O[-'z/z]

For example,

pnf(-'vz.x.(a A Oz) V Ox) = ftz.vx.(-ia V Oz) A Ox

In the following we often assume that formulae are in the positive normal form,

effectively considering them as being generated by the abstract syntax

When proving results by induction on the structure of formulae, we sometimes

implicitly assume a translation to pnf, and sometimes do the induction directly on

the basic operators —i, A and z, whichever happens to be easier.

Examining a formula 0 is positive normal form, the syntactic notion of altern-

ation is based on considering sequences 0 < o1x.0 i ... i cr,x.'çb 7,

where every o $ a. Alternation classes based on this notion can be defined as

closure classes in the following way.

Definition 2.2.21 Let us define for every ri E IN the syntactic fixpoint altern-

ation classes E, H and L' of TL-formulae in positive normal form as

follows. The class Etx= fJtX is the set of all formulae in pnf without any fix-

point operators. For every n > 0, the class E is the least set of formulae in pnf

such that it contains E 1 U 1I and fulfils:

1 if q5 f' E Estx then qA /,V , O, 	Estx•

Chapter 2 - Logical calculi 	 24

The class HX is defined analogously, by changing p to 1 in condition 1. For every

n E TN, define A l t' = Estx fl 11stx

A formula 0 which is not in positive normal form belongs to a given altern-

ation class if pnf(q) does. The same convention applies to the other notions of

alternation introduced in the following, as well. 0

For example,

z.a V Oz e

vx.(1uz.a V Oz) A Ox E
flStX

px.vz.a A Oz V Ox E
tx

and these are the lowest classes in the hierarchy the formulae belong to. It is

easy to see that any 0 E Estx if there are no a 1 x 1 .q5 1 ,. . . , 	such that

<ai x 1 .' 1 	 where a2 = v if i is odd, and cr2 = p if i is even.

In some respects this syntactic view gives a rather rough way of measuring the

alternation present in a formula. For example, according to this view, the formula

vx.(1uz.a V Oz) A Ox, infinitely often a or GFa in TL, would have one level

of alternation, since it has a minimal fixpoint within a maximal one. However,

although Itz.a V Oz occurs syntactically in the scope of lix, it is not semantically

dependent on x, i.e. z.a V OZMM is independent of where x is true in M.

This suggests that when defining alternation we should not only look at syntactic

embedding, but also at actual dependencies between fixpoints. In other words,

when determining the level of alternation present in a formula, we should look

at sequences q a 1 x 1 . 1 <a ... i where every a2 a2+1 and each

a+ix+i.+i depends on x.

One idea in this direction, due to Emerson and Lei, is to consider subsentences

or closed subformulae separately when determining the alternation depth of a

formula [34]; since closed formulae have no free variables that could be bound

by fixpoints, such subformulae clearly cannot semantically depend on any outer

fixpoint variable. To formulate the notion of a closed formula in the present

framework, we need to introduce a division of atomic propositions to constants

and variables.

Definition 2.2.22 Let us divide the set Z of propositions into two disjoint parts,

the set of propositional constants Zc and the set of propositional variables Z,, and

decree that only propositions of the latter kind can be hound by fixpoint operators.

Let us call a formula 0 closed if it has no free occurrences of any variable z E Z.
Define the Emerson-Lei fixpoint alternation classes, fI and L as follows.

The class Ell = H 1 is the set of all formulae in pnf without any fixpoint operators.

Chapter 2 - Logical calculi 	 25

For every n >0, the class Eel is the least set of formulae in pnf such that it contains
Eel U HL1 and fulfils:

1 ifqe 1 , then 	 .

2 if 0 E Eel and Zi,.. . , Z, are distinct variables that occur only positively in 0
and 	, . .. , 	e Eel are closed formulae, then q[1/z 1 ,.. , ' bm /Zm] E Eel

The class rle, is defined analogously, by changing i to '1 in condition 1. For every

n E IN, define Ad = Eel fl riel

The way the notion of alternation is technically defined by Emerson and Lei in

[34] is different from the treatment here; when determining the alternation depth

of a formula, they first remove all closed subsentences from it and then count

alternation syntactically. Furthermore, they only count the depth of alternation

without paying attention to which way the alternation goes, i.e. not distinguishing

between uz.vx.q and vz.ux.q5. Nevertheless, despite these technical differences it

is rather easy to see that the class L 4 here is precisely the same as the class

of formulae with alternation depth at most n in the terminology and notation of

Emerson and Lei. For an alternative formulation of the same alternation classes

as above, due to Bradfield, see [11, Def. 2.30].

Although the Emerson-Lei definition of alternation is widely used, especially in

the modal mu-calculus research community, it still does not fully capture the idea

that alternation should reflect the nesting of minimal fixpoints within maximal

ones, and vice versa, with the inner fixpoint depending on the outer. For example,

consider the formula

vz.ix.aAQx V (vy.cAQy V aAOz)

Notice that both the fixpoints vy and x depend on z, since z occurs in the scope

of both of these, whereas vy does not depend on x although it occurs in the scope

of jx. Nevertheless, since neither of the inner fixpoints is closed, we would still

regard the formula as having two levels of alternation.

So far we have talked about fixpoints depending on outer fixpoint variables

without actually making precise what is meant by 'depend'. Naturally a formula

depends on a variable that occurs in it. However, this is not the whole truth. For

example, in formula

vz.x.aAOz V (y.bAQy V cAOx)

the fixpoint ILy does not contain the variable z. Yet in the context of the whole

formula also this fixpoint depends indirectly on z, since py contains an occurrence

of and therefore depends on x, and /tx in turn similarly depends on z. To capture

Chapter 2 - Logical calculi 	 26

this notion of dependence, we introduce the concept of activeness. Intuitively this

can be viewed an the transitive closure of 'occurring free in'.

Definition 2.2.23 Fix a TL-formula q. Let 0 be a subformula of q and let z
be a variable. We say that z is active in (in the context of q) if either

• there is a free occurrence of z in 0 , or

• there is some fixpoint subformula az'.' of çb such that

• z is active in az'.'i/Y,

• ,l' is a subformula of az'.O', and

	

• there is a free occurrence of z' in . 	 10

Rephrasing the intuition in determining the level of alternation in a formula, we

are interested in sequences ax 1 . 1 < ... where every a 2 aji
and each z i is active in ai+ix2+i.I'i+i. This intuition is captured precisely in the

following elegant characterisation of alternation classes, due to Niwiñski [70]. The

definition says simply that an alternation class contains all the lower classes in the

hierarchy and is closed under usual substitutions and prefixing with the relevant

fixpoint. Let us state the definition first and show then that it indeed corresponds

to the intended intuition.

Definition 22.24 Let us define the fixpoint alternation classes En, fI and L

as follows. The class E O = 110 is the set of all formulae in pnf without any fixpoint

operators. For every n > 0, the class En is the least set of formulae in pnf such

that it contains fl-1 U H 	and fulfils:

1 if E E, then [Lz.q5 E

2 if qS, 	. . , 'l/)m E En and Zl,.. . , Zm are distinct variables that occur only

positively in 0 , then q[i /z i ,. . . , m /Zm] E >1.

The class H is defined analogously, by changing IL to v in condition 1. For every

n E IN, define An = 	fl fIn . 	 El

Notice that we have dropped the conditions

	

if',' E En, then 	 E

that were present in earlier definitions of alternation classes. This causes no harm,

since they are subsumed by clause 2 above.

Proposition 2.2.25 For every n E IN and every jTL-formula q in pnf, q E En
if there are no 91 x 1 . 1 ,. . . , 	such that

1 	a1 x 1 .0 1 < ...

Chapter 2 - Logical calculi
	

27

2 x, is active in 	 (in the context of 0) for every 1 <i <n, and

3 ai = ii if i is odd, and ai = y if i is even, for every 1 <i <n.

Symmetrically, q E rIn if there are no a 1 x 1 .'1 ,... , az,.'iJ fulfilling 1 and 2

above and

3' ai =p if is odd, and ai = ii if i is even, for every 1 <i <n.

Proof: The claim is shown by induction on n. For n = 0 the claim holds trivially.

Assume then that the claim holds for both En-1 and H, 1 . Let us show that it

holds for En . The proof for rin is symmetric.

To show the claim for En from left to right, notice first that by induction

assumption, for every 0 E E_ 1 there is no sequence of fixpoints a 1 x 1 . 1 ,... such

that clauses 1-3 (w.r.t. n - 1) would hold, and for every q E 11n-i there is no

sequence such that clauses 1-3' (w.r.t n - 1) would hold. This means that for

there is no sequence fulfilling 1-3 (w.r.t. n) for any 0 E E U fl1. By the

definition of En it suffices to show that the two operations E n is closed under,

i.e. minimal fixpoints and substitution, preserve the nonexistence of a sequence

fulfilling clauses 1-3. It is clear that if there is no fixpoint sequence fulfilling 1-3

for q then there is not any for pz.5 either. As no occurrence of any variable in

any Oi is captured by a fixpoint of 0 in [i/Zi,. . . , any fixpoint sequence

fulfilling 1-3 in 0[1 1z 1 ,.. . , //z] would already occur in either q or in some '/'j,

i.e. the substitution preserves the nonexistence of such a sequence, as well.

Proving the induction step for E n from right to left, i.e. that if there is no

fixpoint sequence fulfilling 1-3 for some ç/ then / E E,, is done inductively itself,

by induction on the length of the formula 0. The base case, when 0 is atomic,

is trivial. Assume then that for all q with IcJ < m we know that if there is no

sequence fulfilling 1-3 for q, then ç e En . Take now some q such that 10 1 = m+ 1.

If 45 is of the forms 0 V ', i/' A 5', O/' or Mz.0 the induction step is immediate.

Assume then that 4 is of the form vz.0 and there is no sequence fulfilling 1-3 for

ç. Notice that this is only possible if n> 2. Take every fixpoint subformula Jj.j

of 0 such that z is not active in ay2 Xz (in the context of /'), but z is active in every

ay'.x' such that ay'.' < ayi.Xi, and replace ayj.Xj in 0 by a fresh variable

v. Denote the resulting formula X. Now q = (vz.)[cryi. i /v i ,. . . , ayk.Xk/vk].
Since layi .X i l < in, we know by induction assumption that Yj•Xj E En for every

1 < i < k. As there is no sequence fulfilling 1-3 for 0, there is not any for iz.x
either. Since by definition of x z is active in every fixpoint subformula of x, this

means that there cannot be any sequence fulfilling 1-3' (w.r.t. n - 1) for X . By the

main induction assumption this means x e Hn_i, implying ux.x E Hn -i ç E.

Consequently 0 = (vz.X)[ayi.Xi/vi,. . . , ayk.xk/vkl E E, as claimed.

Chapter 2 	Logical calculi 	 28

From this we can get natural characterisations of the alternation classes E 2
and 112.

Corollary 2.2.26 For every ,uTL-formula 0 in pnf, qf E E2 if there are no vx.ib

and z.x such that

• 	vx.b <pz.X, and

• x occurs free in

Symmetrically, 0 E 1-12 if there are no ix.'' and vz.X such that
• 	 i vz.x, and

• x occurs free in vz.X

Proof: Immediate from 2.2.25. 	 0

This characterisation implies that in the alternation class z 2 there is no proper

alternation between fixpoints at all. Since we will study such formulae in several

occasions in the following, let us give them a particular name.

Definition 2.2.27 We call a formula 0 non-alternating if q E L2. 	 0

It is easy to see that for all three notions of alternation, the H and E classes are

closed under V, A and Q, and the A classes are additionally closed under negation.

The following proposition helps to relate the different notions of alternation to each

other.

Proposition 2.2.28 For every n E IN,

stXçclç

rjstx

and for n > 2 the inclusions are proper.

Proof: The inclusions are immediate from definitions. To see that the inclusions

are proper, fix some n > 2, and define:

= xo.aoAQxo V cAQq 1

Oi 	
iix 2 .a A Ox V b A 00j+1 V c A Ox_i if Z' is odd = 	

A Ox i V b A Oi+i V c A Ox_i if Z' is even for 1
<i <n

On = x0Vw

= uLYo.VY1 .e A Qy, V d A OYo

= /y0 .vy 1 .e A OYi V d A OYo V f A Qx o

It is easy to see that , E EsIx c Eel. Since 0 is closed (under the assumption
that d and e are constants), we have then ['/'/w] = 0[0/w] e 	. However,

Chapter 2 - Logical calculi 	 29

cb[/tw] since q'[/'/w] has at least ii + 1 levels of syntactic alternation.

Since , ' e E, we have qi ['l"/w] = cb i [b'/w] e En and

= /xo .ao A Oxo V c

However, since 'b' is not closed, the substitution is not allowed in Eel, and

The claim concerning the fT alternation classes is shown sym-

metrically. 	 El

All the notions of alternation above are in a sense syntactic, based on a clas-

sification of formulae. We can also take a semantic view, classifying properties

rather than formulae, and measure the complexity of a property by the level of

alternation that is needed to characterise it by any formula. It is clear that all the

hierarchies of alternation classes defined above are proper, i.e. on each level there

are formulae which do not belong to any lower level. However, the same question

for the semantic notion, i.e. are there properties which can be characterised by

some formula in E,, but not by any in is highly nontrivial. We shall return

to the issue later in Chapter 3.

2.2.4 Tableaux for linear structures

The semantics of linear-time mu-calculus was defined in Definition 2.2.4 in a way

that is rather global and non-constructive. In particular, from the semantics of

the minimal fixpoint I.Lz.0 it is not easy to determine whether M, i j= q for a given

state i and model M, without determining this for every state of the model at the

same time.

In this subsection, we give an alternative account of what it means for a formula

to be true in a state of a model, based on the idea of semantic tableaux. The

intuition behind this can be roughly described as follows.

Assume that we have a model M, a state s of M and a formula 0 . The aim is

to determine whether M, s = or not. Without loss of generality, we may assume

that q is in positive normal form. If q is an atomic proposition or a negation of

such, we can immediately find out whether M, s = 0 by just looking at the set

M(s). If 0 is of the form 0 A iJ/, we can divide the task of of determining whether

M, s = holds to the subtasks of determining whether M, s = and M, s =
hold. Similarly, if 0 = 0 V /J, it suffices to check whether either M, s = 	or
M, s = '/Y holds, and if 0 = Q'b, we know that M, s = O if M, s + 1 =

However, for the fixpoint operators ,uz and vz there is no such direct decom-

position. Instead, a natural idea for analysing fixpoints is to consider their unfold-

Chapter 2 - Logical calculi 	 30

ings; to find out whether M, s = jtz. 0 holds, determine whether M, s = 'b[jz.'b/z}
holds, and similarly for the maximal fixpoint vz.

Assume that we are interested in finding out whether M, s = vz.(a A OOz)
holds. Unfolding the fixpoint, we can reduce this to determining whether

M, s a A OOvz.(a A QQz) holds, i.e. whether both M, s l== a and

s = QQvz.(a A QQz) hold. The former of these can be checked directly

by a e M(s), and the latter reduces to M, s + 2 J= vz.(a A OOz). Repeating the

process, this reduces to a e M(s+2) and M, s+4 J= vz.(aAOOz), which reduces

again to a e M(s + 4) and M, s + 6 = vz.(a A QOz), and so on ad infinitum.

If there is some n such that a ' M(s + 2n), we see that M, s vz.(a A OOz).
Otherwise, if a E M(s + 2n) for all ii e IN, the construction effectively shows that

if we define W = {s' e IN I - s is even}, we have W c Ila A OOZIIM[w/Z]. As

stated in Lemma 2.2.9, this guarantees M, s = vz.a A QQz.
Notice that to show M, s vz.a A OOz by this construction, it was enough to

find some pre-fixpoint W such that s E W, and there was no need to compute the

actual maximal fixpoint. For instance, regarding the truth of M, s l== vz.aAOOz,
it is irrelevant whether the actual maximal fixpoint contains any of those s' E IN

for which s' - s is odd, and we do not need to consider these states.

Unfortunately the same strategy does not work for minimal fixpoints. If we

wanted to use the direct characterisation given by Lemma 2.2.9 for ILz.q, we would

need to show that s belongs to every post-fixpoint of the functional corresponding

to 0 . Instead, it is easier to base the approach on fixpoint approximants, as spelt

out in Corollary 2.2.17.

Assume that we want to determine whether M, s J= ,Lz.aVOz holds. Unfolding

the fixpoint, this reduces to M, s = aVQiiz.aVOz, and further either to a E M(s)
or M, s + 1 = iz.a V Oz. If we choose the second disjunct, this reduces in the

same way either to a E M(s + 1) or M, s + 2 = /z.a V Oz, and choosing here the

second disjunct repeats the process again.

If there exists some n E IN such that a E M(s + n), then it is possible to make

the choices between the disjuncts in this process so that at the n-th round we choose

to verify a e M(s + m). In this case we know that M, s + n a V 01, i.e. that

Is + n} c jji'z.a V QzIIM. On the basis of this, the construction guarantees that

{s+n-1} ç II,a2 z.avOzIIM, and more generally that {s+n—i} ç II'z.aV0zIIM
for all 0 <i < n. Since this means that {s} C IIi'z.aVQzIIM g IIz.aV0zIIM,
we know that M, s = z.a V Oz holds.

What we have effectively constructed here is an ordinal a, in this case n + 1,

and a collection of sets W0 , W1 ,. . . , Wa as described in Corollary 2.2.17. What is

analogous to the case of maximal fixpoints is that we do not need to compute the

Chapter 2 - Logical calculi 	 31

entire sets IIiz.a V OZM nor the entire set ILuz.a V OzIM, but only enough of
these to justify M, s = pz.a V Oz.

These intuitions are formalised in the concept of a tableau below. To keep

track of the unfolding of different fixpoints, we use the technical tool of definition

constants and definition lists, introduced by Stirling and Walker [85].

Definition 2.2.29 Fix a set U of definition constants. The notion of an extended

TL-formula is as that of a TL-formula, but allowing definition constants in

place of free atomic propositions. A definition list is a finite sequence

d = (u0 , azo.çbo) ... (u,, c7Zk4k)

where

• every u, e U and azi . oi is an extended fixpoint formula,

• all ui are distinct, and

• if a constant u occurs in çb, then u = uj for some j <i.

For every u, define d(u) = czi.oi. We call u a maximal or minimal fixpoint

constant of d depending on whether d(u) = vz.çb or d(u) = ,uz.çb.

We say that a constant ui is active in q (relative to the definition list d) if

either

• u2 occurs in 0 , or

• there is some u3 , i <j, such that ui occurs in d(u3) and uj is active in q.
We say that a variable z is active in 0 if either

• z occurs free in 0, or

• there is some u such that z occurs free in d(u) and u is active in q.
If q is an extended formula and d a definition list, 0[d] is defined by

• q[e] = 0 and

• q[d. (u,)] = (q[ij'/u])[d].

If F is a set of extended formulae, F[d] = 10[d] 10 e F}. 	 D

Previously in Definition 2.2.23 we gave an account of activeness of a variable in

a formula in terms of fixpoint subformulae. As fixpoints correspond to constants

in a definition list, there is a natural correspondence between that account and the

definition of activeness above; these are two formulations of the same phenomenon.

It would be possible to give an account of alternation purely in terms of definition

lists, but as this would have required setting up the whole technical machinery

before being able to talk about alternation in formulae, we felt this might have

obscured the issue.

Chapter 2 - Logical calculi
	

32

name application name application

vL
s, q5vq5', 	d

TV R
s, 	qvqY, 	d

S) , 	d s, 	', 	d

A
i s, 	AqY, 	d

s, , 	d 	s, 	qY, 	d

0
s, oz.çb, 	d

1 U
s, 	u, 	d

2
S, u, 	d - (u,az.q) s, 	0[u/z], 	d
S, Qq, 	d
s±1, 	0, 	d

Note: 1: u does not appear in d 	2: d(u) = uz.q5

Table 2.1: Simple tableau rules for linear structures

The tableau system described next is essentially the local model-checking

tableau system of Stirling and Walker [85], which was extended to deal with in-

finite systems by Bradfield [11, 14]. The main difference is that the tableaux here

are infinite, whereas those used for model-checking are finite. This reflects the

fact that tableaux as defined now are used as a means of understanding truth and

satisfiability, without computational concerns in mind. The issue of decidability

and tableaux of a finite variety will be discussed further in Chapter 4.

Definition 2.2.30 Let 0 be a TL-formula in pnf. A simple tableau T for 0 is

a finite or infinite tree, every node t of which is labelled with a triple (St, Ot, d)

where

• every St E IN, cbt is an extended TL-formula in pnf, and dt is a definition

list containing all definition constants in qt,
• the root of T is labelled with (0, 0, €),

• the children of every node t of T are derived by applying one of the rules in

Table 2.1, and

• a node t of T is a leaf only if no rule can be applied to it.

We assume that every constant is defined at most once in a tableau.

We say that a constant u is a maximal (minimal) fixpoint constant in T if

there is some node t of T such that u is a maximal (minimal) fixpoint constant in

d. Q

So far the definition of a linear tableau does not yet take into account the

difference between maximal and minimal fixpoints discussed above. For this we

add a well-foundedness requirement for minimal fixpoints in a tableau.

Chapter 2 - Logical calculi 	 33

Definition 2.2.31 Let T be a simple tableau and let (St, cb t , d) denote the label
of t for every node t of T.

We say that T is proper if there is no minimal fixpoint constant u of T and
infinite path p such that u = Op (j) for infinitely many i E IN.

Let M e MTL be a linear model. We say that T agrees with M if for every
leaf t of T,

• ct[dt] 	I,

• if q[d] = z e Z then z E M(s), and

• if qt[dt] = —iz E 7 then z 0 M(s t). 	 U

Before showing correctness of the tableau account of truth, let us state a simple

technical lemma, which will be used later.

Lemma 2.2.32 Let T be a simple tableau. For every infinite path p of T, there
is exactly one constant 'ii such that u = p(i) for infinitely many i e TN.

Proof: Easy. 	 U

Proposition 2.2.33 Let q be a /1TL-formula in pnf and M a linear model. Then

M = q if there is a simple tableau T for 0 such that

• T is proper and

• T agrees with M.

Proof: Tableau constructions closely related to the one above and proofs of their

correctness have appeared many times in the literature, see e.g. [85, 11, 87, 95, 59].

However, since we will refer to some aspects of the proof later, we have spelt it

out here as well.

Suppose first that M = 0. We can easily produce a tableau T for q agreeing
with M by starting from the triple (0, 0, e) and applying tableau rules in any

order such that the validity of M, St = [d] is preserved. However, the tableau

produced this way is not necessarily proper.

To guarantee this, let us modify the tableau construction slightly by annotating

every occurrence of a minimal constant u in every Ot and in every dt(u') containing
u by an ordinal a. Write ua for this. The definition of [d] is modified accordingly,
by defining '[d. (u, az.q5)] = '[d], where b' is obtained from b by replacing every

occurrence of Ua in it by for any ordinal a. Furthermore, the tableau rules

are modified so that the normal or and U rules only apply to maximal fixpoints

and constants, and minimal fixpoints are taken care of by the following new p and

Chapter 2 - Logical calculi 	 34

U' rules:

s, pz.çb, d 	 where 'a is new and
s, u, 	d (u, az.) a = minjo E Ord I M, s 	(z.)[d]}

U' s, u, 	d 	where d(u) = /tz. 0 and
s,0[u"/z], d 	0 = min{fi' E Ord I M, s

By the Knaster-Tarski fixpoint theorem 2.2.16 we know that if M, s j= (1tz.0)[d]

then the a in the or-rule is well-defined, and that if M, s J= u[d] then the / is the
U'-rule is well-defined and smaller than a.

We can now use the original strategy and apply these modified tableau rules in

any order to get a simple tableau T agreeing with M. Since a path with infinitely

many occurrences of a minimal constant in this T would correspond to an infinite

decreasing sequence of ordinals, by the well-foundedness of these T is proper. To
get a normal proper tableau from T just erase the ordinal annotations.

Suppose then that there is a proper simple tableau T for q agreeing with
M. Since all the tableau rules are backwards truth-preserving, every non-atomic

formula in the tableau will be decomposed by an application of a tableau rule, and

T agreeing with M guarantees satisfaction of atomic formulae, the only nontrivial

issue in showing M J= 0 is the satisfaction of fixpoints.

For every constant 'a occurring in T, denote by U(u) the set of nodes t of T

such that cbt = u, and define W(u) = Is E st(M) I 2t E U(u) : St = s}. It is easy
to see that for all maximal constants u and all s E W(u),

M[W(u i)/u i] . . . [W('a)/uJ,s 	[u/z]

where d(u) = vz.çb and Ui,.. . , u, = 'a is the subsequence of constants which are

active in 'a, for any d defining 'a in T. The fact that all maximal fixpoints are

satisfied follows then from Lemma 2.2.9.

For every minimal constant 'a and every node t E U(u), define inductively an
ordinal a(u, t) by

a(u, t) = (lub{a(u, t') I t' E U(u) and t -< t'}) + 1

To see that this indeed defines an ordinal for every u and t, notice that if a(u, t)

is not defined, then there must be some descendant t' of t such that t' e U(u) and

a('a, t') is not defined either. Repeating this reasoning we could then construct an

infinite path p along which the minimal constant u occurs infinitely often, contrary

to the assumption that T is proper. Define then

W('a, /3) = Is E st(M) I Elt E U(u) : st = S and a('a, t) = /3}

Chapter 2 - Logical calculi
	

35

0, pz.aVOz,
or

0, u, (u,jiz.avOz)
U

0, aVOu, (u,tz.avOz)
yR

0, Qu, (u, ,az.a V Oz)
0

1, u, (u,tiz.avOz)
U

1, aVQ, (ujtz.aVOz)
vL

1, a, (u,jz.avOz)

Figure 2.1: A simple tableau for p z.o, V Oz

As above, it is easy to see that for all SE W(u,/3+ 1),

M[W(u i)/u i] . . . [W(u 1)/u 1][W(u, /3)/u}, s 	[u/z]

where d(u) = /tz.q and u 1 ,. . . , u 	u is as above. The fact that all minimal

fixpoints are satisfied as well follows then from Corollary 2.2.17. 	 0

Example 2.2.34 A simple tableau for the formula ,az.a V Oz, sometime a, is

presented in Figure 2.1. Each element of the tableau is listed on a separate line,

and the tableau is annotated with names of derivation rules. As the tableau in

Figure 2.1. has no infinite paths at all, it is trivially proper. It is also easy to see

that the tableau agrees with the model M defined by: M(0) = 0 and M(s) = {a}
for all s>0. 0

The simple tableau system which was just described captures elegantly the idea

of determining the truth of a formula in a state of a model in the way discussed

in the beginning of the current Subsection. However, the approach copes less

well with satisfiability, i.e. determining whether a formula has a model or not.

The basic reason for this is the branching caused by the A-rule. If we tried to

determine the satisfiability of a formula by building a simple tableau for it, there

is nothing to prevent us from making mutually contradictory choices in different

branches of the tableau; for example, one branch might require that a proposition
z is true in a certain state and another branch that it is false in the same state.

Because of this, we will introduce another variant of the tableau construction,
the bundled tableau, where the decomposition of a conjunction 0 A qY does not

Chapter 2 - Logical calculi
	

36

cause the tableau to branch. The advantage of such a tableau is that all the

requirements set for some state of a model are spelt out at a single point of the

tableau, which means that it is easy to check that they are mutually consistent.

The price to pay is added complexity; the tableau nodes are labelled with sets of

formulae and not with single formulae as in simple tableaux.

Let us first define the technical concept of guardedness. Intuitively this pre-

cludes the possibility that the problem of determining whether M, s = az.0 holds

could reduce back to itself after the fixpoint has been unfolded. We also show that

every formula can be mechanically transformed to an equivalent guarded formula.

Definition 2.2.35 An occurrence of a variable z or a formula ' in a formula
is guarded if it is in a subformula of the type QqY. A formula is guarded if for
every fixpoint subformula az.çb' of 0 , every occurrence of z in qY is guarded. 0

Proposition 2.2.36 For every TL-formula 0 we can produce a guarded formula
' such that

• 	qqY,

• for every n E IN, if q e >J then ' E E,, and

• for every n E TN, if q E rIn then çb' E fIn .

Proof: (See also [6, Subsection 2.4]) With propositional manipulation and the

rule z.V(zA'i") 1uz.5, we can delete from any fixpoint formula all unguarded

occurrences of the fixpoint variable that are not in the scope of another fixpoint.

We show by induction on the structure of the formula 0 that for every 0 there is
an equivalent 0' such that (1) 0' is guarded, (2) there are only guarded occurrences

of fixpoint subformulae in q', and (3) if any variable z occurs only positively in
it does so in q', as well. The only nontrivial point is the induction step for

= ttz.o. Assume that the claim holds for 0 , and take the corresponding '. As

all fixpoint subformulae of 'b' occur guarded, there are no unguarded occurrences

of z in '/." inside fixpoint subformulae, and we can delete all unguarded occurrences

of z in uz.'çb' by the transformation above. Denote the result by A z.X. Choosing
then çb' = x[iz.x/z} fulfils the induction step.

To justify the claim concerning alternation classes, we use the characterisation

of >I and fI in terms of sequences of nested alternating dependent fixpoints,

provided by Proposition 2.2.25. In the transformation from 0 to ', three kinds of

transformations are performed on : propositional manipulation, erasing occur-

rences of fixpoint variables, and replacing fixpoint subformulae by their unfoldings.

It is clear that the first two do not bring about any new fixpoints or dependencies

between fixpoints and therefore they do not increase the alternation class of a

Chapter 2 - Logical calculi
	

37

name application]_name application

vL
s, 	Fu{qSvqY}, 	d v. s, 	FU{qvqY}, 	d
S, 	Fu{}, 	d 	 J s, 	Fulol l, 	d

A
s, Fu{qA5'}, d
s, Fu{q,q5'}, d

0•
s, 	FU {uz.q},d

1 U
_s, FU {u},d

2 s, F U {u},d(u, az.) s, F U {[u/z]},d
s,{z i , .. . ,Zm ,01,...,Qçbk},d
s±1, 	 d

Note: 1: u does not appear in d 	2: d(u) = o- z.q
3: every zi is atomic.
In each rule, F is disjoint from the other set

Table 2.2: Bundled tableau rules for linear structures

formula. Moreover, since in x[ILz.x/z] no variable occurring free in ,Iz.x is cap-
tured by a fixpoint of the outer x the formulae 0[[1z.x/w] and 0[(x[itz.x/z])/w1
have precisely the same sequences of nested dependent fixpoints. Consequently,

replacing fixpoint subformulae by their unfoldings does not affect the alternation

class of the formula either. This means that all three transformations preserve the

alternation class of the formula they are applied to. El

Definition 2.2.37 Let q be a guarded jTL-formula in pnf. A bundled tableau

T for çb is an infinite sequence T = (so , F0 , do)(s i , F 1 , d1)... where

. every s2 e IN, Fj is a finite set of extended tTL-formulae in pnf, and d2 is a

definition list containing all definition constants in F,

• (so , F0 , d0) = (0, {},), and
• every (s+, F+i, d) is derived from (si , F, d) by applying one of the rules

in Table 2.2.

We say that a constant u is a maximal (minimal) fixpoint constant in T if there

is some d3 such that u is a maximal (minimal) fixpoint constant in d3 . 	0

Notice that as a special case, the 0-rule allows deriving (s + 1, 0, d) from

(s, 0, d) for any s and d. To express the well-foundedness requirement for a bundled

tableau, we need to extract sequences of formulae corresponding to the paths of

simple tableaux. These are called dependency sequences.

Definition 2.2.38 Let T = (So, F0 , do)(s i , 17 1 , d1)... be a bundled tableau for a
iTL-formula q. For every i e IN, the rule applied at point i induces a dependency
relation -*ç ri x F 1 by:

Chapter 2 - Logical calculi 	 38

• if the rule is not Q, the formula in ri to which the rule is applied depends

on the resulting formulae (e.g. q V qY -+ q for VL) and b -+ for every

other b e F 2

• if the rule is 0 00 -* q for every formula of the form 00 e F2 .

We say that i e IN is a 0-point of T if the 0-rule is applied at point i of T.
For any n E IN, a finite or infinite sequence qo, 0,... is a dependency sequence

of T from formula 00 at point n if every 0i E and çj -* i+1 relative to the

rule applied at point n + i. The tableau T is proper if there is no minimal fixpoint

constant u of T and infinite dependency sequence 00, qi,•• from some point n of

T such that q = a for infinitely many i e TN.
The tableau T agrees with a linear model M if for every 0-point i of T,
•
• for every z E Z, if z e F[d] then z E M(s 2), and

• for every z e Z, if z e F[d] then z Z' M(s).

The tableau T is propositionally consistent if there is no i E IN such that either

I E]P[d], or both z e F[d] and —'z e F[d] for some z e Z. 	 El

Proposition 2.2.39 Let q be a guarded TL-formula in pnf and M a linear

model. Then M 1= q if there is a bundled tableau T for q such that

• T is proper and

• T agrees with M.

Proof: Assume first that M F= /. As in the proof of Prop. 2.2.33 for simple

tableaux, we can easily produce a bundled tableau for 0 agreeing with M, but

special precautions are needed to guarantee that M is proper. For this we use the

same technique as there and annotate occurrences of minimal constants u with

ordinals a. The tableau rules are correspondingly modified so that or and U only

apply to maximal fixpoints, and minimal fixpoints are taken care of by new i.i

and U' rules, which are similar to those for simple tableaux in the proof of Prop.

2.2.33. Furthermore, we add the following deletion rule, which has priority over

all the other rules:

del
s, F U {çb[u/z], q[u/z]}, d 	

/3 where a -
8, Fu{[ua/z]},

We can now apply these rules in any order, respecting the priority of the deletion

rule, to produce a bundled tableau T agreeing with M. Since a dependency se-

quence with infinitely many occurrences of a minimal constant in this T would

correspond to an infinite decreasing sequence of ordinals, T is proper. It is easy

to read a normal proper bundled tableau from this T by erasing the ordinal an-

notations and omitting any applications of the deletion rule. Notice here that after

Chapter 2 - Logical calculi 	 39

erasing the ordinal annotations, the 0[ua/z] and [u/zJ in the premise of the

deletion rule become the same formula.

Assume then that there exists a proper bundled tableau T for 0 agreeing with
M. It is easy to read from T a proper simple tableau for q agreeing with M,
which guarantees M = q by Prop. 2.2.33. The assumption of guardedness is

required here to guarantee that every non-atomic formula in a bundled tableau

will be decomposed by an application of a tableau rule sooner or later. 0

Proposition 2.2.40 Let 0 be a guarded iTL-formula in pnf. Then 0 is satis-
fiable if there is a bundled tableau T for 0 such that

• T is propositionally consistent and

• T is proper.

Proof: From left to right immediate by Proposition 2.2.39. In the other direction,
it is easy to read a model M agreeing with T from a propositionally consistent
tableau. Define every M(s) by M(s) = F[d] fl Z, where i is the 0-point of for
which s2=s. 0

Example 2.2.41 A bundled tableau for the formula z.vx.Ox A (a V Oz), al-
most always a, is presented in Figure 2.2. The arrows in the figure specify the

dependency relations. It is easy to see that the tableau agrees with the model M
defined by: M(0) = 0 and M(s) = {a} for all s > 0. The tableau is also proper;

although it has infinite dependency sequences, the only constant u corresponding

to a minimal fixpoint occurs only finitely many times in any dependency sequence.

0

2.2.5 Strong second-order quantifiers

In this subsection we will look at another second-order construct related to fix-

points, second-order quantification over propositions, and two calculi 3TL and
S1S based on this.

Extending standard linear-time temporal logic TL with quantification over pro-

positions results in a formalism we call 3TL for uniformity, but which is more
widely known as QPTL or quantified propositional temporal logic [53]. If we con-
sider QPTL from the point of view of specification and verification of programs,

the advantage of quantification is that it naturally corresponds to the operation

of hiding internal variables of a program, which means that the language can be

used for compositional reasoning about programs.

Notice that here we start from a propositional language and extend it with

second-order quantifiers allowing quantification over propositions. This should

Chapter 2 - Logical calculi 	 40

0, { pz.vx.Qx A (a V Oz) 	}, €
ci .1.

0, { u 	 }, (u) Izz.zix.QXA(avQz))
U 4.

0, { vx.CXA(avQu) 	}, (u,...)
'7 -1-

0, { v 	 }, (u)(v,vx.CXA(avCtL))
U 4.

0, { CvA(avCu) 	 }, (u )(v )
A /

0, { Qv, 	 avCu 	}, (u )(v)
yR

0, { Ov, 	 Cu 	}, (u,.

0
1, { v, 	 u 	I (u,.

U 4. 	 -
1, { v, 	 vx.CxA(aVCu)}, (u)(v)

or 4. 	 .1.
1, { v, 	 v' 	}, (u)(v)(v',vx.QxA(avQn))

U
1, {CvA(avCu), 	 v' 	}, (u )(v )(v',...)

U
1, {CvA(aVCu), 	Cv'A(avCu)}, (u)(v,...)(v,...)

A
1, { Cv, 	aVOu,Ov'A(aVCu)}, (u)(v)(v',...)

A 4. 	4- 	/ 	4.
1, { Cv, 	avCu, 	Qv' 	}, (u )(v,...)(v',...)

VL 4.
 { Qv, 	a, 	Cv' 	} (u)(v, .)(v',.

0
 { v, 	 v' 	}, (u )(v, .)(v',.

U
2, {Cv A (a V Cu), 	 v' 	

},
(u )(v, .

U 4. 	 4.
2, {QvA(aVQu), 	Cv'A(aVCu)}, (u)(v)(v,...)

A 4. 	 4.
2, { Cv, 	aVCu,Ov'A(aVOu)}, (u)(v)(v',...)

A 4. 	4. 	/ 	4-
2, { Cv, 	aVCu, 	Cv' 	}, (u )(v )(v',...)

VL
2, { Cv, 	a, 	Cv' 	}, (u )(v, . . .)(v',..

C
3, { v, 	 v' 	}, (u )(v, . . .)(v',. .

U

Figure 2.2: A bundled tableau for tt z.vx.ox A (a V Oz)

Chapter 2 - Logical calculi 	 41

not be confused with the step from a propositional to a first-order language with

individuals and properties, and quantification over individuals only.

Definition 2.2.42 The formulae of the quantified linear-time temporal logic 3TL

are defined by the abstract syntax:

çb::=z I -'I q1A2 100 I

where z varies over Z. Let us define the derived operators F and Vz by:

FO =

Vz. 	= -'z.-'

As opposed to the formula pz.0 of the linear-time mu-calculus pTL, there are

no restrictions on the occurrences of z in z.0; it may also appear in the scope

of an odd number of negations. The nexttime operator o is as before, GO is

the usual always-operator of linear-time temporal logic, and 3z.0 is quantification

over proposition z. As with ,uz4 we adopt the convention that the scope of the

quantifier in z4 extends as far to the right as possible.

Definition 2.2.43 Let M E MTL be a linear model. The set of states of M

satisfying an TL-formula 0 , denoted by IIM, is defined for z, -'q, q A çb' and

00 as in Def. 2.2.4 and by

IGc5II M = Is e st(M) I Vs' > s: s' e 11011ml
2z4IIM = Is E st(M) I 3W c st(M) : 5 E IIlM[W/z]}

The notation M, s = q etc. and the related concepts are as in Def. 2.2.4. 	El

Intuitively, 3z.0 is true at state s of model M if there is a way to choose

the interpretation W of z so that 0 is true at state s of M[W/z]. We call this

general form of second-order quantification strong to distinguish it from weak

quantification, introduced in next subsection, which only allows quantification

over finite sets or propositions which are true in only finitely many states. We use

the same notation 11 0 11 m for both formulae of jiTL and those of 3TL. This causes

no confusion, since for all formulae that belong to both languages the definitions

coincide.

The formula aUb, a until b, of standard linear-time temporal logic TL corres-

ponds to the following TL-formula:

z.z A F-'z A G(z = (b V (a A Oz)))

Chapter 2 - Logical calculi 	 42

and the property at every even moment a can be characterised by the formula

z.zAG(z = (aAQQz))

Given the two calculi pTL and 3TL, it is natural to compare their expressive

power. Let us see first that it is rather easy to translate MTL to 3TL.

Proposition 2.2.44 For every uTL-formula 0 there is an TL-formula 0 such

that q 	i/', i.e. IIM = NIIM for all linear models M e MTL.

Proof: Let us translate every formula 0 of pTL inductively to an equivalent

formula f(q) of 3TL. Define the translation by

f(z) = z

=
f(qAqY) = f()Af(q5')

f(0) = 01(c5)
f(z.q) = Vz.G(f(qS) = z) = z

The only nontrivial clause here is the last one, justified by Lemma 2.2.9.

Essentially the same translation has been formulated in several occasions in

the literature, at least in [4, 6, 56, 59]. 	 D

If we spell out the effect of the translation above on maximal fixpoint formulae,

this is:

f(vz.çS) = 3z.z A G(z

The converse of Proposition 2.2.44 holds as well; for every TL-formula there ex-

ists an equivalent pTL-formula. However, the translation is far more complex than

the one above and requires insights from automata theory. We shall return to this

issue in Chapter 3, once the necessary technical machinery has been introduced.

The linear-time quantified temporal logic 3 TL is closely related to another

important and probably more widely known calculus with second-order quanti-

fication, the monadic second-order theory of one successor S1S. Known also as

the sequential calculus, S1S is a system of monadic second-order logic for the

formalisation of properties of sequences, It has been examined above all by Büchi

[15], who was motivated by the decision problem of S1S to examine the notion of

automata on infinite strings as a normal form for S1S formulae. Before discussing

the intuitions behind S1S and its relation to 3 TL, let us first formally define the

language.

Chapter 2 - Logical calculi 	 43

Definition 2.2.45 Fix a countable set X of individual variables, disjoint from

the set Z of atomic propositions, called predicate variables in the current context.

The individual terms of the monadic second-order theory of one successor 818

are defined by the abstract syntax

t ::= 0 I x j s(t)

where x varies over X and 0 and s are fixed symbols.

The atomic formulae of S1S are defined by the abstract syntax

cbA::=z(t)It=tlt<t

where z varies over Z and t over the set of terms.

The formulae of S1S are defined by the abstract syntax

I -0 I 	I 3z.0

where OA varies over the set of atomic formulae, x over X and z over Z.

The abbreviations V, =, , V etc. are as before. We also use the abbreviation

t < t' to stand for (t = t') V (t < t'). We call an S1S-formula closed if it has no

free occurrences of individual variables. U

The way the calculi 518 and 3TL approach the issue of characterising prop-

erties of sequences is somewhat different. In 3TL, and ,uTL as well, the notion

of state is implicit in the level of the logic, but the truth of a formula in a model

is defined relative to a state, 'the current moment'. In 818, in contrast, we refer

to states directly in the level of the logic by means of individual terms, and com-

pare the temporal ordering of states by the = and < relations and the successor

function so. In aTL, the denotations of atomic propositions z e Z are sets of

states and the second-order quantifiers range over these sets. The intuitive mean-

ing of second-order quantification is the same in 818, but as the language has

individual terms denoting states, the elements of Z become monadic predicates

z(x), meaning z holds in state x.

In interpreting 818, the denotations of the individual and predicate variables

can vary. The language also contains the constant term 0 and the successor

function so on terms, the interpretation of which is fixed. The natural definition of

a structure for interpreting S1S is a mapping assigning to each individual variable

an element of IN and to each monadic predicate variable a monadic relation, i.e. a

subset of IN. Such an assignment to predicate variables is clearly just another way

of encoding the same information as in the linear models as defined in the current

work. Keeping this in mind the semantics of 818 can be defined as follows.

Chapter 2 - Logical calculi 	 44

Definition 2.2.46 Let M E MTL be a linear model and V : X -* st(M) a
valuation assigning to each individual variable x E X a state of M. Let us extend
the valuation V to all individual terms by defining

V(0) = 0

V(s(t)) = V(t) + 1

An S1S-formula 0 is true in model M under valuation V, denoted by
M, V = ç, according to the following rules:

M, V = z(t) if z e M(V(t))
M, V 	t = t' if V(t) = V(t')
M, V = t < t' if V(t) <V(t')
M, V = —5 if not M, V 1=
M,VqAçb' if M,V 	and M,V'
M, V j= ax.q if there is some s E st(M) such that M, V[s/x] 1= q
M, V = if there is some W C st(M) such that M[W/z], V = q

where V[s/x](x) = s and V[s/x](x') = V(x') for all x' =A x. We write M J= if
M, V = for all valuations V. 	 0

In SJS the property a holds initially and at every even state thereafter can be
expressed by the formula

z.z(0) A Vx.z(x) = a(x) A z(s(s(x)))

The <-relation as actually superfluous as a primitive construct in S1S, since it is

second-order definable in terms of the successor function:

t < t' if Vz.(z(s(t)) A Vx.z(x) = z(s(x))) = z(t')

Lemma 2.2.47 Let M e MTL be a linear model and q a closed S1S-formula.

Then for any valuations V and V', M, V j= q if M, V' = q, i.e. the validity of q
over M is independent of valuation.

Proof: Easy. 	 I

Let us then describe translations between 3TL and S1S. The translations are

in both directions so straightforward that we can almost view the two formalisms

as two formulations of the same language. Because of this, in the rest of the work

we will not be studying S1S directly, preferring to examine 3TL, which is closer to

our framework, and use the correspondence with 3TL to derive results concerning
S1S, as well.

Chapter 2 - Logical calculi 	 45

Proposition 2.2.48 Let 	be an TL-formula. There exists a closed S1S-

formula 'b such that M = if M = b, for every linear model M.

Proof: Let us describe an inductive translation f from TL-formulae to S1S-

formulae. Fix an individual variable w E X. Define

f = z

f(-iq5) =
f(q5 A qY) = 	f(q5) A f(')

f(Ocb) = 	f(q)[s(w)/w]

f(Gq) = 	Vx.w <x = f(q)[x/w]

f(z.q) 3z.f()

Notice that every formula has exactly one free individual variable, w. Intuitively

w expresses the point or 'current moment' relative to which TL-formulae are

evaluated.

The important property of the translation is that for every TL-formula q,

model M and states of M, M, s J= q iffM, V = f(), where V, (w) = sand V, (x)

is arbitrary for x 54 w. Take now any TL-formula 0 . The formula 0 = f(q5)[O/w]

fulfils the claim of the proposition, since M = q if M, 0 = q if M, V0 = f(q) if

M, V = f(q)[0/w] for every valuation V if M = f(q)[0/w]. E

Proposition 2.2.49 Let 0 be a closed S1S-formula. There exists an TL-

formula 5 such that M = if M = '/', for every linear model M.

Proof: As a preliminary step to a translation from S1S to EITL, notice that by

rewriting

p(t) as 3x. (x = t) Ap(x),

t — t' as 3x.(x=t)A(x=t'),

t < t' as 3x.3x. (x = t) A (x' = t') A (x < x'), and

x = s(t) as 3x'.(x' = t) A (x = s(x'))

where x, x' are fresh variables, we can assume that all atomic formulae are of the

types p(x), x = 0, x = s(y) or x <y, where x and y are individual variables.

The only nontrivial step in defining an inductive translation f from S1S to

TL is dealing with quantification 3x over individuals or states. This is done by

coding individual quantification as second-order quantification over singleton sets.

The translation f is:

f(p(x)) = G(x=p)

Chapter 2 - Logical calculi
	 11

f(x=0) = x

f(x=s(y)) = G(y=Ox)

f(x<y) = G(x='QFy)

= -,f()

f(q5Ai1') = f(q)Af('i,l')

= 1.singleton(x) A f(q5) where

singleton(x) = (Vx'.G(x' = x) 	(G(x = x') V G--'X'))

f(z.) =

The essential property of the translation f is that for all models M and valuations

V, we have M, V = 0 if M = f(0), where Mv is defined by

Mv(s) = M(s) U {x E X I V(x) = s and x occurs free in Of

Here we have temporarily abused the notation by extending the notion of a model

so that some Mv(s) also include some elements of X and not only elements of Z.

It is clear that this causes no harm. 	 0

The translations between 3TL and S1S outlined above are modifications of

ones due to Wolper [102, pp. 46-48]. Notice that both translations are polynomial

time and the size of the resulting formula is polynomial in the size of the original

formula.

The approach with individual terms denoting states and monadic predicates

denoting properties of states has been used in addition to S1S in a weaker, first-

order framework as well. In actual fact, one of the classical results in linear

temporal logics is a first-order variant of the correspondence between 3TL and

S1S. This result, due to Kamp [52], states that the standard linear temporal logic

TL and the first-order theory of one successor and linear order are equiexpressive.

In contrast to the relatively easy translation from S1S to 3TL above, Kamp's

translation from the first-order theory of one successor to TL is highly nontrivial.

The basic reason for the complexity is that in the first-order world we cannot use

the technique of coding first-order quantification as second-order quantification

over singleton sets, as was done above.

2.2.6 Weak second-order quantifiers

The essential characteristic of both DTL and S1S is second-order quantification

over sets or propositions. There is also another, weaker choice for a second-

order construct: quantification over finite sets only. One philosophical reason for

Chapter 2 - Logical calculi 	 47

studying such weak second-order quantification is the aim to extend first-order

logic to be able to express finiteness, but to make this extension as small as

possible so that it would not interfere with results which are already known about

the first-order language. It is also the case that weak or finitary quantification is

technically easier to handle than general quantification. Corresponding to 3 TL
and S1S, respectively, there are two weak second-order languages TL and WS1S.

Definition 2.2.50 The formulae of the weak quantified linear-time temporal logic

TL are defined as those of 3TL in Definition 2.2.42, except the quantifier 3 z is
replaced by the weak quantifier z. The semantics of TL-formulae are defined

as in Definition 2.2.43, except for

IIz.IM = Is E st(M) I JW c st(M) : W is finite and s e IkbIJMEW1z1}

The derived operator Vw is defined by Vz.0

Definition 2.2.51 The formulae of the weak monadic second-order theory of one

successor WS1S are defined as those of S1S in Definition 2.2.45, except the quan-

tifier 3 z is replaced by the weak quantifier 1 z. The semantics of WS1S-formulae

are defined as in Definition 2.2.46, except for

M, V = 1z.0 if there is some finite W c st(M) such that M[W/z], V =

It is obvious that like 3 TL and S1S, their weak counterparts are equiexpressive.

It comes as no great surprise either, that the weak calculi can be embedded in the

strong ones.

Proposition 2.2.52 For every TL-formula 0 there is a closed WS1S-formula

'/', and vice versa, such that M = 0 if M = , for all linear models M.

Proof: From n TL to WS1S as in Proposition 2.2.48 and from WS1S to n TL as
in Proposition 2.2.49, by replacing 3 z with n z. Notice that in the latter proof weak

quantification is sufficient for the purpose of coding quantification over individuals

as second-order quantification over singletons. 0

Proposition 2.2.53 For every TL-formula q there is an aTL-formula 'iO such
that 0 ', i.e. IklIIM = IIIM for all linear models M. Similarly, for every
WS1 S-formula 0 there is an S1S-formula O such that M, V = if M, V = 'i/', for
all linear models M and valuations V.

Chapter 2 - Logical calculi 	 48

Proof: A translation f from I TL to 3TL is trivial for all other operators

except for f(z.q5) = 3z.finite(z) A f(q), where finite(z) = FG-'z, characterising
the fact that z should be true in finitely many states only. The proof for WS1S is
analogous, except that finite(z) = x.Vx'.(x' > x) = -'z(x'). El

What is more interesting is the relation of weak second-order quantification and

fixpoints over non-alternating formulae. It turns out that the expressive power of

the weak calculi matches precisely that of the alternation class L2, i.e. the class

of formulae without any proper alternation at all. We shall prove one direction of

this here and the other in Chapter 3. Let us first point out a particularly simple

case of the tableau construction for It TL formulae without any maximal fixpoints.

Lemma 2.2.54 Let 0 E E i be a itTL-formula and T a simple tableau for q.
Then T is proper if T is finite.

Proof: Assume that T is proper. Since q E El , the tableau T can have only

minimal constants. As by 2.2.32 any infinite path of T would have one of these

minimal constants occurring infinitely often along it, T has only finite paths. As

T is a finitely branching tree, by König's lemma this means that T is finite.

Conversely, if T is finite, then T has only finite paths and is trivially proper. 0

Proposition 2.2.55 Let tz.çb E A2 be a guarded non-alternating itTL-formula.

Then for all models M and states s of M, the following statements are equival-

ent:

• M,stz.çb,

• there is some n E N such that M, s = pz.çb

• there is a finite set W C st(M) such that s E W and W C k1IIM{w/zJ.

Proof: By Corollary 2.2.17 f'z.q = z.0, so it suffices to show that the first

claim implies the third and the third the second. Without loss of of generality we

can assume that s = 0.

Assume that M, 0 = pz.o. Since iz.5 e A2, by Corollary 2.2.26 it can be

expressed in the form /iz.q = (z.0)[i /z i , . . . ,'//z,] where jtz. 0 e
every 0i E L.2 and z does not occur free in any Oi . If we define now

= M[Wi /z i] . . . [W/z] where each W2 = 110i l l m , we have M', 0 =
By Prop. 2.2.33, there is a proper simple tableau T for jz.'iJ agreeing with M'.

Since jz.'çb E E, T is finite by Lemma 2.2.54. The only rule that can be ap-

plied initially in T is the a-rule, replacing /-z.1' by some constant u. Define now

W = {s' e st(M) I 3t e dom(T) : St = s' and Ot = u}, where we use (St, Ot, d) to
denote the label of node t of T. Clearly W is finite and 0 E W. From the tableau

Chapter 2 — Logical calculi 	 49

T we can also see as in the proof of 2.2.33 that W c Ik/)IIM'[W/z], which implies

W ç IIIIM[W/z], as required.

Assume then that we have a finite set W such that 0 e W and W C

Let W0 C W1 C ... C W be a sequence of sets such that W0 = 0, W = W and

each

= {s' e W p Vs" > s' : if s" e W then s" e W}

Since z only occurs guarded in q, the validity of 0 at any point s' e W 1

of M[W/z] only depends on the value of z at the points of W after s', i.e.

M[W/z], s' = 0 if M[W/z], s' = 0 , for all s' E W 1 and 0 < i < n, which

implies W21 c IIIM[W/z] for all 0 < i < n. Since W,-, = W and 0 E W, by

Corollary 2.2.17 we have then 0 E II/zIIM. El

Notice the close relation of this characterisation of minimal fixpoints in non-

alternating formulae and that of maximal fixpoints in Lemma 2.2.9. In both cases

we need to find a pre-fixpoint W containing the state i; the only difference is that

here with a minimal fixpoint the set W needs to be finite.

Corollary 2.2.56 If z.çb E A2, then ,uz.çb 	 i.e. ll pz.ollm = I/JWZ.cbM M

for all models M.

Proof: Immediate from Prop. 2.2.55. 	 El

This corollary is really a version of Kleene's recursion theorem [54, P. 3481,

which states that the least fixpoint of a continuous functional f coincides with f,
the least upper bound of all fi(I) where i e IN and fi is the i-th iterate of f. In

actual fact, if I-tz-0 E /2, the functional

f : 2st(M) 	2st(M); T'V
'—+ 10 11M[W/zJ

corresponding to the body of the fixpoint is not only monotonic but also continu-

ous.

We can now easily translate L2 to the weak calculus TL.

Theorem 2.2.57 For every non-alternating TL-formula q E A 2, there is a

TL-formu1a 0 such that 0 	O, i.e. IIcIPM = 11011m for all linear models M.

Proof: As by Prop. 2.2.36 there is an equivalent guarded formula in A2 for any

formula in A2, we need to consider only guarded formulae. Define a translation f
from the class of guarded formulae in L2 to I TL as in the proof of Prop. 2.2.44,

except for

f(z.) = Iz.z A V(z 	f())

	

The validity of the translation is justified by Prop. 2.2.55. 	 El

Chapter 2 - Logical calculi 	 50

Two other translations from non-alternating fixpoints to weak second-order

quantifiers are provided by Arnold [1] and Arnold and Niwiñski [4]. Both of

these as well as the one above are all variations on the same theme of minimal

non-alternating fixpoints being essentially finitary.

2.3 Branching structures

In last section we examined various formalisms for describing properties of infinite

strings, and introduced some related concepts and techniques. Now we are going

to generalise these to a framework of infinite branching structures, i.e. infinite

trees, mostly with a fixed degree of branching. As many features of the languages

generalise without any difficulty, the treatment is correspondingly more concise.

2.3.1 Modal mu-calculus

In specifying properties of a program by the linear-time formalisms discussed in

previous section, what is really being described are the required properties of the

execution sequences of a program. Another alternative is to model the execution

of a program by an execution tree that records both the possible execution se-

quences, and the points where non-deterministic choices between various courses

of execution are made. Historically, this choice between linear and branching

models has been one of the great divides in the semantic models of concurrent

programs, and the respective merits of each side have been analysed at length in

a number of papers. For an overview, see [75].

The concept of a linear model generalises naturally to the branching case.

Definition 2.3.1 A branching model M is a total infinite tree labelled with sets

of propositions,

M IN*

A state s of a branching model M is any s E dom(M), and the set of states,

denoted by st(M), is st(M) = dom(M). The set of all branching models is

denoted by A branching model M is an n-branching model if it is a

total n-branching tree, i.e. if st(M) = [n]* . The set of all n-branching models is

denoted by M.

As in the linear case, we require for simplicity that models do not have terminal

states. Fairly often branching-time formalisms are interpreted directly over graphs

modelling the execution of a system. However, as any such graph can be unravelled

Chapter 2 - Logical calculi 	 51

to a tree, we do not lose anything by considering only tree models here; in a sense

we can view an execution graph as a succinct representation of an execution tree.

The modal mu-calculus generalises the linear-time mu-calculus by replacing the

0-operator at the next moment by a modal operator or a family of modal operators

at some successor. Probably the most common variant of modal mu-calculus [55]

is based on the Hennessy-Milner logic [40], a poly-modal logic which contains the

modal operators <a> q, it is possible to execute an a-action leading to a state

where 0 holds and their duals [a] 0 , every a-action leads to a state where q holds,

and is interpreted over labelled transition systems. In the present framework,

where the transitions from a parent to a child in a tree model are implicit and

unlabelled, a corresponding natural choice would be to base the language on the

modality 00, for some child 0 and its dual I:Iq, for all children 0. If necessary,

the transition labels could be coded in the labels of the target states, and the

modalities <a> q and [a] 0 expressed by 0 (a A) and 11 (a = q), respectively.

The modal mu-calculus based on 0 and 0 and interpreted over arbitrary in-

finite trees is a natural framework when models is intended to reflect executions of

programs. Nevertheless, we will mainly concentrate on a more restricted setting

with models of a fixed degree of branching and modalities which distinguish dif-

ferent children of a node, not just picking some or all of them. The main reason

for this is that our interest lies particularly in the relations of mu-calculi and

automata, and the operation of tree automata is traditionally considered is such

a setting. Let us therefore define a modal mu-calculus with indexed modalities

G3, for the i-th child 0 , interpreted over n-branching trees.

Definition 2.3.2 Fix some n E IN. The formulae of the indexed modal mu-

calculus ,aKn are defined by the abstract syntax:

®II2Z

where z varies over Z and i over [n]. In pz.O, each occurrence of z in 0 is required
to be positive. 	 0

Definition 2.3.3 Let n e IN and let M E M be an n-branching model. The

set of states of M satisfying a Kn-formula 0, denoted by IIIM, is defined for z,
A qY and jz.ç as in Def. 2.2.4, and by:

II 01IM = Is e st(M) I s i e

The notations M, i = 0 etc. and the related notions are as in Def. 2.2.4. 	0

n

Chapter 2 - Logical calculi 	 52

It needs to be stressed that for every n, the indexed mu-calculus tKn is

interpreted over infinite n-branching models only. Notice also that like 0 , each
(73 is self-dual, i.e. Qq -'® -- q. We can introduce now 0 and 0 as derived

operators.

Definition 2.3.4 Relative to any n E IN, let us add to /iKn the derived operators

0 and 0 by defining 00 = Vj1 @0 and E 30 = AE[fl]
(13q5. 	 0

It is easy to see that 1-branching total infinite trees are isomorphic to infinite

strings, which means that we can consider strings a particularly simple instance of

trees. The indexed modal mu-calculus ILKI, interpreted over 1-branching trees,

also naturally coincides with the linear-time mu-calculus TL. This means that

all the results shown for Kn for an arbitrary n also hold trivially for ,uTL.

For some examples, fix n = 2. The /2K2-formula vz.(a A Oz) expresses the

property a holds everywhere and vz.(a A Oz) the property on some path a holds

everywhere. The formula vz.(®(a A z)) A ((D(-'a A z)) says for every node, a

holds in the older and fails to hold in the younger child of the node.

In the linear case we saw in page 17 that the property a is almost always

true could be expressed by either tiz.(vx.a A Ox) V Oz or ,az.vx.(a V tQz) A Ox.
Consider the corresponding modal formulae, where 0 has been replaced with 0:

z.(vx.a A Ox) V Dz

z.vx.(a V Oz) A Dx

These turn out to express different properties. This first says on every path there

is a point such that a holds in every descendant of that node, and the second that

on every path almost always a, i.e. on every path there is a point such that a

holds in all subsequent points in that path. To illustrate the difference, define a

2-branching model M by

M(i) = 1 0 	if i is of the form 0*. 1
{a} otherwise

Now M K uz.(vx.a A Dx) V Oz but M = pz.vx.(a V Oz) A Dx

2.3.2 Generalising linear-time concepts and results

Let us look now at the techniques and concepts introduced for the linear-time

mu-calculus pTL and generalise them to deal with branching structures and the

indexed modal mu-calculus pKn. In Subsection 2.2.2 we examined the meaning of

fixpoint operators and introduced the notion of approximants, and in Subsection

2.2.3 we addressed the phenomenon of fixpoint alternation. The discussion and

definitions as well as all the results stated there hold for pKn as well.

Chapter 2 - Logical calculi 	 53

name 	application 	I
s, 	 1 HD. (?jq, d

I s.z, 	, 	d

Table 2.3: Simple tableau rules for branching structures

Definition 2.3.5 For any n E IN, the language of infinitary aKn extends Kn

as in Def. 2.2.14, and the fixpoint approximants pIz.0 and vaz.cb are defined for
Kn precisely as for ,uTL in Def. 2.2.15.

The concept of the positive normal form is defined for Kn as for TL in Def.
2.2.20, except that the Q operator is replaced by the Q operators. The concept

of activeness is defined for ,uKri exactly as for jtTL in Def. 2.2.23.

The syntactic fixpoint alternation classes E, 11"' and La, the Emerson-Lei
fixpoint alternation classes, f1 and L, the fixpoint alternation classes >,
H,- and An7 and the concepts of non-alternation and guardedness are defined for

tKn as for ,uTL in Definitions 2.2.21, 2.2.22, 2.2.24, 2.2.27 and 2.2.35, except

that the Q operator is replaced by the Q operators. 0

Proposition 2.3.6 The reformulations of the truth definitions for fixpoints in

Lemmas 2.2.9 and 2.2.10, the characterisations of fixpoints by approximants in

Proposition 2.2.16 and Corollary 2.2.17, the characterisations of alternation classes

in terms of sequences of nested dependent fixpoints in Proposition 2.2.2 5 and Co-
rollary 2.2.26, the relations between different notions of alternation in Proposition

2.2.28, and the transformation to guarded form in Proposition 2.2.36 work for

uKn exactly as for pTL. 0

Let us then extend the tableau constructions for branching structures. The

technique of definition constants generalises to Kn without problems. The only

real difference in the tableau constructions for the branching case is that the

0-rule needs to be replaced by new ones taking into account the branching of

a model.

Definition 2.3.7 The concepts of extended Kn-formulae and definition lists

and related notations for jtKn are defined exactly as for 1uTL in Def. 2.2.29.

Let 0 be a Kn-formula in pnf. The concept of a simple tableau T for
is defined exactly as in Def. 2.2.30, except that St e [n]* in the labelling triples

(St, q5t, di), the root of T is labelled with (e, q, e), and the 0-rule is replaced by

the 0-rules (one rule for every i e [n]) in Table 2.3. The concepts of T being
proper and T agreeing with M are defined as in Def. 2.2.31. 	 0

Chapter 2 — Logical calculi 	 54

name I 	application 	 I

S, {Zi, ... ,zm,©cbl,...,©cbk}, d
s - 0, F0 , d 	s - 1, F 1 , d 	... 	s (n — 1), F_ 1 , d 1

Note: 1: every z3 is atomic, and for every i e [n], F j = {cbj I = i}.

Table 2.4: Bundled tableau rule for branching structures

Definition 2.3.8 Fix some n e IN, and let 0 be a guarded ,uKn-formula in pnf.

A bundled tableau T for 0 is an infinite tree T, every node t of which is labelled

with a triple (St, F, d) where

• every St e [n]*, rt is a finite set of extended uKn-formulae in pnf, and dt is

a definition list containing all definition constants in F,

• the root of T is labelled with (e, {}, e), and

• every node of T either has exactly one child which is derived by applying

one of the rules VL, VR, A, a or U in Table 2.2, or exactly n children which

are derived by the rule 0 in Table 2.4.

We assume that every constant u is defined at most once in any tableau. A

constant u is a maximal (minimal) fixpoint constant in T if there is some node t

of T such that u is a maximal (minimal) fixpoint constant in d. 	 11

Definition 2.3.9 Let T be a bundled tableau for a tKn-formula gb. For every

node t of T and every child t' of T, the rule applied at t induces a dependency

relation --+C rt x F'y , which is defined for all the rules except 0 as for the linear

case in Def. 2.2.38. Using the notation of Table 2.4, the dependencies for 0 are

defined by: Øq —* q for every 0 e ri and every i e [n].

For any node t of T and path p from node t, a finite or infinite sequence

00 ,0 1 is a dependency sequence of T from formula co at node t along path p
if every 0i E Fp(j) and relative to the dependencies between node p(i)

of T and its child p(i ± 1). The tableau T is proper if there is no minimal fixpoint

constant it of T and infinite dependency sequence 00 , q,... from some node t of

T along some path p of T such that qj = u for infinitely many i E N.

The concepts of a 0-point, agreement with a model and propositional consist-

ency are defined as in Def. 2.2.38. 	 D

Proposition 2.3.10 Let 0 be a guarded J2Kn-formula in pnf and M an n-

branching model. Then M = q if there is a simple or a bundled tableau T

for 0 such that T is proper and T agrees with M. Furthermore, 0 is satisfiable if

Chapter 2 - Logical calculi 	 55

there is a bundled tableau T for 0 such that T is propositionally consistent and T

is proper.

Proof: As in Prop. 2.2.33, 2.2.39 and 2.2.40. 	 ED

2.3.3 Second-order quantifiers

Let us then re-examine the calculi with second-order quantifiers introduced in

Subsections 2.2.5 and 2.2.6 and generalise these to branching structures. Cor -

responding to 3TL and S1S, for any n e IN there are two calculi 3Kn and SnS

interpreted over n-branching trees.

Definition 2.3.11 The formulae of the quantified branching time temporal logic

Kn are defined by the abstract syntax:

where z varies over Z and i over [n}.

Let M E M be an n-branching model. The set of states of M satisfying an

Kn-formula q, denoted by IIcM, is defined for z, -'q, qAqY and 3z.0 as in Def.

2.2.43, for ®q as in Def. 2.3.3 and by

IIGIIM = Is E st(M) I Vs' >- s: s' E 110 11ml

The notation M, .s 	etc. and the related concepts are as in Def. 2.2.4. 	El

Proposition 2.3.12 For every tKn-formula 0 there is an aKn-formula 0 such

that q 	', i.e. IIIM = kb1 M for all n-branching models M E M.

Proof: A translation f from MKn to 3Kn is defined as in 2.2.44, except for

f(®q) = (7Jf(q). The correctness of the translation is justified by Lemma 2.2.9

and Prop. 2.3.6. 	 0

Definition 2.3.13 The formulae of the monadic second-order theory of n suc-

cessors SnS are defined as for S1S in Def. 2.2.45, except that individual terms are

generated by the abstract syntax

t ::= € x I s(t)

where x varies over X and i over [n], and atomic formulae by the abstract syntax

qA::=z(t)It=tlt-t

Chapter 2 - Logical calculi 	 56

We use the abbreviation t -< t' to stand for (t = t') V (t -< t').

The semantics of SnS-formulae with respect to an n-branching model M e
and a valuation V: X —* st(M) are defined as for S1S in Def. 2.2.46 except that

the valuation V is extended to all terms by

V(s(t)) = V(t) i

and the truth definition for t -< t' is given by

M, V = t -< t' if V(t) - V(t')

U

Like 3TL and S1S, the branching formalisms Kn and SnS are so easily redu-

cible to each other that we can effectively consider them two formulations of the

same language.

Proposition 2.3.14 For every 3Kn-formula q, there exists a closed SnS-formula

i' such that M = q if M = 'i',, for every n-branching model M. Conversely, for

every closed SnS-formula q5 there exists an 3Kn-formula i/ such that M J= if

M = '/', for every n-branching model M.

Proof: A translation f from 3Kn to SnS is defined as in 2.2.48, except for

f(GJq5) = f(q5) [Si (w)/w]

f(GO) = Vx.w - x = f(q)[x/w]

In the other direction, as in 2.2.49 we can rewrite atomic formulae so that they

are of the forms p(x), x = 0, x = S(y) or x -< y, where x and y are individual

variables. The translation f from SnS to 3Kn is then defined as in 2.2.49, except

for

f(x=s(y)) = G(y=®x)

f(x-<y) = G(x= V (D Fy)
iE[n]

The weak variants Kn and WSnS of 3Kn and SnS are formed precisely as

in the linear case and have the same relations to each other. The only points

that require some care are the finiteness requirements when embedding the weak

calculi in the strong ones.

Chapter 2 - Logical calculi 	 57

Definition 2.3.15 The formulae of the weak quantified branching time temporal

logic nKn are defined as those of 3Kn in Def. 2.3.11, except the quantifier 3z is

replaced by the weak quantifier n z. The semantics of Kn-formulae are defined

for all other operators as in Definition 2.3.11 and for nz.0 as in Def. 2.2.50.

The formulae of the weak monadic second-order theory of n successors WSnS

are defined as those of SnS in Definition 2.3.13, except the quantifier az is replaced

by the weak quantifier z. The semantics of WSnS-formulae are defined for all

other operators as in Definition 2.3.13 and for L.0 as in Def. 2.2.51. 0

Proposition 2.3.16 For every nKn-formula 0 there is a closed WSnS-formula

and vice versa, such that M = 0 if M = 'J', for all n-branching models M.

For every nKn-formula q there is an 3Kn-formula 0 such that q 	, i.e.

1I01M = INIllM, for all n-branching models M. Similarly, for every WSnS-formula

there is an SnS-formula such that M, V = 1ff M, V = 0, for all n-branching

models M and valuations V.

Proof: The first claim is shown as in Prop. 2.2.52, and the second as in Prop.

2.2.53, except that for Kn,

finite(z) = -' z'.z' A G(z' = (Fz) A V ®Fz')
iE[n]

and for WSnS

finite (z) = -' z'.z'(0)AVx.(z'(x) = (3x'. (x -< x')Az(x'))A(x'.(x -< x')Az'(x')))

.

The relation between the non-alternating fragment L2 of the modal mu-

calculus pKri and the calculi with weak second-order quantification is analogous

to the linear case.

Proposition 2.3.17 The characterisation of Lemma 2.2.54 for proper simple

tableaux for E 1 -formulae, the statements of Proposition 2.2.55 and Corollary 2.2.56

that only approximants up to jicz are needed for z 2-formulae, and the translation

from L2 to a weak second-order language in Theorem 2.2.57 work for pKn as for

,uTL.

Proof: Easy. 	 0

	
Chapter 2 - Logical calculi 	 58

linear structures 	n-branching structures

fixpoints I 'T1' 	(Def. 2.2.3) I jiKn 	(Def. 2.3.2)

strong 	3TL 	(Def. 2.2.42) 3Kn 	(Def. 2.3.11)
quantifiers S1S 	(Def. 2.2.45) SnS 	(Def. 2.3.13)

weak 	I ITL 	(Def. 2.2.50) n Kn 	(Def. 2.3.15)
quantifiers I WS1S (Def. 2.2.51) WSnS (Def. 2.3.15)

Table 2.5: A menagerie of logical formalisms

2.4 Summary

In this chapter we have introduced a variety of logical calculi for describing prop-

erties of infinite strings and trees. The most important of these, as far as the

current work is concerned, are the linear-time mu-calculus TL and its branching

time counterpart, the (indexed) modal mu-calculus M Kn. Various basic techniques

and concepts for these fixpoint-based formalisms, including fixpoint approximants,

tableaux and the phenomenon of fixpoint alternation, were discussed in Subsec-

tions 2.2.2-2.2.4. In Subsections 2.2.5 and 2.2.6 we examined another second-order

construct, quantification over propositions, and the related calculi 3 TL, the quan-

tified linear time temporal logic, and S1S, the monadic second-order theory of one

successor, and their weak versions I TL and WS1S. Branching variants for these

were introduced, as well. Table 2.5 presents a quick overview of all the logical

calculi discussed in the current work. We also described translations between the

different formalisms. These have been summarised in Figures 2.3 and 2.4.

Chapter 2 - Logical calculi
	

59
	

(2.2.44) 	 (2.2.48)

TL 	 3TL 	S1S

(2.2.49)

	

(obv.) 	 1(2.2.53) 	 1(2 . 2 . 53)

	

2 (of TL) 	 ITL 	 WS1S

	

(2.2.57) 	 (2.2.52)

Figure 2.3: Relations of linear formalisms

	

(2.3.12) 	 (2.3.14)
aKn 	 SnS

	

(obv.) 	 1(2.3.16) 	 1(2.3.16)

	

2 (of Kn) 	 Kn 	 WSnS

	

(2.3.17) 	 (2.3.16)

Figure 2.4: Relations of branching formalisms

Chapter 3

Automata

Where previous chapter examined the topic of characterising infinite strings and

trees in terms of different logical calculi, we now take a step back and approach the

issue from a different angle, by using automata on infinite objects. Although at

face value very different, the two approaches turn out to be deeply interconnected.

First, in Section 3.1, we define the notions of automata on infinite strings and

trees, explain how these can be generalised to alternating automata, and describe

the usual Biichi and Rabin acceptance conditions. As we relate automata on

strings to linear-time mu-calculus and automata on trees to modal mu-calculus

by the same constructions, in the following paragraphs we just talk about relating

automata to mu-calculus, meaning both of these.

In Section 3.2 we introduce a new type of automata, the first recurrence auto-

mata. The acceptance condition for these is based on requiring that an automaton

has a tree-like structure, and checking whether the oldest infinitely often occurring

state in a path of a run belongs to a designated set of accepting states. These auto-

mata can be seen as a simplification of the parity automata of [65, 33]. We show

in Subsection 3.2.2 that first recurrence automata are particularly appropriate for

understanding mu-calculi, since alternating first recurrence automata correspond

to formulae of mu-calculi and vice versa, via easy syntactic translations. Ordinary,

non-alternating first recurrence automata correspond to formulae in a restricted

normal form. The most important restriction in this form is the so-called strong

aconjunctivity', which severely limits situations in which conjunction operators

may occur. We view first recurrence automata and mu-calculus formulae as two

different syntactic representations of essentially the same object, allowing us to

rephrase the statement about mu-calculus formulae being alternating automata in

the other direction: alternating automata are really mu-calculus formulae. In our

opinion the choice between the two representations is above all a matter of taste.

'This is different from Kozen's notion of aconjunctivity [55], although closely related.

3111

Chapter 3 - Automata 	 61

The first recurrence automata provide a common ground on which mu-calculi

and automata with more usual Büchi and Rabin acceptance conditions can be

related to each other. In Subsection 3.2.3 we show that alternating first recurrence

automata can be easily translated to alternating Rabin automata and vice versa,

and that the same holds for ordinary, non-alternating automata. This means

that alternating Rabin automata and the mu-calculus are equiexpressive, and that

ordinary Rabin automata and the restricted fragment of mu-calculus are similarly

related. By translations between Büchi and first recurrence automata, we also

show that alternating Bflchi automata and the fixpoint alternation class 112 of mu-

calculus are equiexpressive, and that the same holds for ordinary Bflchi automata

and the restricted fragment of 112.

Subsection 3.2.4 examines the problem of deciding the emptiness of an ordinary

first recurrence automaton, i.e. deciding whether there exists some input string or

tree accepted by a given automaton. The problem turns out to be very easy;

emptiness can be decided in a time which is linear in the size of the automaton.

In Section 3.3 we address the role of ordinary automata in decision procedures

for second-order calculi like aKn and SnS. These decision procedures work by

inductively translating formulae to automata, which can be viewed as a convenient

normal form for formulae. For this it is essential that the class of automata is closed

under operators of the language. A key advantage of ordinary automata in this

task is that they are trivially closed under existential second-order quantification,

but a drawback is that complementation is hard for them. On the other hand,

for alternating automata, especially alternating first recurrence automata or mu-

calculus formulae, the situation is directly opposite: complementation is easy but

quantification hard. What would allow us to enjoy the best of both worlds is a

translation from alternating automata to ordinary ones, as then both quantification

and complementation would be possible. For a first example of such a translation,

we show in Section 3.3 how a simple subclass of mu-calculus formulae, the fixpoint

alternation class E i , can be translated to restricted mu-calculus formulae in E l ,
i.e. how a subclass of alternating first recurrence automata can be transformed

to ordinary first recurrence automata. A modification of the construction allows

us to translate the weak calculus lKn (i.e. WSriS) inductively to the class A2

of mu-calculus formulae without any proper alternation of fixpoints, showing the

equiexpressivity of these languages. For mu-calculus formulae in this class A2,

the acceptance condition in the first recurrence automaton corresponding to the

formula coincides with the weak acceptance of Muller, Saoudi and Schupp [68],

which means that formulae in L2 correspond to weak alternating automata, and

vice versa.

Chapter 3 - Automata 	 62

Translations from mu-calculus to the restricted fragment of it, or from al-

ternating automata to ordinary, non-alternating automata are further examined

in Section 3.4. First, in Subsection 3.4.1 we describe a translation from the fix-

point alternation class 112 of mu-calculus to ordinary Büchi automata. This is

done inductively on the structure of formulae, by providing for each operator of

the calculus a corresponding construction on ordinary automata. The novelty

here is a powerset construction, related to [22, 77], which corresponds to maximal

and minimal fixpoints. Since we already know how to map Biichi automata via

first recurrence automata to mu-calculus formulae in 112, we have then a precise

correspondence between 112 and ordinary Biichi automata. Another way of for -

mulating this is that 11 2 and the restricted fragment of 1`12 are equiexpressive. As

side products of the result, we get the decidability of lKn or WSnS, and one half

of Rabin's fundamental characterisations of Büchi recognisable languages as those

which are characterised by existentially quantified Kn or WSnS formulae, and of

Kn or WSnS as the languages for which both the language and its complement

are Büchi recognisable [77].

In Subsection 3.4.2 we generalise the fixpoint operations on ordinary auto-

mata from Bflchi to Rabin acceptance, and provide an inductive translation from

the full mu-calculus to ordinary Rabin automata. This shows that the full mu-

calculus, i.e. alternating first recurrence automata, and ordinary Rabin automata

are equiexpressive. Another way of looking at this correspondence is that the full

mu-calculus and its restricted fragment are equiexpressive. An important corol-

lary of the correspondence is that Rabin automata are closed under complement-

ation, i.e. the result referred to above as Rabin's complementation lemma. The

result also allows translating any 3Kn-formula (i.e. any SnS-formula) inductively

to an ordinary Rabin or first recurrence automaton, showing the equiexpressivity

of 3Kn, SnS and jtKn, and the decidability of 3Kn and SnS. We believe that this

provides the simplest proof of Rabin's result so far.

It should be pointed out that none of the above correspondence results are new

in themselves. The equivalence between SnS and Rabin automata was originally

shown by Rabin [76], using the extraordinarily difficult direct complementation

construction for Rabin automata. The natural translation from modal mu-calculus

to SnS has been formulated at least in [4, 6, 56, 59], and translations between

Rabin automata and what is essentially the strongly aconjunctive fragment of

modal mu-calculus were given by Niwiñski in [70, 71]. Emerson and Jutla [33]

described a translation from the full mu-calculus to Rabin-automata by using the

correspondence between mu-calculus and alternating tree automata, and reducing

these to ordinary automata by a construction related to Safra's [80]. Furthermore,

Chapter 3 - Automata 	 63

the correspondence between Biichi-automata and [1 2 was shown in [3], and the

relationship between WSnS and the fixpoint-alternation-free fragment L 2 of mu-

calculus in [1, 4, 68].

What we feel the contribution of the current work in this respect is that all

these results that were shown by a variety of tools, arise here uniformly from two

rather simple concepts: the notion of first recurrence automata, and the fixpoint

constructions for ordinary Büchi and Rabin-automata. The inductive mapping of

formulae to automata also allows us to concentrate on one operator of the logic at

a time.

The constructions and results discussed above work for both the modal mu-

calculus over trees and linear-time mu-calculus over strings. In Section 3.5 we

examine differences between the linear and the branching case. In linear case it

is easy to see that the more general acceptance condition of a Rabin automaton

brings no greater expressive power that that of a Büchi automaton. Combined with

the earlier results on the relation of Büchi automata and the fixpoint alternation

class 112 of mu-calculus, this implies that in the linear case the full mu-calculus

and its fragment 112 are equiexpressive, and further, that already the fragment A2

without any proper fixpoint alternation is equiexpressive with the full language.

For the branching case none of this is true. Another issue which distinguishes

between linear and branching cases is determinisation of automata: automata on

strings can be determinised, ones on trees cannot. Related to this, we discuss

what determinism means in formulae, and define a deterministic normal form for

linear-time mu-calculus.

3.1 Automata on infinite objects

The concepts of automata on infinite strings and trees generalise usual automata

on finite objects by notions of acceptance which are appropriate for structures

which do not have a final state or final boundary. Pioneering work on infinitary

automata was done by Büchi [15], McNaughton [63] and Rabin [76, 77]. For an

overview of the area, see [93]. We start here from the simplest concept, automata

on infinite strings, and then look how these are first generalised to automata on

trees and then further to alternating automata.

3.1.1 Ordinary automata

A usual non-deterministic automaton on finite strings with a finite input alphabet

consists of a finite set of states Q, an initial state q72t, a transition relation

Chapter 3 - Automata 	 64

A c Q x E x Q, and a set of accepting final states. A transition (q, a, q') specifies

that if the automaton is in state q and the next input letter is a, the automaton

may move to state q' after reading the input letter. Disregarding the issue of an

acceptance condition for the moment being, the behaviour of such an automaton

generalises naturally to infinite input strings.

In the current context we would like automata to operate on the same structures

that serve as models of the logical calculi discussed in previous chapter. Because

of this, we modify the meaning of a transition in an automaton slightly. Instead of

specifying exactly what the label of a state must be in order for a transition to be

possible, a transition label of an automaton specifies a condition which must be

true for the transition to be possible, but which does not completely characterise

the truth set labelling the current input state. A transition of an automaton is

labelled with a set Z of atomic propositions and their negations Z ç z U Z.
The intuition is that the propositions in Z fl Z must be true and the negated

propositions in Z fl Z false in order for the transition to be available in an input

state.

As we shall introduce later various other type of automata, we use the qualifier

'ordinary' with usual non-deterministic automata to stress the difference. Notice

that we only talk about automata operating on infinite objects in the current work:

'ordinary' does not imply finiteness.

Definition 3.1.1 An ordinary automaton A on (infinite) strings is a 4-tuple

A = (Q, qj,jt, L,) where

• Q is a finite set of states,

•qi,,it is the initial state,

• A c Q x 	x (Q \ { qznzt}) is a transition relation such that for every

(q, Z, q') e A the set Z is finite, and

• Q is an acceptance condition, to be defined later.

We use the notation q --* q' to mean that (q, Z, q') e /, and q -* q' to mean

that there is some Z such that q -.+ q'. We use -+ to denote the reflexive and

transitive closure of -+.

The restriction that no transition can lead back to the initial state is inessential

and purely for technical convenience.

Definition 3.1.2 Let A = (Q, qinit, z, il.) be an ordinary automaton on strings.

A run ir of A on a linear model M e MTL is an infinite sequence of transitions

of A, 7r = (qo, Z0 , q)(qi, Z1 , q')... such that

• q0 =

Chapter 3 - Automata 	 65

. for every i E IN, q = 	and

• for every Z' e IN and every z E Z, if E Zi then z E M(i), and iff-iz e Zi
then z V M(i).

Given a run 7r of A, define the sequences 7r fr, lab and lrtO by: for every i e IN, if

ir(i) = (q,Z,q) then .fr(j) = qj, Iab(j) = Zi and to (j) = q. 	 0

Let us then define two standard forms of acceptance condition, Büchi and

Rabin acceptance. The acceptance condition of a Biichi automaton (called a

special automaton in [77]) consists of a set of accepting states, at least one of

which must occur infinitely often in a run [15]. A Rabin acceptance condition

consists of a sequence of acceptance pairs, where each pair consists of a set of

accepting and a set of rejecting states [76]. In order for a run to be accepting,

there must be some acceptance pair for which at least one accepting state and no

rejecting state occurs infinitely often in the run.

Definition 3.1.3 An ordinary Büchi automaton on strings is an ordinary auto-

maton A = (Q, qut, L, l) such that the acceptance condition Q is of the form

t=F where FCQ.

A run 7r of an ordinary Büchi automaton A on strings is accepting if 7,'(i) e F

for infinitely many i e IN, i.e. if accepting states occur infinitely often along ir.

An ordinary Rabin automaton on strings is an ordinary automaton A where

the acceptance condition Q is of the form Q = ((G0 , R0) . . . (Gm_ i , Rm _i)), where

m e TN, and for every i E [m], Gi g Q and R, c Q. We call m the index of the

Rabin automaton A.

A run 7r of an ordinary Rabin automaton A on strings is accepting if there is

some k e [m] such that
• 1.fr(j) e Gk for infinitely many i e TN, and
• fr(j) e Rk for only finitely many i e IN,

i.e. if there is some acceptance pair such that accepting states in that pair occur

infinitely often and rejecting states only finitely often along ir.

The language accepted by an ordinary Büchi/Rabin automaton A, denoted by

L(A), is defined by L(A) = {M E MTL I A has an accepting run on M}. 	0

Figure 3.1 depicts an ordinary Biichi automaton on strings recognising the

property at every even moment a holds. In the graph the states of the automaton

are represented by small circles and transitions by arrows annotated with the

transition label, except that transitions (q, Z, q') with Z = 0 are represented by

arrows without labels. The initial state is marked by a short arrow which does

not originate from any state.

Chapter 3 - Automata 	 11

-

	 {a} 	_______ 	
F = {qi}

Figure 3.1: An ordinary Büchi automaton for at every even moment a

{-ia} 	{a}

fal n
- 	 F={q2}

JL)

Figure 3.2: An ordinary Büchi automaton for infinitely often a

{a}

- 	 F={q2}

{-ial 	{a}

ci = (G0 , R 0)

{a} 	
where G 0 = { q2} -.
and R0 = { qi }

Figure 3.3: Ordinary Büchi and Rabin automata for almost always a

Chapter 3 - Automata 	 67

Figure 3.2 presents an ordinary Büchi automaton recognising the property a

holds infinitely often, and Figure 3.3 Biichi and Rabin automata both recognising

the property a holds almost always or only finitely often not a.

Automata on trees generalise the notion of usual string automata so that

they are able to operate on branching stuctures. As before, an automaton on

n-branching trees can take a transition (q, Z, (q,.. . , q_ 1)) if it is in state q and

is currently looking at an input node satisfying the condition Z. In executing the

transition, the automaton intuitively splits itself into n copies, one for each child

of the input node, and moves to state q in the copy corresponding to the i-th

child. For an introduction to automata on finite trees, see [37].

Definition 3.1.4 An ordinary automaton A on n-branching trees is a 4-tuple

A = (Q, qrzt, L,) where Q, qi,, i t and Q are as in Definition 3.1.1, and the trans-

ition relation A is of the form Li C Q x x (Q \ {qjj})n, where for every

(q, Z,) e Li the set Z is finite.

We use the notation q -- 	to mean that (q, Z,) E A, and the notation

q --* q' to mean that there is some q and i e [n] such that (q, Z,) e Li and

q' = jj. We also use the notations q -+ q' and -+, defined as in Def. 3.1.1. 0

Definition 3.1.5 Let A = (Q, qinit,A, 2) be an ordinary automaton on n-

branching trees. A run ir of A on an n-branching model M E Mn is an infinite

total n-branching tree labelled with transitions of A such that

• 	= (qj,jt, Z,) for some Z and q ,

• for every t E [n] and every i e [n], if we write ir(t) = (q, Z,) and

r(t.i) = (q',Z',?j'), then q' 	and

• for every t e [n]*, if we write 7r (t) = (q,Z,), then for every z e Z, if z E Z

then z e M(t), and if —'z E Z then z V M(t).

Given a run ir of A, define the trees itfr lab and qtO as in Definition 3.1.2. 	0

Definition 3.1.6 The concepts of ordinary Büchi and Rabin automata on n-

branching trees are defined analogously to Definition 3.1.3.

A run ir of an ordinary Biichi automaton A = (Q, qi.it , z, F) on n-branching

trees is accepting if for every path p of it, ir(p(i)) e F for infinitely many i e IN,

i.e. if accepting states occur infinitely often along every path of it.

A run it of an ordinary Rabin automaton A = (Q, qi.it , L, l) on n-branching

trees, where Q = ((G0 , R0) . . . (Gm_ i , Rm_i)), is accepting if for every path p of

it there is some k E [m] such that
• itfr(p(j)) e Gk for infinitely many i e IN, and
• itfr(p(j)) e Rk for only finitely many i E IN,

Chapter 3 - Automata 	 68

i.e. if for every path of 7t there is some acceptance pair such that accepting states

in that pair occur infinitely often and rejecting states only finitely often along the

path. The notation L(A) is defined for automata on trees as in Def. 3.1.3. 	D

It is easy to see than Biichi automata are a subclass of Rabin automata.

Lemma 3.1.7 For every ordinary Büchi automaton A on strings/n-branching

trees, there is an ordinary Rabin automaton A' on strings/n-branching trees such

that L(A) = L(A').

Proof: Let A = (Q, qt, L, F) be a Büchi automaton. The corresponding Rabin

automaton is A' = (Q, q, L,), where Q = (F, 0). 	 0

3.1.2 Alternating automata

The transition relation of an automaton on strings may have non-deterministic

branching, i.e. there may be states q from which there are transitions (q, Z', q')

and (q, Z", q") such that q' q" and Z' and Z" are not mutually exclusive. By

its nature such branching is disjunctive; if we consider that the state in which

an automaton is at a certain moment of its execution specifies a requirement for

the rest of the input, in a branching state q the automaton needs to verify either

that the current state satisfies Z' and the rest of the input the requirement corres-

ponding to q', or that the current state satisfies Z" and the rest the requirement

corresponding to q".

When usual automata are generalised to so-called alternating automata, such

disjunctive branching is complemented by conjunctive branching [19]. Intuitively,

in conjunctive or and-branching the meaning of two transitions (q, Z', q') and

(q, Z", q") to different states q' and q" from q is that the automaton needs to

verify that the current state satisfies both Z' and Z" and that the rest of the

input satisfies both the requirement corresponding to q' and the one corresponding

to q". Automata on trees already have conjunctive branching in a restricted

form; a transition (q, Z,) contains the requirement that the oldest child of the

current input node satisfies the requirement corresponding to j0, the next child

the requirement corresponding to ?j and so on.

In automata on strings we could accommodate both disjunctive and con-

junctive type of branching by changing the form of the transition relation from

A c Q x 212 x (Q\{qt}) to i. C Q x 2ZUZ x Intuitively the choice

between two transitions (q, Z', Q') and (q, Z", Q") would represent or-branching,

and the multiple target states q' E Q' of a transition and-branching. However, it

is technically more convenient, particularly for automata on trees, to represent

Chapter 3 - Automata 	 69

alternating automata by finite graphs, where every node with multiple successors

is defined either as and-branching or as or-branching. Two other types of nodes

are used to check for properties of the current input state, and to advance to next

input state. We define alternating automata immediately for trees; alternating

automata on strings are an easy subcase of these.

Definition 3;1.8 An alternating automaton A on n-branching trees is a 5-tuple

A = (Q, qj,jt, L, 1, Il), where

• Q is a finite set of states,

• qTt is the initial state,

•

A c Q x (Q \ {q,t}) is a transition relation,

• I: Q-~ ({A,V,T,.L}u{Ø I iE [n]}UZU) is a function labelling each

state with a symbol A, V, T, I or @ or a (negated) atomic proposition,

and

• Q is an acceptance condition, to be defined later.

We require that for every q e Q the following restrictions hold:

• If 1(q) e IT, I}UZUZ, then there is no q' E such that (q, q') e A. In

these cases we call the state q atomic.

• If 1(q) = ® for some i e [n], then there is exactly one q' e Q such that

(q, q') e z. In this case we call q an ©-state.

• If 1(q) e {A, v}, then there is at least one q' e Q such that (q, q') e L. In

these cases we call q a A or a V-state, respectively.

An alternating automaton on strings is defined as an alternating automaton on

1-branching trees, equating ® with 0. We use the notation q —f q' to mean

(q, q') e L, and -+ to denote the reflexive and transitive closure of —+. U

Assume that (q, Z0 , qo), . . . , (q, Zk, qk) are all the transitions from a state q

of an ordinary automaton on strings or 1-branching trees, and that each

= {z,.. . , z}. In an alternating automaton this would correspond to the

fragment of transition graph presented in Figure 3.4.

Definition 3.1.9 Let A = (Q, q, L, I,) be an alternating automaton on n-

branching trees. A run 71 of A on an n-branching model M E M n is a finite or

infinite tree 71, every node t of which is labelled with a pair (St, qt) such that

• every St C [n]* and qt E Q,
• the root of 71 is labelled with (e, qnt),

• the children of every node t of 71 are derived by applying one of the rules in

Table 3.1, and

• a node t of iv is a leaf only if no rule can be applied to it.

Chapter 3 - Automata 	 70

(I
qk

Figure 3.4: Fragment of an alternating automaton

name application

s, 	q
where l(q) = V and (q, q') E s, 	q'

A 	
s, q 	 where l(q) = A and

s, 	qo 	 S 	qk 	{qo,. . . ,q} = {q' e Q I (q,q') e
S 	q 	

where 1(q) = 0 and (q, q) e s•i, 	q '

Table 3.1: Alternating automaton run rules

Chapter 3 - Automata 	 71

Furthermore, every leaf t of 71 is required to fulfil the following:

• l(qt) 0 I,

• if l(q) = z E Z, then z E M(s), and

• if l(qt) = 	e Z then z V M(s).

Given a run ir of A, define trees 71fr and irs' by: for every t G dom(ir), if

71(t) = (s, q), then 71fr(t) = q and 71st (t) = s.

Notice the close resemblance between a run of an alternating automaton and

a simple tableau for a mu-calculus formula (Def. 2.2.30). The Büchi and Rabin

acceptance conditions generalise naturally from ordinary to alternating automata.

Definition 3.1.10 An alternating Büchi automaton on n-branching trees is an

alternating automaton A = (Q, qinit, A, 1) such that the acceptance condition Q is

of the form 12 = F where F C Q. A run ir of an alternating Büchi automaton A

on n-branching trees is accepting if for every infinite path p of 7, 71fr((j)) e F
for infinitely many i e TN.

An alternating Rabin automaton on n-branching trees is an alternating auto-

maton A = (Q, q2 , L, 12) where the acceptance condition 12 is of the form

12 = ((Go , R0) .. . (Grn_ i) Rm _ i)), where m E TN, and for every i e [m], G. C Q
and R i c Q. We call m the index of A. A run 71 of an alternating Rabin auto-

maton A on n-branching trees is accepting if for every infinite path p of 7r there

is some k E [m] such that
• 71fr(p(j)) E Gk for infinitely many i e TN, and
• 71fr(p(j)) E Rk for only finitely many i E N.

The notation L(A) is defined for alternating automata as in Def. 3.1.3.

The use of alternating automata for studying infinite tree languages has been

advocated especially by Muller and Schupp [66, 67], who state: [..] we do feel

that alternating automata provide the 'natural' theory of automata on trees [67].

In addition to some inessential technical differences with the definition here, the

alternating automata of Muller and Schupp use a more general and powerful type

of acceptance condition, allowing 12 to be any Borel subset of QW (for discussion

on the Borel hierarchy in this context, see [93, pp. 152-156]). The advantage of

this is that alternating automata with the more general acceptance condition can

be trivially complemented. This is not true for the Büchi or Rabin acceptance

conditions, as the complements of these conditions are not in the same form as the

conditions themselves. However, we will not discuss the Muller and Schupp type

acceptance condition in the current work, since the first recurrence automata, to

be introduced in the next section, are easy to complement but their acceptance

Chapter 3 - Automata 	 72

condition is still much simpler than the general Borel case. Alternating automata

on infinite strings have also been examined by Miyano and Hayashi [64] and

Lindsay [61].

Ordinary automata, without general and-branching, correspond to a particular

subclass of alternating automata, called here restricted alternating automata. The

most important limitation imposed on this class is strong aconjunctivity, which

restricts severely situations in which A-states may occur.

Definition 3.1.11 Let A = (Q, 	L, 1, 2) be an alternating automaton on n-

branching trees. We say that A is strongly aconjunctive if for every A-state q E Q
the following restrictions hold:

• for every q' E Q such that (q, q') e /., q' is either an atomic state or a

0-state for some i e [n], and

• for every q' E Q and q" e Q such that (q, q') e L, (q, q") E z2 and q' $ q",

if l(q') = 0 and l(q") = 0, then i j. 	 D

To characterise the class of alternating automata corresponding to ordinary

ones, we also need some more technical side conditions.

Definition 3.1.12 Let A = (Q, q, A , 1, Il) be an alternating automaton on n-

branching trees. We say that A is guarded if for every sequence of states q0 ,. . . , q,

such that q0 = q,, k > 0, and (qj, q2+,) E A for every 0 < i < k, there is some

0 <j < k such that qj is a Gj-state, i.e. if every loop in the transition graph has

at least one (73-state in it. U

Definition 3.1.13 Let A = (Q, qinit, L, 1, l) be an alternating automaton. We

call a state q e Q principal if either q = uit or there is some ®-state q' E Q
such that (q', q) e L. We call a state q E Q auxiliary if there is some A or V-state

q' E Q such that (q', q) e L. We say that an auxiliary state q' is a subordinate of

a principal state q if there is a sequence q0 ,. . . , qj of states, where k > 0, such

that qo = q, q, = q' , (qj, qj1) E A for every 0 < i < k, and qj is an auxiliary state

for every 1i<k. U

In other words, a state is principal if it is the initial state or there is a transition

from some (73-state to it, and it is auxiliary if there is a transition from some A

or V-state to it. Notice that a state can be both principal and auxiliary at the

same time.

Chapter 3 - Automata 	 73

Definition 3.1.14 Let A be an alternating automaton. We say that A is rest nc-
ted if

• A is strongly aconjunctive,

• A is guarded,

• only principal states appear in the acceptance condition of A, and

• every auxiliary state is a subordinate of exactly one principal state. 	D

The next two lemmas state that ordinary automata are really restricted altern-

ating automata and vice versa. Since the proofs are not very interesting, they have

been postponed to Appendix A. In the following we regularly use the correspond-

ence, allowing us to use whichever formulation happens to be more convenient for

the task at hand.

Lemma 3.1.15 For every ordinary Biichi automaton A there exists a restricted

alternating Bflchi automaton A', and vice versa, such that L(A) = L(A').

Proof: See Appendix A. 	 El

Lemma 3.1.16 For every ordinary Rabin automaton A there exists a restricted

alternating Rabin automaton A', and vice versa, such that L(A) = L(A').

Proof: See Appendix A. 	 LE

3.2 First recurrence automata

In this section we introduce a new type of automata, the first recurrence auto-

mata. Their acceptance condition can be seen as a simplification of the parity

acceptance condition used by Mostowski [65] and Emerson and Jutla [33]. Due

to their structure, first recurrence automata are so close to formulae of mu-calculi

in positive normal form that we can identify the two. What is more, there are

easy translations between first recurrence automata on the one hand, and the more

traditional Büchi and Rabin automata on the other hand. This means that first

recurrence automata provide a useful common ground on which mu-calculi and

automata can be related to each other. Moreover, deciding emptiness is very easy

for frst recurrence automata, as this can be done in a linear time.

3.2.1 Preliminaries

The acceptance condition of first recurrence automata is based on imposing a tree

structure on the transition graph of an automaton so that all transitions from a

state lead to its children or (not necessarily proper) ancestors. For every path of

Chapter 3 - Automata 	 74

a run of such an automaton there is a unique state which is the most senior, in the

ancestral relation, of all states which occur infinitely often along the path. The

acceptance is then based on looking at whether this state belongs to a specified set

of accepting states or not. Let us start by defining both ordinary and alternating

versions of first recurrence automata.

Definition 3.2.1 Let A = (Q, qinit, L, 12) be an ordinary automaton on n-

branching trees. We say that A is tree-like if

• the set of states Q c TN forms a finite tree (see Def. 2.1.3),

• the initial state qinit is the root e, and

• for every transition (q, Z, ') e A and every i e [n], the state qj is either a

child or an ancestor of q.

Let A = (Q, qi.it , L, 1, 12) be an alternating automaton on n-branching trees.

We say that A is tree-like if

• Q c 1N' forms a finite tree,

• the initial state qi,it is the root c, and

• for every transition (q, q') e A the state q' is a child or an ancestor of q.

We call a state q of a tree-like ordinary or alternating automaton a loop state if

there is a transition q' —* q from some descendant q' of q back to q. The depth

of a tree-like ordinary or alternating automaton is the depth of the tree Q. 	0

Definition 3.2.2 An ordinary or alternating first recurrence automaton (abbre-

viated FR-automaton) on n-branching trees, is an ordinary or alternating auto-

maton A on n-branching trees such that

• A is tree-like, and

• the acceptance condition 12 of A is of the form 12 = (C, R), where G fl R = 0
and C U R is the set of loop states of A.

A run it of an ordinary or alternating FR-automaton A is accepting if for every

infinite path p of iv, q e G where q is the element of Q such that
• itfr(p(j)) = q for infinitely many i e N, and

• for every proper ancestor q' of q, 7(p(i)) = q' for only finitely many i e IN.
An ordinary or alternating FR-automaton on strings is defined as an ordinary or

alternating FR-automaton on 1-branching trees. 0

Notice that an infinite path p of a run iv of an FR-automaton fails the accept-

ance condition if q E R where q is defined as above. As with Bflchi and Rabin

automata, ordinary first recurrence automata correspond to restricted alternating

first recurrence automata.

Chapter 3 - Automata 	 75

Lemma 3.2.3 For every ordinary first recurrence automaton A there exists a

restricted alternating first recurrence automaton A', and vice versa, such that

L(A) = L(A').

Proof: See Appendix A. 	 D

3.2.2 First recurrence automata and mu-calculi

The tree-like structure and the acceptance condition of the first recurrence auto-

mata mean that alternating FR-automata resemble closely mu-calculus formulae

in positive normal form. In fact, the correspondence is so close that we can view

FR-automata as a representation of mu-calculus formulae, and vice versa. Let us

make this correspondence explicit.

Definition 3.2.4 Let A = (Q, 	, 1, (G, R)) be an alternating FR-automaton

on n-branching trees. Fix for every loop state q e C U R a fresh distinct vari-

able z(q). Define the Kn-formula corresponding to A, denoted by (A), by

(A) = q(q1t), where for every q E Q the formula (q) is defined inductively as

follows:

vz(q).'/'(q) if q E G
q(q) = . pz(q).'i/'(q) if q E R

I 0 (q) 	if q is not a loop state

where

where

- 	 z 	')
{ V(q,q')E

A(q ,q')E '/O(q, q
'(q, q')

-

z

if 1(q) =V
if 1(q) =A
if 1(q) =
if q is atomic and 1(q) = z

I q(q') if q' is a child of q
(q, q') =

z(q) if q' is an ancestor of q

For an ordinary FR-automaton A, the formula /.(A) is defined by viewing A as a

restricted alternating FR-automaton, as in Lemma 3.2.3. 0

Definition 3.2.5 Let q be a ,uKn-formula in pnf. We define the alternating FR-

automaton corresponding to 0 , denoted by A(0), by the following construction.

Define inductively a finite tree T labelled with subformulae of qf by:

• the root of T is labelled with T(e) =

• if T(t) is of the forms O A 'i/" or 0 V ', then t has two children, labelled with

0 and '/", respectively,

Chapter 3 - Automata 	 76

• if T(t) is of the form (Do then t has one child labelled with 0,
• if T(t) is of the form az.i/ then t has one child labelled with ',

• if T(t) is labelled with an atomic formula, then t is a leaf.

Define the automaton A(q) = (Q, q1 , L, 1, (C, R)) by:

• for every t E dom(T), t belongs to Q, except if T(t) = z e Z and there is

some ancestor t' of t such that T(t') = az.0 for some

• q init =
• (t, t') E A if t, t' E Q and either t' is a child of t, or t' is an ancestor of

t and there is some child t" of t such that t" is a leaf of T, T(t") = z and

T(t') = az.0 for some 0.
• for every t e

• 1(t) = V if T(t) is of the forms 0 V '/" or

• 1(t) = A if T(t) is of the form 0 /Y,

• 1(t) = Q if T(t) is of the form ®b, and

• 1(t) = z for an atomic z if T(t) =

• G={t E IT(t) is of the form vz.}, and

• R = It e Q I T(t) is of the form ltz.01. 	 D

Proposition 3.2.6 For every alternating FR-automaton A on n-branching trees,

L(A) = L(O(A)). Conversely, for every zKn-formula q in pnf, L(0) =

Proof: Take any model M E M. By Propositions 2.2.33 and 2.3.10, M q(A)
if there is a proper simple tableau T for (A) agreeing with M. From such a

tableau T is easy to read an accepting run ir of A on M, and vice versa. The

converse claim is shown in the same way. U

An important feature which alternating first recurrence automata share with

mu-calculus formulae is that complementation is easy for them. Remembering that

FR-automata can be viewed as formulae in positive normal form, complementation

corresponds to negating the formula and transforming the negated formula back

to positive normal form. Phrased in automata-theoretic terminology the comple-

mentation of an alternating first recurrence automaton amounts to changing all

V-states to A-states and vice versa, negating the labels of all atomic states, and

complementing the acceptance condition by changing (G, R) to (R, C).
Thanks to the correspondence between FR-automata and mu-calculus formu-

lae, most concepts related to formulae are also meaningful in connection with

automata, in particular the notion of activeness of a variable in a formula, and

the fixpoint alternation classes discussed in the context of formulae in Subsection

2.2.3.

Chapter 3 - Automata 	 77

Definition 3.2.7 Let A = (Q, qiii, L, 1, (G, R)) be an alternating FR-automaton,

and let q, q' e Q be states of A such that q is an ancestor of q'. We say that q is

active in q' if either

• there is a transition to q from some descendant of q', or

• there is some q" such that q is an ancestor of and active in q", q" is an

ancestor of q', and there is a transition to q" from some descendant of q'. 0

Definition 3.2.8 Let us define classes 11m, Em and L m of alternating FR-

automata as follows, for every m E IN.

An alternating FR-automaton A = (Q, qt, /., 1, (C, R)) belongs to the class

E ,,, if there is no sequence q1 ,. . . , q of loop states of A such that

1 qj is an ancestor of and active in 	for every 1 <i <m, and

2 qj e C iffi is odd, and qj E iffi is even, for every 1 <i <m.

Symmetrically, A E flm if if there is no sequence q1 ,. , q of loop states of A

such that condition 1 above holds and

2' qj eR if i is odd, and qj E C iffi is even, for every 1 <i < m.

Furthermore, A E L m if A E Em and A E 11m . 	 0

This characterisation of fixpoint alternation classes matches exactly the earlier

one for formulae. The simple characterisation of the alternation classes E 2 and 112

in Corollary 2.2.26 also carries over to automata.

Lemma 3.2.9 For any m E IN and Kn-formula 0, 0 E Em if A(0) E Em ,

and the same holds for 11m and L m . Conversely, for any m E IN and alternating

FR-automaton A, A E Em if q(A) E Em , and the same holds for 11m and L m .

Proof: Obvious from Definitions 3.2.4 and 3.2.5 of O(A) and A(), Definition

3.2.8 of E m for automata, and the characterisation of E m for formulae in Propos-

ition 2.2.25. 0

Lemma 3.2.10 For any alternating FR-automaton A = (Q, 	, 1, (C, R)), we

have A E E2 if there are no loop states q and q' of A such that

• q is an ancestor of q',

• there is a transition to q from some descendant of q',

• q e G and q' e R.

Symmetrically, A E 112 if there are no loop states q and q' of A such that

• q is an ancestor of q',

• there is a transition to q from some descendant of q',

• q e R and q' E G.

Proof: Immediate from definitions. 	 11

Chapter 3 - Automata 	 78

The correspondence between first recurrence automata and mu-calculus for-

mulae also allows transport of ideas in the other direction. Let us characterise

the class of formulae which correspond to restricted alternating FR-automata, i.e.

ordinary FR-automata.

Definition 3.2.11 Let 0 be a Kn-formula in pnf. We say that 0 is strongly

aconjunctive 1ff for all subformulae of 0 of the form 00 A ... A m-1,

. for every i e [m], either

. Oi is an atomic formula not bound by a fixpoint in 0 , or

. Oi is of the form ®, and

• for every i,j e [m} such that i 5/j, if Oi = (DO and Oj = (DO, then k =A 1.

EJ

For linear-time TL-formulae, the conditions degenerate to: if Oi = O'I', then
for every J 54 i, Oj is atomic and not bound by any fixpoint.

Definition 3.2.12 Let 0 be a jtKn-formula in pnf. We say that q is strongly

guarded if every fixpoint subformula oz.'b of q is immediately enclosed in a

operation, and every occurrence of z in O is also immediately enclosed in a

operation.

For example, a formula of the type ® (az.Vaz'.') does not fulfil the require-

ments of strong guardedness, since the fixpoints are not immediately enclosed in

a (73-operation, unlike e.g. in the formula (®az./') V (®az'.JY). It is easy to see

that strong guardedness implies guardedness for formulae.

Definition 3.2.13 Let 0 be a Kn-formula in pnf. We say that 0 is restricted

if

• 	is strongly aconjunctive, and

•0 is strongly guarded. 	 U

Lemma 3.2.14 If 0 is a restricted /1Km-formula in pnf, then the alternating FR-

automaton A(q5) is restricted, as well. Conversely, if A is a restricted alternating

FR-automaton, then the /1Km-formula (A) is also restricted.

Proof: Straightforward from Definitions 3.1.14 and 3.2.13. 	 11

Chapter 3 - Automata 	 79

3.2.3 First recurrence vs. Büchi and Rabin acceptance

As mentioned earlier, an important reason for introducing first recurrence auto-

mata in the current work has been to enable examination of the relations of fixpoint

calculi and automata. In previous subsection we studied the direct connection

between first recurrence automata and mu-calculus formulae. Now we shall look

at the relation of FR-automata and the more traditional Büchi and Rabin accept-

ance conditions. Although not quite as immediate as the correspondence between

FR-automata and mu-calculus, the relations between first reccurrence and the

other acceptance conditions are not too involved either. We shall see that Rabin

and first recurrence automata can be translated to each other, and that Biichi

automata correspond precisely to first recurrence automata in class 11 2 . Let us

start from Büchi automata, since the constructions for these are slightly easier.

Definition 3.2.15 Let A = (Q, qinit, L, 1, (C, R)) be an alternating first recur-

rence automaton such that A e 112 . We define the alternating B'üchi automaton

A' corresponding to A as A' = (Q, qinit, A, I, G). 	 El

Lemma 3.2.16 Let A and A' be as in Def. 3.2.15. Then

• L(A) = L(A'), and

• if A is restricted then so is A'.

Proof: To show the first claim, let ir be a run of A. If 7 is accepting according

to the first recurrence criterion, then it is obviously accepting also according to

the Bflchi criterion. Assume then that ir is not accepting according to the FR-

criterion, i.e. that there is a path p of ir and q e Q such that q V G (implying

q E R), q = .fr(p(j)) for infinitely many i E TN and q' = fr(p()) for only finitely

many i E IN for any proper ancestor q' of q. This means that there is some k E TN

such that for every i > k, q is an ancestor of and active in '(p()) Now, for

any loop state q' such that q' = irf'r(p (i)) for some i > k, it must be the case

that q' e R (implying q' V C), as otherwise by Lemma 3.2. 10 the pair q, q' would

violate the assumption that A E 112. But then 7r 1 (p(i)) V G for all i > k, and 'it is

not accepting according to the Büchi criterion, either. Finally, it is obvious that

if A is restricted then so is A'. 0

Definition 3.2.17 Let A = (Q, qinih A, 1, F) be an alternating Büchi automaton.

We define the alternating FR-automaton A' corresponding to A by the following
construction.

Define inductively a finite tree T labelled with states q E Q by:

• the root of T is labelled with T(f) =

Chapter 3 - Automata 	 80

. if T(t) = q and t is not a leaf (see below), then t has a child labelled with q'

for every q' E Q such that (q, q') e L, and

t is a leaf of if either

1 there is a proper ancestor t' of t such that T(t') = T(t) and T(t') E F, or

2 there is a proper ancestor t' of t such that T(t') = T(t) and for all t" such

that t' -< t" -< t, T(t11) 	F.

In both cases we call t' the loop node corresponding to t. We say that a node t'

is a loop node of type 1 (type 2) if there is some node t of T such that t' is the

loop node corresponding to t and clause 1 (clause 2) above holds.

Define now A' = (Q', q, Lx!, 1', (G, R)) by:

• Q' = { t e dom(T) J t is not a leaf},

• 	=

• (t, t') e A ifft eQ' and either

• t' is a child of t and t' is not a leaf, or

• there is some child t" of t such that t" is a leaf and t' the loop node

corresponding to t",

• for every t e Q, l'(t) = 1(T(t)),

• G={t' e Q' It' is aloop node oftype 11, and

• R = { t' e Q' I t' is a loop node of type 2}. 	 U

Lemma 3.2.18 Let A and A' be as in Def. 3.2.17. Then

• L(A) = L(A'),

• if A is restricted then so is A',

• A' E 112, and

• the depth of A' is at most 1Q1 2 .
Proof: Let us show the last claim first, since it also implies that A' is finite and

in that sense well-defined. Let T be the tree used in defining A', and let t 0 ,. . . , tk
be any prefix of a path of T for which no t j is a leaf. Notice first that there must

be fewer than IQI points 0 < i < k for which T(t) E F, since otherwise some

tj would satisfy leaf condition 1. Secondly, the distance between any two such

points must be less than IQI, since otherwise leaf condition 2 would be satisfied.

Consequently k < 1Q12.
To see that L(A) = L(A'), let us see that there is a one-to-one correspondence

between the runs ir of A and ir' of A' such that dom(ir) = dom(ir'), and for all

t E dom(7r), if 7r (t) = (s, q) and ir'(t) = (s', q'), then s' = s and T(q') = q,

where T is the tree involved in the construction of A. For any run 7F of A, we

can define the corresponding run 71 ' of A' inductively by: 71 ' (f) = (€, q), and if
ir'(t) = (s', q') and 71(t) = (s, q), where s' = sand T(q') = q, then for every i E TN,

Chapter 3 - Automata 	 81

if ir(t i) = (si , qj) then ir'(t i) = (s, q), where s = si and q is the element of Q'

such that (q', q) E 6 and T(q) = qi. By definition of Q', such a q exists and is

unique. For any run it ' of A', we can define the corresponding run it of A by: for

all t e dom(7r'), if ir'(t) = (s', q'), then 7r(t) = (s, q), where s = s' and q = T(q').

Let us show then that a run it of A is Büchi accepting if the corresponding

run it ' of A' is FR-accepting, and vice versa. Take any infinite path p of 'it and it ' .

If i-' satisfies the FR-acceptance condition (G, R) along p, there is some loop state

q' E C such that q' = it 'r(p(j)) for infinitely many i E IN. Defining q = T(q'), this

implies that q e F and q = itfr(p(j)) for infinitely many i e TN, i.e. it satisfies the

Biichi acceptance condition F along p. If it ' does not satisfy the FR-acceptance

condition (C, R) along p, there is some loop state q' E R and a bound k E IN

such that q' = itfr(p(j)) for infinitely many i E IN, and q' is an ancestor of and

active in " (p(i)) for all i > k. But by the structure of A', the latter means

that (p(i)) = T('(p(i))) 0 F for all i > k, i.e. it fails the Büchi acceptance

condition F along p, as well.

The claim A' E 112 follows immediately from the definition of A' and Lemma

3.2.10. Assume then that A is restricted. It is clear that A' is guarded and

strongly aconjunctive. Loop states in C are principal by the assumption that

every element of F in A is principal, and loop states in R are principal, since

any path with two occurrences of an auxiliary state q must have already passed

through two occurrences of the principal state that q is subordinate to. Finally, the

tree-like structure of A' and the fact that loop states of A' are principal guarantee

that every auxiliary state is a subordinate of exactly one principal state. E1

We can now pull together some results tying together the alternation class 112

and Biichi acceptance.

Theorem 3.2.19 For any language L c M, the following statements are mu-

tually equivalent:

• L = L() for some Kn-formula q E ll,

• L = L(A) for some alternating first recurrence automaton A E 112 , and

• L = L(A) for some alternating Büchi automaton A.

Furthermore, the following statements are also mutually equivalent:

• L = L(q) for some restricted Kn-formula q E 112,

• L = L(A) for some restricted alternating first recurrence automaton A e 112,

and

• L = L(A) for some ordinary or restricted alternating Büchi automaton A.

Proof: Immediate from Proposition 3.2.6 and Lemmas 3.2.9, 3.2.16, 3.2.18,

3.2.14 and 3.1.15. 	 11

Chapter 3 - Automata 	 82

Let us then present translations between Rabin and first recurrence automata.

Definition 3.2.20 Let A = (Q, qinit, L, 1, (C, R)) be an alternating first recur-

rence automaton. We define the alternating Rabin automaton A' corresponding to

A as A' = (Q, 	L, 1, Q), where Q = ((CO3 R0), . .. , (G.- 1 , R,,,- 1)) is defined by

G0 =G

= {q e R I q' E C 2 such that q is active in q'}

G 1 = {q e G I q' e R such that q is active in q'}

and m = min{i E IN I C 2 = O}. 	 D

Lemma 3.2.21 Let A and A' be as in Def. 3.2.20. Then

• L(A) = L(A'),

• if A is restricted then so is A', and

• if A E m+2 then the index of A' is at most m, for every m e IN.

Proof: To see L(A) = L(A') let it be a run of A. Assume first that it is accepting

according to the Rabin condition Q and let p be an infinite path of it. Take some

k e [m] and some q e Gk such that q occurs infinitely often along p in it. Since

every state q' e R which is active in q belongs to Rk by definition, no such state

can occur infinitely often along p in 71. Therefore, the oldest state which occurs

infinitely often along p in it must belong to G and p satisfies the FR-condition

(C, R). Assume then that it is accepting according to the FR-condition (C, R)

and let p be an infinite path of it. Let q E C be the oldest state which occurs

infinitely often along p in it. Notice that by its definition q is active in any state

q' occurring infinitely often along p in it. Take then the largest k E [m] such that

q e Gk. Since q Gk+i, it cannot be active in any q' E Rk, implying that no

q' e Rk can occur infinitely often along p in it. Consequently, p satisfies the Rabin

acceptance pair (Gk, Rk). Finally, the second claim of the lemma is obvious and

the third follows directly from the definitions of m+2 and ft D

Definition 3.2.22 Let A = (Q, q, A, I,) be an alternating Rabin automaton,

where I2 = ((G0 , R0),. . ., (Gm_ i , Rm _i)). We define the alternating first recur-

rence automaton A' corresponding to A by the following construction.

Define inductively a finite tree T, each state of which is labelled with a pair

(q, c) of a state q E Q and a permutation of indices of acceptance pairs, i.e. a

permutation of the string 01 ... (m - 1), as follows:

• the root of T is labelled with T(e) = (q71, 01 . . . (m - 1)),

Chapter 3 - Automata 	 83

• if T(t) = (q, c) and t is not a leaf (see below), then t has a child labelled

with (q', c') for every q' E Q such that (q, q') e /, where the sequence c'

is derived from the sequence c by taking the first element c(i) such that

q e R(), if any exists, and moving it to the end of the sequence.

Let t be a node of T and T(t) = (q, c). Define

k = max {j E [m] I for all O<i<j

Then t is a leaf of if there is a proper ancestor t' oft labelled with T(t') = (q', c')

such that

• q = q',

• c[O ... k] =c'[O ... k] and either k=m-1 orc(k+1) =c'(k+l),

• q" 	' G"() U R"(), for all 0 < i < k and all t' -< t" -< t,

where T(t") = (q", c"),

and either

1 k < m - 1, q E G(k+1) and q" V R"(k+l) for all t' -< t" -< t, where

T(t") = (q", c"), or

2 k=m—lorqeR(kl).

The concepts of a loop node of type 1 and type 2 are defined as in Def. 3.2.17.

The FR-automaton A' is also defined on the basis of the tree T precisely as in

Def. 3.2.17.

Lemma 3.2.23 Let A and A' be as in Def. 3.2.22. Then

• L(A) = L(A'),

• if A is restricted then so is A',

• A' E m+2, and

• the depth of A' is at most IQI 2"'
where m is the index of A.

Proof: Let us show the last claim first, since it also implies that A' is finite and

in that sense well-defined. Let T be the tree used in defining A'. We shall show

by descending induction on 0 < h < m that

for any node t of T and any ancestor t' of t, if for every t' - t" -< t,

t" is not a leaf, and for every t' - t" t and every 0 < i < h,

q" V G"() U Rn where T(t") = (q", c"), then the distance between

t' and t is at most Q12(m_h)+1

The claim concerning the depth of A' follows from the case h = 0.

The base case of the induction is h = m. Take any t and t' as in the induction

claim. Notice that now c = c" and q" G ,, () U R" for every i e [m] and every

Chapter 3 	Automata 	 84

t' -< t" -< t, where T(t") = (q", c"). But then the distance between t' and t must

be less than IQl since otherwise leaf condition 2 would be satisfied by some t"

between t' and t, with k = m - 1.

Assume then that the claim holds for h + 1, and take any t and t' as in the

induction claim. Notice first that there can be at most IQI points t" between t' and

t for which q" E RC"(h+l), as otherwise leaf condition 2 would be satisfied by some

such t" and k = h - 1. Secondly, between any two such points t" there can be at

most JQJ points till for which q" e GC"(h), as otherwise leaf condition 1 would be

satisfied by some such till and k = h - 1. Thirdly, by the induction assumption the

distance between any two such t'" must be less than Q12(m-(h+1))+1 Consequently,

the distance between t' and t must be less than Q12(,)+1, and the induction claim

holds for h.

To see that L(A) = L(A'), notice that as in the proof of Lemma 3.2.18, there

is a one-to-one correspondence between the runs 71 of A and ii ' of A' such that

dom(ir) = dom(ir'), and for all t e dom(ir), if 7r(t) = (s, q) and 7r'(t) = (s', q'),

then s' = s and T(q') = (q, c) for some c. Let us show that a run ir of A is Rabin

accepting if the corresponding run 71' of A' is FR-accepting, and vice versa. Define

qt = fr() and q 7" (t), r(t), and write Ct for the sequence such that T(q) = (qt, c,),

for every t E dom(ir).

Notice first that for any loop state q' of A' and any state q of A' such that q' is

an ancestor of and active in q, if we write T(q) = (q, c) and T(q) = (q, c) and
define k as in Def. 3.2.22, then c[O... k] = c[O... k] and q ' G() U for

all 0 < i < k. If additionally q' E G, then qx 0 R(k+1) and c(k + 1) = c(k + 1).

Take then any infinite path p of ir and 71'. There is some loop state q' of A' and
a bound I E IN such that q' = q() for infinitely many j E IN, and q' is an ancestor
of and active in q() for all j > I. Let us write T(q') = (q, c) and define k as in Def.

3.2.22. If -' satisfies the FR-acceptance condition (G, R) along p, i.e. if q' E C, the

observations of the previous paragraph mean that c(l)(k + 1) = c() (k + 1) for all

I > 1, and if we define h = c(l)(k + 1), then qp(j) E Gh for infinitely many j E IN,

and qp(j) Rh for all j > 1, which means that 71 satisfies the Rabin acceptance

pair (Gh, Rh) along p.

If 71' does not satisfy the FR-acceptance condition (G, R), i.e. if q' E R, the

observations above mean that

• for all 0 < i < k and all j > 1, qp(j) 	GC() (i) and c()(i) = C(l)(i), and
• either k = m - 1 or qp(j) E RC() (k +1) for infinitely many j E V. By the

rules of updating c in transitions, this means that for every h e [m] such
that h = c(i)(i) for some k < i < m - 1, we have qp(j) E Rh for infinitely
many j E N.

Chapter 3 	Automata 	 85

Together these mean that for every h E [m] either qp(j) V Gh for all j > 1, or

qp(j) e Rh for infinitely many j E IN. Consequently, 7r does not satisfy the Rabin

acceptance condition Q along p either.

Let us show then A' E E,,,+2. Take any loop states q and q of A' such that

q'1 is active in q, write T(q) = (qi, ci), T(q) = (q2, c2), let k 1 be defined on the

basis of (q1, c 1) as in Def. 3.2.22 and let k2 be defined similarly. Then, if q E C
and q eR, we have k 1 < k2 , and if E Rand q e G, we have k 1 < k2 . Since

all such k's belong to [m], the claim A' E m+2 follows then directly from the

definition of the class E,,+2. Finally, the fact that if A is restricted then so is A'
can be seen as in Lemma 3.2.18. D

Related translations between Rabin automata and parity automata can be

found in [65]. Translations between ordinary Rabin automata and what is essen-

tially the restricted fragment of the modal mu-calculus itKn, i.e. ordinary FR-

automata, have also been described by Niwiñski in [70, 71]. The relation between

the index of Rabin automata and the alternation class of the corresponding formula

was first stated there.

We can now summarise the equiexpressiveness results obtained so far concern-

ing the modal mu-calculus yKn, first recurrence automata and Rabin automata.

Theorem 3.2.24 For any language L c M and any m E IN, the following

statements are mutually equivalent:

• L = L(q) for some Kn-formula 0 e
• L = L(A) for some alternating first recurrence automaton A E m+2, and

• L = L(A) for some alternating Rabin automaton A with index at most M.

Furthermore, the following statements are also mutually equivalent:

• L = L(q) for some restricted Kn-formula q E Em ,

• L = L(A) for some ordinary or restricted alternating first recurrence auto-

maton A E m+2, and

• L = L(A) for some ordinary or restricted alternating Rabin automaton A
with index at most m.

Proof: Immediate from Proposition 3.2.6 and Lemmas 3.2.9, 3.2.21, 3.2.23,

3.2.14, 3.2.3 and 3.1.16. 	 El

3.2.4 Decidability of ordinary FR-automata

In this subsection we show that it is easy to decide the emptiness of an ordinary

or restricted alternating first recurrence automaton A, i.e. to answer the question

whether L(A) = 0 or not.

Chapter 3 - Automata 	 86

Proposition 3.2.25 Let A be an ordinary or a restricted alternating first recur-

rence automaton. We can determine whether L(A) = 0 or not, and this can be

done in a time which is linear in the size of A.

Proof: Let A = (Q, 	L, 1, (C, R)) be a restricted alternating FR-automaton

on n-branching trees. Let us call a transition (q, q') E A bad if q' is an ancestor

of q and q' E R, i.e. if (q, q') is a transition back to a loop state in R. Define

inductively the concept of a bad state q E Q by:

• if 1(q) = V, then q is bad if for every q' e q such that (q, q') E L, either the

transition (q, q') is bad, or q' is a child of q and q' is bad,

• if 1(q) = A, then q is bad if there is some q' E q such that (q, q') E L and

either 1) the transition (q, q') is bad, or 2) q' is a child of q and q' is bad,

or 3) there are some q', q" e Q and z e Z such that (q, q') E A, (q, q") E

1(q') = z and l(q") = -iz

• if 1(q) = 0, then q is bad if for the q' E q such that (q, q') e L, either the

transition (q, q') is bad, or q' is a child of q and q' is bad, and

• if q is atomic, then q is bad if 1(q) = I.

It is clear that we can compute the set of bad states in a time linear in IQI + JAI

by an ordinary depth-first search. We claim now that L(A) = 0 if is bad.

Assume first that qi,it is bad, and take any run it of A on any model M. Let

us construct inductively an infinite path p of it such that for every i e IN, every

ancestor of it(p(i)) (including the state itself) is bad, and if 7 f"(p(%* + 1)) is not a

child of itfr(p(j)), then the transition (itfr(p(j)), fr(p(+ 1))) is bad, implying that
itfr(p(j + 1)) e R. Such a path p cannot fulfil the FR-acceptance condition (G, R),

since in order to be accepted p would need to have infinitely many transitions

back to an ancestor in G, i.e. infinitely many i E IN such that itfr(p(j + 1)) is an

ancestor of itfr(p(j)) and itfr(p(j + 1)) E G.

We can construct such a path p by starting from p(0) = € and defining p(i +1)

for every i e IN as some child of p(i) in it such that either 7 fr 	is an ancestor

Of 	(p(i)) and (itfr(p(j)), fr(p(j + 1))) is a bad transition, or it(p(i + 1)) is a

child of it(p(i)) and it"(p(i + 1)) is bad. This p is well-defined, since q7t is bad,

and since by the definition of a run there can be neither any t E dom(ir) such that

1(,,(t)) = I, nor any t e dom(ir), z e 2 and q', q" E Q such that 1(it"(t)) = A,

1(q') = z, 1(q") = - z and q' and q" are both children of 7r 1"(t). Since we can

construct such a non-accepting path for any run it of A, we have L(A) = 0.

Assume then that qjjj is not bad. Let us define inductively an accepting run it

of A such that for all t E dom(it), no ancestor of r(t) (including the state itself)

is bad, and for all children t' oft, if itfr(tI) is an ancestor of itfr(t), then itf'r(tI) e G.

Chapter 3 - Automata 	 87

The run it is defined by

• the root of it is labelled with 7r (c) = (f, q2),

• if ir(t) = (s, q) and 1(q) = A, then t has a child labelled with (s, q') for every

q' e Q such that (q, q') e
• if ir(t) = (s, q) and 1(q) = V, then t has one child labelled with (s, q'), where

q' is some element of Q such that (q, q') E A and neither the state q' nor the

transition (q, q') is bad,

• if ir(t) = (s, q) and 1(q) = ®, then t has one child labelled with (s z" q'),

where q' is the element of Q such that (q, q') E L, and

• if ir(t) = (s, q) and q is atomic, then t is a leaf.

Take any infinite path p of it. If would fail the FR-acceptance condition (G, R),

there would have to be infinitely many i E IN such that ir"(p(i + 1)) is an ancestor

of itf'(p(j)) and it(p(i + 1)) e R. But this is impossible by the properties of it,

which means that it is an accepting run.

We still need to show that it is actually a run of A on some model M. Define a

model M as follows. For all states s e st(M) and all z e 2, z e M(s) if there is
some t e dom(it) such that itst(t) = s and l(itfr(t)) = z. To see that it is consistent

with the model M, notice that due to the strong aconjunctivity of A, whenever

there are t', t" E dom(it) such that 71 8t (t!) = irst(tl) and both it(tI) and R- (t") are

atomic, then t' and t" are both children of some t such that l(it'(t)) = A, which

means in turn by the definition of badness for A-states that l(ir(t')) and 1(7(t"))

cannot be mutually contradictory or I. Consequently there is a model M e L(A)

and L(A) 54 0. cJ

As restricted FR-automata are really restricted iKn-formulae, and vice versa,

we can formulate the decision method also in terms of formulae. In this setting

it amounts to the following. When determining the satisfiability of a restricted

iKn-formula q in pnf, replace first every subformula of 0 of the form iz.i/ by
p'z.i/', i.e. by 0[I/z], and every subformula of the form vz.'b by v 1 z.0, i.e. by

[T/z]. Reduce then subformulae of the resulting formula according to the rules:

'L' A I reduces to I

I V I reduces to I

(731 reduces to I

z A —z reduces to I

If the whole formula reduces to I then it is not satisfiable and otherwise it is

satisfiable.

Chapter 3 - Automata 	 88

The decision procedure for restricted alternating first recurrence automata also

allows us to solve the emptiness problems for ordinary FR-automata and ordinary

or restricted alternating Büchi and Rabin automata. It suffices to observe that

all the translations which we have presented between these types of automata are

clearly computable. Notice though, that unwinding automata to a tree-like form

causes an exponential penalty, which means that implementing the translations

directly does not lead to an optimal decision procedure. The decision problem

for ordinary Büchi tree automata is known to be logspace complete for PTIME

[77, 97] and the same problem for ordinary Rabin tree automata is NP-complete

[31].

However, if we are interested in efficient algorithms, with certain modifications

to the current framework it appears to be possible to retain the essence of it but

avoid the exponential blowup caused by unwinding graphs to trees. Let us just

outline this briefly. The basic idea is to relax the structural requirements for a

first recurrence automaton so that it is no longer 'a tree with back transitions'

but 'a rooted dag (directed acyclic graph) with back transitions' fulfilling the

following hierarchy condition: If we take any state q of the automaton and any

two non-looping paths q0 , . . . , g and q,.. . , q, from the initial state to q and

define

g = max{O < i < k I qj E G and qj is active in q}

r = max{O < i < k I qj E R and qj is active in q}

gr = max{O<i<kqeGuR and qis active inq}

and g', r' and gr' analogously, then

• if q e G then r is well-defined if r' is, and if both are then q,. = q,,

• if q E R then g is well-defined if g' is, and if both are then q 9 = q,, and

• if q V G U R then gr is well-defined if gr' is, and if both are then q 9 . = q1.

Although in this more general framework it is no longer the case that for every

infinite path of a run there would be a unique state such that it occurs infinitely

often along the path but none of its proper ancestors does so, the hierarchy condi-

tion guarantees that either all such states belong to C or they all belong to R. This

means that the first recurrence acceptance condition (G, R) still makes sense. Fur-

thermore, the basis of the decision procedure above, a depth-first traversal where

each state is visited at most once, can also be augmented to work in this more

general setting. It then appears to be possible to translate Rabin automata to

these more general first recurrence automata in the same way and within the same

Q12m+l depth bound as here, where m is the Rabin index of the automaton, and

to match the (IQI m)o(m) time complexity of the decision algorithm in [31, 33].

Chapter 3 - Automata 	 89

However, since efficiency is not our main concern in the current work and

this line of research is still partly under development, we shall not examine the

more general framework further here. We would still like to point out, though,

that analogous to the relation between FR-automata in the usual sense and modal

mu-calculus, there is a natural correspondence between these more general auto-

mata and the logical language extending mu-calculus with simultaneous vectorial

fixpoints v(x0,... , . ,) and A (x0 ,. . . , Xk).(O,...) 00-

3.3 Quantification and ordinary automata

As we have mentioned before, a central motivation for studying ordinary non-

alternating automata on infinite objects in the first place was the decidability of

the monadic second-order calculi S1S and SnS. The function of the automata in

this task is to work as a normal form to which every formula can be inductively

transformed and which can relatively easily be checked for satisfiability. Crucial

to the translation of formulae to automata is that the automata are closed under

the logical connectives of the language. As shall be seen in the following sections,

closure under disjunction, conjunction and modal operators is not problematic.

Negation or complementation, on the other hand, is highly complicated.

However, what is probably the most valuable property of ordinary automata

as far as inductive translations from second-order calculi are concerned, is that

existential second-order quantification over sets or properties is trivial for ordinary

automata. In fact, if L(A) = L(q) for an ordinary automaton A, all that needs

to be done to obtain an automaton A' such that L(A') = L(3z4) is to erase all

references to z from A. At the heart of this property is a certain 'localisation'

of all requirements that an automaton sets to a particular state of a model; they

are all present at a particular point of a run of the automaton. In both automata

and formulae the feature guaranteeing such localisation of requirements is strong

aconjunctivity, which prevents different conjuncts from setting requirements to

the same future state. Let us discuss the relation between strong aconjunctivity,

ordinary automata and second-order quantification in some more detail.

Lemma 3.3.1 Let 0 be a strongly aconjunctive iKn-formula in pnf and z a

variable. Then there exists a Kn-formula qY such that

• for every model M e M, M = çb' if M[W/z] = for some W c st(M),
• if q is restricted then so is /i, and

• for any alternation class 'T m , >I m or L m , çb' belongs to the class if 0 does

so.

Chapter 3 - Automata 	 90

Proof: Without loss of generality we can assume that 0 has no subformulae of

the type z A z, as these can be replaced by I. We obtain the required qY from

q by replacing every occurrence of both z and -lz in it by T.

Take any model M and assume that there is some W ç st(M) such that

M{W/z] P q. By Prop. 2.2.33 there is a proper simple tableau T for 0 agreeing

with M[W/z]. By replacing every occurrence of both z and -iz in T with T, we

can read from T a proper tableau T for qY agreeing with M, which implies that
(1

Assume then that M J= qY. By Prop. 2.2.33 there is a proper simple tableau

T' for qY agreeing with M. By changing some T's in T' to z or -z, we can read

from T' a proper simple tableau T for 0 . Defining W as the set containing those

S e st(M) for which there is some t e dom(T) such that T(t) = (s, z, d) for some

d, the tableau T agrees with M[W/z], implying that M[W/z] 1= q. Notice that

due to the assumption that 0 is strongly aconjunctive, we know that if t' 54 t" and

T(t') = (s', x ' , d') and T(t") = (s", x", d") such that s' = s" and x ' , x " E {z, -z},

then both t' and t" are children of some node t, derived by the A-rule, and by the

assumption in the beginning it cannot be the case that x and x' would be mutually

contradictory. This guarantees that T indeed agrees with M[W/z]. El

Proposition 3.3.2 Let A be a restricted alternating first recurrence automaton

on n-branching trees, and z a variable. Then there exists a restricted alternating

first recurrence automaton A' such that for any model M e M, M € L(AI) if

there is some W c st(M) such that M[W/z] E L(A). The same claim holds also

with respect to ordinary FR-automata, and ordinary and restricted alternating

Biichi and Rabin automata.

Proof: Let A be a restricted alternating FR-automaton. By 3.2.6 we can view

any such automaton as a restricted iKn-formula, and vice versa. Being restric-

ted, A is strongly aconjunctive. We obtain the required A' by the construction

of Lemma 3.3.1, effectively by erasing all references to z from A. As this does

not affect the acceptance condition of the automaton in any way, the same con-

struction works also for restricted alternating Bflchi and Rabin automata. The

claims concerning ordinary automata are obvious due to the correspondence with

restricted alternating automata. El

So, closure under existential second-order quantification is easy for ordinary

automata, and conjunction, disjunction and modal operators are not too hard

either. What makes an inductive translation from calculi like 3Kn or Si-iS to

ordinary automata difficult is negation. The situation is directly opposite for

Chapter 3 - Automata 	 91

name application name application

Fu I V) v',1"} ________
V A 	r u fo, vj

FU{ax.}
FU{[ax./x]}

o {zl, ... ,zk,©itbi,...,'cbm} 	1 r0 	r 1 	•..

Note: 	1: each z3 is atomic, and ri = f oi I ii = i}.
In each rule, F is disjoint from the other set

Table 3.2: Derivation rules for Lemma 3.3.3

alternating automata in general and for alternating first recurrence automata in

particular: complementation is easy, but due to lack of aconjunctivity it is not at

all clear that closure under quantification holds.

If we were able to translate alternating automata to equivalent ordinary ones,

we could enjoy the best of both scenarios and obtain an inductive translation

from a calculus with second-order quantifiers to ordinary automata. In this case

we could complement an automaton by viewing it as an alternating automaton,

complementing this alternating automaton, and translating the result back to an

ordinary automaton. Alternatively, we could formulate the translation in terms of

alternating automata, and deal with quantification by translating an alternating

automaton to an ordinary one, erasing the occurrences of the quantified variable in

the ordinary automaton, and interpreting the result as an alternating automaton.

Because of this, it is worth looking at the issue of relating ordinary and altern-

ating automata to each other, beyond the rather trivial observation that ordinary

automata are a subclass of alternating automata. Let us see first for a restricted

subcase that some alternating automata can be transformed to ordinary automata.

For technical convenience, the following lemma has been formulated in terms of

jKn-formulae, but as has already been pointed out in countless occasions, these

are just alternating first recurrence automata.

Lemma 3.3.3 For every pKn-formula 0 E E l , there exists a restricted jiKri-

formula 'I' E E l such that = q 	b.

Proof: By Prop. 2.2.36 we can assume without loss of generality that 0 is
guarded. Let us define inductively a finite tree T labelled with sets of formu-

lae:

. The root of T is labelled with T(f) = {}.

Chapter 3 - Automata
	

92

• If a node t is not a leaf (see below), the children of t are derived by one of

the rules in Table 3.2. Depending on the rule applied at a node t, t is called

a V, A, a or 0-node, respectively.

A node t is a leaf if either

1 it is labelled with the empty set, or

2 it is derived from its parent by the 0-rule, and there is some proper ancestor

t' of t such that T(t') = T(t) and t' is also derived from its parent by the

0-rule. In this case we call t' the loop node corresponding to t.

Fix for every loop node t of a distinct fresh variable z(t). Define the formula

by O = x(E), where X(t) is defined inductively for every node t of T by:

- I z(t).0(t), if t is a loop node
X(t) -
	0(t), 	otherwise

where
V10(t') I t' is a child of t

	
if t is a V-node

0(t')
	

if t is a A-node and t' the child of t
0(t')
	

if t is a or-node and t' the child of t
0(t) = 	(A{z e T(t) I z is atomic }) A AE[fl] ®X(t A if t is a 0-node

T
	

if t is a leaf of type 1
z(t')
	

if t is a leaf of type 2 and t'
the loop node corresponding to t

It should be clear that 'II' is restricted and that e E l - To show that 1= q
take any model M e M. By Prop. 2.2.39 and 2.3.10, M = q if there is a proper

bundled tableau T for 0 agreeing with M, and M = 0 if there is a proper bundled

tableau T' for 0 agreeing with M. Since q E Ei , from Lemma 2.2.54 and Prop.

2.3.17 we can see that T is proper if for every infinite path p of T, Fp (i) = 0 for

some i E IN, and that the same holds for T'. As it is easy to read a tableau T' for

iJ' agreeing with M, from a tableau T for q agreeing with M, and vice versa, this

means that we can read a proper tableau T' for 0 from any proper tableau T for

, and vice versa. Consequently, M = if M = . 	 D

A formula 0 E El with only minimal fixpoints can be viewed as an alternating

finite automaton on finite strings. The construction of the lemma above corres-

ponds then to mapping such automata to normal non-deterministic finite automata

on finite strings.

We can take advantage of the transformation in the lemma above to show our

first full correspondence result between a formalism with second-order quantifiers

and one with fixpoints. This result is for the weak language lKn, essentially

another formulation of WSnS, and the fixpoint alternation-free fragment L2 of
Kn.

Chapter 3 - Automata 	 93

Lemma 3.3.4 Let 0 be a non-alternating Kn-formula, i.e. 0 E L2, and z a

variable. Then there exists a non-alternating Kn-formula 0' such that for any

model M E M, M = qY if there exists a finite set W c st(M) such that

M[W/z] 1= q'.

Proof: By Prop. 2.2.36, we can assume without loss of generality that q is

guarded. Let us construct a finite tree T labelled with sets of formulae precisely

as in the proof of Lemma 3.3.3 (notice here that the or-rule also applies to maximal

fixpoints). Define also for every node t of T a formula X(t) as in the proof of

Lemma 3.3.3, except that if t is a loop node then X(t) = iz(t).O(t) V x(t) (instead

of X(t) = z(t).O(t)), where x(t) is a fresh variable. Define then x = x() and

= X{a(ti)/x(ti),.. . , O(tm) /X(t m)], where ti,. . . , tm are the loop nodes of T, and

every a(t) = (A T(t 2))[I/z], i.e. a(t) is the conjunction of all formulae labelling

t, with the exception that z has been replaced by I. It should be clear that

without the [±/z]-part, the formula '4' would be equivalent to q.
Take any model M. We claim now that there is a finite W such that

M[W/z] = 0 if there is some W' such that M[W'/z] = . Take some finite

W such that M[W/z] = , which implies by Prop. 2.2.39 and 2.3.10 that there is

a proper bundled tableau T for q agreeing with M[W/z]. Due to the finiteness of

W we know that

• for every s E st(M), if there is no descendant s' of s such that s' E W, then

for any tKn-formulaa, M[W/z],s j= a'iffM[O/z],s = ciffM,s = a[I/z],

and

• on any infinite path p of M there is some point i E IN such that s' W for

all descendants s' of p(i)

These allow us to read a tableau T' forO agreeing with M[W/z] from T, implying

that M[W/z} 1= '/'.

Assume then that there is some W' (which is not necessarily finite) such that

M[W'/z] 	, which means that there is a proper bundled tableau T for

agreeing with M[W'/z]. Define now a finite set W by:

W = {s e WI I 3t E dom(T) : T(t) = (s,F,d) and z e F for some F, d}

This set is indeed finite, since z does not appear in any c(t) in 0 and the

i-fixpoints of x() can be unfolded only finitely many times. We can read a

tableau T for 0 agreeing with M[W/z} from T', implying that M[W/z] I= q.

Notice then that the formula x is restricted, hence strongly aconjunctive, and

that x E E l . Consequently, by Lemma 3.3.1 there exists a Kn-formula x' E >
such that for every model M E M, M = x' if there is some W c st(M) such

Chapter 3 - Automata 	 94

that M[W/z] 1= X. Define çb' = X'[a(ti)/x(ti), . . . , tm)1X(t m)1. Since z does

not occur in any of a(t), this implies that for every M e M, M = çb' if there

is some W ç st(M) such that M[W/z] = '. But by the intermediate claim

above we know that the latter holds if there is some finite W c st(M) such that

M[W/z] = q. This concludes the proof. U

The construction of Lemma 3.3.4 above is a reformulation of [68, Lemma 11.

Theorem 3.3.5 For every Kn-formula 't' there exists a Kn-formula qf such

that 0 	, and q' E L2.

Proof: The claim is shown inductively on the structure of /'. For atomic formulae

the claim is obvious, since they belong to both languages. Assume then that for

and sb', there are 0 and çb', respectively, satisfying the claim. For Ø'iJ, 0 A and

-"iO, the formulae ®, q A çb' and -' q satisfy the claim, respectively, and for G,

the formula vz.çb A Oz, where z is fresh, does so as well. Since 0 e A2, by Lemma

3.3.4 there is some qY E L2 such that M = 0' if there is a finite W c st(M) such

that M[W/z] = , i.e. if M = 	justifying the induction step for 1z.0, as

well. 	 U

Corollary 3.3.6 For any language L c M, the following statements are mutu-

ally equivalent:

• L = L(q) for some Kn-formula q,
• L = L(q5) for some WSnS-formula 0, and

• L = L(q) for some Kn-formula 0 such that q E

Proof: Immediate from Prop. 2.2.52, Theorem 2.2.57, Prop. 2.3.16, Prop. 2.3.17

and Theorem 3.3.5. 	 0

This result has been shown previously in [4]. The alternating first recurrence

automata in the class L2, i.e. the non-alternating Kn-formulae, have a close con-

nection to the so-called weak alternating automata of Muller, Saoudi and Schupp

[68, 69]. In fact the only real difference is that FR-automata are required to be

tree-like, whereas weak alternating automata are not. In this framework Muller,

Saoudi and Schupp prove a correspondence theorem equivalent to the one above

[68]. Weak alternating automata have attracted interest, because many program-

ming logics are easily reducible to such automata, and they therefore provide a

universal framework in which to study the decidability of these logics. For more

discussion of this aspect, see [69].

Chapter 3 — Automata 	 95

3.4 Fixpoints for ordinary automata

As explained in last section, if we are able to devise a translation from alternat-

ing automata to ordinary ones, this will also yield an inductive translation from

calculi like Kn and SnS to ordinary automata and show their decidability. The

current section will describe such translations from alternating formalisms to non-

alternating ones.

3.4.1 Fixpoints and Büchi acceptance

In this subsection we describe a construction translating A tKn-formulae in the

fixpoint alternation class 1`12 to ordinary Büchi automata so that for a given formula

and the corresponding automaton A, L() = L(A).

Let us assume that a formula 0 is in positive normal form. The method of con-

structing A O is inductive. For each basic Kn-formula we define a corresponding

automaton directly, and for conjunction, disjunction and the modal and fixpoint

operators we describe a method for obtaining the required automaton from the

automata corresponding to the formulae the operator is applied to. Here the fix-

point operators are naturally the essential problem. The constructions related to

them are based on the powerset construction of Dam [22] and the methods of

Niwiñski [70].

This approach may look contradictory, as seemingly we could then map the

full modal mu-calculus to ordinary Büchi automata, and although we have not

mentioned it yet, this is known to be impossible. However, although the construc-

tions for all other operators work on any ordinary Büchi automaton, the minimal

fixpoint construction relies on a structural property that only the automata cor-

responding to 11 2-formulae have.

Definition 3.4.1 Let A = (Q, qinit, L, F) be an ordinary Bflchi automaton on

n-branching trees, and z E Z an atomic proposition. We say that A refers to z iff

there are some q, q' E Q such that q --+ q' and either z e Z or z E Z. We say

that A refers to z initially if there is some q E Q such that q and either

z E Z or -iz E Z. We say that A refers to z only before accepting states if there

are no q, q', q" E Q and Z C 2 U 2 such that q 2 q q' ---* q" in A, the

state q is accepting, i.e. q E F, and either z E Z or -'z E Z. 	 0

It turns out that the automata for 112-formulae refer to /,t-variables only before

accepting states.

Given a formula q E 112, we show by induction that for all subformulae 'çb of 0,
we can construct the required automaton A. In each step of the induction proof

Chapter 3 - Automata 	 96

we show that for the current b we can construct the A 1, so that both L() = L(A)

and Ap meets the relevant structural property, provided that we know how to do

this for the immediate subformulae of 'u'. The automata for atomic formulae are

trivial, the constructions for disjunction and conjunction standard [93], and that

for the modal operator is easy, as well.

Definition 3.4.2 Define AT, A 1 and A, where z E Z U Z, as the following

ordinary Büchi automata on n-branching trees:

AT = ({qo,qi},qo, {(q o ,ø,Tj), (q17 0,?j)}, {q i }), where ?j = q1 for all i e [n]

A 1 = ({qo},qo,O,ø)

A z = ({qo, q, 1, q0, {(qo, {z},), (q 1 , 0,)}, q, 1), where i7i = q for all i e [ii]

U

Definition 3.4.3 Let A0 = (Qo ,q,/ o ,Fo) and A 1 = (Q i , q it , L 1 ,F1) be or-

dinary Bflchi automata on n-branching trees. Define A 0 VA 1 as the ordinary Büchi

automaton A 0 V A1 = (Q, q, L, F), where

• Q = Qo U Qi U {q}, where q is a fresh state and we assume that Qo and

Qi are disjoint,

• qinit = q,

• A = AlU 2 U{(q) Z,) I (qi, Z, q) 	E o}U{(q, Z,) 	Z,) E z 1 },

• F=F1 uF2 ,

Define A 0 AA 1 as the ordinary Büchi automaton A0AA1 = (Q, qinit , L, F), where

• QQo xQ1 x {0,1,2},
(0 	1 	n)\ • 	- _ 	U,

• if(q 0 ,Z0 ,q°) e AO (q1 ,Z 1 ,) E L1 and (qo ,qi ,c) E Q, then

'-0 	-1 E

where for every i E [n]:

if c =Oandq F0 then c=O
if c =O and 	 F0 then c=1
if c = 1 and 	F1 then c2 = 1
if c =1 and EF1 then c=2
if c =2 	 then c2 =O

• F = Qo X Qi X {2}.

Define (D A O as the ordinary Büchi automaton ØA0 = (Q, qi.it , A, F), for any
i e [n], where

• Q = Qo U {q, qacc} where q and acc are fresh,

Chapter 3 - Automata
	

97

• qz = q,

• z. = 	U{(q,ø,) I qi = q'it and for allj 	i : qj = qacc }U

{(qacc 1 0, (acc) . . . , qacc))},

• F=F0 U{qacc}. 	 0

The fixpoint operations are based on a powerset construction related to those

in [22] and [77]. Supposing that automaton A corresponds to q, the idea can be

described as follows. In order to decide whether M E M n is a model of vz.çb, we

start by running A down M. Each time A requires z to be true, we start a new

copy of A running down that particular subtree, and repeat the process with the

new copies. When two copies of A are in the same state running down the same

subtree, they are joined as one. If all the runs of copies of A are accepting, M is

a model of vz.q5.

Definition 3.4.4 Let A = (Q, q1 , L,) be an ordinary Büchi or Rabin auto-

maton on n-branching trees, and let z be a variable. The intermediate automaton

based on A, denoted by fixA, is a triple fixA = (Q', q, s'), where

• 	= 2Q is the set of states,

• q 	= {q} the initial state, and

• z.' c Q' x 2zuz x QIn x (Q - z) the transition relation,

and where (P, Z, 75,6) E z' if

1 The domain of 6 is P c Q, i.e. 6 is a function 6 : P - A. Define functions
6fr 61ab and 6" by: for all q e p, 5fr(q) = q', 61ab(q) = Z' and 6'o(q) =

where 6(q) = (q' , Z',,7).
2 6fr(q)=q for all q EP.

3 qi,it E P if P = { qznzt} or there is a q e P \ {q2t} such that z E 6Iab(q).

4 Z Uqp 8lab(q) \ { z}.

5 Pi\ {qZTLt} = {6t0(q)2 I q e P} for all Z. E [ii],

A run fl of fixA, and the functions rIfr, flab and fitO are defined as in 3.1.5. 0

The states of fixA are sets of states of A, intuitively sets of copies of A, and

a transition of fixA corresponds to a set of simultaneous transitions of A. In a

transition of the intermediate automaton fixA, the final component 6 attaches to

each state q in the originating state P of fixA a transition of A. The intuition

here is that S specifies for each q e P which particular transition from state q

of A is taken as part of the set of simultaneous transitions. This corresponds to

conditions 1 and 2 above, and the information is used later to characterise accept-

ance conditions for the intermediate automaton. Condition 3 above states that a

new copy of A is started initially and when a running copy refers to z, condition

Chapter 3 - Automata 	 98

4 states that a transition of fixA is possible if all the underlying transitions of

A are, and condition 5 says that the state of fixA after a transition is specified

by the targets of the underlying transitions of A, with possibly a new copy of A

started.

To decide whether a given run H of fixA corresponds to a set of accepting

runs of A, we extract structures corresponding to these individual runs of A from

H.

Definition 3.4.5 Let A and fixA be as in 3.4.4, H a run of fixA, t a node of

H, H(t) = (P, Z, F, 8), and q e P. The trail of H starting from state q at node t

is the tree 7r (t, q) : [n]* A, such that

• ir(t,q)(e) = 6(q), and

• for every t' e []* and i e [n], we have ir(t, q)(t' . i) = 6'(ir(t, q)to(tI)i) where

11 (t . t' . i) = (P', Z', F', 61).

The functions 7r (t, q)fr , 	q) lab and ir(t, q)to are defined as in 3.1.2. 	 U

According to the intuitions discussed above, in order to decide whether a model

M e M is a model of vz.çb, we have to check that all the runs of the individual

copies of A within H are Büchi accepting. As these runs correspond to the trails

of H, this leads to the following definition.

Definition 3.4.6 Let A = (Q, qinit, A, F) be an ordinary Bflchi automaton, fixA

the intermediate automaton based on A, and II a run of fixA. We say that H

is v-Biichi-accepting if for every node t of H, every state q e flf'r(t) and every

infinite path p of the trail ir(t, q), ir(t, q) 1 (p(i)) e F for infinitely many i E T1'1.

U

Lemma 3.4.7 Let q be a ptKn-formula and A an ordinary Büchi automaton such

that L(0) = L(A). Then for every model M E M, M = iiz.q if fixA has a

v-Bfl chi- accepting run on M.

Proof: By Lemma 2.2.9, M j= vz.çb if there is a set W c st(M) such that

e E W and M[W/z] = for every t E W, i.e. if there is W c st(M) such that

€ E W and M[W/ z]t e L(A) for every t E W, If we have a v-Büchi-accepting

run H of fixA on M, then W = It e st(M) I qt e H(t)} fulfils the required

properties.

Suppose then that we have such a set W. For every t E W, A has an accepting

run 7t on M[W/z]t, since M[W/z]t E L(A). We build a LI-accepting run H of

fixA on M from these lrt. For each t E st(M), we define inductively a set of runs

7Vt included in H at node t. The only run included for t = € is ire . For t

Chapter 3 - Automata 	 99

the runs included in LI at t are the same as for t's parent, with two exceptions.

First, if two included runs lrt' and lrt" coincide at t, i.e. irY(t''t) = ir (t11-1t we

discard the run with greater index in the prefix-ordering of strings, i.e. 7t' if t" -< t'

and vice versa. Secondly, if an included run 7rtF refers to z at t, i.e. z E lab

we add the newly started run 71t to the included runs. Since we discard a run

only when is coincides with another run with a smaller index in the well-founded

prefix-ordering, every path of every trail of H eventually coincides everywhere

with a path of some Büchi accepting lr t , implying that LI is v-Bflchi-accepting.

0

To construct an ordinary Büchi automaton for vz.çb on the basis of fixA, we

express the property of being v-Büchi-accepting in a manner closer to the form of

a Büchi acceptance condition.

Definition 3.4.8 Let A, fixA and H be as in 3.4.6. We say that LI is v'-Büchi-

accepting if for every path p of LI there is an infinite strictly increasing sequence

i 1 < i2 < ... such that for every j E IN and for every q e Hh'r(p(j)), there is a t

such that p(ij) - t -< p(iji) and fr(p(j),q)(p(j)_lt) e F. 0

The maximal fixpoint automaton works like fixA equipped with a mechanism

for checking that for each path p the strictly increasing sequence required by

u'-Bflchi-acceptability exists. The states of the maximal fixpoint automaton are

pairs (P, F'), where P is a state of the intermediate automaton, i.e. a set of states

of the original automaton, and P a subset of P. Intuitively, P expresses the

different copies of the original automaton currently running and F' the copies

we are currently waiting to reach an accepting state. The transitions correspond

to those of the intermediate automaton, and the second component of a state is

updated by removing from it all the elements in the acceptance set of the original

automaton. When the second element P becomes empty, i.e. we have seen an

accepting state for all the copies of the original automaton for which we were

looking for such a state, we start again waiting for accepting states for all the

currently running copies. If a path of a run leads from a state (F1 , 0) to a state

(P2 , 0), we know that all the copies of the original automaton corresponding to P1

have reached an accepting state at the latest at the state (F2 , 0) along that path.

Consequently, if for every path of a run there are infinitely many visits to states of

the type (P, 0), we know that there is such an infinite strictly increasing sequence

as required by u'-Büchi-acceptability.

Chapter 3 - Automata 	 100

Definition 3.4.9 Let A = (Q, q, L, F) be an ordinary Büchi automaton on
fix n-branching trees, and let us write fix 2 A = (Q fix , q, /-fix). The ordinary Büchi

automaton z'z.A is defined as vz.A = (Q, q, &,, Ft,), where

• Q={(P,P')IP'cPcQ},
_I1 	1

1
1 	1\

• 	
ii

in - .1q2t1 , qtJ),
• if (P, P') e Q, and (P, Z, (P0 ,. . . , P_), 6) e A fix , then

((P, P'), Z, ((F0 , Ph), . .., (P_1 , P_1))) e

where for every i E [n]:

-

 {

{6t0(q) I q e P'} \ F if p' 0
PZ \F iffP'=O

• F={(P,0) I PcQ} 10

Lemma 3.4.10 Let 0 be a Kn-formula and A an ordinary Büchi automaton

such that L(cb) = L(A). Then L(vz.çb) = L(ziz.A).

Proof: We have M = vz.q if (by 3.4.7) fixA has a v-Büchi-accepting run H

on Miff (easy) fixA has a v'-Büchi-accepting run Hon M iffM E L(vZ.A). El

The only difference between the constructions corresponding to the minimal

and the maximal fixpoint operators is that in the minimal case we have to prevent

infinite regeneration of the fixpoint formula. Intuitively, such regeneration occurs

whenever an individual copy of A running as a part of the intermediate automaton

fixA takes a transition where the label refers to the fixpoint variable z. The

following definition expresses this intuition of one copy of A requiring the starting

of another copy, this another one requiring the starting of a third copy etc.

Definition 3.4.11 Let A = (Q, q, A, 2) be an ordinary automaton, fixA the

intermediate automaton based on A, H a run of fixA, t a node of H and q a state

q E Hfr(t). A sequence d = (t0 , qo)(t1, qi)... of pairs of nodes of H and states

qj e H(t) is a dependency sequence of H from (t, q) if

• t -<to , i.e. t is an ancestor of t 0 ,

• q0 =r(t,q)(t 1 to),

• z E ir(t, q)Iab(t_lto),

and for all o<i<Idl,
• t2 -< 	i.e. tj is an ancestor of

• q+i = 7r(t, 	 and

• z E

Chapter 3 - Automata 	 101

We say that d is proper if Idl > 1, and if d is finite, that it leads to the last element

(tm ,qm). 	 0

Definition 3.4.12 A run H of the intermediate automaton fixA is p-Büchi-

accepting if

• H is v-Buchi-accepting, and

• H has no infinite dependency sequences. 	 LE

Lemma 3.4.13 Let 0 be a Kn-formula and A an ordinary Büchi automaton

such that L(q) = L(A). Then for every model M E M, M = ,uz.q if fixA has

a j-Bflchi-accepting run on M.

Proof: By the Knaster-Tarski fixpoint theorem and its formulation in Corollary

2.2.17, we know that M = 	1ff there is an ordinal a and a collection of sets

W c st(M) such that e e 	W0 = 0, for all t E 	M[W/z]t = ç, and for

all limit ordinals ,\, W. = U< 	. If fixA has a p-Bflchi-accepting run H on

M, we have the required W by defining

W 	= It e st(M) I qiit E Hfr(t) and 	
}

	

Vt' E []* : if z e ir(t, qi 	
lab

it) (t') then t . 	e W

Suppose then that we have the required W. For every 3 and t e W 1 , A has

an accepting run on M[W/z]t. We build a i-Büchi-accepting run H from

these 7r o ,t as in 3.4.7. but with following modifications: for t = e, the only included

run is lr,f , if 7r', t' and 7r/3",l' coincide at t, we discard the run with greater index in

the lexicographic order of pairs of ordinals and strings; and if 7r/,t' refers to z at t,

we add 7r, t to the included runs, where 0 = min{ /3" I is defined} (notice that

/3' </3 here). The run H is v-accepting as in 3.4.7, since the lexicographic order

applied is well-founded. Furthermore, H has no infinite dependancy sequences,

since by the remark above any dependancy sequence corresponds to a strictly

decreasing sequence of ordinals. 0

In order to construct an ordinary Bflchi automaton for 	on the basis of

fixA, we need a more 'Bflchi-like' way of deciding whether a run H is a ps-accepting

one or not. This is where we will take advantage of the fact that for all /1z.0

subformulae of any 112-formula, the automaton A corresponding to 0 refers to the

'u-variable z only before accepting states. Intuitively, the following concept of a

/L'-Büchi-accepting run disallows infinite dependency sequences by requiring that

on each path p of the run one eventually reaches a point i E IN after which the

fixpoint z is not unfolded anywhere in the subtree rooted at P(i).

Chapter 3 - Automata 	 102

Definition 3.4.14 Let A, flxA and H be as in 3.4.6. The run H is pi-Blichi-

accepting if

• fl is v'-Bü chi- accepting and

• for every infinite path p of H, there is an i e IN such that for all t e dom(fl)

such that p(i) 	t, qinit V Hfr(t) 	 o

Lemma 3.4.15 Let A be an ordinary Biichi automaton which refers to variable

z only before accepting states and does not refer to z initially, and let H be a run

of fix2 A. Then H is -Büchi-accepting if H is ,u'-Büchi-accepting.

Proof: Clearly any t'-Büchi-accepting run H is also p-Büchi-accepting. Take

then a [L-Büchi-accepting run H. As it is v-Büchi-accepting, it is also v'-Büchi-

accepting. Take then any infinite path p of H. As H is v'-Büchi-accepting,

for any i E IN and q e Hf'r(p(i)), there is a future point j i such that

p(i), q)fr(p(j)lp(j)) E F. As A refers to z only before accepting states,

'ir(p(i), q) then refers to z only finitely many times along p. As A is does not refer

to z initially, we also know that for any dependency sequence (t0 , qo) (t i , qi)..., the

sequence to -< t1 -< .. . is strictly increasing. From these observations we see in-

ductively that for every k E IN there are only finitely many dependency sequences

of length k along p. Since there are no infinite dependency sequences along p, by

König's lemma there is a bound k such that Idl <k for all dependency sequences

d along p, and consequently, a bound m E IN such that t - p(m) for all elements

(t i , qj) of all dependency sequences d along p, which implies qinit flfr(p(j))

for all j > m. Since H is v'-Büchi-accepting, there is some m' such that all trails

ir(p(m), q) from node p(m) have visited an accepting state before p(m'). But since

A only refers to z before accepting states, this means that no trail 71(p(m'), q) from

p(rn') refers to z anywhere in the subtree HP(m'), implying that qinit 0 Hr(t) for

all t'-p(m').

Intuitively the Büchi automaton p z.A consists of two parts. Initially it behaves

exactly like the intermediate automaton fixA, without any accepting states. At

any transition it can make a non-deterministic choice between staying in the ini-

tial part or moving on to the second part, which behaves exactly like the vz.A

automaton, but without the ability to start any new copies of A.

Definition 3.4.16 Let A = (Q, qt, L, F) be an ordinary Büchi automaton on

n-branching trees, and let us write
fix • fixA = (Qfix , qinit , Lfi) and

• vz.A = (Qt', q, L,, F).

The Bflchi-automaton jiz.A is defined by 1uz.A = (Q, q, &, F,1) where in

Chapter 3 - Automata 	 103

• Q=QnXUQ,

• 	- - fix

• if (P, Z, P, 6) E Lfix then (P, Z,) e & and

(P, Z, ((°, io), . 	, (P.-I, n-i))) E

• if (F, Z, i) E L,, qt V P and qi.it V 15i for every i E [n], then

(P,Z,) e &, and

• F=F. 	 El

Lemma 3.4.17 Let 0 be a ,aKn-formula and A an ordinary Büchi automaton

such that L(q) = L(A), and A refers to z only before accepting states, Then

L(iz.q) = L(pz.A).

Proof: Straightforward from 3.4.13 and 3.4.15. 	 0

We are now ready to state the main result of the section.

Theorem 3.4.18 Let 0 be a Km-formula such that 0 E 112. Then there exists

an ordinary Biichi automaton A such that L(q) = L(A).

Proof: Take a formula q E 112. Without loss of generality we can assume that

is guarded and in positive normal form. We show by induction that for all

subformulae 'O of q, we can construct an automaton A, 1, such that

L('/')=L(A, 1,),

A, 1, makes reference to a variable z e Z only if z occurs free in

if 0 is guarded with respect to a variable z E Z then A, 1, does not refer to

z initially, and

A, 1, refers to any pt-variable of q only before accepting states.

The automata for the base cases of the induction, when 0 is atomic, are provided

by Def. 3.4.2, and the constructions corresponding to A, V and 0 by Def. 3.4.3.

It is obvious that these fulfil the induction claim.

The construction for vz. 0 is provided by Def. 3.4.9, and for 	by Def.

3.4.16. The correctness of these constructions is shown in Lemmas 3.4.10 and

3.4.17. It is clear that induction claims 2 and 3 are fulfilled by vz.A and jiz.A. It

is also easy to see that if A refers to any x only before accepting states, then so

does ,uz.A. This is not generally true for uz.A. However, if x is a /-t-variable of

and 0 '1 vz., then the assumption that 0 E 112 implies by Corollary

2.2.26 that x cannot occur free in 0 . By induction assumption this means that A

does not refer to x at all, and the same holds for vz.A. 0

Chapter 3 - Automata 	 104

Corollary 3.4.19 For any language L c M, the following statements are mu-

tually equivalent:

• L = L(q) for some (restricted) Kn-formu1a 0 e 112 ,

• L = L(A) for some ordinary or alternating FR-automaton A E 112, and

• L = L(A) for some ordinary or alternating Büchi automaton A.

Moreover, satisfiability or emptiness is decidable for all these formalisms.

Proof: Immediate from Theorems 3.2.19 and 3.4.18, Prop. 3.2.25, and and the

fact that all the translations are clearly computable. 	 D

Let us then examine briefly the relations of Büchi recognisability, the fixpoint

alternation free fragment L2 of mu-calculus and the weak calculi nKn and WSnS.

The results so far allow us to prove one half of Rabin's classical characterisation

of WSnS as the class of properties for which both the property itself and its

complement are Büchi recognisable [77]. We will only state the other half of the

characterisation without a proof, since the observations in the current work do

not shed any new light on this direction of the correspondence.

Theorem 3.4.20 For every language L c M, the following statements are mu-

tually equivalent:

• L = L(q) for some nKn or WSnS formula ,

• L = L(q) for some Kn-formula 0 such that 0 e
• L = L(q) and M \ L = L() for some Kn-formulae 0 and such that

E 112 and qf E 112, and

• L = L(A) and M \ L = L(A) for some ordinary or alternating Büchi

automata A and A.

Proof: The first two statements are equivalent by Corollary 3.3.6. The second

statement implies the third by the fact that if 0 E L2, then 0 E 112 and -'q e 112.

The third and the fourth statement are equivalent by Theorems 3.2.19 and 3.4.18.

Finally, the fourth statement implies the first by [77, Thin. 29]. El

The results shown so far also allow us to prove Rabin's characterisation of

Büchi recognisable languages as those corresponding to existentially quantified

WSnS formulae. Originally this was shown in [77].

Theorem 3.4.21 For any language L c M, the following statements are mu-

tually equivalent: 	 -

• L = L(q) for some (restricted) jKn-formula 0 such that e 112,

• L = L(A) for some ordinary or alternating Büchi automaton A,

Chapter 3 - Automata
	 105

• L = L(cb) for some 3Kn or SnS formula q of the form 0 = 3zo . . .

where b is a Kn or WSnS formula, i.e. a formula with only weak quanti-

fiers.

Proof: The first two statements are mutually equivalent by Corollary 3.4.19.

Take any ,.tKn formula q E 112. Then there are formulae 00, . . . , Ok E L2

and variables z 1 ,. . . , zj and x 1 ,. . . , X/ such that 0 = o where Oi are defined by:

0i = for every 0 < i <k, and Ok = bk. By a generalisation of

Lemma 2.2.9 (also Prop. 2.3.6) we can show that for any model M and state s of

M, we have M, s q if there are sets W 1 ,... , W, C st(M) such that if we define

= M[Wi /x i] . . . [Wj /x,], then M', E = and M', s = i/ for every 1 <i < k

and s E W. By Theorem 2.2.57 (also Prop. 2.3.17) there are Kn-formulae

00, 'çbk such that each Oi i,b. Define then a formula q by

=

It is easy to see that 0 	and that 0 is of the form required in the third

statement. Consequently, the first statement implies the third.

Take then a formula q as in the third statement. By Corollary 3.3.6 there is a

ILKn-formula ',b E 2 c 112 such that 0 	'JY, and by Corollary 3.4.19 a restricted

1iKn-formula " 	1 1 2 such that b 	'b". Applying Lemma 3.3.1 n times, we

see that there is a restricted iKn-formula qY E 112 such that L(') = L(0).

Consequently the third statement implies the first. 	 U

Since all the translations between different calculi encountered so far in the

current work are clearly computable, the results suffice to show the decidability

of WSnS and nKn. For any WSnS or nKn formula q we can produce an

equivalent pKn-formula çb' e L2 c 11 2 by Cor. 3.3.6, and further an equivalent

ordinary Büchi automaton A by Theorem 3.4.18. Deciding the emptiness of the

automaton A is then easy. Originally the decidability result for WSnS was first

established by Doner [23] and for WS1S by Läuchli [57].

This correspondence of Theorem 3.4.18 between Büchi automata and the al-

ternation class 11 2 was first reported by Arnold and Niwiñski in [3] with a proof

outline using a different technique from the one here. For a weaker language,

essentially without conjunction, the result was shown earlier by Niwiñski [70] and

Takahashi [89]. The result can also be obtained indirectly [1], using the equiex-

pressivity of WSnS and the fragment L2 of pKn, stated here in Theorem 2.2.57,

the correspondence between maximal fixpoints and existential quantification, and

Rabin's characterisation of Biichi recognisability as stated here in Theorem 3.4.21.

Chapter 3 - Automata 	 106

3.4.2 Fixpoints and Rabin acceptance

In this subsection we continue the programme of translating mu-calculus formu-

lae inductively to ordinary automata, by generalising the constructions introduced

above, especially those for fixpoints, to deal with Rabin instead of Büchi accept-

ance. As above, the idea is to define an automaton for each atomic jiKn-formula

directly, and describe a corresponding operation on automata for each boolean,

modal and fixpoint operator. Remembering that every Biichi automaton can be

viewed as a Rabin automaton, we can use the same automata for atomic formulae

as before. The constructions for disjunction, conjunction and the modal operators

are also easy to lift from Büchi to Rabin acceptance.

Definition 3.4.22 Let A 0 = (Qo, 	o, l0) and A 1 = (Qi, 	A, 7 	, where

Qo = ((G, R) ... (G 0 _ 1 , R 0 _ 1)) and ((G, R) ... (G 1 _, Rg 1 _ 1)), be

ordinary Rabin automata on n-branching trees, Define A 0 V A as the ordinary

Rabin automaton A 0 V A = (Q, qinit,A,), where

• Q = Qo U Qi U {q}, where q is a fresh state and we assume that Qo and

Q, are disjoint,

• qinit =

• A = A l u 2 u{(q, Z,)Z, e o }U{(q, Z,) 	Z,) e
•

	

	= ((Go, Ro)... (Gm_ i , Rim _i)), where (assuming that m0 <m1) m = rn 1 ,
G2 = G° U G, and R = R° U R' for all 0 < i < m o , and G = G' and

for all m0 <i<MI .

Define A 0 AA 1 as the ordinary Rabin automaton A 0 AA 1 = (Q, 	L,), where

• Q =Qo x Qi x ([mo] x [mi] —+ {0,1,2}),

• qi,.it = (q, 	c), where c(k o , k 1) = 0 for all k 0 e [mo] and k 1 E [m1],
• if (qo, Z0 , q°) E L0, (qi, Z1, ') E L and (qo, q 1 , c) E Q, then

where for every i E [n], k0 E [mo] and k 1 E [mi]:
if c(k o ,k i) =0 and qo V G°k0 then c(k 0 ,k 1) = 0
if c(k o , k 1) = 0 and qiO e G°k 0 then c(k o , k 1) = 1
if c(k o ,k i) = land G)C1 then c(k 0 ,k 1) = 1
if c(k o ,k i) = 1 and tj e G) 1 then c(k o ,k i) = 2
if c(k o ,k i) = 2 then c(k 0 ,k 1) = 0

• l = ((G, R0), . . ., (Gm- 1 , R_1)), where m = m0 m i and for every

k 3 E Imo] and k 1 E [m 1], Gko . mi +ki = {(qo, q1 , c) e Q I c(k o , k 1) = 21

and Rk 0 .m 1 +k, = {(qo ,q1 ,c) E Q I q0 e Rk 0 or q1 E Rk 1 }.

Define G3 A 0 as the ordinary Rabin automaton G3A0 = (Q, qt, L,), for any

i E [n], where

Chapter 3 - Automata 	 107

• Q = Qo U {q, qacc} where q and acc are fresh,

• qinit = q,

• A = o U{(q,0,) Ii =qt and for all j i : qj =qacc }U

{ (q., 0, (qacc, . . , qacc))},

• Q = ((Go, R0), . . ., (G,,-,- 1 , Rm _i)), where m = m 0 , G0 = G8 U {qacc},

R0 =Rg ,andG=G,Rj =Rfora1l1i<m. 	 El

The fixpoint operations for Rabin automata are based on the same construction

of an intermediate automaton as for Büchi automata.

Definition 3.4.23 Let A = (9, q 2 ,
A,) be an ordinary Rabin automaton,

where Q = ((G0 , R0),. .. , (Gm- 11 R,,,,- 1)), fixA the intermediate automaton based

on A, and [I a run of fixA. We say that H is v-Rabin-accepting if for every node

t of IT, every state q e H"(t) and every infinite path p of the trail ir(t, q), there is

some k e [m] such that

• 7r (t, q)fr(p(j)) e Gk for infinitely many i E IN.

• 7r(t, q)fr(p(i)) e Rk for only finitely many i e N. 	 D

Lemma 3.4.24 Let q be a Kn-formula and A an ordinary Rabin automaton

such that L(c) = L(A). Then for every model Me M, M = vz4 ifffixA has

a v-Rabin-accepting run on M.

Proof: Exactly as the proof of Lemma 3.4.7. 	 0

Let us then express v- Rabin- acceptance as a condition making reference to

the paths of the run H of the intermediate automaton, instead of the paths of the

individual trails 71(t, q) in H.

Definition 3.4.25 Let A, I2 and H be as in Def. 3.4.23. We say that LI is

v'-Rabin-accepting if for every infinite path p of H there is

• a point k e IN of path p,

• a set of states Pd c Hfr(p(k)),

• for every q e Pd an index m q E [in], and

• an infinite strictly increasing sequence of points k = k0 < k 1 < k 2 < ... of

path p

such that

1 for all q,q' e Pd and all > k,

ir(p(k), q)fr(p(k)_lp(i)) = 7r(p(k), qI)fr(p(k)_ip(i)) if q = q'

Chapter 3 - Automata 	 108

2 for every j E N and every q' E H(p(k3)), there is a q E Pd such that

ir(p(k), q)fr(p(k)_lp(k j+i)) = 7(p(k3), ql)fr(p(kj)_lp(kj+i))

3 for every q E Pd and every i > k,

rr(p(k), q)fr(p(k)_lp(i)) V Rk q

4 for every j e IN and every q E Pd, there is a k3 < i < ki such that

ir(p(k), q)fr(p(k)_lp(i)) E Gk q

Intuitively, i/- Rabin- acceptance states that for any path p of H, there is a

finite set of 'designated' trail paths, each of these trail paths has an associated

acceptance pair in Il, and there is an infinite sequence of 'checkpoints' along p

such that (1) all the designated trail paths are entirely separate, (2) any trail

path from any checkpoint along p coincides with a designated trail path since the

next checkpoint at the latest, (3) no designated trail path ever passes through

an associated red state, and (4) every designated trail path passes through an

associated green state between any two checkpoints.

Lemma 3.4.26 A run H of fixA is v-Rabin-accepting if it is v'-Rabin-accepting

Proof: 	It is easy to see that if H is v'-Rabin-accepting, it is also v-Rabin-

accepting. Suppose then that H is v-Rabin-accepting, and take any infinite path

p of fl. Notice that if there are k E N, Pd c n(p(k)) and indices m q for every

q e Pd such that conditions 1 and 3 of v'-acceptance are fulfilled and the following

conditions 2' and 4' hold, then we also have a sequence of points i0 < i1 <

along p so that the conditions 2 and 4 of v'-Rabin-acceptance are fulfilled:

2' for every i > k and every q' E 11fr(p(j)), there are q e Pd and i' > i such

that 71(p(k), q)(p(k) 1p(i')) = ir(p(i), ql)fr(p(j)_lp(jI)), and

4' for every q e Pd and infinitely many i > k, ir(p(k),q)(p(k)'p(i)) E G mq .

To see that we can pick k and Pd so that conditions 1 and 2' are satisfied, it suffices

to notice that the sets flfr(p(j)) are all bounded. Since H is v-accepting, it is easy

to satisfy conditions 3 and 4, as well. E1

To build a Rabin-automaton on the basis of the intermediate automaton, we

attach to the intermediate automaton a mechanism checking for every infinite path

p whether there exists a point k of p and a set of states Pd fulfilling the require-

ments of v'-Rabin-acceptance. This mechanism consists of a table ë, each element

Chapter 3 - Automata 	 109

e,, of which is used to check for v'-Rabin-acceptance for some particular set of des-

ignated trail paths and indices mq . An element Ei is a 5-tuple (P, Pd, m, Pa , Pe),

where P is the current state of the intermediate automaton, Pd specifies the states

in P that are on the designated trails, in associates with each state in Pd an ac-

ceptance pair in ci, Pa specifies the states in Pd for which the corresponding trail

has passed through a green state in the related acceptance pair after last check-

point, and P specifies the states in P on trail paths that are not in the designated

trail path set, that have started before last checkpoint, and have not yet coincided

with a designated trail path.

In the definition of the transition relation of the Rabin-automaton iiz.A below,

the components of the table ë are updated according to their intended meaning in

a transition. To keep the table E bounded, duplicate entries are deleted, keeping

only the leftmost occurrence. Furthermore, after each transition, we add to empty

places in ë elements checking il- Rabin- acceptance for every possible combination

of designated trail paths and indices that is not already being checked by some

entry in E.

Definition 3.4.27 Let A = (Q, q, L, ci) be an ordinary Rabin automaton on

ri-branching trees, where ci = ((CO3 R0),... , (Gm _ i , Rm _i)), and let us write
C
XzP_(fix,

 x fix). Define first ini

E =
P. c Pd = dom(m) c P, Pa C P, Pe fl Pd = of

For every P ç Q define

E(P') = {(P, Pd, m, Pa , Pa) E E I P = P', Pa = 0, P = P\Pd}

Let I be an empty element not in E, and define m 	2 E, S = (Eu {I})m

Define the ordinary Rabin automaton vz.A = (Q, q, A, ci i,) by:

• Q is the smallest subset of Q' x S that contains q and is closed under

the transition function &.,,

• q 	= ({q,,t}, e), where ë contains one copy of every element of E({ q t }), in

listed in some fixed order, and all other elements of ë have the empty value

I.

• If (P, e) e Q, and (P, Z, (P°,.. pn_i), 5) E A fix then

((P,ë),Z,((P0 ,e-0),. . .,(PTh,en_i))) e

where for every j E [ri], ej is defined as follows.

Fix j E [ri], and define a vector ë'. For any i e [mu], if ei 	then ë = I.

Otherwise, assume that Ei = (P, Pd, m, Pa Pe). Defihe

Chapter 3 - Automata 	 110

• P = p3, and
• p = 15t0(q)j I q E Pd}.

• For every q' E P, if there is a unique q E Pd such that 8t0(q)j = q', then

m'(q') = m(q) for this unique q, and otherwise m(q) is undefined.

• If Pa = Pd and Pe = 0, then P = 0 and P = P \ P, and otherwise

P = {ö 1 (q) i I q E Pa} U {q' e P I q' e Gm'(q')}

= {tO(q) I q E Pe} \P

If either

there are q1 , q2 E Pd such that q1 	q2 but 5to(q1) j = So (q2) j , or

there is some q' e P such that q' E Rm'(q'),

then ë = I, and otherwise ë = (P', P, m', P, Ph).
The vector 0 is derived from ë' by first replacing every entry Ej for which

there is some i' < i such that ë' = ë 2 by I, and then adding one copy of

every value in E(P3) that does not already occur in ë' to some place ë that

was not used in ë (i.e. for which e = I), according to some fixed strategy.

•Q, = ((G, R) 	(h1 R)), where for every i E [ma], • 	'

	

GV = {(P,ë) E Q I = (P, Pd , 	= Pd and Pe = 01
R' = {(P,e)eQIe=I}

IN

Lemma 3.4.28 Let 0 be a Kn-formula and A an ordinary Rabin automaton

such that L(q) = L(A). Then L(vz.q) = L(vz.A).

Proof: We have M = vz.çb if (by Lemma 3.4.24) fixA has a v- Rabin- accepting

run [I on M if (by Lemma 3.4.26) fixA has a v'-Rabin-accepting run H on M if
(easy) M E L(vZ.A). 	 0

Analogous to case of Büchi automata, the only difference between the maximal

and minimal fixpoint constructions for Rabin automata is that in the minimal case

we have to disallow infinite regeneration of the fixpoint.

Definition 3.4.29 A run H of the intermediate automaton fixA is /L-Rabin-

accepting if

• H is v-Rabin-accepting, and

• H has no infinite dependency sequences.

Chapter 3 - Automata 	 111

Lemma 3.4.30 Let q be a aKn-formula and A an ordinary Rabin automaton

such that L(q) = L(A). Then for every model M E M, M J= jiz.qi if fixA has

a [1-Rabin-accepting run on M.

Proof: Exactly as the proof of lemma 3.4.13. 	 El

Definition 3.4.31 Let A, Il and H be as in Def. 3.4.23. We say that H is

il -Rabin-accepting if for every infinite path p of H there is

• a point kE]Nof path p,

• a set of states Pd c Hfr(p(k)),

• for every q E Pd an index mq E [m], and

• an infinite strictly increasing sequence of points k = k 0 < k 1 < k 2 < ... of

path p

such that they fulfil conditions 1-4 of Definition 3.4.25 and:

5 for every i e IN, every q' E ll(p(k)), and every proper dependency

sequence (t 0 , qo) ... (th, qh) from (p(k), q') for which th is on path p

and th_i -< p(k i) -< th, there are j E [h] and q E Pd such that

7r(p(k), q)fr(p(k)_1t3) = qj, and

6 for every q E Pd and every i > k, there is no proper dependency sequence

from (p(k), q) to (p(i), 7(p(k), q)fr(p (k)_l p(j))) . 	 El

Intuitively, condition (5) states that every proper dependency sequence from a

checkpoint extending beyond the following checkpoint passes through a state on

some designated trail path between the checkpoints, and condition (6) that there

is no proper dependency sequence from a designated trail path back to the same

trail path.

Lemma 3.4.32 Let A be an ordinary Rabin automaton which does not refer to

z initially, and IT a run of fixA. Then H is ,u-Rabin-accepting if it is 1'-Rabin-

accepting

Proof: Assume first that H is p'-Rabin-accepting, hence v'-Rabin-accepting, and

v- Rabin- accepting by Lemma 3.4.26. Suppose then that there is some infinite path

p of H and an infinite dependency sequence (to , qo)(t 1 , qi)... along p. Let k and

Pd be as in Def. 3.4.31. Since A does not refer to z initially, t0 -< t1 -< By

condition 5 of [1'-Rabin-acceptance and the finiteness of Pd, this means that there

is some q e Pd such that qj = ir(p(k), q)t'(p(k)ltj) for infinitely many i G]N. But

then there is a dependency sequence violating condition 6 for q.

Assume then that H is [1-Rabin-accepting, hence v- Rabin- accepting, and v'-

Rabin-accepting by Lemma 3.4.26. Take any infinite path p of H. As H is v'-Rabin-

accepting, there are k, Pd etc. fulfilling conditions 1-4 of [1'-acceptance. Notice that

Chapter 3 - Automata 	 112

for every q E Pd there is some i > k such that there is no proper dependency se-

quence from (p(i), ir(p(k), q)fr(p(k)_lp(i))) to (p(i'), 7r(p(k), q)fr(p(k)_lp(iI))) for

any i' > i, as otherwise we could construct an infinite dependency sequence along

p in H. Therefore, there are k, Pd, k 0 < k < ... fulfilling conditions 1-4 and 6.

To see that H is jt'-Rabin-accepting, let us show that we can pick a subsequence

of k0 < k < ... so that condition 5 is satisfied, as well.

To see this, take any k2 and q' E fI"(p(k)). By condition 2 of v'-Rabin-

acceptance, if (t o ,qo)(t i ,qi)... is a dependency sequence from (p(k),q'), and

qo ~ 7r(p(k), q)fr(p(k)_lto) for all q E Pd, then to -< p(k1). This means that for

any h e TN, there are only finitely many dependency sequences (t0 , qo) . . . (t,, q) of

length h from (p(k), q') such that ir(p(k), q)fr(p(k)_lt) qj for all j and q E Pd.

Since there are no infinite dependency sequences in H, this implies by Konig's

lemma that there are only finitely many dependency sequences (t0 , qo)... from

(p (k 2), q') such that 7r(p(k), q)fr(p(k)_1t3) qj for all j and q E Pd.

The construction of the Rabin-automaton ,az.A uses the same strategy as in

the case of maximal fixpoints. However, the elements of the table ë have a new

component d, specifying for each designated trail path the states to which there is

a proper dependency sequence from some earlier point in the trail. The component

Pa is also used to track dependency sequences from trails outside the designated

trail path set.

Definition 3.4.33 Let A and Il be as in Definition 3.4.23, and let us write

fixA = (Qfix, qfix Lfi). Define

E = {(P, Pd, m, d, Pa , Pe) e 2Q x 2Q x (Q —k [m}) x (Q - 2Q) x 2Q x

Pa c Pd = dom(m) = dom(d) C P,

PCP,PnPd=O,VqE Pd: d(q)CP}

For every P C Q define

E(P') = {(P, Pd, m,d,Pa , Pe) eE

P=P', Pa 0, Pe P\ Pd, VqE Pd: d(q)0}

Define m 1 = 2 - J EJ and £ = (Eu {J}). In the Rabin-automaton

pz.A = (QIL, in c bL)

the components Q, q and 	are analogous to the Q, q and 2,, of Definition

3.4.27, and & is defined as follows.

Chapter 3 - Automata 	 113
	

If (P, e) e Q,L and (P, Z, (P° ,. . . , 	6) E LV then

	

0 0' 	(D-1 en-'))) E L ((P, e), Z, ((P , e-i,...,

where for every j e [n], ë3 is derived from the following ë' as in Def. 3.4.27.

	

For any i e [Mt,], if ë. = I then ë 	I. Assume then ë2 = (P, Pd, m, d, Pa Pe).
Let F', P, m' and P be as in Definition 3.4.27, and define:

. For every q' e P, if there is a unique q E Pd such that 5t0(q)j = q', then

d'(q') = 16t0(q!F)j q" e d(q)} U {StO(qo)j I eq" e d(q) U {q} : E 5Iab(qU)}

and if there is no such unique q, then d'(q') is undefined.

' If Pa = Pd and Pg = 0, then P = F' \ P, and otherwise

= ({8t0(q)j I q e Pe } u 15t0(q0)j I eq" E Pg : z E 61ab(qfl)}) \ P

If condition a or b of Definition 3.4.27 holds, or if

c) there is some q' e P such that q' e d'(q'),

then ë = 1, and otherwise ë = (P', P, m', d', P., I Ph). El

Lemma 3.4.34 Let 0 be a iKn-formula and A an ordinary Rabin auto-

maton such that L(q) = L(A), and A does not refer to z initially. Then

L(z.cb) = L(z.A).

Proof: Straightforward from 3.4.30 and 3.4.32.

We are now ready to pull the pieces together and show that the full mu-calculus

can be translated to ordinary Rabin automata.

Theorem 3.4.35 For every uKn-formula 0 there exists an ordinary Rabin auto-

maton A such that L() = L(A).

Proof: Take a formula 0 . Without loss of generality we can assume that q is

guarded and in positive normal form. We show by induction that for all subfor-

mulae / of q, we can construct an automaton Ap such that

L(0) = L(A 1,), and

if 0 is guarded with respect to a variable z E Z then Ap does not refer to

z initially,

The automata for the base cases of the induction, when 0 is atomic, are provided

by Def. 3.4.2, remembering that every Büchi automaton is also trivially a Rabin

automaton. The constructions corresponding to A, V and 0 are described Def.

3.4.22. It is obvious that these fulfil the induction claim.

Chapter 3 - Automata 	 114

The construction for vz.i/ is provided by Def. 3.4.27, and for jz.'/ by Def.

3.4.33. The correctness of these constructions is shown in Lemmas 3.4.28 and

3.4.34. It is obvious that clause 2 in the induction claim is also fulfilled by vz.A

and ,uz.A. 0

Let us point out some consequences of this result.

Corollary 3.4.36 For every Kn-formula 0, we can compute a restricted Kn-

formula qY such that = 	qY.

Proof: Take any jKn-formula q. By Theorem 3.4.35 there is an equivalent

ordinary Rabin automaton and by Lemma 3.2.23 an equivalent restricted first

recurrence automaton, i.e. a restricted Kn-formula. It is clear that both of these

translations are computable. 0

Corollary 3. 4.37 [Rabin's complementation lemma] For every ordinary

Rabin automaton A on n-branching trees, there exists an ordinary Rabin auto-

maton A such that L(A) = M \ L(A).

Proof: Take any ordinary Rabin automaton A. By 3.2.23 there exists an equi-

valent alternating FR-automaton, i.e a ,uKn-formula 0 such that L(A) =

By Theorem 3.4.35 there exists an ordinary Rabin automaton A such that

L(A) = L(-iO) = (M \ L(0)) = (M \ L(A)). 	 0

We are now ready to show the equiexpressivity of 3Kn and jKn, and the

decidability of 3Kn and SnS.

Theorem 3.4.38 For every 3Kn-formula 0, there exists a Kri formula 0 such

that 	'b, i.e. IIqIIM = kbMM for every M E Mn,

Proof: Let us translate every formula 0 of 3Kn inductively to an equivalent

formula f(q) of bLKn. Define the translation for all the operators except 3z.0 by

f(z) = z

f(—i'çt') = _f (0)
f(A') 	f()Af(qY)

f(®) =

f(G'çb) = 1,,z.f(4))A A ®z
iE[n]

Assume that 0 is an 3Kn-formula and that f() is the corresponding 1uKn-

formula. By Corollary 3.4.36 there is a restricted, hence strongly aconjunctive

uKn-formula q such that q'. 	f(ib), and by Lemma 3.3.1 there is a Kn-formula

qY such that qY 	Take this b' as f(z.). 	 0

Chapter 3 	Automata 	 115

Corollary 3.4.39 For any language L c M, the following statements are mu-

tually equivalent:

• L = L() for some (restricted) iKn-formula q,

• L = L(q) for some 3Kn or SnS formula q,
• L = L(A) for some ordinary or alternating first recurrence automaton A,

• L = L(A) for some ordinary or alternating Rabin automaton A.

Moreover, satisfiability or emptiness is decidable for all these formalisms.

Proof: Immediate from Prop. 2.3.12, 2.3.14 and 3.2.25, Theorems 3.2.24 and

3.4.35, and the fact that all the translations are clearly computable. 	 0

As mentioned in several occasions above, Rabin's complementation lemma and

the decidability of SnS were first proved in [76] by a direct construction. When

comparing the proof of the complementation lemma here and in Rabin's paper,

it becomes apparent that the structure of the proof and the constructions used

in it are quite similar. In particular, Rabin uses automata constructions which

resemble the fixpoint constructions used here, although they are not called as such.

In this way we can also view the use of mu-calculus and the present approach as

a way of structuring Rabin's original proof in a more transparent fashion [2].

3.5 Linear vs. branching structures

All the constructions and relations discussed so far in this chapter work uni-

formly for both the linear-time and branching-time worlds, for any arbitrary fixed

branching degree. However, due to the more restricted structure of linear models

or 1-branching trees compared to general trees, the linear-time structures and cal-

culi enjoy some special properties which do not hold in the general case. Phrased

in automata-theoretic terms, this is reflected in two issues:

• in the linear case the class of Büchi automata and that of Rabin automata

are equiexpressive, which is not true in the branching case, and

• in the linear case the class of Rabin automata and that of deterministic Rabin

automata are equiexpressive, which again is not true in the branching case.

Let us examine these differences and their implications to the logical calculi in

some detail. First, translating Rabin string automata to Büchi ones is easy.

Proposition 3.5.1 For every language L c MTL of infinite strings, the following

statements are mutually equivalent:

• L = L(A) for some ordinary Büchi automaton A on strings,

• L = L(A) for some ordinary Rabin automaton A on strings.

Chapter 3 —Automata 	 116

Proof: As any Büchi automaton can be viewed as a Rabin automaton by Lemma

3.1.7, the first statement implies the second. Take then any ordinary Rabin string

automaton A = (Q, qi,, L,), where Q = ((G0 , R0) . . . (Gm_ i) Rm_')). Define

the corresponding Büchi automaton A' by A = (Q', qt, Lx', F'), where

QI = Qx[m+1]

init = (qrt, m)

= {((q,m),Z,(q',i)) 1 (q,Z,q') e L and i e [m+ 1]} U

{((q, i), Z, (q', i)) I (q, Z, q') e A and i e [m] and q' 0 R}

F' = UGx{i}
iE[m]

It is easy to see that L(A) = L(A'). Consequently, the second statement implies

the first. 	 [J

In the light of the results we have already obtained, the equivalence of Ra-

bin and Büchi acceptance conditions on string automata has several implications.

First of all, since by Rabin's complementation lemma the class of Rabin recognis-

able languages is closed under complementation, the class of Büchi recognisable

string languages is also closed under complementation.

Corollary 3.5.2 For every ordinary Büchi automaton A on strings, there exists

an ordinary Bflchi automaton A such that L(A) = MTL \ L(A).

Proof: Immediate from Corollary 3.4.37 and Prop. 3.5.1. 	 El

If we were just interested in complementing Büchi automata, it would be rather

uneconomical to approach the problem as in the Corollary above, i.e. by showing

first the more general complementation result for Rabin tree automata and then

proceeding to the more restricted case of Biichi string automata. In fact, although

complementation for Biichi string automata is not at all as easy as for ordinary

automata on finite strings, it is still considerably less involved than for Rabin tree

automata, and techniques for complementing Büchi automata were known well

before Rabin's complementation result [15, 63].

The equivalence of Büchi and Rabin acceptance conditions for string auto-

mata has further interesting consequences. Remember that we noticed before

that the expressive power of the weak quantifier-based formalisms nKn or WSnS

and the non-alternating fragment z 2 of the mu-calculus pKn comprises precisely

those languages for which both the language itself and its complement are BUM-

recognisable. Since for linear structures Büchi recognisability is closed under

Chapter 3 - Automata 	 117

complementation and coincides with Rabin recognisability, this means that the

fragment L2 of I.LTL has the same expressive power as the whole language, i.e.

that the fixpoint alternation hierarchy for the linear-time mu-calculus collapses

very low indeed.

Proposition 3.5.3 For any linear time mu-calculus TL-formula q, there exists

a non-alternating TL-formula 0' e L2 such that = q 	qY.

Proof: Take any jiTL-formula q. By Theorem 3.4.35 there are ordinary Rabin

automata, and by Theorem 3.5.1 ordinary Büchi automata A and A such that

L(q5) = L(A) and L(,O) = L(A). By Corollary 3.4.20 there exists then a non-

alternating jiTL-formula q5' such that L(') = L(A) = L(0). El

Joined together, these results mean that for the linear-time world, all the form-

alisms introduced in this work are equiexpressive. In particular, both weak and

strong second-order quantification have the same expressive power.

Corollary 3.5.4 For any string language L c MTL, the following statements are

mutually equivalent:

• L = L() for some (restricted) iTL-formula ,

• L = L(q5) for some [tTL-formula 0 such that E

• L = L(q) for some 3TL or S1S formula ç,

• L = L(q5) for some nTL or WS1S formula ,

• L = L(A) for some ordinary or alternating first recurrence automaton A,

• L = L(A) for some ordinary or alternating Rabin automaton A.

• L = L(A) for some ordinary or alternating Büchi automaton A.

Proof: Immediate from Prop. 3.5.3, Corollary 3.3.6 and Prop. 3.5.1. 	El

Let us see then that for the truly branching scenario the statements above

do not hold: Bflchi automata are not closed under complementation, and Rabin

automata are strictly more powerful than Biichi automata.

Proposition 3.5.5 For every branching degree n > 2, there exists a language

L c M n such that L = L(A) for some ordinary Büchi automaton A, but

M \ L 0 L(A) for every ordinary Büchi automaton A.

Proof: The result was originally shown in [77, Lemma 71, and the proof is also

presented in [93, Thm 8.21. An example of such a language L is the language of

all n-branching trees for which a is true in only finitely many states along any

path. 11

Chapter 3 - Automata 	 118

Corollary 3.5.6 For every branching degree n > 2, there exists a language

L c M for which there is an ordinary Rabin automaton A such that L = L(A),

but there is no ordinary Büchi automaton A such that L = L(A).

Proof: Immediate from Prop. 3.5.5, Lemma 3.1.7 and Corollary 3.4.37. 	D

This implies that the alternation depth hierarchy does not collapse at A2 or

['2 in the branching case.

Proposition 3.5.7 For every branching degree n > 2,

• there is a language L such that L = L(q5) for some uKn-formula 0 E E2 ,

but L L() for every b E 112, and

• there is a language L such that L = L(q) for some Kn-formula q E 112,

but L L() for every 0 E L2.

Proof: Take a language L as in Prop. 3.5.5, and define L = M \ L. By

Theorem 3.4.21, there exists a iKn-formula 0 E r12 such that L = L(), but

there exists no tKn-formula iI' E 112 such that L L(i). Since L2 c 112 and

L2 is closed under negations, the language L fulfils the second claim. Notice then

that L = L(-) and that 0 E 112 implies -'q E 	Consequently, the language t

fulfils the first claim. 	 [J

The question of whether the alternation depth hierarchy is proper beyond 11 3

used to be a longstanding open problem, which was only recently solved by Brad-

field [12] and Lenzi [58] independently. They show that the hierarchy does not

collapse at any stage.

Proposition 3.5.7 also shows that for a truly branching framework, the set

of formalisms mentioned in Theorem 3.4.20, that in Theorem 3.4.21 and that in

Corollary 3.4.39 all have different expressive power. In particular, weak second-

order quantification is strictly less expressive than strong quantification.

Let us then look at the other feature distinguishing the linear and branch-

ing worlds: determinism and determinisation. So far all the automata we have

examined have been non-deterministic, i.e. they may contain states from which

more than one transition are enabled on some inputs. In deterministic automata

this is not allowed and in any state of the automaton and any input state there

can be at most one enabled transition. Since in the current model the transition

labels of automata do not have to match the labels of input structures exactly, we

have to modify the usual definition of determinism accordingly.

Definition 3.5.8 Let A = (Q, 	z, l) be an ordinary automaton on m-

branching trees. We say that A is deterministic iff for every q E Q and every

Chapter 3 - Automata 	 119

pair of transitions (q, Z,
)

e L, (q, Z', ') E A from state q, there is some z e Z

such that either

• z e Z and -'z E Z', or

• -'z E Z and z E T. 	 W

Ordinary automata on finite strings can be determinised by the well-known

powerset construction. For automata on infinite strings the situation is not quite

so easy, but determinisation is possible for them as well. Since we know already

that for linear structures Büchi and Rabin recognisability coincide, it is sufficient

to consider determinisation of Büchi automata. However, it turns out that in the

class of deterministic automata Büchi acceptance is weaker than Rabin acceptance,

and the result of determinising a Büchi automaton is no longer necessarily a Büchi

automaton itselft.

Proposition 3.5.9 [McNaughton's Theorem] For any ordinary Büchi auto-

maton A, there exists an ordinary deterministic Rabin automaton A' such that

L(A) = L(A').

Proof: This result was first proved by McNaughton in [63], and an optimal

determinisation construction was provided by Safra in [80]. It is easy to see

that automata and models considered in the current work, with transition labels

only partially specifying the input state, can be translated into the more usual

kind of automata and models with transition labels specifying the input state

exactly. Translation back is trivial and preserves determinism. This means that

we can determinise automata (as considered in the current work) using either

McNaughton's or Safra's construction. I.

It is easy to see that deterministic Rabin and first recurrence automata have

the same expressive power.

Lemma 3.5.10 For any ordinary deterministic Rabin automaton A, there exists

an ordinary deterministic first recurrence automaton A' such that L(A) = L(A'),

and vice versa.

Proof: It suffices to observe that the transformations of Lemmas 3.2.21 and

3.2.23 between Rabin and first recurrence automata preserve determinism. 	El

The notion of determinism can be extended from automata to formulae. The

intuition behind this is to view disjunctions inside a formula as potential sources

of non-determinism, and to restrict the structure of a formula so that for any

disjunctive subformula 0 V çb' and any possible state of a model, at most one of

or 0' can be propositionally consistent with the state.

Chapter 3 - Automata 	 120

Definition 3.5.11 Let 0 and çb' be Kn-formulae, and a propositional Kn-

formula, i.e. one containing only atomic formulae and the propositional connectives

A, V and -'. We say that b is a deterministic choice for q' V çb' if

• 	and

• 	=-,;b.

Let 0 be a jtKn-formula in pnf. We say that 0 is deterministic if for every

subformula of 0 of the form 01 V 02 , there is a propositional formula such

that

• '/ is a deterministic choice for 0 V 02, and

• '/' does not contain any occurrences of variables bound by fixpoints in q. 0

Lemma 3.5.12 Let A be an ordinary first recurrence automaton on strings, and

O(A) the formula corresponding to A as in Def. 3.2.4. The formula q5(A) is re-

stricted, and if A is deterministic then so is O(A).

Proof: Easy.

These observations allow us to add some new points to the list of equiexpressive

formalisms for linear structures.

Corollary 3.5.13 For any string language L c MTL, the following statements

are equivalent with each other and with any of the statements in Cor. 3.5.4:

• L = L(q5) for some uTL-formula q,
• L = L(0) for some restricted deterministic TL-formula ,

• L = L(A) for some ordinary deterministic FR-automaton A, and

• L = L(A) for some ordinary deterministic Rabin automaton A.

Proof: Immediate from Corollary 3.5.4, Proposition 3.5.9 and Lemmas 3.5.10

and 3.5.12.

For the branching time world determinisation becomes impossible already for

automata on finite trees. For example, it is easy to construct an ordinary non-

deterministic automaton A recognising the language of all trees where the propos-

ition a is true in at least one state; intuitively A just guesses a path to a state

where a is true and verifies that a is true there. However, there is no deterministic

automaton recognising this language. The same counterexample works also for

all types of automata on infinite trees, so there is no hope of determinisation for

them either.

Chapter 3 - Automata 	 121

restricted Kn,
ord./alt. FR,

ord./alt. Rabin

112 of restr. uKn,
112 of ord./alt. FR,.

ord./alt. Büchi

(3.5.4

L2 of alt. FR
L and L are Büchi (3 4 20
LandLareinfl2 	J

MKn aKn 	 SnS
(3.4.38)

111 2 of _ 3-quantified 	3-quantified
Kn (3.4.215 	Kn 	 WSnS

A2 Of
Kn

_______ . 	 Kn 	 WSnS
(3.3.5)

In the figure arcs represent inclusion of expressive power. Unlabelled arcs cor-
respond to trivial inclusions or to relations present in Fig. 2.4 (page 59) or Fig.
3.6. The relations corresponding to dashed arcs hold only for linear structures
and calculi. Notice that in linear case all the formalisms are equiexpressive.

Figure 3.5: Relations of automata and logical calculi

3.6 Summary

In this chapter we have discussed several different types of automata and examined

their relations to the logical formalisms discussed in the previous chapter. The

main types of automata and acceptance conditions are listed in the following table,

along with references to the corresponding definitions.

ordinary
on strings 	on trees

alternating

general Def. 3.1.1 Def. 3.1.4 Def. 3.1.8
Büchi & Rabin Def. 3.1.3 Def. 3.1.6 Def. 3.1.10
first recurrence Def. 3.2.2 Def. 3.2.2
restricted - Def. 3.1.14
deterministic Def. 3.5.8 -

Figure 3.5 presents a comparison of various formalisms according to their express-

ive power, and Figure 3.6 summarises the most important translations between

automata and mu-calculus exhibited above. Thanks to the translations between

the formalisms, all the formalisms listed in these figures are decidable.

Chapter 3 - Automata
	 122

(3.5.1) 	 (3.4.35)

r - --~ (-
(3.2.23)

(3.2.6,

ordinary ordinary 	3.2.14) restricted

I
I

I

Rabin aut. 	(3.2.21')
S

FR aut.

I
I
I

1uKn

I
I I

I

I

t

(3.2.23)
alternating

I
$

alternating 	(3.2.6) Kn

I

Rabin aut. 	(3.2.21)

+

FR aut.

1' t
I (3.1.7) 	(3.1.7)

I
I I

I
I

I
I

(3.2.18)
I
I 	 (3.2.6. I

alternating H2 of alt. 	3.2.9) H2 of MKn -

Büchi aut. 	(3.2.16)
FR aut.

I

I

I

I

I
I
I (3.2.6.

I
I
I

I

I (3.2.18)
ordinary

I 	
' I 	 3.2.9,

112 of ord. 	3.2.14)

I
H2 of restr.

Bflchi aut. (3.2.16)
FR aut. p Kn

(3.4.18)

Unlabelled arcs correspond to trivial inclusions or translations between ordin-
ary and restricted alternating automata, (Lemmas 3.1.15, 3.1.16 and 3.2.3). The
translation corresponding to the dashed arc is available only in linear structures.

Figure 3.6: Translations between automata and mu-calculus

Chapter 4

Deciding mu-calculi

In this chapter we examine the decision problem for linear-time and modal mu-

calculi, i.e. the problem of determining whether a given formula 0 is satisfiable or

not. Using the translations and correspondences of Chapter 3, the satisfiability

of a mu-calculus formula can be decided by translating it to a Rabin or first

recurrence automaton. However, the drawback of the inductive nature of the

translation is that it involves a non-elementary blowup, and is therefore of little

practical interest.

In Section 2.2.4 we gave an account of satisfiability in terms of infinite bundled

tableaux. The basic idea of all direct decision methods for mu-calculi is a similar

analysis of formulae by decomposition and unfolding of fixpoints. Effectively these

decision procedures work by determining whether there exists a proper bundled

tableau for the given formula 0 . The easy part of the problem is determining

whether there exists any bundled tableau for 0 at all, proper or not. Where

the difficulty lies is in determining in a finitary way whether among the possible

bundled tableaux for q there is some proper one. In other words, the difficult

question is whether it is possible to avoid unfolding minimal fixpoints infinitely

many times in potential models of the formula.

Assume that we are interested in the satisfiability of 0. The standard decision

procedure first builds on the basis of 0 a finite tableau-like structure, known as a

Hintikka .structure, which takes care of the satisfaction of 0 as far as propositional

connectives, unfolding of fixpoints, and consistency between successive states is

concerned. In the terminology of the current work, we can view this Hintikka

structure as a finite encoding of all bundled tableaux for q. It naturally gives rise

to an automaton A1 0 on infinite trees recognising structures that are models of q
as far as local aspects are concerned. To guarantee well-foundedness of minimal

fixpoint unfoldigs, another automaton Af on infinite strings is constructed. The

task of this is to detect paths of the automaton A1 0 where some minimal fixpoint

123

Chapter 4 	Deciding mu-calculi 	 124

is unfolded infinitely many times. By complementing Af we get an automaton

A wf accepting those paths of Ai,, on which every minimal fixpoint is unfolded only

finitely many times. An intersection of A1 0 and Af yields then an automaton A

on infinite trees recognising the proper tableaux for 0 . Finally, checking A O for

emptiness answers the question of satisfiability of q. This decision procedure was

first presented for modal mu-calculus by Streett and Emerson [86, 87]. It has

been applied to the linear-time mu-calculus, including past operators, by Vardi

[95]. A variation of the method for linear-time mu-calculus works by constructing

the Hintikka structure or automaton A1 0 as above, and by using special graph

marking algorithms to either extract from this structure a proper linear bundled

tableau, or to detect that no such tableau exists [6, 59].

A drawback in these approaches is the non-transparency caused by the rather

complex automata constructions, especially complementation of Af, or graph

marking algorithms. This means that although they certainly give an answer to

the question of whether 0 is satisfiable, they do not necessarily give an insight

into why or how this happens. Moreover, in applying these methods it is difficult

for a human verifier to take advantage of her intuitions about the formula to ease

the task, by guiding the decision procedure to a suitable direction.

Direct tableaux methods enjoying precisely these properties of transparency

and possibility of human guidance have been developed with great success for the

model checking problem, i.e. for deciding whether a given formula is true in a state

of a given model, by Bradfield, Stirling and Walker [11, 13, 14, 85]. However, no

direct tableau construction for the satisfiability problem of mu-calculi has been

presented so far, and exhibiting such a construction for the modal mu-calculus

was in fact mentioned as an open problem in [46].

Below we describe an elementary tableau decision method for both the linear-

time and modal mu-calculi. The basis of the method is a generalisation of definition

lists called definition trees. The usage of definition trees in the tableaux here

corresponds implicitly to the string automaton Af and its determinisation and

complementation by Safra's construction [80] in the decision method above. It

builds on the work of Walukiewicz [100], who described an infinitary tableau

system where the tableau nodes were labelled with trees of sets of formulae. Here

the information coded in these trees has been represented in the definition trees.

A related infinitary tableau construction has also been presented by Emerson and

Jutla [33, 46].

The essential difference between the tableau system below and those of [33] and

[100] lies in the step from an infinitary system to a finitary one. Here we formulate

a simple leaf condition which allows us to stop the construction of any branch of a

Chapter 4 -Deciding mu-calculi 	 125

tableau after a finite number of steps, and which tells directly whether a tableau is

succesful or not. In contrast, Walukiewicz [100] interprets a finite representation

of a tableau as a Rabin automaton on infinite trees, reducing the satisfiability

of the formula to the non-emptiness of this automaton. The treatment of [33]

works along similar lines. A very early version of the current tableau method was

described in [48]; this worked only for the linear-time mu-calculus, and the notion

of definition trees was not yet present.

In addition to providing a solution to the decision problem of mu-calculi, the

tableau method can also be viewed as a direct transformation of mu-calculus

formulae to the strongly aconjunctive form. As we noticed in last chapter, this

allows us to translate the calculi 3Kn and SnS inductively to the modal mu-

calculus, giving yet another proof of the decidability of these formalisms with

second-order quantifiers. Compared to the decidability proof in last chapter, the

proof using the tableau construction has the added elegance that there is no need

to explicitly invoke the notion of automata at all.

4.1 Definition trees

Let us start by defining the concept of a definition tree, which extends the notion

of a definition list, and by describing some basic operations for definition trees.

Definition 4.1.1 A definition tree is a finite sequence

d= (uo ,q o) ... (uk ,q5k)

where

• every u2 is a definition constant, ui e U, and every Oi is either a definition

constant u E U or an extended fixpoint formula crz.ib,

• all ui are distinct, and

• if a constant u occurs in çb, then u = u3 for some j <i.

For every u, define d(u 1) = q. Define also the operation d* inductively by

• if d(u) = az4, then d*(u) = d(u), and

• if d(a) = u', then d*(u) = d*(ul) .

We call u a maximal, minimal or auxiliary constant of d depending on whether

d(u) = vz4, d(u) = 1,tz.0 or d(u) = 'a'. The concept of activeness and the notation

O[d] and F[d] are defined for definition trees as for definition lists in Def. 2.2.29.

We say that a constant 'a is defined before v and that v is defined after 'a in d if

u = ui and v = uj for some 0 < i <j <k. We say that 'a is defined immediately

before v and that v is defined immediately after a in d if u = ui and v = 	for

some O<i<k. 	 El

Chapter 4 -Deciding mu-calculi
	

126

The difference between definition lists and definition trees is that the latter

may contain pairs (u, u'), where an auxiliary constant u is defined to have the

same meaning as u'. The auxiliary constants are used in the tableau construction

below to keep track of the unfoldings of minimal fixpoints. Intuitively, when a

minimal constant u corresponding to a minimal fixpoint [tz. 0 is unfolded in the

tableau, we replace u in q[u/z] by a fresh constant til, which is defined to stand

for u by adding the pair (u', u) to the definition list.

The reason for calling these structures definition trees is to stress the fact that

the tableaux below depend on the tree structure implicitly defined in definition

trees. Intuitively, a constant v is an ancestor of u if v is active in u, relative to

the definition tree d. Naturally, a similar tree structure arises also in ordinary

definition lists, but this is not taken advantage of.

Definition 4.1.2 A definition tree d generates a finite tree labelled with constants

defined in d as follows:

• the root of the tree is labelled with a dummy constant u, and has a child

labelled with u for every constant u defined in d such that u does not occur

in d(v) for any constant v defined in d, and

• if a node of the tree, other than the root, is labelled with a constant u, then

the node has a child labelled with v for every constant v such that u occurs

in d(v) and for which there is no u' such that u would occur in d(u') and u'

be active in d(v).

The ordering of children of any node of this tree is defined by:

• any child labelled with an auxiliary constant is older than any child labelled

with a minimal or maximal constant,

• a child labelled with an auxiliary constant u is older than a child labelled

with an auxiliary constant v if u is defined before v in d, and

• a child labelled with a minimal or maximal constant u is older than a child

labelled with a minimal or maximal constant v if u is defined before v in d.

We say that a constant u is a parent/child/(proper) descendant/ (proper) ancestor

of a constant v in d if the unique node of this tree labelled with u stands in that

relation to the unique node labelled with v. We say that a constant u is a leaf of

d if the nodel labelled with u is a leaf. We also say that u is older than v in d if

the node labelled with u is older than the node labelled with v, according to the

global 'older than' ordering induced by the ordering of the children of nodes (Def.

2.1.4). We say that u is an unfolding of v if u is a proper descendant of v and

d* (v) = d* (u).

Chapter 4 -Deciding mu-calculi 	 127

U 	 w

U 	 U" 	 V 	 v'

U" 	 V 11

d = (u, pz.çb(z) A vz.(z, x)) (v, vx.'(u, x)) (u', u)

(v', vx.i/(u, x)) (w, ity.x(y)) (v", vx.i/(u', x)) (u", u') (u", u)

Figure 4.1: The structure of a definition tree

Let us define a linear ordering - <d on the constants defined in d by: u -<d v if

either u is a proper descendant of v or u is older than but not an ancestor of v in

d.

For an example of a definition tree and the tree structure induced by it, see

Fig. 4.1. We have used there the convention of writing J'(x, z) to mean that z and

x occur free in '/'. In the definition list of Fig. 4.1, the constant u" is an unfolding

of both u' and u, and u' is an unfolding of u. The constant v" is older than for

example u"' or v.

Definition 4.1.3 Let d be a definition tree and q an extended formula. We say

that 0 is well-formed with respect to d if for all constants u and v occurring in

either 'u is an ancestor of v or vice versa. If q' is well-formed with respect to d,

we use u(cb) to denote the unique constant u such that

• either u = uE or u occurs in 0, and

• no proper descendant of u occurs in q.
If q' and 1' are well-formed with respect to d, we say that q is older than 'b relative

to d if u() is older than u(). In the same way, we say that 0 is a (proper)

ancestor/(proper) descendant of if u(q) stands in that relation to u(). We

write 	if u(q) <d u().

Let us then define two operations for manipulating definition trees: deletion of

constants and substitution.

Chapter 4 -Deciding mu-calculi 	 128

Definition 4.1.4 Let d = (u0 , co) . . . (u,, cbk) be a definition tree, and U a set of

constants defined in d, U c {u 0 ,. . . , Uk}. Then the expression d \ U denotes the

definition tree obtained from d by removing every pair (ui, çb) for which ui e U.

Let V0,. . , V be constants and 'iJ'o, . . . , extended formulae. Then the ex-

pression d[o /v o ,. . . , 1/)m/Vm] denotes the definition tree d' = (ao , 0') . .. (uk
,)

where each = q5{ o /v o ,. . . , I/v]. If 0 is a formula and U = {vo,.. . , Vm} a

set of constants, d[/U] is an abbreviation for d[/vo ,. . . , '/)/V m]. We use the same

abbreviation for substitution to a formula q5[/U] or a set of formulae F[/U]. 0

We will also need the notion of similarity between formulae. Intuitively this

means that two formulae are the same except for the choice of names of definition

constants in them.

Definition 4.1.5 Let d and d' be two definition lists. Define the concept of

extended formulae q and çb' being similar (relative to d and d') inductively as

follows:

. if q = çb' and 0 and qY do not contain any definition constants, then 0 and

are similar, and

• if there is a formula 0 which does not contain any definition constants,

variables z0 ,... , zk and constants u 0 ,. .. , Uk and v 0 ,.. . , Vk such that

• 0 =1)[uo /z o ,...,uk /z k],

• qY = i/'[vo /z o ,.. . , Vj/Zj ç] and

• each d*(u2) and d!*(v) are similar,

then 0 and qY are similar.

If d = d' above, we say simply that qf. and qY are similar relative to d.

Notice that if q and qY are similar relative to d and d', then q[d] = qY[d'].

However, the converse does not necessarily hold. For example, if the definition

tree d is as in Fig. 4.1, then a A Ou" and a A Ou are similar relative to d, the

same holds for Gb V v' and Qb V v", but a A Ow and a A Ov are not similar, and

neither are v and vx.'/'(u, x), although v[d] = (vx.(u, x))[d].

4.2 Tableaux with definition trees

As a preliminary step towards the tableau-based decision procedure, let us for-

mulate an infinitary tableau system analogous to bundled tableaux but based on

decision trees.

Definition 4.2.1 Let 0 be a guarded ,uTL-formula in pnf. A definition tree

tableau T for 0 is an infinite sequence T = (so , F0 , do) (s i , F 1 , d1)... where

Chapter 4 	Deciding mu-calculi 	 129

name application

del
-

s,
s,

F U {q, O'}, 	d
F u{ q' 	

where q and qY are similar relative to d
}, 	d

and 0 	d 0

del-U
s,
s,

F, 	d 	
where u does not occur in any 0 e F, and

F, 	d\{u}
u is a leaf of ci

contr-U
_S

s,
F, 	d 	

where u does not occur in any 0 E F,
F[u/U], 	(d\U)[u/U]

every child of u in d is an
unfolding of u, and U is
the set of unfoldings of u in d

vL
s, Fu{qv'}, 	d
s, Fu{q}, 	d

yR
s, Fu{v'}, 	d
S, Fu{qY}, 	d

s, Fu{qA'}, 	d
A

S, Fu{ç,fl, 	d

0•
s,
S,

F U {az.çb}, 	d
where u does not appear in d

FUJul, 	d.(u,oz.q)

UV
'

s,
FU{, 	ci 	

where d*(u) =vz.
FU{ci[u/z]}, 	d

Up
s,
s,

FU{u}, 	d
where d* (u) = uz.ç5 and

F U {[u'/z]}, 	d 	(u',
u' does not appear in d

S, {z i ,.. 	, Zm, Oi,. 	, O} 	d 	
here every z is atomic W

s+1, 	{&,...,k}, 	 d

Note: 	In each rule, F is disjoint from the other set

Table 4.1: Definition tree tableau rules for 1uTL

Chapter 4 - Deciding mu-calculi 	 130

• every s i e IN, Fi is a finite set of extended pTL-formulae in pnf, and di is a

definition tree,

• (so , F0 , d0) = (0, {}, €), and
• every (s+, 	d+1) is derived from (s i , F, d) by applying one of the rules

in Table 4.1. The rules have the following priority order:

• del- (highest priority),

• del-U,

• contr-U and

• all other rules (lowest priority)

A rule with a lower priority can be applied only if there is no applicable rule

with a higher priority. Furthermore, the del-U and contr-U rules have to be

applied to the oldest n in d that they can be applied to.

In an application of the del-U rule, we say that the constant u is deleted by

the rule, and in an application of the contr-U rule we say that u has been

contracted and every u2 deleted by the rule.

We say that T is proper if there is no constant u such that

• u is contracted in infinitely many points of T, and

• u is deleted in only finitely many points of T.

The concept of the propositional consistency of a tableau, and that of a tableau

agreeing with a model are defined as in Def. 2.2.38. 	 *

Those definition tree tableau rules which are the same as for bundled tableaux

need no explanation. The U rule for constants is split in two, depending on whether

the constant 'a refers to a maximal or a minimal fixpoint. In the first case the rule

is the same as with bundled tableaux. In the case of a minimal fixpoint, however,

the formula 'a is not just replaced by 0[u/z], but a new auxiliary constant 'a' is

introduced as an unfolding of 'a, and u is replaced by 0 [u'/z] in F instead. Since the

meaning of the new auxiliary constant u' is defined as u, extended formulae 0 [u/z]

and O[u'/z] have the same meaning in the sense that ([u/z])[d] = (['a'/z])[d].

However, regarding well-foundedness of minimal fixpoint unfoldings, the constant

'a' is 'more dangerous' than u in that the minimal fixpoint formula corresponding

to both 'a and 'a ' has been unfolded once more in a derivation leading to 0 [u'/z]

than in a derivation leading to 0 [u/z].

If then later u' is unfolded, a new auxiliary constant u" is again introduced as

an unfolding of 'a ' , 'a ' replaced by 0['a"/z] and so on. In this way, the definition

trees in a tableau keep track of the unfolding of minimal fixpoints. Assuming for

the moment that there were no del-, del-U and contr-U rules, we could find out

whether some minimal fixpoint is unfolded infinitely many times in a tableau by

Chapter 4 -Deciding mu-calculi 	 131

looking at whether some branch of the definition trees grows infinitely long, or to

be more accurate, whether there are infinite sequences u0 , 'a1,... of constants and

i(0), i(1),... of points in the tableau such that each is an unfolding of u j in

the definition tree d(3).

The purpose of the del-0 rule is to bound the number of formulae in any set

ri in a tableau by deleting multiple copies of similar formulae, i.e. formulae which

differ only by the choice of constant names. For the correctness of the tableau

system it is crucial that formulae are not deleted in an arbitrary manner. Instead,

the choice of which of two similar formulae to erase is fixed by the ordering

- <d induced by the current definition tree d; the formula which is smaller in the

ordering - <d is preserved and the other deleted. Notice that if u' is an unfolding of

'a in d and q is a formula containing a free occurrence of z, then q [u'/zJ - <d ç5[u/z],

and an application of the del-0 rule would delete the 'less dangerous' q['u/z] and

preserve the 'more dangerous' 0 [u'/z].

The rule del-U is a housekeeping rule, which allows us to delete constants u

which are not active in any formula 0 E F. Such constants cannot have any effect

on the subsequent steps in a tableau anyway, since they cannot ever reappear and

be unfolded.

Probably the most interesting rule in the tableau is the contraction rule contr-

U. Consider a situation in which the rule is applicable to constant u. First of all

u does not occur in any 0 E F but it must be active in some, as otherwise the

del-U rule would be applicable. Secondly, every child u' of 'a in d is an unfolding

of u, i.e. an auxiliary constant for which d(u) = u. Forgetting the existence. of the

contr-U rule for the moment, we can see from the tableau rules that this means

that no sequence of derivations can lead to a point where 'a could reappear and be

unfolded. In effect, the interior node 'a of the definition tree d has become useless.

What the contr-U operation does is to compress the node corresponding to u and

those descendants of it which are unfoldings of 'a together to form a single node.

For the purposes of the proofs below, let us define the notion of dependencies

also for definition tree tableaux. Notice that this was not necessary in order to

spell out the condition of a tableau being proper.

Definition 4.2.2 Let T = (so , F, do)(s i , F 1 , d1) .. . be a dependency tree tableau.

For every point j E IN of T, define the dependency relation -+C F3 x F11 for the

other rules as in Def. 2.2.38 for a bundled tableau, and for the del-q, del-U, and

contr-U rules as follows:

. If the rule applied at point j of T is del-q, then /' -+ J for every 'iJ e F3 u{q}.
The formula c/I e F3 deleted by the rule has no dependants in

Chapter 4 -Deciding mu-calculi 	 132

• If the rule applied at point j of T is del-U, then 	O for every 0 E F3 .

• If the rule applied at point j of T is contr-U, then 0 -+ 0[u/U] for every

E r3 .

For any n e IN, a sequence qo, 0,... is a direct dependency sequence of T from

1 0 at point n if for every q5j in the sequence q -* q 1 relative to the rule applied

at point n+ i..

For any n E TN, a sequence 00 , q,... is an indirect dependency sequence of

from 00 at point n if for every Oi in the sequence either çb relative to the

rule applied at point n + i, or the del-0 rule is applied at point ii + i to delete

formula 0j, the formulae Oi and q5i+i are similar relative to and ci+i -<d,j ci.
Let 00, i,... be an infinite direct or indirect dependency sequence from point

n of T. We say that the sequence is bad if there is some minimal or auxiliary

constant u of dn such that u is active in every qj (relative to d+), and qj = u for

infinitely many i E V.

Notice that in the dependency relations for the contr-U rule, if 0 —* 'J' and

qY —+ 0, then q = qY, as otherwise the del-0 rule would be applicable. Let us list

some important properties of definition tree tableaux.

Lemma 4.2.3 Let T = (so , F, do) (s i , F 1 , d1)... be a definition tree tableau.

Then

1 There is a bound ri E IN such that I [' <n for any i e TN.

2 There is a bound n e IN such that IdI < n and the depth of d (when

considered as a tree) is at most n, for any i e N.
3 Let u and 'u' be constants which are defined in di and d+1, and assume that

U <d u' and no common ancestor of u and u' in di is contracted at point i

of T. Then U <d+1 U-

4 Let u be a constant which is defined in d2 and q E r' i a descendant of u

in d, and assume that there is a direct or indirect dependency sequence (of

one step) from q in I' j to in F. Then either 'q' is a descendant of u

in d+1, or i/.' is older than u in d+1, or u does not exist in d+1 due to the

contraction of some proper ancestor v of u at point i of T.

5 Let i and j be points of T such that i <j. Let u be a minimal or auxiliary

constant which is defined in d, is not deleted in T between points i and

j, and is contracted in T at both point i and point j. Then there is some

E F3 such that u is active in 0 relative to d3 . Furthermore, for every

F3 for which u is active in q relative to d, there is a formula ib E ri and

a direct dependency sequence from 0 at point i to 0 at point j such that u

Chapter 4 -Deciding mu-calculi 	 133

is active in every element of the sequence, and at some point between i and

j u occurs in the seqeunce and the U1u rule is applied to it.

6 Let i and j be points of T such that i < j. Let u be a minimal or auxiliary

constant such that u e Fj and the Up rule is applied to u at point i of T.

If u E F3 and there is a direct or indirect dependency sequence from u at

point i to u at point j such that u is active in every element of the sequence,

then u is contracted somewhere between points i and j of T.

Proof: Straightforward. Notice that for claim 6 it is essential that among the

children of any constant in a definition tree, all auxiliary constants are always

older than all minimal or maximal constants, and that in the deletion rule the

formula which is smaller in the <d order is the one which is preserved. El

Let us see that we can read a proper definition tree tableau from a proper

bundled tableau, and vice versa. Since the proofs of the lemmas below are straight-

forward but tedious, they have been postponed to Appendix A.

Lemma 4.2.4 Let T be a definition tree tableau. The following statements are

mutually equivalent:

. T is not proper,

• there is a bad direct dependency sequence in T, and

• there is a bad indirect dependency sequence in T.

Proof: The first condition implies the second by clauses 1 and 5 of Lemma 4.2.3

and by König's lemma. The second trivially implies the third. The third implies

the first by clause 6 of Lemma 4.2.3. For full details, see Appendix A. 	EJ

Lemma 4.2.5 Let T = (s0 , 1 0 , d0)... be a proper definition tree tableau, n a

point of T and co, qi,... an infinite direct or indirect dependency sequence from

point n of T. Then there is some m> 0 and constant u such that

• u is active in çj, relative to d,,+i for every i > m, and

• 0i = u for infinitely many i > m.

Proof: Given an infinite dependency sequence, we can inductively find the

required u on the basis of clauses 2, 3 and 4 of Lemma 4.2.3. For full details, see

Appendix A. 	 El

Lemma 4.2.6 Let T be a proper and propositionally consistent bundled tableau

for a guarded TL-formula 0 in pnf. There exists a proper and propositionally

consistent definition tree tableau T' for 0 such that for any model M € MTL, if

T agrees with M then T' agrees with M.

Chapter 4 -Deciding mu-calculi 	 134

Proof: Reading a definition tree tableau T' from a bundled tableau T is straight-

forward. What is more, we can project any bad direct dependency sequence in

T' back to T to a dependency sequence with infinitely many occurrences of some

minimal fixpoint constant. Therefore by Lemma 4.2.4, T' is proper, if T is proper.

For full details, see Appendix A. EJ

Lemma 4.2.7 Let T be a proper and propositionally consistent definition tree

tableau for a guarded TL-formula q in pnf. There exists a proper and proposi-

tionally consistent bundled tableau T' for q such that for any model M e MTL,

if T agrees with M then T' agrees with M.

Proof: Reading a bundled tableau T' from definition tree tableau T is straight-

forward. We can also project any dependency sequence of T' back to an indirect

dependency sequence in T. Furthermore, by Lemma 4.2.5 we can do this in such a

way that if the dependency sequence in T' has infinitely many occurrences of some

minimal fixpoint constant, then the dependency sequence in T is bad. Therefore

by Lemma 4.2.4, T' is proper, if T is proper. For full details, see Appendix A. EJ

So far we have showed that definition tree tableaux characterise satisfiability

in the same sense as bundled tableaux.

Theorem 4.2.8 Let 0 be a guarded TL-formula in pnf. Then q is satisfiable

if there is a proper and propositionally consistent definition tree tableau T for q.

Proof: By Prop. 2.2.40 we know that q is satisfiable if there is a proper and

propositionally consistent bundled tableau T for 0 . The claim follows then imme-

diately from Lemmas 4.2.6 and 4.2.7. 	 MI

4.3 Satisfiability tableaux

We are now ready to formulate a finitary tableau system for the satisfiability of

TL formulae. This is based on characterising a suitable termination condition,

which specifies when we can stop extending a tableau. This condition is motivated

by the following observation.

Lemma 4.3.1 Let T = (so , [, do) (s i , F1 , d1)... be a definition tree tableau. The

tableau T is proper if there is some point n e IN and a constant u defined in d

such that

• neither u nor any constant defined before it in d is deleted or contracted

anywhere in T after point n, and

Chapter 4 - Deciding mu-calculi
	

135

• there are infinitely many points i > n such that either u is the last constant

defined in d, or the constant defined immediately after u in d2 is deleted at

point of T.

Proof: Straightforward. 	 IN

Definition 4.3.2 Let 0 be a guarded jiTL-formula in pnf. A satisfiability tableau

T for q is a finite sequence T = (F0 , d0) ... (F,, d), where

• F, is a finite set of extended iTL-formulae in pnf, and d2 is a definition tree,

• (F0 , d0) = ({},f),

• every (F 2+1, d2+1) is derived from (F 2 , d2) by applying one of the rules in

Table 4.2, using the same priority order as in Def. 4.2.1,

• point n of T is terminal, defined below, and

• for every 0 < k <n, point k of T is not terminal.

We say that T is proper if n is an accepting terminal, defined below.

Before being able to define the concept of a terminal point, we need the notion

of a companion.

Definition 4.3.3 Let T = (F0 , d0) . . . 	 dk) be a satisfiability tableau for a

,aTL-formula q, and let m and n be points of T such that 0 < m < n < k. We

say that point m is a companion of point n in T if (Fm , dm) = (F, d), and there

is some constant u defined in dm such that

o for every constant v such that v = a or v is defined before u in dm , V is

neither deleted nor contracted between points m and n of T

and either

1 u is the last constant defined in dm , or

2 the constant v defined immediately after u in dm is deleted at point m of T,

or

3 the constant v defined immediately after u in dm is contracted at point m,

and v is not deleted at any point between m and n in T.

In cases 1 and 2 we say that m is an accepting companion of n, and in case 3 that

m is a rejecting companion. 	 D

Definition 4.3.4 Let T = (F0 , d0) . . . (Fk, dk) be a satisfiability tableau for a

iTL-formula 0 , and let 0 < n < k be a point of T. We say that the point n is

terminal if either

• J.. E F, or

• there is some 0 such that 0 E F and -'q E F, or

Chapter 4 - Deciding mu-calculi 	 136

name application

del-0
F U 	

where 	and 	' are similar relative to d
Fu{}, 	d

andd'

del- U
F 	d

where u does not occur in any 0 E F, and
F, 	d\{u}

uisa leaf ofd

contr-U
F, 	d

 where u does not occur in any 0 e F,
F[u/U}, 	(d \ U)[u/U]

every child of u in d is
an unfolding of u, and
U is the set of unfoldings of u in d

vL
Fu{vqY}, 	d
Fu{q}, 	d

yR
FU{VqY}, 	d
Fu{qY}, 	d

Fu{qAç'}, 	d
A

Fu{ç5,qY}, 	d

F U {az.}, 	d 	
where u does not appear in d

FU{u}, 	d.(u,az.)

UV
FU{u}, 	d
F U {[u/z]}, 	d 	

where d*(u) = vz.

Utz
F U {n}, 	d 	

, 	where d*(u) = 	and
F U {[u'/z]}, 	d 	(u

u' does not appear in d

{ Zi,. 	, Zm, O1,. 	, Q}, 	d 	
where every zi is atomic

d

Note: In each rule, F is disjoint from the other set

Table 4.2: Satisfiability tableau rules for pTL

Chapter 4 - Deciding mu-calculi 	 137

. there is some earlier point m < n of T such that m is a rejecting companion

of n in T, or

. there is some earlier point m <n of T such that m is an accepting companion

of n in T.

In the first three cases we say that n is a rejecting terminal and in the last case

that n is an accepting terminal in T.

Before showing the correctness and completeness of the tableau system, let us

state one more technical lemma.

Lemma 4.3.5 Let T = (F0 , d0). . . (Ft,, dk) be a structure which is like a satis-

fiability tableau, except without the requirement that only the last point may be

terminal. Let m and n be points of T such that m is an accepting companion of

n, and let m' and n' be points of T such that m' is a rejecting companion of n'.

Then m=,4m',nn',and neither m' < m < n' < n nor m < m' < n < n' can

hold.

Proof: By definition there is a constant u such that neither u nor any constant

defined before it in dm is deleted or contracted between points rn and n, and u

is either the last constant defined in dm or the constant v defined immediately

after u in dm is deleted at point m of T. Similarly, there is a constant u' such

that neither u' nor any constant defined before it in dm ' is deleted or contracted

between points m' and n', and the constant v' defined immediately after u' in dm '

is contracted at point m', and is not deleted at any point between m' and n'.

Since v' is contracted at point m', and no constant is contracted at point m, we

have m m'. Furthermore, (F m , dm) 	 (Fm ', dm '), since otherwise v' would have

to be contracted at point m. Since (F, d) = (Fm , dm) and 	d) = (Fm ', dm '),

this implies n n'.

Assume then that either m' < m < n' <n or m <m' < n <n1 would hold.

Consider the former case first. Since neither v' nor any constant defined before it

111 drn' is deleted at point m, v' must either be u or defined before u in dm . Notice

then that since v' is contracted at point m', it is also contracted at point n'. but

then v' cannot be u or defined before n in dm , which is a contradiction.

Assume then that m < m' <n <ml . Since neither u nor any constant defined

before it in dm is contracted or deleted at point m', v' must be defined after u

in dm'. However, since u is either the last constant defined in dn or the constant

defined immediately after it is deleted at n, v' must be u or defined before u in

d, again a contradiction. 0

Chapter 4 -Deciding mu-calculi 	 138

Theorem 4.3.6 Let qf be a guarded jiTL-formula in pnf. Then 0 is satisfiable

if there is a proper satisfiability tableau T for 0.

Proof: By Theorem 4.2.8 we know that q is satisfiable if there is a proper and

propositionally consistent definition tree tableau for q.

Assume first there is a proper satisfiability tableau T for 0 . By unwinding T to

an infinite sequence, it is easy to construct a propositionally consistent definition

tree tableau T' for 0 . Lemma 4.3.1 implies that this T' is proper. Consequently

q is satisfiable.

Assume then that 0 is satisfiable, and that there is a proper and propositionally

consistent definition tree tableau T = (so , F0 , do)(s i , F 1 , d1) By clause 2 of

Lemma 4.2.3, there is a bound k such that I di I < k for all i E IN. This means that

by reusing constants we can assume without loss of generality that there are only

k different constant names in T, which means that there are only finitely many

different definition lists in T. Since T is proper, by Lemma 4.3.1 there are then

points in and n of T and a constant u defined in dm such that m < 12, Fm =

dm = dn and neither u nor any constant defined before it in dm is deleted or

contracted between points m and n of T, and either u is the last constant defined

in dm or the constant v defined immediately aften u in dm is deleted at point m

of T.

Consider now the sequence T' = (F0 , d0) . . . (F,, d). By the choice of in and

n, we know that m is an accepting companion of n in T', i.e. that n is an accepting

terminal. If no n' <n is a terminal, T' is then an accepting satisfiability tableau.

Otherwise, let us see that we can remove segments from T' until no point except

the last is terminal.

Assume then that some ri' < n is also a terminal, i.e. that there is some m'

such that m' is a companion of n' in T'. If m' is an accepting companion, define

T" = (F0 , d0) . . . By assumption the last element of this sequence is an

accepting terminal. If m' is a rejecting companion of n', by Lemma 4.3.5 we know

that it is not possible that m < m' <n < n' or m' <m < n' <n. Defining then

T" = (F0 , do) ... (Fm'_ i , dm '.i)(Fn', d) ... (F, d), it is easy to see that the last

element of T" is still an accepting terminal. In both cases IT"I < IT'I. Therefore,

after chopping off a finite number of segments from T', we obtain a sequence where

the last element is an accepting terminal and no other element is a terminal, i.e.

a proper satisfiability tableau for 0.

Let us see then that we can derive an exponential bound for the size of tableaux

that need to be considered for the satisfiability of a given formula 0 . This gives

us immediately an elementary decision procedure.

Chapter 4 - Deciding mu-calculi 	 139

Proposition 4.3.7 There exists a polynomial p such that for any tTL-formula

, at most (J01) distinct constant names are needed in constructing a satisfiability

tableau for 0 . Furthermore, there exists a polynomial p' such that for every 1iTL-

formula 0 and every satisfiability tableau T for 0, if T uses only p(q) distinct

constant names, then the length of is at most 2P'(II).

Proof: For the first claim, take any satisfiability tableau T = (IT0 , d0) ... (F, d)

for qb. Notice that if we identify similar formulae, there are at most 101 different

formulae that can occur in T. Take any point i of T where a new constant is

added to d, by the rule applied at point i. Since then neither del-0 nor del-U can

be applicable at that point, 1F 2 1 < 101 and d2 has at most 0 leaves. Furthermore,

since contr-U cannot be applicable at point i either, we can see that the depth of

d2 must be less than 2 101, implying that Idi l < 2• 1012. Consequently, if we reuse

constants, we need no more than 2 - 1012 different constant names when building

a satisfiability tableau for q.
Let us then derive a bound on the number of different pairs (F, d) that may

occur in T, if T uses at most 1012 constant names. Define k = 1012. Since up to

similarity there are at most 101 different formulae that may occur in T, each of

these formulae has at most 101 occurrences of constants, and there are k choices for

each constant, there are at most 101 . kkbl syntactically different formulae that may

occur in T. Since IFl :5 101 for every i, there are at most (II 0 1) 1 I < 22.klogk

different choices for the set F. For each element (u3 , cb) of d, there are at most

k different choices for u 3 and 101 . k 101 different choices for Oj . Since Idi l < Ic, there

are then at most (Ic. 101 . k11)c < 22I0Ikiogk different choices for d. Consequently,

there are at most 22k.1ogk+2.4.k.1ogk < 2 4k2 different choices for the pair (F t , d2).

Define then x =

Let us denote for every i the definition tree di by d2 = ('uj0 , o) . . . (u) çbj.

We shall show next by descending induction on h that for every 0 < h < k the

following holds:

For any points 0 < m < m' < ii, if no point i between m and m'

is terminal and no uij is either deleted or contracted at any point

m<i<m' for any 0j <h, then mF_ mx 2 (k_l.

From case h = 0 it follows that n < x2 	= 244C2(2k+1) < 2124 3 = 21211 6 ,

establishing the required bound on the size of tableaux for 5.

The base case for the induction is h = k. As the analysis above shows that

there are at most x different pairs (F r , d2), the induction claim holds in this case,

since otherwise some point m < i < m' would satisfy clause 1 of Def. 4.3:3 and

be terminal, contrary to assumption. Assume then that the induction claim holds

Chapter 4 -Deciding mu-calculi 	 140

name I 	application 	 I
I 	{zi,. .. , Z, ®Q5i,., ©qk}, d 1

F0 , d 	F 1 , d 	... 	Fn_i, d

Note: 1: every z is atomic, and for every i E [n], Fj = 103 I ij = i}.

Table 4.3: Satisfiability tableau rule for branching structures

for some 0 < h < k. Take any points 0 < m < m' <ri such that no m <i < m'

is terminal and no u 3 is deleted or contracted at any point m < i < m' for any

0 < j < h - 1. There can be at most x points m < i < m' such that Ui(h_1)

is deleted at point i, since otherwise clause 2 of Def. 4.3.3 would be satisfied.

Between any two such points there can be at most x points i such that Ui(h_1)

is contracted at point i, since otherwise clause 3 of Def. 4.3.3 would be satisfied.

By induction assumption the distance between any two of these points is at most
x2(_h)+1, which implies that m' - m < x x x2 (h)+1 = X 2.(k—(h-1))+l and the

induction claim holds for h - 1.

4.4 Extension to branching structures

Although above we formulated the satisfiability tableau system only for the linear

time mu-calculus, the proofs do not essentially depend on the linearity of the

structures. Therefore it is easy to generalise the tableaux also for the modal

mu-calculus.

Definition 4.4.1 Fix some n E IN, and let 0 be a guarded tKn-formu1a in pnf.

A satisfiability tableau T for q is a finite tree T, every node t of which is labelled

with a pair (Fr , d) where

. every r t is a finite set of extended jiKn-formulae in pnf, and dt is a definition

tree,

• the root of T is labelled with

• for every interior node t of T, either t has exactly one child which is derived

by applying one of the rules del-q, del-U, contr-U, VL, VR, A, a, UV or Up

in Table 4.2, or exactly n children which are derived by the rule Q in Table

4.3, and where the priority order of the rules is as in Def. 4.2.1,

• every leaf t of T is terminal, defined below, and

• no interior node of T is a terminal.

Chapter 4 - Deciding mu-calculi 	 141

We say that T is proper if every leaf t of T is an accepting terminal, defined

below.

Definition 4.4.2 Let T be a satisfiability tableau for a iKn-formula 0, and let

t and t' be nodes of T such that t' is a proper ancestor of t. We say that t' is a

companion of tin T if (F, d') = (F,d), and there is some constant u defined

in dt, such that

0 for every constant v such that v = u or v is defined before u in 	v is

neither deleted nor contracted between t' and t in T

and either

1 u is the last constant defined in dt,, or

2 the constant v defined immediately after u in d' is deleted at node t' of T,

or

3 the constant v defined immediately after u in dt , is contracted at node t',

and v is not deleted between t' and t in T.

In cases 1 and 2 we say that t' is an accepting companion of t, and in case 3 that

m is a rejecting companion. 	 E

Definition 4.4.3 Let T be a satisfiability tableau for a iKn-formula q, and let

t be a node of T. We say that t is terminal if either

• I E F, or

• there is some q such that q e rt and -0 E F, or

• there is some proper ancestor t' of t such that t' is a rejecting companion of

t in T, or

• there is some proper ancestor t' of t such that t' is an accepting companion

of t in T.

In the first three cases we say that t is a rejecting terminal and in the last case

that t is an accepting terminal in T. 	 El

Theorem 4.4.4 Let 0 be a guarded Kn-formula in pnf. Then 0 is satisfiable

if there is a proper satisfiability tableau T for q.

Proof: The correctness and completeness of the tableau system for the branching

case is shown using the same techniques as for the linear case. First, it is easy

to extend the concept of a definition tree tableau to the branching case and show

analogously to Theorem 4.2.8 that a formula is satisfiable if there is a proper and

propositionally consistent definition tree tableau for it.

Assuming that there is a proper satisfiability tableau T for 0, is is easy to

unwind T to an infinite definition tree tableau which is proper and propositionally

consistent, implying the satisfiability of q.

Chapter 4 -Deciding mu-calculi 	 142

In the other direction, take an infinite proper definition tree tableau T for 0.
By cutting off the rest of the tree T in any path as soon as an accepting terminal

has been reached, we can read from T a finite structure T' which is like a proper

satisfiability tableau, except that some interior nodes of T' may still be terminals.

As in the proof of Theorem 4.3.6, we can then chop off pieces from T' so that all

its leaves stay accepting, until no interior node of the tree remains terminal. D

Proposition 4.4.5 There exists a polynomial p such that for any Kn-formula

q, at most (I) distinct constant names are needed in constructing a satisfiability

tableau for 0 . Furthermore, there exists a polynomial p' such that for every ,uKn-

formula qS and every satisfiability tableau T for q, if T uses only p(q) distinct

constant names, then the length of any branch of T is at most 2'(II).

Proof: Analogous to Prop. 4.3.7
	

U

4.5 Discussion

In the sections above, we have described a tableau system for deciding the sat-

isfiability of ,uTL and uKn-formulae, yielding an elementary decision procedure.

What is more, we can use the same tableau system to transform mu-calculus

formulae directly to the strongly aconjunctive form.

Theorem 4.5.1 For every TL-formula q, there is an equivalent strongly acon-

junctive 1iTL-formula '. The same holds for /2Km, as well.

Proof: Take any ,uTL-formula ç. By Prop. 2.2.36 we can assume without loss

of generality that 0 is guarded and in pnf. Construct then a finite tree T labelled

with pairs (F, d) as in satisfiability tableaux. The tree T is defined inductively as

follows.

• The root of T is labelled with ({q},),
• For any interior node t of T with label (F, d), either

• t has one child t' labelled with (F', d'), where (F', d') is derived from

(F, d) by any satisfiability tableau rule (Table 4.2) except VL or vR,

or

• t has two children t' and t", labelled with (F', d') and (F", d") respect-

ively, where (F', d') is derived from (F, d) by applying VL to some

formula 0 E F, and (F", d") is derived from (F, d) by applying yR to

the same formula q, and

• node t is a leaf of T if t is terminal in the sense of Def. 4.4.3. (Notice that

the definition makes sense, although T is strictly speaking not a satisfiability

tableau.)

Chapter 4 -Deciding mu-calculi 	 143

By reusing constants whenever possible, we can guarantee that this T is indeed

finite.

Let us then define the formula ',b on the basis of the tree T. Fix first a separate

variable z(t) for every node t of T. Define then 0 = /), where for every node t

of T, 'J'(t) is defined inductively by:

iiz(t).q(t) if t is an accepting companion for some t'
(t) = 	z(t).(t) if t is a rejecting companion for some t'

I 0 (t) 	otherwise

where

• (t) = (t') V '(t"), if t is not a leaf and the children t' and t" of t were

derived by the VL and yR rules,

• (t) = (A{z e Ft I z is atomic }) A 00(t'), if t is not a leaf and the child t'

of t was derived by the 0 rule,

• /(t) = 0(t'), if t is not a leaf and the child t' oft was derived by some other

rule,

• (t) = z(t'), if t is a leaf and there is a proper ancestor t' of t such that t' is

a companion of t, and

• q(t) = I, if t is a leaf and it has no companions. Notice that in this case

either I E Ft or {, -'ç} c rt for some q.

Remembering Lemma 4.3.1 and the definition of a companion, it is easy to see

that for any model M, there is a proper bundled tableau for agreeing with M

if there is a proper definition tree tableau for 0 agreeing with M. In other words,

'. The generalisation of the construction to ,uKn is obvious. 	0

We already showed this result in the previous chapter, using the inductive

translation of mu-calculus formulae to ordinary Rabin automata. However, the

current translation which uses the satisfiability tableau system has the added el-

egance that it does not require the introduction of auxiliary formalisms like Rabin

automata. In fact, it allows us to translate SnS or 3Kn to the strongly acon-

junctive fragment of pKn, thereby showing the decidability of these formalisms,

without ever explicitly invoking the notion of automata at all. To see this, no-

tice that the inductive translation of Theorem 3.4.38 from 3Kn to pKn requires

only the ability to transform any Kn-formula to the strongly aconjunctive form.

This approach to the decidability of SnS effectively continues the programme of

Emerson and Jutla [33, 46]. However, while their work still used explicit automata

constructions, the tableau system here allows a direct proof.

Chapter 5

Axiomatising linear time
mu-calculus

In this chapter we present a solution to the previously open problem of providing

a complete axiomatisation for the linear-time mu-calculus ,iTL, and see how we

can take advantage of various constructions and semantic results above in proving

the completeness of the axiomatisation.

Although pTL is syntactically concise and straightforward, the problem of

axiomatising it has turned out to be rather intricate. The main culprit for this

is the minimal fixpoint operator j, or more exactly, the prevention of infinite

regeneration of minimal fixpoints when trying to build a model for a consistent

formula. Previously the axiomatisation of ,uTL has been addressed by at least

Lichtenstein [59] and Dam [22]. The closely related question of axiomatising the

modal mu-calculus, has been examined by Kozen [55] and Walukiewicz [100, 1011.

Generalising, there have been two approaches to showing the satisfiability of a

consistent formula, the essential problem of the completeness proof of an axiomat-

isation. First, one may try to devise a method of constructing a model directly

from a given consistent formula. In this line, Kozen [55] introduced the concept

of aconjunctivity, to make it easier to build a model of a consistent formula, and

showed the completeness of an axiomatisation of the modal mu-calculus restricted

to the aconjunctive fragment of the language. The same approach was pursued

by Lichtenstein in [59] to show the completeness of an axiomatisation of jtTL

restricted to a class of aconjunctive formulae.

Another approach, and the one adopted here, is using a normal form and

showing that any formula can be provably transformed to this normal form. If we

know how to build a model for a consistent formula in this form, the satisfiability

of any consistent formula has been shown. In the context of S1S, this approach

was already used early by Siefkes [81], and for the linear-time mu-calculus jtTL,

144

Chapter 5 - Axiomatising linear time mu-calculus 	 145

Dam [22] used Büchi automata -like normal forms to show the completeness of an

axiomatisation of 1uTL containing an 'impure' axiom stating that a formula and

its normal form are equivalent.

The completeness proof of the axiomatisation below is based on transforming

formulae provably to a normal form. The crucial property of the normal form

used here, the bi-aconjunctive non-alternating form, is that not only is it easy to

construct a model of a consistent formula in this form, but the same holds also

of its negation. In our opinion, the remarkable thing about the normal form and

the completeness proof here is that the semantic equivalence between the full p TL

and the normal form can be lifted to the level of provability rather elegantly on

the basis of what is already known about aconjunctivity.

5.1 Axiomatisation

This far we have operated purely on the semantic level in the current work. Let

us define now an axiomatic system for the linear time mu-calculus TL. This is

essentially the same as the one used by Kozen in [55] and Lichtenstein in [59].

Definition 5.1.1 We say that a /1TL-formula 0 is provable and write I- q, if it

is derivable in the following deductive system.

Axiom schemas:

axl All propositional tautologies

ax2 Q(= b) = (O = Q))

ax3 Qq 	-'Q--'q
ax4 q[pz.çb/z} ==> ,uz.q

Rules of inference:

modus ponens: 	from 0 and 0 = 'çb infer b

necessitation: 	from 0 infer Oc
fixpoint induction: from q5[5/z] = 'iJ infer /Lz4 =

We say that a formula 0 is consistent if not I- -5. 	 D

Showing the soundness of this axiom system is easy.

Theorem 5.1.2 [Soundness for pTL] For any tTL-formula 0, if H q then

Proof: All instances of the axiom schemas are clearly universally valid, and the

modus ponens and necessitation rules validity-preserving. To see that also the

fixpoint induction rule preserves universal validity, assume that 	,az.cb 	'/'. As

by the Knaster-Tarski fixpoint theorem 2.2.16, pz.0 = Va 	there is an a such

Chapter 5 	Axiomatising linear time mu-calculus 	 146

that 	= 'J' but = 	= 	for all a' -< a. This a cannot be 0 or a limit

ordinal. Consequently, there are M and s such that M, s = 	A -v, and by

definition of 	, M, s 	çb 	'z.çb/z] A -'ib. But as = 	= 'i and z occurs

only positively in 0 , = q[z'z.q/z] = 	[b/z], implying M, s = [/z] A -"j5, i.e.

[b/z]5. 	 10-1

5.2 Normal form

The completeness proof for the axiomatisation of MTL is based on transforming

all formulae to a certain normal form. We define next this bi-aconjunctive non-

alternating form, and show that the fragment of 4uTL consisting of formulae in

this normal form has the same expressive power as the whole pTL. Let us first

introduce a useful variant of aconjunctivity.

Definition 52.1 Let 0 be a 1uTL or Kn-formula in pnf, and z a variable which

is bound by a unique fixpoint in 0 and occurs only bound in 0. We say that

q is strongly aconjunctive relative to z if for all subformulae of 0 of the form

üA ... A m_i,

A for every i e [m], either

1 z is not active in /j, in the context of 0, or

2 z is active in Oi and Oi = ®' b for some k e [n] and b, and

B for every i, j e [m] such that i 0 j and both Oi and qj fulfil condition 2

above, if qj = @0 and Oj = Qb', then k 0 1.

Let q be a pTL or ,aKn formula in pnf. We say that qf is p-aconjunctive if q is

strongly aconjunctive relative to every z bound by a minimal fixpoint in 0. An

arbitrary formula 0 is -aconjunctive if pnf() is. 	 0

For TL-formulae the definition of j-aconjunctivity implies that if q is p-

aconjunctive, then there is no subformula j.iz.çb ' of q and subformula 0 A 0 of q'

such that z is active in both 0 1 and 02• In other words, for ftTL the definition of

i-aconjunctivity here implies aconjunctivity in the sense of Kozen [55].

The new concept of bi-aconjunctivity requires not only that a formula itself is

i-aconjunctive, but also that its dual is, as well.

Definition 5.2.2 A formula 0 is bi-aconjunctive if q and -'q are p-aconjunctive.

0

We can now define the normal form that forms the basis of the completeness

proof in next section.

Chapter 5 - Axiomatising linear time mu-calculus 	 147

Definition 5.2.3 We say that a uTL-formula 0 is in the bi-aconjunctive non-

alternating normal form (abbreviated banan-form) if

• 0 is guarded,

• q is bi-aconjunctive, and

• q is non-alternating, i.e. 0 E L2. 	 U

Notice some easy properties of formulae in the normal form.

Lemma 5.2.4 Let 0 , çb' be formulae in banan-form. Then -', Oc-, qf. A çb' and

[qY/z] are in banan-form.

Proof: Straightforward. 	 U

Let us then show that the whole language p TL is semantically equiexpressive

with its fragment of formulae in banan-form. This is rather easy on the basis of

the observations we made about the expressivity of various types of TL-formulae

when relating the mu-calculi and automata to each other. Remember first that in

Section 3.5 we noticed that the full pTL is equiexpressive with its non-alternating

fragment L2. Therefore it suffices to show that every non-alternating formula can

be pushed to the banan-form.

Lemma 5.2.5 For any non-alternating [LTL-formula q, there exists a tLTL-

formula q' in banan-form such that =

Proof: By Prop. 2.2.36 we can assume without loss of generality that q is

guarded and in pnf. The claim is done by induction on the syntactic fixpoint

alternation classes (see Def. 2.2.21)

Induction basis: If q e fltx Ftx choosing çY = q fulfils the claim.

Induction step: Take any E L2 such that 0 e 	This means that 0
can be written as 0 = [q i /z i ,. . . , 5/Zm] for some 'L' e E l and q,. . . , q in
(Stx U H) fl L, By induction assumption, there are formulae q , . . . , q in

banan-form such that = çb 	c for all 1 < i < m. Since 'J' e El , i.e. 0 does

not contain any maximal fixpoints, by Lemma 3.3.3 we know that there exists a

restricted formula ' E E such that = 	'. It is clear that such a ' is also

in banan-form. By Lemma 5.2.4, '[q/z1 ,. . . , çb'/zm] is in banan-form. Since

= 	{i/zi,. . . , 	'[/zi, . . . ,

choosing qY =............./z] fulfils the claim for q. Consequently, the claimrn
holds for the class

Take then any 0 E L 2 such that 0 E H, and define qY = pnf(,O). It is easy

to see that 0' e L2 and qY e 	By the above there is a qY' in banan-form such

Chapter 5 - Axiomatising linear time mu-calculus 	 148

that = qY 	çb", implying = q 	-iqY 	-'çb". Furthermore, by Lemma 5.2.4,

is in banan-form, so the claim holds for 0, and therefore for the class H 1 .

El

Now the expressive equivalence of the whole 1iTL and the fragment of formulae

in banan-form is immediate.

Lemma 5.2.6 For any TL-formula 0 , there exists a TL-formula çb' in banan-

form such that = 0 qY.

Proof: Take any pTL-formula q. By Corollary 3.5.3 there exists an equivalent

non-alternating formula, and by Lemma 5.2.5 an equivalent formula in banan-

form. 	 El

It needs to be pointed out that this lemma does not imply that for every

there is a 0' in banan-form such that 	oz.çf 	az.qY: although az4 would

be well-defined, i.e. although z would occur only positively in 0 , this does not

necessarily hold of '.

5.3 Completeness

For the completeness proof, let us state a technical lemma first.

Lemma 5.3.1 [Substitution] For any TL-formulae q and 0, if I- q, then

F- ç['b/z].

Proof: Induction on the length of the proof of I- 0. 	 El

Let us show first that the axiomatisation is complete in the class of all p-

aconjunctive formulae. This follows easily from Kozen's results for the modal

mu-calculus [55]. However, as the result is extended slightly in Lemma 5.3.10, a

proof of it is sketched down here, as well. The formulation of the proof presented

here is due to Stirling.

Definition 5.3.2 A bundled tableau T = (io , Fo , do) (i i , Fi , di) ... for a 1uTL-

formula 0 is consistent if A F[d 2] is consistent for every j E IN, i.e. if not

F- -' A IT' 3 [d] for any j e N. 	 El

Lemma 5.3.3 Let 0 be a guarded TL-formula in pnf. If there is a proper

bundled tableau T for q such that T is consistent, then 0 is satisfiable.

Proof: It is clear that if a bundled tableau T is consistent (in the sense of Def.

5.3.2) then it is also propositionally consistent (in the sense of Def. 2.2.38). The

claim follows then immediately from Prop. 2.2.40. 	 El

Chapter 5 - Axiomatising linear time mu-calculus 	 149

name application name application

i, FU{az.q}, 	d, 	dS 	
1

FU Jul, 	d, 	dS 	
2 11

i, F U Jul, 	d', 	d' F U {q[u/z]}, 	d, 	dS

Up 	
i, FU{'u}, 	d, 	dS

i, F U {0[u/z]}, 	d, 	ds!

Note: 	1: u does not appear in d, d' = d 	(u, az.q5), d'3 = d3 	(u, oz.).
 d(u) = vz4
 if d = (u 1 ,oz 1 .q i) ... (un ,oz,.q n), U = Urn,

d(u rn) =pz. 0 and d8 (um) = jtz.(q A a), then

d'(u) = d8 (u2) for 1 <i <m, d'(u) = d(u) for m < i < n, and

d''(Um) = I-tz. (0 A a A 	A F[dx]) where
dx(u) = d(u) for 1 <i <m, dT(u) = d(u) for m < i < n

Table 5.1: Strong tableau rules for p TL

If we look at the bundled tableau rules (Table 2.2 on page 37), it is easy to see

that for any tableau element (i, F, d), if A F[d] is consistent, then some tableau rule

can be applied to (i, F, d) to yield an element (i', F', d') so that A F'[d'] is consistent.

Therefore, it is easy to construct a consistent bundled tableau T for any consistent

formula 0 . However, there is nothing in this construction to guarantee that the

resulting T would be proper as well as consistent. To this purpose we use a

technique similar to Kozen's [55] for strengthening minimal fixpoints, based on

the following lemma.

Lemma 5.3.4 Let 0 and 0 be jTL-formulae and z a variable which does not

occur free in 0. If

'J' A jz.çb is consistent,

then

O A [iz.(A -)/z] is consistent.

Proof: If q[iz.(q' A -vb)/z] A 0 is inconsistent, F- 45[z.(qS A -v11)/z] = - 45, hence

I- q5[pz.(45 A -45)/z] = tz.(çS A -"45). By fixpoint induction rule we have then

I- uz.0 =- iiz.(qS A -i'45), implying I- pz.45 = -ni', i.e. pz.çb A 0 is inconsistent. 	E

Definition 5.3.5 Let 45 be a iTL-formula in pnf. A strong tableau T for 45 is an

infinite sequence T = (io ,Fo , do , d)(i 1 ,Fi ,di ,d) . . . where

• every (i3 , F3 , d3) is as in Def. 2.2.37, and d is a definition list such that if

dj = (ui , az1 .0 1) . . . (u,, az.45), djs = (ui , az1 .01 A a i) . . . (u,, Uzn- On A a)

for some formulae a (possibly T),

Chapter 5 	Axiomatising linear time mu-calculus 	 150

• every (i31 , F3+i, 	d 1) is derived from (i3 , F3 , d, d) by one of the rules

VL, VR, A or Q, which are as in Table 2.2 (page 37) or by a', Uv or Up in

Table 5.1, and

• (io ,Fo , do , d) = (0,{q5},e,e).

A strong tableau T being proper is defined as for bundled tableaux in Def. 2.2.38.

T is consistent if for every j E IN, A F[d] is consistent. 	 U

Lemma 5.3.6 Let 0 be a i-aconjunctive formula in pnf, and T a strong tableau

or a bundled tableau for 0 . For every j E IN and u e U such that d3 (u) = z.0'
for some z and 11, the constant u is active in at most one formula '/ E F3 .

Proof: The claim holds trivially for the first element of T. All the tableau rules

except A clearly preserve the validity of the claim, and A preserves it thanks to

the /2-aconjunctivity of q. 	 U

Lemma 5.3.7 Let 0 be a ,u-aconjunctive TL-formula in pnf. If q is consistent,

there is a consistent strong tableau T for q.

Proof: Let (i, F, d, dS) be an element of a strong tableau such that A F[d] is
consistent. It is easy to see that if any of rules A, Q, a' or Uu can be applied to

it, then for the resulting element (i', F', d', d'), A F'[d'] is consistent. By Lemmas

5.3.4 and 5.3.6 the same holds for the UIL rule. If VL and yR rules can be applied

to (i, F, d, d), then at least one of them yields a (i', F', d', ds') such that A F'[d]

is consistent. As some rule is always applicable, this means that we can construct

a consistent strong tableau T for 0 , starting from the element (0, {q}, €, e). U

Lemma 5.3.8 Let q be a guarded iTL-formula in pnf, and T a strong tableau

for q. If T is consistent, then T is proper.

Proof: Assume that T = (i0 , F0 , d0 , d)... is not proper, and take the smallest

m e IN such that for some k E IN and n > m, dk = (ni ,azi .q i) . . .

dk(Um) = izrn .c m , and Urn E F3 for infinitely many j. For every j E IN define

= f E F3 I Urn not active in O}.

As 0 is guarded, there is an infinite sequence of indices j' , 2 . . . such that

the Up-rule is applied to Urn at point jh - 1 of T for every h E N. By Lemma

5.3.6 this means that for all h E N, Fjh _1 = F h _l U {U rn } and F h _1 = F h ,
implying I- A F h l[d h _l] = A Fh[dh] and H Um[d h] A Fj [d1. By the

choice of m we can assume without loss of generality that for every m' < m, if

dk(Um') = pzm'.q rn ' then Urn' F3 for all j > ji, meaning that the Up-rule is not

applied to any of U1, . . . ,Um_l at any point j > j. Remembering the above, this

Chapter 5 - Axiomatising linear time mu-calculus 	 151

name application

i, 	FU{u}, 	d, 	d5
 Uv z, 	FU{'u,
-
[u/x]}, 	d, 	d

i, 	FU{0q l ,...,0k}, 	d, 	d5 	
2

i+1, 	 d, 	d8

Note: 	1: d(u) = iix.x and UvX has not been applied after previous 0-point
2: Fç ZU{ ,z I z e Z}uUu{-'ulu e U} where

U = {u E U I d(u) = vx.x}
and for every u e U fl F the Uv-rule has been applied to u
after previous 0-point.

Table 5.2: Modified strong tableau rules

implies that F- 	=4, A F h [dh} for all j ~ .]h and all h E N. Furthermore,

F' 1dS 1 c c1(F 1 [d 1]) for all h N.
3h JhJ

F 1d5 i ' (see Def. 2.2.12), is finite, there are Since c1(F 1 [d 1 }), the closure of iii j

some h < 1 such that F' 	1 - F'
ih jhJ - jlL I dal]. But then

F- A -1 [d1
]
= (Urn [d _} A A F1 -1 [d _1) = (- A F h [d h] A A F 1 [d 1 	I I jjJi

implying that T is not consistent. 	 13

Proposition 5.3.9 Let q be a guarded -aconjunctive iTL-formula. If 0 is

consistent, then 5 is satisfiable.

Proof: As F- 0 	pnf(), we can assume that q is in pnf. If 0 is consistent, by

Lemmas 5.3.7 and 5.3.8, there is a proper consistent strong tableau and therefore

a proper consistent bundled tableau T for çb. By Lemma 5.3.3 this means that

is satisfiable. 	 0

For technical reasons we need a slight extension of the previous result. This

is caused by the fact that the transformation of formulae to the banan-form does

not necessarily preserve the positivity of free variables in a formula.

Lemma 5.3.10 Let and x be formulae such that

•0 A vx.X is well-formed and consistent,

• /' is guarded, -aconjunctive and in pnf, and

• there exists a guarded j-aconjunctive formula X in pnf such that F- x
Then 0 A vx.X is satisfiable.

Proof: Let us modify slightly the rules for a strong tableau by adding a new

Uv-rule and modifying the 0-rule as in Table 5.2, and by requiring that the

Chapter 5 - Axiomatising linear time mu-calculus 	 152

Uzi-rule is not applied to a constant u such that d(u) = vx.. Notice that as x

does not necessarily occur only positively in k, we can have negated occurrences

of a constant u corresponding to vx.x in a tableau.

Since F- x > implies F- vx. 	x[vx.x/xI 	[vx./x] by Lemma 5.3.1, the

Uv-rule preserves consistency. As in Lemma 5.3.7, the consistency of 0 A vx.x

implies then the existence of a consistent strong tableau (with the modified rules)

T = (ii ,Fi , di , dfl... for 'OAVX.X. As in Lemma 5.3.8 the consistency of T means

that it is proper, as well.

Define a model M on the basis of as in the proof of Lemma 5.3.3, and define a

set W ç IN by W = {k E IN I 3j E TN,u E U : ij = k,u E rj and d(u) =

For every s E W, we can read from T a proper bundled tableau witnessing

M[W/x], s = by Lemma 2.2.39. Since F- x 	, this implies by Theorem 5.1.2

that M[W/x], s = x for all s E W. As 0 E W, this implies M = vx.. From T we

can also read a proper tableau witnessing M = . Consequently, M j= 'ib A vx.,

as required. 	 0

The following lemma is the heart of the completeness proof. Essentially it

shows that we can lift the expressive equivalence of the full pTL and the fragment

of formulae in banan-form from the level of semantics to the level of provability.

Lemma 5.3.11 For any jiTL-formula 0 , there exists a formula qY in banan-form

such that F- 	qY.

Proof: We show the claim by induction on the structure of the formula 0.

Without loss of generality we can assume that 0 is written using just the A, —, 0
and it-operators.

Induction basis: For an atomic 0 , choosing c/I = q clearly fulfils the claim.

Induction step for A, —i, Q: Suppose that for c/fl, 02 we have q, q in banan-

form such that F- 	q and c/2 	q. By Lemma 5.2.4 5' A , —ó and ç

are in banan-form and clearly F- q A 2 	q4 A , F- —iç/ 	—'q and

Induction step for ji: Suppose that for q we have a c/I in banan-form such that

F- q 	c/I. By Lemma 5.2.6, there exists a formula ?J in banan-form such that

= uz.0 	/'. If we have F- jtz.çb 	, the induction step is satisfied, as 0 is in

banan-form. Suppose then that 1/ jiz.çb 	. This means that either

1 Vz.qb,or

2 V 0 =z.çb

Chapter 5 - Axiomatising linear time mu-calculus 	 153

In case 1 we must have 1/ cb['ib/z] 	, as otherwise I- pz.0 = 0 could be

derived by the fixpoint induction rule.' This means that q5[/z] A -"O is consistent.

As F- q 	qY, by Lemma 5.3.1 I- qi[/z] #> J[/z], implying that 0Y[5/z] A -i

is consistent. Since qY and b are in banan-form, by Lemma 5.2.4 qY[''/z} A is

in banan-form, hence guarded and t-aconjunctive. As it is consistent, by Prop.

5.3.9 it is satisfiable, i.e. there are M and s such that M, s = 0'[/z1 A —'ib.

Since F- [/z] 	qY[/z], by Theorem 5.1.2 = q[/z] 	O'[/z], which

implies M,s = q[/z] A -'. By the choice of b, we know that

which implies 1= q['//zJ <=> q[zz.q5/z], i.e. = q[O/z] 	 Consequently,

M, s =pz .A -"J'. But this contradicts j= iz.çb 	'u', meaning that case 1 cannot

hold.

In case 2, 0 A -'iz.çb = ',b A uz.-1[--iz1z] is consistent. As F- 	çb', by

Lemma 5.3.1 F- -iqS[--iz/z] 	-qY[-iz/z]. Since qY is in banan-form, by Lemma

5.2.4 -iqY[-iz/z] is in banan-form, hence guarded and -aconjunctive. But then

by Lemma 5.3.10 0 A vz.-[-'z/z] = ' A -'pz.q is satisfiable, contradicting

=pz.0, i.e. case 2 cannot hold either.

Consequently, F- jiz.qY 	, which concludes the induction step. 	 El

Based on this lemma, the completeness of the axiomatisation follows easily.

Theorem 5.3.12 If a ,uTL-formula 0 is consistent, then 0 is satisfiable.

Proof: Immediate from Lemma 5.3.11, Proposition 5.3.9, and Theorem 5.1.2.

El

Corollary 5.3.13 [Completeness for MIL] For any pTL-formula 0, if =

then F- q.

Proof: If J= q$, then -/ is not satisfiable, therefore not consistent, implying

F- 	i.e. F- q, by Theorem 5.3.12. 	 E1

5.4 Discussion

The completeness proof for p TL above uses in an essential way the fact that the

whole pTL and its non-alternating fragment are equiexpressive; the transforma-

tion of formulae to banan-form in the semantic level depends on the ability to first

transform any formula to an equivalent non-alternating one. However, with the

exception of this point, the rest of the proof does not take advantage of the linear

'For the record, this in retrospect very natural observation had escaped us, leading to a more
restricted and cumbersome solution, until we saw it used in passing in Igor Walukiewicz's work
[101].

Chapter 5 - Axiomatising linear time mu-calculus 	 154

nature of the language. This allows us to use the same proof, modus modendi, to

show the completeness of the axiomatisation also for the non-alternating fragment

of the modal mu-calculus ,Kn.

Definition 5.4.1 We say that a itKn-formula 0 is provable and write F- , if it

is derivable in the following deductive system.

Axiom schemas:

axi All propositional tautologies

ax2 ®()®=®)
ax3 ®'®
ax4 çb[jz.q/z] 	,uz.çb

Rules of inference:

modus ponens: 	from 0 and q = 	infer

necessitation: 	from 0 infer ®0
fixpoint induction: from ['çb/z] =t> ' infer fiz.q = 	 D

Theorem 5.4.2 For any non-alternating Kn-formula 75, = q if F- q

Proof: With obvious modifications the claim is shown in the same way as for

TL, except that Lemma 5.2.6 becomes vacuously the same as Lemma 5.2.5, and

no reference to Cor. 3.5.3 is needed. In fact, the extension of Prop. 5.3.9 in Lemma

5.3.10 becomes unnecessary, since the translation of Lemma 5.2.5 preserves the

positivity of free variables in a formula. 0

However, this is is how far the result goes; there appears to be no way to extend

it naturally to the full pKn. In fact, the axiomatisation of the modal mu-calculus

used to be a longstanding open problem, until in 1995 Walukiewicz presented a

completeness proof for what is essentially the axiomatisation above.

Theorem 5.4.3 For any ,uKri-formula 0 , = q if I- q.

Proof: See [101]. 	 El

Like the proof for ,uTL here, Walukiewicz's proof is based on transforming

formulae inductively to a particular normal form, called the disjunctive form.

This is effectively the same form we call strongly aconjunctive here. Walukiewicz's

proof naturally carries over from the modal mu-calculus to the linear one, as well,

and is more general in this sense. It also deals with the extra complications caused

by using the modalities < a > and [a], for some/all a-successors, instead of the

indexed ones G3. However, the proof involves a fairly complex argument using

games between tableaux and a priority technique to create a winning strategy in a

Chapter 5 - Axiomatising linear time mu-calculus 	 155

game. In this respect the easy negatability of formulae in the bi-aconjunctive non-

alternating normal form, a property the disjunctive normal form lacks, makes the

approach here rather more straightforward. Bar one observation that was used in

passing in Walukiewicz's work and has been adopted here to give a more elegant

solution, the proof presented above was discovered independently.

In addition to the axiomatisations above for the fixpoint-based languages p TL

and pKn, several axiomatisations for the other main class of logical formalisms in

the current work, the quantifier-based languages, are also known. For the linear

case, a complete axiomatisation for S1S was described by Siefkes already in 1970

[81]. More recently, Kesten and Pnueli showed the completeness of an axiomatisa-

tion for 3TL [53]. Both of these completeness proofs work by inductively trans-

forming formulae to a normal form corresponding to Büchi automata on strings.

For the branching case, on the other hand, the situation is less well developed.

As far as we know, the only result concerning axiomatisations of quantifier-based

branching formalisms is an axiomatisation of the weak language WS2S by Siefkes

in [82], In particular, we are not aware of any complete axiomatisations for the

strong branching languages SnS or 3Kn.

Chapter 6

Axiomatising path quantifiers

In this chapter we depart slightly from the previous framework and examine an

extension of the linear time mu-calculus pTL with path quantifiers. When we

extended pTL to a branching formalism in Section 2.3, the step from TL to ,uKn

took place by replacing the single nexttime operator Q with indexed operators ®.

Path quantifiers and V, for some path 0 and for all paths 0 are another way

of extending IffL to a formalism capable of describing branching properties. This

way of extending a linear-time formalism to a branching one is used in various

temporal logics; probably the best example is the full computation tree logic CTL*

[28, 29], which extends the standard linear-time temporal logic TL with path

quantifiers. We call the formalism consisting of pTL and path quantifiers here

the extended computation tree logic IpTL. Expressively equivalent formulations

of extended computation tree logic using linear time operators corresponding to

w-regular expressions and various types of finite automata on infinite strings are

discussed in [96, 92, 20]. Requiring an infinite family of temporal operators, these

formulations are syntactically less elegant than the fixpoint-based pTL, which

only requires the single nexttime temporal operator. At the basis of all these

extensions of the branching time logic CTL* are extensions of the underlying

linear time logic TL, either by automata-based temporal operators [103, 99], or

by fixpoints as in pTL.

In the current chapter the axiomatisation of the linear-time mu-calculus ATL

is extended to an axiomatisation of IMTL. In general, it has turned out to be

difficult to axiomatise branching-time logics with path quantifiers, even though

natural axiom systems for the underlying linear-time formalisms would be known.

The main reason for this is the interaction of path quantifiers with other operat-

ors of the logic, which means that it is generally not enough to simply add the

obvious quantifier rules to an axiomatisation of the underlying linear time logic.

This holds also for the extended computation tree logic IpTL, so extending the

156

Chapter 6 - Axiomatising path quantifiers 	 157

axiomatisation of pTL to JpTL is a non-trivial task.

Temporal logics with path quantifiers are often interpreted over generalised

branching structures, where all infinite branches through a structure do not ne-

cessarily count as paths for the purpose of path quantification. There are several

different classes of such structures for interpreting branching time logics. The

most common and computationally natural class of models are the R-generable

structures [24], basically normal transition systems where every maximal sequence

of pairwise connected states counts as a path. More general classes of models in

which not all such sequences are considered paths for the purposes of path quan-

tification arise e.g. from fairness considerations. Although the notion of what

counts as a path can in principle be arbitrary, the set of paths is usually required

to fulfil some regular properties, such as suffix, fusion or limit closure. These three

requirements together correspond to R-generability in the sense that a formula of

a branching time logic is valid in all R-generable models if it is valid in all suffix,

fusion and limit closed models [24].

Different classes of models correspond to different notions of universal validity,

and therefore to different axiomatisation problems. An axiomatisation of the com-

putation tree logic CTL* that is complete with respect to all suffix closed models

is presented in [83], and it is shown that this can be extended to an axiomatisation

that is complete with respect to all suffix and fusion closed models by adding the

axiom VOO = Q. However, the problem of completely axiomatising CTL*

for R-generable models, i.e. capturing limit closure by axioms, has been an open

problem for some while, stated e.g. in [35, 25, 83]. The best that is known is

an axiomatisation for CTL, a restricted sublogic of CTL*, where limit closure is

characterised by the axiom schema I- 'G(5 =- Q) = (ç = Gq) [30, 25].

We present next a solution to this axiomatisation problem with respect to

R-generable structures for the extended computation tree logic LTL. To char-

acterise limit closure, we introduce a new inference rule, the nv-induction. The

completeness proof is is based on transforming formulae to a strongly aconjunct-

ive deterministic normal form that corresponds to first recurrence automata on

infinite strings.

An intriguing aspect in this completeness proof is that the ability to transform a

formula to the deterministic form requires the power given by arbitrary alternation

of fixpoints. Therefore, the approach is not directly applicable for the formulation

of extended computation tree logic with w-regular expressions, although this is

semantically equiexpressive with IpTL. The same holds also for CTL*, so the

axiomatisation problem for it remains open.

Chapter 6 - Axiomatising path quantifiers 	 158

6.1 Preliminaries

6.1.1 Path quantifiers

In Section 2.3 we extended the linear-time mu-calculus tTL, describing properties

of sequences, to a formalism describing properties of trees by changing the set of

basic modalities, i.e. replacing the single nexttime operator 0 with indexed oper-

ators 0. Another approach is to keep the nexttime-operator as it is, interpreting

the logic primarily over paths, but to add to the logic an operator which makes

it possible to switch the path a formula is interpreted over and to quantify over

paths. In such a language we can expres properties like on every path a holds

someitmes and on some path b holds constantly.

Originally the approach of path quantification was used to extend the standard

linear-time temporal logic TL to a branching-time formalism. Probably the most

widely known of these branching-time logics is the full computation tree logic

CTL* [29]. Some examples of properties which we can express in CTL* using the

path quantifiers and V0, for some path 0 and for all paths 0 are

• Ga, on some path always a,

• Fa, on all paths sometimes a,

• FGa, on every path almost always a, and

• VFVGa, on every path there is a point such that for every path from that

point onwards always a.

The last two formulae correspond to the JLKn-formulae z.vx.(a V Oz) A Ox and

,uz.(vx.a A Ox) V Oz, respectively. For discussion on the difference of these, see

page 52.

In the following we examine the language obtained from the linear-time mu-

calculus pTL is a similar fashion. Let us first define this formally.

Definition 6.1.1 The formulae of the extended computation tree logic IPTL are

defined by the abstract syntax:

where z varies over Z. In pz.o, z is required to be bindable in q, that is:

• z only occurs positively in çb, and

• z does not occur in the scope of a path quantifier 	in qf.

The derived operator V stands for Vo= —--iq, and the symbol it refers to to

both V and . 	 0

Let us also introduce some technical terminology.

Chapter 6 - Axiomatising path quantifiers 	 159

Definition 6.1.2 A 	tTL-formula q is a basic state formula if either 0 is
atomic, or 0= çb' or 0 = -' çb' for some qY. If q is a boolean composition

of basic state formulae, q is a state formula, otherwise 0 is a proper path formula.

A formula without any path quantifiers 11 is a pure path formula.

The concept of the positive normal form for jTL-formulae is analogous to

Def. 2.2.20, with the exception that formulae may also contain and V operators,

and the following additional laws are used:

=
40 =

The path quantifier depth of q, denoted by d(cb), is the level of nesting of

path quantifiers in q,

dpq (q)max{ne1Ni,...q5 n li

Definition 6.1.3 Let M e M< be a branching model and p E paths(M) a path

of M. The set of points on path p of M satisfying a tTL-formula 0 , denoted

by 11011 m ,p , is defined by

IIIM,p = lllM,p,M[p]

where k/M,,M' denotes the auxiliary concept of the set of points of linear model

M' corresponding to the path p of M. This is defined inductively as follows:

IkMM,p,M' = {i e st(A'f) I z e M'(i)}

lHM,p,M' = st(M') \ IIMM,p,M'

0 A IM,p,M' = IkiIIM,p,M' fl lkIMM,p,M'

MOcbIM,P,M' = {i E st(M') I i + 1 e lkL.IM,p,M'}

ILcLIM,p,M' = Is e st(M') 	p' e paths(M,p(s)) : 0 E MlIM,p',M[p']}

ii1-Lz-oiim,P,m, = fl{w c st(M') lkiIIM,p,M'[w/z) ç W}

Here the notation M[p] is defined in Def. 2.1.5, paths(M,p) in Def. 2.1.3, and

M'[W/z] in Def. 2.2.4.

We say that 0 is true at point s of path p of model M and write M, p, s =

if s E I I0 IM,p. We write M,p = if M, p, 0 = q. We say that 0 is true at state

s of model M and write M, s = if M,p = for all paths p E paths(M, s).

Furthermore, we write M = if M, s = for all states s E st(M), and = if

M = 0 for all models M. As before, a formula 0 is satisfiable if M, p = for

some model M and path p. 0

Chapter 6 - Axiomatising path quantifiers 	 160

For some examples of 	TL-formulae, the property a is true everywhere can

be expressed by Vvz.a A Oz, and the property on some path a holds in every

even state by lvz.a A QQz. The CTL*formu1a VFVGa can be expressed by

z.(vx.aAQx)VOz, and the CTL*formu1a VFGa by 'z.(vx.aAOx)VOz.

6.1.2 Extended models

In the truth definition for 	TL-formu1ae above, every path through the model

tree counts for the purposes of path quantification. However, we can also take a

more general approach, where only a subset of paths are considered for quantific-

ation. Such more general models become useful for example when some infinite

execution sequences of a program are not considered valid because of fairness

considerations. Also various viewpoints about the relation of time and chance can

be modelled naturally using such models.

Definition 6.1.4 An extended branching model is a pair A[= (M, P), where

• M e M<, is a branching model, and

• P c paths(M) is a set of paths of M, such that for every state s e st(M)

and every child s' of s, there is some path p E P and point i E IN such that

s = p(i) and s' = p(i + 1).

The set of states of a path p of an extended model M fulfilling the formula q5 ,
denoted by 	is defined as before in Def. 6.1.3, except for

= {s e st(M') I p' E paths(M,p(s)) fl P: 0 E IIcb PlM!]}

FOR

The technical restriction for the set P of paths in the previous definition essen-

tially states that a model has no 'superfluous' states which would not be reachable

form their parent by any path.

In principle the set of paths in an extended model can be chosen completely

arbitrarily, as long as the relevent technical restrictions are observed. However,

it is often the case that this completely general case does not correspond to the

intuitions underlying the definition of a model, and some constraints must be

imposed on the structure of a model for it to make sense. The following definition

formulates some commonly used constraints.

Definition 6.1.5 Let M = (M, P) be an extended branching model. We say

that the set of paths P is

• R-generated if P = paths(M),

Chapter 6 - Axiomatising path quantifiers 	 ibi

• suffix closed if for every p = p(0)p(l)p(2)... E P, also p(l)p(2)... E P,

• fusion closed if for every p, p' e P, if p(i) = p'(j), then

p(0)p(l) . . . p(i - 1)p'(j)p'(j + 1) ... E P, and

• limit closed if for every p E paths(M), if for every i e IN, the string

p(0)p(l) . . . p(i) is a prefix of some p' E P, then p E P.

In modelling computation, it is hard to see how suffix closure could fail to

hold. Fusion closure corresponds intuitively to the idea that how the execution of

a program proceeds from a given state depends entirely on the state itself and not

on how it has been reached. Limit closure is a continuity property.

The way extended models are defined above differs slightly from e.g. that used

in [24]. The usual starting point is more general; the primary components of a

model are an arbitrary (often countable) set of states 8, and an arbitrary collection

P of infinite sequences of elements of S serving as paths. In these structures the

concept of R-generability says that it is possible to choose a transition relation R

on the set of states so that the set of infinite sequences naturally generated by this

transition system is precisely the set P of paths. However, as we assume uniformly

in the current work that all models are tree-like and that there is an underlying

parent-child transition relation, the only way an extended model (M, P) can be

R-generated is when P = paths(M).

The condition of being R-generated corresponds to suffix, fusion and limit

closure in the following sense.

Proposition 6.1.6 Let AT = (M, P) be an extended branching model. The set

of paths P is R-generated if it is suffix, fusion and limit-closed.

Proof: From left to right, this is [24, Thin 3.1]. From right to left the proof

is as that of [24, Thin 3.3]. In the present framework this direction of the proof

requires the technical side-condition in the definition of an extended model above

which states that every parent-child pair occurs in some path. U

The axiom system decribed below aims at characterising universal validity with

respect to the normal notion of models. As these are precisely the R-generated

extended models, we can view the axiomatisation problem as capturing suffix,

fusion and limit-closure by axioms.

Corollary 6.1.7 For any tTL-formula 0 , we have M = q for all models

M e M<(., 1ff M = for all extended models M = (M, P) such that M

and P is suffix, fusion and limit-closed. 	 U

Chapter 6 - Axiomatising path quantifiers 	 162

6.2 Axiomatisation

The axiomatisation of zTL below consists of four components: an axiomatisa-

tion of the linear time mu-calculus pTL, i.e. the language of pure path formulae,

some obvious quantification rules for the path quantifiers, an axiom corresponding

to fusion closure, and an inference rule reflecting limit closure. The main novelty

is the last of these. This inference rule characterising limit closure is of the form:

from = 	çb['ib/z] infer O = Thiz.çb

This rule, however, is not sound for all formulae q. Let us therefore first charac-

terise semantically a class of formulae, those bounded by z, for which the rule is

sound, and then show that syntactically strongly aconjunctive formulae enjoy this

semantic property.

Definition 6.2.1 Let 0 be a pure path formula of JpTL, i.e. a formula of the

linear-time mu-calculus ,uTL, and assume that z occurs only positively in 0. We

say that q is bounded by z if for all models M and all paths p of M such that

Ik[, p = , either:

1 M[O/z],p 1=: 0 , or

2 there is some point n E IN such that M,p(n) = z, and M[{p(n)}/z],p' 1=
for all paths p' of M such that p'(0) . . . p'(n) = p(0) ... p(n). 	 0

Intuitively, the above states that if M, p = , either 0 would hold of p even if

z was not true anywhere along p at all, or there is some particular point n along

p such that z is true in state p(n), and if we assume that z was true only at p(n),

would still hold of p, and not only of p but of every other path that follows p

up to the point p(n), as well. This expresses the idea that 0 being true of p only

depends on what p is like up to p(n).

Lemma 6.2.2 Let q be a pure path formula and '1' any formula of jtTL, and

z a variable such that z is bindable in 0 and 0 is bounded by z. Let M be an

extended model M = (M, F) such that P is R-generable. If M 1= =
then M = ' =

Proof: Assume that 111 = '/' = 	[/z] and take any path p E P for which

M,p = 0. We want to show that M,p = Thiz.0.
Define inductively a finite or infinite sequence of pairs (p°, k °) . . . (p', 0)

where each pi E P, k E IN, such that p°(0) = p(0) and for all elements of the

sequence

Chapter 6 - Axiomatising path quantifiers 	 163

• ki = 0 if (p, k) is the last element in the sequence and then

JiI[{p(0)}/z],p = 0, and otherwise
• pi+1(0) = p(k), I2I,p[k...] = b, and AI[{p(k)}/zJ,p' = 	for all paths

P' E P such that p'(0) . . . p'(k) = pi (0) . . . p(k)

Define first a pair (p', k') that is not a part of the actual sequence by p = p

and k 1 = 1. Notice that M,p'[k' ...] = 0. Assume then that we have p, k

such that . As A[0[1z], we have AI,p' = [/z] for

some p' e paths(M,p(k)) fl P. Define 	= p'. Clearly pi+1(0) = p(k). Since

no free variable in 0 is bound by a fixpoint operator in 45[45/z], and since z does

not occur is scope of a path quantifier in 45, AI[W/z],p' = 45 where W =

As 45 is bounded by z, one of the following holds:

• [[W/z][O/z],p' f= 45, i.e. A2[[0/z],p' = 45. Since z occurs only positively in

45, this implies 1t2[[{p(0)'}1z],p' = 45. Define k 1 = 0, and let this be the

last element.

• There exists some n E IN such that

• Ac[[W/z],p'(n) = z and

• It[[W/z][{p'(n)}/z],p" 	45, i.e. A?[[{p'(n)}/z],p" 	45, for all paths p"

of M such that p"(0) . . . p" (n) = p'(0) ... p'(n).

Define k' = n, and if n = 0 let this be the last element. If ri = 0,

It[[{p(0)'}1z],p' = 45, as required. If n > 0, Af[W/z],p'(ri) = z implies

p'(n) e W, and by the definition of W we have p'[n ...] = , i.e.
pi+1 [ki+1 ...]

If the sequence is finite and (pfl, k) is its last element, define a path p' by

p' =p° [0. . . (k' —1)] .p'[O... (k 2 —1)]... .p'[0... (k 1 —1)] •pTh

Since the set P of paths is suffix and fusion closed, we have p' e P. If the sequence

is infinite, define

p'=p° [0 ... (k 1 -1)]p'[0 ... (k 2 -1)]...

Since the set P of paths is suffix, fusion and limit closed, we have p' e P. Define

W as the set of points W = 10, k°, k° + k 1 , k ° + k' + k2,. . .}. Since z occurs only

positively in 45, the claims above mean that W c II Oil M,p',M[p']lw/zI. By Lemma

2.2.9, this implies M, p' = vz.çb, and further M,p = vz.45, as p(0) = p'(0). D

Let us then show that strong aconjunctivity implies boundedness.

Lemma 6.2.3 Let 45 be a pure path formula of I pTL, i.e. a ,uTL-formula, and

z a variable such that z is bindable in 45 and vz.45 is strongly aconjunctive. Then

0 is bounded by z.

Chapter 6 - Axiomatising path quantifiers 	 164

Proof: Notice first that by the transformation of Proposition 2.2.36, we can

transform any 0 fulfilling the requirements above to an equivalnet guarded for-

mula 0' also fulfilling the requirements. Therefore, we can assume without loss of

generality that 0 is guarded.

To show that q is bounded by z, let us take any model M e M< and path

P of M such that M, p = q, and show that one of the cases of Def. 6.2.1 must

hold. Define first a linear model M' by M' = M[p]. Since M,p = 0 and 0 is a

TL-formula. we have M' = q'. By Prop. 2.2.39 there is a proper bundled tableau

T = (i0 , F0 , do) (i i , F1 , d1)... for q agreeing with M'. Since z'z.0 is well-formed

and strongly aconjunctive, z occurs only positively in T and for every point j of

T there is at most one 0 E F3 [d3 J such that 'b either contains z or the 0-operator.

If the tableau T agrees with M'[O/z], then it witnesses M'[O/z] = q and

M[ø/z], p = 0, fulfilling the first case in the definition of boundedness, Def. 6.2.1.

If T does not agree with M'[O/z], there is some 0-opint m of T and atomic

formula ib E Fm[dml such that M', , = 'b but M'[O/z], m K 0. Take the

smallest such m. Since the atomic formula must contain z and z occurs only

positively in T, we must have '/' = z. Since b contains z, no other formula in

Fm[dm] can contain z or the 0-operator, which means that Fm+i = 0. Since

m is the first point in T where T does not agree with M'[O/z], it is then easy

to see that T agrees with M'[{m}1Z]. Furthermore, since T does not pay any

attention to the states of any model beyond point m, T agrees with any model

M" for which M"(i) = M'[{im }/z](i) for all i < m. In particular T agrees with

(M[{p(i m)}/Z1)[p'] for every path p' of M such that p'(0) . . .p'(i) = p(0) . . .p(jm).

Consequently, M[{p(i m)}/z],p' = for all such paths p', fulfilling the second case

in the definition of boundedness. 0

We still need to extend the concept of strong aconjunctivity from linear-time

mu-calculus to tTL.

Definition 6.2.4 A tTL-formula 0 in pnf is strongly aconjunctive if 0 can be

written in the form 0 = ç'[!lOi /x i ,.. . , l//Xi} where qY is a pure path formula,

i.e. a TL-formula, which is strongly aconjunctive. A formula 0 is strongly co-

aconjunctive if is strongly aconjunctive. 0

Lemma 6.2.5 Let 0 and '/' be arbitrary iTL-formulae and z a variable such

that z is bindable in 0 and vz4 is strongly aconjunctive. Let M E M< be a

model such that M = 'J.' = [I, /z]. Then M = 0 z

Proof: We can write vz.0 in the form vz.0 = vz.'{llXi/xi,.. . , Hx/x], where

vz.0' is a strongly aconjunctive pure path formula, x i fresh variables which do

Chapter 6 - Axiomatising path quantifiers

not occur in vz.q or 0, and Xi formulae which do not contain z. Define a model

M' by M' = M[Wi/xi] ... [W,/x,] where each W2 = Is E st(M) I M, s

?fX}. As M 	= _10[V)1z], we have M' 	b = _10'[V) 1z]- Since vz.q' is

strongly aconjunctive, by Lemma 6.2.3 qY is bounded by z. By Lemma 6.2.2 then

M' 	b = vz.çb', implying M i = El

Let us now formulate the axiomatisation.

Definition 6.2.6 We say that a jTL-formula 0 is provable and write I- q if it

is derivable in the following deductive system.

Axiom schemas:

axi all propositional tautologies

ax2 0()(000)
ax3 o
ax4 vz.q = 	[vz./z]

ax5

ax6

ax7 0 = VO, where 0 is a state formula

ax8

Rules of inference:

modus ponens: from 0 and 0 = 	infer

0-necessitation: from 0 infer 0
v-induction: from 0 = 	q['iJ'/z] infer 0 ==> vz.çb

from q infer VO
nv-induction: from b = 	['/'/z] infer '' =

where vz.0 is strongly aconjunctive
U

Axioms axl-ax4 and modus ponens, 0-necessitation and v-induction rules of

inference correspond directly to the axiomatisation of ILTL in Def. 5.1.1; only

the fixpoint induction rule has been here formulated as the dual of the rule in

Def. 5.1.1 to stress the similarity between v-induction and -IV-induction. Axioms

ax5-ax7 express obvious properties of path quantification, and axiom ax8 reflects

fusion closure [83]. Finally, 'v-induction inference rule characterises the limit

closure of path sets. There is no particular axiom corresponding to suffix closure.

However, from the other axioms and rules we can derive the schema

which is not universally valid in non-suffix-closed structures.

Let us introduce the duals of the fixpoint induction rules as derived rules:

t-induction: 	from q5[5/z] ==> 0 infer jiz.q5 = 0

Chapter 6 - Axiomatising path quantifiers 	 166

-induction: 	from 	[/z] = 	infer 	= ',b,
where 	is strongly co-aconjunctive

Theorem 6.2.7 [Soundness for pTL] For any 	TL-formula q, if F- 0 then

Proof: The z'-induction rule is sound by Lemma 6.2.5, and all other axioms

and rules are obvious. 	 El

Since the axiomatisation of J pTL contains the earlier axiomatisation of A TL,

we know immediately that it is complete for all formulae which belong to both

languages.

Lemma 6.2.8 Let qf. be a 	TL-formu1a which is a pure path formula. If = q

then I- 0.

Proof: Immediate from Corollary 5.3.13.

It is also easy to see that the substitution lemma holds with respect to

as well.

Lemma 6.2.9 For any tTL-formu1ae 0 and 0, if F- q then F- [51z].

Proof: Induction on the length of the proof of I- 0 . 	 U

6.3 Normal form

The completeness proof for the axiomatisation is based on transforming formulae

to a normal form, the full sad-form.

Definition 6.3.1 Let q be a pure path formula of 1TL, i.e. a formula of the

linear-time mu-calculus 1uTL. We say that q is in the strongly aconjunctive de-

terministic form (abbreviated sad-form) if

•0 is guarded,

•0 is strongly aconjunctive, and

•0 is deterministic.

An arbitrary iTL-formula 0 is in sad-form if 0 can be written in the form

= '[11x1/x1, . . Ilx k /x k I, where 0' is a pure path formula which is in sad-

form. An arbitrary tTL-formula q is in full sad-form if 0 can be written in

the form 4 = '[!lx/x,. . . IIxk/xkI, where 4/ is a pure path formula which is

in sad-form, and each Xi is a formula in full sad-form. 0

Chapter 6 - Axiomatising path quantifiers 	 167

On the basis of the discussion on determinisation in Section 3.5, we already

know how to transform linear-time mu-calculus formulae to the sad-form.

Lemma 6.3.2 For every TL-formula 0 , there exists a fLTL-formula 0 in sad-

form such that =

Proof: By Corollary 3.5.13, we know that for every TL-formula 0 there exists

an equivalent restricted deterministic formula . By definition being restricted

implies guardedness and strong aconjuunctivity, so this b is in sad-form. 	0

Furthermore, by the completeness result for pTL, we also know that this can

be done provably.

Lemma 6.3.3 For every iiTL-formula 0 , there exists a 1iTL-formula 0 in sad-

form such that I- q

Proof: Immediate from Lemmas 6.3.2 and 6.2.8. 	 0

Let us show then that by applying this transformation, we can inductively

transform to all jTL-formulae to the full sad-form.

Proposition 6.3.4 For every tTL-formula q there is a formula 0' in full sad-

form such that I- q 	qY.

Proof: Let us show by induction on n that for every n E IN, the claim holds for

all q' such that dpq (q) < n. Notice first that if dpq (q5) = 0, then 0 is a pure path

formula, and the claim holds by Lemma 6.3.3.

Assume then that the claim holds for n, and take any 0 such that dpq (cb) = n+1.

We can write 0 in the form q = ['xi/xi,. . . , ' Xm/Xm], where 0 is a pure path

formula and dvq(Xi) <n for every Xi. Since 0 is a pure path formula, by induction

assumption there is a ',b' in full sad-form such that 1-

Let then ± . m be fresh variables, and denote by " the formula obtained

by replacing each -'xi by :fi in '. Then 'b' = b"[-ixi / i ,. . . , 'X m / m] and every

xi and Zi occurs only positively in 'çO". Since for every i, dpq ('j) = dpq (i)

by induction assumption there are formulae x and 	in full sad-form such that

Xi < x and I- Xi 	. Define

= "[x/xi, . . . , X/Xm , 	i/X1,. . . ,

Then

Hq5 = b[Xi/Xi,...,Xm/Xm]

Chapter 6 - Axiomatising path quantifiers 	 168

'[xi/xi,.. .,Xm/ 3 m]

Xm/Xm, 	Xi/xi,. , 	X'/m]

" [x/xi, . . . , X n /xm, 	 ,

=çb'

Moreover, since x, 	occur in '/Y' only positively and 	are in full sad-form,

qY is in full sad-form. 	 D

6.4 Completeness

In this section we show the completeness of the axiom system with respect to

formulae in the full sad-form. As by the results of previous section any formula

can be provably transformed into this form, the completeness of the axiomatisation

for whole TL follows immediately. Let us first describe a tableau construction

for formulae in full sad-form, made possible by special properties that this normal

form enjoys, shown in Lemmas 6.4.1 and 6.4.2.

Lemma 6.4.1 Let 0 and qY be 	TL-formulae such that 0 V çb' is in sad-form.

Then F- V (ç V çY) 	(_V 0) V (fl').
Proof: Assume first that 0 and çb' are pure path formulae. Since çbVqY is determ-

inistic, by definition there exists a propositional formula 0 which is a deterministic

choice for 0 V qY, i.e. = q = /' and = qY = -nj'. Since q, qY and 0 are pure path

formulae, by Lemma 6.2.8 this implies F- and F- çb' = —'iO. As 0 is a state

formula, we have F- (') V 	As F- q5 = 'q' and F- çb' = -', then

A 	V çb') V V (-) A 	V qY))

(O A (0 v qY)) v 	A (0 v qY)))

(v')

Let then 0 and çb' be any iTL-formulae such that 0 V qY is in sad-form. By

definition 0 qY can be written in the form 0 qY = (0 V ')[Ilx/x,.. . ul Xk /x]

where V ' is a pure path formula in the sad-form. By the above, we know that

F- V ') (b) V (_V 0'). But by Lemma 6.2.9 this implies

F- (v sb') 	() v ('))[1X1/xi,. . . IlXk/Xk]

i.e. F- 	V qY) 	(V 0) V (V 0').

Chapter 6 - Axiomatising path quantifiers 	 169

name application name application

vL
s, FU{q5VqY}, 	d

v.11 	
s, Fu{v'}, 	d

S, Fu{q}, 	d s, Fuloll, 	d

IlvL
s, Fu{?I(v')}, 	d

rlvR 	
S Fu{rt(qvq5')}, 	d

s, Fu{lq5}, 	d s, Fu{11'}, 	d
s, Fu{qAqY}, 	d

A
S, Fu{,qY}, 	d

hAL
S Fu{rI(A95)}, 	d 	

1 rIAR 	
S FU{h1(Aq5)}, 	d 	

1
S, Fu{(flq5),}, 	d s, Fu to, (1lq5)}, 	d

s, FU{rfaz.cb}, 	d
2

jjU s, FU{hlu}, 	d

S, F U {h}, 	d 	(u, az.) s, F U {h[/z]}, 	d

state
s, Fu{h1}, 	d

1
s, Fu{}, 	d

s, 	 d
0 s•O,F,d 	s.1,FU{ i }, d ... 	s.m,FU{ m },d

Note: 1: /.'[d] is a state formula, 2: u does not appear in d, 3: d(u) = az.q
4:

Table 6.1: Tableau rules for iTL-formulae in full sad-form

Lemma 6.4.2 If 0 A qY is strongly aconjunctive, then either

• is a state formula and I- H (o A ') 	A (h/), or

• qY is a state formula and F- 11(o A cb') 	(11) A qY.

Proof: It is clear from the definition of strong aconjunctivity that either 0 or
is a state formula. Suppose q is. Then I- 	 , implying

H 	A qY) 	(c) A (qY) 	A (qY)

HAqY) = ()A(qY) 	A(qY)

HA(qY) 	()A(qY) =(q5AqY)

U

Definition 6.4.3 Let 0 be a state formula in full sad-form. A tableau T for q is

an infinite tree such that

• every node t of T is labelled with a triple (St, F, d1) where st E IN*, r t is a

finite set of extended formulae in pnf, dt a definition list such that F [d] is

a set of state formulae,

• the children of a node t of T are derived by using one of the rules in Table

6.1, and

Chapter 6 - Axiomatising path quantifiers 	 170

• the root of T is labelled with (, {q}, E).

A node t of T is a 0-node if the 0-rule is applied at t. For every node t of T

and every child t' of t, the rule applied at node t induces a dependency relation

-~ ç rt x F,' as in Def. 2.2.38, except for:

• if the rule is Q, then 	-p q5 for every formula of the form Oq E F,

and 	-p 	for every formula of the form 	E Fe'.

A tableau T is proper if there is no infinite path p of T, node t along p, and

definition constant u such that dt(u) = for some 0, and rlu E rt, for infinitely

many nodes t' along p. A tableau T is consistent if for every node t of T, the

formula A r t [dt] is consistent. D

Lemma 6.4.4 Let 0 be a state formula in full sad-form. If there is a proper

consistent tableau T for 0 , then 0 is satisfiable.

Proof: A consistent tableau T naturally induces a model M. We can show that

M, St 1= 0 for all 0 e F[d] and all nodes t of T, by using induction on the path

quantifier depth of 0 and by reading linear bundled tableaux from T and applying

Proposition 2.2.39.

To construct a proper tableau for a consistent formula, we use a technique

similar to Lemma 5.3.4 for strengthening minimal fixpoints. The method is based

on the fact that if (ulz.) A /' is consistent, then (b[z.(q A -)/z]) A 0 is

consistent. For 11 = this holds for all 1uz., but for it = V the special properties

of sad-form are required.

Lemma 6.4.5 Let p z.o and 0 be ,iTL-formulae such that pz.q is strongly

co-aconjunctive, and / is a state formula without free occurrences of z. If

('iz.q) A '/ is consistent,

then

({iiz.(A -O)/z}) A b is consistent.

Proof: Assume that (q5[pz.(q A -)/z]) A 0 is inconsistent, which implies

F- ([[z.(q5 A -1)/z]) = -nt. As 0 is a state formula, F- -'0 	-'b, and

H ([z.(çb A -i)/z]) 	[pz. (0 A -i)/z]) A
(-')

= (A 	[iz.(q A -0) 1z])

= 	(z.(A-))

Chapter 6 - Axiomatising path quantifiers 	 171

Since H 	z.(A- 0)) = z.(A -,O), then H ([z.(çA)/z]) =

As I-Lz.0 is strongly co-aconjunctive, this implies by the Vt-induction rule that

H (z.) A). As H A) , then H (z.) , i.e.

(z.) A '/' is inconsistent.

Lemma 6.4.6 If ttz.0 is in the sad-form, there is a formula qY such that

• H 0
• z is bindable in çb' and

• Itz.qY is strongly co-aconjunctive.

Proof: Assume first that fLz4 is a pure path formula. Define inductively a

formula for every subformula '' of fLz. by:

= 	-ifor 	 EZU{..L,T}

=
= 	vx./[-ix/x]

vx. =

00 0
OVOI = 	(A)v(-"yA)

where -y is a deterministic choice for 0 V 'Ji not containing any variable bound by

a fixpoint in iz.q5.

Define then qY = -'q. It is easy to see that = 	-'q, i.e. = qY 	ç. By the

completeness for pure path formulae (Lemma 6.2.8), this implies H qY 	q. Since

z occurs only positively in q, it does so in qY as well, and z is bindable in qY.

It is easy to see that vz.[-'z/z] is strongly aconjunctive, and that consequently

iiz.cb' is strongly co-aconjunctive.

Let then pz.q be an arbitrary 	TL-formula in sad-form. By definition tz.q

can be written in the form jiz4 = (z.)[lli/xi,.. . riXk/Xk] where ltz.0 is a

pure path formula in the sad-form, and z does not occur in any X i . By the above

we know that there is a formula '/" fulfilling the claim of the lemma with respect

to jiz.'. Define then 0' = 0'[11x11x1, . . . ulXk /x k]. Since H 	'O', we have

H 	qY by Lemma 6.2.9. It is clear that z is bindable in çb' and that z.0' is
strongly co-aconjunctive. 	 El

Chapter 6 - Axiomatising path quantifiers 	 172

Lemma 6.4.7 Let jiz.q be a 	TL-formula in the sad-form, and ',b a state for-

mula without free occurrences of z. If

(jz4) A ,0 is consistent,

then

([iz.(A -)/z]) A 0 is consistent.

Proof: Take the formula çb' provided by Lemma 6.4.6. As F- q 	çb', we have

H (z.) 	(z.') and H ([iz.(A —)/z}) 	('[z.(qY A -i)/z]).

Therefore, if (jiz.q5) A 0 is consistent, (iz.') A 0 is consistent, implying

by Lemma 6.4.5 that (çb'[jtz.(/i A -)/z]) A 	is consistent, and further that

([z.(q5 A -ii)/z]) A 	is consistent. 	 U

Lemma 6.4.8 Let 0 be a 	TL-formula, and 0 a state formula without free

occurrences of z. If

A b is consistent,

then

([pz. (0 A -')/z]) A / is consistent.

Proof: If(is inconsistent, F- ([z.(A-)/z])

Then H 	A -iO)/z] = ([iiz.(A -)/z]) => -', and

H 	A -i)/z] = (0 A 	[z.(q A -)/z] = iz.(A -b)

By the -ind. rule then H 	 A) and H (z.) 	(z.(A ')).

As H iz.(q A —") = -' and is a state formula,

	

A)) 	()

Therefore H (,uz.q) = -i, and (pz.) A 0 is inconsistent. 	 U

Definition 6.4.9 Let 0 be a state formula in full sad-form. A strong tableau T for

is an infinite tree, every node t of which is labelled with a 4-tuple (St, F, d, dfl
where

• (St, F, d) is a tableau node label as defined in Def. 6.4.3, and d7 is a definition

list such that if

dt = (u0 , azo .q o)... (un , az.')

then

d = (u0 , oz0 .00 A ao) ... (un , ciz.çb A c 1)

for some state formulae c (possibly T),

Chapter 6 - Axiomatising path quantifiers 	 173

name application

s, F U {ulaz.}, 	d, 	d8
1

S, F U {Tlu}, 	d', 	dsl

IWv
s, Fu{Ilu}, 	d, 	dS

2
s, Fu{11[u/z]}, 	d, 	dS

S,
Fu{1lu}, 	d, 	d

3
s, Fu{I1[u/z]}, 	d, 	dsF

Note: u does not appear in d, d' = d 	(u, oz.q5), d 	= d8 	(u, oz.q).
 d(u) = vz4
 if d= (u0 ,oz 0 .çb0) ... (U,az.q), U= Urn,

d(um) = ,uz.çb and d8 (Um) = 	z. (q A a), then
ds'(u) = d(u) for 0 <i < m, d'(u) = d(u2) for m < i <n, and
dS I (Um) = pz. (q A a A a') where a' = pnf(-i A F[dX]) and
dx(u)=d3(u) for 0im, and dx(u)=d(u) for m<i<n

Table 6.2: Strong tableau rules for pTL

• the children of a node t are derived by the rules VL, VR, I1VL, MR, A,

hAL, liAR, state or Q, which are as in Table 6.1, with the extra definition

list passed on unchanged, or by the rules ha', liUv or rfUp in Table 6.2,

and

• the root of T is labelled with (e, {q5}, €, e).

A strong tableau T being proper is defined as in Def. 6.4.3. A strong tableau T is

consistent if for every node t of T, the formula A Ft[dfl is consistent.

Lemma 6.4.10 Let T be a (strong) tableau for a tTL-formula 0 . For every

node t of T every definition constant 'u is active in at most one formula 7 E F.

Proof: Let us see first that for every node t of T and every constant U, if U

occurs in q E Ft, then 0 is of the form 0 = 11', and U does not occur in the scope

of a path quantifier in qY. This holds for the root of T, and clearly all rules except

state, hAL and liAR preserve the property. If state-rule is applied to hi?/ at t,

[d] is a state formula, and as for every U d(U) = az.0 for some 0, no U can occur

in 'J outside path quantifiers. As the claim holds for t, no u can occur in b in the

scope of a path quantifier, either. The cases for hAL and liAR are analogous.

The main claim of the lemma holds for the root of T, and clearly all rules

except A, hAL and liAR preserve the property. By the above, no U can occur in

q A qY e F, so A-rule preserves the claim. For hAL and MR, as seen above, no

U can occur in the 0 for which [d] is a state formula, so these rules preserve the

property, as well. 0

Chapter 6 - Axiomatising path quantifiers 	 174

Lemma 6.4.11 Let T be a strong tableau for a tTL-formula. If T is consistent,

then T is proper.

Proof: Take a strong tableau T which is not proper. Then there is an infinite

path p of T, a node t along p and a minimal constant u such that ilu E F()

for infinitely many i E N. Let (so , F0 , d0 , d)(s i , F 1 , d1 , dfl ... be the sequence of

labels along p and let U = Urn. Assume that m is the smallest index such that urn

is a minimal constant and I1 Urn E Fp(i) for infinitely many i E V. Then there is

some bound n E IN such that for all i > n and all minimal constants u3 for which

j <m, iluj 0 F. This implies d(u) = d(u) for all 0 <j <m and %* > n.
For every i > n, define a definition list d by: d' (uj) = d' (uj) for every

0 <j <m, and d(u) = d2 (u3) for every j > m. Let d' be a definition list like

d, except for d(u) = d2 (u3). For a set F of state formulae in pnf, define cl(F),

the closure of F, as the minimal set which contains F and fulfils the following

requirements: if 11(o A qY) E cl(F) or TI(V qY) E cl(F), then 11, I1' E cl(F),

if 0 A çb' E cl(F) or 0 V ' E cl(F), then 0, E cl(F), if Ilaz. çb e cl(F) then

?fq[oz.cb/z] e cl(F), if hoo E cl(F) then 110 E cl(F), and if IIç e cl(F) and q is

a state formula, then 0 e cl(F). Define X = cl(F[d]). Notice that X is clearly

finite. As 1lU-rule is not applied to any of uo , .. . , Um _l, F[dfl c X for all i > ii.

Let then n < i0 < i1 < ... be an infinite sequence of indices such that for

every j E IN, 1tUm E F2 and the u1Ui-rule is applied to hUm to obtain F +1

from F23 . For each j E IN, define r' j . = F \ { rlum }. By Lemma 5.3.6, Urn is not

active in any formula in F.. Therefore, F. [dfl F. [d] c X for all j E IN.

Since X is finite there must be some points k and I in the sequence i0 , i 1 ,...

such that k < 1 and I" [d'] F[dfl. As the h1Ut-rule is applied to hUm at k and

as the IIUt-rule is not applied to any of U0, . . . , Urn_i between k and 1, this means

that H (rlum [dt]) = (- A r" [d]) (-' A F[df]). But then

(AI'i[dfl) (AF[dn A (u1 m [dfl))

(A1[f] A (flU m [dfl))

(AF[dfl A(- Ar", [dx]))

meaning that T is not consistent. 	 D

Lemma 6.4.12 Let 0 be a state formula in full sad-form, and let T be a strong

tableau for 0 . For every node t of T and every formula '/' E F, [d] is in full

sad-form, and if /' is of the form = rIm', then 0'[d7] is in sad-form.

Proof: Showing that for every node t of T and every formula '/' e F, 'b[d] is

in full sad-form is done inductively on T. The root of T clearly fulfils the claim.

Chapter 6 - Axiomatising path quantifiers 	 175

Every rule preserves the validity of the claim, since 0 is in full sad-form if no is

in full sad-form if 00 is in full sad-form, if 0 A çb' or 0 V qY is in full sad-form,

then so are 0 and qY, and if oz.0 is in full sad-form, then so is çb[az.q/z].

Take then any ri' E F. As by the above r1qY[d] is in full sad-form, 'b'[d]

is in sad-form. For every t and u, if d(u) = oz.0, d(u) = oz.(q5 A a) where

a = A pnf(a) for some a 2 . It is then easy to see that replacing d(u) by d' (u)

in 0'[dt] does not affect the fact that the formula is in sad-form, i.e. '/i[dfl is in

sad-form. D

Lemma 6.4.13 Let 0 be a state formula in full sad-form. If q is consistent, then

there is a consistent strong tableau for q.

Proof: Let us show that given any node t of a strong tableau T such that A Ft[dfl
is consistent, there is some rule that can be applied to node t so that for every

resulting child t', A F' [d] is consistent. As q is consistent, we can then build a

strong tableau T for 0 inductively, starting from (€, {q}, e, c) and always applying

some rule for which the resulting children are consistent.

Take any label (St, Ft, d, d7) such that A Ft[dfl is consistent. By Lemma 6.4.12

we know that for all no E F, '[dfl is in sad-form.

Assume that the 0-rule can be applied at t. Then for all the children t'

of t, A F[d1] is consistent, since H VOO VOVO, H and

H (Q) A (0cY) = (9̂ 0 (V 0 A

If the 0-rule cannot be applied at t, there is either some 0 e I' t which is not a

basic state formula, or there is some no E Ft such that o is not of the form 0'.
In the first case either = 01 V 02, and vL or yR can be applied to 0 to yield a

consistent child, or 0 = A 02, and A can be applied to yield a consistent child.

Assume then that there is some 110 E F, L' 54 OVY for any qY. If I10 is of the

form that the state, no, ' or ?IUv-rules can be applied to it, it is obvious that the

resulting child is consistent.

If 1I 0 = (0 1 V 	, one of ?IVL or 11 yR can be applied to yield a consistent

child, as I- 	(1 [dfl V ''[dfl) 	(J1 [dfl V 	, 2 [d7]). If fl = '(/" V b2), one of

ulvL or I1VR can be applied to yield a consistent child, as 41 '1 [d7] vib2 [dfl being in

sad-form implies by Lemma 6.4.1 that I- (01 [d'] 	(1 [dflVb 2 [d7]).

If 110 = 11(O A'iJ'2), one of rIAL or lIAR can be applied to yield a consistent

child, as 1 [d7] A 2 [d7] being in sad-form implies by Lemma 6.4.2 that either

1 [dfl is a state formula and H ul('i/'i [dfl A '1 2 [dfl) 	(1 [dfl A (lI 2 [dfl)), or vice

versa.

Finally, assume that no = hu and the lIU-rule can be applied to uiu. Let

F = F \ {Iln}, ds = d7 and let u = Urn, Z, 0 , a, a', dX and d be as in the

Chapter 6 - Axiomatising path quantifiers 	 176

definition of the ?IUjt-rule. Clearly F- (A(F U {I1u})[d]) = (A(F U {ulu})[dnl),

implying that A(F U {!l u})[dx] is consistent, i.e. that

(A FEdS]) A (u1u[d]) = (A F[d5]) A 11(/Lz. 0 A a) [d]

is consistent, where dY(u) = d 5 (u) = d5 (u) for 1 < i < m and d'(u) is undefined

otherwise.

As Il(pz.i A a)[dY] E Ft[dfl, /1Z. (0 A a) [d'] is in sad-form. By Lemmas 6.4.8

and 6.4.7, this implies that (A F[d5]) A It ((0 A)[jtz.(q A a A a')/z])[d] and

therefore (AF[d5]) A ll(q5[j z.(q5 A a A a')/z])[d] = (A F[d5]) A I1([u/z})[d51] is

consistent. Since by Lemma 6.4.10 u = Urn is active in at most one formula in F
and it is clearly active in iiu, it is not active in any formula in F. Consequently,

F- (A F[d5]) 4=> (A F[d']), meaning that

(A F[d81]) A rt(q[u/z])[d'] = A(F U {rtcb[u/z]})[dsI]

is consistent.

Proposition 6.4.14 If 0 is a consistent state formula in full sad-form, then q is

satisfiable.

Proof: Direct from Lemmas 6.4.4, 6.4.11 and 6.4.13. 	 El

Theorem 6.4.15 If q is consistent, 0 is satisfiable.

Proof: Take any consistent 0 . By Proposition 6.3.4 there is a qY is full sad-

form such that F- 	qY, implying that qY is consistent. As F- çb' => qY, 	' is

consistent. Since 	' is consistent and in full sad-form, by Proposition 6.4.14

is satisfiable, implying that qY is satisfiable, and as F- q 	q5' implies = q 	qY by

the soundness theorem 6.2.7, 0 is satisfiable. 	 El

Corollary 6.4.16 [Completeness for pTL] For any TL-formula 0, if = q

then F- q.

Proof: If = , then -q is not satisfiable, therefore not consistent, implying

F- ---i, i.e. F- , by Theorem 6.4.15. 	 El

6.5 Discussion

In the sections above we described an axiomatisation of 	TL and proved its

completeness with respect to the class of 'normal' models, or suffix, fusion and

limit closed extended models. Related to this, there are three open questions, two

Chapter 6 - Axiomatising path quantifiers 	 Iit

of which we judge to be easy and one hard. The two easier questions are. about

axiomatising pTL with respect to the class of models which are suffix and fusion

closed but not necessarily limit closed, and axiomatising it with respect to the

class of models which are suffix closed but not necessarily fusion or limit closed.

In this respect we conjecture the following.

Conjecture 6.5.1 Let 0 be a iTL-formu1a. Then I- 0 (without the_1 V-

induction rule) if M = 0 for all extended models M = (M, P) for which P

is suffix and fusion closed. U

Conjecture 6.5.2 Let 0 be a 	TL-formula. Then F- 0 (without the axiom ax8

and the Iv-induction rule) if M = for all extended models M = (M, P) for

which P is suffix closed.

The hard open problem is naturally that of completely axiomatising the usual

extended computation tree logic CTL* with respect to the suffix, fusion and limit-

closed models. This may appear paradoxical, since CTL* is after all a sublogic of

1uTL. However, there are two reasons which prevent a direct transferral of the

current completeness proof to CTL*. First, the principle ofIv-induction cannot

be expressed directly in the more restricted language of CTL*, and secondly, when

CTL*_formulae are transferred to the deterministic normal form, the result is not

necessarily in CTL* any more.

However, we believe that the current work outlines one potential way of attack-

ing the completeness problem for CTL*. First, the presence of the v-induction

rule here leads us to believe that some similar proof principle, allowing us to join

infinitely many finite path segments to a single path, will be needed for CTL*, as

well. One possible candidate is the axiom schema

H G(q = Fç) ==> (= GFc)

for state formulae q, although it is not clear whether this is sufficiently strong.

Secondly, we believe that it should be possible to recast the current proof in a form

where the explicit transformation to deterministic normal form is not required, but

this is done implicitly in the process of building the model for a consistent formula.

If this can be done, then the inability to express the deterministic formulae in CTL*

would not necessarily collapse the proof. However, at the current stage this is still

speculation and the axiomatisation problem for CTL* remains open.

Chapter 7

Conclusion

The main theme of the current work has been an examination of the relations

between automata and fixpoint calculi, and the application of these relations to

help us understand automata via fixpoint calculi and fixpoint calculi via auto-

mata. In Chapter 3 we saw that many of the known results relating fixpoint

and quantifier-based second-order calculi and automata to each other could be

obtained uniformly from the notions of first recurrence automata and fixpoint

constructions for ordinary automata. In Chapter 4 we presented a tableau de-

cision system for linear time and modal mu-calculi, noticing that this could also

be viewed as a transformation to an automaton-like strongly aconjunctive form.

Then, in Chapters 5 and 6 we reached the most important new contribution of

the thesis, proving the completeness of two axiomatisations using normal forms

inspired by different kinds of automata. Let us look now briefly at some issues

worth further study.

During the course of the work we identified and pointed out several open axio-

matisation problems. The more substantial ones are the question of axiomatising

the strong second-order languages SnS or 3Kn, and that of axiomatising the full

computation tree logic CTL* with respect to the suffix, fusion and limit closed

models. Problems that would appear to be somewhat more tractable include the

axiomatisation problem for the weak second-order language nKn, and the axio-

matisation problems for pTL with respect to the classes of suffix closed or suffix

and fusion closed models.

In Chapter 3 we described fixpoint constructions for ordinary Büchi and Rabin

automata, but not for the third main class of automata in the current work, the first

recurrence automata. Such constructions for ordinary first recurrence automata,

i.e. restricted mu-calculus formulae, can naturally be derived as instances of the

more general translation of Chapter 4. However, we believe that spelling out

the fixpoint constructions for FR-automata explicitly may clarify the relation of

178

Chapter 7 - Conclusion 	 179

fixpoints and strong aconjunctivity, and also that this may lead to an alternative

account of Walukiewicz's completeness proof for the modal mu-calculus.

A different research direction is to look more closely at the computational

aspects of the work and the efficiency of the translations and decision methods.

In Section 3.2.4 we described the decision procedure for ordinary first recurrence

automata, working in linear time, but noticed that the requirement of the tree-

like structure of these automata causes an exponential penalty when translating

ordinary Rabin or Büchi automata to them. This is an example of a more gen-

eral 'unnecessary' exponential gap in conciseness between automata and formu-

lae, caused by the fact that syntactically a formula is always a tree, whereas an

automaton does not need to be one. In Section 3.2.4 we discussed briefly the

possibility of avoiding this problem by relaxing the structural requirements for

first recurrence automata so that they become more general hierarchical graphs

instead of trees. These generalised first recurrence automata, which have a nat-

ural correspondence with mu-calculus formulae with simultaneous vectorial fix-

points v(x 0 ,. . . , xk).(qo, . . . , k) and (x0 ,. . . , xk).(qo).... q), would appear to

be a very interesting research area.

In Chapter 4 we described an elementary decision procedure for linear-time

and modal mu-calculi. However, the main point of emphasis there was not effi-

ciency and the derived complexity bounds are not optimal. Nevertheless, since the

tableaux are based on the same principles as the most efficient known automata-

theoretic decision procedures, we believe that with sufficient care on the choice of

constant naming, it should be possible to achieve the same level of computational

complexity.

Another more practical issue related to the tableau decision system is the

choice of modalities in the modal mu-calculus. Here we have used the framework

of models with a fixed branching degree and an ordering on children, and the

modalities for the i-th child. However, if we assume, for example, that a model

reflects the execution of a concurrent system, this framework is artificial and

overly restrictive. It would be more natural to consider trees of varying degrees

of branching, and the modal operators for all children and for some child. We

believe that the tableau decision system should extend smoothly to such a model

and language.. This idea can naturally be lifted to the whole endeavour of relating

automata and fixpoint calculi, by trying to characterise a notion of automata

corresponding to formulae with such modalities. Especially if we try to keep

the important link between ordinary automata and second-order quantification as

in Section 3.3, it is not immediately clear what the most appropriate notion of

automata would be.

Chapter 7 - Conclusion 	 180

On a more general note, the study of mu-calculi has recently taken several steps

forward quite rapidly; the longstanding open problem of providing a complete

axiomatisation and that of the the non-collapse of the alternation depth hierarchy

have been settled. However, this does not mean that all fundamental questions

related to mu-calculi would have been answered. In particular the question of the

existence of a polynomial-time model-checking algorithm is still very much open.

Bibliography

Arnold, A.: Logical definability of fixed points, in Theoretical Computer
Science, vol. 61, 1988, pp. 289-297

Arnold, A.: An initial semantics for the i-calculus on trees and Rabin's
complementation lemma, in Theoretical Computer Science, vol. 148, 1995,

pp. 121-132

Arnold, A. & Niwiflski, D.: Fixed point characterisation of Büchi automata
on infinite trees, in Journal of Inf. Proc. and Cybernetics (ElK), vol. 8-9,
1990, pp. 451-459

Arnold, A. & Niwiñski, D.: Fixed point characterisation of weak monadic
logic definable sets of trees, in Nivat, M. & Podeiski, A. (eds.): Tree Automata
and Languages, Elsevier, 1992, pp. 159-188

de Bakker, J. W. & de Roever, W. P.: A calculus for recursive program
schemes, in Nivat, M. (ed.): Automata, Languages and Programming, Pro-
ceedings, North-Holland, 1973, pp. 167-196

Banieqbal, B. & Barringer, H.: Temporal logic with fixed points, in Temporal
Logic in Specification, LNCS vol. 398, Springer-Verlag, 1989, pp. 62-74

Barringer, H. & Kuiper, R. & Pnueli, A.: Now you may compose temporal
logic specifications, in Proceedings of the 16th Annual ACM Symposium on
Theory of Computing, 1984, pp. 51-63

Barringer, H. & Kuiper, R. & Pnueli, A.: A compositional temporal approach
to a CSP-like language, in Formal Models in Programming, Elsevier, 1985,

pp. 207-227

Barringer, H. & Kuiper, R. & Pnueli, A.: A really abstract concurrent model
and its temporal logic, in Conference Record of the 13th Annual ACM Sym-
posium on Principles of Programming Languages, 1986, pp. 173-183

Bernholtz, 0. & Vardi, M. Y. & Wolper, P.: An automata-theoretic approach
to branching time model checking, in Computer Aided Verification, 6th Inter-
national Workshop, CAV'94, Proceedings, LNCS vol. 818, 1994, pp. 142-155

Bradfield, J.: Verifying Temporal Properties of Systems with Applications to
Petri Nets, PhD thesis CST-83-91, University of Edinburgh, Department of
Computer Science, 1991

113]

Bibliography 	 182

Bradfield, J.: The modal mu-calculus alternation hierarchy is strict, in CON-
CUR '96: Concurrency Theory, 7th International Conference, Proceedings,
LNCS vol. 1119, Springer-Verlag, 1996, PP. 233-246

Bradfield, J. & Stirling, C.: Verifying temporal properties of processes, in
CONCUR'90: Concurrency Theory, Proceedings, LNCS vol. 458, Springer-
Verlag, 1990, pp. 115-125

Bradfield, J. & Stirling, C.: Local model checking for infinite state spaces, in
Theoretical Computer Science, vol. 96, 1992, pp. 157-174

Bflchi, J. R.: On a decision method in restricted second-order arithmetics, in
Proceedings of the 1960 International Congress on Logic, Methodology and
Philosophy of Science, Stanford University Press, 1962, Pp. 1-12

Büchi, J. R.: Using determinacy of games to eliminate quantifiers, in Funda-
mentals of Computation Theory, LNCS vol. 56, 1977, pp. 367-378

Büchi, J. R.: State-strategies for games in Faö fl G5, in Journal of Symbolic
Logic, vol. 48, 1983, pp. 1171-1198

Burgess, J. P.: Basic tense logic, in Gabbay, D. & Guenthner, F. (eds.):
Handbook of Philosophical Logic, vol. II, Reidel, 1984, Pp. 89-113

Chandra, A. K. & Kozen, D. C. & Stockmeyer, L. J.: Alternation, in Journal
of the ACM, vol. 28, 1981, PP. 114-133

Clarke, E. & Grumberg, 0. & Kurshan, R. P.: A synthesis of two ap-
proaches for verifying finite state concurrent systems, in Logic at Botik '89,
Symposium on Logical Foundations of Computer Science, LNCS vol. 363,
Springer-Verlag, 1989, Pp. 81-90

Chellas, B. F.: Modal Logic: an Introduction, Cambridge University Press,
1980

Dam, M.: Fixpoints of Büchi automata, in Foundations of Software Techno-
logy and Theoretical Computer Science, 12th Conference, Proceedings, LNCS
vol. 652, Springer-Verlag, 1992, pp. 39-50

Doner, JE.: Decidability of the weak second-order theory of two successors,
in Notices of the American Mathematical Society, vol. 12, 1965, P. 819

Emerson, E. A.: Alternative semantics for temporal logics, in Theoretical
Computer Science, vol. 26, 1983, pp. 121-130

Emerson, E. A.: Temporal and modal logic, in van Leeuwen, J. (ed.): Hand-
book of Theoretical Computer Science, Elsevier/North-Holland, 1990, Pp.
997-1072

Emerson, E. A.: Automated temporal reasoning about reactive systems,
in Logics for Concurrency, Structure versus Automata, LNCS vol. 1043,
Springer-Verlag, 1996, pp. 41-101

Bibliography
	 183

[271 Emerson, E. A. & Clarke, E. M.: Characterising correctness properties of
parallel programs using fixpoints, in Automata, Languages and Program-
ming, 7th International Colloquium, ICALP'80, Proceedings, LNCS vol. 85,

Springer-Verlag, 1980, pp. 169-181

Emerson, E. A. & Halpern, J. Y.: "Sometimes" and "not never" revisited: on
branching versus linear time, in Conference Record of the 10th Annual ACM
Symposium on Principles of Programming Languages, 1983, pp. 127-140

Emerson, E. A. & Halpern, J. Y.: Deciding full branching time logic, in
Information and Control, vol. 61, 1984, pp. 175-201

Emerson, E. A. & Halpern, J. Y.: Decision procedures and expressiveness
in the temporal logic of branching time, in Journal of Computer And System
Sciences, vol. 30, 1985, pp. 1-24

Emerson, E. A. & Jutla, C. S.: Complexity of tree automata and modal
logics of programs, in Proceedings of the 29th Annual IEEE Symposium on
Foundations of Computer Science, 1988, pp. 328-337

Emerson, E. A. & Jutla, C. S.: On simultaneously determinizing and comple-
menting w-automata, in Proceedings of the Fourth Annual IEEE Symposium
on Logic in Computer Science, 1989, pp. 333-342

Emerson, E. A. & Jutla, C. S.: Tree automata, mu-calculus, and determin-
acy, in Proceedings of the 82nd Annual IEEE Symposium on Foundations of
Computer Science, 1991, pp. 368-377

Emerson, E. A. & Lei, C. L.: Efficient model-checking in fragments of the
propositional mu-calculus, in Proceedings of the First IEEE Symposium on
Logic in Computer Science, 1986, pp. 267-278

Emerson, E. A. & Sistla, A. P.: Deciding full branching time logic, in In-
formation and Control, vol. 61, 1984, pp. 175-201

Gabbay, D. & Pnueli, A. & Shelah, S. & Stavi, J.: On the temporal analysis of
fairness, in Conference Record the 7th Annual ACM Symposium on Principles
of Programming Languages, 1980, pp. 163-173

Gécseg, F. & Steinby, M.: Tree Automata, Akadémiai Kiadó, Budapest, 1984

Gries, D.•: The Science of Programming, Springer-Verlag, 1981

Gurevich, Y. & Harrington, L.: Trees, automata and games, in Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, 1982, pp.
60-65

Hennessy, M. & Milner, R.: Algebraic laws for nondeterminism and concur-
rency, in Journal of the ACM, vol. 32, 1985, pp. 137-162

Bibliography 	 184

Hitchcock, P. & Park, D.: Induction rules and termination proofs, in Nivat,
M. (ed.): Automata, Languages and Programming, Proceedings, North-
Holland, 1973, pp. 225-251

Hodges, W.: Model Theory, Encyclopedia of Mathematics and its Applica-
tions, vol. 42, Cambridge University Press, 1993

Hoare, C A. R.: An axiomatic basis for computer programming, in Commu-
nications of the ACM, vol. 12, 1969, pp. 576-580

Hughes, G. E. & Cresswell, M. J.: An Introduction to Modal Logic, 2nd ed.,
Routledge, 1972

Hüttel, H.: SnS can be modally characterised, in Theoretical Computer Sci-
ence, vol. 74, 1990, pp. 239-248

Jutla, C. S.: Automata on Infinite Objects and Modal Logics of Programs,
PhD thesis, University of Texas at Austin, 1990

Kaivola, R.: On modal mu-calculus and Büchi tree automata, in Informa-
tion Processing Letters, vol. 54, 1995, pp. 17-22, an extended version has
also appeared as report ECS-LFCS-94-293, Laboratory for Foundations of
Computer Science, University of Edinburgh, 1994, 24 p.

Kaivola, R.: A simple decision method for the linear-time mu-calculus, in
Structures in Concurrency Theory, Proceedings of the International Work-
shop on Structures in Concurrency Theory (STRICT), Berlin, May 1995,
Workshops in Computing series, Springer-Verlag, 1995, pp. 190-204

Kaivola, R.: Axiomatising linear time mu-calculus, in CONCUR '95: Con-
currency Theory, 6th International Conference, Proceedings, LNCS vol. 962,
Springer-Verlag, 1995, pp. 423-437

Kaivola, R.: Axiomatising extended computation tree logic, in Trees in Al-
gebra and Programming - CAAP'96, Proceedings, LNCS vol. 1059, Springer-
Verlag, 1996, pp. 87-101, also to appear in Theoretical Computer Science,
1997

Kaivola, R.: Fixpoints for Rabin tree automata make complementation easy
in Automata, Languages and Programming, 23rd International Colloquium,
ICALP'96, Proceedings, LNCS vol. 1099, Springer-Verlag, 1996, pp. 312-323

Kamp, H.: Tense Logic and the Theory of Linear Order, Ph.D. Dissertation,
UCLA, Los Angeles, 1968

Kesten, Y. & Pnueli, A.: A complete proof system for QPTL, in Proceedings
of the 10th Annual IEEE Symposium on Logic in Computer Science, 1995,
pp. 2-12

Kleene, S. C.: Introduction to Metamathematics, North-Holland, 1952

Bibliography 	 185

Kozen, D.: Results on the propositional ft-calculus, in Theoretical Computer

Science, vol. 27, 1983, pp. 333-354

Kozen, D. & Parikh, R.: A decision procedure for the propositional [L-

calculus, in Logics of Programs: Workshop, Carnegie Mellon University,

1983, LNCS vol. 164, Springer-Verlag, 1984, pp. 313-325

Läuchli, H.: A decision procedure for the weak second-order theory of linear
order, in Schutte, K. (ed.): Contributions to Mathematical Logic, North-

Holland, 1968, pp. 189-197

Lenzi, G.: A hierarchy theorem for theti-calculus, in Automata, Languages
and Programming, 23rd International Colloquium, ICALP'96, Proceedings,
LNCS vol. 1099, Springer-Verlag, 1996, pp. 87-109

Lichtenstein, 0.: Decidability, Completeness, and Extensions of Linear Time
Temporal Logic, PhD thesis, The Weizmann Institute of Science, Rehovot,
Israel, 1991

Lichtenstein, 0. & Pnueli, A. & Zuck, L.: The glory of the past, in Proceedings

of Workshop on Logics of Programs, LNCS vol. 193, Springer-Verlag, 1985,

pp. 97-107

Lindsay, P. A.: On alternating w-automata, in Journal of Computer and

System Sciences, vol. 36, 1988, pp. 16-24

Loeckx, J. & Sieber, K., in collab. with Stansifer, R.D.: The Foundations

of Program Verification, 2nd Edition, Wiley-Teubner Series in Computer
Science, 1987

McNaughton, R.: Testing and generating infinite sequences by a finite auto-
maton, in Information and Control, vol. 9, 1966, pp. 521-530

Miyano, S. & Hayashi, T.: Alternating finite automata on w-words, in The-

oretical Computer Science, vol. 32, 1984, pp. 321-330

Mostowski, A. W.: Regular expressions for infinite trees and a standard form
of automata, in Computation Theory, Fifth Symposium, Proceedings, LNCS

vol. 208, Springer-Verlag, 1985, pp. 157-168

Muller, D. E. & Schupp, P. E.: Alternating automata on infinite objects,
determinacy and Rabin's theorem, in Automata on Infinite Words, LNCS
vol. 192, Springer-Verlag, 1985

Muller, D. E. & Schupp, P. E.: Alternating automata on infinite trees, in
Theoretical Computer Science, vol. 54, 1987, pp. 267-276

Muller, D. E. & Saoudi, A. & Schupp, P.: Alternating automata, the weak
monadic theory of the tree, and its complexity, in Automata, Languages
and Programming, 13th International Colloquium, ICALP'86, Proceedings,
LNCS vol. 226, Springer-Verlag, 1986, pp. 275-283

Bibliography 	 WMV

[69] Muller, D. E. & Saoudi, A. & Schupp, P.: Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable
in exponential time, in Proceedings of the 3rd IEEE Symposium on LQgic in
Computer Science, 1988, pp. 422-427

[701 Niwiñski, D.: On fixed point clones, in Automata, Languages and Program-
ming, 13th International Colloquium, ICALP'86, Proceedings, LNCS vol.
226, Springer-Verlag, 1986, pp. 464-473

Niwiñski, D.: Fixed points vs. infinite generation, in Proceedings of the 3rd
IEEE Symposium on Logic in Computer Science, 1988, pp. 402-409

Park, D.: Fixpoint induction and proofs of program properties, in Machine

Intelligence 5, Edinburgh University Press, 1969, pp. 59-78

Park, D.: Concurrency and automata on infinite sequences, in Theoretical
Computer Science: 5th GI-conference, LNCS vol. 104, Springer-Verlag, 1981,
pp. 167-183

Pnueli, A.: The temporal logic of programs, in Proceedings of the 18th Annual
IEEE Symposium on Foundations of Computer Science, 1977, pp. 46-57

Pnueli, A.: Linear and branching structures in the semantics of logics of
reactive systems, in Automata, Languages and Programming, 112th Interna-
tional Colloquium, ICALP'85, Proceedings, LNCS vol. 194, Springer-Verlag,

1985, pp. 15-32

Rabin, M. 0.: Decidability of second order theories and automata on infinite
trees, in Transactions of the Americal Mathematical Society, vol. 141, 1969,
pp. 1-35

Rabin, M. 0.: Weakly definable relations and special automata, in Bar-Hillel,
Y. (ed.): Mathematical Logic and Foundations of Set Theory, North-Holland,
1970, pp. 1-23

Rabin, M. 0.: Decidable theories, in Barwise, J. (ed.): Handbook of Math-

ematical Logic, North-Holland, 1977, pp. 595-629

Rescher, N. & Urquhart, A.: Temporal Logic, Library of Exact Philosophy,
vol. 3, Springer-Verlag, 1971

Safra, S.: On the complexity of w-automata, in Proceedings of the 129th Annual
IEEE Symposium on Foundations of Computer Science, 1988, pp. 319-327

Siefkes, D.: Büchi's Monadic Second Order Successor Arithmetic, Decidable
Theories I, LNM vol. 120, Springer-Verlag, 1970

Siefkes, D.: An axiom system for the weak monadic second order theory of
two successors, in Israel Journal of Mathematics, vol. 30, no. 3, 1978, pp.
264-284

Bibliography 	 187

Stirling, C.: Modal and temporal logics, in Abramsky, S. & al. (eds.): Hand-

book of Logic in Computer Science, Oxford University Press, 1992, pp. 477-

563

Stirling, C.: Local model checking games, in CONCUR '95: Concurrency
Theory, 6th International Conference, Proceedings, LNCS vol. 962, Springer-

Verlag, pp. 1-11

Stirling, C. & Walker, D.: Local model checking in the modal mu-calculus,
in Theoretical Computer Science, vol. 89, 1991, pp. 161-177

Streett, R. S. & Emerson, E. A.: The propositional mu-calculus is elementary,
in Automata, Languages and Programming, 11th International Colloquium,
ICALP'8, Proceedings, LNCS vol. 172, Springer-Verlag, 1984, pp. 467-472

Streett, R. S. & Emerson, E. A.: An automata theoretic decision procedure
for the propositional mu-calculus, in Information and Computation, vol. 81,

1989, pp. 249-264

Szalas, A.: Axiomatising fixpoint logics, in Information Processing Letters,

vol. 41, 1992, pp. 175-180

Takahashi, M.: The greatest fixed-points and rational omega-tree languages,
in Theoretical Computer Science, vol. 44, 1986, pp. 259-274

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications, in
Pacific Journal of Mathematics, vol. 5, 1955, pp. 285-309

Thatcher, J. W. & Wright, J. B.: Generalised finite automata with an applic-
ation to a decision problem of second-order logic, in Mathematical Systems
Theory, vol. 2, 1968, pp. 57-82

Thomas, W.: Computation tree logic and regular w-languages, in Linear
Time, Branching Time and Partial Order in Concurrency, LNCS vol. 354,
Springer-Verlag, 1988, pp. 690-713

Thomas, W.: Automata on infinite objects, in van Leeuwen, J. (ed.): Hand-
book of Theoretical Computer Science, vol. 2, Elsevier/North-Holland, 1990,

pp. 133-191

Vardi, M. Y.: Verification of concurrent programs: the automata-theoretic
framework, in Proceedings of the 2nd IEEE Symposium on Logic in Computer
Science, 1987, pp. 167-176

Vardi, M. Y.: A temporal fixpoint calculus, in Conference Record of the 15th
Annual ACM Symposium on Principles of Programming Languages, 1988,
pp. 250-259

Vardi, M. Y. & Wolper, P.: Yet another process logic, in Logics of Programs:
Workshop, Carnegie Mellon University, 1983, LNCS vol. 164, Springer-
Verlag, 1984, pp. 501-512

Bibliography 	 188

Vardi, M. Y. & Wolper, P.: Automata-theoretic techniques for modal logics
of programs, in Journal of Computer and System Sciences, vol. 32, 1986, pp.
183-221

Vardi, M. Y. & Wolper, P.: An automata theoretic approach to automatic
program verification, in Proceedings of the First IEEE Symposium on Logic
in Computer Science, 1986, pp. 332-344

Vardi, M. Y. & Wolper, P.: Reasoning about infinite computations, in In-
formation and Computation, vol. 115, 1994, pp. 1-37

Walukiewicz, I.: On completeness of the i-calculus, in Proceedings of the 8th
Annual IEEE Symposium on Logic in Computer Science, 1993, pp. 136-146

Walukiewicz, I.: Completeness of Kozen's axiomatisation of the proposi-
tional p-calculus, in Proceedings of the 10th Annual IEEE Symposium on
Logic in Computer Science, 1995, pp. 14-24

Wolper, P.: Synthesis of Communicating Processes from Temporal Logic
Specifications, PhD thesis, Stanford University, 1982

Wolper, P.: Temporal logic can be more expressive, in Information and
Control, vol 56, 1983, pp. 72-99

Index

acceptance condition

Büchi, 65

first recurrence (FR), 74

for intermediate automata, 98, 99,

101, 102, 107, 110, 111

Rabin, 65

aconjunctive, see p-aconjunctive, see

strongly aconj unctive

active

constant in formula, 31

state in automaton, 77

variable in formula, 26

alternation, see automaton, see fix-

point

approximant, 20

atomic formula, 16

atomic proposition, 13

automaton

alternating, 69

Büchi, 71

first recurrence (FR), 74

Rabin, 71

intermediate, 97

ordinary

and second-order quantification,

89-90

Büchi, 65, 67

first recurrence (FR), 74

on strings, 64

on trees, 67

Rabin, 65, 67

axiomatisation of

LTL, 165

1Kn, 154

pTL, 145

banan-form, 147

bi-aconj. non-alternating form, 147

bi-aconjunctive formula, 146

bounded, formula by variable, 162

Biichi, see acceptance condition, see

automaton

closure of formula, 19

companion, in satisfiability tableau,

135, 141

complementation of

alternating FR-automaton, 76

ord. Büchi aut. on strings, 116

ordinary Rabin automaton, 114

completeness of

TL axiomatisation, 176

Kn axiomatisation, 154

,uTL axiomatisation, 153

conjunction of ord. automata, 96, 106

contraction rule, 131

correspondence of

Büchi automata and existentially

quantified Kn, 104

L2 of 1iTL and full jtTL, 117

Kn and A2 of pKn, 94

FR-aut. and mu-calculus, 75-78

1aKri and 3Kn, 115

Kn and restricted Km, 114

Index
	 190

ordinary and restricted alternat-

ing automata, 73, 75, 193-196

112 of uKn and Büchi aut., 104

weak and strong quantification on

strings, 117

decidability of

alternating Büchi automata, 104

alternating FR-automata, 115

alternating Rabin automata, 115

Kn, 115, 143

Kn, 105

Kn, 115, 137, 141

ordinary Büchi automata, 88

ordinary FR-automata, 86

ordinary Rabin automata, 88

112 ofKn, 104

restricted pKn, 87

SnS, 115, 143

WSnS, 105

definition constant, 31

definition tree, 125-128

A2 , see fixpoint alternation class

dependency sequence in

bundled tableau, 37, 54

definition tree tableau, 131

run of intermediate aut., 100

depth of automaton, 74

determinisation of Büchi aut., 119

deterministic

automaton, 118

choice in formula, 120

formula, 120

disjunction of ord. automata, 96, 106

Kn, 55

TL, 41

,uTL, 158

_4v-induction, 165

Kn, 57

TL, 47

expressing properties

almost always, 18, 52, 67

at every even moment, 14, 18, 42,

44, 65

infinitely often, 17, 67

extended comp. tree logic (jiTL),

158

first recurrence, see acceptance con-

dition, see automaton

fixpoint

alternation class

Emerson-Lei (, 11, A 1), 24

hierarchy of, 29, 118

in FR-automata, 77

Niwiñski (E,, H, A n), 26

syntactic (>stx HX , Ar), 23

approximant, 20

as looping, 17

continuous, 49

of ord. Biichi automaton, 97-103

of ord. Rabin automaton, 107-113

operator

15

16

a, 16

unfolding, 19

full sad-form, 166

fusion closed model, 160

guarded, see strongly guarded

automaton, 72

formula, 36

index of Rabin automaton, 65

intermediate automaton, 97

Knaster-Tarski theorem, 19

Index 	 191

limit closed model, 160

McNaughton's theorem, 119

modality

for ord. automata, 96, 106

in linear mu-calculus, 17

in modal mu-calculus, 51

model

branching, 50

extended, 160

linear, 13

monadic second-order theory of

ri successors

strong (SnS), 55

weak (WSriS), 57

one successor

strong (.815), 43

weak (WS1S), 47

JL-aconjunctive formula, 146

mu-calculus

linear time (jTL), 15

linear time infinitary, 20

modal (,uKn), 51

jiKn, 51

pTL, 15

non-alternating formula, 28

operator precedence order, 16

ordinal, 20

path quantification, 158

112, see fixpoint alternation class

pnf, 22

positive normal form, 22, 159

positive occurrence, 15

provable, see axiomatisation

quantification, see path quantification,

R-generated model, 160

Rabin, see acceptance condition, see

automaton

Rabin's complementation lemma, 4,

5, 114

refers, automaton to proposition, 95

initially, 95

only before accepting states, 95

restricted

automaton, 73

formula, 78

run of

alternating automaton, 69

intermediate automaton, 97

ordinary automaton, 64, 67

818, 43

sad-form, 166

second-order quantification

and ordinary automata, 89-90

strong, 41

weak, 47

2, see fixpoint alternation class

similar formulae, 128

SnS, 55

soundness of

j.tTL axiomatisation, 166

pTL axiomatisation, 145

strings, notation and terminology, 11

strongly aconj. deterministic form, 166

strongly aconjunctive

automaton, 72

formula, 78, 164

relative to variable, 146

strongly co-aconj unctive formula, 164

strongly guarded formula, 78

substitution

see second-order quantification 	lemma, 148, 166

Index
	 192

operation, 16

suffix closed model, 160

tableau

bundled

branching, 54

linear, 37

definition tree, 128

for pTL, 169

satisfiability, 135, 140

simple

branching, 53

linear, 32

strong (for 	TL), 172

strong (for pTL), 149

temporal logic

branching time

extended computation tree lo-

gic (TL), 158

quantified (Kn), 55

weak quantified (Kn), 57

linear time

quantified (TL), 41

standard (TL), 14

weak quantified (TL), 47

terminal, in satisfiability tableau, 135,

141

trail, in run of intermediate automaton,

98

translation, see correspondence

between automata

Büchi to Rabin, 68

Büchi to LI2 of FR, 79

FR to Rabin, 82

LI 2 of FR to Büchi, 79

Rabin to Büchi on strings, 115

Rabin to FR, 82

between quantifier calculi

Kn to SnS, 56

TL to S1S, 45

Kn to 3Kn, 57

TL to 3TL, 47

S1S to 3TL, 45

SnSto 3Kn, 56

from fixpoint calculi to automata

jtKn to ordinary Rabin, 113

112 of Kn to ord. Büchi, 103

from fixpoint to quantifier calculi

2 of pKn to lKn, 57

2 of 1,LTL to ITL, 49

pKn to 3Kn, 55

TL to 3TL, 42

from quantifier to fixpoint calculi

Kn to pKn, 114

Kn to A2 of pKri, 94

tree-like automaton, 74

trees, notation and terminology, 11

unfolding of fixpoint, 19

wS1S, 47

WSnS, 57

Appendix A

Technical proofs

This appendix contains full versions of certain proofs that were just asserted or

sketched in the main text.

A.1 Ordinary vs. restricted alternating automata

The following lemmas show the equivalence of ordinary and restricted alternating

automata for Büchi, Rabin and first recurrence automata.

Lemma 3.1.15. For every ordinary Büchi automaton A there exists a restricted

alternating Büchi automaton A', and vice versa, such that L(A) = L(A').

Proof: Let A = (Q, qj,, A, F) be an ordinary Büchi automaton on n-branching

trees. A corresponding alternating automaton A' = (Q', q, A', 1', F) can be

defined by

= {(V,q) I qeQ} U {(A,d) I de A} U {(@,d) IdEA and iE [n]} U

{(z,d) I d= (q,Z,) E A and z e Z}

= (v, nt)

A' = {((v,q),(A,d))d=(q,Z,)EA}U

{((A,d),(CJ,d)) I d e A and i e [n]}U

{((A,d),(z,d)) I d= (q,Z,q) E A and z e Z}U

{((Gj,d),(V,q')) I d= (q,Z,?j) E A and q' =}

(x,y)i—x

F' = {(v,q)lqeF}

It is obvious that L(A) = L(A) and A' is restricted.

Let then A' = (Q', 	A', 1', F) be a restricted alternating Büchi automaton.

We shall construct an equivalent ordinary automaton A from A' by taking the

193

Appendix A - Technical proofs 	 194

principal states of A' as the states of A, and coding the auxiliary states between

principal states of A' into transitions of A. Without loss of generality we can

assume that A' does not contain any T or -L-states, since they can be easily

removed from any A' without affecting the language recognised by A'.

Denote the set of principal states of A' by Q, and let acc be a fresh state. Let

us associate with every state q E Q' which is not a V-state, a pair (Z,) where

Z c Z U 2 and i7 e (Q, U {q})fl as follows:

• Ifl'(q) = A then Z = {z e ZuZI 2q' Q' : (q,q') E L' and l'(q') = z} and

for every i e [n], if there are q', q" E Q' such that (q, q') e Li', (q', q") E L'

and l(q) = (73, then ?j = q", and otherwise q i = qacc• Notice that due to

strong aconjunctivity, if the q" exists, it is unique.

• If 1'(q) = 0 then Z = 0, and -qi is the unique q' e Q' such that (q, q') E L.',

and qj = acc for all j i.

• If l(q') = z E 2 U, then Z = {z} and ?L = qacc for all E [n].

Define the ordinary Büchi automaton A = (Q, q27t, L, F) by

• Q=QU{qacc },

•

qinit = initi

• F = F' U {qacc} and

• for every q e Q, Z C ZU and ' e (Qu{q})fl, we have (q, Z, E

iff there is a sequence of states q 0 ,. . . , qj E Q' such that k > 0, q =
1'(q) = V and (qj, qji) E L' for every 0 < i < k, l'(qj) ~ V, and (Z,) is

the pair associated with state qk according to the rules above. Furthermore

(qacc,O,q) E

It should be easy to see that L(A) = L(A')
	

U

Lemma 3.1.16. For every ordinary Rabin automaton A there exists a restricted

alternating Rabin automaton A', and vice versa, such that L(A) = L(A').

Proof: 	Given an ordinary Rabin automaton A = (Q, qjj,, A
,), where

= ((Go,Ro) .. . (G.- I , Rm_i)), we can construct a corresponding restricted al-

ternating Rabin automaton A' = (Q', q, Li', 1', l') precisely as with Büchi auto-

mata in the proof of Lemma 3.1.15, except that l' = ((Gb, R) . . . (G ' _ 1 , R_ 1))

where for every i E [m], G' = {(V, q) I qE G} and R' = {(V, q) I q E R}.

Given a restricted alternating Rabin automaton A' = (Q', 	', 1', l'), we

can construct a corresponding ordinary Rabin automaton A = (Q, 	&

precisely as with Biichi automata in the proof of Lemma 3.1.15, except that

= ((G0 , R0) . . . (Gm_ i) Rim_i)) where G 0 = G'0 U {qacc}, R0 = R, and for

every 1 <i <rn, G, = G and I?i = R. 	 D

Appendix A -Technical proofs
	 195

Lemma 3.2.3. For every ordinary first recurrence automaton A there exists

a restricted alternating first recurrence automaton A', and vice versa, such that

L(A) = L(A').

Proof: The proof is analogous to that of Lemma 3.1.15, where the same claim

was made for Biichi automata. However, some extra care is required to guarantee

the tree-like structure required of FR-automata.

Let A = (Q, qi.it , A, (G, R)) be an ordinary FR-automaton on n-branching

trees. Let us define inductively a finite tree T labelled with pairs (x, y) where

x e {v, Al U {Q I i e [n]} U Z U 10 and y is either a state q E Q or a transition

d E L:

• the root of T is labelled with T(E) = (v, qj,jt),

• if T(t) = (V, q) for some q E Q and t is not a leaf (see below), then t has

a child labelled with (A, d) for every transition d = (q' , Z, ') E A such that

q = q' ,

• if T(t) = (A, d) for some d = (q, Z,) e L, then t has a child labelled with

(z, d) for every z e Z, and a child labelled with (Q, d) for every i E [n],

• if T(t) = (Ø,d) for some i e [n] and d= (q,Z,?j) e L, then t has one child

labelled with (v, j.

A node t of T is a leaf if either

1 T(t) = (z, d) for some z E Z U 2, or

2 T(t) = (v, q) and there is some proper ancestor t' of t such that T(t') = T(t).

In this case we call t' the loop node corresponding to t.

We can then define the automaton A' by A' = (Q', q, Li', 1', (C', R')), where

• Q' = It E dom(T) I t is not a leaf of type 21,
• 	=

• (t, t') E A! if t, t' E Q' and either t' is a child of t, or there is some child t"

of t such that t" is a type 2 leaf and t' the loop node corresponding to t",

• l'(t) = x where T(t) = (x, y),

• G'={teQ'IT(t)=(V,q) and qeG}.
•R'={teQ'T(t)=(V,q) and qER}.

It is obvious that L(A) = L(A') and A' is restricted.

Let then A' = (Q', 	Li', 1 1 , (G', R')) be a restricted alternating first recur-

rence automaton. We shall construct an equivalent ordinary automaton A by

taking the principal states of A' as the states of A. Without loss of generality we

assume that A' does not contain any T or 1-states. Define inductively a finite

tree T, each node of which is labelled either with a principal state q of A' or a

fresh state qacc:

Appendix A - Technical proofs
	 196

• the root of T is labelled with T(f) = q,

• if T(t) = q for a principal state q e Q', then t has one child labelled with

qacc and a child labelled with q' for every principal state q' E Q' such that

q -< q', i.e. q' is a proper descendant of q, and there is no principal q" E

such that q -< q" -< q',

• if T(t) = qacc, then t is a leaf.

We associate with every state q e Q' which is not a V-state, a pair (Z,) as in

the proof of Lemma 3.1.15. Define now A = (Q, q1t, L, (G, R)) by Q = dom(T),

qinit = 6 , G = It E dom(T) I T(t) E G'}, R = It E dom(T) I T(t) E R'}, and

define A as follows.

If T(t) = q, then (t, 0, t) E L. If T(t) = q for a principal state q e Q', then

(t, Z,) E A 1ff there is a sequence of states q0, . . . , qk e Q' and a vector q such

that k > 0, T(t) = q0, 1'(q) = V and (qj, qj1) E z' for every 0 <i < k, 1'(q) 0 v,
(Z,) is the pair associated with state q,, and for every i E [n], if ?j qacc, then

T() = qj , and if ?j 	qacc, then ii is the child of t such that T() = qacc

A.2 Bundled tableaux vs. definition tree tableaux

The following lemmas show that definition tree tableaux characterise satisfiability

in the same way as bundled tableaux.

Lemma 4.2.4. Let T be a definition tree tableau. The following statements are

mutually equivalent:

• T is not proper,

• there is a bad direct dependency sequence in T, and

• there is a bad indirect dependency sequence in T.

Proof: Let us show first that the first condition implies the second. Assume

that T is not proper and that there is a constant u and a point n of T such that

u is not deleted at any point beyond n, and u is contracted at infinitely many

points n = k(0) < k(1) < ... of T. By clause 5 of Lemma 4.2.3, for every

i e TN, there is some e Fk (j) such that u is active in 'J' relative to dk(), and for

every 0 E ['k(i+1) for which u is active in q, there is some q E Fk(j) and a direct

dependency sequence from q at k(i) to 0 at k(i + 1) such that u is active in every

formula of this dependency sequence and occurs at least once in it. Since the size

of the sets Fj is bounded by clause 1 of Lemma 4.2.3, by König's lemma we can

piece together an infinite direct dependency sequence 00 , 0,... from point n of

such that u is active in every formula of the sequence and occurs infinitely often

in it.

Appendix A - Technical proofs 	 197

Since any direct dependency sequence is also an indirect dependency sequence,

the second condition obviously implies the third. Let us show then that the third

condition implies the first. Assume, on the contrary, that T is proper, but there is

an infinite indirect dependency sequence 00, &,... from some point n of T and a

minimal or auxiliary constant 'u such that u is active in every Oi relative to

and Oi = u for infinitely many i e IN. Since T is proper, there is some point

m E IN such that no ancestor of u (including u) is contracted in T after point

m. Take then some k > m - n such that cbk = u and the Up rule is applied to u

at point n + k of T. Since u is not contracted anywhere in T after point rn, by

clause 6 of Lemma 4.2.3 we see then that u qj for all i > k, contradicting the

assumption that çi5j = u for infinitely many i. 	 El

Lemma 4.2.5. 	Let T = (so , F0 , do)(s i , F 1 , d1)... be a proper definition tree

tableau, n a point of T and 00 , 01,••. an infinite direct or indirect dependency

sequence from point n of T. Then there is some m > 0 and constant u such

that

• u is active in 0, relative to dn+i for every i > m, and

• 0i = u for infinitely many i > m.

Proof: Without loss of generality we can assume that n = 0. Let us define

inductively a finite sequence u 0 ,. . . , Uk of constants and a finite non-decreasing

sequence m(0),.. . , m(k) of points of T such that for all 0 < i < k:

1 ui is defined in dm (i) and O n(j) is a descendant of u2 in dm (i),

2 if v is a proper ancestor of ui in dm(i), then v is not contracted in T at any

point j > m(i),

3 Oj is not a proper ancestor of u (relative to d3) at any point j ~: m(i),

4 if i > 0, then u 	is defined in dm (j) and U <d.(j) u_ 1 , and

5 Oj is a descendant of Uk (relative to d3) at every point j ~! m(k), and Oj = Uk

for infinitely many points j > m(k).

Defining m(0) = 0 and u0 = u (the dummy variable corresponding to the root of

the tree induced by any definition tree) fulfils trivially conditions 1-4.

Assume then that we have u2 and m(i) fulfilling conditions 1-4, but not con-

dition 5. Now either

• Oj is a descendant of u2 in d3 , for every j > m(i), or

• there is some j > m(i) such that 'i/ is a descendant of ui in d, but 	is

not a descendant of ui in d3 +1.

Assume first that the former case holds. Since T is proper, there is some point

M > m(i) such that u2 is not contracted anywhere in T after point m. By the

assumption that ui and m(i) do not fulfil condition 5, we can choose m so that

Appendix A -Technical proofs 	 193

ui 0 Oj for every j > m, as well. Define now m(i + 1) = m and let u+i be

the unique child u' of u2 in dm such that O n a descendant of u' in dm . Such

a child exists, since O n is a proper descendant of Ui in dm . It is obvious that

u 1 and m(i + 1) fulfil condition 1. Conditions 2 and 3 holds by the induction

assumption and the choice of m. Since u 1 is a proper descendant of ui on dm(i+1),

Uj4 <dm(i+l) u2 and condition 4 holds, as well.

Assume then that the latter case holds. Since by condition 2 of the induction

assumption we know that no proper ancestor of ui is contracted at point j of T,

and since by assumption 	is not a descendant of u i in d3 +1, by clause 4 of

Lemma 4.2.3 we see that 	must be older than u i in d31 . Then, by condition 3

of the induction assumption, 	is older than but not an ancestor of ui in d3 +,.

Define now m(i + 1) = j + 1, and let u21 be the oldest ancestor of cj+i in d+i

which is not an ancestor of u. It is obvious that u and m(i + 1) fulfil condition

1. Conditions 2 and 3 follow from the same conditions in the induction assumption

and the fact that every proper ancestor of u21 in d+1 is also a proper ancestor

of u. Since u 1 is older than but not an ancestor of u i in d3+1, uji <dm (,+l) Ui

and condition 4 holds, as well.

So far we have shown that for any ui and m(i) fulfilling conditions 1-4, either

condition 5 holds or we can construct u 1 and m(i + 1) fulfilling conditions 1-4.

To see that the sequence cannot go on infinitely, we associate with it a descending

chain in a well-founded ordering. Define first for every constant u appearing in T

a point nc(u) E IN U {w} by: nc(u) is the minimal i E IN such that no ancestor

v of u in d (including u itself) is contracted in T after point i, and nc(u) = w if

no such i exists. Define a tree d labelled with (not necessarily all) constants n

appearing in T by:

• d, (,E) =

• if d(,(t) = u and nc(u) = w, then t has no children,

• if d(t) = u and nc(u) = i, then t has a child labelled with u' for every u'

such that u' is a child of u in di for some i > nc(u).

The children of any node t of d are ordered in some fixed manner so that if t' and

t" are children of t, d(t') = u' and d(t") = u" and there is some i > nc(u) such

that u' is older than u" in d, then t' is also older than t" in d. The well-definedness

of the tree d, follows from clause 3 of Lemma 4.2.3.

Since by clause 2 of Lemma 4.2.3 there is a bound on the depth of any d, there

is also a bound on the depth of d, although it may be infinitely branching. Notice

then that in the sequence u 0 , u 1 ,. .., every u 1 is either a proper descendant of u

or older than but not an ancestor of u. In other words u 1 <d u2 . But this is a

well-founded ordering, so the sequence n o , u 1 ,... cannot be infinite. 0

Appendix A - Technical proofs 	 199

Lemma 4.2.6. Let T be a proper and propositionally consistent bundled tableau

for a guarded aTL-formula 0 in pnf. There exists a proper and propositionally

consistent definition tree tableau T' for qS such that for any model M e MTL, if

T agrees with M then T agrees with M.

Proof: Take a proper bundled tableau T = (so , F0 , do)(s i , Fi , d1)... for formula

. We shall construct a definition tree tableau T' = (sb, F, d)(s, ['i, d) . for

together with an infinite non-decreasing sequence of indices k(0) k(1) 	. such

that k(0) = 0 and for every i E IN, none of the del-, del-U or contr-U rules are

applicable at point k(i). Intuitively, the derivation step (si , F, d1) (s 1 , 	d 1)

of T is mimicked in T' by the fragment (S' () , F (j) , d ()) . . . (4(+1) F (1) , d (1)).

There are two main differences between tableaux T and T'. On the one hand,

due to the Up rule introducing new constants every time a minimal fixpoint is

unfolded in T', the tableau T' may have multiple constants corresponding to a

single constant of T. On the other hand, as multiple copies of similar formulae

are erased by the del-0 rule in T', the tableau T' may have fewer formulae than

T at the corresponding point and therefore some constants of T do not ever get

introduced in T'.

When building the tableau T' we take care to preserve the meaning of constants

in the sense that if u is defined in d () and it is not an auxiliary constant, then

u is defined in d2 as well, and u in di and u in d' () are similar. For every i e IN

and every 0 E F, define inductively the formula underlying 0 in F, denoted by

f(q), by:

• if contains no auxiliary constant constants of d () , then f2 (q) = , and

• if contains an auxiliary constant u of d () , then f(o) = f(q[u'/u]) where

U' = d () (u).

Notice that for any q, 	E F (j) , if f2(0) = f2('/') then 0 = , since otherwise

there would be two similar formulae 0 and in F (j) and the del-0 rule would be

applicable at point k(i), contrary to the properties of the sequence k(i).

Define first k(0) = 0 and (s'0 , Ft,, d) = (0, {q'}, €). For every i e IN, we define

k(i + 1) and the fragment of T' from k(i) to k(i + 1) as follows.

If the rule applied at point i of T is the 0-rule, then k(i + 1) = k(i) + 1 and

(s ()1 , Fk(j)+1, d' ()1) is derived from (s () , F / () , d ()) by applying the 0-rule.

If the rule applied at point i of T is not the 0-rule, and it is applied to a formula

E F2 such that q does not underlie any formula in F () , i.e. 0 =A f2('/') for all

E F j) , then k(i + 1) = k(i) and the corresponding fragment of T' empty.

If the rule R applied at point i of T is not the 0-rule and it is applied

to some 0 e F2 such that 0 = f2 (o) for some 0 E F) , then the fragment

Appendix A - Technical proofs 	 200

(s'k (), F (j) , d ()). . . (s (1) , F (1) , d (1)) consists of first applying the rule R'

corresponding to R to the unique formula e F j for which f(o) = q, and then

applying the del-, del-U and contr-U rules until no further applications of these

rules are possible. If the rule R is VR, vL or A then the corresponding rule R'

is the same rule. If R is a, then R' is a and we use the same constant name u

in T' as in T. If R is the U-rule, the corresponding rule R' in T' is either Ui' or

Up depending on whether U is a maximal or minimal constant. In the latter case,

when R' is Up, we choose the new constant name u' in T' so that it is different

from any constant name used in T.

Notice that for any i E IN such that k(i) < k(i + 1) and any 0 E F (j1) , if

there is a dependency sequence from q at point k(i) of T' to '/.' at point k(i + 1),

then f2 (q) —* f2 (')) relative to the dependencies between F 2 and F2 1 in T.

Let us show then that the tableau T' is proper. Assuming the contrary, by

Lemma 4.2.4 there is some point n of T', a minimal or auxiliary constant u of

d, and a direct dependency sequence 00 , 0 1 from point n such that u = O i for

infinitely many i. Notice that there must be infinitely many i E IN such that

k(i)-n = U.

We can now project this dependency sequence of T back to a dependency

sequence of T. Choose some m such that k(m) > n. Define a sequence V50 , 't,...

by: bj = fj(k(m+i)-n). By the observations above, it is a dependency sequence

of T. Define then v as the constant of d' such that v is not an auxiliary constant

and either v = u or u is an unfolding of v. It is easy to see that for every

i ri, if u E Fk(j) then f2 (u) = v. Consequently, the minimal fixpoint constant v

occurs infinitely often in the dependency sequence 00 , 0 1 and T is not proper,

contrary to the assumption.

It is obvious that if T is propositionally consistent, then so is T', and that for

any model M E MTL, if T agrees with M then T' agrees with M. 	 0

Lemma 4.2.7. 	Let T be a proper and propositionally consistent definition

tree tableau for a guarded ,uTL-formula 0 in pnf. There exists a proper and

propositionally consistent bundled tableau T' for 0 such that for any model M E

MTL, if T agrees with M then T' agrees with M.

Proof: Take a proper dependency tree tableau T = (so , F0 , do)(s i , 17 1 , d1)

for formula 0. Let k(0) < k(1) < ... stand for the unique increasing series of

indices such that k(0) = 0 and for every i E TN, the rule applied at point k(i) is

neither del-, del-U nor contr-U, and the rule applied any point between k(i) + 1

and k(i + 1) — 1 is either del-q, del-U or contr-U. Without loss of generality we

assume that each constant name is introduced at most once in T, i.e. that no

Appendix A 	Technical proofs 	 201

constant is re-introduced by the or or Up rules after having been deleted by the

de1-0 rule.

We shall construct a bundled tableau T' = (sb, F, d)(s, F, d) ... for q,

together with an infinite increasing sequence of indices 1(0) < 1(1) < ... such that

1(0) = 0. Intuitively the fragment of T' from point 1(i) to 1(z' + 1) corresponds to

the fragment of from point k(i) to k(i + 1).

For every i e TN and every 	define the formula underlying 0 in Fk(),

denoted by f2 (q), as the unique formula ?J E Fk(i) such that 	is similar to q,

relative to dk() and d () . The existence of such a is guaranteed by the structure

of the tableau T'.

Define first 1(0) = 0 and (sb, F, d) 	(0, {q5}, €). For every i e TN, we define

l(i + 1) and the fragment of T' from 1(i) to 1(i + 1) as follows.

If the rule applied at point k(i) of T is the 0-rule, which implies k(i + 1) =

k(i) + 1, then 1(i + 1) = 1(i) + 1 and is derived from

(s () , F () ,d ()) by applying the 0-rule.

If the rule R applied at point i of T is not the 0-rule and it is applied to

formula q E Fk(2), then the fragment of T' from 1(i) to 1(z'+ 1) consists of applying

the corresponding rule R' to every O E F (j) such that f(?/') = q. If the rule R is

VR, VL or A then the corresponding rule R' is the same rule. If R is a, then R'

is a and we choose the name of the new constant introduced in T' arbitrarily. If

R is Uv or Up, then R' is the U-rule.

Notice that each application of the rule R' between 1(i) and 1(i + 1) acts on

a different formula. Futhermore, the effect of R' on a formula 0 E where

1(i) < j < 1(i + 1) is the same as that of R on f(q) E Fk(). Therefore it is easy

to see that if there is a dependency sequence from q' in F () to /' in F (1) , then

there is a direct or indirect dependency sequence from f (0) in Fk(i) to f+i () in

Fk (j+1).

Let us show then that the resulting bundled tableau T' is proper. Assume the

contrary. Then there is some minimal constant u of T' and an infinite dependency

sequence 00 , h... from point 1(n) for some n E IN such that qj = u for infinitely

many i E N. From the construction of T', it is easy to see that then 1(n+i)-1(n) = U

for infinitely many i E IN, as well.

Since for every i e IN there is a dependency sequence from 1(n+i)-1(n) E

to 1(n+i+1)-1(n) E 	in T', by the observation above, there is an indirect

dependency sequence from 	 E Fk(m+i) to fn+i+i(1(n+i+1)-1(n)) E

Fk(fl++ 1) in T. Consequently, there is an infinite indirect dependency sequence

'iI'o, V),.... from point k(n) of such that bk(n+i)k(m) = f+i('i(+i)-1(n)) for every

i E IN.

Appendix A - Technical proofs 	 202

By Lemma 4.2.5 there is some m > 0 and constant v such that v is active in

relative to dk(fl)+j, for every i ~! m, and '/j v for infinitely many i > m. Since T

is proper, by Lemma 4.2.4 we know that this v cannot be a minimal or auxiliary

constant.

Take then some j E IN such that k(n + j) - k(n) 	m and V-'k(n+j)-k()

and denote by u' the maximal constant u' = 1(n+j)-1(n) From the fact that v is

active in every O i for i > m and Oi = v for infinitely many i > m, it is easy to

see that 'u' is active in every j for i > 1(n + j) - 1(n) and Oi = u' for infinitely

many i. But this contradicts the assumption that O i = u for infinitely many i and

the minimal constant u.

Finally, it is obvious that if T is propositionally consistent, then so is T', and

that for any model M e MTL, if T agrees with M then T' agrees with M. 	0

