
Agent Behavior Synthesis
from Components

Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Antonio Ruberti

Dottorato di Ricerca in Ingegneria Informatica – XXV Ciclo

Candidate

Paolo Felli
ID number 798378

Thesis Advisor

Prof. Giuseppe De Giacomo

A thesis submitted in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Ingegneria Informatica

1 October 2013

Thesis defended on 7 October 2013

Agent Behavior Synthesis from Components
Ph.D. thesis. Sapienza – University of Rome

© 2013 Paolo Felli. All rights reserved

Version: 1 October 2013

Website: http://www.dis.uniroma1.it/ felli

Author’s email: felli@dis.uniroma1.it

http://www.dis.uniroma1.it/~felli
mailto:felli@dis.uniroma1.it

Hemingway never did this.

v

Acknowledgments

I would like to acknowledge my advisor and all the people that helped me, in various
ways, to complete my studies and to develop the ideas presented in this disserta-
tion. They know who they are. Their continuous help, advise and encouragement
have been fundamental for successfully accomplishing my work. I also thank the
innumerable bartenders around the world who made this possible.

vii

Contents

1 Introduction 1
1.1 Thesis Structure and Contribution . 8

2 Preliminaries 13
2.1 Transition systems . 13
2.2 Linear Temporal Logic . 15
2.3 Branching Temporal Logic . 17
2.4 Alternating Temporal Logic . 18
2.5 Modal µ-calculus . 22

3 Synthesis via Game Structures 25
3.1 Agent Behavior Composition via ATL 25

3.1.1 Agent Behavior Composition Problem 26
3.1.2 Agent Behavior Synthesis via ATL 35
3.1.3 Implementation . 41
3.1.4 Discussion . 45

3.2 Generalized 2GS . 46
3.2.1 Two-player Game Structures 47
3.2.2 Conditional Planning . 50
3.2.3 Agent Planning Programs . 51
3.2.4 Multitarget Agent Composition 53
3.2.5 Implementation . 55
3.2.6 Discussion . 56

3.3 A case study: Smart Homes . 57
3.3.1 Framework . 58
3.3.2 Case Study . 62
3.3.3 Solver . 66
3.3.4 Experiments on the case study 68

4 Supervisory Control for Behavior Composition 73
4.1 Supervisory Control Theory . 74

4.1.1 Generators and languages . 75
4.1.2 Specifications and supervisors 76
4.1.3 Nonblocking Supervisors . 77
4.1.4 On the supremal controllable sublanguage 77

4.2 A fixpoint computation of supC(K) . 78

viii Contents

4.2.1 On the complexity of the regular case 79
4.2.2 Computation of supC(K) by iterative refinement 79
4.2.3 SCT as DFA game . 80

4.3 SCT for Agent Behavior Composition 84
4.3.1 DES-based Agent Behavior Composition 86
4.3.2 Composition under Constraints 91
4.3.3 Supremal Realizable Target Fragment 92

4.4 Discussion . 96

5 On the Supremal Realizable Target 99
5.1 Preliminaries . 100
5.2 Supremal Realizable Target Behavior 101
5.3 Composition with Exogenous Events 106

5.3.1 Conditional SRTBs . 108
5.3.2 Conformant SRTBs . 112

5.4 Discussion . 116

6 Generalized Agent Protocols for LTL 117
6.1 Generalized Planning for LTL . 117

6.1.1 Planning in AI . 117
6.1.2 Generalized Planning in AI . 118
6.1.3 Planning for LTL . 119
6.1.4 Generalized Planning for LTL 124
6.1.5 Discussion . 126

6.2 Agents and Interpreted Systems . 126
6.2.1 Interpreted Systems . 127

6.3 Embedding strategies into Agent protocols 128
6.3.1 Synthesizing Agent Protocols From LTL Specifications 129
6.3.2 State-based and History-based Solutions 130
6.3.3 Framework . 131
6.3.4 Problem . 133
6.3.5 State-based solution . 136
6.3.6 History-based solution . 137
6.3.7 Embedding strategies into protocols 141
6.3.8 Representing strategies . 142
6.3.9 A notable variant . 145

6.4 Discussion . 146

7 Synthesis via Model Checking for BDI agents 149
7.0.1 BDI Programming . 151
7.0.2 ATL and ATLES Logics of Coalitions 151
7.0.3 BDI-ATLES: a logic for BDI Agents 152

7.1 Model Checking BDI-ATLES . 156
7.1.1 Extended ModelMω,ρ . 156
7.1.2 Model checking BDI-ATLES 159

7.2 Discussion . 161

Contents ix

8 Towards adding data to processes 163
8.1 The setting . 164
8.2 A Framework for Artifact-centric Processes 165

A BDI-ATLES Rational Strategies 169

1

Chapter 1

Introduction

In this thesis we address the problem of agent behavior synthesis from logical speci-
fications. The goal is to transform a specification into a program that is guaranteed
to satisfy it. First of all, when talking about “agents”, we do not wish to restrict
ourselves to software, computer embedded or specific hardware-based systems. The
terminology we shall be using is thus general enough to account for these and oth-
ers; as so, we won’t be specific about the final implementations such systems will
have. From an AI perspective, an agent can be a physical or virtual entity that
can reason and perform actions to achieve its goals, and its behavior refers to its
abstract operational model, generally represented as a nondeterministic finite-state
machine. Hence, we will describe agents through such models, and we will refer to
them as (agent) behaviors.
There exist, in literature, various characterizations trying to identify those classes
of non-trivial systems that require special methods and approaches. Roughly speak-
ing, systems (seen as a whole) can be deterministic or non-deterministic (depending
wether their evolution is uniquely defined by the actions they perform), terminat-
ing or non-terminating (whose execution is unbounded), synchronous/asynchronous,
realt-time, and so on. In system design, a more fundamental distinction is consid-
ered, one that allows to characterize systems for which specific methods are needed
from those that are relatively easy to deal with (Harel and Pnueli, 1985a;b). Sys-
tems are thus divided into closed and open. On one hand, closed systems are those
whose computations are completely determined by their state; they may accept
inputs from the external word, perform internal transformations and produce out-
puts. On the other hand, open systems (or reactive systems) are embedded into a
certain environment E they continuously need to interact with via input and out-
put signals. Their computations crucially depends on this interaction and therefore
they can be hardly though of as input/output functions, as they depend on their
context, i.e., the state of E , which is not controllable. This is the kind of system we
will be considering in this dissertation, as they are better suited to model an agent
setting. To this end, we will use “(agent) system” to refer to a set of agents S,
opposed to the environment E . Notice, however, that an environment can embody
itself adversarial agents, thus this distinction is more conceptual than practical, and
it will differ in practice, depending on the specific setting.
We can further characterize the synthesis task by adjusting the information avail-

2 1. Introduction

able, namely distinguishing between settings with complete/incomplete information
and full/partial observability of the environment. Moreover, we are interested in sys-
tem that are also dynamic, in the sense that they respond to events depending not
only on the current context, but also on the history of prior events or actions.
We began defining the synthesis problem as the problem of transforming a logical
specification into a program that is guaranteed to satisfy it. Being now more specific,
considering an agent system S, an environment E and a logical specification ϕ, we
can define the main reasoning tasks of interest as follows:

• Verification. It is the task of checking, for a given system S and specification
ϕ, whether S satisfies ϕ in E , denoted (S ∥ E) ⊧ ϕ.

• Realizability. The realizability of ϕ is the problem of determining whether
there exists a controller C able to refine S such that all its computations on
E satisfy ϕ, i.e., (C ∥ S ∥ E) ⊧ ϕ whenever ϕ is satisfiable.

• Synthesis Problem. The correct synthesis of ϕ amounts to construct such
controller C.

In general, satisfiability of ϕ does not imply that a required C does exists. In
addition, an evidence of the satisfiability of ϕ is not of much help for synthesis.

In this thesis we deal with various problems of verification and synthesis, of increas-
ing sophistication, that are concerned with aspects such as observability, controlla-
bility and realizability. The kinds of systems we will consider here are characterized
by an ongoing, typically non-terminating and highly non-deterministic evolution,
and they often model parallel or distributed programs. Finally, our analysis is re-
garded as offline. How S, E and a controller C are defined, how the synthesis is
performed, or how is possible to model the interaction between these fundamental
components may vary considerably depending on the setting. Therefore, we will
make use of several ingredients.

LTL synthesis for reactive systems. We will generally assume non-terminating
systems, and a specification usually given as a linear temporal formula (LTL) (Pnueli,
1977).
More formally, we can reformulate the synthesis problem for reactive systems as
follows (Kupferman and Vardi, 2000). Given two sets I and O of input and output
signals, respectively, we can regard a controller C as derived from a strategy function
fC ∶ (2I)∗ → 2O that maps a finite sequence of sets of input signals, i.e. the history
of input signals received so far, into a set of output signals. When C interacts
with E –which generates (infinite) input sequences–, it associates with each input
sequence (infinite) computations over 2{I∪O}. At each step ` = 0,1, . . ., the strategy
fC outputs (assigns to O) the value fC(i0, . . . , i`), where i0, . . . , i` is the sequence
of input values assumed by the variables of I over the ` steps. Since E is not
controllable, all possible inputs have to be taken into account. As a consequence,
even though the program fC is deterministic, it induces a computation-tree whose
branching corresponds to external non-determinism. The branching of such tree
is indeed fixed, and each branch (path) corresponds to a different computation. A
correct strategy for this linear paradigm is thus required to be such that the property

3

expressed by requirement ϕ holds in all these paths (Lamport, 1980; Emerson and
Halpern, 1986).
The realizability and synthesis problems can be traced back to the Church’s solv-
ability problem (Church, 1963), which considered the synthesis problem for spec-
ifications written in monadic second order theory of one successor (S1S). In that
setting, the specification is given by means of a regular relation R ⊆ (2I)ω × (2O)ω
relating sequences of input and output signals. In other words, ⟨x, y⟩ ∈ R means
that y is a permitted response to x. Church’s problem was solved independently by
Rabin (Rabin, 1969) using tree automata and from Büchi and Landweber (Büchi
and Landweber, 1969) using infinite games, and indeed there is a close relation be-
tween finite automata over infinite objects and finite games of infinite length –or
infinite games.
When dealing with closed systems, a program meeting the specification can be
extracted from a constructive proof that the formula is satisfiable (Manna and
Waldinger, 1980; Clarke and Emerson, 1982). Essentially, the automata-based al-
gorithm for LTL realizability comprises the following steps: first we convert the
negated specification ¬ϕ into a non-deterministic Büchi automaton A¬ϕ (Grädel
et al., 2002) and check for non-emptiness the product A¬ϕ × S, where S denotes
here the behavior of the system. However, such synthesis paradigm is not of much
interest when applied to open systems, because we have to cope with the uncontrol-
lable behavior of their environment as well (Pnueli and Rosner, 1989b). For these
reasons, there is a growing need for reliable methods of designing correct reactive
systems, and two main approaches to LTL synthesis exist in this setting. The first
approach is based on a reduction to the emptiness problem of ω-tree automata
(Pnueli and Rosner, 1989b). The second is to view it as the solution of a two-player
ω-regular game (Grädel et al., 2002), i.e., a game played by two players, the con-
troller C and its environment E . In this game, player C tries to satisfy ϕ, whereas
player E tries to violate it. Player C wins if it manages to keep the game in the
winning region, i.e., those states from which, irrespectively of the actions chosen
by E , the combined behavior is such that (C ∥ S ∥ E) ⊧ ϕ. The first step consists
in translating the LTL formula ϕ to an equivalent non-deterministic ω-automaton
Aϕ (which is exponential in ϕ), then we convert such automaton into a determin-
istic one (exponential blow-up) and we build a corresponding ω-regular game. The
main complexity source of these procedure is hence the required determinization of
a non-deterministic ω-automaton, which is also technically difficult when it comes
to devise symbolic algorithms. Indeed, Safra’s construction (Safra, 1988) generates
(in the worst case) an equivalent deterministic Rabin automaton with an highly
exponential number of states which can be hardly managed without sophisticated
minimization techniques (Klein and Baier, 2006).
As a consequence, LTL synthesis is a well-known decidable setting but one that
is 2EXPTIME-complete (Pnueli and Rosner, 1989b; Kupferman and Vardi, 2000).
This is one of the reasons why, in spite of the rich theory developed for system
synthesis, little of this theory has been reduced to practice in Computer Science.
This is in contrast with Model Checking (Emerson, 1996; Baier and Katoen, 2008)
techniques, i.e., the systematic, automated check of a formal, logical specification ϕ
against a complete model, which has led to industrial development and verification
tools.

4 1. Introduction

As expected, the full synthesis process is considered hopelessly intractable, although
there exist attempts to avoid determinization (“Safraless” approach (Kupferman
and Vardi, 2005)). Solutions that are not complete but computationally attractive
have also been put forward (e.g. (Harding et al., 2005)). Alternative approaches
focus on restrictions imposed on the LTL specification. Request-response specifi-
cations of the form 2(pi → 3qi) are considered in (Wallmeier et al., 2003), and
in (Piterman et al., 2006a; Bloem et al., 2012), authors proposed an approach to
synthesis for linear-time specifications based on a wider class of formulas called
General Reactivity of rank 1 (GR(1)), where the winning condition is of the form
(23p1∧⋯∧23pm)→ (23q1∧⋯∧23qn) -where each pi and qi is a boolean combi-
nation of atomic propositions. Such restriction leads to efficient symbolic algorithms
for synthesis (Bloem et al., 2012).
Apart from computational and algorithmic concerns, this synthesis approach have
been often questioned as it assumes that a complete, exhaustive specification is
provided at design time. However this assumption is not completely realistic: it
is often the case that such specification is not available from the beginning, but it
needs to be computed or refined incrementally, or it may even evolve. In (Kupferman
et al., 2006) authors address the problem of compositional synthesis. Supposing to
have synthesized already different programs for two specifications ϕ1 and ϕ2, the
idea is to use realizability proofs as a starting point for realizability testing and
synthesis for ϕ2 ∧ ϕ2.

Incomplete information. So far, we considered the case where the specifications
(either linear or branching) refer solely to signals in I and O, which are both known
to C. This is called synthesis with complete information. However, it is often the
case that the program does not have complete information about its environment.
Hence assume that C can not read some signals E, with E ∩ I = ∅, even tough the
specification is allowed to mention them. It can still be viewed as a strategy fC ∶
(2I)∗ → 2O. Nevertheless, the computations of C are now infinite words over 2I∪E∪O,
and the computation tree induced by fC now has a fixed branching degree ∣2I∪E ∣.
Also note that different nodes in this tree may have, according fC ’s incomplete
information, the same history of inputs, and can not be discriminated. Hence, fC
must output the same set of signals or, in other words, it must be executable.
It is known how to cope with incomplete information in the linear paradigm. In par-
ticular, the approach used in (Pnueli and Rosner, 1989b) can be extended to handle
LTL synthesis with incomplete information (the complexity is 2EXPTIME-complete
in both settings (Ronald Fagin and Vardi, 1995)). Essentially, the non-determinism
of the automata can be used to guess the missing information, making sure that
no guess violates the specification. On the other hand, coping with incomplete in-
formation is more difficult in the branching paradigm. The methods used in the
linear paradigm are not applicable here, as we have to account for executability of
the strategy. Therefore the synthesis problems for CTL and CTL∗ are complete for
EXPTIME and 2-EXPTIME, respectively. Keeping in mind that the satisfiability
problems for LTL, CTL, and CTL∗ are complete for PSPACE, EXPTIME, and 2-
EXPTIME (Emerson, 1995), it follows that while the transition from closed to open
systems dramatically increases the complexity of synthesis in the linear paradigm,

5

it does not influence the complexity in the branching paradigm.

Synthesis from shared components: agent behavior composition. An in-
teresting observation about the general approach to automated synthesis is that it
is traditionally assumed that the system is built from scratch. In the real world,
this assumption is not always realistic, and it is often desirable to exploit reusable
sub-systems. Indeed, many non-trivial every-day life applications are constructed
composing libraries of reusable components that are not themselves part of the
system, but they are rather accessed by it. As an example, this is the case of web-
based service orchestration (Alonso et al., 2004; Berardi et al., 2003; Sardiña et al.,
2007; Stroeder and Pagnucco, 2009) advocated for SOA (Su, 2008b), in which a
web service is realized by orchestrating pre-existing web services to which one has
access, but not control of. Apart from an obvious practical advantage when it
comes to implementation, one fundamental aspect is that we can abstract from the
details of each component. The specification thus only mentions the aspects of the
components that are relevant for the synthesis of the system at large.
In particular, we will often deal, throughout this thesis, with the agent behavior
composition problem, i.e., the problem of realizing a “virtual” behavior by suitably
directing a set of available “concrete”, i.e., already implemented, agent behaviors.
It is a synthesis problem, whose solution amounts to synthesizing a controller that
suitably directs the available behaviors. This problem has been studied in various
areas of Computer Science, including (web) services (Balbiani et al., 2008), AI rea-
soning about action (Sardina et al., 2008; Stroeder and Pagnucco, 2009; De Giacomo
et al., 2013), verification (Lustig and Vardi, 2009), and robotics (Bordignon et al.,
2007). Many approaches (surveyed, e.g., in (ter Beek et al., 2007)) have been pro-
posed in the last years in order to address this problem from different viewpoints.
We follow here the approach proposed in (Stroeder and Pagnucco, 2009; Sardiña
et al., 2007; Sardiña et al., 2008; De Giacomo et al., 2013).

Supervisory Control. At the same time in which these synthesis problems were
being studied in AI, Ramadge and Wonham introduced the problem of Supervisory
Control for discrete-event systems. Supervisory Control (Wonham and Ramadge,
1987; Ramadge and Wonham, 1987; 1989b; Cassandras and Lafortune, 2006) is
the task of automatically synthesizing “supervisors” that restrict the behavior of a
system (i.e., a discrete-event system, or DES, often referred to in the literature as
the plant), which is assumed to spontaneously generate events, such that as much
as possible of a given specifications is fulfilled. DES model a wide spectrum of
physical systems, including manufacturing, traffic, logistics, and database systems.
The assumption is that the overall behavior of the plant is not satisfactory and
must be controlled. However, the events that the plant can generate are partitioned
into controllable and uncontrollable ones. To that end, a supervisory action is to be
imposed so as to meet a given specification on event orderings and legality of states.
Supervisors observe (some of —in case of partial observability) the events executed
by the plant and may choose to disable a subset of the controllable ones. Therefore,
a specification is here a language over the alphabet of events, and a controllable
specification is one for which there exists a supervisor that can guarantee it, i.e.,

6 1. Introduction

such that the resulting closed-loop behavior of the supervised plant is equal to the
specification language. When the given specification language is not realizable, it
is possible to compute its maximal (largest) controllable sublanguage.
Hence, at least in the basic framework, the major difference wrt synthesis of reactive
systems is that the systems considered in this theory are terminating, therefore the
problem do not share the intrinsic complexity of LTL synthesis. Indeed, it has been
shown that it is solvable in linear time in the size of the plant. Moreover, whereas a
controller is able to instruct the system as to as meet the specification, a supervisor
restricts instead the set of system choices –i.e., possible evolutions of the plant– but
has no control over them.

Dealing with non-realizable targets in agent behavior composition. The
classical behavior composition setting has been extensively investigated in the re-
cent literature. However, one open issue has resisted principled solutions for a long
time: if the target specification is not fully realizable, is there a way to realize it “at
best”? The need for “approximations” in problem instances not admitting (easy)
exact solutions was first highlighted in (Stroeder and Pagnucco, 2009) and the first
attempt to define and study properties of such approximations was done in (Yadav
and Sardina, 2012). Indeed, (Stroeder and Pagnucco, 2009) was the first to highlight
this issue and proposed a search-based method that could eventually be adapted to
compute approximate solutions “close” to the perfect one. In (Yadav and Sardina,
2012), a decision-theoretic version of the problem was proposed when solutions may
not fully realize the target module, and the task is to return an alternative target
closest to the original one, but fully solvable. Nonetheless, such framework deviates
from the classical one, as it requires quantification of various aspects of the problem,
and the solutions may bring the system to dead-end “blocking” situations. While
their proposal, based on the formal notion of simulation, comes as a principled gen-
eralization of the classical framework, it did not provide ways to actually compute
such solutions for the general case, but only for the special case of deterministic
behaviors.

Synthesis and AI Planning. AI Planning is the field of Artificial Intelligence
that is concerned with the generation of strategy, typically to be executed by an
agent, given a declarative specification of the environment together with the possible
actions and goals, the latter specified in terms of winning condition on the state
space (Ghallab et al., 2004). There are several form of planning, and the field can
be further divided by the kind of problems considered. While Classical Planning
considers a single-agent deterministic setting and so it corresponds to reachability
analysis in large state spaces, forms of Universal Planning involve synthesizing a
reactive control program that can direct an agent toward its goal states.
It is easy to see that there is a strong connection between the areas of planning
in AI and verification and synthesis of reactive programs. Actually, it has been
argued that the two fields have the same subject matter, and are distinct only
because of historical conditions (Kautz et al., 2006). Indeed, we can formulate the
classical AI planning problem for reachability goals as to find, given a finite-state
automaton A with accepting states, a word leading from the initial state to this

7

set. The realizability check thus correspond to check whether the language of A is
non-empty, i.e. L(A) ≠ ∅, whereas the synthesis task is to compute a word L(A).
When dealing instead with an LTL specification ϕ for non-terminating systems, we
can define the planning domain as a Büchi automaton Aϕ, and the planning task
as to find an infinite word w ∈ L(Aϕ), i.e., such that w ⊧ ϕ. In particular, such
word w does exist iff there exist two finite words u, v such that w = u ⋅ vω and hence
one can build a finite-state program C, i.e. a controller, that first performs u then
repeats v (De Giacomo and Vardi, 1999) (“lasso” shape).
It is however natural to relax this assumption, and study the case where an agent
has the capability of interacting with multiple, partially-observable, environments
sharing a common interface. This is the setting of Generalized Planning for long-
running goals (see, e.g., (Levesque, 2005; Srivastava et al., 2008; Bonet et al., 2009;
Hu and De Giacomo, 2011)).

Multi-agent systems. The study of Multi-Agent Systems (MAS) (Wooldridge,
2009c) is concerned with the study of open, distributed systems, where the process
entities (or agents) possess highly flexible and autonomous behaviour.
Differently from disciplines such as distributed systems and software engineering,
the emphasis here is on the prominence given to concepts such as knowledge, beliefs,
obligations, etc., that are used to model the agents in the system.
Since information technology is facing the task of delivering ever more complex
distributed applications, MAS researchers argue that much is to be gained from
an approach that focuses on high-level macroscopic characteristics of the entities,
at least in the modeling stage. MAS theories involve the formal representation
of agents’ behaviour and attitudes. To this end, various modal logics have been
studied and developed, including logics for knowledge, beliefs, actions, obligations,
intentions, as well as combinations of these with temporal operators.

Data-aware processes. We focus here on processes operating on data in the
context of business processes, i.e., those set of activities that are performed in co-
ordination in an organizational and technical environment, which jointly realize a
business goal. Business process management (BPM) (Weske, 2007) includes con-
cepts, methods, and techniques to support the design, administration, configuration,
enactment, and analysis of business processes.
Recent work in business processes, services and databases is bringing forward the
need of considering both data and processes as first-class citizens in process and
service design (Nigam and Caswell, 2003; Bhattacharya et al., 2007; Deutsch et al.,
2009; Vianu, 2009). Explicitly representing data, data types, and data dependencies
between activities of a business process puts a business process management system
in a position to control relevant data as generated and processed during the processes
execution. However, the verification of temporal properties in the presence of data
represents a significant research challenge, since data makes the system infinite-
state, and neither finite-state model checking (Clarke et al., 1999b) nor most of the
current techniques for infinite-state model checking, which mostly tackle recursion
(Burkart et al., 2001), apply to this case.

8 1. Introduction

1.1 Thesis Structure and Contribution

In Chapter 3 we consider a range of agent behavior synthesis problems mak-
ing use of shared components, all characterized by full observability and non-
determinism (i.e., partial controllability). In Section 3.1 we introduce one of such
problems, the agent behavior composition problem as studied in the AI community
and in particular in (Sardiña et al., 2007; Stroeder and Pagnucco, 2009; De Giacomo
et al., 2013). It is the problem of checking whether a set of available, though par-
tially controllable, behavior modules can be suitably coordinated (i.e., composed)
in a way that it appears as if a desired but non-existent target behavior is being
executed. Hence, its solution amounts to synthesizing a controller that suitably
orchestrates all these available modules. The problem is appealing because, with
computers now present in everyday devices, the trend is to build embedded complex
systems from a collection of simple components. The composition problem has been
indeed studied in various areas of Computer Science, including (web) services (Bal-
biani et al., 2009), AI reasoning about action (Sardiña et al., 2007; Stroeder and
Pagnucco, 2009; De Giacomo et al., 2013), verification (Lustig and Vardi, 2009),
and robotics (Bordignon et al., 2007) (see (De Giacomo et al., 2013) for an extensive
review). In particular, we address this problem referring to the multi-agent setting,
i.e., in which each module is represented by an agent behavior.
We show how the solution to this problem can be expressed as checking a certain
safety ATL formula over a specific ATL game structure. In such game, the players
represent the virtual target agent behavior, the concrete available agent behavior,
and a controller, whose actual controlling strategy has yet to be defined. The players
corresponding to the target and to the available agents team up togheter against the
controller. The controller tries to realize the target by delegating, at each step, the
action chosen by the target agent to one of the available behaviors. In doing this, the
controller has to cope with the choice of the action to perform by the target agent,
and the non-deterministic evolution of the available agent that has been selected
to perform the action. Therefore, not any delegation is correct: even though the
agent behavior is currently able to perform the action, the computation may still
get “stuck” in the future, because the controller can not foresee the future target
requests (the actual sequence of target actions). Solving the problem hence amounts
to synthesize a strategy for one player in a multi-player game, from which we are
able to extract a “composition generator”. Observe that this is not different from
solving a two-player ω-regular game as in the general solution schema for synthesis
of linear temporal specifications, as the controller plays against an environment
coalition formed by all other players.
In Section 3.2 we generalize this intuition, and show that many agent behavior
synthesis problems (e.g., multi-target behavior composition (Sardina and De Gia-
como, 2008), conditional planning (Rintanen, 2004a; Ghallab et al., 2004) and agent
planning programs (De Giacomo et al., 2010b)) can be solved uniformly by model
checking two-player game structures (that we call 2GS), and we introduce a variant
of (modal) µ-calculus (Emerson, 1996) that allows for separately quantifying over
both environment’s and controller’s moves. Finally, in Section 3.3, we report on a
case study.

1.1 Thesis Structure and Contribution 9

Part of this work has been published in (De Giacomo and Felli, 2010; De Giacomo
et al., 2010a; 2012).

In Chapter 4 we formally relate the standard behavior composition problem
to supervisory control theory in discrete-event systems, showing how composing a
target module amounts to imposing a supervisor for a special discrete event sys-
tem, thus establishing the formal relation between the two different synthesis tasks.
Moreover, inspired by the notion of supremal controllable sublanguage, we address
the case in which we are given a target behavior and a set of deterministic available
behaviors such that, as often happens, there is no “exact” composition, i.e., the tar-
get cannot be completely realized in the system. There has been a recent interest
in the literature to look beyond exact compositions. As it has been said, the need
for “approximations” in problem instances not admitting (easy) exact solutions was
first highlighted in (Stroeder and Pagnucco, 2009) and the first attempt to define
and study properties of such approximations was done in (Yadav and Sardina, 2012).
Adopting the notion of target approximations from (Yadav and Sardina, 2012), we
show how to extract supremal realizable target fragments –closest to the original
target module– out of adequate supervisors (rather than exact composition) for the
special case of deterministic systems.

Part of this work has been submitted for publication (Felli et al., 2013b).

In Chapter 5 we present a novel technique to effectively build the largest re-
alizable fragment—the “supremal”—of a given target specification for the general
composition case in which available behaviors may be non-deterministic. The tech-
nique relies on two simple and well-known operations over transition systems (or
state models), namely, cross product and belief-level state construction. In doing
so, we provide an elegant result on the uniqueness of such fragments.
Then, we investigate—inspired by work on AI reasoning about action (Reiter,
2001b) and on Supervisory Control—the composition task in the presence of ex-
ogenous events.

Part of this work has been published in (Yadav et al., 2013).

In Chapter 6 we first resume a theoretical approach to planning for long-running
(LTL) goals (De Giacomo and Vardi, 1999) in various settings, then adapt the ap-
proach also to Generalized Planning (Levesque, 2005; Bonet and Geffner, 2009) for
LTL goals, showing that the solution of the generalized case is within the same
complexity bound (Section 6.1). The main technical results is thus to give a sound
and complete procedure for solving the generalized planning problem for LTL goals,
within the same complexity bound. In particular, we show how solving the (gen-
eralized) planning problem for LTL goals amounts to synthesize a plan that can
be represented finitely. However, this result does not provide any mechanism to
transform such plans into finite-state controllers that can be “read” at runtime in
order to retrieve the action to execute.

10 1. Introduction

Therefore, in Section 6.3 we make use of the theoretical solution devised in Sec-
tion 6.1 and we thus address this problem in the context of Multi-Agent Systems
(MAS), linking the planning framework to the notion of agent protocol. Moreover,
we will ground the work on Interpreted Systems (Ronald Fagin and Vardi, 1995), a
popular agent-based semantics. In particular, we prove the complexity of optimal
strategies based on perfect recall and, importantly, we show their reduction to finite
state controllers, which can be embedded in the agent protocol, i.e., the set of rules
that constrain the actions executable by the agent at each point in time.

Part of this work has been published in (Felli et al., 2012).

In Chapter 7 we address a further kind of synthesis from shared components
in an multi-agent setting. Specifically, we consider programs written in the the
family of Belief-Desire-Intention (BDI) agent programming systems (Bratman et al.,
1988; Rao and Georgeff, 1992; Bordini et al., 2006). General BDI is a conceptual
framework, not a specific implementation; however, it is considered a popular and
successful approach for building agent systems (Menzies et al., 2003). An agent in
a BDI system continually tries to achieve its goals/desires by selecting an adequate
plan from the plan library given its current beliefs, and placing it into the intention
base for execution. The agent’s plan library Π encodes the standard operational
knowledge of the domain by means of a set of plan-rules (or “recipes”) of the form
φ[β⃗]ψ: plan β⃗ is a reasonable plan for achieving ψ when (context) condition φ is
believed true. Most BDI-style programming languages come with a clear single-
step semantics basically realizing (Rao and Georgeff, 1992)’s execution model in
which (rational) behavior arises due to the execution of plans from the agent’s plan
library so as to achieve certain goals relative to the agent’s beliefs. Hence we address
here the problem of synthesizing rational strategies for BDI agents, in which know-
how and motivations can be assigned to each agent by means of plan libraries and
goals. Other approaches –e.g. (Alechina et al., 2007; 2008; Dastani and Jamroga,
2010)– restrict logic models to those conforming to agents’ capabilities, therefore
it is not possible to reason about the agent’s know-how or what the agent could
achieve if it had specific capabilities, i.e., access to a different set of plan libraries.
Instead, we make use of the “ATL-like” BDI-ATELS logic introduced in (Yadav
and Sardiña, 2012), that makes explicit such assignments in the language. The
key construct ⟨⟨A⟩⟩ω,%ϕ in the new framework states that coalition A has a joint
strategy for ensuring ϕ, under the assumptions that some agents in the system are
BDI-style agents with capabilities and (initial) goals as specified by assignments
ω and %, respectively. We extend here the work in (Yadav and Sardiña, 2012) to
consider plan libraries with action sequences (not only atomic plans) and we present
a reduction to standard ATL model checking.

Part of this work has been submitted for publication (Felli et al., 2013a).

In Chapter 8 we briefly comment on the work done in the context of verification
for data-aware processes, what does this mean and which are the major difficulties
involved when we turn to the synthesis task. Since this work is (at this stage) focused

1.1 Thesis Structure and Contribution 11

on decidability issues of verification, and since a complete, thoughtful exposition
would require an extensive tractation, details are omitted.

The reader is referred to the list of related publications, i.e., (Bagheri Hariri et al.,
2011; Hariri et al., 2012; Bagheri Hariri et al., 2013).

Conclusions, discussions and related work are present in each chapter.

13

Chapter 2

Preliminaries

In this chapter we give the main definitions and notations that will be used through-
out the entire thesis. First, we introduce transition systems, which are used to model
agent behaviors, then we briefly overview the temporal logics that are needed for
the technical development of the following chapters.

2.1 Transition systems

Kripke structures are finite state machines often used in computer science as models
to describe the behavior of systems. They are basically directed graphs where nodes
represent states, and edges model transitions, i.e., state changes. A state describes
some information about a system at a certain moment of its evolution.

Definition 2.1. A Kripke structure is a tuple M = ⟨S,S0, δ,AP,V⟩ where:

• S is a set of states;

• S0 ⊆ S is the set of initial states;

• δ ∶ S × S is a (left-total) transition relation;

• AP is a set of atomic propositions,;

• V ∶ S → 2AP is a labeling function.

△

M is finite if S and AP are finite. Initially,M starts in some initial state s0 ∈ S0 and
evolves according to the transition relation. If ⟨s, s′⟩ ∈ δ then s′ is a successor of s.
The labeling function V is an interpretation function, i.e., it relates a set V(s) ∈ 2AP
of atomic propositions to any state s. Therefore, given a propositional formula ϕ
over AP , we say that a state s satisfies ϕ iff the evaluation induced by V(s) makes
ϕ true, namely s ⊧ ϕ iff V(s) ⊧ ϕ.
A path or computation of a Kripke structure M is a infinite sequence of states
λ = s0, s1, . . . starting at some s0 ∈ S0 such that si+1 is a successor of si for any
i ≥ 0. A word corresponding to a path λ is instead the sequence of state labels
word(λ) = V(s0),V(s1), Hence, we will write Paths(s) to denote the set of

14 2. Preliminaries

paths inM starting from s;Words(s) = {word(λ) ∣ λ ∈ Paths(s)} andWords(M) =
⋃s∈SWords(s).

Finally, a Transition System is essentially a Kripke structure extended with actions.

Definition 2.2. A transition system is tuple T = ⟨S,Act, S0, δ,AP,V⟩ where:

• S is a set of states;

• Act is a finite set of actions;

• S0 ⊆ S is the set of initial states;

• δ ∶ S ×Act × S is a transition relation;

• AP is a set of atomic propositions;

• V ∶ S → 2AP is a labeling function.

△

Hence, if s is the current state, upon performing an action α the transition system
evolves by non-deterministically selecting a transition ⟨s,α, s′⟩ ∈ δ (also denoted
s

αÐ→ s′), and s′ is said to be a successor (or α-successor) of s. If δ is a function,
the T is said to be deterministic.

b0{at_depot} b1

{at_mine}

b2{at_depot, loaded}

to_mine

to_depotunload

to_depot

Figure 2.1. A TS modeling the behavior of a mining truck.

b0 b1 b2music radio

stop

Figure 2.2. A TS modeling an audio device.

Example 1. Consider Figure 2.1. It depicts a transition system modeling a truck
in a mining scenario. AP = {at_depo, at_mine, loaded}. The initial state is b0
(marked with an incoming arrow) and the proposition V(b0) = {at_depo} is used
to keep track of the physical position of the truck. By performing action to_mine,
the truck moves from state b0 to state b1, i.e., ⟨b0,to_mine, b1⟩ ∈ δ. Similarly,

2.2 Linear Temporal Logic 15

by executing action to_depot, the truck moves either to b2 or stays in b1 (i.e.,
{⟨b1,to_depot, b1⟩, ⟨b1,to_depot, b2⟩} ∈ δ), and so on.
Figure 2.2 shows instead the behavior of an audio device. It allows to play music or
to listen to radio, but the execution of these actions is constrained by the structure
of the transition system, so that, e.g., only music is available from b0. Note that,
as often happens, we do not need any state proposition for modeling our behavior:
AP = ∅ and thus V(s) = ∅ for any s ∈ S. When this is the case, we will omit
for brevity AP and V. Finally, note that the truck behavior is non-deterministic,
whereas the audio device is deterministic. ◻

An trace (or execution fragment) τ of length n of T is an alternating sequence of
states and actions ending with a state τ = s0α1s1α2 ⋯ αnsn such that si

αi+1Ð→ si+1
for all 0 ≤ i < n. It can be either finite or infinite. A (maximal) execution of T is
therefore either a finite execution fragment that ends in a state with no successors,
or an infinite execution fragment.
The notion of path and words are analogous to the ones for Kripke structures: in
this thesis we will call path or computation of a transition system T is a infinite
sequence of states λ = s0, s1, . . . starting at some s0 ∈ S0 such that si+1 is a successor
of si for any i ≥ 0. A word corresponding to a path λ is instead the sequence of
state labels word(λ) = V(s0),V(s1),

Example 2. Referring to the transition system depicted in Figure 2.1, a pos-
sible trace is the sequence τ = b0to_mineb1to_depotb1to_depotb2 . . ., with path
λ = b0, b1, b1, b2, The corresponding word over the proposition alphabet would be
word(λ) = {at_depo},{at_mine},{at_mine},{at_depo, loaded}, ◻

2.2 Linear Temporal Logic

Linear temporal logic (LTL) was introduced in (Pnueli, 1977) for the specification
and verification of reactive systems. LTL is called linear, because the qualitative
notion of time is path-based and viewed to be linear: at each moment in time there
is only one possible successor state and thus each time moment has a unique possible
future. Technically speaking, this follows from the fact that the interpretation of
LTL formulae is defined in terms of paths, i.e., sequences of states.
The basic ingredients of LTL-formulae are atomic propositions, the usual operators
∧,¬ and two basic temporal modalities ◯ (next) and U (until).
LTL formulae over the set AP of atomic proposition are formed according to the
following grammar:

ϕ ∶= true ∣ p ∣ ϕ1 ∧ ϕ2 ∣ ¬ϕ ∣ ◯ϕ ∣ ϕ1 Uϕ2

where p ∈ AP are atomic proposition p ∈ AP standing for the state label a in a
transition system. Typically, the atoms are assertions about the values of either
control or program variables. We also use the usual boolean abbreviations.
Informally,◯ϕ holds at the current moment iff ϕ holds in the next “step” (successor
state), whereas ϕ1Uϕ2 holds at the current moment if there is some future moment

16 2. Preliminaries

atomic a
a

⋯

◯a
a

⋯

a Ub
a ∧ ¬b a ∧ ¬b a ∧ ¬b b

⋯

3a
¬a ¬a ¬a a

⋯

2a
a a a a a

⋯

Figure 2.3. Intuitive semantics of temporal modalities on words.

for which ϕ2 holds and ϕ1 holds at all moments until then. Moreover, we define the
derived temporal modalities 3 (eventually) and 2 (always) as follows:

3ϕ ∶= true Uϕ 2ϕ ∶= ¬3¬ϕ

Hence, the intuitive meaning of 3ϕ is to ensures that ϕ will be true eventually in
the future whereas 2ϕ is satisfied if and only if ϕ holds forever.
LTL formulae stand for properties of words over AP . This means that a path can
either fulfill an LTL-formula or not. To precisely formulate when a path satisfies
an LTL formula, we proceed as follows. First, we regard an LTL formula ϕ as
a language Words(ϕ) that contains all infinite words over the alphabet 2AP that
satisfy ϕ. Then, the semantics is extended to an interpretation over paths and
states of a transition system.

Semantics over words in (2AP)ω. The satisfaction relation for infinite words is
defined as follows. For w = A0,A1,⋯ ∈ (2AP)ω, w[j,∞] = Aj ,Aj+1,⋯ denotes the
suffix of w starting at the j-th element. The intuitive semantics is represented in
Figure 2.3. Formally:

• w ⊧ true

• w ⊧ p iff p ∈ A0 (i.e. A0 ⊧ p)

• w ⊧ ϕ1 ∧ ϕ2 iff w ⊧ ϕ1 and w ⊧ ϕ2

• w ⊧ ¬ϕ iff w /⊧ ϕ

• w ⊧◯ϕ iff w[1,∞] ⊧ ϕ

• w ⊧ ϕ1 Uϕ2 iff ∃j ≥ 0. w[j,∞] ⊧ ϕ and w[i] ⊧ ϕ for all 0 ≤ i < j

• w ⊧ 3ϕ iff ∃j ≥ 0. w[j,∞] ⊧ ϕ (derived)

• w ⊧ 2ϕ iff ∀j ≥ 0. w[j,∞] ⊧ ϕ (derived)

Hence, consider an LTL formula ϕ over 2AP . The set of words (the LT property)
induced by ϕ is the set Words(ϕ) = {w ∈ (2AP)ω ∣ w ⊧ ϕ}.

2.3 Branching Temporal Logic 17

Semantics over paths and states. As a subsequent step, we determine the
semantics of LTL-formulae with respect to paths and states of a Kripke structure
M = ⟨S,S0, δ,AP,V⟩. Hence given an LTL formula ϕ, a path λ of M and a state
s ∈ S:

λ ⊧ ϕ iff word(λ) ⊧ ϕ

s ⊧ ϕ iff ∀λ ∈ Paths(s). λ ⊧ ϕ

Hence the formula ϕ is true in M , i.e., M ⊧ ϕ, iff Words(M) ⊆Words(ϕ) iff λ ⊧ ϕ
for any λ ∈ Paths(M). Notably, this implies that M ⊧ ϕ iff s0 ⊧ ϕ for any initial
state s0 ∈ S0 of M .
The problem of model-checking for LTL is PSPACE-complete.

Example 3. Consider again Figure 2.1. The LTL formula ϕ1 = 23loaded (requir-
ing that the truck visits infinitely often the depot) is false in b0, as the transition sys-
tem can remain forever in state b1 due to the nondeterminism of action to_depot.
Hence, there exists an infinite number of paths λ ∈ Paths(b0) such that λ /⊧ ϕ1. ◻

2.3 Branching Temporal Logic
We have seen how the interpretation of LTL formulae is defined in terms of paths,
i.e., sequences of states. In turn, paths are obtained from a Kripke structure that
might be branching, i.e., a state can have multiple successor for the same action.
Consequently, several computations may start in a state. However, the interpre-
tation of LTL-formulae in a state requires that a formula ϕ holds in state s if all
possible computations that start in s satisfy it, but we can not quantify existentially
over them. In other words, LTL assumes an implicit universal quantification over
paths.
The temporal operators in branching temporal logic (CTL) (Emerson and Halpern,
1986; Lamport, 1980) allow instead the expression of properties of some or all com-
putations starting from a state. To that end, it supports an existential path quanti-
fier (denoted ∃) and an explicit universal path quantifier (denoted ∀) such that the
formula ∃ϕ denotes that there exists a computation along which ϕ holds, whereas
∀ϕ denotes that ϕ holds in all possible paths.
The most interesting point is that we can “nest” quantifiers as to as express complex
requirements such as ∀2∃3Φ: in any state (2) of any possible computation (∀),
there exists a possibility (∃) to eventually (3) meet Φ.
While LTL formulas are path formulas, in the sense that their semantics is defined
over paths, CTL formulas are divided into path formulas (here denoted by Φ) and
state formulas (here denoted by ϕ).
CTL state formulas over the set AP of atomic proposition are formed according to
the following grammar:

Φ ∶= true ∣ p ∣ Φ1 ∧Φ2 ∣ ¬Φ ∣ ∃ϕ ∣ ∀ϕ

whereas path formulas are formed according to the grammar:

ϕ ∶=◯Φ ∣ Φ1 UΦ2

18 2. Preliminaries

where Φ,Φ1,Φ2 are state formulas. Intuitively, a state formula captures a property
of a state, while path formulas capture a property of a (infinite) path. Similarly to
LTL, ∃3Φ = ∃(trueUΦ), ∀3Φ = ∀(trueUΦ), ∃2Φ = ¬∀3¬Φ and ∀2Φ = ¬∃3¬Φ.

Semantics (over paths). As for LTL, also CTL formulas are interpreted over the
states and paths of a Kripke structureM = ⟨S,S0, δ,AP,V⟩. Formally the semantics
of CTL formulas is defined by two satisfaction relations (both denoted by ⊧): one
for the state formulas and one for the path formulas. Hence, a state s ∈ S satisfies
a state formula Φ according to:

• s ⊧ p iff p ∈ L(s)

• s ⊧ ¬Φ iff s /⊧ Φ

• s ⊧ Φ1 ∧Φ2 iff s ⊧ Φ1 and s ⊧ Φ2

• s ⊧ ∃ϕ iff ∃λ ∈ Paths(s). λ ⊧ φ

• s ⊧ ∀ϕ iff ∀λ ∈ Paths(s). λ ⊧ φ

For the path formulas, ⊧ is a relation between (infinite) paths in M and path
formulas. Given a path λ, we denote with λ[j] the j-th state of λ.

• λ ⊧◯Φ iff λ[1] ⊧ Φ

• λ ⊧ Φ1 UΦ2 iff ∃j ≥ 0. (λ[j] ⊧ Φ2 ∧ (∀0 ≤ i < j.λ[i] ⊧ Φ1))

• λ ⊧ 3Φ iff ∃j ≥ 0. π[j] ⊧ Φ (derived)

• λ ⊧ 2Φ iff ∀j ≥ 0. π[j] ⊧ Φ (derived)

The interpretations for atomic propositions, negation, and conjunction are as usual.
Hence we say that M satisfies a CTL formula Φ iff Φ holds in all its initial states,
i.e.,

M ⊧ Φ iff ∀s0 ∈ S0. s0 ⊧ Φ

Example 4. Consider once more Figure 2.1. We already noted that the LTL for-
mula ϕ1 = 23at_depot is false for the transition system (see Example 3). Now
consider the CTL formula ϕ2 = ∀2∃3loaded. It is easy to check that it is true in
the model, as it only requires the possibility of achieving 3loaded for any path. ◻

2.4 Alternating Temporal Logic
ATL (Alternating-time Temporal Logic) (Alur et al., 2002) is a logic whose interpre-
tation structures are multi-player game structures where players can cooperate or
confront each other so as to satisfy certain formulae. Technically, ATL is quite close
to CTL, with which it shares excellent model checking techniques (Clarke et al.,
1999d; Baier and Katoen, 2008). Differently from CTL, when an ATL formula is
satisfied then it means that there exists a strategy, for the players specified in the
formula, that fullils the temporal/dynamic requirements in the formula.

2.4 Alternating Temporal Logic 19

Therefore, Alternating-time Temporal Logic (Alur et al., 2002) is a logic that can
predicate on moves of a game played by a set of players. For example, let A be the
set of players and A ⊆ A a subset of them, then the ATL formula ⟨⟨A⟩⟩ϕ asserts
(intuitively) that there exists a strategy for players in A to satisfy the state predicate
ϕ irrespective of how players in A/A evolve. The temporal operators are “3” (even-
tually), “◻” (always), “◯” (next) and “U” (until). The ATL formula ⟨⟨p1, p2⟩⟩3ϕ
captures the requirement “players p1 and p2 can cooperate to eventually make ϕ
true”. This means that there exists at a winning strategy that p1 and p2 can follow
to force the game to reach a state where ϕ is true.
ATL formulae are constructed inductively as follows:

• p, for propositions p ∈ AP are ATL formulae;

• ¬ϕ and ϕ1 ∨ ϕ2 where ϕ,ϕ1 and ϕ2 are ATL formulae, are ATL formulae;

• ⟨⟨A⟩⟩◯ϕ and ⟨⟨A⟩⟩2ϕ and ⟨⟨A⟩⟩ϕ1 Uϕ2, where A ⊆ A is a set of players and
ϕ,ϕ1 and ϕ2 are ATL formulae, are ATL formulae.

We also use the usual boolean abbreviations.
Differently from LTL and CTL, ATL formulae are interpreted over concurrent game structures:
every state transition of a concurrent game structure results from a set of moves,
one for each player.

Definition 2.3. A Concurrent Game Structure is a tuple M = ⟨A,Q,AP,V, d, δ⟩
where:

• A is a non-empty, finite set of players. ∣A∣ = k, and players are identified with
numbers in {1, . . . , k}.

• Q is a finite set of (global) states of the system.

• AP is a finite set of atomic propositions.

• V ∶ Q → Pwr(AP) is a mapping that specifies which propositions are true in
which states.

• d ∶ Ag ×Q → IN is a function specifying how many move options each player
has at a particular state. Namely, for each player a ∈ Ag and each state
q ∈ Q, da(q) ≥ 1 is the number of moves available to a in q. Each of these
moves is identified with a natural number, thus agent a can choose his decision
from the set {1, . . . , da(q)}. For each state q ∈ Q, we write D(q) for the set
{1, . . . , d1(q)}×⋯×{1, . . . , dk(q)} of move vectors (tuples of decisions, one for
each player). The function D is called move function.

• δ is the transition function. For each state q ∈ Q and each move vector
⟨j1, . . . , jk⟩ ∈ D(q), the successor state q′ = δ(q, j1, . . . , jk) ∈ Q results from
state q if every player i ∈ Ag chooses move ji.

△

20 2. Preliminaries

If n = ∣Q∣ is the number of states and m = ∑q∈Q d1(q) × ⋯ × dk(q) is the number of
transitions inM, then m is not bounded by n2 as in Kripke structures, and the size
ofM is O(m).
It is important to distinguish between the computational structure, defined explic-
itly in the model, and the behavioral structure, i.e. the model of how the system is
supposed to behave in time. Indeed, the computational structure is finite, whereas
the implied behavioral structure is infinite. In ATL, the finite state automaton lying
at the core of every concurrent game structure can be seen as a way of imposing
the tree of possible (infinite) computations that may occur in the system.

Definition 2.4. A computation of M is an infinite sequence λ = q0, q1, q2 . . . of
states such that for each i ≥ 0, the state qi+1 is a successor of qi, i.e., there exists a
move vector ⟨j1, . . . , jk⟩ ∈D(qi) such that qi+1 = δ(qi, j1, . . . , jk). △

It should be noted that the earliest the version only includes definitions for a syn-
chronous turn-based structure and an asynchronous structure in which every tran-
sition is owned by a single agent. The concurrent game structure above is then a
successiv version as it appears in (Alur et al., 2002). Indeed, different versions of
ATL have been successively proposed, each with a slightly different definition of
the semantic structure. Notably, a precedent work offers more general structures
(called alternating transitions systems) with no action labels and a more sophis-
ticated transition function. While in ordinary transition systems, each transition
corresponds to a possible step of the system, in alternating transition systems each
transition corresponds to a possible move in the game between the system and the
environment.

Definition 2.5. An Alternating Transition System is a tuple S = ⟨A,Q,AP,V, δ⟩
where:

• A,Q,AP,V are as above;

• δ ∶ Q × Ag → 22Q is a transition function that maps a state and an agent to
a nonempty set of choices, where each choice is a set of possible next states.
Whenever the system is in state q, each agent a chooses a set Qa ∈ δ(q, a).
In this way, an agent a ensures that the next state of the system will be
among its choice Qa. However, which state in Qa will be next depends on
the choices made by the other agents, because the successor of q must lie in
the intersection ⋂a∈AgQa of the choices made by all agents. The transition
function is non-blocking and the agents together choose a unique next state
state. Thus, it is required that this intersection always contains a unique
state: for every state q ∈ Q and every set Q1, . . . ,Qk of choices Qa ∈ δ(q, a),
the intersection Q1 ∩ . . . ∩Qk is a singleton.

△

In general, both kinds of semantics are equivalent (Goranko and Jamroga, 2004),
but the concurrent game structures are smaller and easier to read in most cases
(Jamroga, 2004).

2.4 Alternating Temporal Logic 21

Once the notion of successor is given, we can provide a formal definition of winning
strategy.

Definition 2.6. Given a concurrent game structure M as above, a strategy for
player a ∈ A is a function fa that maps every non-empty finite state sequence
λ ∈ Q+ to one of its moves, i.e., a natural number such that if the last state of λ is
q then fa(λ) ≤ da(q). △

The strategy fa determines, for every finite prefix λ of a computation, a move
fa(λ) for player a. Hence, a strategy fa induces a set of computations that player
a can enforce. Given a state q ∈ Q, a set A ⊆ {1, . . . , k} of players, and a set
Fa = {fa ∣ a ∈ A} of strategies, one for each player in A, we define the outcomes of
Fa from q to be the set out(q,FA) of q-computations that the players in A collectively
can enforce when they follow the strategies in FA. A computation λ = q0, q1, q2, . . .
is then in out(q,FA) if q0 = q and for all positions i > 0 every player a follows the
strategy fa to reach the state qi+1, that is, there is a move vector ⟨j1, . . . , jk⟩ ∈D(qi)
such that ja = fa(λ[0, i]) for all players a ∈ A, and δ(qi, j1, . . . , jk) = qi+1.
Now we can provide a formal definition of the satisfaction relation: we writeM, q ⊧
ϕ to indicate that the state q satisfies formula ϕ with respect to game structureM.
⊧ is defined inductively as follows:

• q ⊧ p, for propositions p ∈ P , iff p ∈ V(q).

• q ⊧ ¬ϕ iff q /⊧ ϕ.

• q ⊧ ϕ1 ∨ ϕ2 iff q ⊧ ϕ1 or q ⊧ ϕ2.

• q ⊧ ⟨⟨A⟩⟩◯ϕ iff there exists a set FA of strategies, one for each player in A,
such that for all computations λ ∈ out(q,FA), we have λ[1] ⊧ ϕ.

• q ⊧ ⟨⟨A⟩⟩ ◻ ϕ iff there exists a set FA of strategies, one for each player in A,
such that for all computations λ ∈ out(q,FA) and all positions i ≥ 0, we have
λ[i] ⊧ ϕ.

• q ⊧ ⟨⟨A⟩⟩(ϕ1 Uϕ2) iff there exists a set FA of strategies, one for each player in
A, such that for all computations λ ∈ out(q,FA), there exists a position i ≥ 0
such that λ[i] ⊧ ϕ2 and for all positions 0 ≤ j < i, we have λ[j] ⊧ ϕ1.

As for operator3 (eventually), we observe that ⟨⟨A⟩⟩3ϕ is equivalent to ⟨⟨A⟩⟩(trueUϕ).
Concerning computational complexity, the cost of ATL model-checking is linear in
the size of the game structure, as for CTL, a very well-known temporal logic used
in model checking(Clarke et al., 1999c), of which ATL is an extension.

Example 5. Imagine a mining scenario in which there are two agents: a truck Agr
and a crane Agc. The truck (like the one depicted in Figure 2.1) can move between
a depot and a mine, where a crane is used to load it with materials. When the truck
is at the mine, the crane can either load or wait; when the truck has been loaded
and at the depot, it can unload its load. We can model this simple scenario with
a Concurrent Game Structure Mine = ⟨A,Q,AP,V, d, δ⟩ (see Figure 2.4, where
understandable action labels are used instead of integers) where:

22 2. Preliminaries

q0{at_depot} q1

{at_mine}

q2{at_depot, loaded}

⟨to_mine,wait⟩

⟨to_depot,load⟩
⟨unload,wait⟩

⟨to_depot,wait⟩

Figure 2.4. Game structureMine.

• A = {Agr,Agc}, k = 2;

• Q = {q0, q1, q2};

• AP = {at_mine, at_depot, loaded};

• V is such that V(q0) = {at_depot}, V(q1) = {at_mine} and V(q2) = {at_depot, loaded};

• d(1, q0) = d(2, q0) = d(1, q1) = d(2, q2) = d(1, q1) = 1 and d(2, q1) = 2.

• δ(q0,1,1) = δ(q1,1,1) = q1; δ(q1,1,2) = q2; δ(q2,1,1) = q0.

Similarly to previous examples, the ATL formula ϕ1 = ⟨⟨Agr⟩⟩3loaded is false for
q0 ∈ Q: the truck can not force the game to reach state q2 unless the crane performs
action 2 (load) from q1. On the other hand, both ϕ2 = ⟨⟨Agr,Agc⟩⟩3loaded and
ϕ3 = ⟨⟨Agc⟩⟩2¬loaded are true in q0, i.e.,M, q0 ⊧ ϕ2 andM, q0 ⊧ ϕ3. ◻

2.5 Modal µ-calculus
Formulas of the µ-calculus (Emerson, 1996) are basically constituted by three kinds
of components: (i) propositions to denote properties of the global store in a given
configuration (ii) modalities to denote the capability of performing certain actions
in a given configuration (iii) least and greatest fixpoint constructs to denote “tem-
poral” properties of the system, typically defined by induction and coinduction.
Formulas of µ-calculus are formed inductively from action in some fixed set Act,
primitive (or atomic) proposition set AP , and variable symbols in some fixed set
V ar, according to the following abstract syntax:

ϕ ∶= p ∣ true ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ⟨a⟩ϕ ∣ [a]ϕ ∣ µX.ϕ ∣ νX.ϕ ∣ X

where p is a primitive proposition in AP , X is a variable symbol in V ar, and a is an
action in Act. The symbols µ and ν can be considered as quantifiers, and we make
use of notions of scope, bound and free occurrences of variables, closed formulas,
etc. The definitions of these notions are the same as in first-order logic, treating µ
and ν as quantifiers.
Hence, for formulas of the form µX.ϕ and νX.ϕ we require the syntactic mono-
tonicity of ϕ wrt X, i.e., every occurrence of X in ϕ must be within the scope af

2.5 Modal µ-calculus 23

an even number of negations. This is essential to guaranteed, by Tarski-Knaster
theorem, the existence of least and greatest fixpoints.

Semantics. The semantics of µ-calculus is based on the notions of transition
system and valuation of variables.
Given a transition system T = ⟨S,Act, S0, δ,AP,V⟩, a valuation Π is a mapping from
variables in V ar to subsets of the states in T .
Given a valuation Π, we denote by Π[X ← E], the valuation identical to Π except
for Π[X ← E](X) = E, i.e. for every variable Y we have

Π[X ← E](Y) = { E if Y =X
Π(Y) if Y ≠X

We can now define the extension function J⋅KTΠ mapping formulas to states of S as
follows (to ease the notation, T and Π are skipped where understood):

JpK = {s ∈ S ∣ p ∈ V(s)}
JXK = Π(X) ⊆ S
JtrueK = S
JfalseK = ∅
J¬ϕK = S ∖ JϕK
Jϕ1 ∧ ϕ2K = Jϕ1K ∩ Jϕ2K
Jϕ1 ∨ ϕ2K = Jϕ1K ∪ Jϕ2K
J⟨a⟩ϕK = {s ∈ S ∣ ∃s′.⟨s, a, s′⟩ ∈ δ and s′ ∈ JϕK}
J[a]ϕK = {s ∈ S ∣ ∀s′.⟨s, a, s′⟩ ∈ δ implies s′ ∈ JϕK}
JµX.ϕK = ⋂{E ⊆ S ∣ JϕKΠ[X←E] ⊆ E}
JµX.ϕK = ⋃{E ⊆ S ∣ E ⊆ JϕKΠ[X←E]}

Intuitively, the extension function J⋅KTΠ assigns to the constructs of µ-calculus the
following meanings:

• the boolean connectives have the expected meaning;
• the extension of ⟨a⟩ϕ includes the states s ∈ S such that starting from s, there

is an a-successor s′ ∈ JϕK;
• the extension of [a]ϕ includes the states s such that any a-successor s′ ∈ JϕK;
• the extension of µX.ϕ is the smallest subset E ⊆ S such that, assigning X to

the extension E , the resulting extension of ϕ is in E . Namely, the extension
of µX.ϕ is the least fixpoint of the operator ΩE .JϕKTΠ[X←E]. Similarly νX.ϕ
captures the greatest fixpoint.

Note also that if ϕ is closed (no free variables are present) then the extension of JϕKTΠ
is in fact independent of the valuation Π, hence we can also write JϕKT . Finally, we
say that a closed formula ϕ is true in s ∈ S iff s ∈ JϕKT .

Example 6. The formula

ϕ3 = µX.loaded ∨ (⟨−⟩true ∧ [−]X)

24 2. Preliminaries

expresses that for all evolutions of the system, loaded eventually holds. Indeed, its
extension E is the smallest set that includes (1) the states in the extension of loaded
and (2) the states that can actually make a transition (we use “−” to denote any
action in Act) such that every transition leads to a state in E (⟨−⟩true is used here
to check that a successor state actually exists). In other words, the extension E
includes each state s such that every run from s leads eventually (i.e. in a finite
number of steps) to a state in the extension of loaded. Therefore, checking this
formula on the transition system of Figure 2.1 will give us Jϕ3K = {b2} ◻

25

Chapter 3

Synthesis via Game Structures

AI has been long concerned with agent behavior synthesis problems. In this chapter
we consider a variety of agent behavior synthesis problems characterized by full
observability and non-determinism (i.e., partial controllability). In Section 3.1 we
introduce one of such problems, the agent behavior composition, and show how
it can be expressed as checking a certain ATL formula over a specific ATL game
structure. In particular, we show how the problem can be reduced to checking the
existence of a strategy for a player (hence synthesizing it) in a multi-agent setting.
In Section 3.2 we then generalize this intuition, and show that many agent behavior
synthesis problems can be solved by model checking two-player game structures,
hence distinguishing between the actions/moves of two antagonistic players: the
system and the environment.
Specifically, we focus on three problems of increasing sophistication. The simplest
problem we consider is the standard conditional planning in non-deterministic fully
observable domains (Rintanen, 2004a), which is well understood by the AI com-
munity. Then, we move to a sophisticated form of planning recently introduced
in (De Giacomo and Felli, 2010), in which so-called agent planning programs—
programs built only from achievement and maintenance goals—are meant to merge
two traditions in AI research, namely, Automated Planning and Agent-Oriented
Programming (Wooldridge, 2009b). Solving, that is, realizing, such planning pro-
grams requires temporally extended plans that loop and possibly do not even termi-
nate, analogously to (Kerjean et al., 2006). Finally, we turn to and advanced form
of agent behavior composition. Moreover, by exploiting the connections between
such game structures and the interpretation structures for ATL, we also provide
implementations of the solution techniques for the above problems by relying on a
suitable use of an ATL model checker.

3.1 Agent Behavior Composition via ATL

Agent behavior composition is the problem of realizing a “virtual” agent by suitably
directing a set of available “concrete”, i.e., already implemented, agents. It is a
synthesis problem, whose solution amounts to synthesizing a controller that suitably
directs the available agents.

26 3. Synthesis via Game Structures

In this section, we show that agent composition can be solved by ATL model check-
ing. ATL (see Section 2.4) has been widely adopted by the Agents community
since it allows for naturally specifying properties of societies of agents (Wooldridge,
2009a; Lomuscio and Raimondi, 2006). The interest of the Agents community has
led to active research on specific model checking tools for ATL, which by now are
among the best model checkers for verification of temporal properties (Lomuscio
et al., 2009).
We show that indeed agent composition can be naturally expressed as checking a
certain ATL formula over a specific game structure where the players are the virtual
target (agent) behavior, the concrete available agent behaviors, and a controller,
whose actual controlling strategy has yet to be defined. The players corresponding
to the target and to the available agent behaviors team up togheter against the
controller. The controller tries to realize the target by looking, at each point in time,
at the action chosen by the target agent behavior, and by selecting accordingly who,
among the available agents, has to perform the action. In doing this the controller
has to cope with the choice of the action to perform by the target agent and the non-
deterministic choice of the next state of the available agent that has been selected
to perform the action. The ATL formula essentially requires that the controller
avoids errors, where an error is produced whenever no available agents are able to
actually perform the target agent’s action currently requested. If the controller has
a strategy to satisfy the ATL formula, then, from such strategy, a refined controller
realizing the composition can be synthesized. In fact, we show that by ATL model
checking we get much more than a single controller realizing a composition: we get
a “controller generator” (Sardiña et al., 2008) i.e., an implicit representation of all
possible controllers realizing a composition.
This result is of interest for at least two contrasting reasons. First, from the point
of view of agent composition, it gives access to some of the most modern model
checking techniques and tools, such as MCMAS, that have been recently developed
by the Agent community. Second, from the point of view of ATL verification tools, it
gives a novel concrete problem to look at, which puts emphasis on actually synthesize
winning policies (the refined controller) instead of just checking that they exist, as
usual in many contexts where ATL is used for agent verification.

3.1.1 Agent Behavior Composition Problem

Composition of non-deterministic, fully observable available behaviors1 for realizing
a target behavior has its roots in certain forms of service composition advocated for
SOA (Su, 2008a), and it is strictly related to composition of stateful, or “conversa-
tional”, web services (Su, 2008c). Roughly speaking, it can be states as follows:

Consider a set of available agent behaviors and an additional desired
target behavior, all exporting a description of their operational model.
Is it possible to coordinate (i.e., compose) the available agent behaviors

1This section will formally introduce the agent behavior composition problem. As said in the
introduction, from an AI perspective, a behavior refers to an agent’s abstract operational model,
generally represented as a non-deterministic finite-state machine. Hence, in the technical develop-
ment that follows, we will model agents through their behaviors.

3.1 Agent Behavior Composition via ATL 27

as to as realize (or “mimic”), at execution time, the behavior of the
target (but non-existent) one, as if it is being executed?

Such composition problem has been studied in various areas of Computer Science,
including (web) services (Balbiani et al., 2008), AI reasoning about action (Sardina
et al., 2008; Stroeder and Pagnucco, 2009; De Giacomo et al., 2013), verification
(Lustig and Vardi, 2009), and robotics (Bordignon et al., 2007), and it is often
referred as “Service Composition Problem”. Many approaches (surveyed, e.g., in
(ter Beek et al., 2007)) have been proposed in the last years in order to address the
service composition problem from different viewpoints. Works based on Planning
in AI, such as (McIlraith and Son, 2002; Wu et al., 2003; Blythe and Ambite, 2004;
Zhao and Doshi, 2006) consider only the input/output specification of available
services, which is captured by atomic actions together with their pre- and post-
conditions (a notable extension is (Beauche and Poizat, 2008)), and specify the
overall semantics in terms of propositions/formulas (facts known to be true) and
actions, affecting the proposition values. All these approaches consider stateless
services, as the operations offered to clients do not depend on the past history, as
services do not retain any information about past interactions. Also other works
(e.g., (Yang and Papazoglou, 2004; Medjahed et al., 2003; Curbera et al., 2004;
Cardose and Sheth, 2004)) consider available services as atomic actions, but, rather
than on (planning-based) composition, they focus on modeling issues and automatic
service discovery, by resorting to rich ontologies as a basic description mean. Many
works (e.g., (Klein et al., 2010; Schuller et al., 2010; Baligand et al., 2007; Paoli
et al., 2006) consider how to perform composition by taking into account Quality-
of-Service (QoS) of the composite and component services. Some works consider non
classical techniques (e.g., (Wang et al., 2010) adopts learning approaches) for solving
the composition problem. There are also approaches (e.g., (Hassen et al., 2008))
that consider stateful services, which impose constraints on the possible sequences of
interactions (a.k.a., conversations) that a client can engage with the service. Stateful
services raise additional challenges, as the process coordinating such services should
be correct w.r.t. the possible conversations allowed by the services themselves. An
interesting approach of this type is the one of (Pistore et al., 2005), in which the
specification is a set of atomic actions and propositions, like in planning, services are
(finite-state) transition systems whose transitions correspond to action executions,
which, in general, affect the truth values of propositions, and the client requests a
(main) goal (i.e., a formula built from the above propositions) to be achieved, while
requiring runtime failures to be properly handled by achieving a special exception
handling goal.
The problem is appealing in that with computers now present in everyday devices
like phones, cars and planes or places like homes, offices and factories, the trend is
to build embedded complex systems from a collection of simple components. For
instance, one may be interested in implementing a non-existent house entertainment
systems by making use of various devices installed in the house, such as game
consoles, TVs, music players, automatic lights, etc.

We address the problem following the approach proposed in (Stroeder and Pagnucco,
2009; Sardiña et al., 2007; Sardiña et al., 2008; De Giacomo et al., 2013) and, as we

28 3. Synthesis via Game Structures

do not limit ourselves to the service setting, we will adopt the general terminology
of agent behaviors.
In this approach, behaviors are modeled by a transition system, which captures their
operational model, as well as the available choices that, at each point, the behavior
has available for continuing its execution. Given a virtual target behavior, i.e., a
behavior of which we have the desired behavior but not its actual implementation,
and a set of available concrete behaviors, i.e., a set of behaviors, each with its
own behavior, that are indeed implemented, the composition’s goal is to synthesize
a controller, i.e., a suitable software module, capable of implementing the target
behavior by suitably controlling the available behaviors. Such a module realizes
a target behavior if and only if it’s able, at every step, to delegate every action
executable by the target to one of the available behavior. Notice that, in doing
this, the controller has to take into account not only local states of both the target
and the available behaviors, but also their future evolutions, delegating actions to
available behaviors so that all possible future target behavior’s actions can continue
to be delegated. We call such a controller a composition of the available behavior
that realizes the target behavior.

Definition 3.1. Formally, an agent behavior is a tuple B = ⟨B,Act, b0, %, F ⟩, where:

• B is the set of finite states;

• Act is the set of actions;

• b0 ∈ B is the initial state;

• % ⊆ B × Act × B is the behavior’s (non-deterministic) transition relation:
⟨b, a, b′⟩ ∈ %, or b σÐ→ b′ in B, denotes that action a executed in behavior
state b may lead the behavior to successor state b′;

• F ⊆ S is a subset of final states.

△

Final states are meant to capture those states in which the behavior can be safely
“left”, i.e., the computation can stop. A solution that manages to realize a target
behavior without guaranteeing that, whenever the target is in a final states, all avail-
able behaviors are left in final states as well, is not a good solution. However, this
requirement on final states will be sometimes omitted in some solution approaches
presented in this dissertation, as it can be captured by introducing special “final”
actions in the alphabet Act and therefore is not fundamental. Removing final states
also corresponds to consider all states as final.
Observe that since agent behaviors may be non-deterministic, one cannot know
beforehand what actions will be available to execute after an action is performed
in a state, as the next set of applicable actions would depend on the successor
state in which the behavior happens to be in. Hence, we say that non-deterministic
behaviors are only partially controllable. A deterministic behavior is one where the
successor state is always uniquely determined –a fully controllable behavior.

Example 7. Consider the truck behavior Br = ⟨Br,Act, br0, %r, Fr⟩ of Figure 3.1,
which is the same transition system of Figure 2.1 without state propositions and

3.1 Agent Behavior Composition via ATL 29

r0 r1

r2

to_mine

to_depotunload

Figure 3.1. A behavior modeling a mining truck.

with the addition of final states. It is also deterministic. Br = {r0, r1, r2}, Act =
{to_mine,to_depot,unload}, br0 = r0, %r(r0,to_mine, r1), %r(r1,to_depot, r2),
%r(r2,unload, r0), and Fr = {r0, r1}.
Consider now a new agent behavior Bc = ⟨Bc,Act, bc0, %c, Fc⟩ as in Figure 3.3 model-
ing an old crane: it is used to perform a load action and then it needs to be repaired
in order to be able to load again. However, this repairing action is non-deterministic,
and it could be the case that it has to be performed twice to get the crane opera-
tional again. Bc = {c0, c1, c2}, Act = {load,maintenance}, bc0 = c0, %c(c0,load, c1),
%c(c1,maintenance, c0), %c(c1,maintenance, c2), %c(c2,maintenance, c0), and Fc =
{c0}.

c0 c1

c2

load

maintenance

maintenance
maintenance

Figure 3.2. A behavior modeling an old crane.

◻

Example 8. Consider now the behaviors Ba = ⟨Ba,Act, b0a, %a, Fa⟩ and Bg = {Bg,
Act, b0g, %g, Fg} of Figure 3.2. Ba is the same transition system of Figure 2.2 with
the addition of final states, whereas Bg is a behavior modeling a game device, which
allows to play games, watch movies or access the internet.

◻

In this Chapter (and in the whole dissertation as well) we will make use of the
terminology introduced in Chapter 2. Hence, a trace of B is the possibly infinite
sequence τ = b0

a1Ð→ b1
a2Ð→ ⋯ such that bi+1 ∈ %(bi, ai+1), for i ≥ 0 (for more details,

refer to the preliminaries in Chapter 2). A history is a finite trace.

30 3. Synthesis via Game Structures

a0 a1 a2
music radio

stop

g0 g1

g2

g3

movie
gamestop

web

restart, stop

Figure 3.3. Two behaviors modeling an audio device and a game device.

Available System. The system stands for a collection of agent behaviors that
are at disposal. Technically, an available system is a tuple S = ⟨B1, . . . ,Bn⟩, where
Bi = ⟨Bi,Acti, bi0, %i, Fi⟩, for i ∈ {1, . . . , n}, is a, possibly non-deterministic, available
agent behavior in the system. To refer to the behavior that emerges from the joint
execution of available agent behaviors, the notion enacted system behavior is used in
the literature (De Giacomo et al., 2013). In a nutshell, the enacted system behavior
ES of an available system S (as above) is a transition system obtained as the asyn-
chronous product of the available behaviors in S. A transition s a,kÐ→ s′ in ES states
that action a has been performed by behavior Bk (and all other behaviors remain
still).

Definition 3.2. The enacted system behavior of S is a tuple ES = {S,Act, s0, %, SF },
where:

• S = B1 ×⋯ ×Bn is the finite set of ES ’s states;

• Act = ⋃ni=1Acti is the set of actions of ES ;

• s0 = ⟨b10, . . . , bn0⟩ ∈ S is ES ’s initial state;

• % ⊆ S ×Act × {1, . . . , n} ×S is ES ’s transition relation, where ⟨s, a, k, s′⟩ ∈ %, or
s
a,kÐ→ s′ in ES , with s = ⟨b1, . . . , bn⟩ and s′ = ⟨b′1, . . . , b′n⟩, iff:

– bk
aÐ→ b′k in Bk; and

– b′i = bi, for i ∈ {1, . . . , n} ∖ {k}.

• SF = F1 ×⋯ × Fn.

△

Example 9. The available system for the two behaviors Br and Bc as before (the
truck and the crane) is the tuple S = ⟨Br,Bc⟩. The enacted system ES of S is
depicted in Figure 3.4. ◻

A system history is a straightforward generalization of behavior histories to an avail-
able system ES , that is, a sequence of the form h = b⃗0

a1,k1Ð→ b⃗1
a2,k2Ð→ ⋯ a`,k`Ð→ b⃗`. We

denote with last(h) the last state b⃗` of h, with h` the prefix of h of length ` and
with H the set of all system histories.

3.1 Agent Behavior Composition via ATL 31

⟨r0, b1⟩ ⟨r0, c0⟩ ⟨r1, c0⟩ ⟨r1, c1⟩

⟨r0, c2⟩

⟨r2, c0⟩

⟨r1, c2⟩

⟨r2, c2⟩⟨r2, c1⟩

maintenance, c

to_mine, t

load, c

to_mine, t

load, c

maintenance, c

maintenance
,c maintenance, c

unload, t to
_d

ep
ot
, t maintenance, c ma

in
te

na
nc

e,
c

maintenance, c

to_depot, t

to_mine, t

load, c

unload, t

maintenance, c

unload, t

maintenance, c

to_depot, t

Figure 3.4. The enacted system ES for S = {Br,Bc}.

Target Specification. Finally, the target agent behavior specification is a deter-
ministic agent behavior T = ⟨T,ActT , t0, %T , FT ⟩.

Therefore, informally, the behavior composition task can be stated as follows: Given
a system S and a target agent behavior T , is it possible to (partially) control
the available agent behaviors in S in a step-by-step manner—by instructing them
on which action to execute next and observing, afterwards, the outcome in the
behavior used—so as to “realize" the desired target behavior. In other words, by
adequately controlling the system, it appears as if one was actually executing the
target behavior.

Remark. Note that, even though we delegate a target action to an agent behavior
which is currently able to perform it, such delegation may be incorrect, and we may
still get “stuck” in the future. As a matter of fact, we can not foresee the future
target requests (the actual sequence of target actions).

32 3. Synthesis via Game Structures

t0

t1

xz

T

a0

a1

a2

x

x
x

z

B1

b0 b1

z
z

x

B2

Figure 3.5. Target T and available agent behaviors B1,B2.

Example 10. Figure 3.5 shows two available agent behaviors B1 and B2 and a
simple target behavior T . At the beginning, T is in state t0, B1 in a0 and B2 in
b0. As T performs action x, we need to delegate such an action to an available
agent behavior. It is trivial to notice that the only available choice is to choose
B1. However, as B1 performs x, it could non-deterministically evolve to state a1,
from which action z is not available. Therefore, as T performs z, this action can be
delegated to B1 only if it is currently in a2, otherwise B2 is the only choice. However
(as we will see later), when it happens that B1 reaches state a2 upon performing
action x, the only correct choice is indeed to delegate z to B1: if we choose B2 we
won’t be able to mimic possible future actions of the target (due to non-determinism).

◻
Now we are going to define the solution of our problem.

Compositions. A controller for system S is a function

C ∶H ×Act→ {1, . . . , n}

which, given a system history h ∈ H and an action a ∈ Act to perform, selects a
behavior (actually, returns its index) to delegate a to for execution.
One can formally define when a controller realizes the target behavior –a solution to
the problem– as done in (Sardiña et al., 2007; Sardina et al., 2008). In particular,
one first defines when a controller C realizes a trace of the target T . Then, since
the target behavior is a deterministic transition system, and thus its behavior is
completely characterized by its set of traces, one defines that a controller C realizes
the target behavior T iff it realizes all its traces (Sardina et al., 2008). Such a
controller is called (exact) composition.
The set HC,τ is defined as the subset of system histories induced by C on a target
trace τ .

Definition 3.3. (Sardina et al., 2008) Given a target trace τ in T and a controller
C, HC,τ ⊆H is inductively defined as follows: (i) h0 = ⟨b10, . . . , bn0⟩ ∈HC,τ ; (ii) hj+1 ∈
HC,τ iff hj+1 = ⟨bj+1

1 , . . . , bj+1
n ⟩ = δ(hj , aj+1) and hj = ⟨bj1, . . . , b

j
n⟩ ∈ HC,τ ; aj+1 is the

same as τ ; C(hj , aj+1) = k; bjk
aj+1Ð→ bjk+1 is in Bk and bj+1

i = bji for any i ≠ k. △

3.1 Agent Behavior Composition via ATL 33

A controller C realizes a trace τ of T iff it is always defined for every prefix of any
induce history h and, also, such histories agree on final states: whenever the target
behavior is in a final state then all the available behaviors are. Formally, iff for all
h ∈HC,τ the function C(h, alength(h)+1) is defined, and for all target states tj ∈ FT of
τ it is last(hj) ∈ SF .

Exact Compositions via Simulation. Though technically involved, one can
formally define when a so-called controller, a function taking a run of the system and
the next action request and outputting the index of the available behavior where
the action is being delegated, realizes the target behavior; see (De Giacomo and
Sardina, 2007; De Giacomo et al., 2013). An interesting and much used result links
exact compositions to the formal notion of simulation (Milner, 1971b). A simulation
relation captures the behavioral equivalence of two transition systems. Intuitively,
a (transition) system S1 “simulates” another system S2, denoted S2 ⪯ S1, if S1 is
able to match all of S2’s moves. Thus, (Sardina et al., 2008) defined a so-called
ND-simulation (non-deterministic simulation) relation between (the states of) the
target behavior T and (the states of) the enacted system ES , denoted ⪯ND.

Definition 3.4. Given a target behavior T and an enacted system ES , a
ND-simulation relation of T by ES is a relation Sim ⊆ T × B1 × ⋅ ⋅ ⋅ × Bn such that
⟨bt, b1, . . . bn⟩ ∈ Sim implies:

• if t ∈ FT then bi ∈ Fi for i = 1, . . . , n: all behaviors are in a final state whenever
the target is in a final state;

• for each transition t aÐ→ t′ in T there exists an index j ∈ {1, . . . , n} such that
the following holds:

– there exists at least one transition bj
aÐ→ b′j in Bj ;

– for all transitions bj
aÐ→ b′j in Bj we have that ⟨t′, b1 . . . , b′j . . . , bn⟩ ∈ Sim

(all behaviors but Bj remain still).

△
It was proven that there exists an exact composition for a target behavior T on an
available system S iff T ⪯ND ES , that is, the enacted system can ND-simulate the
target behavior.

Theorem 1. (Sardina et al., 2008) A composition of the available behaviors B1, . . . ,Bn
realizing the target behavior T exists if and only if T is simulated by ES .
Example 11. Figure 3.6 shows the graphical representation of the simulation re-
lation between the agent behavior T and two available behaviors B1 and B2 of Fig-
ure 3.5 (T ⪯ ES). As a consequence of Theorem 1, there exists a composition of
T by S = {B1,B2}. Conversely, notice that there exists no composition for the
entertaining room example of Figure 3.7. ◻
Example 12. Figure 3.7 shows the entertaining room example2 (Bg and Ba are the
same of Figure 3.2). Figure 3.8 shows instead the complete mining example. ◻

2This example is based on one by Nitin Yadav.

34 3. Synthesis via Game Structures

t0

t1

ab

⟨a1, b0⟩ ⟨a1, b1⟩

⟨a2, b0⟩

⟨a0, b0⟩

⟨a2, b1⟩

⟨a0, b1⟩

β ,2

β ,2

α,2

α,1

β ,2

β,2

α ,2

α,1
α,1

β ,1

α,1

α,1
β ,2

α ,2

β ,1

α,1

β ,2

Figure 3.6. T simulated by the enacted system ES of S = {B1,B2}.

Theorem 1 thus relates the notion of simulation relation to the one of behavior
composition showing, basically, that checking for the existence of an behavior com-
position is equivalent to checking for the existence of a simulation relation between
the target behavior and the available behaviors. To actually synthesize a controller
from the simulation we compute the so called composition generator, or ω for short.
Intuitively, the ω is a program that returns, for each state the available behaviors
may potentially reach while realizing a target history, and for each action the target
behavior may do in such a state, the set of all available behaviors able to perform
the target behavior’s action, while guaranteeing that every future target behavior’s
actions can still be fulfilled. The ω is directly obtained by the maximal simulation
relation as follows:

Definition 3.5. (Sardiña et al., 2008) Let T be a target behavior and S = {B1, . . . ,Bn}
be a system of n available behaviors such that T is simulated by ES . The Composition
Generator (CG) for T by S is the function: ω ∶ S × Act → 2{1,...,n} such that for
s = ⟨t, b1, . . . , bn⟩ ∈ S and a ∈ Act

ω(s, a) = {i ∣ t
aÐ→ t′ is in T and

bi
aÐ→ b′i is in Bi and

t′ ⪯ND ⟨b1, . . . , b′i, . . . , bn⟩}

△

ω is a function that, given the states of the target and available behaviors and an
action, outputs the set of all available behaviors able to perform that action in
their current state, while preserving the simulation. If there exists a composition
of T by S, then the composition generator generates compositions, called generated
compositions, by picking up, at each step, one among the behaviors indices returned

3.1 Agent Behavior Composition via ATL 35

a0 a1

a2

a3

movie
game

web

stop

web

restart

Game Device Bg

b0 b1 b2music radio

stop

Audio Device Ba

d0 d1

lightOn

lightOff

Light Device Bl

c0 c1 c2
movie radio

stop

Movie Device Bm

t0 t1 t2 t3 t4

t5

lightOn
movie game

web stop

lightOff

music radio

Target T

Figure 3.7. The entertaining room example.

by ω(last(h), a). A generated compositions of ω is thus a composition C ∶H×Act→
{1, . . . , n} such that

C(h, a) ⊆ ω(last(h), a)

For further details please refer to (Sardiña et al., 2008). The next theorem guaran-
tees that all compositions can be generated by the composition generator.

Theorem 2. (Sardiña et al., 2008) Let T and S = {B1, . . . ,Bn} be as above. A
controller C is a composition of T by B1, . . . ,Bn if and only if it is a generated
composition of ω.

As for complexity, it was proven that the problem is EXPTIME-complete (Sardiña
et al., 2008).

3.1.2 Agent Behavior Synthesis via ATL

Now we look at how to use ATL for synthesizing compositions. To do so we introduce
a concurrent game structure for the agent composition problem, reducing the search
for possible compositions to the search for winning strategies in the multi-player
game played over it. For simplicity, we will assume here, wlog, that all agents share
the same action alphabet Act.

36 3. Synthesis via Game Structures

c0 c1

c2

load

maintenance

maintenance
maintenance

Old crane Bc

r0 r1

r2

to_mine

to_depotunload

Truck Br

l0 l1

stock,load
load

maintenance
Loader Bl

m0

mine

Miner Bm

f0 f1

stock

maintenance

Forklift Bf

t0

t1

t2 t3

t4

t5
mine

stock

to_mine

load

to_depot

unload

maintenance

Target T

Figure 3.8. The mining example.

Given a target agent T = ⟨T,Act, t0, %T , FT ⟩ and a n available agents B1, . . . ,Bn
with Bi = ⟨Bi,Act, b0i, %i, Fi⟩ with i = 1, . . . n, we define a game structure G for our
problem as follows.
We start by slightly modifying the available agents Bi (i = 1, . . . , n) by adding a new
state erri, disconnected, through %i, to the other states, and such that erri /∈ Fi.
We also define two convenient notations:

• Acti(b) that denotes the set of actions available to the agent i (i = t,1, . . . , n)
in its local state, i.e., for i = 1, . . . , n we have Acti(b) = {α ∈ Act ∣ ⟨b,α, b′⟩ ∈
%i for some b′}, whereas for i = t, it isActt(b) = {α ∈ Act ∣ ⟨b,α, b′⟩ ∈ %T for some b′}.

• Succi(b,α) that denotes the set of possible successor states for player i (i =
t,1, . . . , n) when it performs action α from its local state b, i.e., Succi(b,α) =
{b′ ∈ Bi ∣ ⟨b, a, b′⟩ ∈ %i} for i = 1, . . . , n and Succi(b,α) = {b′ ∈ T ∣ ⟨b,α, b′⟩ ∈ %T }
for i = t.

The game structure G = ⟨k,Q,Π, π, d, δ⟩ is defined as follows.

Players The set of players Σ is formed by one player for each available agent,
one player for the target agent, and one player for the controller. Each player is

3.1 Agent Behavior Composition via ATL 37

x, 1,
 s10, s20, t0

x, 2,
 s11, s21, t0 z, 2,

 s11, s20, t1

x, 1,
 err, s20, t0

z, 2,
 s10, err, t1

<s11,err,z,2>
<s12,err,z,2>

y, 1,
 s11, s20, t1

x, 2,
 s11, s20, t0

<err,s21,x,2>

<err,s20,x,2>

z, 1,
 s12, s20, t1

z, 1,
 s12, s21, t1

x, 1,
 s10, s20, t0

z, 2,
 s11, err, t1<s12,err,z,1>

x, 2,
 s12, err, t0 x, 1,

 s10, s21, t0

<s11,err,z,2>
<s12,err,z,2>

<s11,err,z,1>

<s12,s20,z,1>

<err,s20,x,1>
<err,s21,x,1>

<s12,s20,z,2>
<s10,err,x,1>

<s10,err,x,2>
<s12,s20,z,1>

<s10,s20,x,1>
<s10,s21,x,1>

<s11,err,z,1>

<err,s20,x,1>
<err,s21,x,1> <s12,err,z,2>

<s12,err,z,1>

<err,s20,x,2>

<err,s21,x,2>

<s12,err,z,1>

z, 1,
 s11, s21, t1

<s10,err,z,1>

(a)

state1 state2 statet act
a0 b0 t0 x {1}
a0 b0 t1 z {2}
a0 b1 t0 x {2}
a1 b0 t0 x {1}
a1 b0 t1 z {2}
a1 b1 t0 x {1,2}
a2 b0 t1 z {1}
a2 b1 t1 z {1}

(b)

Figure 3.9. A fragment of G and the corresponding ωG for the instance of Figure 3.5

identified by an integer Σ = {1, . . . , k}.

• i ∈ {1 . . . n} for the available agents (n = k − 2)
• t = k − 1 is the target agent
• k is the controller

Game structure states The states of the game structure are characterized by
the following finite range functions:

• statei : returns the current state of the agent i (i = t,1, . . . , n); it ranges over
b ∈ Bi for i ≠ t and b ∈ T for i = t.

• sch : returns the scheduled available agent, i.e., the agent that performed the
last action; it ranges over i ∈ {1, . . . , n}.

• actt : returns the action requested by the target, it ranges over α ∈ Act.
• finali : returns whether the current state statei of agent i is final or not

(i = t,1, . . . , n); it ranges over booleans.

38 3. Synthesis via Game Structures

Q is the set of states obtained by assigning a value to each of these functions, and Π
is the set of propositions of the form (f = v) corresponding to assert that function
f has value v. Notice that we can use directly finite range functions, without fixing
any specific encoding for the technical development that follows.
The function π, given a state q of the game structure returns the values for the
various functions. For simplicity, we will use the notation statei(q) = b instead of
(statei = b) ∈ π(q).

Initial states The initial states Q0 of the game structure are those q0 such that:

• every agent is in its local initial state, statei(q0) = b0i and finali(q0) = true iff
b0i ∈ Fi for any i ∈ {1, . . . , n}, and statet(q0) = t0, finalt(q0) = true iff t0 ∈ FT ,

• actt(q0) = α for some action α ∈ Act(t0), and
• sch(q0) = 1 (this is a dummy value, which will be not used in any way during

the game).

Note that regular concurrent game structures do not have initial states: model-
checking an ATL formula over a game structure will return the subset of game states
satisfying it. However, we are here interested in performing local model-checking,
i.e., to check whether the formula is true in all states belonging to Q0.

Players’ moves The moves that the player i (i = 1, . . . , n), representing the avail-
able agent Bi, can perform in a state q are:

Movesi(q) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{b′ ∣ b′ ∈ Succi(statei(q), actt(q))}
if Succi(statei(q), actt(q)) ≠ ∅

{erri} otherwise.

The moves that the player k, representing the controller, can do in a state q are:

Movesk(q) = {1, . . . , n}.

The moves that the player t, representing the target behavior T , can perform in a
state q are (with a little abuse of notation, and recalling that the target agent is
deterministic):

Movest(q) = Actt(Succ(statet(q), actt(q))).

Notice that the player t chooses in the current turn the action that will be executed
next.
The number of moves is di(q) = ∣Movesi(q)∣ and, wlog, we can associate some
enumeration of the elements in Movesi(q).

Game transitions The game transition function δ is defined as follows: δ(q, j1, . . . , jk)
is the game structure state q′ such that:

• sch(q′) = jk
• statew(q′) = jw if jk = w

3.1 Agent Behavior Composition via ATL 39

• statei(q′) = statei(q) ∀i ≠ w
• statet(q′) = bt, where {bt} = Succ(statet(q), actt(q))
• actt(q′) = jt
• finali(q′) = true iff statei(q′) ∈ Fi.

Example 13. Figure 3.9(a) shows a fragment of the game structure G for the
example in Figure 3.5. Nodes represent states of the game and edges represent
game transitions labelled with move vectors (for simplicity, states where one of the
agents is in err are left as sink nodes). ◻

ATL formula to check for composition Checking the existence of a composi-
tion is reduced to checking the ATL formula ϕ, over the game structure G, defined
as follows:

ϕ = ≪k≫ ◻ (
∧i=1,...,n(statei ≠ erri) ∧
(finalt → (∧i=1,...,nfinali = true))

)

Given a target agent T and n available agents B1, . . . ,Bn, let G = ⟨k,Q,Π, π, d, δ⟩
be the game structure and ϕ the ATL formula defined above. The set of winning
states of the games is:

[ϕ]G = {q ∈ Q ∣ q ⊧ ϕ}

Referring to Figure 3.9(a) grey states are those in [ϕ]G .
From [ϕ]G we can build an ATL Composition Generator CGG for the composition
of S for T exploiting the set [ϕ]G .

Definition 3.6. (ATL Composition Generator) Let G and ϕ be as above. We
define the ATL Composition Generator CGG as a tuple CGG = ⟨Act,{1, . . . , n}, SG ,
S0
G , ωG , δG⟩ where:

• Act is the set of actions, and {1, . . . , n} is the set of players representing the
available agents, as in G;

• SG = {⟨statet(q), state1(q), . . . , staten(q)⟩ ∣ q ∈ [ϕ]G};

• S0
G = {⟨statet(q0), state1(q0), . . . , staten(q0)⟩ ∣ q0 ∈ Qo ∩ SG};

• δG ∶ SG × Act × {1, . . . , n} → SG is the transition function, defined as fol-
lows: ⟨b′t, b′1, . . . , b′n⟩ ∈ δG(⟨bt, b1, . . . , bn⟩, a,w) iff there exists q ∈ [ϕ]G with
bi = statei(q) for i = t,1, . . . , n, a = actt(q), b′t ∈ Succt(bt, a) such that for each
q′ = δ(q, b′1,⋯, b′n, a′,w), with sch(q′) = w , b′w ∈ Succw(bw, a), b′i = bi for i ≠ w,
and a′ ∈ Actt(q), we have q′ ∈ [ϕ]G .

• ωG ∶ SG ×Act→ 2{1,...,n} is the agent selection function: ωG(⟨bt, b1, . . . , bn⟩, a) =
{i ∣ ∃⟨b′t, b′1, . . . , b′n⟩ with ⟨b′t, b′1, . . . , b′n⟩ ∈ δG(⟨bt, b1, . . . , bn⟩, a, i)}.

40 3. Synthesis via Game Structures

△

Figure 3.9(b) shows the agent selection function ωG of the ATL Composition Gen-
erator for the game structure of Figure 3.9(a). Next theorem states the soundness
and completeness of the method based on the construction of CGGfor computing
agent compositions.

Theorem 3. Let T be a target agent and S = {B1, . . . ,Bn} be the set of available
agents (the available system). Let CGG = ⟨Act,{1, . . . , n}, SG , S0

G , ωG , δG⟩ and ω

be, respectively, the output function of the ATL Composition Generator and the
Composition Generator for T by B1, . . . ,Bn. Then

1. ⟨bt, b1, . . . , bn⟩ ∈ SG iff bt ⪯ND ⟨b1, . . . , bn⟩ and

2. for all bt, b1, . . . , bn s.t. bt ⪯ND ⟨b1, . . . , bn⟩ and for all a ∈ Act, we have:

ωG(⟨bt, b1, . . . , bn⟩, a) = ω(⟨bt, b1, . . . , bn⟩, a)

Proof. We focus on (1) since (2) is a direct consequence of 1 and of the definition ωG .
CGG ’s correctness is basically proven showing that the set S in CGG is a simulation
relation (i.e., it satisfies the constraints (i) and (ii) in the definition of simulation
relation), and it is hence contained in ⪯ND which is the largest one.
As for completeness, we show that there exists no generated composition C for T and
B1, . . . ,Bn which cannot be generated by ωG . Toward contradiction let us assume
that one such C exists. Then there exists a history of the system coherent with C,
such that, considering the definition of CGG either (a) the requested action can’t
be performed in target’s current state bt, (b) target’s current state bt is final but
at least one of the current states of the bi (i = 1, . . . , n) available agents is not, or
(c) no available agent is able to perform the requested action in its own current
state bi (i = 1, . . . , n), that is if all successor game states reached after performing it
are error states. But (a) cannot happen by construction of CGG being the history
coherent with C, and if either of (b) and (c) happens we get that bt /⪯ND ⟨b1, . . . , bn⟩
contradicting the assumption that C is a generated composition. ∎

Analogously of what done for the composition generator in Section 3.1.1, we can
define the notion of CGG generated compositions: i.e., the compositions obtained
by picking up one among the available agents returned by function ωG , at each step
of the (virtual) target agent execution starting with all agents (target and available
in their initial state). Then, as a direct consequence of Theorem 3 and the results
of (Sardiña et al., 2008), we have that:

Theorem 4. Let T be a target agent and S = {B1, . . . ,Bn} be the set of available
agents (the available system). Then (i) if [ϕ]G ≠ ∅ then every controller generated
by CGG is a composition of T by S and (ii) if such composition does exist, then
[ϕ]G ≠ ∅ and every controller that is a composition of the target agent T by S can
be generated by the ATL Composition Generator CGG .

3.1 Agent Behavior Composition via ATL 41

By recalling that model checking ATL formulas is linear in the size of the game
structure, analyzing the construction above we have:

Theorem 5. Computing ATL composition generator (CGG) is polynomial in the
number of states of the target and available agents and exponential in the number
of available agents.

Proof. The results follows by the construction of the game structure G above and
from the fact that model checking ATL formula over game structure can be done
in polynomial time. ∎

From Theorem 4 and the EXPTIME-hardness of result in (Muscholl andWalukiewicz,
2008), we get a new proof of the complexity characterization of the agent composi-
tion problem (Sardiña et al., 2008).

Theorem 6. (Sardiña et al., 2008) Computing agent behavior composition is EXPTIME-
complete.

3.1.3 Implementation

In this section we show how to use the ATL model checker MCMAS (Lomuscio et al.,
2009) to solve agent composition via ATL model checking. In particular, following
the definition of game structure G, we show how to encode instances of the agent
composition problem in ISPL (Interpreted Systems Programming Language) which
is the input formalism for MCMAS. For readability, we show here a basic encoding,
according to the definition of G; some refinement will be discussed at the end of the
section.
ISPL distinguishes between two kinds of agents: ISPL standard agents and one ISPL
Environment. In brief, both ISPL standard agents and the ISPL Environment are
characterized by (1) a set of local states, which are private with the exception of
Environment’s variables declared as Obsvars; (2) a set of actions, one of which is
choosen by the ISPL agent in every state; (3) a rule describing which action can
be performed by the ISPL agent in each local state (Protocol); and (4) a function
describing how the local state evolve (Evolution).
We encode both the available agents and the target agent of our problem as ISPL
standard agents, while we encode the controller in the Environment. Each ISPL
standard agent features a variable state, holding the current state of the cor-
responding agent, while the ISPL Environment has two variables: sch and act,
which correspond to propositions sch and actt in Π, i.e., respectively, the available
agent chosen by the controller to perform the requested target agent’s action, and
the target agent’s action itself. The special value start is introduced for technical
convenience: we need to “generate” a state for each possible action the target agent
may request at the beginning of the game. All variables have enumeration type,
ranging over the set of values they can assume according to the definition of G.
We illustrate the ISPL encoding of our running example. Consider the same avail-
able and target agents as in Figure 3.5. The code for the ISPL Environment
Environment:

42 3. Synthesis via Game Structures

Semantics = SA;

Agent Environment
Obsvars:

sch : {B1,B2,start};
act : {a,b,start};

end Obsvars
Actions = {B1,B2,start};
Protocol:

act=start : {start};
Other : {B1,B2};

end Protocol
Evolution:

sch=B1 if Action=B1;
sch=B2 if Action=B2;
act=a if T.Action=a;
act=b if T.Action=b;

end Evolution
end Agent

Notice that the values of sch are unconstrained; they depend on the action chosen by
the environment, which chooses them so as to satisfy the ATL formula of interest.
Instead, act stores the action that the target agent has chosen to do next. The
statement Semantics = SA specifies that only one assignment is allowed in each
evolution line. This implies that evolution items are partitioned into groups such
that two items belong to the same group if and only if they update the same variable
and that they are not mutually excluded as long as they belong to different groups.
Next we show the encoding as ISPL standard agents of the available agents B1 and
B2.

Agent B1
Vars:
state : {a0,a1,a2,err};

end Vars
Actions = {a0,a1,a2,err};
Protocol:
state=a0 and Environment.act=a : {a1,a2};
state=a1 and Environment.act=a : {a2};
state=a2 and Environment.act=b : {a0};
Other : {err};

end Protocol
Evolution:
state=err if Action=err and Environment.Action=B1;
state=a0 if Action=a0 and Environment.Action=B1;

3.1 Agent Behavior Composition via ATL 43

state=a1 if Action=a1 and Environment.Action=B1;
state=a2 if Action=a2 and Environment.Action=B1;

end Evolution
end Agent

Agent B2
Vars:
state : {b0,b1,err};

end Vars
Actions = {b0,b1,err};
Protocol:
state=b0 and Environment.act=b : {b0,b1};
state=b1 and Environment.act=a : {b0};
Other : {err};

end Protocol
Evolution:
state=err if Action=err and Environment.Action=B2;
state=b0 if Action=b0 and Environment.Action=B2;
state=b1 if Action=b1 and Environment.Action=B2;

end Evolution
end Agent

Each ISPL standard agent for the available agents reads variable Environment.act
which has been chosen in the previous game round and chooses a next state to go
to among those reachable through that action. If such an action is not available to
the agent in its current state, then err is chosen. If the ISPL standard agent is the
one chosen by the controller, then by reaching such an error state, it falsifies the
ATL formula.
Finally, we show the encoding as a ISPL standard agent T of the target agent T .

Agent T
Vars:

state : {t0,t1};
end Vars
Actions = {a,b};
Protocol:

Environment.act=start: {a};
state=t0 and Environment.act=a : {b};
state=t1 and Environment.act=b : {a};

end Protocol
Evolution:

state=t1 if state=t0 and Environment.act=a;
state=t0 if state=t1 and Environment.act=b;

end Evolution
end Agent

44 3. Synthesis via Game Structures

The ISPL standard agent T reads the current action Environment.act in the ISPL
Environment Environment, which stores its own previous choice, and virtually
makes the corresponding transition (remember that the target agent is determinis-
tic) getting to the new state. Then, it selects its next action among those available
in its next state. Consider for example the first Evolution statement: state=t1
if state=t0 and Environment.act=a. Such a can be read as follows: “if current
state is t0 and the (last) action requested is a, then request an action chosen among
those available at state t1, namely the set {b} in this case”. Note that, consider-
ing the definition of Environment, the ISPL standard agent T chooses the action to
be stored in Environment.act at the next turn of the game.
The ISPL code is completed as follows.

Evaluation
Error if B1.state=err or B2.state=err;
B1Final if B1.state=a0 or B1.state=a1;
B2Final if B2.state=b0 or B2.state=b1;
TFinal if T.state=t0;

end Evaluation

InitStates
B1.state=a0 and B2.state=b0 and T.state=t0 and
Environment.act=start and Environment.sch=start;

end InitStates

Groups
Controller = {Environment};

end Groups

Formulae
<Controller> G (

!Error and (TFinal -> (B1Final and B2Final))
);

end Formulae

where we define some computed propositions for convenience (Evaluation), the
initial state of the game (InitState), the group of agents appearing in the ATL
formula (Groups), and the ATL formula itself (Formulae). All of these part directly
correspond to what described in Section 3.1.2: in particular the ATL formula re-
quires that all ISPL standard agents for available agents have to be in a final state
if the one for the target does, and none of the ISPL standard agent for available
agents can be in error state (since this can only be reached whenever the scheduled
available agent cannot actually replicate requested action).
Standard MCMAS checks if the ATL formula ϕ is satisfied in the specified game
structure G. However, we used an available prototype of MCMAS that can actually
return a convenient data structure with the set of all states of the game structure
that satisfy the ATL formula, namely the set [ϕ]G , and the transitions among them.

3.1 Agent Behavior Composition via ATL 45

Using such a data structure we wrote a simple Java program that actually computes
ωG of Definition 3.6, thus obtaining a practical way to generate all compositions.
The whole approach is quite effective in practice. In particular, we have run some
experimental comparisons with direct implementations of the simulation approach
proposed in (Sardiña et al., 2008), and our MCMAS based system is generally two
orders of magnitude faster. We also compare it with implementations based on tlv
(Piterman et al., 2006a) that are tailored for the agent composition problem (Patrizi,
2009), and the results of the two systems are similar, even if we used a completely
standard MCMAS implementation and prototypical additional components.
We close the section by observing that the ISPL encoding shown here, which directly
reflects the theoretical construction done above, could be easily refined (though
possibly at expenses of clarity) with at least two major improvements. First, we
can massively reduce the number of error states from the resulting structure, giving
ISPL Environment both a copy of available agents’ states and a protocol function
which only schedules ISPL standard agents that are actually able to perform the
current target action, according to their own protocols. If none of the ISPL standard
agents is able to fullfill this condition, then an error action is selected, and the
successor state is flagged with a boolean variable set to true in the Environment.
Local error states are no more needed and the Error definition in the Evaluation
section needs to be changed accordingly. Second, the system can be forced to “loop”
after such an error condition is reached, e.g. forcing all ISPL agents to select an
error action, thus avoiding to generate further (error) states.

3.1.4 Discussion

We have shown that indeed agent behavior composition can be naturally expressed
as checking a certain ATL formula over a specific game structure. This gives effec-
tive techniques for agent composition based on current ATL model checkers. The
connection between agent composition and ATL and more generally the work on
ATL-based agent verification can be quite fruitful in the future. Several advance-
ments in the recent work on ATL within the Agent community can be of great inter-
est for agent composition. For example, the recent work on using ATL together with
forms of epistemic logics to capture the different knowledge of the various agents
could give effective techniques to deal with partial observability of the behaviors
of the available agents in the agent composition. Currently known techniques are
mostly based on a belief-state construction (Rintanen, 2004b; Pistore et al., 2005;
De Giacomo et al., 2009) and have mostly resisted effective implementations.
In the last years, the research on behavior composition within the AI community
has been quite fruitful and several composition techniques have been devised, based
on reduction to PDL satisfiability (Harel et al., 2000; De Giacomo and Sardina,
2007; Sardiña et al., 2007), on forms of simulation or bisimulation (Milner, 1971c;
Sardiña et al., 2008; De Giacomo et al., 2009; Balbiani et al., 2009), on LTL (Linear
time logic) synthesis (Pnueli and Rosner, 1989b; Piterman et al., 2006a; Lustig and
Vardi, 2009; Patrizi, 2009) and on direct techniques (Stroeder and Pagnucco, 2009).
In particular, we followed the approach proposed in (Stroeder and Pagnucco, 2009;
Sardiña et al., 2007; Sardiña et al., 2008; De Giacomo et al., 2013). Observe how,
in this framework, every interaction (of a controller) with a behavior is abstracted

46 3. Synthesis via Game Structures

away to a single action and no distinction is made between the inputs/output signals.
Other works, such as (Lustig and Vardi, 2009) make this distinction more explicit
along the line of (Pnueli and Rosner, 1989b). However, in (Lustig and Vardi, 2009) a
component receives control when entering an initial state and releases control when
entering a final state, and composing components amounts to deciding which of
them will resume control when the control is relinquished. Therefore, given control
to a component is not modeled as an atomic operation, hence the quantification
structure on input and output signals is different: in our approach, a composition
generator assigns action execution to components in a step-wise fashion.

3.2 Generalized 2GS
In this section we review a series of agent behavior synthesis problems under full ob-
servability and nondeterminism (partial controllability), ranging from conditional
planning, to recently introduced agent planning programs, and to sophisticated
forms of agent behavior compositions, and show that all of them can be solved by
model checking two-player game structures. These structures are akin to transi-
tion systems/Kripke structures (see Chapter 2), usually adopted in model checking,
except that they distinguish (and hence allow to separately quantify) between the
actions/moves of two antagonistic players. We show that using them we can imple-
ment solvers for several agent behavior synthesis problems. Moreover, by exploiting
the connections between such game structures and the interpretation structures
for ATL, we also provide implementations of the solution techniques for the above
problems by relying on a suitable use of an ATL model checker.
The simplest problem we consider is standard conditional planning in nondeter-
ministic fully observable domains (Rintanen, 2004a), which is well understood by
the AI community. Then, we move to a sophisticated form of planning recently
introduced in (De Giacomo et al., 2010b), in which so-called agent planning pro-
grams—programs built only from achievement and maintenance goals—are meant
to merge two traditions in AI research, namely, Automated Planning and Agent-
Oriented Programming (Wooldridge, 2009b). Solving, that is, realizing, such plan-
ning programs requires temporally extended plans that loop and possibly do not
even terminate, analogously to (Kerjean et al., 2006). Finally, we turn to an ad-
vanced form of agent behavior composition (see Section 3.1.1) in which we shall
consider an advanced form of behavior composition, in which several devices are
composed in order to realize multiple virtual agents simultaneously (Sardina and
De Giacomo, 2008), which is relevant, e.g., for robot ecology, ubiquitous robots, or
intelligent spaces (Lundh et al., 2008).
The techniques originally proposed for the above synthesis problems are quite di-
verse, ranging from specific forms of planning (for conditional planning), to simu-
lation (for composition), to LTL-based synthesis (for agent planning programs and
advanced forms of composition).
The main contribution of this work is to show that diverse agent behavior synthesis
problems, including all the ones mentioned above, can be treated uniformly by
relying on two foundational ingredients:

• making explicit the assumption of two different roles in reasoning/synthesis:

3.2 Generalized 2GS 47

a role that works against the solution, the so-called “environment;” and a role
that works towards the solution, the so-called “controller;”

• exploiting full observability even in the presence of nondeterminism (i.e., par-
tial controllability) to do reasoning and synthesis based on model checking
(Clarke et al., 1999c).

On the basis of these two points, we introduce two-player game structures, which are
akin to the widely adopted transition systems/Kripke structures in model checking,
except that they distinguish between the actions/moves of two antagonistic play-
ers: the environment and the controller. Such a distinction has its roots in discrete
control theory (Ramadge and Wonham, 1989a), and has lately been adopted in Ver-
ification for dealing with synthesis from temporal specifications (Piterman et al.,
2006b). Also, this distinction has been explicitly made in some AI work on rea-
soning about actions and on agents, e.g., (Lespérance et al., 2008; Genesereth and
Nilsson, 1987; Wooldridge, 2009b). Formally, such a distinction allows for separately
quantifying over both environment’s and controller’s moves. To fully exploit this
possibility, we introduce a variant of (modal) µ-calculus (Emerson, 1996) (see Sec-
tion 2.5) —possibly the most powerful formalism for temporal specification (Clarke
et al., 1999c)—that takes into account such a distinction.
We demonstrate then that the resulting framework is indeed a very powerful one.
To that end, we show that one can reformulate each of the above synthesis prob-
lems, as well as many others, as the task of model checking a (typically simple)
µ-calculus formula over suitable two-player game structures. By exploiting the re-
sult on µ-calculus model checking, we are able to solve, optimally wrt computational
complexity and effectively in practice, through model checking tools, several forms
of agent behavior synthesis.

3.2.1 Two-player Game Structures

We start by introducing the notion of two-player game structure (2GS, for short),
largely inspired by those game structures used in synthesis by model checking in
Verification (Piterman et al., 2006b; de Alfaro et al., 2001), which in turn are at the
base of ATL interpretation structures (Alur et al., 2002), often used in modeling
multi-agent systems (Wooldridge, 2009b). 2GS’s are akin to transition systems used
to describe the systems to be checked in Verification (Clarke et al., 1999c), with
a substantial difference, though: while a transition system describes the evolution
of a system, a 2GS describes the joint evolution of two autonomous systems—the
environment and the controller—running together and interacting at each step, as
if engaged in a sort of game.
Formally, a two-player game structure (2GS) is a tupleG = ⟨X ,Y, start, ρe, ρc⟩, where:

• X = {x1, . . . , xm} and Y = {y1, . . . , yn} are two disjoint finite sets represent-
ing the environment and controller variables, respectively. Each variable xi
(resp. yi) ranges over finite domain Xi (resp. Yi). Set X ∪ Y is the set of
game state variables. A valuation of variables in X ∪Y is a total function val
assigning to each xi ∈ X (resp. yi ∈ Y) a value val(xi) ∈Xi (resp. val(yi) ∈ Yi).
For convenience, we represent valuations as vectors ⟨x⃗, y⃗⟩ ∈ X⃗ × Y⃗ , where

48 3. Synthesis via Game Structures

X⃗ = X1 × ⋯ × Xm and Y⃗ = Y1 × ⋯ × Yn. Notice that X⃗ (resp. Y⃗) corre-
sponds to the subvaluation of variables in X (resp. Y). A valuation ⟨x⃗, y⃗⟩ is a
game state, where x⃗ and y⃗ are the corresponding environment and controller
states, respectively.

• start = ⟨x⃗o, y⃗o⟩ is the initial state of the game.

• ρe ⊆ X⃗ × Y⃗ ×X⃗ is the environment transition relation, which relates each game
state to its possible successor environment states (or moves).

• ρc ⊆ X⃗ × Y⃗ × X⃗ × Y⃗ is the controller transition relation, which relates each
game state and environment move to the possible controller replies. Notice
that formally the projection of ρc on X⃗ × Y⃗ × X⃗, which does not include the
controller response, is trivially ρe.

ρe(x⃗, y⃗, x⃗′) ρc(x⃗, y⃗, x⃗′, y⃗′)

X Y

x⃗′, y⃗

x⃗′, y⃗′x⃗, y⃗

Figure 3.10. A turn of a 2GS.

The idea of 2GS is that from a current game state ⟨x⃗, y⃗⟩, the environment moves
by choosing an x⃗′ such that ρe(x⃗, y⃗, x⃗′) holds, and, after this, the controller replies
back by choosing a y⃗′ such that ρc(x⃗, y⃗, x⃗′, y⃗′) holds. Intuitively, a game structure
represents the rules of a game played by these two adversaries, the environment
and the controller. More precisely, the game structure defines the constraints each
player is subject to when moving (but not the goal of the game).
Given a 2GS G as above, one can express the winning conditions for the controller
(i.e., its goal) through a goal formula over G. To express such goal formulas, we use
a variant of the µ-calculus (Emerson, 1996) interpreted over game structures. The
key building block is the operator ⊙Ψ interpreted as follows

⟨x⃗, y⃗⟩ ⊧ ⊙Ψ iff
∃x⃗′.ρe(x⃗, y⃗, x⃗′) ∧
∀x⃗′.ρe(x⃗, y⃗, x⃗′)→ ∃y⃗′.ρc(x⃗, y⃗, x⃗′, y⃗′) s.t. ⟨x⃗′, y⃗′⟩ ⊧ Ψ.

In English, this operator expresses the following: for every move x⃗ of the environ-
ment from the game state ⟨x⃗, y⃗⟩, there is a move y⃗′ of controller such that in the
resulting state of the game ⟨x⃗′, y⃗′⟩ the property Ψ holds. With this operator at hand,
we develop the whole µ-calculus as follows:

Ψ← ϕ ∣ Z ∣ Ψ1 ∧Ψ2 ∣ Ψ1 ∨Ψ2 ∣ ⊙Ψ ∣ µZ.Ψ ∣ νZ.Ψ,

3.2 Generalized 2GS 49

where ϕ is an arbitrary boolean expression built from propositions of the form
(xi = x̄i) and (yi = ȳi); Z is a predicate variable; ⊙Ψ is as defined above; and µ
(resp. ν) is the least (resp. greatest) fixpoint operator from the µ-calculus. We say
that a 2GS G satisfies goal formula Ψ, written G ⊧ Ψ, if and only if start ⊧ Ψ.
We recall that one can express arbitrary temporal/dynamic properties using least
and greatest fixpoints constructions (Emerson, 1996). For instance, to express that
the controller wins the game if a state satisfying a formula ϕ is reached from the
initial state, one can write G ⊧⟐ϕ, where:

⟐ϕ ≐ µZ. ϕ ∨ ⊙Z.

Similarly, a greatest fixpoint construction can be used to express the ability of the
controller to maintain a property ϕ, namely, we write G ⊧ ⊡ϕ, where:

⊡ϕ ≐ νZ.ϕ ∧ ⊙Z.

Fixpoints can be also nested into each other, for example:

⊡⟐ϕ ≐ νZ1.(µZ2.((ϕ ∧ ⊙Z1) ∨ ⊙Z2))

expresses that the controller has a strategy to force the game so that it is always
the case that eventually a state where ϕ holds is reached.
In general, we shall be interested in checking whether the goal formula is satisfied
in a game structure, which amounts to model checking the game structure. In fact,
such a form of model checking is essentially identical to the standard model checking
of transition systems (Clarke et al., 1999c), except for the computation of the pre-
images, which, in the case of game structures are based on the operator ⊙Ψ. Hence,
one can apply classical results in model checking for µ-calculus (Emerson, 1996),
thus obtaining a computational characterization of the complexity of checking goal
formulas in 2GSs.

Theorem 7. Checking a goal formula Ψ over a game structureG = ⟨X ,Y, start, ρe, ρc⟩
can be done in time

O((∣G∣ ⋅ ∣Ψ∣)k),

where ∣G∣ denotes the number of game states of G plus ∣ρe∣ + ∣ρc∣, ∣Ψ∣ is the size of
formula Ψ (considering propositional formulas as atomic), and k is the number of
nested fixpoints sharing the same free variables in Ψ.

Proof. The thesis follows from the results in (Emerson, 1996) on fixpoints compu-
tations and from the definition of ⊙Ψ, which, though more sophisticated than in
standard µ-calculus, only involves local checks, that is, checks on transitions and
states directly connected to the current state. ∎

We are not merely interested in verifying goal formulas, but, also and more im-
portantly, in synthesizing strategies to actually fulfill them. A (controller) strategy
is a partial function f ∶ (X⃗ × Y⃗)+ × X⃗ ↦ Y⃗ such that for every sequence λ =
⟨x⃗0, y⃗0⟩⋯⟨x⃗n, y⃗n⟩ and every x⃗′ ∈ X⃗ such that ρe(x⃗n, y⃗n, x⃗′) holds, it is the case that
ρc(x⃗n, y⃗n, x⃗′, f(λ, x⃗′)) applies. We say that a strategy f is winning if by resolving

50 3. Synthesis via Game Structures

the controller existential choice in evaluating the formulas of the form ⊙Ψ accord-
ing to f , the goal formula is satisfied. Notably, model checking algorithms provide
a witness of the checked property (Clarke et al., 1999c; Piterman et al., 2006b),
which, in our case, consists of a labeling of the game structure produced during the
model checking process. From labelled game states, one can read how the controller
is meant to react to the environment in order to fulfill the formulas that label the
state itself, and from this, define a strategy to fulfill the goal formula.

3.2.2 Conditional Planning

To better understand how game structures work, we first use them to capture con-
ditional planning with full observability (Rintanen, 2004a; Ghallab et al., 2004).
Let D = ⟨P,A,S0, ρ⟩ be a (nondeterministic) dynamic domain, where: (i) P =
{p1, . . . , pn} is a finite set of domain propositions, and a state is a subset of 2P ;
(ii) A = {a1, . . . , ar} is the finite set of domain actions; (iii) S0 ∈ 2P is the initial
state; (iv) ρ ⊆ 2P ×A × 2P is the domain transition relation. We freely interchange
notations ⟨S, a,S′⟩ ∈ ρ and S aÐ→ S′.
Suppose next that ϕ is the propositional formula over P expressing the (reachability)
goal for D. We then define the game structure GD = ⟨X ,Y, start, ρe, ρc⟩ as follows:

• X = P and Y = {act}, with act ranging over A ∪ {ainit};
• start = ⟨S0, ainit⟩;
• ρe = ρ ∪ {⟨S0, ainit, S0⟩};
• ρc(S, a,S′, a′) iff for some S ′′ ∈ 2P , ρ(S′, a′, S′′) holds (i.e., the action a′ is

executable next).

In words, the environment plays the role of the the nondeterministic domain D,
while the controller is meant to capture a plan. At each step, the controller chooses
an action act, which must be executable in the current state of the domain (fourth
point above). Once the controller has selected a certain action, the environment
plays its turn by choosing the next state to evolve to (third point above). This
move basically involves resolving the nondeterminism of the action act selected by
the controller. A special action ainit is used as the initial (dummy) controller move,
which keeps the environment in D’s initial state S0.
Finally, we represent the planning goal ϕ as the goal formula ⟐ϕ over GD. Such a
formula requires that, no matter how the environment moves (i.e., how domain D
happens to evolve), the controller guarantees reachability of a game state where ϕ
holds (i.e., a domain state satisfying ϕ).

Theorem 8. There exists a conditional plan for reaching goal ϕ in the dynamic
domain D iff GD ⊧⟐ϕ.

As discussed above, we can check such a property by standard model checking.
What is more, from a witness, we can directly compute a winning strategy f , which
corresponds to a conditional plan for goal ϕ in domain D.
As for computational complexity, by applying Theorem 7 and considering that the
goal formula ⟐ϕ ≐ µZ. ϕ∨⊙Z has no nested fixpoints, we get that such a technique

3.2 Generalized 2GS 51

computes conditional plans in O(∣G∣) = O(∣2P ∣ ⋅ ∣A∣ + ∣ρ∣). That is, its complexity is
polynomial in the size of the domain and exponential in its representation, matching
the problem complexity, which is EXPTIME-complete (Rintanen, 2004a).
It is worth noting that, although we have focused on standard conditional planning,
similar reductions can be done for other forms of planning with full observability.
In particular, all planning accounts tackled via model checking of CTL, including
strong cyclic planning (Cimatti et al., 2003), can be directly recast as finding a
winning strategy for a goal formula without nesting of fixpoints in a 2GS as above.
Also the propositional variant of frameworks where both the agent and the domain
behaviors are modeled as a Golog-like program (Lespérance et al., 2008) can be
easily captured, see (Fritz et al., 2008).

3.2.3 Agent Planning Programs

Next, we consider an advanced form of planning that requires loops and possibly
non-terminating plans (De Giacomo et al., 2010b). Given a dynamic domain D =
⟨P,A,S0, ρ⟩ as above, an agent planning program for D is a tuple T = ⟨T,G, t0, δ⟩,
where:

• T = {t0, . . . , tq} is the finite set of program states;
• G is a finite set of goals of the form “achieve φ while maintaining ψ,” denoted

by pairs g = ⟨ψ,φ⟩, where ψ and φ are propositional formulae over P ;
• t0 ∈ T is the program initial state;
• δ ⊆ T ×G×T is the program transition relation. We freely interchange notations

⟨t, g, t′⟩ ∈ δ and t gÐ→ t′ in T .

Intuitively, an agent planning program provides a structured representation of the
different goals that an agent may need to satisfy—it encodes the agent’s space of
deliberation.
Agent planning programs are realized as follows (for the formal definition see (De
Giacomo et al., 2010b)): at any point in time, the planning program is in a state
t and the dynamic domain in a state S; the agent requests a transition t

⟨ψ,φ⟩Ð→ t′ in
T (e.g., t

⟨¬Driving,At(pub)⟩Ð→ t′, i.e., be at the pub and never be driving); then, a plan π
from S that leads the dynamic domain to a state satisfying φ, while only traversing
states where ψ holds, is synthesized—notice that such a plan must also guarantee
the continuation of the program; upon plan completion, the agent planning program
moves to t′ and requests a new transition, and so on. Notice also that, at any
point in time, all possible choices available in the agent planning program must be
guaranteed by the system, since the actual request that will be made is not known
in advance—the whole agent’s space of deliberation ought to be accounted for.
For example, imagine a planning program for specifying the routine habits of a
young researcher. Initially, the researcher is at home, from where she may choose
to go to work or to a friend’s house. After work, she may want to go back home
or to a pub, and so on. So, in order to fulfill the initial possible request to go to
work, plans involving driving or taking a bus to the lab are calculated and one of
them is chosen. Further plans are then calculated to fulfill the request of going to

52 3. Synthesis via Game Structures

the pub, and so on. Now suppose that the researcher would like to always leave
the car home when going to the pub. Then, plans involving driving to work are
not appropriate, not because they fail to satisfy the goal of being at work, but
because they would prevent the fulfillment of further goals (namely, going to the
pub with the car left at home). Thus, plans must not only fulfill their goals, but
must also make fulfilling later requests encoded in the structure of the program,
possibly within loops, possible.
Let us now show how the problem of finding a realization of a planning program
T can be reduced to building a winning strategy for a goal over a 2GS. Precisely,
from D and T , we shall build a 2GS G and a goal formula ϕ, such that G ⊧ ϕ iff
T is realizable in D. Also, from a witness of the check G ⊧ ϕ, we shall extract a
winning strategy f that corresponds to a realization of T .
The construction of G = ⟨X ,Y, start, ρe, ρc⟩ is as follows. The set of environment
variables is X = {P, trT }, where trT ranges over δ ∪ {trinit}, that is, the set of
T ’s transitions (plus trinit, for technical convenience only). The set of controller
variables is Y = {act, last}, where variable act ranges over A ∪ {ainit} (again, ainit
is introduced for convenience), and last is a propositional variable. Variable act
stands for the action to be executed next, while last marks the end of current
plan’s execution.
As for the transitions of the game structure, we have:

• start = ⟨S0, trinit, ainit,�⟩;
• the environment transition relation ρe is such that ρe(⟨S, tr⟩, ⟨a, l⟩, ⟨S′, tr′⟩)

iff:

– tr is a transition t
⟨ψ,φ⟩Ð→ t′ ∈ δ;

– S ⊧ ψ and S aÐ→ S′ ∈ ρ, i.e., S both fulfills the maintenance goal required
by tr and enables a’s execution;

– if l = �, then tr′T = trT , i.e., if a is not the last action and thus the
transition realization is not completed, then the planning program keeps
requesting the same (current) transition trT ;

– if l = ⊺, then S′ ⊧ φ and tr′T is any t′
⟨ψ′,φ′⟩Ð→ t′′ ∈ δ, i.e., if a is indeed the

last action for tr realization, then goal φ is indeed achieved and a new T
transition is chosen according to δ.

Furthermore, for each initial transition t0
ψ,φÐ→ t′ ∈ δ we have that ρe(⟨S0, trinit⟩, ⟨ainit,�⟩, ⟨S0, t0

ψ,φÐ→
t′⟩), capturing all possible initial moves for the environment;

• the controller transition relation ρs is such that ρs(⟨S, tr⟩, ⟨a, l⟩, ⟨S′, tr′⟩, ⟨a′, l′⟩)
iff there exists a transition S′ a′Ð→ S′′ in D for some state S′′ (i.e., action a′ is
executable in current domain state S′). Observe no constraint is required on
controller variable l′.

Intuitively, G represents the synchronous evolution of domain D and program T ,
which together form the environment, operated by the controller. The environment
includes all D’s and all T ’s transitions, both chosen nondeterministically from the

3.2 Generalized 2GS 53

controller’s viewpoint. The controller, on the other hand, represents the possible
decisions made at each step, namely, the action to be performed next and the notifi-
cation for plan completion, in order to fulfill the requests issued by the environment.
Observe that T can issue a new transition request only after its current request is
deemed fulfilled by the controller (i.e., last holds).
As for the goal formula, we have ϕ = ⊡⟐last, which requires that it is always the
case that eventually the controller does reach the end of the (current) plan, thus
fulfilling the (current) request issued by program T .

Theorem 9. Let T be a planning program over a dynamic domain D, and G be
the corresponding 2GS built as above. Then, there exists a realization of T in D iff
G ⊧ ⊡⟐last.

Since ϕ = ⊡⟐last has two nested fixpoints, we get that such a technique computes a
realization of T in D in O(∣G∣) = O((∣2P ∣ ⋅(∣δ∣+ ∣ρ∣))2), i.e., in polynomial time in the
size of D and T and in exponential time in their representations. This upperbound
is indeed tight, as conditional planning, which is a special case of agent planning
program realization, is already EXPTIME-complete.

3.2.4 Multitarget Agent Composition

We now turn to agent composition in the style of (Sardina et al., 2008; Su, 2008c)
(and introduced in Section 3.1.1). In particular, we focus on a sophisticated form of
composition originally proposed in (Sardina and De Giacomo, 2008), extending the
formalization of Section 3.1.1, which is instead limited to classical case of a single
target behavior. Namely, we want to realize a collection of independent (target)
virtual agent behaviors that are meant to act autonomously and asynchronously
on a shared environment. For example, a surveillance agent and a cleaning agent
behaviors, among others, may all operate in the same smart house environment.
Such agents have no fixed embodiment, but must be concretely realized by a set
of available devices (e.g., a vacuum cleaner, microwave, or video camera) that are
allowed to “join” and “leave” the various agents, dynamically depending on agent’s
requests. Each agent’s embodiment is dynamically transformed while in execution.
Both agent behaviors and devices (i.e., their logics) are described by transition
systems of the form TS = ⟨A,S, s0, δ⟩, where: (i) A is a finite set of actions; (ii)
S is the finite set of possible states; (iii) s0 ∈ S is the initial state of TS; and (iv)
δ ⊆ S ×A × S is the transition relation, with ⟨s, a, s′⟩ ∈ δ or s aÐ→ s′ denoting that
TS may evolve to state s′ when action a is executed in state s. We assume, wlog,
that each state may evolve to at least one next state. Intuitively, the transition
systems for the agents encode the space of deliberation of these agents, whereas the
transition systems for the devices encode the capabilities of such artifacts.
So, we consider a tuple of available devices ⟨B1, . . . ,Bn⟩, where Bi = ⟨AB,Bi, b0i, δi⟩,
and a tuple of virtual agents ⟨T1, . . . ,Tm⟩, where Ti = ⟨AT , Ti, t0i, %i⟩. Observe that,
differently from the setting of Section 3.1.1, we disregard here the final states of
devices.
All Ti’s are deterministic, i.e., fully controllable—in the sense that there is no uncer-
tainty on the resulting state obtained by executing an action—whereas each Bi may

54 3. Synthesis via Game Structures

be nondeterministic, i.e., only partially controllable (though their current state is
fully observable). The composition problem we are concerned with involves guaran-
teeing the concurrent execution of the virtual agents as if each of them were acting
in isolation, though, in reality, they are all collectively realized by the same set
of (actual) available devices. A solution to this problem amounts to synthesizing a
controller that intelligently delegates the actions requested by virtual agents to con-
crete devices. The original problem, which was shown to be EXPTIME-complete,
allowed the controller to assign agents’ requested actions to devices without simul-
taneously progressing those agents whose actions have been done. In other words,
the controller may instruct the execution of an action in a certain device without
stating to which particular agent it corresponds. Obviously, after m steps (i.e., the
number of agents), no more requests are pending so some agent is allowed to issue
a new request (Sardina and De Giacomo, 2008). 2GSs can be used to encode and
solve this problem within the same complexity bound as the original solution.
Here we detail an interesting variant of this problem, in which the served agent
is progressed, simultaneously, when an action is executed by a device. Differently
from the original problem, such a variant requires to actually identify which devices
are “embodying” each agent at every point in time. Also, it shows how easy it is to
tackle composition variants using 2GSs.
Specifically, from tuples ⟨B1, . . . ,Bn⟩ and ⟨T1, . . . ,Tm⟩, we build a 2GSG = ⟨X ,Y, start, ρe, ρc⟩
as follows. The environment variables are X = {sB1 , . . . , sBn , sT1 , . . . , sTm, rT1 , . . . , rTm},
where variables sBi , sTi and rTi range over Bi, Ti, and AT , respectively. Each sBi
corresponds to the current state of Bi, sTi to the current state of Ti, and rTi to
the last request issued by Ti. The controller variables, on the other hand, are
Y = {dev, full}, where dev ranges over {0, . . . , n} and full over {1, . . . ,m}. Vari-
able dev stores the index of the available device selected to execute the action (0
being a dummy value denoting the game’s initial state). Variable full stores the
index of the virtual agent whose request is to be fulfilled. As before, we denote
assignments to X -variables as x⃗ ∈ X⃗ = B1 × ⋯ × Bn × T1 × ⋯ × Tm × (AT)m, and
assignments to Y-variables as y⃗ ∈ Y⃗ = {0, . . . , n} × {1, . . . ,m}.
The initial state is start = ⟨x⃗0, y⃗0⟩, with x⃗0 = ⟨b01, . . . , b0n, t01, . . . , t0m, a, . . . , a⟩, for
a arbitrarily chosen in AT , and y⃗0 = ⟨0,1⟩, i.e., the only state where dev = 0.
The environment transition relation ρe ⊆ X⃗ × Y⃗ × X⃗ is such that, for ⟨x⃗, y⃗⟩ ≠
start, ⟨x⃗, y⃗, x⃗′⟩ ∈ ρe iff for x⃗ = ⟨b1, . . . , bn, t1, . . . , tm, r1, . . . , rm⟩, y⃗ = ⟨k, f⟩, and
x⃗′ = ⟨b′1, . . . , b′n, t′1, . . . , t′m, r′1, . . . , r′m⟩ we have that:

• there exists a transition ⟨bk, rf , b′k⟩ in δk, i.e., the selected device actually
executes the action requested by the agent to be fulfilled (i.e., agent Tf);
while for each i ≠ k, b′i = bi applies, that is, non-selected devices remain still;

• the f -th agent moves (deterministically) according to transition ⟨tf , rf , t′f ⟩ ∈
τf , and from t′f there exists a further transition ⟨t′f , r′f , t′′f ⟩ ∈ τf , for some t′′f ,
i.e., the virtual agent whose request is fulfilled moves according to its transition
function and issues a new (legal) request; while for each i ≠ f , t′i = ti and r′i = ri
apply, i.e., all virtual agents whose request are not yet fulfilled remain still.

In addition, from start = ⟨x⃗0, y⃗0⟩, we have that ⟨x⃗0, y⃗0, x⃗⟩ ∈ ρe with x⃗ = ⟨b01, . . . , b0n, t01, . . . , t0m, r1, . . . , rm⟩
for ri such that ⟨t0i, ri, t⟩ ∈ %i, for some t ∈ Ti, i.e., from the initial state each virtual

3.2 Generalized 2GS 55

agent issues an initial legal request.
Finally, the controller transition relation ρc ⊆ X⃗×Y⃗ ×X⃗×Y⃗ is such that ⟨x⃗, y⃗, x⃗′, y⃗′⟩ ∈
ρc iff ⟨x⃗, y⃗, x⃗′⟩ ∈ ρe and for x⃗′ = ⟨b′1, . . . , b′n, t′1, . . . , t′m, r′1, . . . , r′m⟩ and y⃗′ = ⟨k′, f ′⟩,
there exists a transition ⟨b′k′ , rf ′ , b′′k′⟩ ∈ δk′ , for some b′′k′ , i.e., the action requested
by agent Tf ′ is actually executable by device Bk′ . That completes the definition of
2GS G.
Now, on such 2GS, we define the goal formula ϕ simply as ϕ = ⋀mf=1 ⊡⟐(full = f),
thus requiring that each time a virtual agent request is issued, it is eventually
fulfilled.

Theorem 10. There exists a composition for the virtual agent behaviors ⟨T1, . . . ,Tm⟩
by the available devices ⟨B1, . . . ,Bn⟩ (according to the assumptions considered here)
iff G ⊧ ϕ, for G and ϕ constructed as above.

From a witness of G ⊧ ϕ, one can extract an actual controller able to do the
composition. As for complexity, since the goal formula contains two nested fixpoints,
the time needed to check the existence of a composition (and to actually compute
one) is O(∣G∣2) = O((∣X⃗ ∣ ⋅ ∣Y⃗ ∣+ ∣ρe∣+ ∣ρc∣)2), where ∣X⃗ ∣ = O(∣Bmax∣n ⋅ ∣Tmax∣m ⋅ ∣AT ∣m);
∣Y⃗ ∣ = n ⋅ m + 1; ∣ρe∣ = O(∣X⃗ ∣ ⋅ ∣Y⃗ ∣ ⋅ ∣Bmax∣ ⋅ ∣AT ∣); and ∣ρc∣ = O(∣ρe∣ ⋅ m ⋅ n), with
Bmax and Tmax being the maximum number of states among devices and virtual
agents, respectively. Such a bound, under the natural assumption that the number
of actions is at most polynomial in the number of states of virtual agents, reduces
to O(um+n), where u = max{Bmax, Tmax}, which is essentially the complexity of the
problem (Sardina and De Giacomo, 2008).

3.2.5 Implementation

The approach presented here is ready implementable with model checking tools.
However, the need of quantifying separately on environment and controller moves,
requires the use of µ-calculus, and not simply CTL or LTL (Clarke et al., 1999c)
for which model checking tools are much more mature. As an alternative, if the
goal formula does not require nested fixpoints, we can adopt ATL model checkers
(Lomuscio et al., 2009). ATL interpretation structures are indeed quite related
to 2GSs, and we can split the set of ATL agents into two coalitions representing
(possibly in a modular way) the environment and the controller—e.g., (De Giacomo
and Felli, 2010) encodes single target composition in ATL.
Another alternative is to use (procedure synth in) the TLV system (Piterman et al.,
2006b), which is a framework for the development of BDD-based procedures for
formal synthesis/verification. TLV takes a generic 2GS G expressed in the concrete
specification language smv (Clarke et al., 1999c), and uses special smv modules
Env and Sys to distinguish the environment and the controller. Also, it takes an
LTL formula ϕ of “GR1” form: ϕ = ⋀ni=1 23pi Ð→ ⋀mj=1 23qj , with pi and qj
propositions over G. Then, it synthesizes, if any, a controller strategy to satisfy ϕ,
by transforming ϕ into a µ-calculus formula ϕµ over G, which quantifies separately
on the environment and the controller. Because of the fixed structure of ϕ, the
resulting ϕµ has 3 nested fixpoints.
It turns out that TLV can be used to solve both agent planning programs and multi
target composition problems; indeed, the goal formulas ϕg of such problems, are

56 3. Synthesis via Game Structures

special cases of the ϕµ that TLV uses. Specifically, for the multi target problem, we
can proceed as follows. To encode a 2GS in smv, one essentially needs to describe
both controller’s and environment’s behaviors. They are actually encoded as smv
modules—each representing a transition system, with its initial state, state variables
and transition rules, specified in smv sections VAR, INIT and TRANS, respectively—
possibly communicating via input/output parameters. We do so by defining: (i)
one smv module for each available device Bi and one for each virtual agent Ti,
wrapping them in an Env module to form the 2GS environment; and (ii) a further
Sys module, representing the controller, which communicates with all available
devices, to delegate them action executions, and with all virtual agents, to inform
them of request fulfillment. The controller is modeled so as to guarantee that
action delegations are always safe, i.e, the device instructed to execute the action
can actually do it in its current state. As for goal formula, this corresponds to the µ-
calculus formula obtained in TLV by processing the GR1 LTL formula 23trueÐ→
⋀ni=1 23fulfilledi (n number of virtual agents), which technically is encoded as a
list fulfilled1 . . .fulfilledn in the JUSTICE section of controller’s module. We
used TLV to actually solve several variants of the example in (Sardina and De
Giacomo, 2008), using the version of the multitarget composition introduced above.
The tool was able to find the solution for those simple problems in around 10 seconds
(on a Core2Duo 2.4Ghz laptop with 2GB of RAM).

3.2.6 Discussion

One of the main contributions of this work is to show that various agent behavior
synthesis problems can be treated uniformly by relying on the explicit distinction
between the roles of the system and the environment. Formally, such a distinction
allows for separately quantifying over both environment’s and controller’s moves.
As seen in the introduction to this thesis, this concept is not new in synthesis of
reactive systems, and was largely inspired by those game structures used in synthesis
by model checking in Verification (see, e.g., (Piterman et al., 2006a)). Indeed,
when considering a linear temporal specifications ϕ(x, y) over input x and output
y, the synthesis task amounts to build a program satisfying the branching-time
formula (∀x)(∃y)Aϕ(x, y) that explicitly captures the alternation of environment’s
and controller’s moves (Pnueli and Rosner, 1989b).
We have shown that model checking 2GS’s is a very powerful, yet fully automatically
manageable, technique for synthesis in a variety of AI contexts under full observ-
ability. By observing that most current model checking algorithms are based on the
so-called “global” model checking, we conclude that these can be seen as a general-
ization of planning by backward reasoning when applied to 2GSs. Model checking
algorithms based on forward reasoning are also available, the so-called “local” model
checking techniques (Stirling and Walker, 1991), though they are currently consid-
ered less effective in Verification (Clarke et al., 1999c). On the contrary, within AI,
planning by forward reasoning is currently deemed the most effective, mainly due to
use of heuristics that seriously reduce the search space. An interesting direction for
future research, thus, would be to apply local model checking to 2GSs, while taking
advantage of such heuristics developed by the automated planning community.

3.3 A case study: Smart Homes 57

3.3 A case study: Smart Homes

The emerging trend in process management and in service-oriented applications is
to enable the composition of new distributed processes on the basis of user requests,
through (parts of) available (and often embedded in the environment) behaviors to
be composed and orchestrated in order to satisfy such requests. Here, we consider
a user process as specified in terms of repeated goals that the user may choose to
get fulfilled, namely a Planning Program. Observe that this is the same setting
as in Section 3.2.3. As customary in behavior composition, available agent behav-
iors are suitably composed and orchestrated in order to realize such a process. In
particular we focus on smart homes, in which available devices (corresponding to a
materialization of agent behaviors) are those ones offered by sensor and actuator de-
vices deployed in the home, and the target user process is directly and continuously
controlled by the inhabitants, through actual goal choices.
As done previously in the previous sections, we adopt here the approach as in (Be-
rardi et al., 2005b), often referred to as Roman Model, in which again agent behav-
iors are abstracted as transition systems and the objective is to obtain a composite
behavior that preserves a desired interaction, expressed as a (virtual) target behav-
ior.
However, this is a notable extension of the Roman Model, where goal-based pro-
cesses -inspired by the agent planning programs (De Giacomo and Felli, 2010) first
introduced in Section 3.2.3- are used, instead of target behaviors, to specify what
the user desires to achieve. Such processes can be thought of as routines built from
virtual tasks expressed declaratively simply as goals, which allow users to specify
the desired state of affair to bring about. Such goals are organized in a control flow
structure, possibly involving loops that regulates their sequencing, as well as the
decision points where the user can choose the next goal to request. Hence, clients
are able to request new goals, once the current one is achieved (by a plan). These
routines typically involve loops, thus ruling out naïve approaches based on (classical,
conditional or conformant) planning. Indeed, not all plans that achieve a requested
goal are successful: some might lead the system to states preventing future client
requests fulfillment. Such bad plans could be recognized by taking into account all
goals the client can request in the future, which, in the presence of loops, span over
an infinite horizon (though finite-state).
The approach proposed here is strongly motivated by challenging applications in
the domain of smart houses3 , i.e., buildings pervasively equipped with sensors and
actuators making their functionalities available according to the service-oriented
paradigm. In order to be dynamically configurable and composable, embedded ser-
vices need to expose semantically rich service descriptions, comprising (i) interface
specifications and (ii) specifications of the externally visible behaviors. Moreover,
human actors in the environment can be abstracted as behaviors, and actually
“wrapped” by a semantic description (e.g., a nurse offering medical services). This
allows them to be involved in orchestrations and to collaborate with devices, to

3The European-funded project SM4All (Smart hoMes for All –
http://www.sm4all-project.eu), from which the model proposed here has been inspired,
aims at developing an innovative platform for embedded services in ubiquitous and person-centric
environments.

58 3. Synthesis via Game Structures

reach certain goals. See, e.g., (Kaldeli et al., 2010).
We envision a user that can express processes she would like to have realized in the
house, in the form of routines consisting of goals (e.g., states of the house she would
like to have realized); an engine automatically synthesizes the right orchestration
of behaviors able to satisfy the goals. Users can interact with the house through
different kinds of interfaces, either centralized (e.g., in a home control station) or
distributed, and embedded in specific interface devices. Brain Computer Interfaces
(BCIs) allow also people with disabilities to interact with the system. Using such
interfaces, users issue specific goals to the system, which is, in turn, expected to
react and satisfy the request.
In this chapter, we detail this approach. We first provide a framework for com-
position of goal-oriented processes from available (non-atomic) behaviors. A said
before, this framework is inspired to the agent planning programs (De Giacomo and
Felli, 2010) first introduced in Section 3.2.3. We then present a case study where
the framework is applied in a real smart home setting and provide a effective solver,
which synthesize an orchestrator that realizes the target goal-oriented processes, by
detailing subprocesses that fulfil the various goals at the various point in time. Our
solver is sound and complete, and far more practical than other solutions proposed
in literature, also because it easily allows for exploiting heuristic in the search for
the solution. Finally, some practical experiments are illustrated.

3.3.1 Framework

We assume that the user acts on an environment that is formalized as a possibly
nondeterministic dynamic domain D, which provides a symbolic abstraction of the
world that the user acts in. Formally, a dynamic domain is a tuple D = ⟨P,A,D0, ρ⟩,
where:

• P = {p1, . . . , pn} is a finite set of domain propositions. D ∈ 2P is a state;

• A = {a1, . . . , ar} is the finite set of domain actions;

• D0 ∈ 2P is the initial state;

• ρ ⊆ 2P × A × 2P is the transition relation. We freely interchange notations
⟨D,a,D′⟩ ∈ ρ and D aÐ→D′ in D.

Intuitively, a dynamic domain models an environment whose states are described
by the set P of boolean propositions, holding all relevant information about the
current situation. For instance, the state of a room can be defined by the light
being on or off and the door being open or closed, using two propositions light_on
and door_open. By convention, we say that if one of such propositions is in the
current state of D, then it evaluates to ⊺ (true), otherwise it is � (false). Hence, a
propositional formula ϕ over P holds in a domain stateD ∈ 2P (D ⊧ ϕ) if ϕ evaluates
to ⊺ when all of its propositions occurring in D are replaced by ⊺. However, such
domain can not be manipulated directly, i.e., domain actions can not be accessed
directly by the user: they are provided through available behaviors. The idea is
that, at each moment, a behavior offers a set of possible actions, and the user can
interact with the domain D only by means of available behaviors.

3.3 A case study: Smart Homes 59

Given a dynamic domain D, a behavior over D is a tuple B = ⟨B,O, b0, %⟩, where: (i)
B is the finite set of behavior states; (ii) O is the finite set of behavior actions over
the domain, i.e., O∩A ≠ ∅; (iii) b0 ∈ B is the behavior initial state; (iv) % ⊆ B×O×B
is the behavior transition relation. We will interchange notations ⟨b, a, b′⟩ ∈ % and
b

aÐ→ b′ in B.
As a behavior is instructed to perform an action over D, both the behavior and the
domain evolve synchronously (and possibly nondeterministically) according to their
respective transition relations. So, for a domain action to be carried out, it needs
to be both compatible with the domain and (currently) available in some behavior.
However, behaviors can also feature local actions, i.e., actions whose execution does
not affect the domain evolution. For instance, a behavior representing a physical
device might require to be switched on to use all its functionalities, a fact that is
not captured by D alone. To define formally this idea, we introduce the notiton of
executability for actions of a behavior B = ⟨B,O, b0, %⟩: given B in its own behavior
state b and a domain D in domain state D, action a ∈ O is said to be executable by
B in b iff (i) it is available in b, i.e. b aÐ→ b′ in B for some state b′ ∈ B and (ii) it is
either a local action (a /∈ O∩A) or it is allowed in D, i.e., there exists a domain state
D′ such that D aÐ→D′. Notice that behaviors are loosely-coupled with the domain
they are interacting with: new behaviors can be easily added to the systems and
modifications to the description of the underlying domain don’t affect them.

Example 14. Consider a dynamic domain D = ⟨P,A,D0, ρ⟩ describing (among
othet components) a simple door as in Figure 3.12a. A domain proposition door_open∈
P is used to keep its state, and the door can be either closed or opened executing
domain actions {doClose, doOpen} ⊆ A. However, the door can only be managed
through a behavior doorSrv = ⟨{open, closed},{doOpen, doClose}, open, %⟩ where %
is such that open doCloseÐ→ closed and closed doOpenÐ→ open. Assume that doorSrv is in
its state open, and the current domain state D to be such that door_open ∈D (i.e.,
it evaluates to true in D). As soon as action doClose is executed, both the doorSrv
behavior evolves changing its state to closed and, synchronously, the domain evolves
to a state D′ such that door_open /∈D′ (i.e., it evaluates to false in D′).

◻
Given a dynamic domain D and a fixed set of available behaviors over it, we define
a dynamic system to be the resulting global system, seen as a whole: it is an
abstract structure used to capture the interaction of available behaviors with the
environment. Formally, given a dynamic domain D and a set of available behaviors
B1, . . . ,Bn, with Bi = ⟨Bi,Oi, bi0, %i⟩, the corresponding dynamic system is the tuple
S = ⟨S,Γ, s0, ϑ⟩, where:

• S = (B1 ×⋯ ×Bn) × 2P is the set of system states;

• Γ = A ∪⋃ni=1Oi is the set of system actions;

• s0 = ⟨⟨b10, . . . , bn0⟩,D0⟩ ∈ S is the system initial state;

• ϑ ⊆ S×(Γ×{1, . . . , n})×S is the system transition relation such that ⟨⟨b1, . . . bn⟩,D⟩ a,iÐ→ ⟨⟨b′1, . . . b′n⟩,D′⟩
is in ϑ iff:

60 3. Synthesis via Game Structures

(i) ⟨bi, a, b′i⟩ ∈ %i;
(ii) for each j ∈ {1, . . . , n}, if j ≠ i then b′j = bj .
(iii) if a ∈ A then ⟨D,a,D′⟩ ∈ ρ, otherwise D′ =D;

(i)-(ii) require that only one behavior Bi moves from its own state bi to b′i perform-
ing action a, and (iii) requires that, if the action performed is not a local action,
the domain evolves accordingly. Indeed, the set of system operations Γ includes
operations local to behaviors, i.e. whose execution, according to ϑ, does not affect
the domain evolution.
We stress the fact that a dynamic system does not correspond to any actual struc-
ture: it is a convenient representation of the interaction between the available be-
haviors and the domain. Indeed, a dynamic system captures the joint execution of
a dynamic domain and a set of behaviors where, at each step, only one behavior
moves, and possibly affects, through operation execution, the state of the underlying
domain. The evolutions of a system S are captured by its histories, herehence S-
histories. One such history is a finite sequence of the form τ = s0 a

1,j1

Ð→ s1⋯s`−1 a
`,j`Ð→ s`

of length ∣τ ∣ ≐ `+1 such that (i) si ∈ S for i ∈ {0, . . . , `}; (ii) s0 = s0; (iii) si
ai+1,ji+1

Ð→ si+1

in S, for each i ∈ {0, . . . , ` − 1}. We denote with τ ∣k its k-length (finite) prefix, and
with H the set of all possible S-histories. Given a dynamic system S, a general
plan is a (possibly partial) function π ∶H Ð→ Γ × {1, . . . , n} that outputs, given an
S-history, a pair representing the action to be executed and the index of the be-
havior which has to execute it. An execution of a general plan π from a state s ∈ S
is a possibly infinite sequence τ = s0 a1,j1

Ð→ s1 a2,j2

Ð→ ⋯ such that (i) s0 = s; (ii) τ ∣k is
an S-history, for all 0 < k ≤ ∣τ ∣; and (iii) ⟨ak, jk⟩ = π(τ ∣k), for all 0 < k < ∣τ ∣. When
all possible executions of a general plan are finite, the plan is a conditional plan.
The set of all conditional plans over S is referred to as Π. Note that, being finite,
executions of conditional plans are S-histories. A finite execution τ such that π(τ)
is undefined is a complete execution, which means, informally, that the execution
cannot be extended further. In the following, we shall consider only conditional
plans.

We say that an execution τ = s0 a
1,j1

Ð→ s1⋯s`−1 a
`,j`Ð→ s` of a conditional plan π, with

si = ⟨⟨bi1, . . . bin⟩,Di⟩:

• achieves a goal φ iff D` ⊧ φ

• maintains a goal ψ iff Di ⊧ ψ for every i ∈ {0, . . . , ` − 1}

Such notions can be extended to conditional plans: a conditional plan π achieves φ
from state s if all of its complete executions from s do so; and π maintains ψ from
s if all of its (complete or not) executions from s do.
Finally, we can formally define the notion of (goal-based) target process for a dy-
namic domain D as a tuple T = ⟨T,G, t0, δ⟩, where:

• T = {t0, . . . , tq} is the finite set of process states;

• G is a finite set of goals of the form achieve φ while maintaining ψ, denoted
by pairs g = ⟨ψ,φ⟩, where ψ and φ are propositional formulae over P ;

3.3 A case study: Smart Homes 61

• t0 ∈ T is the process initial state;

• δ ⊆ T × G × T is the transition relation. We will also write t gÐ→ t′ in P.

A target process T is a transition system whose states represent choice points,
and whose transitions specify pairs of maintenance and achievement goals that
the user can request at each step. Hence, T allows to combine achievement and
maintenance goals so that they can be requested (and hence fulfilled) according to a
specific temporal arrangement, which is specified by the relation δ of T . Intuitively,
a target process T is realized when a conditional plan π is available for the goal
couple g = ⟨φ,ψ⟩ chosen from initial state t0 and, upon plan’s completion, a new
conditional plan π′ is available for the new selected goal, and so on. In other words,
all potential target requests respecting T ’s structure (possibly infinite) have to be
fulfilled by a conditional plan, which is meant to be executed starting from the
state that previous plan execution left the dynamic system S in (initially from
s0). Since the sequences of goals actually chosen by the user can not be forseen,
a realization has to take into account all possible ones: at any point in time, all
possible choices available in the target process must be guaranteed by the system,
i.e., every legal request needs to be satisfied. We are going to give a formal definition
of this intuition (De Giacomo et al., 2010b) in the remainder of this section.
Let S be a dynamic system and T a target process. A PLAN-simulation relation,
is a relation R ⊆ T × S such that ⟨t, s⟩ ∈ R implies that for each transition t

⟨ψ,φ⟩Ð→ t′

in T , there exists a conditional plan π such that: (i) π achieves φ and maintains
ψ from state s and (ii) for all π’s possible complete executions from s of the form
s
π(τ ∣1)Ð→ ⋯ π(τ ∣`)Ð→ s`, it is the case that ⟨t′, s`⟩ ∈ R. A plan π preserves R from ⟨t, s⟩

for a given transition t
⟨ψ,φ⟩Ð→ t′ in T if requirement (ii) above holds. Also, we say

that a target process state t ∈ T is PLAN-simulated by a system state s ∈ S, denoted
t ⪯PLAN s, if there exists a PLAN-simulation relation R such that ⟨t, s⟩ ∈ R. Moreover,
we say that a target process T is realizable in a dynamic system S if t0 ⪯PLAN s0.
When the target process is realizable, one can compute once for all (offline) a
function Ω ∶ S × δ Ð→ Π that, if at any point in time the dynamic system reaches
state s and the process requests transition t

⟨ψ,φ⟩Ð→ t′ of T , outputs a conditional plan
π that its execution starting from s (i) achieves φ while maintaining ψ and (ii)
preserves ⪯PLAN, i.e., it guarantees that, for all possible states the system can reach
upon π’s execution, all target transitions outgoing from t′ (according to δ) can still
be realized by a conditional plan (possibly returned by the function itself). Such
function Ω is referred to as process realization.
We can now formally state the problem of concern: Given a dynamic domain D,
available behaviors B1, . . . ,Bn, and a target process T , build, if it exists, a realiza-
tion of T in the dynamic system S corresponding to D and B1, . . . ,Bn. In previous
work (De Giacomo et al., 2010b;a), a solution to a simplified variant of our problem
has been proposed4. Here, as discussed above, we explicitly distinguish between
dynamic domain and available behaviors, thus obtaining a different, more sophisti-

4In particular, in (De Giacomo et al., 2010b;a) behaviors are modelled directly in terms of
restrictions on the domain.

62 3. Synthesis via Game Structures

cated problem. Nonetheless, the techniques presented there still apply, as we can
reduce our problem to that case. This allows us to claim this result:

Theorem 11. (De Giacomo et al., 2010b) Building a realization of a target process
T in a dynamic system S is an EXPTIME-complete problem.

3.3.2 Case Study

Here we present a case study, freely inspired by a real storyboard of a live demo
held in a smart home located in Rome, whose houseplant is depicted in Figure 3.11.
The home is equipped with many devices and a central reasoning system, whose
domotic core is based on the framework here described, in order to orchestrate
all the offered services. Imagine here lives Niels, a man affected by Amyotrophic
Lateral Sclerosis (ALS). He is unable to walk, thus he needs a wheelchair to move
around the house. The other human actors are Dan, a guest sleeping in the living
room, and Wilma, the nurse. At the beginning of the story, Niels is sleeping in his
automated bed. The behaviors the system can manage are the bedService, i.e.,
an automated bed, which can be either down or up; the doorNumService, i.e.,
the doors, for Num ∈ {1,7} (Figure 3.12a); the alarmService, i.e., an alarm, that
can be either set or not; the lightRoomService, i.e., light bulbs and lamps, for
each Room in Figure 3.11; the kitchenService, i.e., a cooking service with preset
dishes (Figure 3.12c); the pantryService, i.e., an automated pantry, able to check
whether ingredients are in or not and buy them, if missing (see Figure 3.12b); the
bathroomService, i.e., a bathroom management system, able to warm the temper-
ature inside and fill or empty the tub (Figure 3.12e); and finally the tvService,
i.e., a TV, either on or off .

Bathroom Living room

Bed room Guest room Kitchen

Toilet

D1

D7

D6D5

D4

D3

D2

W1 W3

W4

W2

Figure 3.11. The smart home plant

Finally, we consider a very particular behavior, that we call nurseService: it is
Wilma, the nurse, who is in charge of moving Niels around the house. Despite the
fact that an analogous service could be provided by some mechanical device, we refer
to an human to illustrate how actors can be abstracted as behaviors as well, wrapped
by a semantic description. All behaviors are depicted in Figure 3.12, except for
lightRoomService, bedService, alarmService and tvService that have very
simple on/off behaviors. As described in Section 3.3.1, a dynamic domain state is a

3.3 A case study: Smart Homes 63

open closed

doClose

doOpen

(a) doorNumService

ready missing

doCheck

doCheck

doBuy

(b) pantryService

clean dirty

doCook

doCleanUp

(c) kitchenService

ready

doPickOwner

doLeaveOwner

doMoveToKitchen
doMoveToBedroom

doMoveTo...

(d) nurseService

offcooling warming

filled

doTurnOffHeater

doRaiseBathTempdoLowerBathTemp

doFillTub

doLowerBathTemp

doTurnOffBathHeater

doRaiseBathTemp

doTurnOffBathHeater

doFillTub

doEmptyTub

(e) bathroomService

Figure 3.12. Case study services

64 3. Synthesis via Game Structures

subset of 2P , where P = {p1, . . . , pn} is a finite set of boolean domain propositions. In
order to express that, e.g., the bathroom temperature is mild, we could make use of a
grounded propositional letter such as bathroomTemperatureIsMild. Nevertheless,
we would have a grounded proposition for each value that the sensed temperature
may assume (bathroomTemperatureIsHot, etc.) with the implicit constraint that
only one of them can be evaluated to ⊺ at a time (and all the others to �). Thus,
for sake of simplicity, here we make use of statements of the form “var = val” (e.g.,
“varBathroomTemperature = warm”). We call var the domain variable; val can
be equal to any expected value which var can assume. Using such abbreviations
we can phrase concepts like “a domain variable var is set to the val value” to easily
refer to a transition in the dynamic domain moving from the current state to a
following one where the proposition var = val holds. For the sake of readability,
actions are identified by the do- prefix (e.g., doRing).
Now we comment the case study. All services affect, through their actions, the
related domain variables representing the state of the context. As an example, con-
sider Figure 3.12e. Action doRaiseBathTemp causes the bathroomService to reach
warming state, and affects the domain setting varBathroomTemperature either to
(i) mild if it was equal to cold, or (ii) warm, if previously mild. However, we can
imagine also indirect effects: e.g., the door4Service and door5Service’s doOpen
actions trivially turn the varDoor4 and varDoor5 domain variables from closed
to open and, at the same time, change the varGuestDisturbed domain variable
from false to true, since, as depicted in Figure 3.11, they leed to the guest room,
which we supposed Dan, the guest, to sleep in. The dynamic domain constrains the
execution of service actions, allowing executable transitions only to take place (as
explained in Section 3.3.1). For instance, consider the doPick and doLeave actions in
nurseService: they represent Wilma taking and releasing Niels’ wheelchair. Even
if they are always available according to the service’s description (Figure 3.12d),
they are allowed by the domain iff varPositionOwner and varPositionNurse
are equal (i.e., iff ⋁r∈Rooms(varPositionOwner = r ∧ varPositionNurse = r) for
Rooms = {livingRoom, bedRoom, bathRoom, guestRoom, toilet, kitchen}). Further
on, it is stated that you can activate the doPick transition only if varOwnerP icked =
false (conversely, activate the doPick only if varOwnerP icked = true) and, when
varOwnerP icked = true, doMoveToRoom causes both varPositionOwner and varPositionNurse
to be set to the same Room. As an example of interaction between behaviors, con-
sider kitchenService and pantryService. As depicted in Figure 3.12, they do not
have any action in common. Though, cooking any dish (namely, invoking doCook
action on the kitchenService service) is not possible if some ingredients are miss-
ing (i.e., if varIngredients = false). The pantryService can buy them (indeed,
doBuyIngredients sets varIngredients = true), but only after the execution of a
check (doCheckIngredients). The evolution of doCheckIngredients is constrained by
the varIngredients domain variable: if varIngredients = false, then the next state
of pantryService is missing (and the doBuyIngredients action executable), otherwise
it remains in the ready state.
Such comments motivate the advantages of decoupling behaviors and dynamic do-
main as in the framework: the evolution of the system is not straightforward from
the inspection of services or dynamic domains alone. Indeed, a service represents
the behavior of a real device or application plugged in the environment, and it is

3.3 A case study: Smart Homes 65

distributed by vendors who do not know the actual context in which it will be
used. The same service could affect (or be affected by) the world in different ways,
according to the environment with which it is interacting.

sleep
t0

cook
Breakfast

t1

eat
Breakfast

t4

WC
t3

TV
t2

ψ1 ≡ (varLightsBedroom = off)
∧(varPositionOwner = bedroom)
∧(varDoor3 = closed)
∧(varDoor4 = closed)
∧(varBed = down)

φ1 ≡ (varBreakfastReady = true)
∧(varAlarmSet = false)

ψ0 ≡ true
φ0 ≡ (varBed = down)

∧(varAlarmSet = true)
∧(varOwnerPicked = false)
∧(varBathtub = empty)
∧(varLightsToilet = on)
∧(varLightsBedroom = off)
∧(varLightsBathroom = off)
∧(varLightsKitchen = off)
∧(varLightsLivingroom = off)
∧(varPositionOwner = bedroom)
∧(varDoor2 = closed) ∧ (varDoor3 = closed)
∧(varDoor4 = closed) ∧ (varDoor5 = closed)
∧(varDoor6 = closed) ∧ (varDoor7 = closed)
∧(varPositionNurse = toilet)
∧(varTv = off)
∧(varBathroomTemperature = cold)

ψ2
φ3

ψ2 ≡ (varGuestDisturbed = false)
φ2 ≡ (varPositionOwner = livingroom)

∧(varOwnerPicked = false)
∧(varTv = on)ψ2

φ3 ≡ (varBathtub = filled)
∧(varDoor2 = closed)
∧(varLightsBathroom = on)
∧(varOwnerPicked = false)
∧(varPositionOwner = bathroom)
∧(varBathroomTemperature = warm)

ψ4
φ4

ψ2
φ3

ψ4 ≡ (varGuestDisturbed = false)
∧(varBathroomTemperature = warm)

φ4 ≡ (varBreakfastReady = true)
∧(varPositionOwner = kitchen)
∧(varLightsKitchen = on)
∧(varOwnerPicked = false)

Figure 3.13. The sample target process

Next we turn to the target process itself, shown in Figure 3.13, representing what
Niels wants to happen, when waking up in the morning. First, the home system
must let Niels get awaken only after the breakfast is ready: this is the aim of the first
transition, where the reachability goal is to have (varBreakfastReady = true) ∧
(varAlarmSet = false), while all conditions that make Niels sleep comfortable
must be kept: (varBed = down) ∧ (varLightsBedroom = off) ∧ . . . Then, once the
alarm rang out, we let Niels decide whether he prefers to have a bath or to watch
TV (and optionally have a bath afterwards). In both cases, we do not want to wake
up Dan (ψ2 ≡ (varGuestDisturbed = false)). Niels can successively have breakfast,
but we suppose that further he can go back to the bathroom and eat a little more
again how many times he wishes: this is the rationale beneath the formulation
of: ψ4 ≡ (varGuestDisturbed = false) ∧ (varBathroomTemperature = warm).
Finally, Niels can get back to the bed room. The transition from the eatBreakfast
(t4) state to the sleep (t0) one has no maintenance goal (i.e., φ0 = true), whereas
the reachability goal is just to reset the domain variables to their initial setup.

66 3. Synthesis via Game Structures

3.3.3 Solver

As we can see from the case study above, goal-based processes can be used to
naturally specify the behavior of complex long-running intelligent systems. In order
to apply this framework to real applications, however, we need a practical and
efficient solver for such composition tasks. The solution in (De Giacomo et al.,
2010b;a) reduces the composition problem to LTL synthesis by model checking. As
a result, an efficient model checker and the approach is viable in practice only if
large computational resources are available; on typical hardware for the smart home
applications, only simple examples can be solved with that approach.
In light of the success of heuristic search in classical planning, it is interesting to
ask whether this problem can be more efficiently solved by a direct search method.
We pursue here this idea, and propose a novel solution to the composition problem
based on an AND-OR search in the space of execution traces of incremental partial
policies. Intuitively, the search keeps a partial policy at each step, and simulates its
execution, taking into account all possibilities of the goal requests and the nonde-
terministic effects of the actions. If no action is specified for some situation yet, the
policy is augmented by trying all possible actions for it. Starting from an empty
policy, this process is repeated until either a valid policy is found that works in all
contingencies, or all policy extensions are tried yet no solution is found. In this
process, the nondeterministic goal requests and action effects are handled as “AND
steps,” whereas the free choice of actions during expansion represents an “OR step.”
Figure 3.14 shows the Prolog code of the body of our solver.
The composition starts from an empty policy [] with the initial goal state and
initial world state S0, and simulates (while incrementally building) its execution,
until all possible goal requests in the target process can always be achieved by some
policy C (line 2). In our implementation, we always assume that the intial goal
state is 0. To handle all the possible evolutions of the system from goal state T
and world state S, the compose/4 predicate first finds all goal requests GL that
originate from T , and augments the current policy C0 to obtain C1 that handles
these requests (lines 4–6). This is done by compGoals/5, which represents the first
AND step in the search cycle. It recursively processes each goal request in the
list GL by using planForGoal/8 (lines 8–11). Notice that the policy is updated
in each recursive step with the intermediate variable C in line 11. The predicate
planForGoal/8 essentially performs conditional planning with full observability and
nondeterministic effects (lines 13–20). Lines 14 and 15 prevent the found partial
policy from containing deadloops or violating the maintenance goal. Line 16 detects
visited states in achieved goals so that they can be realized in the same way, and
thus no further search is needed. Line 17 checks whether the current achievement
goal has been realized, and if so, it goes on to recursively compose for the next goal
state. Finally, Lines 18–20 capture the last case where no action is associated to
the current situation, in which case the current policy needs expansion to handle it.
This is done by the OR step of the search cycle, which proposes a best candidate
action with the predicate bestAct/3, and planning goes on for the resulting world
states.
Since the actions are nondeterministic, it means that executing an action may lead
to multiple possible states, and the policy we find must work for them all. In our

3.3 A case study: Smart Homes 67

algorithm, tryStates/8 handles all these states by recursing into planForGoal/8
with updated policy for each state, which represents the second AND step in the
search cycle (lines 22–25).
Recall that the exploration of a search branch may fail in Lines 14 and 15, due
to a deadloop and violation of a maintenance goal, respectively. When either case
occurs, the program backtracks to the most recent predicate with a different suc-
ceeding assignment, which is always bestAct/3. From there, the next best action is
proposed and tried, and so on. If all the possible actions have been tried, yet none
leads to a valid policy, the program backtracks to the next most recent bestAct/3
instance, and the same process is performed similarly.
Notice that our algorithm is applicable to any goal-based process composition
task, as the predicates initial_state/1, holds/2, bestAct/3, next_states/3
and goal/4 behave according to the actual target goal-based process and its under-
lying dynamic environment which are specified using a problem definition language
detailed below. It is not hard to see that the our algorithm strategically enumer-
ates all valid policies, generating on-the-fly action mappings for reachable situations
only. The algorithm can be shown to be sound and complete.

Theorem 12 (Soundness and completeness). Let T be a target goal-based pro-
cess and S its underlying dynamic system. If compose(C) succeeds, then C is a
realization of T in S. Moreover, if T is realizable in S, then compose(C) succeeds.

This algorithm can be used for solving small composition problems even with a
simple enumeration-based implementation of bestAct/3. However, as the problem
size grows, this naïve implementation quickly becomes intractable, due to the large
branching factor and deep search tree. Therefore, some intelligent ordering is needed
for the succeeding bindings of bestAct/3, in order to make our solver efficient for
large composition tasks. In our implementation of the solver5, we make use of the
well-known delete-relaxation heuristics (Hoffmann and Nebel, 2001), although other
heuristics in classical planning could be adapted as well.
The delete-relaxation heuristics for a state is computed by solving a relaxed goal-
reachability problem where all negative conditions and delete effects are eliminated
from the original planning problem. It can be shown that the relaxed problem can
always be solved (or proven unsolvable) in polynomial time. If a relaxed plan is
found, then the number of actions in the plan is used as a heuristic estimation for
the cost of achieving the goal from the current state; otherwise it is guaranteed that
no plan exists to achieve the goal from the current state, so it is safe to prune this
search branch and backtrack to other alternatives. In our implementation, when
choosing the best action, bestAct/3 first sorts all legal actions according to the
optimistic goal distance of their successor states using the delete-relaxation heuris-
tics,6 and unifies with each of the actions in ascending order when the predicate

5The code of both solver and case study, as well as the experimental results, are available at
the URL: http://dl.dropbox.com/u/8845400/Code.zip (“reviewer” is the password to open the
password-protected zip file).

6In our experiments, we also take into account the conjunction of the maintenance goals of the
next goal state, so that states violating future maintenance goals are pruned earlier, leading to
further gain in efficiency.

http://dl.dropbox.com/u/8845400/Code.zip

68 3. Synthesis via Game Structures

is (re-)evaluated. Notice that the heuristics only changes the ordering of branch
exploration in the search tree, with possible sound pruning for deadends, and does
not affect the correctness guarantee of our algorithm.
For our solver, a problem specification is a regular Prolog source file which contains
the following components:

• the instruction to load the solver :- include(planner).

• a list of primitive fluents, each fluent F specified by prim_fluent(F).

• a list of primitive actions, each action A specified by prim_action(A).

• action preconditions, one for each action A, by poss(A,P). where A is the
action, and P is its precondition formula.

• conditional effects of actions of the form causes(A,F,V,C). meaning that
fluent F will take value V if action A is executed in a state where condition C
holds.

• initial assignment of fluents of the form init(F,V). where F is the fluent and
V is its initial value.

• the process by a list of goal transitions of the form goal(T,M,G,T’). where
T and T’ are the source and target goal states of the transition, M is the
maintanence goal, and G the achievement goal. By default, the initial goal
state is always 0.

3.3.4 Experiments on the case study

In order to test the efficiency of the solution presented in the previous section, we
conducted some experiments based on the case study.
Given the dynamic system S and the target process T illustrated before, we consid-
ered both T and its restrictions Ti∈{1,...,5}, shown in Figure 3.15, where states and
goals refer to the ones depicted in Figure 3.13.
Hence, for each Ti, we run the solver 10 times in a SWI-Prolog 5.10.2 environment,
on top of an Intel Core Duo 1.66 GHz (2 GB DDR2 RAM, Ubuntu 10.04) laptop.
We gathered the results listed in Figure 3.16. The solution for the complete problem
was found in about 239 seconds. Performances for simpler formulations followed an
almost linear trend with respect to the input dimension, measured in terms of
number of transitions in the target process (see Figure 3.17a). Figure 3.17b 7 shows
that such results are quite reliable, since the Coefficient of Variation (i.e., the ratio
between the Standard Deviation σ and the Mean Value M) is fair little (ca. 2‰,
excluding the first value, which is not significant, being the solution for that instance
computed in too few milliseconds) and keeps constant as theM value grows. The
performances are notable, especially if compared to the previous tests. Indeed, we
ran a solver based on model checking techniques, built on top of TLV (version 4.18.4,
see (Pnueli and Shahar, 1996)), on the laptop mentioned above. Notice that such a
solver requires the usage of high computational resources, which are not affordable

7 There, the base for the Logarithm of the Mean TimeM is the leastM value

3.3 A case study: Smart Homes 69

in a smart home scenario. Indeed, on our laptop it took more than 24 hours to
terminate, whereas our solver returned a solution within less than 4 minutes.

70 3. Synthesis via Game Structures

0: % planner.pl - a generic solver for goal-based process composition.
1: % Usage: call compose(C) to find a realization C.
2: compose(C) :- initial_state(S0), compose(0, S0, [],C).
3:
4: % compose(T,S,C0,C1) compose for goal state T .
5: compose(T,S,C0,C1) :-
6: findall(⟨M,G,T ′⟩, goal(T,M,G,T ′),GL), !,

compGoals(T,GL,S,C0,C1).
7:
8: % compGoals(T,GL,S,C0,C1) compose for all goal requests in GL.
9: compGoals(_ , [],_ ,C,C).

10: compGoals(T, [⟨M,G,T ′⟩∣GL], S,C0,C1) :-
11: planForGoal(T,M,G,T ′, S, [],C0,C),

compGoals(T,GL,S,C,C1).
12:
13: % planForGoal(T,M,G,T ′, S,H,C0,C1)

% update policy for a specific goal.
14: planForGoal(_ ,_ ,_ ,_ , S,H,_ ,_) :- member(S,H), !, fail.
15: planForGoal(_ ,M,_ ,_ , S,_ ,_ ,_) :- \+ holds(M,S), !, fail.
16: planForGoal(T,_ ,_ , T ′, S,_ ,C,C) :- member(⟨T,T ′, S,_⟩,C), !.
17: planForGoal(_ ,_ ,G,T,S,_ ,C0,C1) :- holds(G,S), !,

compose(T,S,C0,C1).
18: planForGoal(T,M,G,T ′, S,H,C0,C1) :-
19: bestAct(G,A,S), next_states(S,A,SL),
20: tryStates(T,M,G,T ′, SL, [S∣H], [⟨T,T ′, S,A⟩∣C0],C1).
21:
22: % tryStates(T,M,G,T ′, SL,H,C0,C1)

% compose for all progressed world states.
23: tryStates(_ ,_ ,_ ,_ , [],_ ,C,C).
24: tryStates(T,M,G,T ′, [S∣SL],H,C0,C1) :-
25: planForGoal(T,M,G,T ′, S,H,C0,C),

tryStates(T,M,G,T ′, SL,H,C,C1).

Figure 3.14. Prolog implementation of our search-based solver.

3.3 A case study: Smart Homes 71

t0

t1
ψ1
φ1

ψ0
φ0

(a) T1

t0

t1

t3

ψ1
φ1 ψ2

φ3

ψ0
φ0

(b) T2

t0

t1

t4

t2

ψ1
φ1

ψ0
φ0

ψ2
φ2

ψ4
φ4

(c) T3

t0

t1

t4

t3

ψ1
φ1

ψ0
φ0

ψ2
φ3

ψ2
φ3

ψ4
φ4

(d) T4

t0

t1

t4

t3 t2

ψ1
φ1

ψ0
φ0

ψ2
φ3

ψ2
φ2

ψ2
φ3

ψ4
φ4

ψ4
φ4

(e) T5

t0

t1

t4

t3 t2

ψ1
φ1

ψ0
φ0

ψ2
φ3

ψ2
φ2

ψ2
φ3

ψ4
φ4

ψ2
φ3

ψ4
φ4

(f) T

Figure 3.15. Test target processes

Trans.’s Time [sec] Std. Dev. Coeff. of Var.
[‰]

Mean (M) min (m) Max (M) (σ) (σ/M)
T1 2 1.166 1.15 1.19 0.011 9.219
T2 3 60.688 60.54 60.82 0.094 1.545
T3 4 30.448 30.39 30.61 0.088 2.896
T4 5 83.497 83.26 83.88 0.195 2.331
T5 7 180.894 180.29 182.05 0.523 2.889
T 8 238.841 238.38 239.19 0.291 1.219

Figure 3.16. Test results

(a) Tests results (b) Coefficient of variation

73

Chapter 4

Supervisory Control for
Behavior Composition

In this chapter we formally relate the agent behavior composition problem, as stud-
ied within the AI community (e.g., (Berardi et al., 2005a; De Giacomo and Sar-
dina, 2007; Stroeder and Pagnucco, 2009)) to Supervisory Control Theory (STC) in
discrete-event systems (DES) (Wonham and Ramadge, 1987; Ramadge and Won-
ham, 1987; 1989b; Cassandras and Lafortune, 2006).
As formally introduced in Section 3.1.1, by behavior composition problem we refer
to the task of automatically “realizing” (i.e., implementing) a desired though virtual
target behavior module by suitably coordinating the execution of a set of concrete
available behavior modules. Refer to Section 3.1.1 for details.
Supervisory control, on the other hand, is the task of automatically synthesizing
“supervisors” that restrict the behavior of a discrete-event system (DES), which
is assumed to spontaneously generate events, such that as much as possible of a
given specifications is fulfilled. DES model a wide spectrum of physical systems,
including manufacturing, traffic, logistics, and database systems. In supervisory
control, an automaton G—known as “the plant”—is used to model both controllable
and uncontrollable behaviors of a given DES. The assumption is that the overall
behavior of G is not satisfactory and must be controlled. To that end, a so-called
supervisor sup is imposed on G so as to meet a given specification on event orderings
and legality of states. Supervisors observe (some of) the events executed by G and
can disable those that are “controllable.” A controllable specification is one for
which there exists a supervisor that can guarantee it.
The motivations behind linking behavior composition to supervisory control theory
are threefold. Supervisory control theory have a rigorous foundations rooted in for-
mal languages. It was first developed by (Ramadge and Wonham, 1989b) et alii in
the 80’s and then further studied by the control community w.r.t. both theory and
applications (Cassandras and Lafortune, 2006). Hence, recasting the composition
task as the supervision of DESs provides us with a solid foundation for studying
composition. In addition, computational properties for supervisor synthesis have
been substantially advanced, and some tools for supervisor synthesis are now avail-
able (e.g. TCT/STCT (Zhang and Wonham, 2001), Grail (Reiser et al., 2006),
DESUMA (Ricker et al., 2006), and Supremica (Åkesson et al., 2003)). As a

74 4. Supervisory Control for Behavior Composition

consequence, we can apply very different techniques for solving the composition
problem than those already available within the AI literature (e.g., PDL satisfiabil-
ity (De Giacomo and Sardina, 2007), direct search (Stroeder and Pagnucco, 2009),
LTL/ATL synthesis (Lustig and Vardi, 2009; De Giacomo and Felli, 2010), and
computation of special kind of simulation relations (Sardina et al., 2008; Berardi
et al., 2008)). Finally, once linked, we expected cross-fertilization between AI-style
composition and DES supervisory theory. In fact, we would like to import notions
and techniques common in DES into the composition setting, such as decentralized
supervision, hierarchical and tolerance supervision/composition (Cassandras and
Lafortune, 2006).

4.1 Supervisory Control Theory

Discrete event systems range across a wide variety of physical systems that arise in
technology (e.g., manufacturing and logistic systems, DBMSs, communication pro-
tocols and networks, etc.), whose processes are discrete (in time and state space),
event-driven, and nondeterministic (Cassandras and Lafortune, 2006). Roughly
speaking, Supervisory Control Theory (SCT) is concerned with the controllability
of the sequences or strings of events that such process/systems (plant), can gener-
ate (Ramadge and Wonham, 1989b).
Discrete-event systems encompass a wide variety of physical systems that arise
in technology. These include manufacturing systems, traffic and logistic systems,
DBMSs, communication protocols and networks. Typically, the processes associated
with these systems may be thought of as discrete (in time and state space), event-
driven and nondeterministic. The supervisory control framework, also known as
the Ramadge-Wonham framework (Ramadge and Wonham, 1987; Wonham and
Ramadge, 1987; Wonham, 2012; Cassandras and Lafortune, 2006), comprises a set of
methodologies for automatically synthesizing supervisors for restricting the behavior
of a plant such that as much as possible of the given specifications are fulfilled.
To this end, the set of events is partitioned into controllable and uncontrollable,
and the plant is assumed to spontaneously generate them. While the supervisor
can observe the string of all events generated by the plant, its control action can
only prevent those that are controllable. Hence, the supervisor observes the events
generated by the plant and the control problem is to suitably interact with the
process, by disabling (part of the) controllable events, so as to confine its behavior
to within specified legal bounds. In other words, a supervisor is conceptually slightly
different from the usual notion of controller, in the sense that plant’s events are both
spontaneous and process-generated.
In its original formulation, the SCT regards the plant as language generator and,
accordingly, the specification is to be modeled by formal languages of finite strings.
Notably, these languages are not necessarily regular languages generated by finite
automata as was done in most subsequent work. In this chapter, we will deal with
unbounded, yet terminating processes: the specifications ares thus different from the
usual “long-running” (LTL) specifications considered up to now. However, there ex-
ist in literature some extensions to infinite languages: more recent extensions of the
framework (see, e.g., (Thistle and Wonham, 1994)) also deal with non-terminating

4.1 Supervisory Control Theory 75

executions of the plant, allowing the investigation of both liveness and safety issues
in the control of discrete-event systems.
Specifications are interpreted as follows. The language of the plant G contains
strings that are not acceptable because they violate some safety or nonblocking
condition that we wish to impose on the system. It could be that certain states of
G are undesirable and should be avoided. These could be states where G blocks, via
deadlock or livelock; or they could be states that are physically inadmissible, for
example, a collision of a robot with an automated guided vehicle or an attempt to
place a part in a full buffer in an automated manufacturing system. Moreover, it
could be that some strings in the language L(G) of the plant contain substrings that
are not allowed (“bad prefixes”). These substrings may violate a desired ordering
of certain events; for example, requests for the use of a common resource should
be granted in a “first-come first-served” manner. Therefore, we will be considering
as specification a sublanguage of L(G) representing the “legal” or “admissible” be-
haviors. Various control-theoretic questions such as controllability (Ramadge and
Wonham, 1987; Wonham and Ramadge, 1987), observability (Lin and Wonham,
1988b; Ramadge, 1986), decentralized and hierarchical control (Wong and Won-
ham, 1996; Lin and Wonham, 1988a), as well as such questions as computational
complexity (Gohari and Wonham, 2000) and others were studied in this framework.
For what concerns this thesis, we will focus on controllability concerns.

4.1.1 Generators and languages

We regard the discrete-event system to be controlled, i.e. the plant in the traditional
control terminology, as the generator of a formal language. A language L over an
alphabet of events Σ is any subset of Σ∗, i.e., L ⊆ Σ∗. A word of L is then an
element w ∈ Σ∗, and when w1,w2 ∈ Σ∗, then w1 ⋅ w2 denotes their concatenation.
The prefix-closure of a language L, denoted by L, is the language of all prefixes of
words in L, i.e., w ∈ L iff w ⋅ w′ ∈ L, for some w′ ∈ Σ∗. A language L is said to be
closed if L = L. In SCT, the plant is viewed as a so-called generator (of the language
of string of events characterizing its processes).

Definition 4.1. A generator is a deterministic FSM G = ⟨Σ,G, g0, γ,Gm⟩, where:

• Σ is the finite alphabet of events (ε ∈ Σ being the empty symbol);

• G is a finite set of states;

• g0 ∈ G is the initial state;

• γ ∶ G ×Σ ×G is the transition relation; and

• Gm ⊆ G is the set of “marked” states. These states are used to distinguish
words that, somehow, represent correct or complete computations of the plant.

△

We generalize γ to words as follows: γ(g, ε) = g and γ(g,w ⋅σ) = γ(γ(g,w), σ), with
w ∈ Σ∗, σ ∈ Σ and ε the empty string.

Definition 4.2. We define the two languages of a generator G:

76 4. Supervisory Control for Behavior Composition

• the language generated by G is L(G) = {w ∈ Σ∗ ∣ γ(g0,w) is defined}, whereas

• the marked language of G is Lm(G) = {w ∈ L(G) ∣ γ(g0,w) ∈ Gm}.

△

Words in the former language stand for, possibly partial, operations or tasks, while
words in the marked language usually represent the completion of some operations
or tasks. Note that L(G) is always closed, but Lm(G) may not be so.
A state g is reachable if g = γ(g0,w) for some word w ∈ Σ∗ and coreachable if there
exists a word w ∈ Σ∗ such that γ(g′,w) ∈ Gm. A generator G is nonblocking if every
reachable state is also coreachable, i.e., L(G) = Lm(G). It is instead said to be trim
if it is both reachable and coreachable. Moreover, G represents a language L if G is
nonblocking and Lm(G) = L. Given two languages K ⊆ L, K is said to be L-marked
if K ∩ L ⊆ K, and L-closed if K = K ∩ L, i.e., if K contains all its prefixes that
belong to L.
We partition the alphabet Σ = Σc∪Σu into controllable (Σc) and uncontrollable (Σu)
events, with Σc ∩ Σu = ∅. Events may occur only when enabled by a supervisor:
whereas controllable events may be enabled or disabled, uncontrollable events are
always enabled.

4.1.2 Specifications and supervisors

A specification for a generator plant G is a language K ⊆ L(G). We say that K is
controllable in plant G iff

KΣu ∩L(G) ⊆K

that is, every prefix of K followed by an uncontrollable event and compatible with
the plant can be extended to a word in the specification itself. Informally, a speci-
fication is controllable if it is not possible to be “pushed” outside of it.

Definition 4.3. A supervisor for specification K and plant G is a function

V ∶ L(G)→ {Σa ∈ Pwr(Σ) ∣ Σa ⊇ Σu}

that returns, for each word in L(G), the set of events Σa that are enabled (i.e.,
allowed) next — again, uncontrollable events are always enabled. △

A plant G under supervisor V yields the controlled system V /G (sometimes referred
to as “closed-loop” behavior) whose generated and marked languages are defined
as:

L(V /G) = {w ⋅ σ ∈ L(G) ∣ w ∈ L(V /G), σ ∈ V (w)} ∪ {ε};
Lm(V /G) = L(V /G) ∩Lm(G).

Informally, L(V /G) represents all operations, processes, or tasks, that plant G may
yield while supervised by V , whereas Lm(V /G) stand for the subset of those oper-
ations or tasks that are, in some manner, complete.
A key result in SCT states that being able to control a specification in a plant
amounts to finding a supervisor for such specification (Wonham, 2012).

4.1 Supervisory Control Theory 77

Theorem 13. Let G be a generator and K ⊆ L(G) be a closed and non-empty
specification. Then, there exists a supervisor V such that L(V /G) = K iff K is
controllable.

The reason for not allowing K = ∅ is because we always have ε ∈ L(V /G), by defi-
nition. Indeed, there is a difference between L(V /G) = {ε} and L(V /G) = ∅: while
in the first case there is no possible controlled behavior, in the latter the controlled
system stays in its initial state and all events are disabled by the supervisor.

4.1.3 Nonblocking Supervisors

In addition, in many settings, one would like to control the language representing
complete operations or tasks, that is, the marked fragment of the plant. Thus,
we shall focus on nonblocking supervisors V that can always force the plant G
to generate words that can eventually be extended into the marked (supervised)
language. Technically, supervisor V is nonblocking in plant G iff

L(V /G) = Lm(V /G)

that is, the set of words generated by the supervised plant are exactly all the prefixes
of marked words, i.e., they can be extended to a marked word.
However, observe that the previous result of Theorem 13 does not guarantee that
the supervisor V is nonblocking. To ensure this property, a further requirement is
needed.

Theorem 14. Given a generator G and a specification K ⊆ Lm(G), K ≠ ∅, there
exists a nonblocking supervisor V for G such that L(V /G) = K and Lm(V /G) = K
iff (i) K is controllable wrt G and (ii) it is Lm(G)-closed.

If K is closed then condition (ii) is not needed.

4.1.4 On the supremal controllable sublanguage

When the specification K is not (guaranteed to be) controllable, one then looks for
controlling the “largest” (in terms of set inclusion) sublanguage possible.
Given a generator G and a specification K, the set of all sublanguages of K that
are controllable wrt G is defined as

C(K) ∶= {L ⊆K ∣ L is controllable wrt G}

Interestingly, this set is closed under arbitrary union and contains a (unique) supre-
mal element (Wonham and Ramadge, 1987): the supremal controllable sublanguage
of K, denoted supC(K).
Putting both parts together, one is usually interested in (controlling) the K’s sub-
language

K↑ = supC(K ∩Lm(G))

i.e. the supremal marked specification. It turns out that, under a plausible assump-
tion, a supervisor does exist for non-empty K↑.

78 4. Supervisory Control for Behavior Composition

Theorem 15. If K ∩Lm(G) ⊆K (i.e., K is Lm(G)-marked) and K↑ /=∅, then there
exists a nonblocking supervisor V for G such that Lm(V /G) =K↑.

The assumption states that K is closed under marked-prefixes: every prefix from
K representing a complete task is part of K. Theorem 15 will play a key role in
our results.
If we disregard the plant’s marked states, i.e., the marked language of the plant G
under the supervision of a supervisor V is defined as

Lm(V /G) = L(V /G) ∩K (4.1)

then K is not required to be marked. This assumption matches the Marking Non-
blocking Supervisory Control problem (MNSC) for the pair (K,G) in the Won-
ham/Ramadge framework (Wonham, 2012) – see Section 4.1.4.

4.2 A fixpoint computation of supC(K)
We can characterize the supremal controllable sublanguage K↑ of a given language
K as the largest fixpoint of a certain operator Ω (Wonham and Ramadge, 1987).
Let Pwr(Σ∗) be the set of all languages over Σ. Define the operator

Ω ∶ Pwr(Σ∗)→ Pwr(Σ∗)

according to

Ω(L) =K ∩Lm(G) ∩ sup{E ⊆ Σ∗ ∣ E = E and EΣu ∩L(G) ⊆ L}

Observe how this definition is dependent on the specific plant G and specification K.
Given a language L, Ω(L) computes its largest controllable sublanguage compatible
with both G and K. A language L such that L = Ω(L) is a fixpoint of Ω. The
following proposition describes supC(K) as the largest fixpoint of Ω, i.e., the largest
language L such that Ω(L) = L.

Proposition 1. Let K↑ ∶= supC(K). Then K↑ = Ω(K↑) and L ⊆ K↑ for every
language L such that L = Ω(L). △

Furthermore, if we set

K0 =K and Ki+1 = Ω(Ki) (4.2)

then
lim
i→∞

Ki =K↑

If we restrict to the regular case, i.e., when G and K are regular and represented
with generators, then the following fundamental result holds:

Theorem 16. (Wonham, 2012) The sequence of languages Ki as in (4.2) converges
after a finite number of terms to K↑ = supC(K).

In other words, K↑ = ⋂∞i=0 Ki is a fixpoint of the operator Ω. In the next section we
will show how this iteration scheme yields an effective procedure for the computation
of K↑.

4.2 A fixpoint computation of supC(K) 79

4.2.1 On the complexity of the regular case

Assuming that the generator for K and the plant G have, respectively, m and n
states, then the scheme illustrated in the previous section converges after at most
mn iterations. Since the computation of Ω is itself bounded by a polynomial in m
and n (Wonham and Ramadge, 1987), this implies that the computation of K↑ is
of polynomial complexity in m and n, in contrast to the prefix-closed special case
where it is linear in nm (Ramadge and Wonham, 1987). Moreover, if K and L(G)
are regular, then K↑ is regular as well and it can be represented (i.e., marked) by a
trim automaton with at most nm states (Cassandras and Lafortune, 2006).
In (Wonham and Ramadge, 1987) it is shown how the operator Ω can be effectively
computed. In Section 4.2.2 we present an intuitive algorithm as in (Cassandras
and Lafortune, 2006), of which the worst-case complexity is O(n2m2 × ∣Σ∣), i.e.,
it is quadratic in the product nm. In Section 4.2.3 we introduce instead a novel
approach, based on the construction of a game arena as customary in Verification
and Synthesis, which is polynomial as well.
Notably, authors of (Gohari and Wonham, 2000) point out that these complexity
results are limited to the case in which we have a single plant component and a
single specification generator. In the “generalized” case, namely in which there
are N plant modules running concurrently and the specification is composed by M
modules each rejecting certain event sequences as illegal, there is no way to avoid
constructing a state space exponential in both N andM , and the problem is proved
to be NP-complete in the size of the input. Although this setting does not provide
more expressive power, since a problem with arbitrary N,M can be converted into
the standard supervisory control problem (single plant, single specification), it shows
that it is possible to obtain a more concise representation.

4.2.2 Computation of supC(K) by iterative refinement

Instead of computing the operator Ω, this approach (Cassandras and Lafortune,
2006) employs the technique of “refinement by product”. This technique consists
in building a product automaton G ×K which is then iteratively refined (ergo the
quadratic cost in nm).
In order to check which strings in K, if any, violate the controllability condition,
we need to check whether uncontrollable events are always feasible in this product
automaton. This is due to the fact that uncontrollable events that are not allowed
by the specification may still happen inside the plant. A correct supervisor must
prevent this situation from happening. To this end, given a generic state g of
a generic generator G = ⟨Σ,G, g0, γ,Gm⟩, we will denote with ActG(g) the active
event set of a state g, i.e., ActG(g) = {σ ∈ Σ ∣ γ(g, σ) is defined }. Iterating this
reasoning, we will be able to compute the maximal controllable sublanguage though
the procedure formally defined below.
Here, as in the following section, plant’s marked states will be disregarded. As a
consequence, the resulting marked language will be only determined by the spec-
ification (marked) language. Observe how this matches the Marking Nonblocking
Supervisory Control problem (MNSC) as expressed in 4.1.

80 4. Supervisory Control for Behavior Composition

step 0 Let G = ⟨Σ,G, g0, γ⟩ be the plant (marked states are disregarded here) and
let K = ⟨Σ,X,x0, γx,Xm⟩ be the automaton representing the specification language,
i.e., such that Lm(K) =K and L(K) =K. Wlog, we assume K ⊆ L(G).

step1: build the product. Let

G0 = ⟨Σ,G0, ⟨g0, x0⟩, γ0,Gm,0⟩ = G ×K

where G0 ⊆ G×X. Moreover Gm,0 ⊆ G×Xm, i.e., the marking is solely determined by
the states of K. Notice that, since K ⊆ L(G), we have Lm(G0) =K and L(G0) =K.
Set i = 0.

step2: iterative refinement of Gi. The refinement works as follows: first we
compute the set of states of Gi that guarantee that no uncontrollable event will
violate the specification, then we build Gi+1 by projecting Gi on this subset.

Gi+1 = {⟨g, x⟩ ∈ Gi ∣ ActG(g) ∩Σu ⊆ ActGi(⟨g, x⟩)} (4.3)

γi+1 = γi ∣Gi+1 (4.4)

Gm,i+1 = Gm,i ∩Gi+1 (4.5)

(4.3) computes the set of states for which all uncontrollable events (that are feasible
in the plant G) are also feasible in the product automaton Gi computed in the
previous iteration; (4.4) restricts the transition function to the new state space;
finally, (4.5) shrinks the set of marked states accordingly.
Hence, consider the trim automaton

Gi+1 ∶= Trim(⟨Σ,Gi+1, γi+1, ⟨g0, x0⟩,Gm,i+1⟩) (4.6)

where Trim is a procedure removing states that are either not reachable or not
coreachable.
If Gi+1 is empty (thus also the initial state ⟨g0, x0⟩ was deleted by (4.3)), then
K↑ = ∅. Otherwise we repeat step2 for i + 1.

fixpoint condition (termination). If Gi+1 = Gi then we reached the refinement
fixpoint and thus

Lm(Gi+1) =K↑ and L(Gi+1) =K↑

Since Gi is trim, it is trivial to notice that Gi represents K↑.

4.2.3 SCT as DFA game

Section 4.2.2 presented a procedural approach to SCT, i.e., for computing the supre-
mal controllable sublanguage supC(K) of a given specification K wrt a given plant
G. However, although it captures the notion of supC(K) as the fixpoint of the op-
erator Ω –as defined in Section 4.2– it does not provide any insight or link between
Discrete Control Theory and the work on Verification and Synthesis in Computer
Science.

4.2 A fixpoint computation of supC(K) 81

DFA games

In Chapter 1 we defined an open system as a system that interacts with its environ-
ment via input and output signals and whose behavior depends on this interaction.
In particular, when dealing with open systems, we distinguish between output sig-
nals O (generated by the system) over which we have control, and input signals
I (generated by the environment) over which we have no control. We thus can
see an open system as playing a game with an adversarial environment, with the
specifications being the game winning condition.
Formally, we can formalize this intuition as follows. Consider a game Game in which:

• the environment chooses input values in I;
• the system chooses output values in O;
• in each round both players set their values;
• a play is a sequence of such couples, namely, a word in (I ×O)∗;
• the specification is a language recognizer S (a deterministic finite automaton

on words, or DFA);
• the system wins iff the play is accepted by S.

A strategy for the system is thus a function f ∶ I∗ → O mapping finite sequences
of input signals into output signals. As the system interacts with an environment
generating infinite input sequences, even though f is deterministic, it induces a
computation tree with fixed branching degree ∣I ∣, i.e. it associates a play to each
input sequence. The branches of such computation tree correspond to external
nondeterminism, caused by different possible inputs.
The game can be solved computing the subset of winning states, i.e., those states
from which there exists a strategy that can always induce a play accepted by S.

SCT as DFA game

Consider again the basic problem of SCT. Given a plant G and a specification K,
compute a nonblocking supervisor V for G such that “as much as possible” of K is
fulfilled, i.e., the closed loop behavior of G under V is such that Lm(V /G) =K↑, with
K↑ = supC(K). In particular, we focus once more on the special case of nonblocking
supervisors, namely, requiring that L(V /G) =K↑. As in Section 4.2.2 , we disregard
the plant’s marking states, hence focusing on the MNSC problem for (K,G) – see
Section 4.1.4.
For notational convenience, given a transition function γ of a generator G, in this
section we will denote by γ(g,α)! the fact that ∃g′ ∈ G such that g′ = δ(g,α), i.e.,
γ(g,α) is defined. Otherwise we write ¬δ(g,α).

As before, a plant is a trim –i.e. reachable and coreachable– generator G = ⟨Σ,G, g0, γ⟩
(marked states are disregarded) where:

• Σ = Σc ∪Σu, Σc ∩Σu = ∅ is the set of events;

• γ ∶ S ×Σ→ S is the deterministic transition function.

82 4. Supervisory Control for Behavior Composition

Now let K be a specification language provided by means of a trim recognizer
S = ⟨Σ, S, s0, ς, Sm⟩, i.e., such that Lm(S) =K and L(S) =K.
First, we build the product automaton K = S × G, which is meant to compile away
from S everything that is not compatible with G.
K = ⟨Σ,Q, q0, ρ,Qm⟩ is such that:

• Q = S ×G

• Qm = Sm ×G

Finally, we build the controller Game = ⟨Pwr(Σc) ×Σ,Q ∪ {⊺,�}, q0, δ,Qm⟩ where:

• Pwr(Σc) ×Σ is the new set of events. An element ⟨P,σ⟩ is meant to capture
the execution of event σ in G whereas P is the set of events allowed by a
supervisor.

• The state space Q is the same of K, with the addition of two special states
� and ⊺. The former is intended to capture system runs whose last event is
controllable and not allowed by the supervisor – see (δ,4). The latter instead
capture a failure condition – see (δ,1).

• Depending whether σ ∈ P or not, the event can be carried out or prevented
from being executed. Remember that uncontrollable events are always allowed
by definition. Hence the partial transition function δ ∶ (Pwr(Σc)×Σ)×Q→ Q
is defined as follows:

1. δ((P,σ), ⟨s, g⟩) = � if σ /∈ Σc and γ(g, σ)! but ¬ρ(⟨s, g⟩, σ)
2. δ((P,σ), q) = ρ(q, σ) if q = ⟨s, g⟩, σ /∈ Σc and ρ(g, σ)!
3. δ((P,σ), q) = ρ(q, σ) if σ ∈ Σc and σ ∈ P
4. δ((P,σ), q) = ⊺ if ρ(q, σ)! and σ ∈ Σc ∧ σ /∈ P

In words, case (δ,1) copes with uncontrollable events that are defined in plant G but
are not allowed by specification K. Observe how this condition is strictly connected
with the definition of controllable language in SCT: any of such events violates the
specification K. Case (δ,2) represents an uncontrollable event happening in plant
G, hence set P is ignored. Finally, the last two conditions represent a controllable
events being prevented from happening (δ,3) or being allowed (δ,4). Observe that
by (δ,4) the sink state ⊺ is reached: forbidding a controllable action is sufficient to
ensure the controllability of plant G wrt the current run.

Solving the game

We compute the set of winning states as a least fixpoint:

Win0(Q) = q ∈ Qm ∪ {⊺} s.t. δ((P,σ), q)!→ σ ∈ Σc (4.7)

Wini+1(Q) =Wini(Q) ∪
{q ∣ ∃P ∀σ ∈ (P ∪Σu) . δ((P,σ), q)! ∈Wini(Q)}

(4.8)

4.2 A fixpoint computation of supC(K) 83

Therefore:
Win(Q) =Winj(Q) s.t. Winj(Q) =Winj+1(Q)

is the set of Game’s states that are either marked in K or such that for every (un-
controllable as well as controllable) event, there exists a control action (i.e. a set
P ∈ Pwr(Σc)) able to ensure that any successor is in Win(Q). Note that (4.7) also
deals with the condition captured by (δ,1), as discussed before.

Theorem 17. A winning strategy f ∶ Σ∗ → Pwr(Σ) exists iff q0 ∈Win(Q).

This known realizability result follows from the fact that every regular game is
(finite memory-)determined, i.e., the winning regions for the two players partition
the set of vertices of the game (Grädel et al., 2002).
What about Synthesis? We compute the maximal controller C↑ from the set Win(Q)
as the finite state transducer (DFA with output) computed from Game as:

C↑ = ⟨Pwr(Σc) ×Σ,Win(Q), q0, δ
′⟩ = Trim(Game ∣Win(Q))

The output function ω ∶ Q × Σ → 2Pwr(Σc) is thus obtained by simply reading the
transition function, namely P ∈ ω(q, σ) iff δ′((P,σ), q)!. We can extract the set F
of winning strategies f ∶ Σ∗ → Pwr(Σ). First we define the outcome outf(σ0⋯σn)
of given strategy f from state q0 as the (unique – since C↑ is deterministic) compu-
tation q0, q1, . . . , qm such that for all positions i ≥ 0 it is qi+1 = δ′((P,σi), qi) with
P = f(σ0⋯σi). If instead δ′((P,σi), qi) is not defined for any P , then m = i and
f(σ0⋯σi) is undefined. This happens whenever a controllable event is forbidden by
the strategy, hence the computation stops. Let outf(w)i denote its i-th position.
We extract a winning strategy f ∈ F as:

f(σ) ∈ ω(q0, σ)

f(σ0 ⋯ σn) ∈ ω(q, σn) where q = outf(σ0 ⋯ σn−1)n
Adopting the SCT terminology, and recalling that controllable languages are closed
under union, we derive the corresponding supervisor V ∶ L(G)→ Pwr(Σ) as follows
(below, w ∈ Σ∗):

V (w) =⋃ {f(w ⋅ σ) ∣ σ ∈ Σ ∧ f ∈ F} ∪Σu

Theorem 18. V is a nonblocking supervisor such that Lm(V /G) =K↑.

Proof. Assume Lm(V /G) = L(V /G) ∩ K ⊂ K↑. It implies that there exists a
word w ∈ L(G) ∩ K which is controllable but is not in L(V /G). Let w be w =
σ0 ⋯ σn. Applying the definition of L(V /G) we deduce that σ` /∈ V (σ0 ⋯ σ`−1) for
` ≤ n, namely, σ` /∈ f(σ0 ⋯ σ`) for any strategy f ∈ F , and σ` /∈ Σu either (because
uncontrollable actions are always allowed by V). This implies that σ` /∈ ω(q, σ`)
with q = outf(σ0 ⋯ σ`−1)` for any winning f . By construction of C↑, this means
that either q /∈ Qm ∪ {⊺} (4.7) or not all (P,σ`)-successors of q with σ` ∈ (P ∪ Σu)
are in Win(Q) (4.8). As a consequence, w is not controllable.Consider now the
case that K↑ ⊂ Lm(V /G) = L(V /G) ∩K. Again, let w = σ0 ⋯ σn a word such that

84 4. Supervisory Control for Behavior Composition

w ∈ L(V /G)∖K↑. w is not controllable by definition, hence there exists at least one
index ` < n such that σ0 ⋯ σ` ⋅Σu ∩ L(G) /⊆ K↑; namely, σ` ∈ Σc whereas σ`+1 ∈ Σu.
Because σ` ∈ V (σ0 ⋯ σ`−1) is controllable, then there exists a strategy f such that
σ` ∈ f(σ0 ⋯ σ`). Assume q = outf(σ0 ⋯ σ`−1)`. Then there exists an integer i such
that q ∈ Wini(Q), otherwise such f can not exist by construction of C↑. Hence
either q ∈ Qm ∪ {⊺} (4.7) or ∃P∀σ ∈ P we have δ((P,σ), q) ∈ Wini(Q) (4.8). By
substituting σ with σ`, we get that both σ0 ⋯ σ` and σ0 ⋯ σ`+1 are in K↑, and thus
a contradiction. ∎

As a consequence of Theorem 17, we get also the following result.

Theorem 19. K↑ ≠ ∅ iff q0 ∈Win(Q).

As for complexity, it is trivial to see that this approach is polynomial.

4.3 SCT for Agent Behavior Composition
As formalized in Section 3.1.1, the agent behavior composition problem amounts
to synthesising a controller that is able to “realize” (i.e., implement) a desired, but
nonexistent, target agent behavior, by suitably coordinating a set of available agent
behaviors. As done in Chapter 3, we adopt the framework proposed in (Stroeder
and Pagnucco, 2009; Sardiña et al., 2007; Sardiña et al., 2008; De Giacomo et al.,
2013). In this approach, agent behaviors represent the operational logic of a device
or a program and they are modeled using finite transition systems. The reader is
referred to Section 3.1.1 for any detail1.

Example 15. Consider the example depicted in Figure 4.1. Target T encapsulates
the desired functionality for a house cleaning system, which involves first turning
on the lights to sense which area needs cleaning, and then either vacuuming or
mopping the area. At every step, the user can request an action compatible with
this specification, and a (good) controller should guarantee that it can fulfill such
request by delegating the action to one of the three available devices installed in
the house, namely, a vacuum device B1, a mopping device B2, a light cum sensor
B3 and a lamp B4. Note that action clean in device B1 is non-deterministic: the
controller may not know whether the device will stay in a1 or evolve to a2 (signaling
that its internal dustbin becomes full and must be empty), though it can observe the
evolution once it happens. ◻

In Section 3.1.1 (please refer to it for definitions and details) we introduced the
notion of controller, i.e., a function taking a history (run) of the system and the
next action request and outputting the index of the available agent behavior to
which the action is delegated. We then defined what does it mean when a controller
realizes the target agent behavior – see also (De Giacomo and Sardina, 2007; De
Giacomo et al., 2013). We called these controllers exact compositions, solutions to

1Observe, however, that we disregard here agent behaviors’ final states, hence all states are
considered as final — see discussion after Definition 3.1

4.3 SCT for Agent Behavior Composition 85

a0

a1 a2

move

clean

empty

clean

empty

Vacuum B1

b0 b1 b2
slide dry

refill
Mop B2

c0 c1

lightOn

lightOff
sense

Light B3

d0 d1

lightOn

lightOff

Lamp B4

t0 t1 t2

t4

t3

t5

t6lightOn
move

lightOff

slide dry

clean empty

refill

sense
Target T

Figure 4.1. A smart house with four available behaviors.

the composition problem guaranteeing the complete realization of the target in the
system. For example, it can be shown that there is indeed an exact composition
for the example in Figure 4.1: all actions requested as per the target will always be
fulfilled by the controller.

Since exact compositions are not very informative on unsolvable instances—a mere
“no solution” answer is highly unsatisfactory— (Yadav and Sardina, 2012) pro-
posed to look for the optimal target approximations of T in S instead: the closest
(w.r.t target T) alternative target T̃ that has an exact composition. To capture
the notion of “closeness," the authors relied on a special kind of simulation relation.
Importantly, it turns out that there is an exact solution for the original target iff
there exists an optimal approximation that is simulation equivalent to it (a property
that can be checked in polynomial time). More surprising is the fact that optimal
approximations are in fact unique (up to isomorphism). Though not necessary to
develop our approach, we refer the reader to (Yadav and Sardina, 2012) for more
details on optimal target approximations. However, the notion of target approx-
imation as “supremal realizable target fragments” will be investigated in the next
Chapter.

86 4. Supervisory Control for Behavior Composition

4.3.1 DES-based Agent Behavior Composition

Consider an available system (see Section 3.1.1) S = ⟨B1, . . . ,Bn⟩, where Bi =
⟨Bi,Σ, b0i, %i⟩ for i ∈ {1, . . . , n}, and a (deterministic) target T = ⟨T,ΣT , t0, %T ⟩
(wlog we assume T to be connected – also, to be consistent with the SCT, we will
regard here actions as alphabet elements, thus using symbol Σ).
So, let us next build a product generator G—the plant to be controlled—capturing
the composition of T on S. Below, we use two auxiliarly sets Indx = {1, . . . , n} and
Succ = ⋃i∈{1,...,n}Bi.

Definition 4.4. Let the composition plant G = ⟨Σ,G, g0, γ,Gm⟩ be defined as fol-
lows:

• Σ = Σc∪Σu, where Σc = Indx and Σu = ΣT ∪Succ, is the finite set of controllable
and uncontrollable events.

• G ⊆ T ×B1 × . . . ×Bn ×Σ × (Indx ∪ {0}) is the finite set of states of the plant,
encoding the state of all behaviors together with the last event and behavior
delegation (0 stands for no delegation).

• g0 = ⟨t0, b01, . . . , b0n, e,0⟩ is the initial state, encoding the initial configura-
tion of the system and target, and the fact that there has been no event or
delegation.

• Transition function γ ∶ G ×Σ→ G of G is such that:

1. γ(⟨t, b1, . . . , bn, e,0⟩, σ) = ⟨t′, b1, . . . , bn, σ,0⟩ iff σ ∈ ΣT and t′ = %T (t, σ);
2. γ(⟨t, b1, . . . , bn, σ,0⟩, j) = ⟨t, b1, . . . , bn, σ, j⟩ iff σ ∈ ΣT , j ∈ Indx;
3. γ(⟨t, b1, . . . , bn, σ, j⟩, b′j) = ⟨t, b1, . . . , b′j , . . . , bn, e,0⟩ iff b′j ∈ %j(bj , σ).

• Gm = T ×B1 × . . . ×Bn × {e} × {0} are the marked states.

△

Let us explain the main ingredients of the composition plant. First, the controllable
aspect of the plant amounts to behavior delegations: we can control where each
target request is delegated to. On the other hand, the actual target request and the
evolution of the selected behavior are uncontrollable events.
A state in the plant stands for a snapshot of the whole composition instance.
In the composition plant, the whole process for one target request involves three
γ-transitions in the plant, namely, target action request, behavior delegation, and
lastly behavior evolution. Initially and after each target request has been fulfilled,
the plant is in a state with no active request (e) and no behavior delegation (0),
ready to accept and process a new target request—a marked state. So, given a
legal target request (uncontrollable event) σ ∈ ΣT , the plant evolves to a state
recording the request and the corresponding target evolution (case 1 of γ). After
that, the composition plant may evolve relative to events representing behavior
delegations, one per available behavior, of the pending action to states recording

4.3 SCT for Agent Behavior Composition 87

t0
a0, b0, c0, d0

e

0

t1
a0, b0, c0, d0

lightOn
0

t1
a0, b0, c0, d0

lightOn
3

t1
a0, b0, c1, d0

e

0

t1
a0, b0, c0, d0

lightOn
1 t1

a0, b0, c0, d0
lightOn

2

t1
a0, b0, c0, d0

lightOn
4 t2

a0, b0, c1, d0
move

0

⋯⋯

t1
a0, b0, c0, d1

e

0

⋯ ⋯

lightOn 3 c1

1

2

4

d1

move

1..4

slide
sensemove

slide
sense

Figure 4.2. Plant G for the example in Figure 4.1

such delegations (case 2 of γ). At this point, the plant state includes the current
state of every behavior, together with the current pending action and its delegation
index. Two cases are then possible depending on whether the selected behavior Bj
is capable of performing such action. If it is capable (case 3 of γ), an uncontrollable
event representing each potential evolution of the delegated behavior may occur,
evolving the state of such behavior and resetting the plant to a state where a new
action request can be processed, that is, a marked state. If instead the action can
not be performed in the delegated behavior Bj , then the current (non-marked) state
is a dead-end. As one can see, marked states represent those states where the whole
action request and behavior delegation process has been fully completed.

Example 16. Figure 7.1 depicts the (partial) plant for the composition problem
of Figure 4.1. Transitions with uncontrollable events are depicted as dashed. Note
how each complete delegation of actions to behaviors corresponds, in the plant, to
three consecutive events in (ΣT ⋅ Indx ⋅⋃iBi). Observe also that in the state resulting
from a lightOn uncontrollable event, there are 4 possible ways of delegating such
request. However, only two of them (B3 and B4) will not result in immediate dead-
end states, and only one of them—namely delegation to B3—will be part of the
solution. (By selecting B4 the plant will reach dead-end states when sense actions
is requested.) ◻

With the plant built, we next consider the specification to be controlled to be
exactly the language K = Lm(G). In other words, we aim at controlling the marked
language of the plant, that is, those runs that represent complete request-delegation
processes. It is important to note that the target behavior T is not used to derive
the language specification, but it is embedded instead into the plant itself. The
fact is that the target is one of the component generating uncontrollable events (the
other being the evolution of available behaviors).
An important technical result is that given any target trace τ of T , the set of system
histories that a composition C—a controller solving the problem— yields when τ is
executed (denoted HC,τ — see Definition 3.3), is in bijection with the set of traces

88 4. Supervisory Control for Behavior Composition

of plant G. This appears evident by inspecting Figure 7.1, and is formalized in the
following lemma. The result uses mapping word(h) ∈ (Σt ⋅ Indx ⋅⋃iBi)∣h∣ to translate
a behavior composition system history (i.e., finite traces of the enacted system ES)
into words generated by composition plant G.

Lemma 1. A controller C is a composition for target T on system S iff for each
target trace τ and system history h ∈HC,τ we have that word(h) ∈K↑, where:

word(b⃗0
σ1,j1Ð→ b⃗1

σ2,j2Ð→ . . .
σk,jkÐ→ b⃗k) =

(σ1 ⋅ j1 ⋅ stj1(b⃗1)) ⋅ . . . ⋅ (σk ⋅ jk ⋅ stjk(b⃗k)).

Proof. For convenience, we define a set of ranged functions sti ∶ G → Bi, with
i ∈ Indx, such that, given a plant state g = ⟨t, b⃗, σ, j⟩, sti(g) is the state component
of behaviour Bi or target T .
(⇒) Assume by contradiction that there exists a composition P such that for some
target trace τ and induced history h σ,jÐ→ b⃗, we have P (h,σ) = j but word(h) ⋅σ ⋅j ⋅b′ /∈
K↑, with b′ = stj(b⃗). This implies that word(h) ⋅ σ ⋅ j is not allowed from the initial
state g0 of the plant, according to supervisor V , i.e., either

(a) word(h) ⋅ σ /∈ L(G) or

(b) word(h) ⋅ σ ⋅ j ⋅ b′ /∈ L(G) or

(c) for all words w ∈ Lm(G) with w > word(h) ⋅ σ ⋅ j ⋅ b′ we have w /∈K↑.

Case (a) is not possible by construction of G. Indeed, according to γ, it is w⋅σ ∈ L(G)
for every w ∈ Lm(G) such that %T (stt(γ(g0,w)), σ) is defined in T . Case (b) implies,
by definition of γ, that b′j /∈ %j(bj , σ), with bj = stj(last(h)). Hence, the action σ can
not be replicated by behavior Bj and, as a consequence, the plant’s state reached
with σ is a dead-end. This contradicts the fact that P is a composition for T by
S. Finally, case (c) implies that for any such word w we have w ⋅Σu ∩ L(G) /⊆ K↑,
i.e., there exists a sequence of (uncontrollable) events leading to a state which is not
coreachable, i.e., from where a marked state is not reachable. Indeed, remember
that K = Lm(G). Hence, since every action σ ∈ Σt ⊂ Σu is always allowed by any
supervisor and, by construction of G, w ⋅ σ ∈ L(G) for every w ∈ Lm(G) such that
%T (stt(w), σ) is defined in T , we can apply the same reasoning of (b) and deduce
that C is not a composition. More precisely, there exists a target trace τ ′ = τ σÐ→ tk,
with h ∈HC,τ , which is not realized by C.
(⇐) First of all, since K ∩L(G) ⊆K and by the previous assumption K↑ ≠ ∅, then
by Theorem 15 a supervisor V does exist. Hence, word(h) ⋅ σ ⋅ j ⋅ b′ ∈ K↑ iff there
exists a supervisor V such that Lm(V /G) =K↑, σ ∈ V (word(h)), j ∈ V (word(h) ⋅σ)
and b′ ∈ V (word(h) ⋅ σ ⋅ j). Then, remember that Σt ⊂ Σu and hence all target
action are always allowed by V . Similarly, the event set Succ is uncontrollable
as well. Assume by contradiction that word(h) ⋅ σ ⋅ j ⋅ b′ ∈ K↑ but it does not
exist any composition C such that C(h,σ) = j. By definition of composition, this

4.3 SCT for Agent Behavior Composition 89

implies that there exists a target trace τ = t0
σ1Ð→ ⋯tk with σ = σ∣τ ∣ such that

for some history h ∈HC,τ we have that %(last(h), σ, j) is not defined in the enacted
system behavior ES = ⟨S,Σ, s0, %, SF ⟩ built out of B1, . . . ,Bn. This means that either
%T (stt(last(h)), σ) is not defined or behavior Bj can not perform this action from
its current state stj(last(h)), i.e., b′ ≠ %j(stj(last(h)), σ). In other words, according
to γ, word(h) ⋅ σ ⋅ j ⋅ b′ /∈ L(G) . If this is the case, then either σ /∈ V (word(h)) or
j /∈ V (word(h) ⋅ σ) or b′ /∈ V (word(h) ⋅ σ ⋅ j) and we get a contradiction. ∎

This result is key to prove our main results of this section, namely, that supervisors
able to control the specification K in plant G correspond one-to-one with compo-
sition solution controllers for T on S. To express such results, we need to relate
supervisors and controllers. So, when V is a supervisor V for plant G, we say that
a controller CV ∶ H ×A → {1, . . . , n} is induced by V iff CV (h,σ) ∈ V (word(h) ⋅ σ),
for every h ∈H and σ ∈ A.

Theorem 20 (Soundness). There exists a nonblocking supervisor V such that
Lm(V /G) =K↑ ≠ ∅ iff there exists a composition C for T on S. In particular, every
controller PV induced by V is a composition for T on S.

Proof. (⇒) Assume by contradiction that for some controller CV there exists a
target trace τ = t0

σ1Ð→ ⋯ σkÐ→ tk and an induced system history h ∈ HCV ,τ such
that either (a) CV (h,σk) is not defined or (b) CV (h,σk) = j but %j(stj(last(h)), σk)
is not defined. By Lemma 1, it means that word(h) ⋅ σk ⋅ j /∈ K↑. More precisely,
(a) implies that word(h) ⋅ σk /∈ L(G) whereas (b) implies that σk /∈ V (word(h)) and
j /∈ V (word(h) ⋅ σk). Also, by construction of G, it is K↑ = ∅. (⇐) By Lemma 1, if
a composition exists then K↑ ≠ ∅. ∎

In words, the supremal of the specification is controllable if and only if a solution
to the composition problem exists, and every controller extracted from a supervi-
sor is in fact a composition solution. Furthermore the following results show that
(nonblocking) supervisors are “complete”, in that they embedd every possible com-
position controller possible.

Theorem 21 (Completeness). Given a nonblocking supervisor V such that Lm(V /G)=
K↑, every composition C for T by S is obtained by V .

Proof. Assume by contradiction that there exists a composition C′ which can not
be obtained by V , i.e., it is such that C′(h,σ∣τ ∣) /∈ V (word(h) ⋅ σ∣τ ∣) for some target
trace τ = t0

σ1Ð→ ⋯tk and some induced system history h ∈ HC′,τ . It is easy to see
that this contradicts Lemma 1. ∎

These two results show the formal link between the two synthesis tasks, namely,
synthesis of a composition controller and supervisor synthesis. It remains to be
seen how we can actually extract finite representations of composition controllers
from supervisors.

90 4. Supervisory Control for Behavior Composition

From Supervisors to Controller Generators A compositin controller gener-
ator is a finite structure encoding all possible composition solutions. It is sort of a
universal solution for the composition problem at hand. Once the controller gener-
ator has been computed offline, it can be stored and used at runtime the implement
the target realization. It has been shown how such structure provides flexibility and
robustness when it comes for the agent to run the target module. See (De Giacomo
et al., 2013; Sardiña et al., 2008) for details on composition controller generators.
We start by noting that, since both languages L(G) and K are regular, they can be
implementable. In fact (Wonham and Ramadge, 1987) has shown that it is possible
to compute a generator R that represents exactly the behavior of controllde sys-
tem V /G, for some supervisor V able to control K↑. As such, R captures not only
the control actions of supervisor V , but also all internal events of the plant. Ex-
tracting the controller generator amounts to projecting the latter and transforming
control actions into behavior delegations. The whole procedure can be depicted as
follows: So, suppose the composition task is solvable (and hence K↑ /= ∅), and take

K) K"))R CG

spec. plant maximal
contr. sublang.

generator controller
generator

G

K"for

generator R = ⟨Σ, Y, y0, ρ, Ym⟩ representing a “good” supervisor for plant G. For
any y ∈ Y we denote with [y] the tuple ⟨stt(y), st1(y), . . . , stn(y)⟩, where function
sti(y) outputs the local state of target and available behaviors in R’s state y. The
DES controller generator is a tuple CG = ⟨At, Indx,Q, [y0], ϑ, ω⟩, where:

• Q = {[y] ∣ y ∈ Y, p ∈ (Σt ⋅ Indx ⋅ Succ)∗, y = ρ(y0, p)};

• ϑ ∶ Q × ΣT × Indx → Q is such that ϑ([y], σ, j) = [y′] iff y′ = ρ(y, σ ⋅ j ⋅ b′j) for
some b′j ∈ Succ;

• ω ∶ Q×ΣT → Pwr(Indx) is the behavior selection function, such that ω(q, σ) =
{j ∣ ∃q′ = ϑ(q, σ, j)}.

As explained in (De Giacomo et al., 2013), ω generates controllers P such that
C(h,σ) ∈ ω(last(h), σ), where h is a system history and σ is a domain action request.
The following result demonstrates the correctness of our DES-based approach to
compute controller generators.

Theorem 22. A controller C is a composition of T by S iff it is generated by CG.

We note also that the approach is optimal wrt worst-case complexity. Indeed, the
plant G is exponential in the number of behaviors, and the procedure to synthesize
the supervisor (that is, to extract R) is polynomial in the size of the plant and the
generator for the specification (Wonham and Ramadge, 1987; Gohari and Wonham,
2000). It follows then that computing the DES controller generator can be done in
exponential time in the number of behaviors, which is the best we can hope for (De
Giacomo and Sardina, 2007).

4.3 SCT for Agent Behavior Composition 91

Q

0 ⟨a0, b0, c0, d0⟩
1 ⟨a0, b0, c1, d0⟩
2 ⟨a0, b1, c1, d0⟩
3 ⟨a1, b0, c1, d0⟩
4 ⟨a0, b2, c1, d0⟩
5 ⟨a1, b0, c1, d0⟩
6 ⟨a2, b0, c1, d0⟩
7 ⟨a0, b0, c1, d0⟩

0

1 2

3 4

5
6

7

lightOn,3

sense,3

slide,2

move,1
dry,2

clean,1
clean,1

refill,2
empty,1

em
pt

y,
1lightOff,3

Figure 4.3. DES controller generator for the example in Figure 4.1

We close this section by noting that there are in fact several tools available for the
automated synthesis of supervisors for a discrete event system. In particular, we
have used TCT (Zhang and Wonham, 2001), in which both the plant to be con-
trolled and the specification are formalized as generators, to extract the generator
R encoding a supervisor for K↑.

4.3.2 Composition under Constraints

In practical applications, it may be useful to restrict to composition solutions con-
forming to some additional constraints. Such constraints can pertain to the evolu-
tion of one or more available behaviors or to the way behaviors are scheduled by
the controller. For example, we may require that a given available behavior never
reaches, under a given global context, an internal (dangerous) state. Similarly, we
may impose fairness or load balancing restrictions on how tasks are delegated to
behaviors. One may state then that, under certain conditions, an action is never
delegated to the same behavior twice in a row, or that at at least half of the modules
are to be used for the composition. We show how to do this next.
To represent such extension to the classical composition framework, we consider
the problem of computing a composition C for a target T on a system S under a
constraint specification language Hc ⊆H. That is, a constraint specification amounts
to the set of system histories that are “legal.”

Example 17. As an example, consider again the setting in Figure 4.1 but with
B4 modified so as to be identical to light device B3. It is not hard to see that
now, differently from before, action sense can be correctly delegated to both such
behaviors. Imagine now to construct a constraint set Hc so that fairness among
B3 and B4 is achieved by requiring round-robin style selection. In other words,
the set Hc contains all and only those system traces conforming to the fairness
requirement. ◻

We say that a controller C conforms to constraints Hc iff for any target trace τ in
T it is the case that HC,τ ⊆ Hc (i.e., executions induced by C when running the

92 4. Supervisory Control for Behavior Composition

target yields constraint-compatible histories). It is not hard to see that the classical
setting with no constraints is obtained by taking Hc =H.
To solve a (constrained) composition problem using our DES-based approach, we
first map the constraint specificationHc to its DES version by takingKC = {word−1(h) ∣
h ∈Hc}. It is not hard to see that KC ⊆ Σ∗ (where Σ is the set of events of the com-
position plant G), even though, of course, at most the regular language KC ∩Lm(G)
can be controlled. We require the set Hc to be prefix-closed, that is, if a history h
belongs to Hc so do all its prefixes.
Finally, we apply the approach from Section 4.3.1 but now using KC directly as the
specification of the language to be controlled. Note that if Lm(G) ⊆KC—everything
that the plant may generate is constraint-compatible—then KC plays no role and
the problem reduces to the standard constraint free setting. On the other hand,
when Lm(G) ∖KC /= ∅, not any composition solution is adequate.
Since Hc is a prefix-closed set of histories, language KC is closed as well, that is,
KC = KC . As a consequence, we have KC ∩Lm(G) ⊆ KC . Hence, from Theorem 15,
we conclude that if KC↑ ≠ ∅, then there exists a nonblocking supervisor V for G
with Lm(V /G) =KC↑ =KC↑. This leads us to the main result of this section.

Theorem 23 (Correctness). There exists a nonblocking supervisor V such that
Lm(V /G) =KC↑ ≠ ∅ iff there exists a composition C for T by S conforming to Hc.

As before, once we have a supervisor V as in the theorem, we can reconstruct
all composition controllers C conforming with C. In turn, assuming regularity of
constraint specification Hc, we can finitely implement the supervisor with a gen-
erator R as explained above. However, the procedure for building the DES con-
troller generator from R needs to be adapted, as we need more information than
the current state of the behaviors and the target. More concretely, generator R
may require additional bounded memory to witness the satisfaction of constraints.
Therefore, given the automaton R, we define the memory-based DES controller gen-
erator CG = ⟨Σt, Indx,Q′, q′0, ϑ

′, ω′⟩ as before, except that the state space Q′ is just
a subset of R state space Y , namely, Q′ = {y ∈ Y ∣ p ∈ (Σt ⋅ Indx ⋅ Succ)∗, y = ρ(y0, p)}.
Summarizing, the fact that supervisory control theory is based entirely on languages
allows us to integrate sophisticated constraints for the composition task in an almost
straightforward manner, by just seeing constraints as sets of “allowed” words that
the composition plant may generate.

4.3.3 Supremal Realizable Target Fragment

In Section 3.1.1 we have formalized the notion of (exact) target composition. How-
ever, suppose now we are given a target behavior T and a set of deterministic avail-
able behaviors B1, . . . ,Bn such that, as often happens, there is no exact composition
for T , i.e., the target cannot be completely realized in the system. There has been
a recent interest in the literature to look beyond such exact solutions when such
solutions can not be found. The need for “approximations” in problem instances not
admitting (easy) exact solutions was first highlighted in (Stroeder and Pagnucco,
2009) and the first attempt to define and study properties of such approximations
was done in (Yadav and Sardina, 2012). Roughly speaking, these approximations

4.3 SCT for Agent Behavior Composition 93

are realizable target behaviors (of the original target behavior) that do have exact
solutions, and the best approximation is that one closest to the original one. Here,
we call such optimal approximations supremal realizable target behaviors (SRTB).
In this section, we show how to adapt the composition plant G from Section 4.3.1
to extract SRTBs out of adequate supervisors (rather than exact composition) for
the special case of deterministic systems. Indeed, due to intrinsic limitations of the
present framework (which is based on languages) we restrict here to the case of
deterministic available behaviors only.
A more complete and general approach to such problem will be presented in the
next chapter. However, in the context of SCT, it is quite natural to investigate to
which extent notions such as the maximality of realizable sublanguage of a given
specification can be transferred in a AI synthesis setting.
Let us start then by quickly reviewing the notion of SRTBs by (Yadav and Sar-
dina, 2012). We shall follow their account of nondeterministic target behaviors
and requests on target transitions (instead of simply actions) to maintain the full
controllability of the target module.
The definition of SRTBs relies on the formal (standard) notion of simulation (Milner,
1971a). Intuitively, a (transition) system S1 “simulates” another system S2, denoted
S2 ⪯ S1, if S1 is able to always match all of S2’s moves.
The definition of simulation relation here is quite similar to Definition 3.4 of ND-
simulation. The only difference is that final states are omitted. We report it for
clarity.

Definition 4.5. Let Ti = ⟨Si,A, si0, %i⟩, where i ∈ {1,2}, be two transition systems.
A simulation relation of T2 by T1 is a relation Sim ⊆ S2 ×S1 such that ⟨s2, s1⟩ ∈ Sim
iff: ∀a, s′2.⟨s2, a, s

′
2⟩ ∈ %2 → ∃s′1⟨s1, a, s

′
1⟩∈ %1 ∧ ⟨s′2, s′1⟩∈Sim. △

Informally, a target behavior T̃ = ⟨T̃ , Ãt, t̃0, %̃T ⟩ is a realizable target behavior (RTB)
of original target specification T in available system S iff (i) T̃ is simulated by T
(i.e., T̃ ⪯ T); and (ii) T̃ has an exact composition in S. In addition, an RTB T̃ is
supremal (SRTB) iff there is no other RTB T̃ ′ such that T̃ ≺ T̃ ′ (i.e., T̃ ⪯ T̃ ′ but
T̃ /⪯ T̃ ′). Intuitively, a supremal RTB is the closest alternative to the original target
that can indeed be completely realized.
The question then is: can we adapt the DES framework of Section 4.3.1 to obtain
SRTBs rather than exact compositions? In what follows we answer positively to
this question for the case when available behaviors in S are deterministic.
The key to synthesize supremal RTBs by controlling a new composition plant is the
fact that since we are no longer committed to realize all target traces, the events
corresponding to target’s requests are now controllable. Hence, the supervisor can
choose which target’s requests to fulfill. In building the new composition plant, we
observe that because we assume S to be deterministic, the whole process for one
target request involves now only two γ-transitions, both with controllable events.
Moreover, to accommodate fully controllable nondeterministic targets, we consider
transitions (tuples θ ∈ %T) instead of action requests. Thus, a (complete) target
action delegation corresponds to two events (θ ⋅ j) ∈ (%T ⋅ Indx).
So, consider an available system S = ⟨B1, . . . ,Bn⟩, where Bi = ⟨Bi,Σ, b0i, %i⟩ for
i ∈ {1, . . . , n} are deterministic, and a target behavior T = ⟨T,ΣT , t0, %T ⟩. We define
the maximal composition plant Ĝ⟨S,T ⟩ = ⟨Σ,G, g0, γ,Gm⟩ as follows:

94 4. Supervisory Control for Behavior Composition

• Σ = Σc ∪Σu is the set of events of the plant, where Σu = ∅ and Σc = Indx∪ %T ,
i.e., both target transition requests and behavior delegations are controllable;

• G ⊆ T ×B1 × . . . ×Bn ×Σ is the finite set of states;

• g0 = ⟨t0, b01, . . . , b0n, e⟩ is the initial state of Ĝ⟨S,T ⟩;

• γ ∶ G ×Σ→ G is the transition function, such that:

1. γ(⟨t, b1, . . . , bn, e⟩, θ) = ⟨t, b1, . . . , bn, θ⟩ iff θ = ⟨t, σ, t′⟩ ∈ %T ;
2. γ(⟨t, b1, . . . , bn, θ⟩, j) = ⟨t′, b1, . . . , b′j , . . . , bn, e⟩ iff θ = ⟨t, σ, t′⟩ ∈ %T , j ∈

Indx, and b′j = %j(bj , σ);

• Gm = T ×B1 × . . . ×Bn × {e}.

As before, we take K = Lm(Ĝ⟨S,T ⟩) as the specification language to control (in the
maximal composition plant). To compute a SRTB for target T in S we first compute
the language K↑, and then build its corresponding generator R = ⟨Σ, Y, y0, ρ, Ym⟩
as before. Finally, from generator R, we extract the alternative, possibly non-
deterministic, target behavior T ∗

⟨S,T ⟩
= ⟨T ∗,ΣT , y0, %

∗
T ⟩, where:

• T ∗ = {y ∣ y ∈ Y, p ∈ (%T ⋅ Indx)∗, y = ρ(y0, p)};

• %∗T ⊆ T ∗ ×ΣT × T ∗ is such that y′ ∈ %∗T (y, σ) iff y′ = ρ(y, θ ⋅ j), where j ∈ Indx,
θ ∈ %T , and θ = ⟨t, σ, t′⟩.

Next, we present the key results for our technique.

Theorem 24 (Soundness). Let T be a target and S an deterministic system. Then,
T ∗
⟨S,T ⟩

is a SRTB of T in S.

We note that one can compute also the controller generator for T ∗
⟨S,T ⟩

while build-
ing the SRTB itself, by just keeping track of delegations in R too, as done in
Section 4.3.1.

Theorem 25 (Completeness). Given a nonblocking supervisor V such that
Lm(V /Ĝ⟨S,T ⟩) =K↑, every composition C for T ∗

⟨S,T ⟩
in system S can be obtained by

V .

In words, every supervisor that can control languageK↑ in the maximal composition
plant Ĝ⟨S,T ⟩ encodes all exact compositions of the SRTB T ∗

⟨S,T ⟩
built above.

We conclude this section by providing the proofs of Theorem 24 and Theorem 25.
In order to do this, we first prove the following two lemmas.

Lemma 2. If C is a composition for an RTB T̃ of T in S then W
C,T̃ ,S ⊆K↑.

Proof. Assume by contradiction that there exists a composition P such that for
some target trace τ = t0

σ1Ð→ t1
σ2Ð→ ⋯ → tk of T̃ and induced history h ∈ HC,τ , we

have P (h, θ) = j but word(τ, h) ⋅ θ ⋅ j /∈ K↑, where θ = ⟨tk, σ, tk+1⟩ is the new target
transition been requested. This implies that word(τ, h) ⋅θ ⋅ j is not allowed from the
initial state g0 of the plant, according to supervisor V , i.e., either

4.3 SCT for Agent Behavior Composition 95

(a) word(τ, h) ⋅ θ /∈ L(Ĝ⟨S,T ⟩) or

(b) word(τ, h) ⋅ θ ⋅ j /∈ Lm(Ĝ⟨S,T ⟩) or

(c) for all words w ∈ Lm(Ĝ⟨S,T ⟩) with w > word(τ, h) ⋅ θ ⋅ j we have w /∈K↑.

Case (a) is not possible by construction of Ĝ⟨S,T ⟩. Indeed, according to γ, it is
w ⋅ θ ∈ L(Ĝ⟨S,T ⟩) for every w ∈ Lm(Ĝ⟨S,T ⟩) such that t = stt(γ(g0,w)) and %T (t, σ)
is defined in T . Case (b) implies, by definition of γ, that b′j /∈ %j(bj , σ), with
bj = stj(last(h)). Hence, the action σ can not be replicated by behavior Bj and, as
a consequence, a looping event e ∈ Σu is the only one available in Ĝ⟨S,T ⟩ after the
event θ. This contradicts the fact that P is a composition for T̃ by S. Finally, case
(c) implies that θ is not allowed in γ(g0,w) for w = word(τ, h). By construction of
Ĝ⟨S,T ⟩, this means that for any such a word w we have w ⋅Σu ∩L(Ĝ⟨S,T ⟩) /⊆K↑, i.e.,
there exists an events (corresponding to a target action) leading to a sink state, i.e.,
a state which is not coreachable. Hence this leads to the same reasoning of case
(b). Indeed, by construction of Ĝ⟨S,T ⟩, w ⋅ θ ∈ L(Ĝ⟨S,T ⟩) for every w ∈ Lm(Ĝ⟨S,T ⟩)
and θ = ⟨t, σ, t′⟩ such that %T (stt(γ(g0,w)), σ) is defined in T . Hence, this implies
there exists a target trace τ ′ = τ σÐ→ t`, with h ∈ HC,τ , which is not realized by C,
hence it is not a composition. ∎

Lemma 3. WT ∗⟨S,T ⟩,S =K
↑.

Proof. Assume by contradiction that there exists a word w ∈ K↑ that can not be
induced on Ĝ⟨S,T ⟩ by T ∗

⟨S,T ⟩
, namely, w /∈ WC,T ∗⟨S,T ⟩,S for any C. This means that

there is no target trace τ ∈ T ∗
⟨S,T ⟩

and history h ∈HC,τ such that word(τ, h) = w for
some C. Hence, applying the definition of word(h, τ), consider any word

word(τ, h) = (⟨t0, σ1, t1⟩ ⋅ j1) ⋅ . . . ⋅ (⟨tk−1, σk, tk⟩ ⋅ jk)

corresponding to any trace τ = t0
σ1Ð→ ⋯ σkÐ→ tk of T ∗

⟨S,T ⟩
and history h induced by

any C. Moreover, let

w = (⟨t0, σ′1, t′1⟩ ⋅ j′1) ⋅ . . . ⋅ (⟨t′k−1, σ
′
k, t

′
k⟩ ⋅ j′k)

the word w ∈ K↑ as before. We want to show that such w can not exist. Hence,
for every such trace τ in T ∗

⟨S,T ⟩
and induced history, either (a) σi ≠ σ′i or (b)

ti ≠ t′i or (c) ji ≠ j′i for some i ∈ [1, . . . , k]. Case (a) implies that from a state g
of Ĝ⟨S,T ⟩ such that stt(g) = ti−1, there is no event θ = ⟨ti−1, σi, ⟩ available. This
is impossible, as every transition θ ∈ %T is mapped to an uncontrollable event θ.
Similarly, case (b), because of (a) and the fact that t0 is unique, implies that from
a state g such that stt(g) = ti−1, there is no event θ = ⟨ti−1, , ti⟩ available, i.e.,
to a nondeterministic outcome of the original T does not correspond any event in
the plant. Again, by construction, this is not the case. Finally, if case (c) holds
it means that a possible delegation (namely, inducing a controllable word) is not
considered by composition C, but this, by construction of T ∗

⟨S,T ⟩
and R, implies

96 4. Supervisory Control for Behavior Composition

that there exists no plant state y in R with y = ρ(y0, ŵ) where ŵ is a prefix of w of
length i ≤ k, i.e., ŵ = ⟨t0, σ′1, t′1⟩ ⋅ j′1 ⋅ . . . ⋅ ⟨t′i−1, σ

′
i, t

′
i⟩ ⋅ j′i. In other words, it means

that ŵ /∈ K↑ and thus it is not controllable. Observe that in this proof we ignored
available behaviors’ states as they are deterministic, thus univocally determined by
the sequence of target actions. ∎

With Lemma 3 at hand, we can easily prove the theorems.

Proof. (Proof of Theorem 24) First, we observe that T ∗
⟨S,T ⟩

is an RTB of T in S. It
is trivial to prove this by inspection of Ĝ⟨S,T ⟩ and the definition of R (in particular,
the fact that L(R) =K↑ ⊆ L(Ĝ⟨S,T ⟩)). Indeed, it is always the case that T ∗

⟨S,T ⟩
⪯ T .

In particular, transitions in Ĝ⟨S,T ⟩ are only defined wrt T ’s evolution only (function
%T). Then, we prove that it is the maximal one. Assume by contradiction that
there exists a RTB T̃ such that T ∗

⟨S,T ⟩
≺ T̃ . First, observe that this implies that

there exists a target trace τ̃ ∈ T̃ which is not in T ∗
⟨S,T ⟩

, and thus WT ∗⟨S,T ⟩,S ⊂WT̃ ,S .
Indeed there exists a word w ∈ W

T̃ ,S of the form w = (θ1 ⋅ j1) ⋅ . . . ⋅ (θk ⋅ jk) such
that the transition θi is not in T ∗⟨S,T ⟩

for some i ≤ k. Hence we get a contradiction:
applying Lemma 2 for every composition P for T̃ we deduce that W

T̃ ,S ⊆ K↑, but
for Lemma 3 it is also WT ∗⟨S,T ⟩,S =K

↑ ∎

Proof. (Proof of Theorem 25) It follows from Lemma 3. Assume by contradiction
that there exists a composition C′ which can not be obtained by V , i.e., it is such
that C′(h, θ) /∈ V (word(τ, h) ⋅ θ) for some target transition θ = ⟨tk−1, σk, tk⟩ and
target trace τ = t0

σ1Ð→ ⋯ σkÐ→ tk in T ∗⟨S,T ⟩
and some induced system history h ∈HC′,τ .

Assume C′(h, θ) = j. It follows that word(τ, h) ⋅ θ ⋅ j /∈ K↑, wich contradicts the
lemma. ∎

4.4 Discussion

In this chapter we have formally shown how solving the agent behavior composition
problem can be translated as finding a supervisor able to successfully control a
specific discrete event systems (Section 4.3.1). One of the contributions of this work
is thus to relate behavior composition and supervisory of discrete-event systems. In
doing so, one can expect to leverage on the solid foundations and extensive work in
supervisory control theory, as well as on the tools available in those communities.
To this end, we defined a specific encoding of the behavior composition problem as
a DES plant. Observe how the target behavior is embedded inside the plant, so as
to rule out those evolutions which not correspond to any target computation. A
straight-forward approach would be, as customary in Supervisory Control Theory,
to use the asynchronous crossproduct of all agent behaviors as the plant (thus
capturing their joint asynchronous evolution –i.e. the enacted system ES) and to
use the target behavior as a generator for the specification.
However this does not work. It is well known that, when dealing with non-deterministic
systems, language equivalence is weaker than simulation equivalence (and language

4.4 Discussion 97

play

win

Bwinner

play

lose Bloser

play

win

lose T

play

play

win

lose

play

play

lose

win

Bwinner ×a Bloser

Figure 4.4. The (supervised) asynchronous crossproduct has the same language as the
target, but they are not simulation equivalent.

containment weaker than simulation). As a result, although the controlled plant
and the target behavior would result to have the same language, this would not be
enough to solve the problem. Figure 4.4 illustrates this situation (for the sake of
clarity, non-determinism is here allowed, instead of devising a suitable transforma-
tion of event labels in the plant, as well as in the specification, along the line of
Definition 4.4).
In addition, we have shown how to slightly adapt the encoding to look for “the best
possible” target realization when double a perfect one does not exist, though only
for the special case of deterministic available systems. In the next chapter, we will
investigate the issue of computing the “supremal realizable behavior” in the general
case, borrowing notions from SCT.

99

Chapter 5

On the Supremal Realizable
Target

As discussed in Section 3.1.1, the classical agent behavior composition problem
has been extensively investigated in the recent literature (refer also to (De Giacomo
et al., 2013) for an extensive review). However, one open issue has resisted principled
solutions: if the target specification is not fully realizable, is there a way to realize
it “at best”? (Stroeder and Pagnucco, 2009) were the first to highlight this issue
and proposed a search-based method that could eventually be adapted to compute
approximate solutions “close” to the perfect one. However, they did not detail what
those “approximations” look like. Then, (Yadav and Sardina, 2012) developed a
account of “approximate” composition where the task is to return an alternative
target agent closest to the original one but fully solvable. While their proposal,
based on the formal notion of simulation, comes as a principled generalization of
the classical framework, it did not provide ways to actually compute such solutions
for the general case, but only for the special case of deterministic behaviors.
In Section 4.3.3 we have investigated this idea in the context of supervisory con-
trol, showing how to adapt the composition plant G from Section 4.3.1 to extract
Supremal Realizable Target Behavior (SRTBs) out of adequate supervisors for the
special case of deterministic systems. In particular, due to intrinsic limitations of
the framework (which is based on languages) we could not address the case of non-
deterministic available behaviors. Moreover, that technique was aimed at showing
a link between agent behavior composition and SCT rather than developing a prin-
cipled approach to the general problem.
Instead, in this chapter we present a novel, general technique to effectively build the
largest realizable fragment—the “supremal”—of a given target specification for the
general composition case in which available behaviors may be nondeterministic. The
technique relies on two simple and well-known operations over transition systems (or
state models), namely, cross product and belief-level state construction. In doing
so, we provide an elegant result on the uniqueness of such fragments.
Then, we investigate—inspired by work on AI reasoning about action (Reiter,
2001b) and on discrete event systems (Cassandras and Lafortune, 2006)—the agent
composition task in the presence of exogenous events. These are special events that
behaviors may spontaneously generate, such as the light bulb of a projector fusing

100 5. On the Supremal Realizable Target

when turned on. Importantly, such events are uncontrollable and their occurrence
cannot be blocked. As a result, we obtain a strictly more general composition frame-
work. We demonstrate that the supremal realizable target can again be defined and
computed. However, this time, solutions come into two variants, depending on the
ability of the target’s user to observe such events. If exogenous events can be ob-
served by the user, then the supremal fragment may be conditional on such events
(e.g., if the projector’s light bulb fuses, the user may only request changing the
bulb). Otherwise, the supremal ought to be comformant to all possible exogenous
events that may ensue.

5.1 Preliminaries

The problem of concern is the one already illustrated in Section 3.1.1, i.e., the
classical agent behavior composition framework as in (De Giacomo and Sardina,
2007; Sardina et al., 2008; Stroeder and Pagnucco, 2009; De Giacomo et al., 2013).
As seen in that section, though technically involved, one can formally define when a
so-called controller, a function taking a run of the system and the next action request
and outputting the index of the available behavior to which the action is being del-
egated, realizes the target behavior. Such controllers are called exact compositions,
solutions to the composition problem guaranteeing the complete realization of the
target in the system.

Example 18. Consider the presentation room scenario depicted in Figure 5.2, ig-
noring all dashed transitions. There are two available behaviors, a projector Bp and
a speaker system Ba. The projector allows setting of the source and warmup of the
device in any order, followed by turning it off. The speaker on the other hand can
simply be toggled on/off. The question then is whether these two devices are enough
to be able to run the desired target behavior T , which allows presentations with and
without sound. The answer, in this case, is yes. ◻

Exact Compositions via Simulation We have seen how it is possible to links
exact compositions to the formal notion of simulation (Milner, 1971b). However,
for the technical development that follows, we get rid of behaviors’ final states that
were defined in Section 3.1.1, thus referring to the standard notion of simulation.
For the sake of unambiguity, we repeat here some definition.
A simulation relation captures the behavioral equivalence of two transition systems.
Intuitively, a (transition) system S1 simulates another system S2, denoted S2 ⪯ S1,
if S1 is able to match all of S2’s moves. Thus, (Sardina et al., 2008) defined a so-
called ND-simulation (nondeterministic simulation) relation between (the states of)
the target behavior T and (the states of) the enacted system ES , denoted ⪯ND, and
prove that there exists an exact composition for a target behavior T on an available
system S iff T ⪯ND ES , that is, the enacted system can ND-simulate the target
behavior. While in this work we do not really need the details of ND-simulation,
the plain notion of simulation plays a key role. For readability, we report here the
definition of simulation already provided in Section 3.1.1.

5.2 Supremal Realizable Target Behavior 101

Definition 5.1. Let Ti = ⟨Si,A, si0, %i⟩, where i ∈ {1,2}, be two transition systems.
A simulation relation of T2 by T1 is a relation Sim ⊆ S2 ×S1 such that ⟨s2, s1⟩ ∈ Sim
iff: ∀a, s′2.⟨s2, a, s

′
2⟩ ∈ %2 → ∃s′1⟨s1, a, s

′
1⟩∈ %1 ∧ ⟨s′2, s′1⟩∈Sim. △

We say that a state s2 ∈ T2 is simulated by a state s1 ∈ T1 (or s1 simulates s2),
denoted s2 ⪯ s1, iff there exists a simulation relation Sim of T2 by T1 such that
⟨s2, s1⟩ ∈ Sim. Observe that relation ⪯ is itself a simulation relation (of T2 by T1),
and in fact, it is the largest simulation relation, in that all simulation relations are
contained in it. We say that a transition system T1 simulates another transition
system T2, denoted T2 ⪯ T1, if it is the case that s20 ⪯ s10. Two behaviors are said
to be simulation equivalent, denoted B1 ∼ B2, whenever they simulate each other.

Approximated Compositions The classical composition task described above
has been extensively studied in the literature and various extensions have been de-
veloped (De Giacomo et al., 2013). However, such framework may prove insufficient
for composition instances admitting no exact solutions (i.e., unsolvable instances)—
a mere “no solution” answer may be highly unsatisfactory in many settings.
The first one to concretely deal with this issue account was (Stroeder and Pagnucco,
2009). In their work, they claimed that their search-based method “can easily be
used to calculate approximations,” that is, controllers that may not qualify as exact
solutions but come “close” (enough) to them. They argue approximations are useful
when no exact solution exists and when one is willing to trade faster solutions at
the expense of incompleteness (of target realizability). Nonetheless, the authors did
not provide a semantic of what these “approximations” are and what “closeness”
means, both were left as important future work.
Later, (Yadav and Sardina, 2012) looked closer at a composition framework that
can better accommodate unsolvable instances. In doing so, however, they proposed
to focus on approximating the target, rather than the controller. To that end, they
defined, based on the notion of simulation, what they called target approximations,
namely, alternative target behaviors that are “contained” in the original target while
enjoying exact composition solutions. In turn, they defined the optimal target
approximation as that one which is “closest” possible to the original target (and
that is fully realized by some controller). In fact, they showed that such an optimal
target is unique. They also provided a technique to compute such a solution, but
only for the special case of deterministic behaviors. Here, we will provide a general
technique as well as the complexity characterization of the problem.

5.2 Supremal Realizable Target Behavior

We adopt the approach of (Yadav and Sardina, 2012) to define the notion of realiz-
able target from a target specification. We do not call it “approximation” in light
of the extension with exogenous events that we study later. Indeed, once exogenous
events are mentioned in the target specification, such a specification is not directly
a target behavior anymore.
Formally, we say that behavior T̃ is a realizable target behavior (RTB) of target
specification T on system S iff

102 5. On the Supremal Realizable Target

1. T̃ ⪯ T (that is, T̃ is “contained” in T);

2. T̃ ⪯ND ES , i.e, there is an exact composition for T̃ on S (that is, it is fully
realizable).

Notice that we elected “simulation” as the measure for comparing target behaviors.
In particular if T1 ⪯ T2 this means that an agent can mimic the behavior T1 by
suitably choosing the transitions to traverse in T2. If T1 and T2 are simulation
equivalent (i.e., T1 ⪯ T2 and T2 ⪯ T1) then the agent can mimic exactly one behavior
using the other one, hence from the point of view of the agent the two behaviors
are identical.

Definition 5.2. A behavior T̃ is “the” supremal realizable target behavior (SRTB)
of target T on system S iff T̃ is a RTB of T in S and there is no RTB T̃ ′ such that
T̃ ≺ T̃ ′—T̃ is the largest realizable fragment of T . It can be shown that SRTB is
unique up to simulation equivalence. △

We provide a simple and elegant characterization of SRTB as follows. Let T1 ∪
T2 = ⟨T,Act, t10, %⟩, where Ti = ⟨Ti,Acti, ti0, %i⟩ have disjoint states, be the resulting
unified (target) behavior where T2’s initial state is merged with T1’s: (i) T = T1 ∪
(T2∖{t20}); (ii) Act = Act1∪Act2; and % = %1∪%2∣t10

t20
(%∣t′t is relation % with all states

t replaced with t′).

Theorem 26. Let T̃1 and T̃2 be two RTB for target specification T in system S.
Then T1 ∪ T2 is an RTB for T in S too.

In words, RTBs are closed under union. With this in mind, it is not hard to see that
one can build the largest RTB—the supremal—by taking the union of all realizable
targets.

Theorem 27. Let S be an system and T be a target. Then the SRTB T ∗ of T in
S is:

T ∗ = ⋃
T̃ is a RTB of T in S

T̃

Notice that any T̃ which is simulation equivalent to T ∗ is also “the” SRTB (we
focus on semantics not syntax here).
Obviously, it remains to be seen if the SRTB can actually be computed and rep-
resented finitely. This is what we do next. Our technique to synthesize the SRTB
relies on two simple operations on transition systems, namely, a specific synchronous
product and a conformance enforcing procedure. Roughly speaking, the technique
is as follows:

1. We take the synchronous product of the enacted system ES and the target
spec. T , yielding the structure F⟨S,T ⟩.

2. We modify F⟨S,T ⟩ to enforce conformance on its states which cannot be dis-
tinguished by the user of the target.

In fact the second step is needed only when the system includes nondeterministic
available behaviors.

5.2 Supremal Realizable Target Behavior 103

Full enacted system The full enacted system models the behavior that emerges
from joint parallel execution of the enacted system and the target.

Definition 5.3. Given the enacted system ES = ⟨S,AS , s0, δ⟩ for a system S =
{B1, . . . ,Bn} and a target specification T = ⟨T,ActT , t0, %T ⟩, the full enacted system
of T and S, denoted by T × ES , is a tuple F⟨S,T ⟩ = ⟨F,AF , f0, γ⟩, where:

• F = S × T is the finite set of F⟨S,T ⟩’s states; when f = ⟨s, t⟩, we denote s by
sys(f) and t by tgt(f);

• f0 = ⟨s0, t0⟩ ∈ F , is F⟨S,T ⟩’s initial state;

• ActF = ActS ∪ActT (note that we allow for ActS /= ActT);

• γ ⊆ F ×Act×{1, . . . , n}×F is F⟨S,T ⟩’s transition relation, where ⟨f, a, k, f ′⟩∈γ,
or f a,kÐ→f ′ in F⟨S,T ⟩ iff

– tgt(f) aÐ→ tgt(f ′) in T ; and

– sys(f) a,kÐ→ sys(f ′) in ES .

△

Observe that the transition relation of the full enacted system requires both the
enacted system and the target to evolve jointly: the full enacted system is the
synchronous product of the target specification and the enacted system.
As expected, the synchronous product (once we project out the indexes {1, . . . , n})
is simulated by both the enacted system and the target (i.e., T × ES ⪯ ES and
T × ES ⪯ T). If the system includes only deterministic available behavior the reg-
ular simulation T × ES ⪯ ES suffices to conclude that the composition exists (ND-
simulation is not needed in this case) (Sardina et al., 2008) . Hence, by Theorem 27,
if available behaviours are deterministic T ×ES is included in, and simulated by, T ∗.
The converse can be shown along the line suggested in (Yadav and Sardina, 2012).
Hence:

Theorem 28. Let S = {B1, . . . ,Bn} be a deterministic available system and T =
⟨T,ActT , t0, %T ⟩ a target specification behavior. Then, F⟨S,T ⟩ is the SRTB of T in
S.

Also from the construction of F⟨S,T ⟩ we can conclude that building the SRTB of T
in S can be done in exponential time in the number of behaviors and polynomial
in the number of states in each behavior.
When we consider nondeterministic available modules, and hence resort to ND-
simulation, this is not true anymore. Indeed, there are examples where T ×ES /⪯ND
ES does not hold due to the nondeterminism present in ES . In those cases, the
full enacted system is a sort of target behavior in which agent transition requests
are conditional on the nondeterministic execution of available behaviors. However,
the agent using the target is not meant to have observability on such behaviors,
and so it cannot decide its request upon such contingencies. Figure 5.1 shows one

104 5. On the Supremal Realizable Target

b0

b1

b2

a
a

b

c

Behavior B1

t0

a, c

Target T

q0

q1

q2

a
a

c

Product T × ES

t̃0 t̃1a

SRTB T̃

Figure 5.1. Instance where full enacted system is not a RTB

such case. Take product T × ES as a candidate for SRTB. After fulfilling transition
request q0

aÐ→ q2 using module B1, the next request q2
cÐ→ q0 can only be honored

if B1 happens to evolve to state b2, but this is not guaranteed. Therefore, T × ES
cannot be realized by B1 and hence it is not an RTB of T in S.
What we need, is the target to be conformant, i.e., independent of conditions on
the available behaviors states. Hence inspired by the literature on planning un-
der uncertainty we construct a sort of belief states, and in turn, the belief level
full enacted system. The idea behind generating the belief states is to track the
states where the enacted system could evolve. Given a full enacted system F⟨S,T ⟩ =
⟨F,AF , f0, γ⟩ for a target T = ⟨T,ActT , t0, %T ⟩ and a system S = ⟨B1, . . . ,Bn⟩
where Bi = ⟨Bi,Acti, bi0, %i⟩ for i ≤ n, the belief-level full enacted system is a tu-
ple K⟨S,T ⟩ = ⟨Q,ActF , q0, δK⟩, where:

• Q = 2(B1×⋯×Bn) × T is K⟨S,T ⟩’s set of states; when q = ⟨{s1, . . . , s`}, t⟩ ∈ Q we
denote {s1, . . . , s`} by sys(q) and t by tgt(q);

• q0=⟨{s0}, t0⟩ such that f0=⟨s0, t0⟩, is the initial state;

• δK ⊆ Q×Act×Q is K⟨S,T ⟩’s transition relation, with ⟨⟨S, t⟩, a, ⟨S′, t′⟩⟩∈δK iff :

– there exists a set Indx = {⟨s1 ∶ k1⟩, . . ., ⟨s` ∶ k`⟩} such that {s1, . . . , s`} = S;
and ⟨si, t⟩

a,kiÐ→ ⟨s′, t′⟩ in F⟨S,T ⟩ for all i ≤ `; that is, the action a must be
executable from all enacted system states in S; and

– S′ = ⋃⟨s∶i⟩∈Indx{s′ ∣ ⟨⟨s, t⟩, a, i, ⟨s′, t′⟩⟩ ∈ γ}; that is, S′ should contain all
successors of enacted system states in S resulting from action a.

Observe, K⟨S,T ⟩ is nondeterministic with respect to target evolutions and different
behavior delegations. Note also that K⟨S,T ⟩ can be built in time 2O(∣B∣n) where ∣B∣ is
the number of states of the largest behavior in S, and n is the number of available
behaviors in S. Observe, however, that K⟨S,T ⟩ can be computed on-the-fly in a
step-wise fashion: given the current belief state q we can generate the next possible
states without looking at any other state in Q.
Next, we show that K⟨S,T ⟩ is the finite representation of SRTB T ∗ of target T in
system S (see Theorem 27).

Theorem 29. Let S be an available system and T a target specification behavior.
Then, K⟨S,T ⟩ is the SRTB of T in S.

5.2 Supremal Realizable Target Behavior 105

Proof. First, we define few technical notions required for the proofs. Given a
trace τ = s0

a1
Ð→ ⋯ anÐ→ sn, we denote the state si by τ[i], the label ai by τ⟨i⟩,

and prefix s0
a1
Ð→ ⋯ aiÐ→ si by τ[0, i], where i ≤ n. Given a set of traces Γ, let

Pos(Γ, i) = {s ∣ s = τ[i], τ ∈ Γ} be the function that returns the set of ith state from
all traces in Γ.

Then, we prove that K⟨S,T ⟩ and the SRTB T ∗ of T in S are simulation equivalent.
Proof for T ∗ ⪯ K⟨S,T ⟩: First, will show that all RTB’s are simulated by K⟨S,T ⟩. Let
T ′ = ⟨T ′,Act′, t′0, %′T ⟩ be a RTB of T in S. Assume T ′ /⪯ K⟨S,T ⟩, that is, T ′ is not

simulated by K⟨S,T ⟩. Let τT ′ = t′0
a1
Ð→ ⋯ anÐ→ t′n be a trace of T ′ such that τT ′ cannot

be simulated state-wise by any trace of K⟨S,T ⟩ and the simulation breaks at a state
t′n−1. We show that this is impossible since, we can build a legal trace of K⟨S,T ⟩

which can simulate the entire τ ′.
As T ′ is a RTB of T in S, it holds that T ′ ⪯ T (T ′ is simulated by T) and
T ′ ⪯ND ES (T ′ has an exact solution in S). Therefore, there exists a trace of T
τT = t0

a1
Ð→ ⋯ anÐ→ tn such that t′i ⪯ ti for all i ≤ n;

Let us define ΓS as the maximal set of traces s0
a1,k1Ð→ ⋯ an,knÐ→ sn of enacted system

ES of S, such that:

1. t′i ⪯ND si, i ≤ n, i.e., which copy the target trace τT ′ = t′0
a1
Ð→ ⋯ anÐ→ t′n;

2. they do so through transitions labelled by ai, ki for i ≤ n such that for any two
traces τ1, τ2 ∈ ΓS it is the case that if τ1[i] = τ2[i], then τ1⟨i⟩ = τ2⟨i⟩.

Since, T ′ is realizable in S we know that at least one composition exists. Therefore,
ΓS will not be empty. Notice that, because of condition 2 above, there may be
several such maximal sets. We nondeterministically take one.
Now, consider a trace τK = q0

a1
Ð→ ⋯ anÐ→ qn such that qi = ⟨Pos(ΓS , i), τT [i]⟩ for all

i ≤ n. The idea behind Pos is to return all states where the enacted system could
be in. We show τK is a legal trace of K⟨S,T ⟩, that is, it consists of legal states and
transitions. We start by observing that:

• τK[i] = ⟨{s1, . . ., s`}, t⟩, where {s1, . . ., s`} = Pos(ΓS , i) and t = τT [i], is a legal
state of K⟨S,T ⟩ for all i ≤ n;

• τK[0] is the initial state of K⟨S,T ⟩.

Then we proceed by induction on n.

• For n = 0, we have that the trace τK[0] consisting only of the initial state is
trivially legal.

• By inductive hypothesis let us assume that q0
a1
Ð→ ⋯ aiÐ→ qi (for i < n) is a

legal trace of K⟨S,T ⟩, and we show that also q0
a1
Ð→ ⋯ ai+1

Ð→ qi+1 is a legal trace
of K⟨S,T ⟩.

106 5. On the Supremal Realizable Target

Consider the transition qi
ai+1
Ð→ qi+1 of τK. Let Pos(ΓS , i) = {s1, . . . , s`}. Since

τ ′ is realizable, there exists sj
ai+1,ki+1

jÐ→ s′j in ES for j ≤ ` and ti
ai+1
Ð→ ti+1 in T .

Hence, there exists exactly one set of indices (see definition of ΓS , condition
2), Indx = {⟨s1 ∶ k1⟩, . . . , ⟨s` ∶ k`⟩}, one per each element in Pos(ΓS , i), such that

⟨s, τT [i]⟩
ai+1,ki+1

Ð→ ⟨s′, τT [i+1]⟩ in F⟨S,T ⟩ where s ∈ Pos(ΓS , i), s′ ∈ Pos(ΓS , i+ 1)

and ⟨s ∶ ki+1⟩ ∈ Indx. That is, qi
ai+1
Ð→ qi+1 in K⟨S,T ⟩.

So, RTB T ′ is simulated by K⟨S,T ⟩ (once we project out the indexes {1, . . . , n}),
that is, T ′ ⪯ K⟨S,T ⟩. From theorem 26 we know that union of two RTB’s is an RTB,
therefore T ∗ is also a RTB. Consequently, T ∗ ⪯ K⟨S,T ⟩.

To proof K⟨S,T ⟩ ⪯ T ∗, we simply observe that K⟨S,T ⟩ is an RTB, since by construc-
tion, we have K⟨S,T ⟩ ⪯ T and K⟨S,T ⟩ ⪯ND ES . Hence K⟨S,T ⟩ by theorem 26 K⟨S,T ⟩ is
included in, and thus simulated by, T ∗.
To proove K⟨S,T ⟩ ⪯ T ∗, we simply observe that K⟨S,T ⟩ is an RTB, by construction,
we have K⟨S,T ⟩ ⪯ T and K⟨S,T ⟩ ⪯ND ES . Hence K⟨S,T ⟩ by theorem 26 K⟨S,T ⟩ is
included in, and thus simulated by, T ∗. ∎

We note some similarities in the use of belief-level behaviors with the work in (De
Giacomo et al., 2009) for composition under partial observability of the available
behaviors. There the controller required to be conformant, here instead the target
behavior must be so.

5.3 Composition with Exogenous Events
With an effective technique to synthesize the supremal realizable target at hand, we
now turn to the second contribution. Inspired by discrete event systems (Cassandras
and Lafortune, 2006) and reasoning about action work for dynamic systems (Reiter,
2001b), we show here how to accommodate exogenous uncontrollable events into the
composition framework in a parsimonious manner. In doing so, it will come clear
how robust and elaboration tolerant the definition of SRTBs and the technique to
compute them are.

Example 19. Let us return to our presentation room example in Figure 5.2. Sup-
pose that when the projector’s light bulb is on—after warmup has been executed—it
may fuse anytime and requires the device to be repaired. Similarly, if a source
is set before warming the projector up, an error may be thrown and the projector
will need to be reset. The occurrence of both events—fuse and error—is outside
the control of the client or the controller, they occur spontaneously. Hence, they
are akin to exogenous events in reasoning about action literature (Reiter, 2001b)
and uncontrollable events in discrete event systems (Cassandras and Lafortune,
2006). ◻

Next, we extend the classical composition framework from Section 3.1.1 with ex-
ogenous events. To that end, we assume that the set of actions A in a behavior is

5.3 Composition with Exogenous Events 107

p0

p1

p2

p3 p5

p4

warmup
source

source warmup

fuse

fuse

error

reset

repair

off

Projector Bp
a0 a1

spk-on

spk-off

Audio Ba

t0 t1 t2spk-on

warmup

Conformant RTB. T̃1

t0 t1

t2

t3

t4

t6

t5
spk-on warmup

source

source warmup

fuse

fuse

repair

spk-off

off

Target T

t0 t1

t2

t4

t6

t5
spk-on warmup

source
fuse

fuse

repair

spk-off

off

Conditional RTB. T̃2

Figure 5.2. Media room scenario consisting of a projector, speaker and a target specifica-
tion (see text for details). Dashed transitions denote uncontrollable exogenous events.

partitioned into domain (AC) and exogenous (AU) events, that is, A = AC ∪ AU
and AC ∩AU = ∅. Furthermore, as standard in discrete event systems, we assume
exogenous events to be deterministic.1

We note that exogenous events play a inherently different role in available behaviors
than nondeterminism. Exogenous (uncontrollable) events may happen anytime from
a relevant state (e.g., p1 in BP), which allows modeling of concepts such as delayed
uncertainty. Moreover, whereas nondeterminism is not observable to the target’s
user (in fact, the user agent is not even aware of the internal logic of available
behaviors), exogenous events may be. Hence, the user of the projector room may
be able to observe the light bulb fusing.
When it comes to the target specification, exogenous event transitions represent
those transitions that are accounted—accepted—by the target but outside the con-
troller of the user of the target. Thus, when the target is in state t2, it only allows
one exogenous event, namely, event fuse, whose occurrence will cause the target to
evolve to state t6 where its user is only allowed to request repairing the projector.
Since the user may be able to observe exogenous events, we can now consider—
unlike standard composition—two types of composition solutions. Following plan-
ning terminology, a conditional SRTB is one that assumes the user is able to observe
exogenous events, whereas a conformant SRTB is one where such events are non-
observable to the user.

1Should this not be the case, we can model the various outcomes with different uncontrollable
exogenous events.

108 5. On the Supremal Realizable Target

c0 c1

c2

load

maintenance

maintenance
maintenance

Old crane Bc

r0 r1

r2

to_mine

to_depotunload

ov
er

lo
ad

ed

Truck Br

l0 l1

stock,load
load

maintenance
Loader Bl

m0

mine

Miner Bm

f0 f1

stock

maintenance

Forklift Bf

t0

t1

t2 t3

t4

t5
mine

stock

to_mine

load
ov

er
lo

ad
ed

ov
er

lo
ad

ed

to_depot

unload

maintenance

Target T

Figure 5.3. A modification of the mining example of previous Chapters.

In this section, we formally define conditional and conformant solution concepts and
explain how to generalize the technique developed in Section 5.2 to compute such
solutions.

Enacted and full enacted system The formal definition of the enacted system
and the full enacted system remains same, except we assume the action set to be par-
titioned into controllable actions and uncontrollable exogenous events. Figure 5.4
depicts the reachable full enacted system for the media room example. See that
states from where error may fire are excluded. In addition, given a full enacted
system F⟨S,T ⟩ = ⟨F,ACF ∪AUF , f0, γ⟩ for an enacted system ES = ⟨S,ACS ∪AUS , s0, δ⟩
and a target specification T = ⟨T,ACT ∪ AUT , t0, %T ⟩, we define set ∆⟨S,T ⟩ as those
states in F⟨S,T ⟩ from where prohibited exogenous events may fire. Formally,

∆⟨S,T ⟩={⟨s, t⟩ ∣⟨s,α, k, s′⟩∈δ,∀t′⟨t, α, t′⟩/∈%T ∶ α∈AUS }.

5.3.1 Conditional SRTBs

When it comes to formally defining conditional SRTBs, interestingly, the definition
of SRTBs from the classical framework (see Section 5.2) fits as is. However, we
need to define exact solutions in the context of exogenous events. We do this by
extending the ND-simulation relation in the light of exogenous events.

5.3 Composition with Exogenous Events 109

p0, a0
t0

p0, a1
t1

p1, a1
t2

p3, a1
t4

p5, a1
t6

p3, a0
t5

spk-on ∶ Ba

warmup ∶ Bp

source ∶ Bp

fuse ∶ Bp

fuse ∶ Bprepair ∶ Bp

spk-off ∶ Ba

off ∶ Bp

Full enacted system (partial) T × ES

Figure 5.4. F⟨S,T ⟩ with exogenous events for Example 5.2.

A transition system T̃ = ⟨T̃ , ÃCT ∪ ÃUT , t̃0, %̃T ⟩ is a conditional-RTB for a target
T = ⟨T,ACT ∪AUT , t0, %T ⟩ in system S with enacted system ES = ⟨S,ACS ∪AUS , s0, δ⟩
iff T̃ ⪯ T and ⟨t̃0, s0⟩ ∈ C where C ⊆ T̃ ×S is the conditional simulation relation of T̃
by ES such that ⟨t̃, s⟩ ∈ C iff:

1. ∀t̃′ ∀a ∈ ÃC
T
∃k ∀s′(⟨t̃, a, t̃′⟩ ∈ %̃T → ⟨s, a, k, s′⟩ ∈ δ) such that ⟨t̃′, s′⟩ ∈ C; and

2. ∀α ∈ AUS ,∀k(⟨s,α, k, s′⟩ ∈ δ → ⟨t̃, α, t̃′⟩ ∈ %̃T) such that ⟨t̃′, s′⟩ ∈ C.

The first condition (analogous to ND-simulation) requires all controllable actions
of the RTB to be feasible. The second defines how uncontrollable exogenous events
should be treated: since they are uncontrollable, their executions must be allowed
in the target. If we want to prevent the occurrence of some exogenous event this
can only be done by cutting some controllable action ahead of exogenous event’s
possible occurrence. This is related to the notion of controllability in discrete event
systems (Wonham and Ramadge, 1987).
As usual, a conditional RTB is supremal iff it is not strictly simulated by any other
conditional RTB. Consider our media room example (Figure 5.2), T̃2 is conditioned
on fuse and prohibits error. Indeed, while realizing T̃2, it is guaranteed that error
will never occur.

Example 20. Figure 5.2 shows a conditional RTB for the media room example.
Figure 5.3 shows instead a conditional and conformant RTBs for the mining example
of Figure 5.3. ◻

Computing conditional SRTBs When it comes to computing conditional-SRTBs,
we modify the belief level construction to allow for exogenous events. Notice that
exogenous events are considered to be observable in this case, so we can use their
occurrence to refine the belief states in the belief-level full enacted system. This
leads to the following definition.

110 5. On the Supremal Realizable Target

t0

t1

t2 t3

t4

t5
mine

stock

to_mine

load

ov
er

lo
ad

ed

ov
er

lo
ad

ed

to_depot

unload

maintenance

Conditional RTB T̃1

t0

t1

t2

mine

stock

to_mine

Conformant RTB T̃2

Figure 5.5. A conditional RTB and a conformant RTB for the mining example of Figure 5.3

Definition 5.4. Given a belief level full enacted systemK⟨S,T ⟩ = ⟨Q,ACF∪AUF , q0, δK⟩
for full enacted system F⟨S,T ⟩ = ⟨F,ACF ∪AUF , f0, γ⟩, the conditional belief-level full
enacted system is a tuple KC

⟨S,T ⟩
= ⟨QC ,ACF ∪AUF , q0, δ

C
K⟩, where:

• QC = Q ∖ {⟨S, t⟩ ∣ ⟨s, t⟩ ∈ ∆⟨S,T ⟩, s ∈ S}; that is, prohibited exogenous events
should never occur;

• δCK ⊆ Q ×A ×Q is KC
⟨S,T ⟩

’s transition relation where ⟨⟨S, t⟩, a, ⟨S′, t′⟩⟩∈δCK iff :

– a ∈ ACF and ⟨⟨S, t⟩, a, ⟨S′, t′⟩⟩∈δK ; that is, action a should be executable
from all enacted states; and

– a∈AUF and S′={s′ ∣ ⟨⟨s, t⟩, a, k, ⟨s′, t′⟩⟩∈γ, s∈S}; we revise belief state if an
exogenous event occurs.

△

Next result shows that the conditional belief-level full enacted system is the SRTB
in this context.

Theorem 30. Let S be an available system and T a target spec. Then, KC
⟨S,T ⟩

is
the conditional-SRTB of T in S.

The proof is similar to the one of Theorem 29, but now we exclude belief states that
can do prohibited exogenous events (first item above), and we consider observation
of exogenous events in refining belief states (second item).

5.3 Composition with Exogenous Events 111

Proof. We will prove that KC
⟨S,T ⟩

and the conditional SRTB T ∗ of T in S are
simulation equivalent. The proof is similar to that of theorem 29 except here we
consider exogenous events.
Proof for T ∗ ⪯ KC

⟨S,T ⟩
: First, will show that all conditional RTB’s are simulated by

KC
⟨S,T ⟩

. Let T ′ = ⟨T ′,A′C ∪A′U , t′0, %′T ⟩ be a conditional RTB of T in S. Assume

T ′ /⪯ KC
⟨S,T ⟩

, that is, T ′ is not simulated by KC
⟨S,T ⟩

. Let τT ′ = t′0
a1
Ð→ ⋯ anÐ→ t′n be a

trace of T ′ such that τT ′ cannot be simulated state-wise by any trace of K⟨S,T ⟩ and
the simulation breaks at a state t′n−1. We show that this is impossible since, we can
build a legal trace of KC

⟨S,T ⟩
which can simulate the entire τ ′. Note, now the traces

can have both controllable actions and allowed exogenous events.
As T ′ is a RTB of T in S, it holds that T ′ ⪯ T (T ′ is simulated by T) and
T ′ ⪯C ES (T ′ has an exact solution in S). Therefore, there exists a trace of T
τT = t0

a1
Ð→ ⋯ anÐ→ tn such that t′i ⪯ ti for all i ≤ n;

Let us define ΓS as the maximal set of traces s0
a1,k1Ð→ ⋯ a`,k`Ð→ s`, where ` ≤ n, of

enacted system ES of S, such that:

1. t′i ⪯C si, i ≤ n, i.e., which may be induced while realizing the RTB trace

τT ′ = t′0
a1
Ð→ ⋯ anÐ→ t′n;

2. for all traces τS ∈ ΓS it is the case that act-seq(τS,AC)=act-seq(τ ′[0, i],AC) for
some i ≤ n, where the function act-seq(τ,Act) returns the action sequence of
τ consisting only of actions included in Act. Formally,

act-seq(s aÐ→s′,Act) = a if a ∈ Act, ε otherwise

act-seq(s0
a1
Ð→⋯ anÐ→ sn,Act) = act-seq(s0

a1
Ð→s1,Act)⋯ act-seq(sn−1

anÐ→ sn,Act)

3. they do so through transitions labelled by ai, ki for i ≤ n such that for any
two traces τ1, τ2 ∈ ΓS it is the case that if τ1[i] = τ2[i], then τ1⟨i⟩ = τ2⟨i⟩ for
controllable actions in τ1 and τ2. Since exogenous events are uncontrollable,
we cannot put any restrictions on them.

Note, since exogenous events are uncontrollable ΓS may include system traces where
the exogenous event may not fire as per τ ′. That is, for every exogenous event at
location i of τ ′, there will be a system trace exactly of length i. Since, T ′ is realizable
in S we know that at least one composition exists. Therefore, ΓS will not be empty.
Notice that, because of condition 2 above, there may be several such maximal sets.
We nondeterministically take one.
Now, consider a trace τK = q0

a1
Ð→ ⋯ anÐ→ qn such that qi = ⟨Pos(ΓS , i), τT [i]⟩ for all

i ≤ n. The idea behind Pos is to return all states where the enacted system could
be in. We show τK is a legal trace of KC

⟨S,T ⟩
, that is, it consists of legal states and

transitions. We start by observing that:

112 5. On the Supremal Realizable Target

• τK[i] = ⟨{s1, . . ., s`}, t⟩, where {s1, . . ., s`} = Pos(ΓS , i) and t = τT [i], is a legal
state of KC

⟨S,T ⟩
for all i ≤ n;

• τK[0] is the initial state of KC
⟨S,T ⟩

.

Then we proceed by induction on n.

• For n = 0, we have that the trace τK[0] consisting only of the initial state is
trivially legal.

• By inductive hypothesis let us assume that q0
a1
Ð→ ⋯ aiÐ→ qi (for i < n) is a

legal trace of KC
⟨S,T ⟩

, and we show that also q0
a1
Ð→ ⋯ ai+1

Ð→ qi+1 is a legal trace
of KC

⟨S,T ⟩
.

Consider the transition qi
ai+1
Ð→ qi+1 of τK. Let Pos(ΓS , i) = {s1, . . . , s`}. Since

τ ′ is realizable, there exists sj
ai+1,ki+1

jÐ→ s′j in ES for j ≤ ` and ti
ai+1
Ð→ ti+1 in T .

Hence, there exists exactly one set of indices (see definition of ΓS , condition
2), Indx = {⟨s1 ∶ k1⟩, . . . , ⟨s` ∶ k`⟩}, one per each element in Pos(ΓS , i), such that

⟨s, τT [i]⟩
ai+1,ki+1

Ð→ ⟨s′, τT [i+1]⟩ in F⟨S,T ⟩ where s ∈ Pos(ΓS , i), s′ ∈ Pos(ΓS , i+ 1)

and ⟨s ∶ ki+1⟩ ∈ Indx. That is, qi
ai+1
Ð→ qi+1 in KC

⟨S,T ⟩
.

So, RTB T ′ is simulated by KC
⟨S,T ⟩

(once we project out the indexes {1, . . . , n}),
that is, T ′ ⪯ KC

⟨S,T ⟩
. From theorem 26 we know that union of two RTB’s is an RTB,

therefore T ∗ is also a RTB. Consequently, T ∗ ⪯ KC
⟨S,T ⟩

.
To proof KC

⟨S,T ⟩
⪯ T ∗, we simply observe that KC

⟨S,T ⟩
is an RTB, by construction, we

have KC
⟨S,T ⟩

⪯ T and K⟨S,T ⟩ ⪯C ES . Hence K⟨S,T ⟩ by theorem 26 KC
⟨S,T ⟩

is included
in, and thus simulated by, T ∗. ∎

5.3.2 Conformant SRTBs

Conformant solutions guarantee realizability in absence of any observation over ex-
ogenous events. For example, the conformant solution T̃1 in Figure 5.2 contains
a very restricted subset of the target as, if the bulb is fused then the projector
cannot be operated again without a repair. Solutions of such type are stricter,
promising execution irrespective of which uncontrollable events occurs. This pro-
vides robustness in modelling as one can still prevent unacceptable conditions under
non-observability at runtime. We say a RTB to be conformant if it does not include
any exogenous event, that is, AUT = ∅. Note, the target specification (problem in-
put) is allowed to have exogenous events, however, a conformant RTB must have
compiled them away. More precisely, a transition system T̃ = ⟨T̃ , ÃCT , t̃0, %̃T ⟩ is a
conformant-RTB for a target T = ⟨T,ACT ∪ AUT , t0, %T ⟩ in system S with enacted
system ES = ⟨S,ACS ∪AUS , s0, δ⟩ iff T̃ ⪯ T and ⟨t̃0, s0⟩ ∈ Z where Z ⊆ T̃ × S is the
conformant simulation relation of T̃ by ES such that ⟨t̃, s⟩ ∈ Z iff:

1. ∀t̃ ∀a ∃k∀s′(⟨t̃, a, t̃′⟩ ∈ %̃T → ⟨s, a, k, s′⟩ ∈ δ) such that ⟨t̃′, s′⟩ ∈ Z;

5.3 Composition with Exogenous Events 113

2. ∀α ∈ AUS , ∀k(⟨s,α, k, s′⟩ ∈ δ → ⟨t̃, s′⟩ ∈ Z); and

3. ∀α ∈ AUS ,∀k(⟨s,α, k, s′⟩∈δ ∧ ⟨t̃, t⟩ ∈⪯→⟨t, α, t′⟩ ∈ %T) such that ⟨t̃, t′⟩ ∈⪯.

The first condition is analogous to the usual ND-simulation one. The second con-
dition requires occurring of exogenous events should retain the simulation relation.
The third condition enforces only permitted exogenous events to ever occur in the
system. As usual, a conformant RTB is supremal iff it is not strictly simulated by
any other conformant RTB.

Computing conformant SRTBs Conformant solutions require realizability guar-
antee irrespective of any nondeterministic or exogenous evolution. In order to in-
clude them in the belief-level system we first define what we call as the ε−closure of a
state. That is, where all could the system be as a result of an exogenous event from
that state. Formally, given a full enacted system F⟨S,T ⟩ = ⟨F,ACF ∪AUF , f0, γ⟩ and a
state f ∈ F , the ε−closure of f , denoted by ε(f), is defined recursively as follows:

1. f ∈ ε(f), that is, the state itself is in the closure;

2. ∀α ∈ AUF , ∀f ∈ ε(f) (f α,kÐ→ f ′ ∈ γ → f ′ ∈ ε(f)), that is, all exogenous event
reachable states are included; and

3. Nothing else except for 1 and 2 should be in ε(f).

Next, we re-define the belief level full enacted system to accommodate exogenous
events. Here, we consider the ε−closure in both the initial state and the transition
relation.

Definition 5.5. Given a full enacted system F⟨S,T ⟩ = ⟨F,ACF∪AUF , f0, γ⟩ for a target
T = ⟨T,AT , t0, %T ⟩ and a system S = ⟨B1, . . . ,Bn⟩, the conformant belief-level full
enacted system is a tuple KZ

⟨S,T ⟩
= ⟨Q,ACF , q0, δK⟩, where:

• Q = 2(B1×⋯×Bn×T) ∖ {S ∣ s ∈ ∆⟨S,T ⟩, s ∈ S};

• q0=ε(f0) is KZ
⟨S,T ⟩

’s initial state;

• δK ⊆ Q ×A ×Q, where ⟨S, a,S′⟩∈δK iff :

– there exists a set Indx = {⟨s1 ∶k1⟩, . . ., ⟨s` ∶k`⟩} such that {s1, . . . , s`} = S;
si

a,kiÐ→ s′i in F⟨S,T ⟩ for all i ≤ `; and for all i, j ≤ ` if tgt(si) = tgt(sj), then
tgt(s′i) = tgt(s′j); and

– S′=⋃⟨s∶i⟩∈Indx{ε(s′)∣⟨s, a, i, s′⟩∈γ}, that is, S′ should contain the ε−closure
of all successors of enacted system states in S resulting from action a.

△

Note, the belief level full enacted system is now exponential also on the Target
states. Observe, if the target specification allows all exogenous events at any point
then the complexity in regards to the target will no longer be exponential.

114 5. On the Supremal Realizable Target

Theorem 31. Let S be an available system and T a target spec. Then, KZ
⟨S,T ⟩

is
the conformant-SRTB of T in S.

Similar to proof sketch of theorem 29, we can construct a trace τK of KZ
⟨S,T ⟩

which
simulates a trace τ ′ of a RTB T ′, contained in SRTB T ∗, of T in S. Though, now
the induced system traces, due to exogenous events, may be of variable length. So,
in each state of τK we include ε−closure of the states having exogenous transitions.

Proof. We will prove that KZ
⟨S,T ⟩

and the SRTB T ∗ of T in S are simulation
equivalent.
Proof for T ∗ ⪯ KZ

⟨S,T ⟩
: First, will show that all RTB’s are simulated by KZ

⟨S,T ⟩
. Let

T ′ = ⟨T ′,A′, t′0, %′T ⟩ be a RTB of T in S. Assume T ′ /⪯ KZ
⟨S,T ⟩

, that is, T ′ is not

simulated by KZ
⟨S,T ⟩

. Let τT ′ = t′0
a1
Ð→ ⋯ anÐ→ t′n be a trace of T ′ such that τT ′ cannot

be simulated state-wise by any trace of KX
⟨S,T ⟩

and the simulation breaks at a state
t′n−1. We show that this is impossible since, we can build a legal trace of KZ

⟨S,T ⟩

which can simulate the entire τ ′.
As T ′ is a RTB of T in S, it holds that T ′ ⪯ T (T ′ is simulated by T) and T ′ ⪯Z ES
(T ′ has an exact composition in S). Note, this time since T ′ is a conformant RTB,
it may be simulated by more than one trace of T . Therefore, there exists a set of
traces of T such that τ = t0

a1
Ð→ ⋯ a`Ð→ t` ∈ ΓT , where ` ≥ n iff:

1. act-seq(τ ′T ,AC) = act-seq(τT ,AC), the sequence of controllable actions is same;
and

2. if t′i ⪯ tj , where i ≤ j, i ≤ n, j ≤ `, then either t′i ⪯ tj+1 or t′i+1 ⪯ tj+1; the
simulation relation is maintained across exogenous events in the target spec.

Let us define ΓS as the maximal set of traces τS = s0
a1
S ,k1Ð→ ⋯

amS ,kmÐ→ sm, where m ≥ n,
of enacted system ES of S, such that:

1. if t′i ⪯Z sj , where i ≤ j, i ≤ n, j ≤m, then either t′i ⪯Z sj+1 or t′i+1 ⪯Z sj+1;

2. act-seq(τ ′T ,AC) = act-seq(τS ,AC), the x-enacted system traces can copy the
RTB trace τ ′;

3. they do so through transitions labelled by ai, ki for i ≤ n such that for any two
traces τ1, τ2 ∈ ΓS it is the case that if τ1[i] = τ2[i], then τ1⟨i⟩ = τ2⟨i⟩.

Note, since only allowed exogenous events occur, the induced system traces will
correspond to the target spec traces in ΓT . Since, T ′ is realizable in S we know
that at least one composition exists. Therefore, ΓS will not be empty. Notice
that, because of condition 3 above, there may be several such maximal sets. We
nondeterministically take one.
We observe that due to exogenous events the enacted system traces may be longer
in length than the target trace (due to exogenous events). Therefore, given a state

5.3 Composition with Exogenous Events 115

τ[i] of trace τ let ε(τ, i) be the set of states reachable from τ[i] by zero or more
exogenous events in τ . Formally,

ε(τ, i) = {s ∣ τ[i] αi+1Ð→ ⋯ αi+`Ð→ s,αi+j ∈ ActX ,0 ≤ j ≤ `}.

Hence, given an action sequence a⃗ = a1 . . . an and a trace τ1, let τ a⃗1 denote the
shortest prefix of τ1 such that act-seq(τ a⃗1 ,AC) = a⃗.
Now, consider a trace τK = q0

a1
Ð→ ⋯ anÐ→ qn such that qi = ⟨PosZ(ΓS ,ΓT , i)⟩ for all

i ≤ n where:

PosZ(ΓS ,ΓT , i) =
⋃τ1∈ΓF{ε(τ1, j) ∣ j = ∣τ a⃗1 ∣, a⃗ = act-seq(τ ′[0, i],AC)}

where,
ΓF = {⟨s, t⟩ a

1,k1Ð→ ⋯ am,kmÐ→ ⟨s′, t′⟩ ∣

s
a1,k1Ð→ ⋯ am,kmÐ→ s′ ∈ ΓS , t

a1
Ð→ ⋯ amÐ→ t′ ∈ ΓT }.

Observe, since the system evolutions have to match the original target specification,
ΓF is well defined. The idea behind PosZ is to return all states where the enacted
system could be in either due to nondeterminism or exogenous events, after realizing
a sequence of domain actions. We show τK is a legal trace of KZ

⟨S,T ⟩
, that is, it

consists of legal states and transitions. We start by observing that:

• τK[i] = ⟨{s1, . . ., s`}⟩, where {s1, . . ., s`} = PosZ(ΓS ,ΓT , i), is a legal state of
KZ

⟨S,T ⟩
for all i ≤ n;

• τK[0] is the initial state of KZ
⟨S,T ⟩

.

Then we proceed by induction on n.

• For n = 0, we have that the trace τK[0] consisting only of the initial state is
trivially legal.

• By inductive hypothesis let us assume that q0
a1
Ð→ ⋯ aiÐ→ qi (for i < n) is a

legal trace of KZ
⟨S,T ⟩

, and we show that also q0
a1
Ð→ ⋯ ai+1

Ð→ qi+1 is a legal trace
of KZ

⟨S,T ⟩
.

Consider the transition qi
ai+1
Ð→ qi+1 of τK. Let PosZ(ΓS ,ΓT , i) = {s1, . . . , s`}.

Since τ ′ is realizable, there exists sj
ap+1,kp+1

jÐ→ s′j in ES for j ≤ `, p ≥ i and

ti
ap+1
Ð→ tp+1 in T . Hence, there exists exactly one set of indices (see definition

of ΓS , condition 2), Indx = {⟨s1 ∶ k1⟩, . . . , ⟨s` ∶ k`⟩}, one per each element in

PosZ(ΓS ,ΓT , i), such that ⟨s⟩ a
p+1,kp+1

Ð→ ⟨s′⟩ in F⟨S,T ⟩ where s ∈ PosX(ΓS ,ΓT , i),
s′ ∈ PosX(ΓS ,ΓT , i + 1) and ⟨s ∶ kp+1⟩ ∈ Indx. Note, we consider ε−closure when
evolving to successor belief state, in align with the definition of KZ

⟨S,T ⟩
. That

is, qi
ai+1
Ð→ qi+1 in KZ

⟨S,T ⟩
.

116 5. On the Supremal Realizable Target

Note that by construction of KZ
⟨S,T ⟩

, the last condition of the conformant simulation
definition is automatically satisfied.
So, RTB T ′ is simulated by KZ

⟨S,T ⟩
(once we project out the indexes {1, . . . , n}),

that is, T ′ ⪯ KZ
⟨S,T ⟩

. From theorem 26 we know that union of two RTB’s is an RTB,
therefore T ∗ is also a RTB. Consequently, T ∗ ⪯ KZ

⟨S,T ⟩
.

To prove KZ
⟨S,T ⟩

⪯ T ∗, we simply observe that KZ
⟨S,T ⟩

is an RTB, since by construc-
tion, we have KZ

⟨S,T ⟩
⪯ T and KZ

⟨S,T ⟩
⪯Z ES . Hence KZ

⟨S,T ⟩
by theorem 26 KZ

⟨S,T ⟩
is

included in, and thus simulated by, T ∗. ∎

5.4 Discussion
We proved that every classical behavior composition problem instance has an op-
timal supremal solution (Theorem 27) and that such supremal can be effectively
built using cross-product between transition systems and belief-level state con-
struction operations combined (Theorem 29). What is more, borrowing notions
from discrete-event systems and reasoning about action, we showed how to accom-
modate exogenous uncontrollable events to obtain a more expressive composition
framework (Section 5.3). We demonstrated that the definitions and techniques for
supremal fragments can be adapted to this new framework (Theorems 30 and 31).
Many issues remain to be investigated.First, we conjecture that our technique builds
SRTBs that are optimal wrt worst-case complexity. This implies that synthesis of
supremals for the general nondeterministic case is strictly harder than computing
exact composition controllers or supremals for deterministic settings. Confirming
this conjecture is our next step.
Second, our approach to realizing a target specification to the “best” possible is
developed within a strict uncertainty context. This contrasts with the decision-
theoretic approach of (Yadav and Sardina, 2011), where they proposed to optimize
the expected reward of controllers. It would be interesting to adopt such a quantita-
tive framework focusing on targets and devising a suitable decision-theoretic notion
of SRTBs.
Finally, one may devise approaches that trade optimality for faster computation,
such as restricting realizable target fragments to merely removing transitions from
the original target specification, bounding its number of states, or computing it in
anytime fashion.

117

Chapter 6

Generalized Agent Protocols for
LTL

6.1 Generalized Planning for LTL

6.1.1 Planning in AI

Automated Planning (Ghallab et al., 2004) is the branch of AI that focuses on the
deliberation process of building plans, i.e., an organized set of actions, in order to
fulfill some objectives. Typically, these plans are executed by intelligent agents,
and the solution amounts to synthesize agent’s plans satisfying a goal specification,
usually expressing a reachability requirement. In Section 3.2.3 sophisticated forms
of planning for agent planning programs were briefly introduced (De Giacomo et al.,
2010b): programs built only from achievement and maintenance goals, which merge
two traditions in AI research, namely, Automated Planning and Agent Oriented
Programming.
There exist indeed several forms of planning. For what follows, we need to dis-
tinguish between classical planning domains, conditional planning and conformant
planning. Classical planning domains are fully observable, static, and determin-
istic, in which plans can be computed in advance and then applied uncondition-
ally. Considering a planning domain as described by a finite-state automaton
A = ⟨Act,S, s0, δ, F ⟩, every input word in Act∗ induces a run on A, which is ac-
cepted whether it terminates in a state in F . Hence, we can see a planning problem
as to find a word leading from s0 to a final state, and a plan as a simple sequence of
actions in Act∗. Conditional (or contingency) planning deals instead with bounded
indeterminacy by constructing a conditional plan with different branches for the
different contingencies that may arise, and even though plans are precomputed, the
agent finds out which part of the plan to execute by including sensing actions in
the plan to test for the appropriate conditions. Therefore, conditional plans can
be thought of as tree-like structures, in contrast with sequential plans that are in-
stead action sequences. Finally, conformant planning aims to construct standard,
sequential plans that are to be executed, in partially-observable settings, without
perception. Namely, they are required to achieve the goal in all possible circum-
stances, regardless of the true initial state and the actual action outcomes.

118 6. Generalized Agent Protocols for LTL

As customary, we use nondeterministic state-transition systems as a conceptual
model, i.e., a simple theoretical device for describing a dynamic system. Although
such models may significantly depart from the computational concerns and algo-
rithmic approaches for solving that problem, they allow to analyze requirements
and assumptions as well as proving semantic properties.

6.1.2 Generalized Planning in AI

Informally, the problem of generalized planning is to find plans that can solve a set
of problem instances. The problem of developing generalized plans which apply to
classes of “similar” problem instances was identified almost immediately after the
development of the STRIPS framework (Fikes and Nilsson, 1971) and the funda-
mental motivations behind it stem from classical planning itself and it has recently
been drawing increasing attention in the AI community (Levesque, 2005; Srivastava
et al., 2008; Bonet et al., 2009).
Indeed, while the vast majority of the work in AI planning today deals with se-
quential planning, thus generating a sequence of actions to achieve a goal, a smaller
community is concerned with conditional planning where plans can be tree-like
structures, and an even smaller community is concerned with iterative planning,
where plans can be represented as finite-state structures with loops, i.e., a form of
finite-state controllers. Informally, one of such controllers can be seen as a control
structure with internal states (i.e. a bounded amount of memory) that is able to
capture a class of plans that is more sophisticated than sequential and conditional
plans. It is evident that such structures with loops are able to solve a class of itera-
tive problems in which an unbounded number of object is processed. In (Levesque,
2005) authors identify the One-Dimensional planning problems as the class of prob-
lems that has a complete procedure to reason about the correctness of finite-state
solutions.

A B

(a)

c0 c1

A/right, -/right

B/left

-/left

(b)

Figure 6.1. (a) A conditional problem where an agent initially is in one of the two leftmost
positions has to get to B and then back to A. These two cell-marks are observable. (b)
A 2-state controller that solves this problem and many variations.

As an example, consider the simple contingent planning problem as in (Bonet et al.,
2009) –see Figure 6.1a– where an agent initially in one of the two extreme positions
is assigned the (reachability) goal to get to B and then back to A. The solution
is then a conditional plan for this specific problem instance. However, as we in-
crease the number of cells in this problem, the complexity of solving it increases
(even exponentially, e.g. in a blocks world), although the solutions address common
subproblems and are remarkably similar to each other.

6.1 Generalized Planning for LTL 119

More generally, generalized planning can be though as the problem of finding a single
plan works for a class of different environments that sharing a common interface or
characteristics. Approaches for finding generalized plans thus attempt to extract,
and subsequently make use of such common solutions and problem structures. The
obvious advantage is that if a generalized solution is found for a problem class,
then solving any particular instance in the class only requires the execution of
the generalized plan, which is extremely efficient since no search is needed in the
execution.
This raises the question whether one can find a general definition of generalized
planning that is independent of any specific representation.

6.1.3 Planning for LTL

Up to now we considered the classical planning setting in which the goal condition
captures a reachability requirement. The specification is thus met as soon as a state
satisfying the condition is reached in the current finite run.
Instead, planning for long-running goals (or extended goals) asks the question of
generating a plan that will enable the satisfaction of infinitely many goal conditions
over infinite runs. Indeed, as we deal with LTL goals, plans can rely on perfect recall,
i.e., be inherently infinite. Nonetheless, since we restrict to dynamic systems with
finite number of states, we can employ effective planning techniques and show that
these plans can be represented finitely. As a consequence observe that, differently
from the classical planning, even sequential plans may now in fact involve finite-state
controllers with loops.
An automata-based approach to planning for full-fledged LTL goals covering partial
information was put forward in (De Giacomo and Vardi, 1999) in which authors pre-
sented an approach based on non-emptiness of Büchi-automata on infinite words.
An assumption made in (De Giacomo and Vardi, 1999) is that the agent is inter-
acting with a single deterministic environment which is only partially observable.
In Sections 6.1.3, 6.1.3 and 6.1.3 we briefly report the results of (De Giacomo and
Vardi, 1999), as they are the base for the further development of a solution for
generalized planning for LTL goals, that will be presented in Section 6.1.4. First,
we define general notions that will be used throughout the remainder of the chapter.

Definition 6.1 (Dynamic System). We model the dynamic system of interest as a
transition system D = (D,D0,Act,R,Obs, π) where:

• D is the finite set of possible states.

• D0 ⊆D is the set of initial states.

• Act is the finite set of possible actions.

• δ ∶ D × Act → D is the transition function that, given a state and an action,
returns the successor states.

• Obs is the set of possible observations.

• π ∶ D → Obs is the observation function that, given any system state, returns
the corresponding observation.

120 6. Generalized Agent Protocols for LTL

△

A plan σ for D is an infinite sequence of actions a0, a1, a2, . . . ∈ Actω. The execution
of σ (starting from the initial state d0) is the infinite sequence of states d0, d1, d2, . . . ∈
Dω s.t. d0 ∈ D0 and di+1 = δ(di, ai). The trace, τ(σ, d0), of σ (starting from the
initial state d0) is the infinite sequence π(d0), π(d1), π(d2),
Let G be a goal specification, i.e., a Büchi automaton specifying the (infinite) traces
of the desired executions of the system. Namely, a plan σ realizes a specification
G iff τ(σ, d0) ∈ L(G). In fact, while any LTL formula can be translated into a
Büchi automaton, the converse is not true. These results hold for any goal specified
as a Büchi automaton, though for ease of exposition we give them as LTL.

Definition 6.2 (Specification). Formally, G = (G,G0,Obs, ρ,Gacc) where:

• Obs plays the role of the alphabet of the automaton.

• G is the finite set of possible states of the automaton.

• G0 ⊆ S is the set of possible initial states.

• γ ∶ G ×Obs → 2G is the transition function of the automaton (the automaton
need not to be deterministic).

• Gacc ⊆ G is the set of accepting states.

△

Planning with complete information

Let us consider first a simplified scenario of classical planning, in which we have
complete information on initial situation and that we have full observability on the
state. The only kind of plans of interest in this case are sequential ones (sequences
of actions), since a conditional plan exists iff a sequential plan does.
Observe that, as a consequence of the above mentioned assumptions, we are con-
sidering a system domain D such that:

1. D0 is a singleton, as we are assuming complete information;
2. Obs =D since we are assuming full observability;
3. π ∶D → Obs is the identity function.

To synthesize such a plan, we check for nonemptiness the following Büchi automaton
AD = (W,W0,Act, ρ,W acc) where:

• Act is the alphabet of the automaton
• W = G ×D
• W0 = G0 ×D0

• (gj , dj) ∈ ρ((gi, di), a) iff dj = δ(di, a) and gj ∈ γ(gi, π(wi))
• W acc = Gacc ×D

For AD we get the following result:

6.1 Generalized Planning for LTL 121

Theorem 32. (De Giacomo and Vardi, 1999) A plan σ for D realizing G exists iff
L(AD) /= ∅.

Notably the nonemptiness algorithm can be easily modified to return a plan if a
plan exists. The plan returned always consists of two parts: a sequence arriving to a
certain state, and a second sequence that forms a cycle back into that state. Thus,
such plans can be captured with finite controllers. As an immediate consequence of
the construction we get that

Theorem 33. (De Giacomo and Vardi, 1999) Planning in the setting above is
decidable in NLOGSPACE.

This result can be easily proved by noting that the automaton AD can be built on
the fly, thus for checking nonemptiness using a nondeterministic algorithm we only
need O(log(∣W ∣) + log(∣S∣)) bits.
Observe that if we adopt a compact (i.e., logarithmic) representation of the transi-
tion system, for example by using propositions to denote states and computing the
transitions directly on such propositionsthen planning in the above setting becomes
PSPACE. This is the complexity of planning in STRIPS (Bylander, 1991), which
can be seen as a special case of the setting considered here – reachability of a desired
state of affairs is the only kind of goal considered in STRIPS; moreover, only certain
transition systems are (compactly) representable.
Moreover considering that STRIPS is PSPACE-hard (Bylander, 1991), we can
conclude that planning in the setting above is NLOGSPACE-complete (PSPACE-
complete wrt a compact representation of D).

Conformant Planning with incomplete information

Next we consider the more general case. We assume to have only partial information
on the initial situation, and we assume that only part of the state is observable. In
this section we consider generating sequential plans, in the next section we turn to
conditional plans.
We model the dynamic system of interest as a general transition system D =
(D,D0,Act,R,Obs, π) as in the general definition. However, by assuming both
partial information and observability, the three simplifications of before hold no
more. Hence D has several initial states D0 = {d00, . . . , d0n−1}, for n > 1, reflecting
the uncertainty about the initial situation.
As in the previous section we specify the behavior of the desired executions of
the system by a Büchi automaton G. This time, however, the construction of the
product automaton AD is slightly more involved. We first build the generalized
Büchi automaton AD = (W,W0,Act, ρ,W acc) where:

• W = Gn ×Dn

• W0 = Gn0 × {(d00, . . . , d0n−1)}

• (g⃗′, d⃗′) ∈ ρ((g⃗, d⃗), a) iff d′h = δ(dh, a) and g′h ∈ γ(gh, π(dh)) for h = 0, . . . , n−1.

• W acc = {Gacc ×Gn−1 ×Dn, . . . ,Gn−1 ×Gacc ×Dn}

122 6. Generalized Agent Protocols for LTL

From such an automaton we obtain, by employing the “counting construction”, an
equivalent Büchi automaton AbD = (W b,W b

0 ,Act, ρb, F b) where:

• W b =Wn ×Dn × {0, . . . , n−1}

• W b
0 =Wn

0 × {(d00, . . . , d0n−1)} × {0}

• (g⃗′, d⃗′, `′) ∈ ρb((g⃗, d⃗, `), a) iff d′h = δ(dh, a) and g′h ∈ γ(gh, π(dh)) for h =
0, . . . , n−1, and `′ = (`+1)mod n if g` ∈ Gacc and `′ = ` otherwise.

• F b = Gacc ×Gn−1 ×Dn × {0}

Theorem 34. (De Giacomo and Vardi, 1999) A plan σ for D realizing the speci-
fication G exists iff L(AD) = L(AbD) /= ∅.

Again the nonemptiness algorithm can be easily modified to return a plan if a plan
exists. Again, due to the Büchi acceptance condition, this plan has a lazo structure,
and it can be captured as a finite-state controllers.
Building the automaton AD on the fly, we can check nonemptiness with a nonde-
terministic algorithm needing O(n ⋅ log(∣D∣)+ log(∣S∣)) bits, where n is bounded by
the size of ∣D∣. Considering that NPSPACE=PSPACE, we get:

Theorem 35. (De Giacomo and Vardi, 1999) Planning in the setting above is
decidable in PSPACE.

If we adopt a compact representation of the transition system, then planning in
the above setting becomes EXPSPACE. Moreover, the setting itself is proven (De
Giacomo and Vardi, 1999) to be EXPSPACE-complete, hence the previous upper
bound is tight.
Note that plan existence in STRIPS with incomplete information on the initial
situation is PSPACE-complete (Bäckström, 1992) – polynomial reduction to the
case where the initial situation is completely known. This means that we do pay a
price this time in generalizing the setting wrt more traditional approaches.

Conditional planning with incomplete information

Now we turn to synthesis of conditional plans. A vector plan σ⃗ is an infinite se-
quence of action vectors a⃗0, a⃗1, a⃗2, . . . ∈ (Actn)ω. The execution, exh(σ⃗, d0h) of its
h-component (starting from the initial state d0h) is the infinite sequence of states
d0h, d1h, d2h, . . . ∈ Dω s.t. d0h ∈ D0 and di+1h = ρ(dih, aih). The trace, τh(σ⃗, d0h), of
its h-component is the infinite sequence π(d0h), π(d1h), π(d2h), A vector plan σ⃗
realizes a specification A iff τh(σ⃗, d0h) ∈ L(A) for h = 0, . . . n−1.
A vector plan is not a conditional plan yet, it is simply the parallel compositions
of n sequential plans, one for each initial state. Conditional plans are vector plans
whose actions agree on executions with the same observations.
To formally define conditional plans, we introduce the following notion of equiva-
lence on finite traces. Let d0l, . . . , dnl and d0m, . . . , dnm be two finite traces, then

⟨d0l, . . . , dnl⟩ = ⟨d0m, . . . , dnm⟩ iff ⟨π(d0l), . . . , π(dnl)⟩ = ⟨π(d0m), . . . , π(dnm)⟩

6.1 Generalized Planning for LTL 123

In other words, two finite traces are said to be equivalent (and indistinguishable)
iff they produce the same sequence of observations.
A conditional plan σ⃗ is a vector plan such that given the executions d0l, d1l, d2l, . . .
and d0m, d1m, d2m, . . . of a pair of components l and m, we have that anl = anm
whenever ⟨d0l, . . . , dnl⟩∼⟨d0m, . . . , dnm⟩.
Intuitively a conditional plan can be though of as composed by an (infinite) sequence
of case instructions that at each step on the base of the observations select how to
proceed. However, these case conditions are “packed”, i.e., hidden in the sequence of
action vectors. The task of representing such plans in an explicit tree-like structure
is not addressed here.
How can we synthesize a conditional plan? We follow the line of the construction
in the previous section, checking nonemptiness of a Büchi automaton which this
time has Actn as alphabet. Specifically, we build the generalized Büchi automaton
AD = (W,W0,Actn, ρ,W acc) where:

• W = Gn × Dn × En, where En is the set of equivalence relations on the set
{0, . . . , n − 1},

• W0 = Gn0 × {(d00, . . . , d0n−1)}× ≡0, where i ≡0 j iff π(d0i) = π(d0j);

• (s⃗j , w⃗j ,≡′) ∈ ρ((g⃗i, d⃗i), a⃗,≡) iff

– djh = δ(dih, ah) and gjh ∈ γ(gih, π(dih))
– if l ≡m then al = am
– l ≡′ m iff l ≡m and π(djl) = π(djm)

• W acc = {Gacc ×Gn−1 ×Dn × En, . . . ,Gn−1 ×Gacc ×Dn × En}

Such automaton can be transformed into a Büchi automaton AbD as before.

Theorem 36. (De Giacomo and Vardi, 1999) A conditional plan σ⃗ for D realizing
the specification G exists iff L(AD) = L(AbD) /= ∅.

The nonemptiness algorithm can again be immediately modified to return a plan if
a plan exists. The plan returned again consists of two parts: a sequence arriving
to a certain state and a second sequence that forms loop over that state (however,
this time the element of the sequences are n-tuples of actions). Observe that even if
formally we still deal with vectors of sequential plans, the conditional plan returned
can be put in a more convenient form using case instructions and loops.
Finally, It is easy to verify that the same complexity bounds of the previous case
still hold, as only n bits to represent an equivalence relation on {0, . . . , n − 1} are
needed.

Theorem 37. (De Giacomo and Vardi, 1999) Finding a conditional plan in the
setting above is PSPACE-complete (EXPSPACE-complete wrt a compact represen-
tation of D).

124 6. Generalized Agent Protocols for LTL

6.1.4 Generalized Planning for LTL

In the previous section we presented the automata-based approach for planning for
full-fledged LTL goals that was put forward in (De Giacomo and Vardi, 1999). It
is however natural to relax this assumption, and study the case where one has the
capability of interacting with multiple domain systems.
A first contribution in this direction was made in (Hu and De Giacomo, 2011),
which proposes a framework that captures and extends most generalized planning
formalisms, introducing generalized planning under multiple domain systems for
reachability goals. The solution is shown to be EXPSPACE-complete which, no-
tably, this is the same complexity as conformant and conditional planning under
partial observability with deterministic actions. Hence, the main technical results
of this section is thus to give a sound and complete procedure for solving the gen-
eralized planning problem for LTL goals, within the same complexity bound.
We assume that a generalized plan has to work on a set of k deterministic domain
systems {Dk, . . . ,Dk}, each with its own associated goal specification Gi, whose state
space may be completely unrelated, and which share only actions (used by plans)
and observations (used as sensing tests in plans). Hence we assume

1. partial observability

2. complete information

What follows extends the techniques for automata on infinite strings presented
in the previous sections (De Giacomo and Vardi, 1999), to the case of a finite
set of domains, and constitutes the mathematical foundations of the agent-based
technique of (Felli et al., 2012), as illustrated in Section 6.3.2.
This setting is that of generalized planning (Hu and De Giacomo, 2011), although
such work is not dealing with long-running (LTL) goals but just reachability speci-
fications.

Basic planning problem. Given dynamic domain D = ⟨D,d0,Act,R,Obs, π⟩
and a specification G = ⟨Obs,G, g0, γ,G

acc⟩ as in Section 6.1.3, a (basic) planning
problem is the couple P = ⟨D,G⟩.

Observe that, for clarity of presentation, since we are assuming complete information
–and hence unique initial state of D– we will denote the singleton set of initial states
with the initial state d0 ∈D itself.
This basic setting matches the planning with complete information, and the same
resolution technique of Section 6.1.3 applies.

Generalized planning problem. A generalized planning problem P = {P1, . . . , Pk}
is a finite set of k basic planning problems Pi = {Di,Gi}.

Intuitively, we require that a plan satisfies, on every dynamic systemDi = ⟨Di, d0i,Act, δi,Obs, πi⟩,
its corresponding goal Gi = ⟨Gi, g0i,Obs, γi,Gacci ⟩.
Again, note that observations Obs and actions Act are fixed, shared among all
problems.

6.1 Generalized Planning for LTL 125

Conditional plan. A conditional plan σ⃗ is as in Section 2.2, i.e., it is a vector
plan such that given the executions d0l, d1l, d2l, . . . and d0m, d1m, d2m, . . . of a pair of
components l andm, we have that anl = anm whenever ⟨d0l, . . . , dnl⟩∼⟨d0m, . . . , dnm⟩.
In order to achieve this, we keep a simmetric equivalence relation ≡⊆ {1, . . . , k} ×
{1, . . . , k}.

A conditional plan σ⃗ is a solution of the generalized planning problem iff it generates,
for each domain Di, a run τi(σi, d0i) that is accepted by Gi.
We now build an automaton capturing the generalized planning problem. Given
a set of k (basic) planning problems Pi = ⟨Di,Gi⟩ with Gi = ⟨Gi, gi0,Obs, γi,Gacci ⟩
and Di = ⟨Di, d0i,Act, δi,Obs, πi⟩, i ∈ {1, . . . , k}, we build the generalized automaton
AP = {Actk,W,w0, ρ,W

acc} where:

• Actk is the set of k-vectors of actions;

• W =D1×. . .×Dk×G1×. . .×Gk×Ek, where Ek is the set of equivalence relations
on the set {0, . . . , k − 1};

• w0 = ⟨di0, . . . , dk0, gi0, . . . , gk0,≡0⟩ where i ≡0 j iff πi(di0) = πj(dj0);

• ⟨d⃗′, g⃗′,≡′⟩ ∈ ρ(⟨d⃗, g⃗,≡⟩, a⃗) iff

– if i ≡ j then ai = aj ;
– d′i = δi(di, ai) and g′i = γi(gi, πi(di));
– i ≡′ j iff i ≡ j and πi(d′i) = πj(d′j).

• W acc = { D1 × . . . ×Dk ×Gacc1 ×G2 × . . . ×Gk× ≡ , . . . ,
D1 × . . . ×Dk ×G1 × . . . ×Gk−1 ×Gacck × ≡ }

Observe that there exists tight similarity between this automaton and the automa-
ton built for solving the conditional planning problem with incomplete information,
as in Section 6.1.3. Although structurally similar, the two generalized automata
capture substantially different problems. First, in the previous case one is required
to account for incomplete information about the initial state of the system; there-
fore every state w ∈W keeps track of n distinct possible states in which the system
could be in. In the generalized case instead, we keep track of the current state in
which each one of the k domain systems is. Second, we are now dealing with k
distinct goal specifications, thus progressing each i-th component according to Gi.

Theorem 38. The generalized planning problem P = {P1, . . . , Pk} has a solution
iff L(AP) ≠ ∅.

As before, the plan returned consists of two parts: a sequence of k-vectors reaching
a certain state and a second sequence that forms loop over that state.
As for complexity, we thus obtain the same PSACE-complete results as for the
previous case. Indeed, recall that for each generalized Büchi automaton Ag there
exists a Büchi automaton A such that L(Ag) = L(A) and ∣A∣ = O(∣Ag ∣ ⋅ ∣Sacc∣) where
Sacc denotes the set of accepting states of A.

126 6. Generalized Agent Protocols for LTL

6.1.5 Discussion

In this chapter we first resumed a theoretical approach to planning for long-running
(LTL) goals (De Giacomo and Vardi, 1999) in various settings, then adapted the
approach also to Generalized Planning for LTL goals, showing that the solution
of the generalized case is within the same complexity bound. In particular, we
saw how solving the (generalized) planning problem for LTL goals amounts to syn-
thesize a plan that can be represented finitely. However, we did not suggest any
mean to transform such plans into finite-state controllers that can be “read” at
runtime in order to retrieve the action to execute. In the next chapter we will also
address this particular aspect. Moreover, we will ground the work on Interpreted
Systems (Ronald Fagin and Vardi, 1995), a popular agent-based semantics. This
will allow us to anchor the planning framework to the notion of agent protocol, i.e.,
a function returning the set of possible actions in a given internal state of the agent,
thereby permitting implementations on top of existing model checkers.

6.2 Agents and Interpreted Systems
The study of Multi-Agent Systems (MAS) is concerned with the study of open,
distributed systems, where the process entities (or agents) possess highly flexible
and autonomous behaviour. Differently from disciplines such as distributed systems
and software engineering, the emphasis here is on the prominence given to concepts
such as knowledge, beliefs, protocols, obligations, etc. Since information technology
is facing the task of delivering ever more complex distributed applications, MAS
researchers argue that much is to be gained from an approach that focuses on high-
level macroscopic characteristics of the entities, at least in the modeling stage. MAS
theories involve the formal representation of agents’ behaviour and attitudes. To
this end various modal logics have been studied and developed, including logics for
knowledge, beliefs, actions, obligations, intentions, as well as combinations of these
with temporal operators. Researchers involved in the formalisation of intelligent
agents have investigated temporal extensions of particular modal logics used to
model intensional notions such as knowledge or belief. Several modal logics have
been proposed to deal with these concepts, and properties such as completeness,
decidability, and computational complexity have been explored (Ronald Fagin and
Vardi, 1995).
These logics are seen as specifications of particular classes of MAS systems. Their
aim is to offer a precise description of the mental or behavioural properties that
a MAS should exhibit in a specific class of scenarios. The complexity of systems
under analysis as well as the computational complexity of such logics are often so
hard (Halpern and Vardi, 1986) that current theorem provers seem to offer no easy
solution to the problem of verification of MAS. Hence, following a very influential
paper by Halpern and Vardi (Halpern and Vardi, 1991), attempts have been made
to use model checking techniques (Clarke et al., 1999d) to tackle the verification
problem of MAS. Specifically, (Hoek and Wooldridge, 2002a;b) analyse respectively
the application of SPIN and MOCHA to model checking of LTL and ATL extended
by epistemic modalities, whereas (Meyden and Shilov, 1999) studies the complexity
of the model checking problem for systems for knowledge and time. Formal frame-

6.2 Agents and Interpreted Systems 127

works for verifying temporal and epistemic properties of multi-agent systems have
been devised by means of bounded model checking (Penczek and Lomuscio, 2003)
as well as unbounded (Kacprzak et al., 2004). More recent investigations concern
deontic extensions.
Much of this literature on knowledge representation for MAS employs modal temporal-
epistemic languages defined on semantic structures called interpreted systems (Ronald Fa-
gin and Vardi, 1995; Harel and Pnueli, 1985b). These are refined versions of Kripke
semantics in which the notions of computational states and actions are given promi-
nence. Interpreted Systems can be seen as an evolution of temporal epistemic sys-
tems based on Kripke frames and they provide a modular framework for reasoning
about distributed systems and their properties. They are commonly seen as a prime
example of computationally grounded, modular models of distributed systems, and
they also suggest an intuitive methodology for modeling epistemic capabilities.

6.2.1 Interpreted Systems

In this section we just provide some concepts about interpreted systems; however,
as we will relate to them in the technical development that follows. Hence, this
is not a formal tractation of this subject, for which we refer the reader to, e.g.,
(Ronald Fagin and Vardi, 1995). One of our major design concern is to preserve
and exploit IS modularity and independence, decoupling design phases of the agent
and the set of environments. In fact, an agent is in general supposed to interact with
an environment only partially known in advance. As noted in, e.g., (Jamroga and
Ågotnes, 2007), this leads to the need of a modular representation that is able to
both allow and exploit such independence, such that the agent or the environment
can be modified or replaced without affecting the design or representation of its
counterpart. With respect to the usual MAS setting though, we don’t need any
interaction between different agents or coalitions of them. On the contrary, we
need to independently specify both our agent and multiple environments the agent
interacts with, without any communication channel between such environments.

Local and global states Specifically, all the information an agent has at its
disposal (variables, facts of a knowledge base, observations from the environment,
etc.) is captured in the local state relating to the agent in question. Global states
are tuples of local states, each representing an agent in the system as well as the
environment. The environment is used to represent information such as messages in
transit and other components of the system that are not amenable to an intention-
based representation.
Consider n agents in a system and n non-empty sets L1, . . . , Ln of local states, one
for every agent of the system, and a set of states for the environment Le.
Formally, a system of global states for n agents S is a non-empty set

G ⊆ L1 ×⋯ ×Ln ×Le

When g = ⟨l1, . . . ln, le⟩, each li denotes the local stare of agent i and le the current
state of the environment.

128 6. Generalized Agent Protocols for LTL

An interpreted system of global states is a pair IS = (S,V), where S is a system of
global states and V ∶ G → Pwr(P) is the interpetation function for some fixed set
of propositions AP .

Temporal evolution Interpreted systems can be extended to deal with temporal
evolution. Since the evolution of such systems is the result of interactions among
agents, it can be described in terms of a joint transition function, as for explicit
models. To this aim, consider the evolution function

δ ∶ G × (Act1 ×⋯ ×Actn ×Acte)→ G

Hence the evolution of agents’ local states describes a set of runs and thus a set of
reachable states, used to interpret temporal modal formulae. A run λ on IS is a
function IN→ G from time (ranging over natural numbers) to global states. Hence,
any point t of λ identifies a state of the run, i.e., (λ, t) ∈ G. Hence one can verify
whether a system complies with a temporal/epistemic specification Φ.
While the transition relation encapsulates possible evolutions of the system over
time, the epistemic dimension is defined by the local fragments of a global state:
⟨l1, . . . , lk⟩ ∼i ⟨l′1, . . . , l′k⟩ iff li = l′i, meaning that l and l′ are indistinguishable for
agent i. Hence global states can be used to interpret epistemic modalities Ki, one
for each agent:

(IS, g) ⊧Kiϕ if for all g′ ∈ G we have gi = g′i implies (IS, g′) ⊧ ϕ

It has been shown (Ronald Fagin and Vardi, 1995; Lomuscio and Ryan, 1997) that
we can associate a Kripke structure KIS to an interpreted system IS = ⟨G,V⟩. The
states of such a structure consist of the points in IS, hence one can use the model
KIS to verify properties of IS, but we won’t address here such task.

Agent protocols We assume that for every agent of the system and for the
environment there is a set Acti and Acte of actions (we can also assume all these
set equal). A protocol protcli for an agent i is a function from the set Li of local
states to a non-empty set of actions Acti:

protcli ∶ Li → Acti

If instead we allow sets of actions, we allow nondeterminism in the protocol.

6.3 Embedding strategies into Agent protocols

A key component of any intelligent agent is its ability of reasoning about the actions
it performs in order to achieve a certain goal. If we consider a single-agent interact-
ing with an environment, a natural question to ask is the extent to which an agent
can derive a plan to achieve a given goal. Under the assumption of full observabil-
ity of the environment, the methodology of LTL synthesis enables the automatic
generation, e.g., through a model checker, of a set of rules for the agent to achieve
a goal expressed as an LTL specification. This is a well-known decidable setting

6.3 Embedding strategies into Agent protocols 129

but one that is 2EXPTIME-complete (Pnueli and Rosner, 1989a; Kupferman and
Vardi, 2000) due to the required determinisation of non-deterministic Büchi au-
tomata. Solutions that are not complete but computationally attractive have been
put forward (Harding et al., 2005). Alternative approaches focus on subsets of LTL,
e.g., GR(1) formulas as in (Piterman et al., 2006a; Bloem et al., 2012).
Work in AI on planning has of course also addressed this issue albeit from a rather
different perspective. The emphasis here is most often on sound but incomplete
heuristics that are capable of generating effective plans on average. Differently
from main-stream synthesis approaches, a well-explored assumption here is that of
partial information, i.e., the setting where the environment is not fully observable
by the agent. Progress here has been facilitated by the relatively recent advances
in the efficiency of computation of Bayesian expected utilities and Markov decision
processes. While these approaches are attractive, differently from work in LTL-
synthesis, they essentially focus on goal reachability (Bonet and Geffner, 2009).
An automata-based approach to planning for full-fledged LTL goals (De Giacomo
and Vardi, 1999), covering partial information, has beed illustrated in Section 6.1.3.
The approach is based on non-emptiness of Büchi-automata on infinite words, as-
suming that the agent is interacting with a single deterministic environment which
is only partially observable. As noted in the previous chapter, it is however natural
to relax this assumption, and study the case where an agent has the capability of in-
teracting with multiple, partially-observable, environments sharing a common inter-
face. In fact, Section 6.1.4 extends the technique based on non-emptiness of Büchi-
automata to this case, following the contribution of (Hu and De Giacomo, 2011),
which introduced generalized planning under multiple environments for reachability
goals and showed that its complexity is EXPSPACE-complete. The main technical
results was thus to give a sound and complete procedure for solving the generalized
planning problem for LTL goals, within the same complexity bound.

6.3.1 Synthesizing Agent Protocols From LTL Specifications

In this Section we consider the problem of synthesizing an agent protocol to satisfy
temporal specifications. In particular, the problem we consider here is composed
on this ingredients:

• we assume LTL goals;

• we consider a single agent, for which we want to synthesize a protocol;

• we address the generalized planning problem, hence we consider an agent
interacting with multiple environments;

• environments are partially observable.

We present a sound and complete procedure for solving the synthesis problem in
this setting and show it is computationally optimal from a theoretical complex-
ity standpoint. While this produces perfect-recall, hence unbounded, strategies we
show how to transform these into agent protocols with bounded number of states.
Differently from (Hu and De Giacomo, 2011) we here prove the complexity of opti-
mal strategies based on perfect recall and, importantly, we show their reduction to

130 6. Generalized Agent Protocols for LTL

finite state controllers, which can be embedded in the agent protocol, i.e., the set
of rules that constrain the actions executable by the agent at each point in time.
A further departure from (Hu and De Giacomo, 2011) is that we here ground the
work on Interpreted Systems (Ronald Fagin and Vardi, 1995; Parikh and Ramanu-
jam, 1985), a popular agent-based semantics. This enables us to anchor the frame-
work to the notion of agent protocol, i.e., a function returning the set of possible
actions in a given local state, thereby permitting implementations on top of existing
model checkers (Gammie and van der Meyden, 2004; Lomuscio et al., 2009). As as
already remarked in the literature (van der Meyden, 1996), interpreted systems are
particularly amenable to incorporating observations and uncertainty in the environ-
ment. The model we pursue here differentiates between visibility of the environment
states and observations made by the agent (given what is visible). Similar models
have been used in the past, e.g, the VSK model discussed in (Wooldridge and
Lomuscio, 2001). Differently from the VSK model, here we are not concerned in
epistemic specifications nor do we wish to reason at specification level about what
is visible, or observable. The primary aim, instead, is to give sound and complete
procedures for solving the generalized planning problem for LTL goals.

6.3.2 State-based and History-based Solutions

Finite-state and memoryless controllers are simple action selection mechanisms
widely used in domains such as videogames and mobile robotics. Memoryless con-
trollers stand for functions that map observations into actions, while finite state
controllers generalize memoryless ones with a finite amount of memory.
With the formal notion of agent protocol hand, it thus becomes natural to distin-
guish several ways to address generalized planning for LTL goals, namely:

• State-based solutions, where the agent has the ability of choosing the “right”
action toward the achievement of the LTL goal, among those that its protocol
allows, exploiting the current observation, but avoiding memorizing previous
observations. So the resulting plan is essentially a state-based strategy, which
can be encoded in the agent protocol itself. While this solution is particularly
simple, is also often too restrictive.

• History-based solutions, where the agent has the ability of remembering all
observations made in the past, and use them to decide the “right” action
toward the achivement of the LTL goal, again among those allowed by its
protocol. In this case we get a perfect-recall strategy. These are the most
general solutions, though in principle such solutions could be infinite and
hence unfeasible. One of the key results, however, is that if a perfect-recall
strategy exists, then there exist one which can be represented with a finite
number of states.

• Bounded solutions, where the agent decides the “right” course of actions, by
taking into account only a fragment of the observation history. In this case the
resulting strategies can be encoded as a new agent protocol, still compatible
with the original one, though allowing the internal state space of the original
agent to grow so as to incorporate the fragment of history to memorize. Since

6.3 Embedding strategies into Agent protocols 131

we show that if a perfect-recall strategy exists, there exist one that is finite
state (and hence makes use only of a fragment of the history), we essentially
show that wlog we can restrict our attention to bounded solution (for a suitable
bound) and incorporate such solutions in the agent protocol.

The remainder of this section is organized as follows. First we give the formal
framework for our investigations, and we look at state-based solutions. Then, we
move to history based solutions and prove our key technical results. We give a sound,
complete, and computationally optimal (wrt worst case complexity) procedure for
synthesizing perfect-recall strategies from LTL specification. Moreover, we observe
that the resulting strategy can be represented with finite states. Then, we show how
to encode such strategies (which are in fact bounded) into agent protocol. Finally,
we briefly look at an interesting variant of the presented setting where the same
results hold.

6.3.3 Framework

An interesting case is that of a single agent interacting with an environment. This
is not only interesting in single-agent systems, or whenever we wish to study the
single-agent interaction, but it is also a useful abstraction in loosely-coupled systems
where all of the agents’ interactions take place with the environment. Also note that
the modular reasoning approach in verification focuses on the single agent case in
which the environment encodes the rest of the system and its potential influence
to the component under analysis. In this and other cases it is useful to model the
system as being composed by a single agent only, but interacting with multiple
environments, each possibly modelled by a different finite-state machine.
With this background we here pursue a design paradigm enabling the refinement
of a generic agent program following a planning synthesis procedure given through
an ltl specification, such that the overall design and encoding is not affected nor
invalidated. We follow the interpreted system model and formalise an agent as being
composed of (i) a set of local states, (ii) a set of actions, (iii) a protocol function
specifying which actions are available in each local state, (iv) an observation function
encoding what perceptions are being made by the agent, and (v) a local evolution
function. An environment is modelled similarly to an agent; the global transition
function is defined on the local transition functions of its components, i.e., the
agent’s and the environment’s.
We refer to Figure 6.2 for a pictorial description of our setting in which the agent is
executing actions on the environment, which, in turn, respond to these actions by
changing its state. The observations of the agent depend on what perceived of the
states of the environment. Notice that environments are only partially observable
through what perceivable of their states. So two different environments may give
rise to the same observations in the agent.

Environment. An environment is a tuple Env = ⟨E,Acte, P erc,perc, δ, e0⟩ such
that:

• E = {e0, . . .} is a finite set of local states of the environment;

132 6. Generalized Agent Protocols for LTL

l0 l1

a
b

a

Agent

e0 e1

a

b

a
Environment

obs()

perc(e0) perc(e1)

c

actions

Figure 6.2. Interaction between Ag and Env

• Acte is the alphabet of the environment’s actions;
• Perc is the alphabet of perceptions;
• perc ∶ E → Perc is the perceptions (output) function;
• δ ∶ E ×Acte → E is a (partial) transition function;
• eo ∈ E is the initial state.

Notice that, as in classical planning, such an environment is deterministic.
A trace is a sequence τ = e0α1e1α2 . . . αnen of environment’s states such that ei+1 =
δ(ei, αi+1) for each 0 ≤ i < n. The corresponding perceivable trace is the trace
obtained by applying the perception function: perc(τ) = perc(e0), . . . ,perc(en).
Similarly, an agent is represented as a finite machine, whose state space is obtained
by considering the agent’s internal states, called configurations, together with all
additional information the agent can access, i.e., the observations it makes. We take
the resulting state space as the agent’s local states.

Agent. An agent is a tuple Ag = ⟨Conf,Acta,Obs,obs, L,poss, δa, c0⟩ where:

• Conf = {c0, . . .} is a finite set of the agent’s configurations (internal states);
• Acta is the finite set of agent’s actions;
• Obs is the alphabet of observations the agent can make;
• obs ∶ Perc→ Obs is the observation function;
• L = Conf ×Obs is the set of agent’s local states;
• poss ∶ L→ ℘(Acta) is a protocol function;
• δa ∶ L ×Acta → Conf is the (partial) transition function;

6.3 Embedding strategies into Agent protocols 133

• c0 ∈ Conf is the initial configuration. A local state l = ⟨c, o⟩ is called initial iff
c = c0.

Agents defined as above are deterministic: given a local state l and an action α,
there exists a unique next configuration c′ = δa(l, α). Nonetheless, observations in-
troduce non-determinism when computing the new local state resulting from action
execution: executing action α in a given local state l = ⟨c, o⟩ results into a new local
state l′ = ⟨c′, o′⟩ such that c′ = δa(l, α) and o′ is the new observation, which can not
be foreseen in advance.
Consider the agent and the environment depicted in Figure 6.2. Assume that the
agent is in its initial configuration c0 and that the current environment’s state is e0.
Assume also that obs(perc(e0)) = o, i.e., the agent receives observation o. Hence, the
current local state is l0 = ⟨c0, o⟩. If the agent performs action b (with b ∈ poss(l0)),
the agent moves from configuration c0 to configuration c1 = δa(⟨c0, o⟩, b). At the
same time, the environment changed its state from e0 to e1, so that the new local
state is l1 = ⟨c1, o

′⟩, where o′ = obs(perc(e1)).
Notice that the protocol function is not defined with respect to the transition func-
tion, i.e., according to transitions available to the agent. In fact, we can imagine
an agent having its own behaviours, in terms of transitions defined over configu-
rations, that can be constrained according to some protocol, which can in princi-
ple be modified or substituted. Hence, we say that a protocol is compatible with
an agent iff it is compatible with its transition function, i.e., α ∈ poss(⟨c, o⟩) →
∃c′ ∈ Conf ∣ δa(⟨c, o⟩, α) = c′. Moreover, we say that a protocol poss is an action-
deterministic protocol iff it always returns a singleton set, i.e., it allows only a single
action to be executed for a given local state. Finally, an agent is nonblocking iff
it is equipped with a compatible protocol function poss and for each sequence of
local states l0α1l1α2 . . . αnln such that li = ⟨ci, oi⟩ and αi+1 ∈ poss(⟨ci, oi⟩) for each
0 ≤ i < n, we have poss(ln) ≠ ∅. So, an agent is nonblocking iff it has a compatible
protocol function which always provides a non-empty set of choices for each local
state that is reachable according to the transition function and the protocol itself.
Finally, given a perceivable trace of an environment Env, the observation history
of an agent Ag is defined as the sequence obtained by applying the observation
function: obs(perc(τ)) = obs(perc(e0)), . . . ,obs(perc(en)). Given one such history
h ∈ Obs∗, we denote with last(h) its latest observation: last(h) = obs(perc(en)).

6.3.4 Problem

We consider an agent Ag and a finite set E of environments, all sharing common
actions and the same perception alphabet. Such environments are indistinguishable
by the agent, in the sense that the agent is not able to identify which environment it
is actually interacting with, unless through observations. The problem we address
is thus to synthesize a (or customize the) agent protocol so as to fulfill a given LTL
specification (or goal) in all environments. A planning problem for an ltl goal is
a triple P = ⟨Ag,E ,G⟩, where Ag is an agent, E an environment set, and G an ltl
goal specification. This setting is that of generalized planning (Hu and De Giacomo,
2011), extended to deal with long-running goals, expressed as arbitrary ltl formu-
lae. This is also related to planning for ltl goals under partial observability (De

134 6. Generalized Agent Protocols for LTL

Giacomo and Vardi, 1999).
Formally, we call environment set a finite set of environments E = {Env1, . . . ,Envk},
with Envi = ⟨Ei,Actei, P erc,perci, δi, e0i⟩. Environments share the same alphabet
Perc of the agent Ag. Moreover the Ag’s actions must be executable in the various
environments: Acta ⊆ ⋂i=1,...,kActei. This is because we are considering an agent
acting in environments with similar “interface”.
As customary in verification and synthesis (Baier and Katoen, 2008), we represent
an ltl goal with a Büchi automaton G = ⟨Perc,G, g0, γ,G

acc⟩, describing the desired
behaviour of the system in terms of perceivable traces, where:

• Perc is the finite alphabet of perceptions, taken as input;

• G is a finite set of states;

• g0 is the initial state;

• γ ∶ G × Perc→ 2G is the transition function;

• Gacc ⊆ G is the set of accepting states.

A run of G on an input word w = p0, p1, . . . ∈ Percω is an infinite sequence of states
ρ = g0, g1, . . . such that gi ∈ γ(gi−1, pi), for i > 0. Given a run ρ, let inf(ρ) ⊆ G be the
set of states occurring infinitely often, i.e., inf(ρ) = {g ∈ G ∣ ∀i ∃j > i s.t. gj = g}.
An infinite word w ∈ Percω is accepted by G iff there exists a run ρ on w such that
inf(ρ) ∩Gacc ≠ ∅, i.e., at least one accepting state is visited infinitely often during
the run. Notice that, since the alphabet Perc is shared among environments, the
same goal applies to all of them. As we will see later, we can characterize a variant
of this problem by considering the environment’s internal states as G’s alphabet.

Example 21. Consider a simple environment Env1 constituted by a grid of 2x4
cells, each denoted by eij, a train, and a car. A railroad crosses the grid, passing on
cells e13, e23. Initially, the car is in e11 and the train in e13. The car is controlled by
the agent, whereas the train is a moving obstacle moving from e13 to e23 to e13 again
and so on. The set of actions is Acte1 = {goN, goS, goE, goW,wait}. The train and
the car cannot leave the grid, so actions are allowed only when feasible. The state
space is then E1 = {e11, . . . , e24}×{e13, e23}, representing the positions of the car and
the train. We consider a set of perceptions Perc = {posA,posB,danger,dead,nil},
and a function perc1 defined as follows: perc1(⟨e11, et⟩) = posA, perc1(⟨e24, et⟩) =
posB, perc1(⟨e13, e23⟩) = perc1(⟨e23, e13⟩) = danger and perc1(⟨e13, e13⟩) =
perc1(⟨e23, e23⟩) = dead. perc1(⟨ec, et⟩) = nil for any other state.
We consider a second environment Env2 similar to Env1 as depicted in Figure 6.3b.
We skip details about its encoding, as it is analogous to Env1.
Then, we consider a third environment Env3 which is a variant of the Wumpus
world (Russell and Norvig, 2010), though sharing the interface (in particular they
all share perceptions and actions) with the other two. Following the same convention
used before, the hero is initially in cell e11, the Wumpus in e31, gold is in e34 and
the pit in e23. The set of actions is Acte3 = {goN, goS, goE, goW,wait}. Recall that

6.3 Embedding strategies into Agent protocols 135

A

B

(a) Env1

A B

(b) Env2

Figure 6.3. Environments Env1 and Env2

the set of perceptions Perc is instead shared with Env1 and Env2. The state space
is E3 = {e11, . . . , e34}, and the function perc3 is defined as follows: perc3(e11) =
posA, perc3(e34) = posB, perc3(e23) = perc3(e31) = dead, perc3(e) = danger for
e ∈ {e13, e21, e22, e24, e32, e33}, whereas perc3(e) = nil for any other state. This ex-
ample allows us to make some observation about our framework. Consider first the
perceptions Perc. They are intended to represent signals coming from the environ-
ment, which is modeled as a “black box”. If we could distinguish between perceptions
(instead of having just a danger perception), we would be able to identify the current
environment as Env3, and solve such a problem separately. Instead, in our setting
the perceptions are not informative enough to discriminate environments (or the
agent is not able to observe them); so all environments need to be considered to-
gether. Indeed, Env3 is similar to Env1 and Env2 at the interface level, and it is
attractive to try to synthesize a single strategy to solve them all. In some sense,
crashing in Env1 or Env2 corresponds to falling into the pit or being eaten by the
Wumpus; the same holds for danger states with the difference that perceiving danger
in Env1 or Env2 can not be used to prevent an accident.

A

B

Figure 6.4. Environment Env3

Notice that in our framework we design the environments without taking into account
the agent Ag that will interact with them. Likewise, the same holds when designing

136 6. Generalized Agent Protocols for LTL

Ag. Indeed, agent Ag is encoded as an automaton with a single configuration c0, and
all actions being loops. In particular, let Acta = Actei, i = 1,2,3. Notice also that,
by suitably defining the observation function obs, we can model the agent’s sensing
capabilities, i.e., its ability to observe perceptions coming from the environment.
Suppose that Ag can sense perceptions posA,danger,dead, but it is unable to sense
posB, i.e., its sensors can not detect such signal. To account for this, it is enough
to consider the observation function obs as a “filter” (i.e. Obs ⊆ Perc), such that
Obs = {posA,danger,dead,nil} and obs(posA) = posA, obs(danger) = danger,
obs(dead) = dead, and obs(nil) = obs(posB) = nil. Since Ag is filtering away
perception posB, the existence of a strategy does not imply that agent Ag is actually
able to recognize that it has achieved its goal. Notice that this does not affect the
solution, nor its executability, in any way. The goal is achieved irrespective of what
the agent can observe.
Moreover, Ag has a “safe” protocol function poss that allows all moving actions to
be executed in any possible local state, but prohibits it to perform wait if the agent is
receiving the observation danger: poss(⟨c0, o⟩) = Acta if o ≠ danger, Acta ∖ {wait}
otherwise.
Finally, let G be the automaton corresponding to the LTL formula φG = (23posA)∧
(23posB) ∧ 2¬dead over the perception alphabet, constraining perceivable traces
such that the controlled objects (the car / the hero) visit positions A and B infinitely
often. ◻

6.3.5 State-based solution

To solve the synthesis problem in the context above, the first solution that we
analyze is based on customizing the agent to achieve the ltl goal, by restricting the
agent protocol while keeping the same set of local states. We do this by considering
so called state-based strategies (or plans) to achieve the goal. We call a strategy
for an agent Ag state-based if it can be expressed as a (partial) function

σp ∶ (Conf ×Obs)→ Acta

For it to be acceptable, a strategy also needs to be allowed by the protocol: it
can only select available actions, i.e., for each local state l = ⟨c, o⟩ we have to have
σp(l) ∈ poss(l).
State-based strategies do not exploit an agent’s memory, which, in principle, could
be used to reduce its uncertainty about the environment by remembering observa-
tions from the past. Exploiting this memory requires having the ability of extending
its configuration space, which at the moment we do not allow (see later). In return,
these state-based strategies can be synthesized by just taking into account all al-
lowed choices the agent has in each local state (e.g., by exhaustive search, possibly
guided by heuristics). The advantage is that to meet its goal, the agent Ag does
not need any modification to its configurations, local states and transition function,
since only the protocol is affected. In fact, we can see a strategy σp as a restric-
tion of an agent’s protocol yielding an action-deterministic protocol poss derived as

6.3 Embedding strategies into Agent protocols 137

follows:

poss(⟨c, o⟩) =
⎧⎪⎪⎨⎪⎪⎩

{α}, iff σp(c, o) = α
∅, if σp(c, o) is undefined

Notice that poss is then a total function. Notice also that agent Ag obtained by
substituting the protocol function maintains a protocol compatible with the agent
transition function. Indeed, the new allowed behaviours are a subset of those per-
mitted by original agent protocol.

Example 22. Consider again Example 21. No state-based solution exists for this
problem, since selecting the same action every time the agent is in a given local state
does not solve the problem. Indeed, just by considering the local states we can not get
any information about the train’s position, and we would be also bound to move the
car (the hero) in the same direction every time we get the same observation (agent
Ag has only one configuration c0). Nonetheless, observe that if we could keep track
of past observations when selecting actions, then a solution can be found. ◻

6.3.6 History-based solution

We turn to strategies that can take into account past observations. Specifically, we
focus on strategies (plans) that may depend on the entire unbounded observation
history. These are often called perfect-recall strategies.
A (perfect-recall) strategy for P is a (partial) function

σ ∶ Obs∗ → Acta

that, given a sequence of observations (the observation history), returns an action.
A strategy σ is allowed by Ag’s protocol iff, given any observation history h ∈ Obs∗,
σ(h) = α implies α ∈ poss(⟨c, last(h)⟩), where c is the current configuration of the
agent. Notice that, given an observation history, the current configuration can be
always reconstructed by applying the transition function of Ag, starting from initial
configuration c0. Hence, a strategy σ is a solution of the problem P = ⟨Ag,E ,G⟩ iff
it is allowed by Ag and it generates, for each environment Envi, an infinite trace
τ = e0iα1e1iα2 . . . such that the corresponding perceivable trace perc(τ) satisfies the
ltl goal, i.e., it is accepted by the corresponding Büchi automaton.
The technique we propose is based on previous automata theoretic approaches.
In particular, we extend the technique for automata on infinite strings presented
in (De Giacomo and Vardi, 1999) for partial observability, to the case of a finite
set of environments, along the lines of (Hu and De Giacomo, 2011). The crucial
point is that we need both the ability of simultaneously dealing with ltl goals
and with multiple environments. We build a generalized Büchi automaton that
returns sequences of action vectors with one component for each environment in
the environment set E . Assuming ∣E ∣ = k, we arbitrarily order the k environments,
and consider sequences of action vectors of the form a⃗ = ⟨a1, . . . , ak⟩, where each
component specifies one operation for each environment. Such sequences of action
vectors correspond to a strategy σ, which, however, must be executable: for any
pair i, j ∈ {1, . . . , k} and observation history h ∈ Obs∗ such that both σi and σj are

138 6. Generalized Agent Protocols for LTL

defined, then σi(h) = σj(h). In other words, if we received the same observation
history, the function select the same action. In order to achieve this, we keep an
equivalence relation ≡⊆ {1, . . . , k} × {1, . . . , k} in the states of our automaton. Ob-
serve that this equivalence relation has correspondences with the epistemic relations
considered in epistemic approaches (Jamroga and van der Hoek, 2004; Lomuscio and
Raimondi, 2006; Pacuit and Simon, 2011).
We are now ready to give the details of the automata construction. Given a
set of k environments E with Envi = ⟨Ei,Actei, P erc,perci, δi, e0i⟩, an agent Ag =
⟨Conf,Acta,Obs,obs, L,poss, δa, c0⟩ and goal G = ⟨Perc,G, g0, γ,G

acc⟩, we build the
generalized Büchi automaton AP = ⟨Actka,W,w0, ρ,W

acc⟩ as follows:

• Actka = (Acta)k is the set of k-vectors of actions;
• W = Ek ×Confk ×Gk × ℘(≡);1

• w0 = ⟨e10, . . . , ek0, c0, . . . , c0, g0, . . . , g0,≡0⟩ where

i ≡0 j iff obs(perci(ei0)) = obs(percj(ej0));

• ⟨e⃗′, c⃗′, g⃗′,≡′⟩ ∈ ρ(⟨e⃗, c⃗, g⃗,≡⟩, α⃗) iff

– if i ≡ j then αi = αj ;
– e′i = δi(ei, αi);
– c′i = δa(li, αi) ∧ αi ∈ poss(li) where li = ⟨ci,obs(perci(ei))⟩;
– g′i = γ(gi,perci(ei));
– i ≡′ j iff i ≡ j ∧ obs(perci(e′i)) = obs(percj(e′j)).

• W acc = {
Ek ×Confk ×Gacc ×G × . . . ×G× ≡ , . . . ,
Ek ×Confk ×G × . . . ×G ×Gacc× ≡ }

Each automaton state w ∈ W holds information about the internal state of each
environment, the corresponding current goal state, the current configuration of the
agent for each environment, and the equivalence relation. Notice that, even with
fixed agent and goal, we need to duplicate their corresponding components in each
state of AP in order to consider all possibilities for the k environments. In the
initial state w0, the environments, the agent and the goal automaton are in their
respective initial state. The initial equivalence relation ≡0 is computed according
to the observation provided by environments. The transition relation ρ is built
by suitably composing the transition function of each state component, namely
δa for agent, δi for the environments, and γ for the goal. Notice that we do not
build transitions in which an action α is assigned to the agent when either it is in
a configuration from which a transition with action α is not defined, or α is not
allowed by the protocol poss for the current local state. The equivalence relation is
updated at each step by considering the observations taken from each environment.
Finally, each member of the accepting set W acc contains a goal accepting state, in
some environment.

1We denote by ℘(≡) the set of all possible equivalence relations ≡⊆ {1, . . . , k} × {1, . . . , k}.

6.3 Embedding strategies into Agent protocols 139

Once this automaton is constructed, we check it for non-emptiness. If it is not empty,
i.e., there exists a infinite sequence of action vectors accepted by the automaton,
then from such an infinite sequence it is possible to build a strategy realizing the ltl
goal. The non-emptiness check is done by resolving polynomially transforming the
generalized Büchi automaton into standard Büchi one and solving fair reachability
over the graph of the automaton, which (as standard reachability) can be solved in
nlogspace (Vardi, 1996). The non-emptiness algorithm itself can also be used to
return a strategy, if it exists.
The following result guarantees that not only the technique is sound (the perfect-
recall strategies do realize the ltl specification), but it is also complete (if a perfect-
recall strategy exists, it will be constructed by the technique).
this technique is correct, in the sense that if a perfect-recall strategy exists then it
will return one.

Theorem 39 (Soundness and Completeness). A strategy σ that is a solution for
problem P = ⟨Ag,E ,G⟩ exists iff L(AP) ≠ ∅.

Proof. (⇐) The proof is based on the fact that L(AP) = ∅ implies that it holds the
following persistence property: for all runs in AP of the form rω = w0α⃗1w1α⃗2w2 . . . ∈
Wω there exists an index i ≥ 0 such that wj /∈ W acc for any j ≥ i. Conversely,
if L(AP) ≠ ∅, there exists an infinite run rω = w0α⃗1w1α⃗2w2 . . . on AP visiting
at least one state for each accepting set in W acc infinitely often (as required by
its acceptance condition), thus satisfying the goal in each environment. First, we
notice that such an infinite run rω is the form rω = r′(r′′)ω where both r′ and
r′′ are finite sequences. Hence such a run can be represented with a finite lazo
shape representation: r = w0a⃗1w1 . . . a⃗nwna⃗n+1wm with m < n (Vardi, 1996). Hence
we can synthesize the corresponding partial function σ by unpacking r (see later).
Essentially, given one such r and any observable history h = o0, . . . , o` and denoting
with αji the i-th component of α⃗j , σ is inductively defined as follows:

• if ` = 0 then σ(o0) = α1i iff o0 = obs(perci(e0i)) in w0.

• if σ(o0, . . . , o`−1) = α then σ(h) = αji iff o` = obs(perci(eji)) in wj = ⟨e⃗j , c⃗j , g⃗j ,≡j
⟩ and α is such that α = α`z with i ≡j z for some z, where j = ` if ` ≤m, other-
wise j =m+ ` mod(n-m). If instead o` ≠ obs(perci(eji)) for any eji then σ(h)
is undefined.

Indeed, σ is a prefix-closed function of the whole history: we need to look at the
choice made at previous step to keep track of it. In fact, we will see later how
unpacking r will result into a sort of tree-structure representation. Moreover, it
is trivial to notice that any strategy σ synthesized by emptiness checking AP is
allowed by agent Ag. In fact, transition relation ρ is defined according to the
agent’s protocol function poss.
(⇒) Assume that a strategy σ for P does exist. We prove that, given such σ, there
exists in AP a corresponding accepting run rω as before. We prove that there exists
in AP a run rω = w0α⃗1w1α⃗2w2 . . ., with w` = ⟨e⃗`, c⃗`, g⃗`,≡`⟩ ∈W , such that:

140 6. Generalized Agent Protocols for LTL

1. (` = 0) σ(obs(perci(e0i))) = α1i for all 0 < i ≤ k;

2. (` > 0) if σ(obs(perci(e(`−1)i))) = α for some 0 < i ≤ k, then α = α`i and
e`i = δi(e(`−1)i, α`i) and σ(obs(perci(e`i))) is defined;

3. rω is accepting.

In other words, there exists in AP an accepting run that is induced by executing
σ on AP itself. Point 1 holds since, in order to be a solution for P, the function σ
has to be defined for histories constituted by the sole observation obs(perci(e0i)) of
any environment initial state. According to the definition of the transition relation
ρ, there exists in AP a transition from each e0i for all available actions α such that
δi(e0i, α) is defined for Envi. In particular, the transition ⟨w, α⃗,w′⟩ is not permitted
in AP iff either some action component αi is not allowed by agent’s protocol poss
or it is not available in the environment Envi, 0 < i ≤ k. Since σ is a solution of P
(and thus allowed by Ag) it cannot be one of such cases. Point 2 holds for the same
reason: there exists a transition in ρ for all available actions of each environment.
Point 3 is just a consequence of σ being a solution of P. ∎

Checking wether L(AP) ≠ ∅ can be done nlogspace in the size of the automa-
ton. Our automaton is exponential in the number of environments in E , but its
construction can be done on-the-fly while checking for non-emptiness. This give us
a pspace upperbound in the size of the original specification with explicit states. If
we have a compact representation of those, then we get an expspace upperbound.
Considering that even the simple case of generalized planning for reachability goals
in (Hu and De Giacomo, 2011) is pspace-complete (expspace-complete consider-
ing compact representation), we obtain a worst case complexity characterization of
the problem at hand.

Theorem 40 (Complexity). Solving the problem P = ⟨Ag,E ,G⟩ admitting perfect-
recall solutions is pspace-complete (expspace-complete considering compact rep-
resentation).

We conclude this section by remarking that, since the agent gets different observa-
tion histories from two environments Envi and Envj , then from that point on it
will be always possible to distinguish these. More formally, denoting with r a run
in AP and with r` = ⟨e⃗`, c⃗`, g⃗`,≡`⟩ its `-th state, if i ≡` j, then i ≡`′ j for every state
r`′<`. Hence it follows that the equivalence relation ≡ is indentical for each state
belonging to the same strongly connected component of AP . Indeed, assume by
contradiction that there exists some index `′ violating the assumption above. This
implies that ≡`′⊂≡`′+1. So, there exists a tuple in ≡`′+1 that is not in ≡`′ . But this is
impossible since, by definition, we have that i ≡`′+1 j implies i ≡`′ j.
Figure 6.5 shows a decision-tree like representation of a strategy. The diamond
represents a decision point where the agent reduces its uncertainty about the en-
vironment. Each path ends in a loop thereby satisfying the automaton acceptance
condition. The loop, which has no more decision point, represents also that the
agent cannot reduce its uncertainty anymore and hence it has to act blindly as in

6.3 Embedding strategies into Agent protocols 141

...

...

Figure 6.5. Decision-tree like representation of a strategy.

conformant planning. Notice that if our environment set includes only one environ-
ment, or if we have no observations to use to reduce uncertainty, then the strategy
reduces to the structure in Figure 6.6, which reflects directly the general lazo shape
of runs satisfying ltl properties: a sequence reaching a certain state and a second
sequence consisting in a loop over that state.

Figure 6.6. A resulting strategy execution.

6.3.7 Embedding strategies into protocols

Finally, we consider a variant of our problem where we specify ltl goals directly
in terms of states of each environment in the environment set. In other words,
instead of having a single goal specified over the percepts of the environments we
have one ltl goal for each environment. More precisely, as before, we assume that
a single strategy has to work on the whole set of deterministic environments. As
previously, we require that Acta ⊆ ⋂i=1,...,kActei and that all environment share the
same alphabet of perceptions Perc. Differently from before, we associate a distinct
goal to each environment. We take as input alphabet of each goal specification
Gi the set of environment’s state Ei, i.e., Gi = ⟨Ei,Gi, gi0, γi,Gacci ⟩. All goals are
thus intimately different, as they are strictly related to the specific environment.
Intuitively, we require that a strategy for agent Ag satisfies, in all environments
Envi, its corresponding goal Gi. In other words, σ is a solution of the generalized
planning problem P = ⟨Ag,E ,G⟩ iff it is allowed by Ag and it generates, for each
environment Envi, an infinite trace τi that is accepted by Gi.
Devising perfect-recall strategies now requires only minimal changes to our orig-
inal automata-based technique to take into account that we have now k distinct
goals one for each environment. Given Ag and E as defined before, and k goals Gi =
⟨Ei,Gi, gi0, γi,Gacci ⟩, we build the generalized Büchi automatonAP = ⟨Actka,W,w0, ρ,W

acc⟩
as follows. Notice that each automaton Gi has Ei as input alphabet.

142 6. Generalized Agent Protocols for LTL

• Actka = (Acta)k is the set of k-vectors of actions;
• W = Ek ×Lk ×G1 × . . . ×Gk × ℘(≡);
• w0 = ⟨ei0, . . . , ek0, ci0, . . . ck0, gi0, . . . , gk0,≡0⟩ where

i ≡0 j iff obs(perci(ei0)) = obs(percj(ej0));

• ⟨e⃗′, c⃗′, g⃗′,≡′⟩ ∈ ρ(⟨e⃗, c⃗, g⃗,≡⟩, α⃗) iff

– if i ≡ j then αi = αj ;
– e′i = δi(ei, αi);
– c′i = δa(li, αi) ∧ αi ∈ poss(li)

with li = ⟨ci,obs(perci(ei))⟩;
– g′i = γi(gi, ei);
– i ≡′ j iff i ≡ j ∧ obs(perci(e′i)) = obs(percj(e′j)).

• W acc = {
Ek ×Confk ×Gacc1 ×G2 × . . . ×Gk× ≡ , . . . ,
Ek ×Confk ×G1 × . . . ×Gk−1 ×Gacck × ≡}

The resulting automaton is similar to the previous one, and the same synthesis
procedures apply, including the embedding of the strategy into an agent proto-
col. We also get the analogous soundness and completeness result and complexity
characterization as before.

Example 23. Consider again Example 21 but now we require, instead of having
a single goal φG, three distinct goals over the three environments. In particular
for the car-train environments Env1 and Env2, we adopt the same kind of goal as
before, but avoiding certain cells for environments, e.g., φG1 = (23e11)∧ (23e24)∧
2¬(⟨c13, c13⟩∨ ⟨c23, c23⟩)∧2¬⟨e22, et⟩ and φG2 = (23e21)∧(23e24)∧2¬(⟨c23, c23⟩∨
. . .∨ ⟨c14, c14⟩)∧2¬⟨e11, e14⟩, whereas in the Wumpus world we only require to reach
the gold after visiting initial position: φG3 = 2(e11 → 3e34) ∧ 2¬(c23 ∨ c31). It
can be shown that a (perfect-recall) strategy for achieving such goals exists. In
fact, there exists at least one strategy (e.g., one extending the prefix depicted in
Figure 6.8 avoiding in Env1 and Env2 states mentioned above) that satisfies goal
φG over all environments as well as these three new goals (in particular, if a strategy
satisfies φG then it satisfies φG3 too). Such a strategy can be transformed into an
agent protocol, by enlarging the configuration space of the agent, as discussed in the
previous section. ◻

6.3.8 Representing strategies

The technique described in the previous section provides, if a solution does exist,
the run of AP satisfying the given ltl specification. As discussed above such a run
can be represented finitely. In this section, we exploit this possibility to generate a
finite representation of the run that can be used directly as the strategy σ for the
agent Ag. The strategy σ can be represented as a finite-state structure with nodes

6.3 Embedding strategies into Agent protocols 143

labeled with agent’s configuration and edges labeled with a condition-action rule
[o]α, where o ∈ Obs and α ∈ Acta. The intended semantics is that a transition can
be chosen to be carried on for environment Envi only if the current observation of
its internal state ei is o, i.e. o = obs(perci(ei)). Hence, notice that a strategy σ can
be expressed by means of sequences, case-conditions and infinite iterations.

goE
goE
goE

wait
goE
wait

goE
goE
goE

goE
goW
goE

goS
goW
goS

he11, e13ihe21, e22i
e11

he12, e23ihe22, e12i
e12

he12, e13ihe23, e13i
e12

he13, e23ihe24, e14i
e13

he14, e13ihe23, e13i
e14

1⌘2
1⌘3
2⌘3 1⌘3 1⌘3 1⌘3 1⌘3

he24, e23ihe22, e12i
e24

{}

Figure 6.7. Accepting run r for Example 21.

[posA]goE
[danger]goE

[nil]wait

[danger]goE

[nil]goE

[nil]goE

[nil]goW

[nil]goW

[nil]goS

Figure 6.8. Corresponding Gr

In other words, it can be represented as a graph Gr = ⟨N,E⟩ where N is a set of
nodes, λ ∶ N → Conf its labeling, and E ⊆ N ×Φ ×N is the transition relation. Gr
can be obtained by unpacking the run found as witness, exploiting the equivalence
relation ≡. More in details, let r = w0a⃗1w1 . . . a⃗nwna⃗n+1wm with m ≤ n be a finite
representation of the infinite run returned as witness. Let r` be the `-th state in r,
whereas we denote with r∣` the sub-run of r starting from state r`. A projection of
r over a set X ⊆ {1, . . . , k} is the run r(X) obtained by projecting away from each
wi all vector components and indexes not in X. We mark state wm: loop(w`) = true
if ` =m, false otherwise.

Gr = Unpack(r, nil);

Unpack(r, loopnode):
1: N = E = ∅;
2: be r0 = ⟨e⃗, c⃗, g⃗,≡⟩;
3: if loop(r0) ∧ loopnode ≠ nil then
4: return ⟨{loopnode},E⟩;
5: end if
6: be a⃗1 = ⟨α1, . . . , αk⟩;
7: Let X = {X1, . . . ,Xb} be the partition induced by ≡;
8: node = new node;
9: if loop(r0) then

10: loopnode = node;

144 6. Generalized Agent Protocols for LTL

11: end if
12: for (j = 1; j ≤ b; j++) do
13: G′ = Unpack(r(Xj)∣1, loopnode);
14: choose i in Xj ;
15: λ(node) = ci;
16: E = E′ ∪ ⟨node, [obs(perci(ei))]αi, root(G′)⟩;
17: N = N ∪N ′;
18: end for
19: return ⟨N ∪ {node},E⟩;

The algorithm above, presented in pseudocode, recursively processes run r until it
completes the loop on wm, then it returns. For each state, it computes the partition
induced by relation ≡ and, for each element in it, generates an edge in Gr labeled
with the corresponding action α taken from the current action vector.
From Gr we can derive finite state strategy σf = ⟨N,succ, act, n0⟩. where:

• succ ∶ N ×Obs ×Acta → N such that succ(n, o, a) = n′ iff ⟨n, [o]α,n′⟩ ∈ E;

• act ∶ N × Conf × Obs → Acta such that α = act(n, c, o) iff ⟨n, [o]α,n′⟩ ∈
E for some n′ ∈ N and c = λ(n);

• n0 = root(Gr), i.e., the initial node of Gr.

From σf we can derive an actual perfect-recall strategy σ ∶ Obs∗ → Acta as follows.
We extend the deterministic function succ to observation histories h ∈ Obs∗ of length
` in the obvious manner. Then we define σ as the function: σ(h) = act(n, c, last(h)),
where n = succ(root(Gr), hn−1), h`−1 is the prefix of h of length `-1 and c = λ(n) is
the current configuration. Notice that such strategy is a partial function, dependent
on the environment set E : it is only defined for observation histories embodied by
the run r.
It can be show that the procedure above, based on the algorithm Unpack, is correct,
in the sense that the executions of the strategy it produces are the same as those
of the strategy generated by the automaton constructed for Theorem 39.

Example 24. Let us consider again the three environments, the agent and goal as
in Example 21. Several strategies do exist. In particular, an accepting run r for AP
is depicted in Figure 6.7, from which a strategy σ can be unpacked. Strategy σ can
be equivalently represented as in Figure 6.8 as a function from observation histo-
ries to actions. For instance, σ(c0,{posA,nil,danger,nil}) = goE. In particular,
being all environments indistinguishable in the initial state (the agent receives the
same observation posA), this strategy prescribes action goE for the three of them.
Resulting states are such that both Env1 and Env3 provide perception nil, whereas
Env2 provides perception danger. Having received different observation histories
so far, strategy σ is allowed to select different action for Env2: goE for Env2 and
wait for Env1 and Env3. In fact, according to protocol poss, action wait is not an
option for Env2, whereas action goE is not significant for Env3, though it avoids an
accident in Env1. In this example, by executing the strategy, the agent eventually

6.3 Embedding strategies into Agent protocols 145

receives different observation histories from each environment, but this does not nec-
essary hold in general: different environments could also remain indistinguishable
forever. ◻

There is still no link between synthesized strategies and agents. The main idea is
that a strategy can be easily seen as a sort of an agents’ protocol refinement where
the states used by the agents are extended to store the (part of the) relevant history.
This is done in the next section.

6.3.9 A notable variant

We have seen how it is possible to synthesize perfect-recall strategies that are func-
tion of the observation history the agent received from the environment. Computing
such strategies in general results into a function that requires an unbounded amount
of memory. Nonetheless, the technique used to solve the problem shows that (i)
if a strategy does exist, there exists a bound on the information actually required
to compute and execute it and (ii) such strategies are finite-state. More precisely,
from the run satisfying the ltl specification, it is possible to build the finite-state
strategy σf = ⟨N,succ, act, n0⟩. We now incorporate such a finite-state strategy into
the agent protocol, by suitably expanding the configuration space of the agent to
store in the configuration information needed to execute the finite state strategy.
This amounts to define a new configuration space Conf = Conf ×N (hence a new
local state space L).
Formally, given the original agent Ag = ⟨Conf,Acta,Obs,L,poss, δa, c0⟩ and the fi-
nite state strategy σf = ⟨N,succ, act, n0⟩ , we construct a new agentAg = ⟨Conf,Acta,Obs,L,poss, δa, c0⟩
where :

• Acta and Obs are as in Ag;

• Conf = Conf ×N is the new set of configurations;

• L = Conf ×Obs is the new local state space;

• poss ∶ L→ Acta is an action-deterministic protocol defined as:

poss(⟨c, n⟩, o) =
⎧⎪⎪⎨⎪⎪⎩

{α}, iff act(n, c, o) = α
∅, if act(n, c, o) is undefined;

• δa ∶ L ×Acta → Conf is the transition function, defined as:

δa(⟨⟨c, n⟩, o⟩, a) = ⟨δa(c, o), succ(n, o, a)⟩;

• c0 = ⟨c0, n0⟩.

On this new agent the original strategy can be phrased as a state-base strategy:

σ ∶ Conf ×Obs→ Acta

simply defined as: σ(⟨c, n⟩, o) = poss(⟨c, n⟩, o).

146 6. Generalized Agent Protocols for LTL

It remains to understand in what sense we can think the agent Ag as a refinement
or customization of the agent Ag. To do so we need to show that the executions
allowed by the new protocol are also allowed by the original protocol, in spite of the
fact that the configuration spaces of the two agents are different. We show this by
relaying on the theoretical notion of simulation, which formally captures the ability
of one agent (Ag) to simulate, i.e., copy move by move, another agent (Ag).
Given the two agents Ag1 and Ag2, a simulation relation is a relation S ⊆ L1 × L2
such that ⟨l1, l2⟩ ∈ S implies that:

if l2
αÐ→ l′2 and α ∈ poss2(l2) then there exists l′1 such that l1

αÐ→ l′1 and
α ∈ poss1(l1) and ⟨l′1, l′2⟩ ∈ S.

where li
αÐ→ l′i iff c′i is the agent configuration in l′i and c′i = δa(li, α). We say

that agent Ag1 simulates agent Ag2 iff there exists a simulation relation S such
that ⟨l01, l20⟩ ∈ S for each couple of initial local states ⟨l01, l02⟩ with the same initial
observation.

Theorem 41. Agent Ag simulates Ag.

Proof. First, we notice that poss(⟨c, n⟩, o) ⊆ poss(⟨c, o⟩) for any c ∈ Conf, o ∈ Obs.
In fact, since we are only considering allowed strategies, the resulting protocol poss
is compatible with agent Ag. The result follows from the fact that original config-
urations are kept as fragment of both L and L. Second, being both the agent and
environments deterministic, the result of applying the same action α from states
⟨⟨c, n⟩, o⟩ ∈ L and ⟨c, o⟩ ∈ L are states ⟨⟨c′, n′⟩, o′⟩ and ⟨c′, o′⟩, respectively.
Finally, assume towards contradiction that Ag is not simulated by Ag. This implies
that there exists a sequence of length n ≥ 0 of local states l0

α1Ð→ l1
α2Ð→ . . .

αkÐ→ lk of
Ag, where l0 is some initial local state, and a corresponding sequence l0

α1Ð→ l1
α2Ð→

. . .
αkÐ→ lk of Ag, starting from a local state l0 sharing the same observation of l0,

such that α ∈ poss(lk) but α /∈ poss(lk) for some α. For what observed before, lk
and lk share the same agent’s configuration; in particular, they are of the form
lk = ⟨⟨ck, nk⟩, ok⟩ and lk = ⟨ck, ok⟩. Hence poss(⟨⟨ck, nk⟩, ok⟩) ⊆ poss(⟨ck, ok⟩) and we
get a contradiction. ∎

Theorem 42. Ag is nonblocking.

It follows from the fact that a strategy σ that is a solution for problem P is a
prefix-closed function and it is allowed by Ag. Hence, for any l ∈ L reachable from
any initial local state by applying σ, we have poss(l) ≠ ∅.
From Theorem 1 and results in previous sections we have:

Theorem 43. Any execution of agent Ag over each environment Envi satisfies the
original agent specification Ag and the goal specification.

6.4 Discussion
We have investigated the synthesis of an agent’s protocol to satisfy ltl specifications
while dealing with multiple, partially-observable environments. In addition to the

6.4 Discussion 147

computationally optimal procedure here introduced, we explored an automata-based
protocol refinement for a perfect-recall strategy that requires only finite states.
There are several lines we wish to pursue in the future. Firstly, we would like
to implement the procedure here described and benchmark the results obtained
in explicit and symbolic settings against planning problems from the literature.
We note that current model checkers such as MCMAS (Lomuscio et al., 2009)
and MCK (Gammie and van der Meyden, 2004) support interpreted systems, the
semantics here employed.
It is also of interest to explore whether the procedures here discussed can be adapted
to other agent-inspired logics, such as epistemic logic (Ronald Fagin and Vardi,
1995). Epistemic planning (van der Hoek and Wooldridge, 2002), i.e., planning for
epistemic goals, has been previously discussed in the agents-literature before, but
synthesis methodologies have not, to our knowledge, been used in this context.
When dealing with ltl goals we need to consider that the agent cannot really mon-
itor the achievement of the specification. Indeed every linear temporal specification
can be split into a “liveness” part which can be checked only considering the entire
run and a “safety” part that can be checked on finite prefixes of such runs (Baier
and Katoen, 2008). Obviously the agent can look only at the finite history of ob-
servations it got so far, so being aware of achievement of LTL properties is quite
problematic in general. This issue is related to runtime verification and monitoring
(Eisner et al., 2003; Bauer et al., 2011), and in the context of AI, it makes par-
ticularly attractive to include in the specification of the dynamic property aspects
related to the knowledge that the agent acquires, as allowed by interpreted systems.

149

Chapter 7

Synthesis via Model Checking
for BDI agents

The formal verification of agent-oriented programs requires logic frameworks capa-
ble of representing and reasoning about agents’ abilities and capabilities, and the
goals they can feasibly achieve. In particular, we are interested here in programs
written in the the family of Belief-Desire-Intention (BDI) agent programming sys-
tems (Bratman et al., 1988; Rao and Georgeff, 1992; Bordini et al., 2006), a popular
paradigm for building multi-agent systems.
This is often related to the philosophical notion “intentional stance”: it is a term
coined by philosopher Daniel Dennett for the level of abstraction in which we view
the behavior of a thing in terms of mental properties. It is part of a theory of mental
content proposed by Dennett, which provides the underpinnings of his later works
on free will, consciousness, folk psychology, and evolution:

“First you decide to treat the object whose behavior is to be predicted
as a rational agent; then you figure out what beliefs that agent ought to
have, given its place in the world and its purpose. Then you figure out
what desires it ought to have, on the same considerations, and finally
you predict that this rational agent will act to further its goals in the
light of its beliefs.”

Traditional BDI logics based on CTL (e.g., (Rao and Georgeff, 1991)) are generally
too weak for representing ability. They primarily allow to define constraints on
rational behaviour, whereas they do not encode capabilities of agents and thereby
leave a sizable gap between agent-oriented programs and their formal verification.
Recent work (e.g., (Alechina et al., 2007; 2008; Dastani and Jamroga, 2010)) has
better bridged the gap between formal logic and practical programming by pro-
viding an axiomatisation of a class of models that is designed to closely model a
programming framework (in the cited case, Simple-APL). However, this is done by
restricting the logic’s models to those that satisfy transition relations correspond-
ing to the agents’ plans, as defined by the semantics of the programming language
itself. In such a framework, it is not possible to reason about the agent’s know-how
capabilities and what the agent could achieve if she had specific capabilities and/or
goals.

150 7. Synthesis via Model Checking for BDI agents

Our aim is to define a framework that will allow us to speculate about a group of
agents’ capabilities, i.e. to reason about what they can achieve under the BDI agent
paradigm. Observe how these capabilities can be see as external, shared components
that to which agents have access. Indeed, this approach allows us to abstract plans
written by different programmers to be combined and used in real-time, under the
principles of practical reasoning (Bratman et al., 1988).
Considering then a set of BDI agents, each with a certain specified set of capabilities
and goals, we want to verify whether they can achieve (have a collective strategy
for) a given goal and, possibly, synthesize it. In particular, we want to reason
about what could that coalition achieve (regardless of what other agents outside
the coalition may do). The prototypical strategic logic for reasoning about such
coalitions’ capability is ATL (see, e.g., Chapters 3). Still, since we are considering
BDI agents, also desires and capabilities have to be taken into account.
This requires the ability to be able to express capabilities directly in our logic.
As pointed out by (Walther et al., 2007), standard ATL does not allow agents’
strategies to be explicitly represented in the syntax of the logic.
In (Walther et al., 2007) authors introduce ATLES, i.e., an extension to ATL with
Explicit Strategies. ATLES extends ATL by allowing strategy terms in the language:
⟨⟨A⟩⟩ρϕ holds if coalition A has a joint strategy for ensuring ϕ assuming that some
agents are committed to specific strategies as specified by commitment function ρ.
In (Yadav and Sardiña, 2012) authors go further and develop a framework—called
BDI-ATLES—so that the strategy terms are tied directly to the plans available to
agents under the notion of practical reasoning embodied by BDI paradigm (Bratman
et al., 1988; Rao and Georgeff, 1992):

the only strategies that can be employed by a BDI agent are those that
ensue by the rational execution of its predefined plans, given its goals
and beliefs

The key construct ⟨⟨A⟩⟩ω,%ϕ in the new framework states that coalition A has a joint
strategy for ensuring ϕ, under the assumptions that some agents in the system are
BDI-style agents with capabilities and (initial) goals as specified by assignments ω
and %, respectively. For instance, in the Gold Mining domain from the International
Multi-Agent Contest, one may want to verify if two miner agents programmed
in a BDI-style language can successfully collect gold pieces when equipped with
capabilities (i.e., plans) for navigation and communication and want to win the
game, while the opponent agents can perform any physically legal action. More
interesting, a formula like ⟨⟨A⟩⟩∅,∅ϕ ⊃ ⟨⟨A⟩⟩ω,%ϕ can be used to check whether a
coalition A has enough know-how (and motivations) to carry out a task ϕ that is
indeed (physically) feasible for the coalition.

In the reminder of this chapter, we first briefly introduce the BDI programming
paradigm, then extend the BDI-ATLES logic (Yadav and Sardiña, 2012) to a more
general setting, then present a technique for verifying and synthesizing rational
strategies for BDI agents.

151

7.0.1 BDI Programming

The BDI agent-oriented programming paradigm is a popular and successful ap-
proach for building agent systems, with roots in philosophical work on rational
action (Bratman et al., 1988). There are a number of programming languages
and platforms in the BDI tradition, such as AgentSpeak/Jason, PRS, Jack,
JADEX, and 3APL/2APL (Bordini et al., 2006).
In particular, we envision BDI agents defined with a set of goals and so-called
capabilities (Busetta et al., 1999; Padgham and Lambrix, 2005). Generally speaking,
a capability is a set/module of procedural knowledge (i.e., plans) for some functional
requirement. An agent may have, for instance, the Nav capability encoding all plans
for navigating an environment. Equipped with a set of capabilities, a BDI agent
executes actions as per plans available so as to achieve her goals, e.g., exploring the
environment.
Indeed, an agent in a BDI system continually tries to achieve its goals/desires by
selecting an adequate plan from the plan library given its current beliefs, and plac-
ing it into the intention base for execution. The agent’s plan library Π encodes
the standard operational knowledge of the domain by means of a set of plan-rules
(or “recipes”) of the form φ[β⃗]ψ: plan β⃗ is a reasonable plan for achieving ψ when
(context) condition φ is believed true. Though different BDI languages offer differ-
ent constructs for crafting plans, most allow for sequences of domain actions that
are meant to be directly executed in the world (e.g., lifting an aircraft’s flaps), and
the posting of (intermediate) sub-goals !ϕ (e.g., obtain landing permission) to be
resolved. The intention base, in turn, contains the current, partially executed, plans
that the agent has already committed to for achieving certain goals. Current inten-
tions being executed provide a screen of admissibility for attention focus (Bratman
et al., 1988).
Important, also, is the usual plan/goal failure mechanism typical of BDI architec-
tures, in which alternative plans for a goal are tried upon failure of the current plan.
Plan failure could happen due to an action precondition not holding or the non-
availability of plans for a sub-goal. If alternative plans for a goal are not available,
then failure is propagated towards higher-level goals/ and plans.
Though we do not present it here for lack of space, most BDI-style programming lan-
guages come with a clear single-step semantics basically realizing (Rao and Georgeff,
1992)’s execution model in which (rational) behavior arises due to the execution of
plans from the agent’s plan library so as to achieve certain goals relative to the
agent’s beliefs.

7.0.2 ATL and ATLES Logics of Coalitions

Alternating-time Temporal Logic (ATL) (Alur et al., 2002) is a logic for reasoning
about the ability of agent coalitions in multi-agent game structures. This logic was
already introduced in Section 2.4, so refer to that section for a detailed introduction.
The main point of ATL, in essence, is constituted by the coalition modalities. Recall
that, given a path formula φ and an ATL transition system M = ⟨A,Q,P,V, δ⟩
(ATS) (refer to Section 2.4), we say that

M, q ⊧ ⟨⟨A⟩⟩φ iff there is a collective strategy FA such that for all computations

152 7. Synthesis via Model Checking for BDI agents

λ ∈ out(q,FA), we haveM, λ ⊧ φ.

The coalition modality only allows for implicit (existential) quantification over
strategies. In some contexts, though, it is convenient and even necessary to re-
fer to strategies explicitly in the language (e.g., can a player win the game if the
opponent plays a specified strategy?). To address this limitation, (Walther et al.,
2007) proposed ATLES, an extension of ATL where the coalition modality is ex-
tended with ⟨⟨A⟩⟩ρ, where ρ is a commitment function, that is, a partial function
mapping each agent a ∈ A to a member of a set of so-called strategy terms Υa.
Hence, considering the set of all strategy terms Υ = (⋃a∈AΥa), a commitment is a
function ρ ∶ A → Υ. The idea is that each agent a ∈ A, for which ρ(a) is defined,
commits to the specific strategy ρ(a). As for standard ATL, a strategy is a function
of the form f ∶ Q+ → 2Q (or, equivalently, f ∶ Q+ → Act for concurrent game struc-
tures). To give meaning to the extended coalition modality, the semantics of ATL
is extended with a mapping ∥ ⋅ ∥ ∶ Υ → (Q+ → 2Q) from strategy terms to actual
ATL strategies. Hence a collective strategy fA for A ⊆ A agrees with ρ if fa = ρ(a)
for each a ∈ A such that ρ(a) is defined.
The set of ATLES formulas is generated by the following grammar, where p ∈ P
and A ranges over coalitions (Walther et al., 2007):

ϕ ∶= p ∣ ¬ϕ ∣ ϕ ∨ ϕ ∣ ⟨⟨A⟩⟩ρ◯ϕ ∣ ⟨⟨A⟩⟩ρ2ϕ ∣ ⟨⟨A⟩⟩ρ ϕ Uϕ.

Hence we say that:

M, q ⊧ ⟨⟨A⟩⟩ρϕ iff there is a collective strategy FA, agreeing with ρ, such that for
all computations λ ∈ out(q,FA), we haveM, λ ⊧ ϕ.

7.0.3 BDI-ATLES: a logic for BDI Agents

In this section, we introduce the BDI-ATLES logic which was first presented in (Ya-
dav and Sardiña, 2012). It pushes forward the aim of ATLES of making strategies
explicit in the language, assuming that the agent system is built adopting the BDI
agent-oriented paradigm. The main intent is to bridge the gap between verification
frameworks and BDI agent-oriented programming languages, so that BDI program-
mers can encode ATL models for a given BDI application in a principled manner
and reason about what agents can achieve at the level of goals and capabilities.
Also, as ATLES, this logic has the ability to reason both about what is feasible and
what is possible relative to agents’ plan libraries. Indeed, recall that ATLES uses
strategies to denote the agent’s choices among possible actions. For BDI agents
these strategies are implicit in her know-how from the plan library.
Given BDI plan of the form φ[α⃗]ψ, we use αi to denote the i-th step of α and ∣α∣
the length of α. In (Yadav and Sardiña, 2012) authors introduce a technique for
synthesizing rational strategies for agents; however, they restrict to the case in which
BDI plans α are composed of primitive actions only, and do not consider subgoals.
In this chapter instead, we generalize the approach of (Yadav and Sardiña, 2012)
to the case of action sequences.

153

BDI-ATL syntax

The language of BDI-ATLES is defined over a finite set of atomic propositions P ,
a finite set of agents A, and a finite set of capability terms C available in the BDI
application of concern.

Plan libraries We denote with ΠΠΠP
Act the (infinite) set of all possible plan-rules

given a set of actions Act and a set of domain propositions P . A plan library Π is
one of its finite subsets.

Capability terms Consider now a set C of capability terms. Intuitively, each
capability term c ∈ C (e.g., Nav) stands for a plan library Πc ⊂ ΠΠΠP

Act (e.g., ΠNav).
This mapping will be formalized later.

Capability assignments A capability assignment ω consists of a set of pairs of
agents with their capabilities of the form ⟨agt ∶ {c1, . . . , c`}⟩, where agt ∈ A and
ci ∈ C.

Goal assignments A goal assignment %, in turn, defines the goal base (i.e., set
of propositional formulas) for some agents, and is a set of tuples of the form ⟨agt ∶
{γ1, . . . , γ`}⟩, where agt ∈ A and γi are boolean formulas over P .

Given a capability assignment ω (resp., goal assignment %), we denoteAω ⊆ A (resp.,
A% ⊆ A) the set of agents for which their capabilities (resp., goal bases) are defined
by assignment ω (resp., %), that is, Aω = {agt ∣ ⟨agt ∶ {c1, . . . , cn}⟩ ∈ ω} (resp.,
A% = {agt ∣ ⟨agt ∶ {γ1, . . . , γn}⟩ ∈ %}). As espected, we require that ω and % are such
that Aω = A% and, Informally, we will ofter refer to such agents as “BDI agents”, in
contrast with standard agents that are not specified in the BDI paradigm.

Formulae The set of BDI-ATLES formulas follow the same grammar as in ATL(ES),
except that coalition formulas are now of the form ⟨⟨A⟩⟩ω,%ϕ, where ϕ is a path
formula (i.e., it is preceded by ◯, 2, or U), A is a coalition and ω and % are,
respectively, a capability and a goal assignment. Its intended meaning is as follows:

⟨⟨A⟩⟩ω,%ϕ expresses that coalition of agents A can jointly force tempo-
ral condition ϕ to hold when (rational) BDI agents in Aω (or A%) are
equipped with the capabilities as per assignment ω and their (initial)
goals are as described by the goal assignment %.

Notice that we require, in each coalition (sub)formula, that the agents for which
capabilities and goals are assigned to be the same.

BDI-ATL semantics

Next, we provide the semantics of the logic as in (Yadav and Sardiña, 2012). For
clarity, as customary, we will use actions in Act instead of move indexes: wlog
we can associate some enumeration of its elements, hence given a game structure

154 7. Synthesis via Model Checking for BDI agents

M = ⟨A,Q,P,V, d, δ,Θ⟩, we will assume d(q) ⊆ Act for each q ∈ Q. Accordingly, we
will consider strategy functions of the form f ∶ Q+ → Act.
Given as input a set of capability terms C and a plan library Π ⊂ ΠΠΠP

Act, a game
structure for BDI-ATLES is a concurrent game structure M = ⟨A,Q,P,V, d, δ,Θ⟩
where:

• A, Q, P , d, V and δ are, respectively, the standard sets of agents, states,
propositions, labeling function, available moves and transition function as in
ATL.

• There is a distinguished dummy action noOp ∈ Act available to all agents in all
states (i.e., noOp ∈ dagt(q), for all agt ∈ A and q ∈ Q), and such that the system
remains still when all agents perform such action (i.e., δ(q, ⟨noOp, . . . ,noOp⟩) =
q, for all q ∈ Q);

• The capability function Θ ∶ C ↦ ΠΠΠP
Act maps capability terms to their set of

plans.

Thus, BDI-ATLES models are similar to those of ATLES, except that capability
interpretations are used instead of strategy term interpretations. Generally speak-
ing, our task then will be to characterize what the (low-level) strategies for rational
agents with certain capabilities and goals are. We call such strategies rational
strategies, in that they are compatible with the standard BDI rational execution
model (Rao and Georgeff, 1992). So, given an agent agt ∈ A, a plan-library Π, and
a goal base G, let Σagt

Π,G be the set of standard ATL strategies for agent agt in M
that are rational strategies when the agent is equipped with plan-library Π and has
G as initial goals. What exactly this set should be is, of course, far from trivial
and it is addressed at the end of this section. Assuming then that such set has
been suitably defined, we shall develop next the semantics for formulas of the form
⟨⟨A⟩⟩ω,%ϕ.
So, first we extend—following ATLES—the notion of a joint strategy for a coalition
to that of joint strategy under a given capability and goal assignments. Given a
capability (goal) assignment ω (%) and an agent agt ∈ Aω (agt ∈ A%), we denote
agt’s capabilities (goals) under ω (%) by ω[agt] (%[agt]).

BDI-ATLES strategies Intuitively, an ⟨ω, %⟩-strategy for A is a joint strategy
for coalition A such that agents in A∩Aω only follow “rational” (plan-goal compat-
ible) strategies as per their ω-capabilities and %-goals, and agents in A/Aω follow
arbitrary strategies. Formally, an ⟨ω, %⟩-strategy for coalition A (with Aω = A%) is
a collective strategy FA for agents A such that for all fagt ∈ FA with agt ∈ A ∩Aω,
it is the case that fagt ∈ Σagt

Π,G , where Π = ∪c∈ω[agt]Θ(c) and G = %[agt]. Note no
requirements are asked on the strategies for the remaining agents A/Aω, besides of
course being legal (ATL) strategies.

Using the notion of ⟨ω, %⟩-strategies and that of possible outcomes for a given col-
lective strategy from ATL (refer to function out(⋅, ⋅) from the second section), we are
now able to state the meaning of formulas in BDI-ATLES, in particular of coalition
formulas, e.g.:

155

M, q ⊧ ⟨⟨A⟩⟩ω,%ϕ iff there is a ⟨ω, %⟩-strategy FA for A such that for all
⟨ω, %⟩-strategies FAω∖A for Aω ∖A, it is the case thatM, λ ⊧ ϕ, for all paths

λ ∈ out(q,FA ∪ FAω∖A).

where ϕ ought to be a path formula. Intuitively, FA stands for the collective strategy
of agents A that guarantees the satisfaction of formula ϕ. Because FA is a ⟨ω, %⟩-
strategy, some agents in A, namely, those whose capabilities and goals are defined by
ω and %, respectively, are to follow strategies that correspond to a rational execution
of its capabilities. At the same time, because other agents outside the coalition A
could have also been assigned capabilities and goals, the chosen collective strategy
FA needs to work no matter how those agents (namely, agents Aω ∖A) behave, as
long as they do it rationally given their plans and goals. That is, FA has to work
with any rational collective strategy FAω∖A. Finally, the behavior of all remaining
agents—namely those in in A∖ (A∪Aω)—are taken into account when considering
all possible outcomes, after all strategies for agents in A ∪Aω have been settled.
While similar to ATLES coalition formulas ⟨⟨A⟩⟩ρϕ, BDI-ATLES coalition formulas
⟨⟨A⟩⟩ω,%ϕ differ in one important aspect that makes its semantics more involved.
Specifically, whereas commitment functions ρ prescribe deterministic behaviors for
agents, capabilities and goals assignments yield multiple potential behaviors for the
agents of interest. This nondeterministic behavior steams from the fact that BDI
agents can choose what goals to work on at each point and what available plans to
use for achieving such goals. Technically, this is reflected in that the strategies for
each agent in (Aω ∖A)—that is, those agents with assigned capabilities and goals
but are not part of the coalition—cannot be (existentially) considered together
with those of agents in A or (universally) accounted for via the possible outcomes
function out(⋅, ⋅), as such function puts no rationality constraints on the remaining
(non-committed) agents. Thus, whereas agents in A ∩Aω are allowed to select one
possible rational behavior, all rational behaviors for agents in (Aω ∖A) need to be
taken into considered.
This basically concludes the semantics of BDI-ATLES, though predicated in the set
Σagt

Π,G of rational strategies. Let us next formally characterize such important set.

BDI-ATLES Rational Strategies Σagt
Π,G. Σagt

Π,G is defined as the set of rational
strategies for an agent agt when equipped with plan-library Π and has G as initial
goals.
The formal definition is detailed in Appendix A, which is the authors’ extension to
sequences of the corresponding definitions in (Yadav and Sardiña, 2012), where only
atomic plans were considered. It defines when, in the context of this logic, a strategy
is rational. The tractation is quite technical and not essential for understanding
the approach here proposed. Informally, the first step is to define rational traces,
i.e., sequences of states and action of a concurrent game structure that “agree”
with the goal and capacity assignments ρ,ω specified for the subset of BDI agents
Aω = Aρ. Informally, a trace λ+ = q0α1q1⋯α`q` is rational when every agent in Aω
acts rationally, i.e., according to such assignments. This implies that every action
αi at location i can be “explained” by an plan-rule φ[α⃗]ψ. Moreover, such plan
rule has to meet the two core notions in BDI programming; intuitively:

156 7. Synthesis via Model Checking for BDI agents

• it is relevant at every location λ+[i], i.e., the agent currently has a goal γ such
that ψ ⊧ γ.

• it is applicable at every location λ+[i], that it, V(λ+[i]) ⊧ φ.

Hence an ⟨ω, %⟩-strategy is a rational strategy in Σagt
Π,G (when the agent is equipped

with plan-library Π and has G as initial goals) iff it induces only rational traces.
For more details, refer to Appendix A.

7.1 Model Checking BDI-ATLES

In this section we present a sound and complete technique for synthesizing rational
strategies for achieving a BDI-ATLES coalition formula ⟨⟨A⟩⟩ω,% ϕ, where ϕ is a
path formula. This approach can be summarized in two steps: first, build a rational
extended model Mω,ρ corresponding to M, then perform standard ATL model-
checking.

7.1.1 Extended Model Mω,ρ

States of such an extended model hold information about the original state, current
execution of plans (program counter), and the current goal set. Given a plan library
Π where m is the number of plans and ` is the maximum plan length, we denote
with PlanPos the set of all possible couples in {0, . . . ,m} × {1, . . . , `}. Assuming a
total order among plans, a couple ⟨π, p⟩ ∈ PlanPos means that plan π = φ[α⃗]ψ ∈ Π
is at step p, i.e., action αi have been executed for each i ≤ p ≤ ∣α⃗∣. We will make
use of these program counters to store possible “explanations” for the execution of
actions. Intuitively, given a physical state of M and an action vector, we want
to scan the plan library Π in order to find all applicable, relevant plans for each
agent, so as to “explain” the execution of those actions. The successor state will
be marked with such explanations. Iterating this procedure, we will check whether
such explanations are still plausible for the next action or have to be dropped. If all
explanations are dropped and new ones can’t be found (an empty program counter
for some agent), then we can conclude that the agent did not act rationally. The
key point of this approach is that we don’t need to store more information than the
current program counter for every agent, i.e., the rationality check can be performed
step-by-step. Notably, we are not committed to all explanations as long as we can
find at least one for the last action.
To this end, we define an extended state space: W = Q × PC ∣Aω ∣ × (2Γ)∣Aω ∣ where
Q is original game state-space, Γ is the goal base, and PC = 2PlanPos. Finally,
givenM = ⟨A,Q,P,V, d, δ,Θ⟩, we define the corresponding rational modelMω,ρ as
follows. We will also make use, with respect to such a model, of the notions of path,
trace and strategy as forM.
Mω,ρ = ⟨A,W,P,V, d′, succ,Θ⟩ where:

• A,P,Act,V, d′ are as inM;
• W is the extended state space as above;
• succ ∶W ×Actn →W is the transition function, defined below.

7.1 Model Checking BDI-ATLES 157

For readability, given an extended state w = ⟨q, pc1, . . . , pc∣Aω ∣,Γ1, . . . ,Γ∣Aω ∣⟩, we
define the following range restricted functions:

• state(w) = q,

• pcagt(w) = pcagt,

• plansagt(w) = {π ∣ ⟨π, p⟩ ∈ pcagt for some p}

• stepπ,agt(w) = {p ∣ ⟨π, p⟩ ∈ pcagt}

• goalsagt(w) = Γagt

Hence a plan π = φ[β⃗]ψ is relevant in w for agt iff it satisfies the conditions:

1. ∃γ ∈ goalsagt(w) s.t. γ ⊧ ψ — an active goal justifies π;

2. V(state(w)) /⊧ ψ — the effects of π are not yet true.

Observe that the second condition extends the original definition of relevant plan
by requiring the so-called “belief-goal consistency”: we require no agent ever wants
something already true.
Finally, we can formalize the transition function. Observe that this definition implies
that we can always compute successor states “locally”, i.e., we don’t need to look
at any other state inMω,ρ. Hence, w′ = succ(w, α⃗) is the (unique) state satisfying
the following conditions:

1. αagt ∈ d(state(w)) for any agt ∈ A, i.e., the action vector α⃗ is legal: each αagt
is a feasible move for agt in state state(w) according toM. If the agent does
not have any active goal, then noOp is the only allowed action:

∀agt ∈ Aω (goalsagt(w) = ∅→ αagt = noOp)

2. state(w′) = δ(state(w), α⃗), i.e., the update of the state original component
conforms toM;

3. goalsagt(w′) = goalsagt(w)/{γ ∣ V(state(w′)) ⊧ γ} for each agt ∈ Aω: we update
the goal set of each agent agt by removing achieved goals;

4. For each BDI agent having at least a relevant goal and at least an active plan
(explanation for it), then update the plan’s program counter (step) if the plan
is not completed, otherwise find a new plan to explain the current action.
∀agt ∈ Aω s.t. plansagt(w) ≠ ∅ and goalsagt(w) ≠ ∅, then

⟨π, p⟩ ∈ pcagt(w′)

iff (exactly) one of these conditions holds (below π = φ[β⃗]ψ):

(a) π is the same plan as the previous step, it is still relevant and not com-
pleted – the step is progressed:
stepπ,agt(w) = (p−1) ∧ αagt = β⃗p ∧ p ≤ ∣β⃗∣ and π is relevant;

158 7. Synthesis via Model Checking for BDI agents

q0
{}

{γ1, γ2, γ3}

w0

q1 = δ(q0, ⟨z⟩)
{⟨π2,1⟩, ⟨π3,1⟩}

{γ1, γ2, γ3}

w1

q2 = δ(q1, ⟨x⟩)
{⟨π2,2⟩, ⟨π3,2⟩}

{γ1, γ2}

w2

q3 = δ(q2, ⟨y⟩)
{⟨π1,1⟩, ⟨π2,3⟩}

{γ1, γ2}

w3

q4 = δ(q3, ⟨x⟩)
{⟨π1,2⟩}

{γ1}

w4

q3 /⊧ ψ1,2 q4 ⊧ γ2

A = Aω = {agt}
ω[agt] = {c}, Θ(c) = Π

%[agt] = {γ1, γ2}
ψ1,2 ⊧ γ1 ∨ γ2
ψ3 ⊧ γ3

⟨x⟩

⟨x⟩

⟨y⟩

⟨z⟩

Figure 7.1. a computation fragment for a single agent agt equipped with plan library
Π = {π1 ∶ φ1[yxz]ψ1, π2 ∶ φ2[zxyzy]ψ2, π3 ∶ φ3[zx]ψ3}

(b) π is a new plan: some other plan π′ was either completed or not relevant
anymore in w:

i. p = 1 and αagt = β⃗1, i.e., π is started;
ii. π ∈ ⋃c∈ω[agt] Θ(c), i.e. agt can execute π;
iii. π is relevant and applicable in state(w);
iv. ∃π′ = φ′[β⃗]ψ′ ∈ plansagt(w) s.t. either:

- stepπ′,agt(w) = ∣β⃗∣, i.e. π′ was completed, or
- π′ ≠ π and π′ is no more relevant (dropped);

Items 1 − 3 take into account, respectively, action feasibility, physical evolution in
the original model M, and the update of the goal q /⊧ ψ1,2 set. Item 4.a considers
the case of plan progression: since we are not allowing for interleaving of plan
executions, we check whether possible explanations found in w are still plausible
(hence progressing the program counter) or they have to be dropped. 4.b checks
whether some new plan π can be started in w to explain action αagt. Indeed, this is
possible only if some plan π′ was just finished or dropped: we rule out the case of a
new applicable plan, under these conditions, since we do not allow for interleaving.
Notice that in the same state w we can have different couples ⟨π, p1⟩, ⟨π, p2⟩ ∈
pcagt(w), with p1 ≠ p2. This means that we are taking into account more than one
explanation.

7.1 Model Checking BDI-ATLES 159

7.1.2 Model checking BDI-ATLES

Since, as discussed above, checking rationality while looking for the existence of
winning strategies does not require any additional memory (but it can be done in a
step-wise fashion), we can then perform ATL model-checking of Φ = ⟨⟨A⟩⟩ω,% ϕ over
Mω,ρ. Indeed, it is well known that memory plays no role for standard ATL. The
model checking returns the set of states from which there exists a winning strategy
for Φ, denoted with [Φ]Mω,ρ . The algorithm can be easily modified so as to return
the collective strategy found as witnesses, as memory is not required. We denote
with F ratA one such strategy, i.e., F ratA is a set of strategies f ratagt , one for each agent
agt ∈ A. Obviously, [Φ]Mω,ρ ≠ ∅ iff F ratA exists.
Finally, we relate the strategies found forMω,ρ to strategies forM: to each strategy
F ratA corresponds a collective strategy FA = {fagt ∣ agt ∈ A} for M, where each
fagt ∶ Q+ ↦ Act is a prefix-closed function built as follows:

• fagt(q) = f ratagt(w) iff q = state(w) and pcagt(w) = ∅ ∧ goalsagt(w) = Γagt for any
agt ∈ Aω

• fagt(q0, . . . , qk) = f ratagt(w0, . . . ,wk) iff qi = state(wi) and wk = succ(wk−1, α⃗) for
some action vector α⃗ with αagt = fagt(w0, . . . ,wk−1) ∀agt ∈ A, k > 0.

Hence, given [Φ]Mω,ρ ⊆W , we denote with [Φ]M the set of states q ∈ Q for which
there exists a strategy F ratA such that FA is defined, i.e., fagt(q) is defined for each
agt ∈ A.
Finally, we relate each trace λ+2 = GetTrace(λ2, f

rat
agt), for each λ2 ∈ out(w, f ratagt) ∈W ∗

in Mω,ρ, to a trace λ+1 = GetTrace(λ1, fagt), for each λ1 ∈ out(q,FA) ∈ Q∗ in M.
We will denote this mapping λ+2 ↝ λ+1 . Notice that it implies that λ+1 ⟨i⟩ = λ+2 ⟨i⟩ and
λ1[i] = stateagt(λ2[i]) for all 0 ≤ i ≤ ∣λ+2 ∣.

Theorem 44 (Soundness and completeness). f ratagt ∈ F ratA iff the corresponding fagt
as above is such that (i) it is rational and (ii) FA = {fagt ∣ agt ∈ A} satisfies the ATL
formula ϕ inM, i.e.,M, λ ⊧ ϕ for each λ ∈ out(q,FA) and q ∈ [Φ].

Proof. (⇒) Consider soundness. First, we prove that f ratagt is rational wrt Mω,ρ

(agt ∈ Aω). It implies that for every state w ∈ [Φ] we have that every λ+ =
GetTrace(λ, f ratagt), for λ ∈ out(w, f ratagt), is a rational trace. For λ+ to be ratio-
nal, we need to build, for each agt ∈ Aω, a marking function gΓ, under which the
trace can be broken down into ` segments that are all goal-complete for some ac-
tive goal, except the last one that may just be a goal-working segment for a goal.
λ+[s ∶ e] can be divided into segments ⟨s1 ∶ e1⟩⋯⟨s` ∶ e`⟩ such that s1 = s and e` ≤ e,
and for all i ∈ {1, . . . , `}. We show now that is always possible to find such indexes.
Intuitively, we know that λ+ is such that for each state in it we have a non-empty
program counter pcagt(w), i.e., an explanation for reaching that state. Formally,
if goalsagt(λ+[i ≥ 0]) ≠ ∅ then for each w = λ+[i > 0] we have a non-empty pro-
gram counter pcagt(w), i.e., an explanation for reaching that state executing action
λ+⟨i − 1⟩. Indeed, according to the definition of function succ, if goalsagt(λ+[i]) ≠ ∅
then every successor w′ = λ+[i+1] is such that either some relevant plan in pcagt(w′)

160 7. Synthesis via Model Checking for BDI agents

can be progressed (4.b) or started (4.a), otherwise no such transition exists (w′ is
not a successor). Hence, two case are possible for each goal γ ∈ goalsagt(w): ei-
ther (a) it is eventually achieved or (b) it remains active forever. We now procede
separately for each possible goal γ. If (a) is the case, then it means that there
exists a state w′ traversed by λ+ such that γ /∈ goalsagt(w′). Hence, we can divide
the trace segment from w to w′ into a set of couples ⟨s1 ∶ e1⟩⋯⟨s` ∶ e`⟩ such that
λ+[s1] = w, λ+[e`] = w′ and each ⟨si ∶ ei⟩ is such that for all states wj = λ+[j]
with si ≤ j ≤ ei we have π ∈ plansagt(wj) for some plan π, which implies that π
remains applicable and relevant. In other words, ⟨si ∶ ei⟩ ∈ Execagt(π, goalsagt, λ+)
and ⟨s ∶ e⟩ ∈ GCompleteagt(γ,Π, goalsagt, λ+). Indeed, the goal-marking function is
gΓ = goalsagt and the plan we are possibly executing is exactly one of those marking
the trace segment. Imagine by contradiction that λ+[s, e] is not a complete goal-
execution for γ. Then, for some j < e, there is no applicable plan for any goal and
then each π ∈ plansagt(wj) is not in plansagt(wj+1) with wj+1 = succ(w, α⃗) for all α⃗
with αagt = λ+⟨j⟩. Hence the transition does not conform to case (4) as in definition
of succ, and then wj+1 is not a successor of wj in Mω,ρ unless V(state(wj)) ⊧ γ
and hence j = e. This means that λ+[s, e] is a goal-complete execution for γ. As
for case (b), it is easy to follow the same reasoning as for (a) concluding that
⟨s ∶ e⟩ ∈ GWorkagt(γ,Π, goalsagt, λ+).
We have proven that f ratagt is rational wrt ω, ρ. Recalling the definition of rational
strategy, to prove that also fagt is rational wrt M, it is enough to show that for
every λ+ ∈ GetTrace(λ, fagt), where λ ∈ out(q, fagt) and q ∈ [Φ], we can find a goal-
marking function gΓ such that λ+ is a rational trace. This is trivially done exploiting
the mapping between traces inMω,ρ and traces inM. In particular, recall that if
λ+2 ↝ λ+1 , then to each λ+2 [i] corresponds the state λ+1 [i], with 0 ≤ i ≤ ∣λ+2 ∣. Also,
λ+1 ⟨i⟩ = λ+2 ⟨i⟩. Rationality can be showed repeating forM the same reasoning done
for f ratagt wrtMω,ρ. This concludes the completeness proof for point (i).
As for (ii), it is enough to notice that, if λ+2 = GetTrace(λ2, f

rat
agt)↝ λ+1 = GetTrace(λ1, fagt),

with λ2 ∈ out(w, f ratagt), w ∈ [Φ], and λ1 ∈ out(q, fagt), then λ+1 ⟨i⟩ = λ+2 ⟨i⟩ for
0 ≤ i ≤ ∣λ+2 ∣. Hence,Mω,ρ, λ2 ⊧ ϕ iffM, λ1 ⊧ ϕ.
(⇐) Consider completeness. It remains to prove that if fagt is a rational strat-
egy and λ+1 = GetTrace(λ1, fagt) for each λ1 ∈ out(q, fagt), then all traces λ+2 =
GetTrace(λ2, f

rat
agt) for each λ2 ∈ out(w, f ratagt), with λ+2 ↝ λ+1 , are rational, i.e., f ratagt is

rational. Assume by contradiction that there exists a trace λ+1 induced by fagt such
that λ+2 , with λ+2 ↝ λ+1 , is not rational. Since λ+2 ↝ λ+1 implies that λ+1 ⟨i⟩ = λ+2 ⟨i⟩ and
λ1[i] = stateagt(λ2[i]) for all 0 ≤ i ≤ ∣λ+2 ∣, this is not possible. ∎
Note that we can use this approach to model-check any arbitrary BDI-ATLES
formula. Moreover, we can actually compute rational strategies from the witness
returned for the corresponding ATL-formula.

Theorem 45 (Complexity). Synthesizing ⟨ω, %⟩-strategies, achieving BDI-ATLES
formula Φ over M by model checking ATL formula Φ over Mω,ρ is EXPTIME in
the size of Γ, Π and A.

7.2 Discussion 161

The worst case complexity comes from the fact that the state space W is exponen-
tially large, and ATL model-checking is PTIME-complete in the size of the model.
As for hardness, that is still an open issue.

Proof. Given a BDI-ATLES model M for C and Π, be Mω,ρ as above. Let us
denote with copies(q) the set of states w ∈ Mω,ρ such that state(w) = q. Hence,
for any q ∈ Q, copies(q) is bounded by ∣2Q∣ × 2∣Π∣. Indeed, each element in copies(q)
corresponds to a different goal set goalsagt(w) and program counters pcagt(w), as
the original state component is exactly q. Consider now –with little abuse of
notation– the set state(W ′), for W ′ ⊆ W , to be the set of original states q ∈ Q
corresponding to a set of extended states: state(W ′) = ∪w∈W {q ∣ q = state(w)}. Then
notice that, given any two computations w0,w1 . . .w¯̀ and w0,w

′
1 . . .w

′
` in Mω,ρ

such that state({w0,w1 . . .w¯̀}) = state({w0,w
′
1 . . .w

′
`}), we have that goals(agt,w¯̀) =

goals(agt,w′
`). Hence, there are at most ∣2Q∣ distinct possible computations λ such

that q ∈ state(λ). As for the state fragment keeping information about program
counters, it is enough to notice that there are at most 2n×m tuples in PlanPos,
where n is the number of plans and m their length, assumed fixed.
Hence, we get that ∣Mω,ρ∣ ≤ ⋃q∈Q copies(q) ≤ ∣Q∣× ∣2Q∣×2∣Π∣. By construction, we get
the following complexity characterization as well: ∣Mω,ρ∣ ≤ ∣Q∣ × ∣2G∣ × 2∣Π∣ and we
conclude that ∣Mω,ρ∣ ≤ min(∣2Q∣ × 2∣Π∣, ∣2G∣ × 2∣Π∣) which, interestingly, exposes the
fact that goals and plan libraries equally (but separately) concur to the size of the
extended model. ∎

7.2 Discussion
We have presented a sound and complete approach to compute rational strategies
satisfying BDI-ATLES formulas. This can be seen as a form of synthesis in which
agents have access to shared components (capabilities, hence plan libraries): BDI
agents try to satisfy the specification selecting capabilities to use among those al-
lowed by the assignment ω. However, in contrast with other settings in which
shared functionalities are available (e.g., the composition setting), the access to
such resources is constrained by the BDI-ATLES formula, and not by the system.

163

Chapter 8

Towards adding data to
processes

This short chapter is a brief discussion about the work done, during my Ph.D., in the
context of verification for data-aware processes, what does this mean and which are
the major difficulties involved when we turn to the synthesis task. Since this work
is (at this stage) focused on decidability issues of verification, and since a complete,
thoughtful exposition would require an extensive tractation, we won’t report here
details. The reader is referred to the list of related publications, i.e., (Bagheri Hariri
et al., 2011; Hariri et al., 2012; Bagheri Hariri et al., 2013).

Business Processes. A business process consists of a set of activities that are
performed in coordination in an organizational and technical environment, which
jointly realize a business goal. Each business process is enacted by a single organiza-
tion, but it may interact with business processes performed by other organizations.
Business process management (BPM) (Weske, 2007) includes concepts, methods,
and techniques to support the design, administration, configuration, enactment,
and analysis of business processes. In operational business processes, the activities
and their relationships are specified, but implementation aspects of the business
process are disregarded. Operational business processes are specified by business
process models.
By leveraging a precise descriptions of tasks, resources and data involved in the
process (as well as their dependencies), the goal of business process management
solutions are the automation, adaptation and analysis of processes. In particular,
the goal is to automatize non-human tasks, adapt the process to react in real-time
to environmental changes and also perform verification tasks, i.e., check whether
the process model satisfies high-level specifications.
Therefore, the usual business process approach comprise the following fundamental
phases (Weske, 2007): (i) design and analysis, where process models are designed
from specifications, using suitable modeling languages; (ii) configuration, where an
implementation platform is chosen and the system is configured according to the
specific organizational environment of the enterprise; (iii) enactment, where process
instances are then initiated, executed and monitored by the run-time environment;

164 8. Towards adding data to processes

(iv) evaluation, where process models and their implementation are evaluated, typ-
ically by processing execution logs with monitoring and process mining. In par-
ticular, we will address here the first phase by devising a verification framework
able to deal with temporal specifications of processes, and we will comment on the
possibility of performing the synthesis task also in this setting.

8.1 The setting

Formerly, most BPM frameworks were mostly organized around activity flows (“activity-
centric” process models), i.e., the focused mainly on the modeling and analysis of
the activities of which the processes were composed (see, e.g., modeling approaches
base on Petri Nets (Aalst, 1998), on Workflow Nets (Aalst et al., 2002), BPMN (Ob-
ject Management Group (OMG), 2011)). However, business processes operate on
data. Explicitly representing such data and the dependencies between activities
of a business process puts a business process management system in a position to
control the transfer of relevant data as generated and processed during processes
enactment. Data modelling is also the basis for the integration of heterogeneous
data.

Business Artifacts. Therefore, recent work in business processes, services and
databases is bringing forward the need of considering both data and processes as
first-class citizens in process and service design (Nigam and Caswell, 2003; Bhat-
tacharya et al., 2007; Deutsch et al., 2009; Vianu, 2009). In particular, the so called
business artifacts (and, in general, artifact-centric approaches), which advocate a
sort of middle ground between a conceptual formalization of dynamic systems and
their actual implementation, are promising to be effective in practice (Cohn and
Hull, 2009).
The research efforts on this kind of approaches merges database and knowledge rep-
resentation, that has focused largely on data aspects and from research on program-
ming languages, software engineering, workflow, and verification, that has centered
on mostly on process aspects.
The business artifact framework (Nigam and Caswell, 2003; Bhattacharya et al.,
2007; Deutsch et al., 2009; Vianu, 2009) provides a process design methodology
that focuses on business relevant entities, called artifacts, rather than on activities.
An artifact is thus characterized by two basic components:

• the information model

• the lifecycle model

The former holds all the business relevant information of interest ad it can be
modified by tasks, whereas the latter contraints the application of tasks, end hence,
it specifies the possible way the artifact can evolve over time.
Artifact instances evolves in an environment that includes users, external data
sources, services and events. Moreover, relationships captures links between arti-
facts and events. The general framework for artifact-centric systems does not re-
strict the way to specify the information models and lifecycles. However, while the

8.2 A Framework for Artifact-centric Processes 165

information model is usually modeled as a set of (possibly nested) attributes, the
lifecycle can be specified in several ways.

Verification of temporal properties on infinite-state systems. Irrespective
of how the information model and the lifecycle are represented, the key point is that
any verification of temporal properties in the presence of data represents a significant
research challenge, since data makes the system infinite-state, and neither finite-
state model checking (Clarke et al., 1999b) nor most of the current techniques for
infinite-state model checking, which mostly tackle recursion (Burkart et al., 2001),
apply to this case.

8.2 A Framework for Artifact-centric Processes

We are going to briefly discuss here our approach for verification of temporal prop-
erties of data-aware (business) processes (Bagheri Hariri et al., 2013).
Recently, there have been some advancements on this issue (Cangialosi et al., 2010;
Damaggio et al., 2011; Belardinelli et al., 2011) in the context of suitably constrained
relational database settings. While most of this work is based on maintaining in-
formation in a relational database (e.g. see (Bagheri Hariri et al., 2011)), for more
sophisticated applications it is foreseen to enrich data-intensive business processes
with a semantic level, where information can be maintained in a “semantically rich”
knowledge base that allows for operating with incomplete information (Calvanese
et al., 2012; Limonad et al., 2012). This leads us to look into how to combine
first-order data, ontologies, and processes, while maintaining basic inference tasks
decidable.
In particular, we capture the domain of interest in terms of semantically rich for-
malisms as those provided by ontological languages based on Description Logics
(DLs) (Baader et al., 2003). These languages natively deal with incomplete knowl-
edge in the modeled domain. This additional flexibility comes with an added cost,
however: differently from relational databases, to evaluate queries we need to resort
to logical implication. Moreover incomplete information combined with the ability
of evolving the system through actions results in a notoriously fragile setting w.r.t.
decidability (Wolter and Zakharyaschev, 1999; Gabbay et al., 2003). In particular,
due to the nature of DL assertions (which in general are not definitions but con-
straints on models), we get one of the most difficult kinds of domain descriptions
for reasoning about actions (Reiter, 2001a), which amounts to dealing with complex
forms of state constraints (Lin and Reiter, 1994).
To overcome this difficulty, virtually all solutions that aim at robustness are based
on a so-called “functional view of knowledge bases” (Levesque, 1984): a knowledge
base (KB) provides the ability of querying based on logical implication, and the
ability of progressing it to a “new” KB through forms of updates (Baader et al.,
2012; Calvanese et al., 2011).
In our approach (Bagheri Hariri et al., 2013), we follow this functional approach,
hence states are KBs, and we use actions to move from one state to the other. We
thus define a description logic Knowledge Action Base (KAB) to be composed of
these two fundamental components. Therefore, KABs are regarded as a mechanism

166 8. Towards adding data to processes

for providing both a semantically rich representation of the information on the
domain of interest in terms of a description logic knowledge base and actions to
change such information over time, possibly introducing new objects. Hence some
key-points are:

• a KAB can be seen as a stateful device that stores the information of interest
into a KB which evolves by executing those actions according to a process;

• the knowledge description formalism is decoupled from the formalism that
describes the progression;

• we can define the dynamics through a transition system whose states are KBs,
and transitions are labeled by the action (with object parameters) that causes
the transition;

• the process is seen as the collection of action specifications, i.e., preconditions
(local properties), parameters and effects;

• we allow for arbitrary introduction of new terms, i.e., each execution step
external information is incorporated into the system;

• as verification formalism, we adopt a variant of first-order µ-calculus (Stirling,
2001; Park, 1976) with quantification across states.

µ-calculus is virtually the most powerful temporal logic used for model checking of
finite-state transition systems, and is able to express both linear time logics such as
LTL and PSL, and branching time logics such as CTL and CTL* (Emerson, 1996;
Clarke et al., 1999a). The main characteristic of µ-calculus is its ability of expressing
directly least and greatest fixpoints of (predicate-transformer) operators formed
using formulae relating the current state to the next one. By using such fixpoint
constructs one can easily express sophisticated properties defined by induction or
co-induction. This is the reason why virtually all logics used in verification can be
considered as fragments of µ-calculus.
In this work, we use a first-order variant of µ-calculus, where we allow local proper-
ties to be expressed as ECQs, and at the same time we allow for arbitrary first-order
quantification across states. Hence, ECQs, i.e., epistemic query language, allows to
reason about what is “known” by the current KB (Calvanese et al., 2007), whereas
the first-order variant of the µ-calculus allows for temporal requirements on the
“transition systems of KBs”.

Decidability of Verification. Unsurprisingly, even for very simple KABs and
temporal properties, verification is undecidable. However, we show that for a rich
class of KABs, verification is in fact decidable and reducible to finite-state model
checking. To obtain this result, following (Cangialosi et al., 2010; Bagheri Hariri
et al., 2011), we rely on recent results in data exchange on the finiteness of the chase
of tuple-generating dependencies (Fagin et al., 2005), though, in our case, we need
to extend the approach to deal with (i) incomplete information, (ii) inference on
equality, and (iii) quantification across states in the verification language.

8.2 A Framework for Artifact-centric Processes 167

About Synthesis. What about synthesis? As already done throughout this dis-
sertation, we turn to adversarial synthesis, i.e., we consider a setting in which two
agents act in turn as adversaries. The first agent, called environment, acts au-
tonomously, whereas we control the second agent, called system. The joint behav-
ior of the two agents gives rise to a so-called two-player game structure (2GS),
inspired to (Piterman et al., 2006a) and introduced here in Section 3.2. Indeed, in
Chapter 3 we have shown how, making use of 2GS and a variants of the µ-calculus,
we can capture what the system should obtain in spite of the adversarial moves of
the environment. This specification can be considered the goal of the game for the
system. The synthesis problem amounts to synthesizing a strategy, i.e., a suitable
refined behavior for the system that guarantees to the system the fulfillment of the
specification (for more details refer to Section 3.2). The point is that, technically,
µ-calculus separates local properties, asserted on the current state or on states that
are immediate successors of the current one, from properties talking about states
that are arbitrarily far away from the current one (Stirling, 2001). The latter are
expressed through the use of fixpoints. Indeed, the need of quantifying separately
on environment and controller moves, requires the use of µ-calculus, and not simply
CTL or LTL (Clarke et al., 1999c) for which model checking tools are much more
mature.
Hence, we can deal with adversarial synthesis in our framework by building a 2GS
in which we encode explicitly in the DL KB (the state) the alternation of the
moves of the two players by means of a fresh concept. We can thus accomodate
a suitable version of the FO µ-calculus to reason about such games associated to
KAB transition systems, by rewriting FO µ-calculus formulas as to as make the
alternation of quantifiers explicit. Indeed, since the system is finite-state (under the
above-mentioned restrictions), it is always possible to build a finite tow-player game
of this sort, and thus extract winning strategies via model-checking the appropriate
formula. However, this synthesis approach is not subject of study here, but can be
seen, somehow, as a natural path to undertake.

169

Appendix A

BDI-ATLES Rational Strategies

We formally define here the notion of rational traces and rational strategies for
ATLES. This is an authors’ extension (to plan sequences) of the work published
in (Yadav and Sardiña, 2012).

Given a plan library Π and an initial goal base G for an agent agt in structure
M, we are to characterize those strategies for agt withinM that represent rational
behaviors: the agent tries plans from Π in order to bring about its goals G given its
beliefs (Bratman et al., 1988; Rao and Georgeff, 1992).
While technically involved, the idea to define set Σagt

Π,G is simple: first identify those
paths inM that could be showing rational behavior for the agent; second consider
rational strategies those that will always yield rational paths. We do this in three
steps. First, we identify minimal constraints on how the goals of an agent can evolve
in a path. Second, we define what it means for a plan to be tried by an agent in
a path. Third, we define rational paths that result from an agent’s deliberation
process.
Before we start, we extend the notion of paths to account for the actions performed.
Recall that, as for standard ATL models, a trace is a finite sequence of alternating
states and actions λ+ = q0α1q1⋯α`q` such that q0⋯q` is a (finite) path in M. In
particular, we use λ+[i] and λ+⟨i⟩ to denote the i-th state qi and the i-th action αi,
respectively, in trace λ+. The length ∣λ+∣ of a trace is the number of actions on it;
hence it matches the length of the underlying path.

Goal evolution in traces

As standard, we assume BDI agents to have a single-minded type of commitment
level to goals (Rao and Georgeff, 1991), that is, an agent does not drop a goal until
it achieves it or believes it cannot be achieved. Here, we state what the possible
goals an agent can have at each moment in a path may be.
To that end, we make use of so-called goal-marking functions gG(λ+, i), for an agent
with an initial goal base G, which outcomes a possible goal base of the agent at λ+[i].
As expected, a goal-marking function must obey some basic rationality constraints
in terms of goal persistence:

• gG(λ+,0) = G, that is, G is the agent’s initial goal base;

170 A. BDI-ATLES Rational Strategies

• for all i ≤ ∣λ+∣ and γ ∈ gG(λ+, i), V(λ+[i]) /⊧ γ, that is, the agent does not have
(already) achieved goals.

Observe that these two constraints only capture half of the single-minded notion
of commitment. Indeed, they do not detail on how an agent may abandon goals
besides when achieved or how it may adopt new goals. To complete the picture, we
need to take plans into consideration.

Plan executions in traces

Agents developed under the BDI paradigm are meant to execute actions as per the
plans available to them. We shall next define what it means for a trace to include
an execution of a plan.
When it comes to selecting plans for execution, there are generally two core notions
in BDI programming. A plan is relevant if its intended effects are enough to bring
about some of the agent’s goals. Technically, given a trace λ+ and a goal-marking
function g, we say that a plan-rule φ[α⃗]ψ is relevant at location λ+[i] in the trace,
where 0 ≤ i ≤ ∣λ+∣, if there exists γ ∈ g(λ+, i) such that ψ ⊧ γ. Furthermore, the plan
is applicable at location λ+[i] if besides being relevant, its context condition holds
true, that is, V(λ+[i]) ⊧ φ.
The function Execagt(φ[α⃗]ψ, g, λ+) denotes the fragments in trace λ+ that may
stand for a, possibly partial, execution of plan φ[α⃗]ψ by agent agt ∈ A. We use
pairs of indexes ⟨s ∶ e⟩ to denote the start 0 ≤ s < ∣λ+∣ and terminating s < e ≤ ∣λ+∣
positions for each execution fragment. Formally, Execagt(φ[α⃗]ψ, g, λ+) is the set of
pairs ⟨s ∶ e⟩ such that (below, k = e − s):

1. λ+⟨s + i⟩ = αi, for all 1 ≤ i ≤ k;

2. φ[α⃗]ψ is applicable at λ+[s] relative to goal-marking g;

3. φ[α⃗]ψ remains relevant from λ+[s] to λ+[e] relative to g;

4. if k < ∣α∣, then either φ[α⃗]ψ is no longer relevant at state λ+[e] in the trace
or αk+1 /∈ d(agt, λ+[e]).

The first condition states that the first k (action) steps of plan α has been executed
in trace λ+ from position s. The second one implies that the plan was adequately
selected—under the BDI programming paradigm—given the agent’s goals and be-
liefs. The third requirement states that the plan does remain relevant during its
execution (otherwise, the agent has no reason to insist with it). The last constraint
characterizes the conditions under which the plan may be aborted before its com-
pletion: either it stops being relevant (e.g., the motivating goal was abandoned) or
the next step was not physically possible in the world (i.e., the plan failed).

Rational traces and rational strategies

The last step involves defining the so-called rational traces, those that can be ex-
plained by the agent acting as per its available plan in order to achieve its goals
relative to its beliefs.

171

Initially, an agent has a set of goals (initial goal base) that she wants to bring about.
The agent chooses one goal to work on, and selects an applicable plan for such goal
from its plan library for execution. If the plan successfully brings about the goal,
then the agent deems the goal achieved and the plan finished. On the other hand,
if the plan fails to achieve the goal, then the agent executes another applicable plan
for the same goal (even the same failed plan if still applicable), thus realizing its
commitment to the goal. When the agent has no applicable plan for a goal, the
agent deems the goal impossible and drops it. Traces that can be “explained” in
this way are referred to as rational traces.
To capture all this, we define the notions of goal-working and goal-complete segments
of a trace. Informally, a goal-working segment of a trace is one in which the agent
is working to achieve a particular goal, by rationally executing plans for it. Given
a trace λ+, a plan-library Π, a goal-marking function g, and a goal γ, the set
GWorkagt(γ,Π, g, λ+) of all goal-working segments for goal γ in trace λ+ (for agent
agt ∈ A) is the set of index pairs ⟨s ∶ e⟩ such that:

• γ ∈ g(λ+, i), for all s ≤ i < e;

• there exists a sequence of segment indexes Λ = ⟨s1 ∶ e1⟩⋯⟨s` ∶ e`⟩ such that
s1 = s and e` ≤ e, and for all i ∈ {1, . . . , `}:

– ei ≤ si+1 when i < ` (and of course si ≤ ei);
– there is an applicable plan φi[αi]ψi ∈ Π for goal γ, such that ⟨si ∶ ei⟩ ∈
Execagt(φi[αi]ψi, g, λ+);

– if i < ` and ei < si+1, then λ+⟨ei + k⟩ = noOp and there is no applicable
plan in Π for goal γ at λ+[ei + k − 1], for all 1 ≤ k ≤ si+1 − ei; and

– if e` < e, then λ+⟨e` + k⟩=noOp and there is no applicable plan in Π for
goal γ at (state) λ+[e` + k − 1], for all 1 ≤ k ≤ e − e`;

In words, a trace segment λ+[s, e] is goal-working for goal γ if it can be divided into
` sub-segments in which the agent consecutively tries one applicable plan φi[αi]ψi in
the i-th sub-segment for the goal γ. Observe that it could be the case that between
segments, and at the very end, the agent remains still, by simply performing noOp
actions. This would only happen when the agent has a certain (strong) level of
commitment towards the goal that causes her to wait for some plan to become
applicable.
A goal-complete segment is one in which the agent has tried as much as possible
to bring about the goal. Formally, the set of all goal-complete segments for goal γ
in trace λ+, denoted GCompleteagt(γ,Π, g, λ+), is defined by further restricting the
notion of goal-working segments as follows:

• γ /∈ g(λ+, e), that is, γ is not a goal anymore at the end;

• either V(λ+[e]) ⊧ γ or there is no applicable plan in library Π for goal γ at
location λ+[e] in the trace, that is, either the goal has been achieved or the
agent deems it impossible due to lack of useful plans; and

• e` = e, that is, Λ covers the whole segment ⟨s ∶ e⟩.

172 A. BDI-ATLES Rational Strategies

It follows then that trace segments that are goal-working but not goal-complete for
γ are those in which the agent is still working on the goal.
We now have all the technical machinery to define the set of rational traces and the
set Σagt

Π,G of rational strategies used to define the semantics of BDI-ATLES in the
previous section. Roughly speaking, a trace is rational if there is a goal-marking
function under which the trace can be broken down into segments that are all
goal-complete for some goal, except the last one that may just be a goal-working
segment for a goal or a sequence of noOp actions if the agent has in fact no goals.
Technically, λ+ is a rational trace for an agent agt ∈ A equipped with a plan-library
Π and having an initial goal base G, if there exists a goal-marking function gG for an
agent with goal base G and a sequence of indexes k1⋯k`, with k1 = 0 and k` = ∣λ+∣,
such that:

• for all i ∈ {1, . . . , `−2}, there exists formula γi such that ⟨ki ∶ ki+1⟩ ∈ GCompleteagt(γi,Π, gG , λ+);
and

• either ⟨k`−1 ∶ k`⟩ ∈ GWorkagt(γ,Π, gG , λ+), for some goal formula γ; or gG(λ+, i) =
∅ and λ+⟨i + 1⟩ = noOp, for all i ∈ {k`−1, . . . , k` − 1}.

Let us denote by ζagtΠ,G the set of all rational traces for agent agt with library Π and
goal base G.
So, a rational strategy is one that only yields rational traces. To link traces and
strategies, we define GetTrace(λ, fagt) to be the partial function that returns the
trace induced by a path λ and a strategy fagt, if any. Formally, GetTrace(λ, fagt) =
q0α1q1 . . . α∣λ∣q∣λ∣ iff for all k ≤ ∣λ∣: (i) qk = λ[k]; and (ii) there exist a joint-move
α⃗ ∈ D(qk) such that δ(qk, α⃗) = qk+1 and fagt(λ[0, k]) = α⃗[agt] = αk+1 (where α⃗[agt]
denotes agent agt’s move in joint-move α⃗).
Finally, the set of rational strategies is defined as follows:

Σagt
Π,G = {fagt ∣ ⋃λ∈ΛGetTrace(λ, fagt) ⊆ ζ

agt
Π,G},

where Λ ⊆ Λ is the set of finite paths inM.

173

Bibliography

Van Der Aalst. The application of petri nets to workflow management, 1998.

Wil Van Der Aalst, Kees Van Hee, Prof. Dr. Kees, Max Hee, Remmert Remmerts De
Vries, Jaap Rigter, Eric Verbeek, and Marc Voorhoeve. Workflow management:
Models, methods, and systems, 2002.

N. Alechina, M. Dastani, B. S. Logan, and Ch. A logic of agent programs. In Proc.
of AAAI, pages 795–800. AAAI Press, 2007. ISBN 978-1-57735-323-2.

N. Alechina, M. Dastani, B. S. Logan, and John-Jules Meyer. Reasoning about
agent deliberation. In Proc. of KR, pages 16–26, 2008.

Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay Machiraju. Web Services
- Concepts, Architectures and Applications. Data-Centric Systems and Applica-
tions. Springer, 2004.

Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. J. ACM, 49(5):672–713, September 2002. ISSN 0004-5411.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003.

Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic axioms.
ACM Trans. on Computational Logic, 13(3), 2012.

Christer Bäckström. Equivalence and tractability results for sas+ planning. In Pro-
ceedings of the 3rd International Conference on Principles on Knowledge Repre-
sentation and Reasoning (KR-92, pages 126–137. Morgan Kaufmann, 1992.

Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Riccardo De Masel-
lis, and Paolo Felli. Foundations of relational artifacts verification. In Proc. of
the 9th Int. Conference on Business Process Management (BPM 2011), volume
6896 of Lecture Notes in Computer Science, pages 379–395. Springer, 2011.

Babak Bagheri Hariri, Diego Calvanese, Marco Montali, Giuseppe De Giacomo,
Riccardo De Masellis, and Paolo Felli. Description Logic Knowledge and Action
Bases. J. of Artificial Intelligence Research, 2013. To appear.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representa-
tion and Mind Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499.

174 Bibliography

Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Composition of inter-
active web services based on controller synthesis. In Proc. of SERVICES, pages
521–528, 2008.

Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Algorithms and com-
plexity of automata synthesis by asynhcronous orchestration with applications to
web services composition. Electronic Notes in Theoretical Computer Science, 229
(3):3–18, July 2009.

Fabien Baligand, Nicolas Rivierre, and Thomas Ledoux. A declarative approach for
qos-aware web service compositions. In ICSOC, volume 4749 of Lecture Notes in
Computer Science, pages 422–428. Springer, 2007. ISBN 978-3-540-74973-8.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for
LTL and TLTL. ACM Transactions on Software Engineering and Methodology,
20(4):14, 2011.

Sandrine Beauche and Pascal Poizat. Automated Service Composition with Adap-
tive Planning. In Proc. ICSOC 2008, pages 530–537, 2008.

Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. Verification of deployed
artifact systems via data abstraction. In Proc. of the 9th Int. Joint Conf. on
Service Oriented Computing (ICSOC 2011), volume 7084 of Lecture Notes in
Computer Science, pages 142–156. Springer, 2011.

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic Composition of e-Services that Export their Behav-
ior. In Proc. of ICSOC 2003, pages 43–58, 2003.

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic service composition based on behavioural descrip-
tions. International Journal of Cooperative Information Systems, 14(4):333–376,
2005a.

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and
Massimo Mecella. Automatic service composition based on behavioural descrip-
tions. International Journal of Cooperative Information Systems, 14(4):333–376,
2005b.

Daniela Berardi, Fahima Cheikh, Giuseppe De Giacomo, and Fabio Patrizi. Auto-
matic service composition via simulation. International Journal of Foundations
of Computer Science, 19(2):429–452, 2008.

K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis
of artifact-centric business process models. In Proc. of the 5th Int. Conference
on Business Process Management (BPM 2007), volume 4714 of Lecture Notes in
Computer Science, pages 288–234. Springer, 2007.

Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

Bibliography 175

J. Blythe and J.L. Ambite, editors. Proc. of ICAPS 2004 Workshop on Planning
and Scheduling for Web and Grid Services, 2004.

Blai Bonet and Hector Geffner. Solving pomdps: Rtdp-bel vs. point-based algo-
rithms. In IJCAI, pages 1641–1646, 2009.

Blai Bonet, Héctor Palacios, and Hector Geffner. Automatic derivation of mem-
oryless policies and finite-state controllers using classical planners. In ICAPS,
2009.

M. Bordignon, J. Rashid, M. Broxvall, and Alessandro Saffiotti. Seamless integra-
tion of robots and tiny embedded devices in a PEIS-ecology. In IROS, pages
3101–3106, San Diego, CA, 2007.

Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El, Fallah Seghrouchni,
Jorge J. Gomez-sanz, JoÃčo Leite, Alexander Pokahr, and Alessandro Ricci. A
survey of programming languages and platforms for Multi-Agent systems. Infor-
matica (Slovenia), 30(1):33–44, 2006.

Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and resource-
bounded practical reasoning. Computational Intelligence, 4(3):349–355, 1988.

Julius R. Büchi and Lawrence H. Landweber. Solving sequential conditions by
finite-state strategies. Transactions of the American Mathematical Society, 138:
295–311, April 1969.

O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite structures.
In Handbook of Process Algebra. Elsevier Science, 2001.

Paolo Busetta, Ralph Rönnquist, Andew Hodgson, and Andrew Lucas. JACK intel-
ligent agents: Components for intelligent agents in Java. AgentLink Newsletter,
2, January 1999. Agent Oriented Software Pty. Ltd.

Tom Bylander. Tractability and artificial intelligence. JETAI, 3:171–178, 1991.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. EQL-Lite: Effective first-order query processing in de-
scription logics. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2007), pages 274–279, 2007.

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati.
Actions and programs over description logic knowledge bases: A functional ap-
proach. In Gerhard Lakemeyer and Sheila A. McIlraith, editors, Knowing, Rea-
soning, and Acting: Essays in Honour of Hector Levesque. College Publications,
2011.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Marco Montali, and
Ario Santoso. Ontology-based governance of data-aware processes. In Proc. of
the 6th Int. Conf. on Web Reasoning and Rule Systems (RR 2012), volume 7497
of Lecture Notes in Computer Science, pages 25–41. Springer, 2012.

176 Bibliography

Piero Cangialosi, Giuseppe De Giacomo, Riccardo De Masellis, and Riccardo Rosati.
Conjunctive artifact-centric services. In Proc. of the 8th Int. Joint Conf. on
Service Oriented Computing (ICSOC 2010), volume 6470 of Lecture Notes in
Computer Science, pages 318–333. Springer, 2010.

J. Cardose and A.P. Sheth. Introduction to semantic web services and web process
composition. In Proc. of SWSWPC 2004, 2004.

Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event
Systems. SPRINGERP, Secaucus, NJ, USA, 2006.

A. Church. Logic, arithmetics, and automata. In In Proc. International Congress
of Mathematicians, pages 23–35. Institut Mittag-Leffler, 1963.

Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso. Weak,
strong, and strong cyclic planning via symbolic model checking. Artificial Intel-
ligence Journal, 147(1-2):35–84, 2003. ISSN 0004-3702.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logic of Programs, Workshop,
pages 52–71, London, UK, UK, 1982. Springer-Verlag. ISBN 3-540-11212-X.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. The
MIT Press, Cambridge, MA, USA, 1999a.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. The
MIT Press, Cambridge, MA, USA, 1999b.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. The
MIT Press, Cambridge, MA, USA, 1999c. ISBN 0-262-03270-8.

E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using
partial order techniques. International Journal on Software Tools for Technology
Transfer (STTT), 2:279–287, 1999d. ISSN 1433-2779.

David Cohn and Richard Hull. Business artifacts: A data-centric approach to
modeling business operations and processes. Bull. of the IEEE Computer Society
Technical Committee on Data Engineering, 32(3):3–9, 2009.

F. Curbera, A.P. Sheth, and K. Verma. Services oriented architecture and semantic
web processes. In Proc. of ICWS 2004, 2004.

Elio Damaggio, Alin Deutsch, and Victor Vianu. Artifact systems with data de-
pendencies and arithmetic. In Proc. of the 14th Int. Conf. on Database Theory
(ICDT 2011), pages 66–77, 2011.

Mehdi Dastani and Wojciech Jamroga. Reasoning about strategies of multi-agent
programs. In Proc. of AAMAS, pages 997–1004, Richland, SC, 2010. IFAAMAS.
ISBN 978-0-9826571-1-9.

Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. From verification to
control: Dynamic programs for omega-regular objectives. In Proc. of LICS’01,
pages 279–290, 2001.

Bibliography 177

Giuseppe De Giacomo and Sebastian Sardina. Automatic synthesis of new behaviors
from a library of available behaviors. In Proc. of IJCAI, pages 1866–1871, 2007.

Giuseppe De Giacomo and Moshe Y. Vardi. Automata-theoretic approach to plan-
ning for temporally extended goals. In ECP, pages 226–238, 1999.

Giuseppe De Giacomo, Riccardo De Masellis, and Fabio Patrizi. Composition of
partially observable services exporting their behaviour. In ICAPS, 2009.

Giuseppe De Giacomo, Paolo Felli, Fabio Patrizi, and Sebastian Sardina. Two-player
game structures for generalized planning and agent composition. In AAAI, 2010a.

Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardiña. Agent programming
via planning programs. In AAMAS, pages 491–498, 2010b.

Giuseppe De Giacomo, Claudio Di Ciccio, Paolo Felli, Yuxiao Hu, and Massimo
Mecella. Goal-based composition of stateful services for smart homes. In OTM
Conferences (1), pages 194–211, 2012.

Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardina. Automatic behavior
composition synthesis. Artificial Intelligence Journal, 2013.

Guiseppe De Giacomo and Paolo Felli. Agent composition synthesis based on ATL.
In Proc. of AAMAS, pages 499–506, 2010.

Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic verification
of data-centric business processes. In Proc. of the 12th Int. Conf. on Database
Theory (ICDT 2009), pages 252–267, 2009.

Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony Mcisaac, and
David Van Campenhout. Reasoning with temporal logic on truncated paths.
Computer Aided Verification, pages 27–39, 2003.

E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, pages 995–1072. Elsevier, 1995.

E. Allen Emerson. Model checking and the mu-calculus. In Descriptive Complexity
and Finite Models, pages 185–214, 1996.

E. Allen Emerson and Joseph Y. Halpern. ’sometimes’ and ’not never’ revisited: on
branching versus linear time temporal logic. J. ACM, 33:151–178, January 1986.
ISSN 0004-5411.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: semantics and query answering. Theoretical Computer Science, 336(1):
89 – 124, 2005. ISSN 0304-3975.

Paolo Felli, Giuseppe De Giacomo, and Alessio Lomuscio. Synthesizing Agent Pro-
tocols From LTL Specifications Against Multiple Partially-Observable Environ-
ments. In KR, 2012.

Paolo Felli, Sebastian Sardiña, and Nitin Yadav. Reasoning about Agent Programs
in BDI-ATLES. (submitted), 2013a.

178 Bibliography

Paolo Felli, Sebastian Sardiña, and Nitin Yadav. Supervisory Control for Behavior
Composition with Constraints. (submitted), 2013b.

R. E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence Journal, 2:189–208,
1971.

Christian Fritz, Jorge A. Baier, and Sheila A. McIlraith. ConGolog, Sin Trans:
Compiling ConGolog into Basic Action Theories for Planning and Beyond. In
Proc. of KR’08, pages 600–610, 2008.

Dov Gabbay, Agnes Kurusz, Frank Wolter, and Michael Zakharyaschev. Many-
dimensional Modal Logics: Theory and Applications. Elsevier Science Publishers,
2003.

P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge.
In Proceedings of 16th International Conference on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

Michael R. Genesereth and Nils J. Nilsson. Logical foundations of artificial intelli-
gence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1987. ISBN
0-934613-31-1.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. Morgan Kaufmann Publishers Inc., 2004.

P. Gohari and W. M. Wonham. On the complexity of supervisory control design in
the rw framework. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 30(5):643–652, October 2000. ISSN 1083-4419.

V. Goranko and W.J. Jamroga. Comparing semantics of logics for multi-agent
systems. Synthese, 139(2):241–280, 2004. Imported from HMI.

Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics,
and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl sem-
inar, February 2001], volume 2500 of Lecture Notes in Computer Science, 2002.
Springer.

J Y Halpern and M Y Vardi. The complexity of reasoning about knowledge and
time. In Proceedings of the eighteenth annual ACM symposium on Theory of
computing, STOC ’86, pages 304–315, New York, NY, USA, 1986. ACM. ISBN
0-89791-193-8.

Joseph Y. Halpern and Moshe Y. Vardi. Model checking vs. theorem proving: A
manifesto. In KR, pages 325–334, 1991.

A. Harding, M. Ryan, and P.-Y. Schobbens. A new algorithm for strategy synthesis
in ltl games. In TACAS, pages 477–492, 2005.

D. Harel and A. Pnueli. On the development of reactive systems, pages 477–498.
Springer-Verlag New York, Inc., New York, NY, USA, 1985a. ISBN 0-387-15181-
8.

Bibliography 179

D. Harel and A. Pnueli. On the development of reactive systems. In Krzysztof R.
Apt, editor, Logics and models of concurrent systems, pages 477–498. Springer-
Verlag New York, Inc., New York, NY, USA, 1985b. ISBN 0-387-15181-8.

David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. The MIT Press,
2000.

Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Riccardo De Masel-
lis, Paolo Felli, and Marco Montali. Verification of description logic knowledge
and action bases. In ECAI, pages 103–108, 2012.

Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani. Protocol-Based Web
Service Composition. In Proc. ICSOC 2008, pages 38–53, 2008.

Wiebe Van Der Hoek and Michael Wooldridge. Model checking knowledge and
time. In Model Checking Software, Proceedings of SPIN 2002 (LNCS Volume
2318, pages 95–111. Springer-Verlag, 2002a.

Wiebe Van Der Hoek and Michael Wooldridge. Tractable multiagent planning for
epistemic goals. In In Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2002, pages 1167–1174.
ACM Press, 2002b.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Yuxiao Hu and Giuseppe De Giacomo. Generalized planning: Synthesizing plans
that work for multiple environments. In IJCAI, pages 918–923, 2011.

Wojciech Jamroga. Some remarks on alternating temporal epistemic logic. In Pro-
ceedings of Formal Approaches to Multi-Agent Systems (FAMAS 2003, pages 133–
140, 2004.

Wojciech Jamroga and Thomas Ågotnes. Modular interpreted systems. In Proceed-
ings of the 6th international joint conference on Autonomous agents and multia-
gent systems, AAMAS ’07, pages 131:1–131:8, New York, NY, USA, 2007. ACM.
ISBN 978-81-904262-7-5.

Wojciech Jamroga andWiebe van der Hoek. Agents that know how to play. Fundam.
Inform., 63(2-3):185–219, 2004.

Magdalena Kacprzak, Alessio Lomuscio, and Wojciech Penczek. From bounded to
unbounded model checking for temporal epistemic logic. Fundam. Inform., 63
(2-3):221–240, 2004.

Eirini Kaldeli, Ehsan Ullah Warriach, Jaap Bresser, Alexander Lazovik, and Marco
Aiello. Interoperation, composition and simulation of services at home. In Service-
Oriented Computing - 8th International Conference, ICSOC 2010, San Francisco,
CA, USA, December 7-10, 2010. Proceedings, volume 6470 of Lecture Notes in
Computer Science, pages 167–181, 2010. ISBN 978-3-642-17357-8.

180 Bibliography

Henry A. Kautz, Wolfgang Thomas, and Moshe Y. Vardi, editors. Synthesis and
Planning, 12.-17. June 2005, volume 05241 of Dagstuhl Seminar Proceedings,
2006. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany.

Sylvain Kerjean, Froduald Kabanza, Richard St.-Denis, and Sylvie Thiébaux. Ana-
lyzing LTL model checking techniques for plan synthesis and controller synthesis
(work in progress). Electronic Notes in Theoretical Computer Science (ENTCS),
149(2):91–104, 2006.

Adrian Klein, Fuyuki Ishikawa, and Shinichi Honiden. Efficient qos-aware service
composition with a probabilistic service selection policy. In Service-Oriented Com-
puting - 8th International Conference, ICSOC 2010, San Francisco, CA, USA,
December 7-10, 2010. Proceedings, volume 6470 of Lecture Notes in Computer
Science, pages 182–196, 2010. ISBN 978-3-642-17357-8.

Joachim Klein and Christel Baier. Experiments with deterministic ω-automata for
formulas of linear temporal logic. Theor. Comput. Sci., 363(2):182–195, 2006.

Orna Kupferman and Moshe Y. Vardi. Synthesis with incomplete information. In In
Advances in Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.

Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In FOCS,
pages 531–542, 2005.

Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. Safraless compositional syn-
thesis. In CAV, pages 31–44, 2006.

Leslie Lamport. “sometime” is sometimes “not never” - on the temporal logic of
programs. In POPL, pages 174–185, 1980.

Yves Lespérance, Giuseppe De Giacomo, and Atalay Nafi Ozgovde. A model of
contingent planning for agent programming languages. In Proc. of AAMAS’08,
pages 477–484, 2008.

Hector J. Levesque. Foundations of a functional approach to knowledge represen-
tation. Artificial Intelligence, 23:155–212, 1984.

Hector J. Levesque. Planning with loops. In IJCAI, pages 509–515, 2005.

Lior Limonad, Pieter De Leenheer, Mark Linehan, Rick Hull, and Roman Vaculin.
Ontology of dynamic entities. In Proc. of the 31st Int. Conf. on Conceptual
Modeling (ER 2012), 2012.

F. Lin and W. Murray Wonham. Decentralized supervisory control of discrete-event
systems. Inf. Sci., 44(3):199–224, 1988a.

F. Lin and W.M. Wonham. On observability of discrete-event systems. Information
Sciences, 44(3):173 – 198, 1988b.

Fangzhen Lin and Ray Reiter. State constraints revisited. J. of Logic Programming,
4(5):655–678, 1994.

Bibliography 181

Alessio Lomuscio and Franco Raimondi. Model checking knowledge, strategies, and
games in multi-agent systems. In AAMAS, pages 161–168, 2006.

Alessio Lomuscio and Mark Ryan. On the relation between interpreted systems and
kripke models. In Agents and Multi-Agent Systems Formalisms, Methodologies,
and Applications, pages 46–59, 1997.

Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. Mcmas: A model checker
for the verification of multi-agent systems. In CAV, pages 682–688, 2009.

Robert Lundh, Lars Karlsson, and Alessandro Saffiotti. Automatic configuration
of multi-robot systems: Planning for multiple steps. In Proc. of ECAI’08, pages
616–620, Patras, Greece, 2008.

Yoad Lustig and Moshe Y. Vardi. Synthesis from component libraries. In FOSSACS,
pages 395–409, 2009.

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis.
ACM Trans. Program. Lang. Syst., 2(1):90–121, January 1980. ISSN 0164-0925.

S.A. McIlraith and T.C. Son. Adapting golog for composition of semantic web
services. In Proc. KR 2002, 2002.

B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid. Composing web services on
the semantic web. Very Large Data Base Journal, 12(4):333–351, 2003.

TimMenzies, Adrian Pearce, Clinton Heinze, and Simon Goss. What is an agent and
why should i care? In MichaelG. Hinchey, JamesL. Rash, WalterF. Truszkowski,
Christopher Rouff, and Diana Gordon-Spears, editors, Formal Approaches to
Agent-Based Systems, volume 2699 of Lecture Notes in Computer Science, pages
1–14. Springer Berlin Heidelberg, 2003.

R. Van Der Meyden and N. V. Shilov. Model checking knowledge and time in
systems with perfect recall (extended abstract). In FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, pages 432–445. Springer-
Verlag, 1999.

Robin Milner. An Algebraic Definition of Simulation Between Programs. In Proc.
of IJCAI 1971, 1971a.

Robin Milner. An algebraic definition of simulation between programs. In Proc. of
IJCAI, pages 481–489, 1971b.

Robin Milner. An algebraic definition of simulation between programs. Technical
report, Stanford University, Stanford, CA, USA, 1971c.

A. Muscholl and I. Walukiewicz. A lower bound on web services composition. Logical
Methods in Computer Science, 4(2), 2008.

A. Nigam and N. S. Caswell. Business artifacts: An approach to operational speci-
fication. IBM Systems Journal, 42(3):428–445, 2003.

182 Bibliography

Object Management Group (OMG). Business process model and notation (bpmn)
ver. 2.0, 2011. URL http://www.omg.org/spec/BPMN/2.0.

Eric Pacuit and Sunil Simon. Reasoning with protocols under imperfect information.
Review of Symbolic Logic, 4(3):412–444, 2011.

Lin Padgham and Patrick Lambrix. Formalisations of capabilities for BDI-agents.
Autonomous Agents and Multi-Agent Systems, 10(3):249–271, May 2005.

Flavio De Paoli, G. Lulli, and Andrea Maurino. Design of quality-based composite
web services. In Service-Oriented Computing - ICSOC 2006, 4th International
Conference, Chicago, IL, USA, December 4-7, 2006, Proceedings, volume 4294
of Lecture Notes in Computer Science, pages 153–164. Springer, 2006. ISBN
3-540-68147-7.

R. Parikh and R. Ramanujam. Distributed processes and the logic of knowledge.
In Logic of Programs, pages 256–268, 1985.

David Michael Ritchie Park. Finiteness is Mu-ineffable. Theoretical Computer
Science, 3(2):173–181, 1976.

Fabio Patrizi. Simulation-based Techniques for Automated Service Composition.
PhD thesis, DIS, Sapienza Univ. Roma, 2009.

Wojciech Penczek and Alessio Lomuscio. Verifying epistemic properties of multi-
agent systems via bounded model checking. Fundam. Inform., 55(2):167–185,
2003.

Marco Pistore, Annapaola Marconi, Piergiorgio Bertoli, and Paolo Traverso. Auto-
mated composition of web services by planning at the knowledge level. In IJCAI,
pages 1252–1259, 2005.

N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI,
pages 364–380, 2006a.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In
E. Allen Emerson and Kedar S. Namjoshi, editors, Proc. of VMCAI, volume 3855
of LNCS, pages 364–380, Charleston, SC, USA, January 2006b. Springer.

Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57, Wash-
ington, DC, USA, 1977. IEEE Computer Society.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. of
POPL, pages 179–190, 1989a.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL,
pages 179–190, 1989b.

Amir Pnueli and Elad Shahar. The TLV system and its applications. Technical
report, Department of Computer Science, Weizmann Institute, Rehovot, Israel,
1996.

http://www.omg.org/spec/BPMN/2.0

Bibliography 183

Michael O. Rabin. Decidability of Second Order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society, 141:1–35, 1969.

Knut Åkesson, Martin Fabian, Hugo Flordal, and Arash Vahidi. Supremica – a
tool for verification and synthesis of discrete event supervisors. In Proceedings of
the 11th Mediterranean Conference on Control and Automation, Rhodos, Greece,
2003.

P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal on Control and Optimization, 25:206–230, January 1987.
ISSN 0363-0129.

Peter J. Ramadge. Observability of discrete event systems. In Decision and Control,
1986 25th IEEE Conference on, volume 25, pages 1108 –1112, dec. 1986.

Peter J. Ramadge and W. M. Wonham. The control of discrete event systems. IEEE
Trans. on Control Theory, 77(1):81–98, 1989a.

P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81–98, 1989b.

Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDI-
architecture. In Proc. of KR, pages 473–484, 1991.

Anand S. Rao and Michael P. Georgeff. An abstract architecture for rational agents.
In Proc. of KR, pages 438–449, San Mateo, CA, 1992.

C. Reiser, A.E.C. da Cunha, and J.E.R. Cury. The environment GRAIL for super-
visory control of discrete event systems. In Proc. of 8th International Workshop
on Discrete Event Systems workshop, pages 390 –391. IEEE Computer Society
Press, july 2006.

Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. The MIT Press, 2001a.

Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, Cambridge, MA, 2001b.

L. Ricker, S. Lafortune, and S. Gene. DESUMA: A tool integrating GIDDES and
UMDES. In Proc. of 8th International Workshop on Discrete Event Systems
workshop, pages 392 –393. IEEE Computer Society Press, 2006.

Jussi Rintanen. Complexity of Planning with Partial Observability. In Proc. of
ICAPS’04, pages 345–354, 2004a.

Jussi Rintanen. Complexity of planning with partial observability. In ICAPS, pages
345–354, 2004b.

Yoram Moses Ronald Fagin, Joseph Y. Halpern and Moshe Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge, MA, 1995.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010. ISBN 978-0-13-207148-2.

184 Bibliography

Shmuel Safra. On the complexity of ω-automata. In FOCS, pages 319–327, 1988.

Sebastian Sardiña, Fabio Patrizi, and Giuseppe De Giacomo. Automatic synthesis
of a global behavior from multiple distributed behaviors. In AAAI, AAAI’07,
pages 1063–1069, 2007.

Sebastian Sardina and Giuseppe De Giacomo. Realizing multiple autonomous agents
through scheduling of shared devices. In Proc. of ICAPS, pages 304–312, 2008.

Sebastian Sardina, Giuseppe De Giacomo, and Fabio Patrizi. Behavior Composition
in the Presence of Failure. In Proc. of KR’08, pages 640–650, 2008.

Sebastian Sardiña, Fabio Patrizi, and Giuseppe De Giacomo. Behavior composition
in the presence of failure. In KR, pages 640–650, 2008.

Sebastian Sardina, Fabio Patrizi, and Giuseppe De Giacomo. Behavior composition
in the presence of failure. In Proc. of KR, pages 640–650, 2008.

Dieter Schuller, André Miede, Julian Eckert, Ulrich Lampe, Apostolos Papageor-
giou, and Ralf Steinmetz. Qos-based optimization of service compositions for
complex workflows. In Service-Oriented Computing - 8th International Confer-
ence, ICSOC 2010, San Francisco, CA, USA, December 7-10, 2010. Proceedings,
volume 6470 of Lecture Notes in Computer Science, pages 641–648, 2010. ISBN
978-3-642-17357-8.

Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Learning generalized
plans using abstract counting. In AAAI, pages 991–997, 2008.

Colin Stirling. Modal and Temporal Properties of Processes. Springer, 2001.

Colin Stirling and David Walker. Local model checking in the modal mu-calculus.
Theor. Comput. Sci., 89(1):161–177, 1991.

Thomas Stroeder and Maurice Pagnucco. Realising deterministic behaviour from
multiple non-deterministic behaviours. In Proc. of IJCAI, pages 936–941,
Pasadena, CA, USA, July 2009. AAAI Press.

Jianwen Su, editor. IEEE Data Engineering Bulletin: Special Issue on Semantic
Web Services, volume 31:2, 2008a.

Jianwen Su, editor. IEEE Data Engineering Bulletin: Special Issue on Semantic
Web Services, volume 31:2, 2008b.

Jianwen Su, editor. Semantic Web Services: Composition and Analysis. IEEE Data
Eng. Bull., volume 31. IEEE Comp. Society, 2008c.

Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi. Formal Methods for
Service Composition. Annals of Mathematics, Computing and Teleinformatics, 1
(5):1–10, 2007.

J. Thistle and W. Wonham. Supervision of infinite behavior of discrete-event sys-
tems. SIAM Journal on Control and Optimization, 32(4):1098–1113, 1994.

Bibliography 185

Wiebe van der Hoek and Michael Wooldridge. Tractable multiagent planning for
epistemic goals. In AAMAS, pages 1167–1174, 2002.

Ron van der Meyden. Finite state implementations of knowledge-based programs.
In FSTTCS, pages 262–273, 1996.

Moshe Vardi. An automata-theoretic approach to linear temporal logic. In Faron
Moller and Graham Birtwistle, editors, Logics for Concurrency, volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer Berlin / Heidelberg,
1996.

Victor Vianu. Automatic verification of database-driven systems: a new frontier. In
Proc. of the 12th Int. Conf. on Database Theory (ICDT 2009), pages 1–13, 2009.

Nico Wallmeier, Patrick Hütten, and Wolfgang Thomas. Symbolic synthesis of
finite-state controllers for request-response specifications. In In CIAA, LNCS,
pages 11–22. Springer, 2003.

Dirk Walther, Wiebe van der Hoek, and Michael Wooldridge. Alternating-time
temporal logic with explicit strategies. In Proc. of the Conference on Theoretical
Aspects of Rationality and Knowledge, pages 269–278, New York, NY, USA, 2007.
ACM Press. doi: 10.1145/1324249.1324285.

Hongbing Wang, Xuan Zhou, Xiang Zhou, Weihong Liu, Wenya Li, and Athman
Bouguettaya. Adaptive service composition based on reinforcement learning. In
Service-Oriented Computing - 8th International Conference, ICSOC 2010, San
Francisco, CA, USA, December 7-10, 2010. Proceedings, volume 6470 of Lecture
Notes in Computer Science, pages 92–107, 2010. ISBN 978-3-642-17357-8.

Mathias Weske. Business Process Management: Concepts, Languages, Architec-
tures. Springer, 2007.

Frank Wolter and Michael Zakharyaschev. Temporalizing description logic. In
D. Gabbay and M. de Rijke, editors, Frontiers of Combining Systems, pages 379–
402. Studies Press/Wiley, 1999.

K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event systems.
Discrete Event Dynamic Systems, 6:241–273, 1996. ISSN 0924-6703.

W. M. Wonham. Supervisory control of discrete-event systems. Technical Report
ECE 1636F/1637S 2011-12, University of Toronto, Toronto, Canada, 2012.

W. M. Wonham and P. J. Ramadge. On the supremal controllable sub-language
of a given language. SIAM Journal on Control and Optimization, 25(3):637–659,
1987.

M. Wooldridge and A. Lomuscio. A computationally grounded logic of visibility,
perception, and knowledge. Logic Journal of the IGPL, 9(2):273–288, 2001.

Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley & Sons,
2nd edition, 2009a.

186 Bibliography

Michael Wooldridge. Introduction to Multi-Agent Systems. John Wiley & Sons,
second edition, 2009b. ISBN 978-0470519462.

Michael J. Wooldridge. Introduction to Multiagent Systems. John Wiley & Sons,
Inc., New York, NY, USA, 2009c.

D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating daml-s web services
composition using shop2. In Proc. of ISWC-03, 2003.

N. Yadav and S. Sardina. Qualitative approximate behavior composition. Logics in
Artificial Intelligence, pages 450–462, 2012.

Nitin Yadav and Sebastian Sardina. Decision theoretic behavior composition. In
Tumer, Yolum, Sonenberg, and Stone, editors, Proc. of AAMAS, pages 575–582,
Taipei, Taiwan, May 2011. ACM Press.

Nitin Yadav and Sebastian Sardiña. Reasoning about agent programs using atl-like
logics. In JELIA, pages 437–449, 2012.

Nitin Yadav, Paolo Felli, Giuseppe De Giacomo, and Sebastian Sardiña. Supremal
realizability of behaviors with uncontrollable exogenous events. In IJCAI, 2013.

J. Yang and M.P. Papazoglou. Service components for managing the life-cycle of
service compositions. Information Systems, 29(2):97–125, 2004.

Zhonghua Zhang and W. M. Wonham. STCT: An efficient algorithm for supervisory
control design. In Symposium on Supervisory Control of Discrete Event Systems,
pages 249–6399, 2001.

Haibo Zhao and Prashant Doshi. A Hierarchical Framework for Composing Nested
Web Processes. In Proc. ICSOC 2006, 2006.

	Introduction
	Thesis Structure and Contribution

	Preliminaries
	Transition systems
	Linear Temporal Logic
	Branching Temporal Logic
	Alternating Temporal Logic
	Modal -calculus

	Synthesis via Game Structures
	Agent Behavior Composition via ATL
	Agent Behavior Composition Problem
	Agent Behavior Synthesis via ATL
	Implementation
	Discussion

	Generalized 2GS
	Two-player Game Structures
	Conditional Planning
	Agent Planning Programs
	Multitarget Agent Composition
	Implementation
	Discussion

	A case study: Smart Homes
	Framework
	Case Study
	Solver
	Experiments on the case study

	Supervisory Control for Behavior Composition
	Supervisory Control Theory
	Generators and languages
	Specifications and supervisors
	Nonblocking Supervisors
	On the supremal controllable sublanguage

	A fixpoint computation of supC(K)
	On the complexity of the regular case
	Computation of supC(K) by iterative refinement
	SCT as DFA game

	SCT for Agent Behavior Composition
	DES-based Agent Behavior Composition
	Composition under Constraints
	Supremal Realizable Target Fragment

	Discussion

	On the Supremal Realizable Target
	Preliminaries
	Supremal Realizable Target Behavior
	Composition with Exogenous Events
	Conditional SRTBs
	Conformant SRTBs

	Discussion

	Generalized Agent Protocols for LTL
	Generalized Planning for LTL
	Planning in AI
	Generalized Planning in AI
	Planning for LTL
	Generalized Planning for LTL
	Discussion

	Agents and Interpreted Systems
	Interpreted Systems

	Embedding strategies into Agent protocols
	Synthesizing Agent Protocols From LTL Specifications
	State-based and History-based Solutions
	Framework
	Problem
	State-based solution
	History-based solution
	Embedding strategies into protocols
	Representing strategies
	A notable variant

	Discussion

	Synthesis via Model Checking for BDI agents
	BDI Programming
	ATL and ATLES Logics of Coalitions
	BDI-ATLES: a logic for BDI Agents

	Model Checking BDI-ATLES
	Extended Model M,
	Model checking BDI-ATLES

	Discussion

	Towards adding data to processes
	The setting
	A Framework for Artifact-centric Processes

	BDI-ATLES Rational Strategies

