
Logical Methods for the
Hierarchy of Hyperlogics

A dissertation submitted towards the degree Doctor of Natural Sciences (Dr. rer. nat.)
of the Faculty of Mathematics and Computer Science of Saarland University

Jana Hofmann

Saarbrücken, 2022

Day of Colloquium December 12, 2022
Dean of Faculty Prof. Dr. Jürgen Steimle
Chair of the Committee Prof. Dr. Jan Reineke
Examination Board Prof. Bernd Finkbeiner, Ph.D.

Prof. Dr. Juha Kontinen
Prof. David A. Naumann, Ph.D.

Academic Assistant Dr. Hadar Frenkel

Abstract

In this thesis, we develop logical methods for reasoning about hyperproperties. Hy-
perproperties describe relations between multiple executions of a system. Unlike trace
properties, hyperproperties comprise relational properties like noninterference, sym-
metry, and robustness. While trace properties have been studied extensively, hyper-
properties form a relatively new concept that is far from fully understood. We study
the expressiveness of various hyperlogics and develop algorithms for their satisability
and synthesis problems.

In the rst part, we explore the landscape of hyperlogics based on temporal logics,
rst-order and second-order logics, and logics with team semantics. We establish that
rst-order/second-order and temporal hyperlogics span a hierarchy of expressiveness,
whereas team logics constitute a radically dierent way of specifying hyperproperties.
Furthermore, we introduce the notion of temporal safety and liveness, from which
we obtain fragments of HyperLTL (the most prominent hyperlogic) with a simpler
satisability problem.

In the second part, we develop logics and algorithms for the synthesis of smart con-
tracts. We introduce two extensions of temporal stream logic to express (hyper)pro-
perties of innite-state systems. We study the realizability problem of these logics
and dene approximations of the problem in LTL and HyperLTL. Based on these ap-
proximations, we develop algorithms to construct smart contracts directly from their
specications.

Zusammenfassung

In dieser Arbeit beschreiben wir logische Methoden, um über Hypereigenschaften zu
argumentieren. Hypereigenschaften beschreiben Relationen zwischen mehreren Aus-
führungen eines Systems. Anders als pfadbasierte Eigenschaften können Hypereigen-
schaften relationale Eigenschaften wie Symmetrie, Robustheit und die Abwesenheit
von Informationsuss ausdrücken. Während pfadbasierte Eigenschaften in den letzten
Jahrzehnten ausführlich erforscht wurden, sind Hypereigenschaften ein relativ neues
Konzept, das wir noch nicht vollständig verstehen. Wir untersuchen die Ausdrucks-
mächtigkeit verschiedener Hyperlogiken und entwickeln ausführbare Algorithmen,
um deren Erfüllbarkeits- und Syntheseproblem zu lösen.

Im ersten Teil erforschen wir die Landschaft der Hyperlogiken basierend auf tem-
poralen Logiken, Logiken erster und zweiter Ordnung und Logikenmit Teamsemantik.
Wir stellen fest, dass temporale Logiken und Logiken erster und zweiter Ordnung eine
Hierarchie an Ausdrucksmächtigkeit aufspannen. Teamlogiken hingegen spezieren
Hypereigenschaften auf eine radikal andere Art. Wir führen außerdem das Konzept
von temporalen Sicherheits- und Lebendigkeitseigenschaften ein, durch die Fragmen-
te der bedeutensten Logik HyperLTL entstehen, für die das Erfüllbarkeitsproblem ein-
facher ist.

Im zweiten Teil entwickeln wir Logiken und Algorithmen für die Synthese digi-
taler Verträge. Wir führen zwei Erweiterungen temporaler Stromlogik ein, um (Hy-
per)eigenschaften in unendlichen Systemen auszudrücken. Wir untersuchen das Rea-
lisierungsproblem dieser Logiken und denieren Approximationen des Problems in
LTL und HyperLTL. Basierend auf diesen Approximationen entwickeln wir Algorith-
men, die digitale Verträge direkt aus einer Spezikation erstellen.

Acknowledgements

It’s been nine years since I moved to Saarbrücken to study Computer Science. I would
never have thought back then that I would stay for so long. The fact that I did is due
to the amazing people that make this place so absolutely wonderful. Their passion
for research (and teaching!) is truly inspiring and made me feel welcome from the
very rst semester of my Bachelor’s studies. My very rst thanks, therefore, goes to
everyone who dedicates so much of their time, energy, and love to this campus.

I am incredibly grateful to Bernd for allowingme to be part of his group and guiding
me through this journey. It always felt as if you knew exactly what kind of guidance I
needed. Your door was open whenever I needed advice or to discuss some proof, but
I never felt pressured in any way. Thank you for placing your complete trust in my
abilities and for valuing my ideas (even at times when these ideas were clearly not that
valuable). The many things you taught me about research and academic life couldn’t
be more valuable. You also knew when to let me spread my wings and go o exploring
to nd out what excites me.

My amazing colleagues are the main reason I enjoyed this journey so much and
why I really missed going to the oce during covid lockdowns. Alex, Chris, Christa,
Felix, Florian, Frederik, Hadar, Hazem, Jan, Jesko, Julian, Leander, Malte, Martin, Max,
Michael, Mouhammad, Niklas, Noemi, Norine, Peter, Raven, Sabine, Swen: thank you
for sharing my excitement, for complaining with me about Reviewer 2, for your honest
feedback, for pre-deadline dinners with Indian takeout, for many good laughs, for (too)
many coee breaks, and in general for being such nice people. Having been part of the
Reactive Systems Group makes me feel like the luckiest person. Special thanks go to
Chris, my oce mate and good friend throughout the years. Thank you for walking
the path with me right from the rst semester until now. You taught me how to make
an introduction sound exciting; I hope this work lives up to your standards.

If there’s one thing I’ve learned during this Ph.D., it’s that research really is team-
work. To my co-authors, Bernd, Chris, David, Fan, Florian, Noemi, Norine, Markus,
Jonni, Juha, Julia, Leander, Raven, and Yannick: thank you for many lively discussions,
for sharing your perspectives, and for convincing me when mine were wrong. I really
enjoyed our projects. I would also like to thank Chris, Hazem, Noemi, Niklas, Raven,
and Yannick for their feedback on this thesis; for nding typos, and pointing out all

the things that needed polishing. Thank you for your valuable time. This also applies
to Dave and Juha, who kindly agreed to review this thesis.

To the whole 2020/21 Programming I team: it was an absolute pleasure to go on
this adventure with you; I still cannot believe we managed to organize an introductory
lecture with 600 students in the midst of a pandemic and still receive so much positive
feedback. I learned a lot during that time (and not just about Discord bots). Another of
my favorite teaching experiences was the re-invention of our maths precourse. Huge
thanks to everyone who was part of that; it was quite a journey. I also wouldn’t want
to miss the many Wednesday evenings at Al Bacio’s.

I was fortunate to share my time in Saarbrücken with an inspiring group of friends
who made the city truly feel like home. Caro, Chris, Clara, Jesko, Kathrin, Nathalie,
Noemi, Norine, Sebastian, and Yannick: thank you for these many evenings alternating
between food from Café Bali, a good movie, port wine, watching soccer, and cooking
together. Thank you for makingme laugh, for listening, and for discussing all the small
and big things in life. To our Mädelsrunde: you make me feel like being a female com-
puter science researcher is the most normal thing in the world. I am excited to follow
your future career paths and will always be cheering for you. Thank you, Sebastian,
for watching all those Bond movies with me during the second covid lockdown. This
was a busy and sometimes lonely period in which our shared evenings were something
to look forward to. Liebe Becce, Kiki, Petti und Susi: Wir kennen uns nun schon weit
mehr als unser halbes Leben lang. Danke, dass ihr mich immer noch versteht, auch
wenn wir mittlerweile so unterschiedliche Leben führen.

No one knows and full-heartedly supports me like my family. Danke, Kira, dass du
immer da bist, dass du mir so ähnlich und doch gerade richtig anders bist, um mir ein
Vorbild zu sein. Danke, Mama und Papa, dass ihr mir beigebracht habt, meine Ziele zu
verfolgen und an mich zu glauben. Danke, dass euer Zuhause so einfach wieder mein
Zuhause werden konnte. Eurer Interesse, eure Unterstützung und eure Liebe haben
mich immer begleitet und diesen Weg erst möglich gemacht.

Contents

1 Introduction 1

1.1 Reactive Systems and Temporal Logics 3
1.2 Hyperproperties . 5
1.3 Satisability and Synthesis . 8
1.4 Smart Contracts . 10
1.5 Contributions . 11

1.5.1 Expressiveness of Hyperlogics 12
1.5.2 Algorithms for Hyperlogics . 14

1.6 Publications . 15
1.7 Structure of This Thesis . 15

I The Hierarchy of Hyperlogics 17

2 Preliminaries 18

2.1 Properties . 18
2.2 Models of Computation . 20
2.3 Denitions of Logics . 22

2.3.1 Linear-time Logics . 23
2.3.2 Branching-time Logics . 25
2.3.3 Linear-time Hyperlogics . 27
2.3.4 Branching-time Hyperlogics . 30

3 An Expressiveness Hierarchy of Hyperlogics 32

3.1 The Hierarchy of Linear-time Hyperlogics 35
3.1.1 HyperQPTL versus FO[<, 𝐸] . 35
3.1.2 S1S[𝐸] versus HyperQPTL . 36
3.1.3 A Case for HyperQPTL . 42

3.2 TeamLTL in the Linear-time Hierarchy 42
3.2.1 Expressive Extensions of TeamLTL 44
3.2.2 TeamLTL versus HyperQPTL+ 47

3.2.3 TeamLTL versus HyperQPTL 51
3.3 The Hierarchy of Branching-time Hyperlogics 53

4 Satisability of Temporal Safety and Temporal Liveness 58

4.1 Temporal Safety . 59
4.2 Temporal Liveness . 65
4.3 Finding Largest Models . 67

4.3.1 Algorithm . 67
4.3.2 Implementation and Experiments 68

5 Related Work 71

II Synthesizing Smart Contracts 74

6 Preliminaries 75

6.1 Reactive Synthesis . 75
6.2 Temporal Stream Logic . 77
6.3 Solidity . 81

7 Parameterized Synthesis of Smart Contracts 82

7.1 Recap: Synthezing Smart Contract State Machines from PastTSL 84
7.1.1 Specication . 84
7.1.2 Synthesis and Translation to Solidity 86

7.2 Free Choices and Deadlock Detection 87
7.3 Specifying Smart Contracts with Parameterized PastTSL 89

7.3.1 Parameterized TSL . 90
7.3.2 Parameterized Voting Specication 90
7.3.3 ERC20 Token System . 90

7.4 Parameterized PastTSL Synthesis . 93
7.4.1 Parameterized LTL . 93
7.4.2 Problem Denition . 93
7.4.3 Synthesizing Smart Contracts with Parameters 94
7.4.4 Limitations in Expressiveness 100

7.5 Implementation and Evaluation . 101
7.5.1 Implementation . 101
7.5.2 Evaluation . 103

8 Smart Contract Synthesis Modulo Hyperproperties 107

8.1 TSL for Hyperproperties . 109
8.1.1 HyperTSL . 109

8.1.2 HyperTSLrel . 110
8.2 Specifying Hyperproperties in Smart Contracts 110
8.3 Synthesis from HyperTSL Specications 113

8.3.1 Realizability of ∀∗ HyperTSL . 114
8.3.2 Realizability of ∃∗ HyperTSL 116

8.4 Pseudo Hyperproperties . 117
8.4.1 Combining PastTSL Synthesis with HyperTSL 117
8.4.2 Denition of Pseudo Hyperproperties 118
8.4.3 Pseudo Hyperproperties in Synthesis 120

8.5 Resolving Choices with Repair . 123
8.6 Implementation and Experiments . 124

9 Related Work 128

10 Discussion 131

10.1 Conclusions . 131
10.2 Outlook . 133

10.2.1 Expressiveness . 133
10.2.2 Algorithms . 134

Bibliography 135

Chapter 1

c

Introduction

In the last decades, the computer has changed our society at an astonishing pace.1 Most
critical infrastructures, such as communication, transportation, and nancial technol-
ogy, are now built on software systems. With the rise of autonomous systems, this
trend will only intensify. In such complex systems, errors are hard to nd and can
have severe consequences, especially when they occur in the aviation industry [145]
or aect our health system [75]. In the nancial sector, millions of dollars have been
stolen in recent years due to bugs in the implementation of blockchain-based cryp-
tocurrencies and smart contracts [192, 163]. To increase the robustness of such critical
systems and secure them against malicious attacks, their development must be based
on rigorous mathematical foundations.

Formal methods is a branch of computer science that provides techniques for the
development of systems that provably satisfy certain properties. As natural language
cannot unambiguously express such properties, formal methods are based on logics,
that is, mathematical specication languages. Many properties of concern are tem-
poral properties, which describe the behavior of a system over time. Logics for the
expression of temporal properties form the cornerstone of the formal methods eld.
Algorithms based on temporal logics revolutionized the hardware design process in
the 1990ies and early 2000s [142, 105, 200]. Nowadays, temporal logics are employed
routinely by companies such Amazon Web Services and Microsoft [185, 160]. In re-
cent years, formal methods have also found increasing application for the verication
of smart contracts [118, 188, 1], which led to the creation of various start-ups. The suc-
cess of temporal logic is the result of decades of foundational research. There exists a
multitude of dierent logics, whose relative expressiveness is well understood. Algo-
rithms based on symbolic methods or on the connection of temporal logics to automata
can now automatically verify systems with millions of states [38].

1Here, former IBM CEO Thomas J. Watson comes to mind, who in 1943 allegedly said that “there is
a world market for maybe ve computers”. Even though representative of its time, this statement seems
to be an urban myth [214].

1

Section 1.0. 2

The expressiveness of temporal logics is, by design, limited to reasoning about sin-
gle system executions. The need for more expressive logics became particularly clear
after the discovery of the Meltdown [166] and Spectre [149] attacks in 2017. They
show that an attacker can obtain secret information by observing dierences between
multiple CPU executions. To specify the absence of such a vulnerability, we need rela-
tional properties, i.e., properties that compare multiple executions of a system. Similar
properties can be found in various branches of computer science; further examples
are robustness [69] and fairness properties like symmetry [94]. In 2010, Clarkson and
Schneider introduced hyperproperties [51] as a unifying notion for this type of prop-
erties. Compared to standard temporal properties, the research on hyperproperties
is still in its infancy. The fact that hyperproperties relate multiple system executions
makes the development of a comprehensive theory a challenging task. We still lack a
deep understanding of the various ways to specify hyperproperties. We also lack the
variety of logical reasoning methods that we now have for standard temporal logics.

In this thesis, we advance the logical foundations for hyperproperties. We explore
the expressiveness of dierent types of hyperlogics, design novel logics, and develop
algorithms for logical reasoning. We do so in two parts.

In the rst part, we advance our understanding of existing logics for hyperprop-
erties. We systematically study the relative expressiveness of hyperlogics built from
dierent types of standard (non-relational) logics. We consider temporal logics, rst-
order (FO) and second-order (SO) logics, and logics with team semantics. We show that
hyperlogics based on temporal and FO/SO logics form a strictly ordered hierarchy of
expressiveness. Hyperlogics based on team semantics, on the other hand, constitute a
new perspective on hyperproperties and are dicult to compare to other hyperlogics.
Furthermore, we investigate the satisability problem of HyperLTL, the most promi-
nent logic in the hierarchy. The satisability problem asks if a specication is satised
by any system at all; it can be used as a means of analysis, e.g., to nd implications
between specications. We introduce fragments of HyperLTL that have a simpler sat-
isability problem and provide algorithmic approximations of the problem.

In the second part, we describe novel logics to construct feasible algorithms for the
synthesis problem. The synthesis problem is the task of automatically constructing a
system from a specication; it is extremely intriguing but known to be computationally
hard, especially for hyperproperties. Our goal is to synthesize smart contracts, which
are a prime example of the necessity of developing software systems based on rigor-
ous foundations. We rst describe the synthesis of smart contracts from a functional
specication, for which we equip temporal stream logic (TSL) with universally quanti-
ed parameters. In a second step, we extend the approach to hyperproperties specied
in the novel logic HyperTSL. While we explicitly aim to develop logical methods for
smart contracts, the applicability of our techniques is not limited to smart contracts
but can be extended to other software and innite-state systems.

Section 1.1. Reactive Systems and Temporal Logics 3

This thesis builds on a range of concepts, on which we elaborate in the following
sections. We rst provide background on reactive systems and temporal logics as well
as hyperproperties. We further discuss the satisability and synthesis problem and give
a quick introduction to smart contracts. Finally, we present the main contributions of
this thesis in more detail and provide a list of supporting publications.

1.1 Reactive Systems and Temporal Logics

The goal of formal methods is to develop systems together with proofs of their correct-
ness. One such method is verication, which proves that an existing system is correct.
Another is synthesis, which constructs a system directly from a formal specication.
Other approaches concern the analysis of the specication, for example the satisabil-
ity problem. For any of these methods, we must 1) decide how to represent the system
with an abstract model and 2) describe its properties in a suitable logic.

Modeling Reactive Systems. This thesis is concerned with reactive systems [131],
which are systems that run for an indenite amount of time and interact continuously
with their environment. Typical reactive systems are cyber-physical systems, which
connect digital systems with the physical world, for example in autonomous vehicles.
Also software, for example smart contracts, are often reactive systems. There are vari-
ous ways to model reactive systems. The standard model are transition systems, which
consist of states and transitions, which describe how the systems reacts to inputs.

Example 1.1. The transition system below is one of the classic examples from the
literature. It models a system in which two agents (for example, two processes) both
need access to a shared resource (for example, a memory location). The transition
system implements a scheduler that decides which agent gets access depending on
the requests it receives. We use the Boolean proposition reqX to state that agent 𝑋
requests access. grantX denotes that agent 𝑋 is granted access by the scheduler.

𝑠1 𝑠2

reqB ∧
¬grantA ∧ grantB

¬reqA ∧ ¬reqB ∧
¬grantA ∧ ¬grantB

reqA ∧ ¬reqB ∧
grantA ∧ ¬grantB

¬reqA ∧ ¬reqB ∧
¬grantA ∧ ¬grantB

¬reqA ∧ reqB ∧
¬grantA ∧ grantB

reqA ∧
grantA ∧ ¬grantB

The two states of the system memorize which of the agents was the last to get access
to the resource. Like that, if both agents request access, the agent that was not the
last to use the resource will get access.

Section 1.1. Reactive Systems and Temporal Logics 4

Logics for Temporal Properties. The properties we are interested in are temporal
properties, which describe the behavior of the system over time. Typical temporal prop-
erties are safety and liveness properties [158, 8, 7]. Safety properties describe what the
system is not supposed to do, for instance, “the robot never enters the safety-critical
area of the production hall” or “the server cannot be accessed if the user did not enter
the correct password beforehand”. Liveness properties, on the other hand, describe
how to satisfy a specication in the future, for example “the car eventually reaches
its destination”. A class of logics that describe temporal properties are called temporal
logics and originate in the work of Arthur Prior [164]. The most successful temporal
logic is linear temporal logic (LTL) [190], for which, among other contributions to for-
mal methods, Amir Pnueli received the Turing award in 1996. LTL combines Boolean
connectives such as “and” ∧ and “not” ¬ with temporal modalities that reason about
the order of events produced by a system.

Example 1.2. For the transition system depicted in Example 1.1, the following LTL
formula expresses the safety property that no grant is given spuriously when no
agent requests it.

(¬reqA ∧ ¬reqB → ¬grantA ∧ ¬grantB)

Above, the operator states that a formula has to hold at all times. A typical liveness
property is the statement that every request by agent A is eventually () answered
with a grant.

(reqA → grantA)

Based on LTL, a range of other temporal logics have been proposed. Most of them
either take the linear-time view or the the branching-time view of a system. Linear-time
logics like LTL argue about the dierent execution traces of a system, while branching-
time logics like computation tree logic (CTL∗) [74] see the system executions as a tree,
where every branch stands for a possible next step of the system. Branching-time
logics thus describe the potential nondeterminism in the system. Which view is the
better one to model time is a long-standing debate in the eld of formal methods [221].

Temporal properties are not only expressible in temporal logics but also in other
types of logics like rst-order and second-order logics. Most notably, Kamp’s Theo-
rem [144], as interpreted by Gabbay, Pnueli, Shelah, and Stavi [109], states that LTL
can express the same properties as rst-order monadic logic of order (FO[<]). FO[<] is
a rst-order logic that is interpreted over the natural numbers N. It has only monadic
(unary) predicates except for the interpreted < relation.

Since the proposal of LTL in the 1970ies, temporal logics have been widely adopted
in industry (see, e.g., [223] for an overview). Due to the comparatively small size of a
circuit, the rst applications of temporal logics were in hardware verication, for ex-

Section 1.2. Hyperproperties 5

ample at Intel [97]. In the 2000s, there have been rst eorts to standardize temporal
specication languages [155]. The advancements of large-scale verication techniques
based on symbolic methods [38, 49, 222] paved the path for an increasing application of
formal methods to software as well [14]. Nowadays, temporal logics like TLA+ [159]
are used regularly in industry, for example at Microsoft [161] or Amazon Web Ser-
vices [185].

1.2 Hyperproperties

Hyperproperties describe relations between multiple execution traces of a system. A
prominent example is noninterference [116], which states that the output some nor-
mal, low-security user receives from a system may not depend on the initial value
of some high-security variable in the system. Dependency is a hyperproperty: if the
user provides the system with the same input, then it must receive the same output,
even if the value of the secret variable is dierent. A general, set-based denition of
hyperproperties was introduced in 2010 by Clarkson and Schneider [51]. It plainly de-
nes hyperproperties as sets of sets of traces, as opposed to temporal trace properties
(as dened by LTL), which are sets of traces. Before the introduction of the general
term, hyperproperties haven been studied mostly individually in various branches of
computer science, especially in information ow security and privacy research.

Information Flow Security. Information ow security reasons about the ow of
sensitive data in a system. Besides noninterference, a typical property is observational
determinism [233], which expresses that observing the same sequence of low-security
inputs leads to observing the same low-security outputs. A prominent privacy prop-
erty is dierential privacy, which requires that similar inputs lead to a limited amount
of change in the outputs [72]. Sometimes, ow of information cannot be prevented
or is even desired. Declassication properties specify when and how much informa-
tion is allowed to become public [202]. All the above properties are relational prop-
erties. For information ow policies, most work focuses on the verication problem,
see, for example, [23] for an overview. Many information ow policies are implicitly
universally quantied, that is, they relate any 𝑘 traces of the system. This makes it
possible to reduce the verication problem to verifying standard, non-relational prop-
erties. One of the major approaches is to perform a self-composition [18, 63], which
constructs the product of 𝑘 instances of the same system, and then applies classic ver-
ication methods on the resulting system. Some variant of self-composition can be
found at the heart of many approaches for the verication of hyperproperties, even
beyond purely universally quantied hyperproperties [94, 77, 27, 59]. Another veri-
cation approach is via relational Hoare logic [24, 106], which lifts standard Hoare logic

Section 1.2. Hyperproperties 6

to reasoning about two programs at the same time. Relational Hoare logics have also
been extended to probabilistic systems [19], quantitative reasoning [20], and 𝑘-safety
hyperproperties [213]. For an overview over relational verication based on Hoare
logics see [183]. There exists numerous other approaches for the verication of in-
formation ow policies, e.g. static approaches via abstract interpretation [12, 127, 45],
dynamic methods [234, 65, 44], and combinations of both [201].

Relational properties received considerable attention after the discovery of the
Meltdown [166] and Spectre [149] attacks, which revealed that most modern proces-
sors were amenable to sophisticated attacks that exploit the eects of speculative ex-
ecutions at the microarchitectural level. As a result, various methods and tools were
proposed to detect and prevent such attacks (e.g., [226, 11, 68]). The core problem of
Meltdown and Spectre is that speculatively loaded data can be leaked to an attacker
through cache timing side channels. A side channel attack is relational: to learn what
data was loaded into the cache, the attacker compares the access time to certain mem-
ory locations. The absence of side channels can therefore only be ensured by checking
relational properties, for example speculative noninterference [119].

Beyond Information Flow Security. The interest in hyperproperties has for a long
time been driven by information ow policies, but over time it became apparent that
many properties outside the privacy area are hyperproperties as well. Examples are
robustness [69] (“if the system receives similar inputs, it produces similar outputs”)
and fairness properties like symmetry [94] (“the system treats dierent users symmet-
rically if they act symmetrically”). Many epistemic properties are hyperproperties as
well. Epistemic properties argue about the knowledge of agents in distributed systems
and have been studied long before the term “hyperproperties”was coined [76, 126, 125].
Some epistemic logics, for example LTL extended with the knowledge operator [126],
can be captured by logics for hyperproperties [195]. Epistemic logics themselves have
also been applied to specify information ow policies like noninterference and declas-
sication [15]. Recently, some instances of counterfactual causality in reactive systems
have been interpreted as hyperproperties [54, 53]. Counterfactual reasoning tries to
determine the causes that led to some event, for example what inputs are the reason
for the observed outputs.

Logics for Hyperproperties. Since the introduction of hyperproperties, various log-
ics for the expression of hyperproperties have been introduced, most of which build
on existing non-relational logics. The most prominent hyperlogics is HyperLTL [50],
which is an extension of LTL. HyperLTL uses the syntax of LTL and adds prexed
quantiers ∀ and ∃ to quantify traces from the set of executions a system can produce.
The atomic propositions of the inner LTL formula are indexed with the quantied trace
variables to denote what trace they refer to.

Section 1.3. Hyperproperties 7

Example 1.3. Symmetry in the scheduling system depicted in Example 1.1 would
mean that neither process A nor process B are favored over the other by the scheduler.
One way to express symmetry in HyperLTL is the following formula.

∀𝜋.∀𝜋 ′. ((reqA𝜋 ↔ reqB𝜋 ′) ∧ (reqB𝜋 ↔ reqA𝜋 ′))
→ ((grantA𝜋 ↔ grantB𝜋 ′) ∧ (grantB𝜋 ↔ grantA𝜋 ′))

The formula quanties two execution traces 𝜋 and 𝜋 ′ of the system and states that if
these two traces have the requests of agents A and B exactly swapped, than also the
grants for A and B must be swapped.

Based on HyperLTL, various algorithms for logical reasoning have been proposed,
tackling, for example, the verication [94, 59, 138], satisability [173, 82, 98], runtime
verication [5, 88, 57], and synthesis problems [86, 85]. The common algorithmic chal-
lenge of all these problems is to deal with quantier alternations (∀∃ or ∃∀ formulas),
which prevent direct reductions to the respective LTL problem. In Section 1.3, we
discuss in more detail the satisability and synthesis problem of HyperLTL.

By extending HyperLTL with additional features, more expressive logics have been
obtained, for example, for quantitative hyperproperties [89, 204] and hyperproper-
ties in asynchronous [122, 22, 35] and probabilistic systems [3, 2, 22]. Other hyper-
logics do not build on LTL but on other temporal logics, resulting, for instance, in
HyperCTL∗ [50] and HyperQPTL [195, 55].

While most hyperlogics are temporal logics, there also exist extensions of other
logical formalisms to hyperproperties. FO[<], for example, has been equipped with
an additional binary predicate, the equal-level predicate, resulting in the hyperlogic
FO[<, 𝐸]. The equal-level predicate relates points on dierent execution traces and
thereby enables the logic to express hyperproperties. Interestingly, while LTL and
FO[<] are expressively equivalent, HyperLTL and FO[<, 𝐸] are not [95]. Another type
of hyperlogic has been obtained by interpreting LTL, CTL, and CTL∗ under team se-
mantics [153, 120]. Team semantics provide an alternative to the classic Tarski se-
mantics of logics. In team semantics, formulas are not interpreted with respect to a
single assignment of variables but with respect to a set of assignments. The initial
idea behind team semantics was to dene compositional logics that can easily express
(in)dependence statements [137, 220]. It was later observed that temporal team logics
are actually hyperlogics [153]. The fact that they do not employ explicit quantica-
tion over traces or variables makes temporal team logics radically dierent from other
temporal hyperlogics. Indeed, the expressiveness of TeamLTL is incomparable to that
of HyperLTL [153].

Section 1.3. Satisability and Synthesis 8

1.3 Satisability and Synthesis

The study of logics is not an end in itself, the ultimate goal of formal methods is to
construct systems which, formally proven, satisfy the properties described in a logic.
In this thesis, we study the satisability problem as well as the synthesis problem.

Satisability. The satisability (SAT) question is one of the standard problems of
logics. For a given formula, it asks if there is any model that satises the formula.
In its negation, the problem can be formulated as “does the formula hold trivially on
every system?”. One application of SAT solving is as a preprocessing step to sanity-
check the properties one wants to enforce on a system. If a formula is unsatisable, the
specication probably does not express what was intended. With satisability solving,
it also possible to detect if two formulas imply each other, i.e., if one is the stronger
formulation of the other. Apart from formula preprocessing, satisability solvers are
hugely successful to encode and solve more complex problems both in academic and
industrial applications. SAT solvers are used, for example, for model checking [29,
177] and planning [113] problems, but also to resolve dependencies in custom package
installers [217], or even to analyze the eect of genes to diseases [170]. Even if the
Boolean SAT problem is famously NP-complete [60, 165], modern SAT solvers solve
formulas with hundreds of thousands of variables and millions of clauses [16]. There
is very active research on Boolean SAT solving: in 2021, over 50 tools competed in the
annual SAT solving competition [17].

The more expressive a logic is, the harder is its satisability problem. LTL satis-
ability solving is PSPACE complete [211]. For HyperLTL, the problem is PSPACE-
complete for formulas with a ∃∗∀∗ quantier prex but undecidable in general [82].
More precisely, the general problem sits in Σ1

1 and is thus highly undecidable, mean-
ing that it cannot be encoded in rst-order logic [98]. The tool EAHyper [87] is a
SAT solver for the decidable fragment of HyperLTL. It reduces the problem to LTL
satisability checking. For the undecidable fragment, the only algorithmic approach
is provided by the toolMGHyper [83], which implements a search for satisfying nite
trace sets of increasingly larger size.

Synthesis. The reactive synthesis problem, which dates back to Alonzo Church in
1953 [46], is considered the holy grail of formal methods. Its goal is to automatically
construct a reactive system (i.e., a transition system) from a given logical specication.
True to the motto “describe what to do, not how to do it”, the ultimate goal of synthe-
sis is to replace programming as we know it. The reactive synthesis problem can be
understood as a game between the environment (consisting of, for example, some user
input or sensor data) and the system to be synthesized. The environment produces an

Section 1.3. Satisability and Synthesis 9

input to which the system has to answer with an output. The environment produces
the next input in response, and so on and so forth. This game goes on (in theory) for-
ever and if the resulting execution trace satises the specication, the system player
wins. The synthesis task is thus to construct a strategy of how to choose the outputs
such that the system wins for every possible sequence of environment inputs. A nite
representation of this strategy as a transition system then implements the system.

Synthesis is an intriguing idea but turned out to be notoriously hard to solve. For
LTL, for example, the problem is known to be 2EXPTIME-complete [191] in the size
of the formula. First solutions for the synthesis problem are based on the work of
Büchi and Landweber [37] and proceed by explicit game solving. The formula is rst
translated into an automaton, in the case of LTL into a nondeterministic Büchi au-
tomaton [224]. In the next step, the automaton is determinized [203] and interpreted
as a game, where in every state, either the system player or the environment player
can choose the next move, and system states and environment states alternate. Solving
the game then determines if there is a winning strategy for the system player [191]. If
this is the case, the specication is realizable.

Since Church rst formulated the synthesis problem, there has been considerable
progress on the matter. Explicit methods based on parity game solving are combined
with a range of clever algorithmic ideas that decompose the LTL formula and construct
only the parts of the game that are needed to determine the winner of the game [169].
Inspired by the success for the verication task, symbolic methods group the states
of the game by encoding them with complex data structures, e.g., by representing the
transition function as a BDD [79, 73]. Bounded synthesis interprets the synthesis prob-
lem as a search problem by searching for a smallest implementation that satises the
formula [207, 78]. Other approaches simplify the synthesis problem by restricting the
type of formula, most successful in form of the GR(1) fragment, which assumes that
the LTL formula is given as a combination of assumptions and guarantees [189]. For
an overview over the history of the synthesis problem, see, for example, [80].

The progress on synthesis from LTL specications opens the door to solving the
task for more expressive logics. A recent extension of LTL is temporal stream logic
(TSL) [93], which extends LTL’s atomic propositions with cells that hold data from a
possibly innite domain. The cell mechanism is combined with uninterpreted func-
tions and predicates. Functions modify the cells whereas predicates can be used to
query properties of the contents of the cells. The synthesis question for TSL asks if
there is a strategy that satises the formula for every interpretation of the functions
and predicates. While TSL synthesis is in general undecidable, the problem can be
soundly approximated via LTL synthesis [93]. TSL has been successfully applied to
specify and synthesize an arcade shooter game running on an FPGA [112] and func-
tional reactive programs [92].

Section 1.4. Smart Contracts 10

Example 1.4. With TSL,we can express, for example, that the scheduler should count
how often each agent requested access to the shared resource. To do so, we introduce
two cells requestsA and requestsB and require that their value is incremented with
every request. If there is no request from the agent, the value of the cell should stay
the same. For agent A, this can be formulated as

((reqA → ÈrequestsA� requestsA + 1É) ∧
(¬reqA → ÈrequestsA� requestsAÉ))

Now, if both agents request access to the resource, the agent which accumulatedmore
requests so far should get access.

(reqA ∧ reqB ∧ requestsA > requestsB → grantA)

Synthesis from hyperproperties is even harder than synthesis from standard tem-
poral properties. So far, the synthesis has only been studied for HyperLTL, for which
the problem is undecidable already for formulas with two or more ∀ quantiers [86].
This excludes most of the relevant information ow policies, which often fall into the
∀2 fragment. As a remedy, there exist an implementation of bounded synthesis for ∀∗
HyperLTL formulas [86].

1.4 Smart Contracts

Cryptocurrencies, which are digital coins implemented on top of the blockchain, have
recently received a considerable amount of attention. The initial promise –making tra-
ditional banks superuous by employing distributed consensus algorithms – is faced
with frequent attacks and scams, in which millions of dollars are lost [192, 163]. Digital
coins and, more generally, smart contracts are thus a prime example why the develop-
ment of security-critical systems needs to be based on solid mathematical reasoning.

Blockchains. The underlying technology of smart contracts has, despite the recent
headlines, great potential. Smart contracts are small programs that digitally implement
an agreement between multiple parties. These are mostly contracts in which a certain
order of transactions needs to be observed, for example when selling or auctioning
goods. Other smart contract implement digital coins or token systems. The slogan
of smart contracts is “code is law” meaning that a contract written in a programming
language unambiguously determines the order of transactions – and not a classical,
potentially ambiguous, contract written in natural language. Smart contracts are de-
ployed on the blockchain. Blockchains are distributed ledgers, or, simply speaking, a
list of blocks with data. The key idea is that everyone in the distributed network agrees

Section 1.5. Contributions 11

on the current state of the blockchain. Whenever a new block needs to be appended to
the chain, a consensus algorithm is executed to ensure that everybody in the network
agrees on whether or not the block was successfully appended. Due to the consensus
mechanism, every successful interaction with the contract is irrefutably stored on the
blockchain. This has several consequences. First, there is no need for a trusted third
party watching the correct execution of the contract. Second, as the contract itself is
data on the blockchain, contracts cannot by altered once deployed. This produces trust
but also means that contracts cannot be updated, for example, to x a bug.

Ethereum Smart Contracts. The most popular blockchain for smart contracts is the
Ethereum blockchain [101]. Known Ethereum smart contracts are, for example, token
systems like non-fungible tokens (NFTs), which prove ownership over a specic item
like a piece of art. Most Ethereum smart contracts are implemented in Solidity [102],
an object-oriented programming language with inuences from C++, Javascript, and
Python. Solidity also has some custom features like the possibility to rollback all state
changes made by the current function call. Another feature is the possibility to send
Ether, Ethereum’s native currency, between dierent contract addresses. Solidity smart
contracts are compiled to Bytecode that is executed on the Ethereum Virtual Machine
(EVM). As a change of state needs to validated on the blockchain, every transaction
with the contract costs gas, for which users commonly pay in Ether.

Formal Methods for Smart Contracts. Fueled by the many bugs that led to a de-
crease in trust, there is very active research on formal foundations for smart contracts.
Some eorts have been invested to formally describe the semantics of (parts of) Solid-
ity and the EVM [117, 141, 124, 28]. Other approaches propose new languages with a
formal semantics or build-in statemachines [52, 208, 1]. Formalmethods for smart con-
tracts are enabled by the fact that the programs implementing the contract are usually
quite small. We focus on the temporal control ow for smart contracts, which species
the order of transactions that needs to be followed. There is a number of successful
approaches to model check smart contracts against linear-time as well as branching
time temporal logics [188, 215, 184]. Another line of work models the temporal con-
trol ow of smart contracts with a transition system, which is then checked against
the implementation [227, 157] or automatically translated to Solidity code [174, 175].

1.5 Contributions

This thesis advances the logical foundations of hyperproperties. We examine the ex-
pressiveness of existing and novel logics for hyperproperties and design algorithms to
solve the satisability and synthesis problem of hyperlogics.

Section 1.5. Contributions 12

FO[<] = LTL

S1S = QPT

>

(a)

MPL = CTL∗

MSO = QCTL∗

>

(b)

HyperLTL

FO[<, 𝐸]

HyperQPTL

S1S[𝐸] = HyperQPTL+

<
<

<

(c)

HyperCTL∗

MPL[𝐸]

HyperQ-CTL∗

MSO[𝐸] = HyperQCTL∗

<
<

<

(d)

Figure 1.1: The linear-time hierarchies of standard logics (a) and hyperlogics (c), and
the branching-time hierarchies of standard logics (b) and hyperlogics (d).

1.5.1 Expressiveness of Hyperlogics

The main challenge when expressing hyperproperties lies, as compared to trace prop-
erties, in the additional dimension. Trace logics reason over one-dimensional traces.
Hyperlogics, on the other hand, reason over sets of traces and thus have a two-di-
mensional domain. This opens up a multitude of design decisions. Understanding the
impact of these decisions on the expressiveness of a logic is crucial to learn how we
can best express hyperproperties in dierent systems. We study a broad range of hy-
perlogics built from dierent types of base logics. Our aim is to understand how these
dierent features inuence the expressiveness of the logics.

AHierarchy of Hyperlogics. We explore the relative expressiveness of three dier-
ent types of hyperlogics: quantier-based temporal hyperlogics, hyperlogics based on
rst-order and second-order logics, and temporal team logics. Inspired by Kamp’s the-
orem, we rst examine quantier-based temporal hyperlogics in comparison to FO/SO
hyperlogics. To do so systematically, we interpret the addition of trace/path quantiers
to temporal logics and the equal-level predicate to FO/SO logics as general “recipes”
to obtain a hyperlogic. We apply these recipes to those temporal logics and FO/SO
logics that are known to be expressively equivalent in the standard hierarchy of logics.
As it turns out, the equal-level predicate for FO/SO logics consistently generates more
expressive logics than trace and path quantiers do for temporal logics. This results in
two hierarchies of expressiveness, as depicted in Figure 1.1. Our study also underlines
that lifting a logic to a hyperlogic is not always straight-forward. Subtle changes (e.g.,
in the denition of HyperQPTL) might lead to signicant jumps in expressiveness.

As a second step, we attempt to include hyperlogics obtained by interpreting LTL
under team semantics into the hierarchy of linear-time hyperlogics. We dene two

Section 1.5. Contributions 13

extensions of TeamLTL that can express two general classes of LTL-denable Boolean
relations. We discover that it is much harder to relate the expressiveness of these log-
ics to quantier-based temporal hyperlogics than it is for FO/SO hyperlogics. This is
because TeamLTL and its extensions do not use explicit quantication over the set of
traces. Instead, they reason about subsets by repeatedly splitting the set in two. Nev-
ertheless, we show that both logics can be captured by HyperQPTL+. We also dene
an expressive fragment of one of the logics, which is still incomparable to HyperLTL
but subsumed by HyperQPTL.

Extensions of TSL. As a concrete application of temporal logics, we examine tempo-
ral (hyper)properties occurring in the context of smart contracts. Our goal is to specify
a contract’s implicit control ow graph. Smart contracts are software systems, so we
need logics that allow for precise specications in the presence of variables that hold
data from innite domains. We dene extensions of TSL to accurately capture the
temporal properties of a smart contract. The rst extension equips TSL with univer-
sally quantied parameters. Using this logic, we can, for example, express that in an
election, each address may only vote once.

∀m. (vote(m) → ¬vote(m))

Above, vote models the method call and m is a parameter that refers to the sender of
the message. As second extension, we dene two hyperlogics based on TSL: HyperTSL
and HyperTSLrel2. The logics are designed to express hyperproperties in innite-state
systems and software in particular. With HyperTSL, we can express, e.g., symmetry in
voting protocols. For the case of an election with two candidates A and B, the following
formula states that the winner is chosen symmetrically as long as the votes come in
symmetrically on any two traces.

∀𝜋, 𝜋 ′.
(
(Èwinner� A()É𝜋 ↔ Èwinner� B()É𝜋 ′)
∧ (Èwinner� B()É𝜋 ↔ Èwinner� A()É𝜋 ′)

)
W

(
(voteA𝜋 = voteB𝜋 ′) ∨ (voteB𝜋 = voteA𝜋 ′)

)
Above, winner is the eld that stores who the current winner of the election is. Com-
pared with HyperTSL, HyperTSLrel predicates may range over several traces. We argue
that this additional expressiveness makes the logic less suited as basis for the synthesis
problem.

2Earlier versions of HyperTSL and HyperTSLrel were proposed as part of Julia Tillman’s Bachelor’s
thesis at Saarland University in 2020, which the author supervised together with Norine Coenen.

Section 1.6. Contributions 14

1.5.2 Algorithms for Hyperlogics

The development of formal methods based on hyperlogics is known to be a challenge.
Problems like satisability and synthesis are undecidable already for HyperLTL, which
is one of the least expressive logics we consider in this thesis. The question is thus how
to still nd solutions for these problems. We tackle this challenge from two directions.
On the one hand, we search for fragments of the logics for which the problems become
easier. This means either decidability or that we can reduce the problem to logics for
which we have better algorithms. On the other hand, we dene approximations of the
problems in simpler logics. As long as we can guarantee soundness, these approxima-
tions often work well in our experiments.

Temporal Safety and Liveness for the Satisability of HyperLTL. We examine
the satisability problem of ∀∗∃∗ HyperLTL, which is in general Σ1

1-complete. We in-
troduce the semantic notion of temporal safety and temporal liveness as a novel way
to obtain fragments of HyperLTL.We show that the complexity of the HyperLTL satis-
ability problem drops to coRE-complete for temporal safety HyperLTL formulas. We
obtain this result by a reduction to rst-order logic, what means that semi-decision
procedures like tableau become applicable. For temporal liveness, in contrast, the com-
plexity stays the same, already for very simple formulas. As a remedy, we propose a
sound approximation to nd largest models for general ∀∃∗ HyperLTL formulas. The
algorithm can show satisability as well as unsatisability.

Synthesis of Smart Contract Control Flows. We present algorithms to synthesize
the control ow of smart contracts from parameterized TSL and HyperTSL. In param-
eterized TSL, parameters are instantiated from an innite domain; the implied system
is thus an innite-state system. Therefore, we need to nd a way to (i) synthesize the
system and (ii) to nd a gas-saving, nite representation of the system in Solidity. We
propose to rst synthesize the nite system that results from any instantiation of the
parameters. Then, we split the system into a distributed, hierarchical structure that
represents the innite-state system in a compact way.

For HyperTSL, we rst show how to reduce the problem to HyperLTL synthesis
for the ∀∗ fragment and to LTL satisability for the ∃∗ fragment. More practically,
we describe a two-step approach to extend smart contract synthesis from TSL to Hy-
perTSL. The rst step introduces the notion of pseudo hyperproperties, which detects
hyperproperties that can be described as trace properties. Second, we propose to split
the synthesis to rst synthesize the most general system from the trace properties and
then rene the system according to the hyperproperties.

Section 1.7. Publications 15

1.6 Publications

Our contributions are the result of joint work with various co-authors. This thesis is
based on the following peer-reviewed publications.

[55] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The
Hierarchy of Hyperlogics. 34th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS 2019).

[84] Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Real-
izing Omega-regular Hyperproperties. 32nd International Conference on Com-
puter-Aided Verication (CAV 2020).

[225] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang.
Linear-timeTemporal LogicwithTeamSemantics: Expressivity andCom-

plexity. 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2021).

[25] Raven Beutner, David Carral, Bernd Finkbeiner, Jana Hofmann, and Markus
Krötzsch. Deciding Hyperproperties Combined with Functional Speci-

cations. 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2022).

[58] Norine Coenen, Bernd Finkbeiner, Jana Hofmann, and Julia Tillman. Smart Con-

tract Synthesis Modulo Hyperproperties. To appear at the 36th IEEE Computer
Security Foundations Symposium (CSF 2023).

Furthermore, the thesis contains material from the following publication, which is cur-
rently under review.

[91] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. Reactive
Synthesis of Smart Contract Control Flows. arXiv 2022. URL: https://
arxiv.org/abs/2205.06039.

1.7 Structure of This Thesis

We present our results in two parts. Each part starts with a chapter that establishes the
required preliminaries for the respective part. The preliminaries of Part II (Chapter 6)
build on the preliminaries for Part I. Apart from the preliminaries, both parts are suf-
ciently self-contained to be read independently. Each part concludes with a chapter
on closely related work. Finally, in Chapter 10, we discuss the results of this thesis and
elaborate on future work.

https://arxiv.org/abs/2205.06039
https://arxiv.org/abs/2205.06039

Section 1.7. Structure of This Thesis 16

Part I: The Hierarchy of Hyperlogics. In the rst part of the thesis, we explore the
general landscape of hyperlogics. Chapter 3 presents the expressiveness hierarchy. We
start with the strict hierarchy of linear-time temporal and FO/SO logics in Section 3.1.
In Section 3.2, we establish the relationship of two TeamLTL variants to quantier-
based temporal hyperlogics. Subsequently, in Section 3.3, we discuss the hierarchy of
branching-time temporal and FO/SO hyperlogics.

In Chapter 4, we present our contributions to the HyperLTL satisability problem.
Section 4.1 introduces the notion of temporal safety and presents the associated results.
Section 4.2 does the same of temporal liveness. Lastly, we present our algorithm to nd
largest models ∀∃∗ HyperLTL formulas in Section 4.3.

Part II: Synthesizing Smart Contracts. In the second part of the thesis, we turn
towards logics and algorithms specically for smart contracts. In Chapter 7, we ex-
amine the synthesis from trace properties. Section 7.1 recaps the synthesis of smart
contracts from TSL, which was presented in [91] but is not part of the contributions
of thesis. We extend the approach with an analysis of the resulting state machine in
Section 7.2. Next, in Section 7.3, we introduce TSL with parameters and show how
smart contracts can be conveniently specied with this logic. Section 7.4 presents a
synthesis algorithm that constructs smart contracts written in Solidity. We evaluate
the resulting tool on a benchmark set of dierent contracts in Section 7.5.

In Chapter 8, we discuss smart contract synthesis from hyperproperties. We intro-
duce HyperTSL and HyperTSLrel in Section 8.1 and show how to specify hyperproper-
ties of smart contracts in Section 8.2. In Section 8.3, we formally study the synthesis
problem of ∀∗ and ∃∗ HyperTSL. We dene the notion of pseudo-hyperproperties in
Section 8.4 and describe a sound check via HyperLTL SAT solving. Finally, in Sec-
tion 8.5, we describe a repair-like approach for HyperTSL synthesis building on TSL
synthesis. We evaluate the approach in Section 8.6.

Part I

The Hierarchy of Hyperlogics

17

Chapter 2

c

Preliminaries

In this chapter we dene the necessary preliminaries for the rst part of the thesis.
We rst introduce linear-time and branching-time properties, and hyperproperties.
We then discuss several models of computation. In the rst part of the thesis, we
represent reactive systems with nite-state transition systems, which are labeled with
subsets of atomic propositions. In proofs we also use counter machines and Turing
machines. Finally, we dene various temporal, rst-order and second-order logics for
the denition of properties and hyperproperties.

2.1 Properties

Traces. Let an alphabet Σ be given. An innite sequence 𝑡 ∈ Σ𝜔 is called a trace, a
nite sequence 𝑡 ∈ Σ∗ a nite trace. For a trace 𝑡 and a natural number 𝑖 ≥ 0, we
denote the 𝑖-th element of the trace by 𝑡 [𝑖]. We also use this notation for nite-length
traces and other sequences like tuples, provided that 𝑖 is not greater than the length
of the sequence. For a natural number 𝑗 ≥ 𝑖 , 𝑡 [𝑖, 𝑗] denotes the sequence 𝑡 [𝑖]𝑡 [𝑖 +
1] . . . 𝑡 [𝑗 − 1]𝑡 [𝑗]. Moreover, for an innite trace 𝑡 , 𝑡 [𝑖,∞] denotes the innite sux
of 𝑡 starting at position 𝑖 . For two traces 𝑡 and 𝑡 ′ over Σ and Σ′, we dene a zipping
operation zip(𝑡, 𝑡 ′) = (𝑡 [0], 𝑡 ′[0]) (𝑡 [1], 𝑡 ′[1]) . . ., which denes a trace over Σ×Σ′. We
call 𝑢 ∈ Σ∗ a prex of 𝑡 ∈ Σ𝜔 ∪ Σ∗ (written 𝑢 v 𝑡) if for some 𝑛, |𝑢 | = 𝑛, |𝑡 | ≥ 𝑛, and
𝑢 [0, 𝑛] = 𝑡 [0, 𝑛].

Trees. A tree T is dened as a partially-ordered innite set of nodes 𝑆 , where all nodes
share a commonminimal element 𝑟 ∈ 𝑆 , called the root of the tree. Moreover, for every
node 𝑠 ∈ 𝑆 , the set of its ancestors {𝑠′ | 𝑠′ < 𝑠} is totally ordered. We say that 𝑠′ is the
child node of 𝑠 , if 𝑠 < 𝑠′, and there is no 𝑠′′ such that 𝑠 < 𝑠′′ < 𝑠′. A Σ-labeled tree
(T , 𝐿) is a tree T equipped with a labeling function 𝐿 : 𝑆 → Σ, which labels every
node of T with an element from Σ. A path through a tree T is an innite sequence

18

Section 2.1. Properties 19

𝑝 = 𝑠0, 𝑠1, . . . such that for all 𝑠𝑖, 𝑠𝑖+1, node 𝑠𝑖+1 is the child node of 𝑠𝑖 . We use the same
path manipulation operations as for traces. The set of paths originating in node 𝑠 ∈ 𝑆 is
denoted by paths(T , 𝑠). If 𝑠 is the root node, we simplywrite paths(T). The set of nite
paths of T , denoted by nPaths(T), is dened as {𝑝′ | 𝑝′ v 𝑝 for some 𝑝 ∈ paths(T)}.
Given a path 𝑝 from a tree T , we dene its trace with respect to a labeling function 𝐿
as trace𝐿 (𝑝). We do not explicitly mention the labeling function if it is clear from the
context.

Linear-time and Branching-time Properties. A set of traces 𝑃 ⊆ Σ𝜔 is also called a
trace property or linear-time property. As an alternative concept, branching-time proper-
ties are sets of Σ-labeled trees. Themajority of this work is based on linear-time proper-
ties but we also study logics for branching-time properties. The class of𝜔-regular trace
properties is the class of properties that are recognizable by a Büchi automaton [197].

Denition 2.1. A Büchi automaton is a tuple (𝑄,𝑞0, Σ, 𝛿, 𝐹), where 𝑄 is a nite set of
states, Σ is the alphabet, 𝛿 ⊆ 𝑄 × Σ×𝑄 is the transition relation, and 𝑞0 ∈ 𝑄 the initial
state. If 𝛿 is a (partial) function, the automaton is deterministic. Furthermore, 𝐹 ⊆ 𝑄 is
a set of accepting states. A trace 𝑡 ∈ Σ𝜔 is accepted by a Büchi automaton A if there
exists an innite run 𝑟 ∈ 𝑄𝜔 such that 𝑟 visits states in 𝐹 innitely often, 𝑟 [0] = 𝑞0,
and for all 𝑖 , (𝑟 [𝑖], 𝑡 [𝑖], 𝑟 [𝑖 + 1]) ∈ 𝛿 .

We allow automata to be partial, even if they are deterministic. To change that, one
can add a non-accepting sink state.

The set of safety properties [158] is one of the most successful classes of linear
properties as it is amendable to easier monitoring and verication than arbitrary 𝜔-
regular properties [154, 133]. A safety property describes a set of nite prexes which
violate the property. Intuitively, they state which “bad things” are not allowed to oc-
cur. Their counterpart, liveness properties [158], are properties that describe that that
system must always be able to return to a “good” state.

Denition 2.2. A property 𝑃 is a safety property if it holds that for every trace 𝑡 ∉ 𝑃 ,
there exists a 𝑢 v 𝑡 such that for every 𝑡 ′ with 𝑢 v 𝑡 ′, we have 𝑡 ′ ∉ 𝑃 . A property 𝑃 is
a liveness property if for every 𝑢 ∈ Σ∗, there exists a 𝑡 ∈ Σ𝜔 with 𝑢 v 𝑡 and 𝑡 ∈ 𝑃 .

Formulated alternatively, safety properties describe a safety region, which should
not be left by a trace. This safety region can be dened as safety automata [154].

Denition 2.3. A safety automaton is a Büchi automaton in which 𝐹 = 𝑄 , i.e., all states
are accepting. A trace is thus accepted by a safety automaton i it has a run through
the automaton.

Theorem 2.1 ([154]). For every𝜔-regular safety property 𝑃 , there is a safety automaton
that accepts exactly those traces that are in 𝑃 .

Section 2.2. Models of Computation 20

Hyperproperties. Set-theoretically, hyperproperties are a simple generalization of
trace properties. A hyperproperty is a set of sets of traces 𝐻 ⊆ 2(Σ𝜔) [51]. While prop-
erties are a collection of “accepted” traces, hyperproperties can be seen as a collection
of accepted systems, where a system is described by the set of traces it can produce.
That way, hyperproperties can relate the traces of a system.

The concept of safety and liveness naturally extends to hyperproperties, resulting
in the class of hypersafety and hyperliveness properties. We lift the prex relation v
to sets of traces: a set of nite traces𝑈 ⊆ Σ∗ is a prex of a set𝑇 ⊆ Σ𝜔 (written𝑈 v 𝑇)
if, for every 𝑢 ∈ 𝑈 , there exists a 𝑡 ∈ 𝑇 such that 𝑢 v 𝑡 .

Denition 2.4 ([51]). A hyperproperty𝐻 is a hypersafety property if for every𝑇 ⊆ Σ𝜔

with 𝑇 ∉ 𝐻 , there exists a nite set 𝑈 ⊆ Σ∗ with 𝑈 v 𝑇 such that, for every 𝑇 ′ ⊆ Σ𝜔

with 𝑈 v 𝑇 ′, we have 𝑇 ′ ∉ 𝐻 . A property 𝐻 is a hyperliveness property if for every
nite set𝑈 ⊆ Σ∗, there exists 𝑇 ⊆ Σ𝜔 with𝑈 v 𝑇 and 𝑇 ∈ 𝐻 .

Intuitively, a violation of a hypersafety property can be explained by the nite
interaction of nitely many traces. Conversely, a hyperproperty is hyperliveness, if
such a set can always be extended to a set satisfying the property.

2.2 Models of Computation

We employmultiple models of dierent expressiveness to describe a system. In the rst
part of the thesis, we use nite-state transition systems for modeling reactive systems.
As Turing-complete models, we use 𝑛-counter machines and Turing machines.

Projections and Functions. Given a tuple (𝑥1, . . . , 𝑥𝑛), we dene the projection on
the 𝑖th component as #𝑖 (𝑥) = 𝑥𝑖 . For sets 𝑋 and 𝑌 , we dene the projection of 𝑋 on 𝑌
as 𝑋 |𝑌 = {𝑥 | 𝑥 ∈ 𝑋 ∩ 𝑌 }. If 𝑍 is another set, we dene 𝑋 =𝑍 𝑌 as 𝑋 |𝑍 = 𝑌|𝑍 . Given a
function 𝑓 : 𝑋 → 𝑌 , 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 , we write 𝑓 [𝑥 ↦→ 𝑦] for the function that returns
𝑦 for 𝑥 and 𝑓 (𝑥′) for 𝑥′ ≠ 𝑥 . An assignment of type 𝑋 → 𝑌 is a (potentially partial)
function of type 𝑋 → 𝑌 . We use ∅ for the empty assignment.

Atomic Propositions. We describe the state of a reactive system with a countable
set of atomic propositions AP . Thus, in this thesis, Σ is mostly given as 2AP . Given a
symbol 𝜋 , we write AP𝜋 for the set {𝑎𝜋 | 𝑎 ∈ AP}. For 𝐴 ⊆ AP , we lift the notation =𝐴

to various constructs like functions and traces. For a set 𝑋 and two labeling functions
𝐿, 𝐿′ : 𝑋 → 2AP , we write 𝐿 =𝐴 𝐿′ if for every 𝑥 ∈ 𝑋 , 𝐿(𝑥) =𝐴 𝐿′(𝑥). Similarly, for
two traces 𝑡, 𝑡 ′ over 2AP , we write 𝑡 =𝐴 𝑡 ′ if for all 𝑖 , 𝑡 [𝑖] =𝐴 𝑡 ′[𝑖]. For assignments
Π,Π′ : 𝑋 → 𝑇 that map into trace sets, Π =𝐴 Π′ if for all 𝑥 ∈ 𝑋 , Π(𝑥) =𝐴 Π′(𝑥). Lastly,
for sets of traces𝑇 and𝑇 ′, we use𝑇 =𝐴 𝑇

′ if there exists a total and surjective relation
𝑅 ⊆ 𝑇 ×𝑇 ′ such that 𝑡 =𝐴 𝑡 ′ for all (𝑡, 𝑡 ′) ∈ 𝑅.

Section 2.2. Models of Computation 21

Transition Systems. Transition systems are abstract models of (reactive) systems.
Compared with automata, they do not have an acceptance condition. A labeled tran-
sition system S over Σ is a tuple (𝑆, 𝑆0, 𝛿), where 𝑆 is a set of states, 𝑆0 ⊆ 𝑆 is a set
of initial states and 𝛿 ⊆ 𝑆 × Σ × 𝑆 is a transition relation. In this thesis, we use tran-
sition systems with labeled transitions. State-labeled and transition-labeled transition
systems can be easily transformed into one another. We assume that every state 𝑠 ∈ 𝑆
has a successor 𝑠′ such that (𝑠, 𝐴, 𝑠′) ∈ 𝛿 for some 𝐴. In a nite-state system, 𝑆 and Σ

are nite, in innite-state systems, 𝑆 and Σ may be innite. A nite-state transition
system over Σ = 2AP is also called a Kripke structure, although Kripke structures are
traditionally given as state-labeled transition systems. We call a transition system de-
terministic if |𝑆0 | = 1 and for each 𝑠 ∈ 𝑆 and 𝐴 ∈ Σ, |{(𝑠, 𝐴, 𝑠′) ∈ 𝛿}| ≤ 1. An innite
sequence 𝑡 ∈ Σ𝜔 is a trace of S if there is an innite sequence of states 𝑟 ∈ 𝑆𝜔 such that
𝑟 [0] ∈ 𝑆0 and (𝑟 [𝑖], 𝑡 [𝑖], 𝑟 [𝑖 + 1]) ∈ 𝛿 for all points in time 𝑖 ∈ N with 𝑖 ≥ 0. Similarly,
a run is nite if 𝑟 ∈ 𝑆+, resulting in a nite trace 𝑡 ∈ Σ+. For a run 𝑟 ∈ 𝑆𝜔 , we write
trace(𝑟) for the (nite or innite) trace generated by 𝑟 . We denote the set of all traces
of a transition system S by traces(S) and the set of all nite traces by nTraces(S).

Turing Machines. We use Turing machines in reductions for undecidability results.
We dene Turing machines as deterministic machines, as every nondeterministic Tur-
ing machine can be simulated by a deterministic one. Turing machines are machines
that read from andwrite on a tape of innite lengthwhile keeping track of a state. A de-
terministic Turing machine (TM) is a tuple (𝑄,𝑞0, Γ, 𝛿, 𝐹) where𝑄 is a nite set of states,
𝑞0 ∈ 𝑄 is the initial state, Γ is a nite alphabet, 𝛿 ⊆ (𝑄×Γ)× (𝑄×Γ×{𝐿, 𝑅}) is the tran-
sition relation and 𝐹 ⊆ 𝑄 is a set of accepting states. A transition ((𝑞, 𝑎), (𝑞′, 𝑎′, 𝑑)) ∈ 𝛿
means that the if the TM is in state 𝑞 and reads 𝑎, it updates its state to 𝑞′, writes 𝑎′, and
moves either to the left (𝑑 = 𝐿) or the right (𝑑 = 𝑅). As we dene deterministic Turing
machines, we require that for each 𝑞 ∈ 𝑄 and 𝑎 ∈ Γ, |{(𝑞′, 𝑎′, 𝑑) | (𝑞, 𝑎), (𝑞′, 𝑎′, 𝑑) ∈
𝛿}| ≤ 1. We assume a dedicated blank symbol # ∈ Γ. In the initial conguration, the
head is at position 0, the current state is 𝑞0, and the tape contains some nite word
𝑤 ∈ Γ∗ (not containing #), followed by innitely many #. We say that a TM accepts an
initial word 𝑤 if there is a run starting in the initial conguration with 𝑤 on the tape
and that eventually visits a conguration with the current state in 𝐹 .

Counter Machines. Counter machines manipulate 𝑛 counters with dierent types of
instructions. To achieve Turing-completeness, 2 counters are already sucient [181].
A deterministic 2-counter machine (2CM) consists of a nite set of 𝑚 instructions
𝑙1, . . . , 𝑙𝑚−1, 𝑙𝑚 , where all except the last are of one of the following forms:

• 𝑐𝑖 B 𝑐𝑖 + 1 ; goto 𝑙 𝑗 (for 𝑖 ∈ {1, 2} and 1 ≤ 𝑗 ≤ 𝑚)

• if 𝑐𝑖 = 0 then goto 𝑙 𝑗 else 𝑐𝑖 B 𝑐𝑖−1; goto 𝑙𝑘 (for 𝑖 ∈ {1, 2} and 1 ≤ 𝑗, 𝑘 ≤ 𝑚).

Section 2.3. Denitions of Logics 22

The last instruction is the designated halting instruction, for which we also write 𝑙halt .
A 2CM conguration 𝑠 is a triple (𝑖,𝑚, 𝑛), which indicates that the values of the two
counters are currently𝑚 and 𝑛 and that the next instruction to be executed is 𝑙𝑖 . We
call each conguration in which 𝑖 denotes the halting instruction a halting congura-
tion 𝑠halt . Furthermore, we say that a 2CM M halts for a given initial conguration
𝑠0 if there is a nite sequence 𝑠0, 𝑠1, . . . , 𝑠h𝑎𝑙𝑡 such that for all two successive congu-
rations 𝑠𝑖, 𝑠𝑖+1, the latter one is a result of applying the instruction specied in 𝑠𝑖 to
conguration 𝑠𝑖 .

The Complexity of Undecidable Problems. Many problems considered in this pa-
per are highly undecidable. To enable precise quantication of “how undecidable”,
we briey recall the arithmetic and analytical hierarchies. We only provide a brief
overview and refer to [199] for details. The arithmetic hierarchy contains all problems
(languages) that can be expressed in rst-order arithmetic over the natural numbers. It
contains the class of recursively enumerable (RE) and co-enumerable problems (coRE)
in its rst level. Deciding whether a Turing machine accepts the empty (or any other)
initial word is famously RE-complete. Deciding whether a 2CM has a halting compu-
tation starting with some initial counter values is equally RE-complete [181]. The class
Σ1
1 (sitting in the analytical hierarchy) contains all problems that can be expressed with

existential second-order quantication (over sets of numbers) followed by a rst-order
arithmetic formula. Analogously, the class Π1

1 contains all problems expressible using
universal second-order quantication. Consequently, both Σ1

1 and Π1
1 (strictly) contain

the entire arithmetic hierarchy.

2.3 Denitions of Logics

In this section, we dene a variety of logics on which we build in this thesis, especially
in Chapter 3. We rst dene linear-time logics, which are evaluated with respect page 32
to traces 𝑡 ∈ (2AP)𝜔 . Linear-time logics thus dene linear-time properties. We then
discuss the relevant branching-time logics, which are evaluated with respect to AP-
labeled trees (T , 𝐿). Finally, we describe linear-time hyperlogics with respect to sets
of traces 𝑇 ⊆ (2AP)𝜔 , and branching-time hyperlogics, which are also evaluated on
AP-labeled trees.

For all of these logics, we dene their satisfaction relation 𝑀 |= 𝜑 , where 𝑀 ∈
{𝑡,𝑇 , (T , 𝐿)} is the corresponding type of model and 𝜑 is a formula of the logic. We
say that a formula 𝜑 is satisable if there exists an𝑀 such that𝑀 |= 𝜑 . If𝑀 is a set of
traces, we additionally require that𝑀 is non-empty. Given two logics L1,L2 over the
same type of model, we say that formulas 𝜑1 ∈ L1 and 𝜑2 ∈ L2 are equivalent (written
𝜑1 ≡ 𝜑2) if for all instances𝑀 of the type of model,𝑀 |= 𝜑1 i𝑀 |= 𝜑2. We say that L2

Section 2.3. Denitions of Logics 23

is at least as expressive as L1 if for every L1-formula 𝜑1, there exists an L2-formula 𝜑2
such that 𝜑1 ≡ 𝜑2. In this case, we also say that L2 subsumes L1. They are expressively
equivalent, if L1 is at least as expressive as L2 and vice versa.

2.3.1 Linear-time Logics

Linear-time logics describe trace properties. All linear-time logics we dene in this
part of the thesis describe 𝜔-regular trace properties.

LTL. Linear temporal logic (LTL) [190] combines Boolean connectives with temporal
modalities (next) andU (until). The syntax is given by the following grammar:

𝜓 F 𝑎 | ¬𝜓 | 𝜓 ∨𝜓 | 𝜓 | 𝜓 U𝜓

where 𝑎 ∈ AP . The Boolean connectives ¬,∧,∨,→,↔ can be derived from the syntax,
as well as the LTL modalities eventually 𝜓 ≡ trueU𝜓 , globally 𝜓 ≡ ¬ ¬𝜓 , and
weak until 𝜓1W𝜓2 ≡ (𝜓1U𝜓2) ∨ 𝜓1. Given a trace 𝑡 ∈ (2AP)𝜔 and a point in time
𝑖 ∈ N, the semantics of an LTL formula is dened as follows:

𝑡, 𝑖 |= 𝑎 i 𝑎 ∈ 𝑡 [𝑖]
𝑡, 𝑖 |= ¬𝜓 i 𝑡, 𝑖 6 |= 𝜓
𝑡, 𝑖 |= 𝜓1 ∨𝜓2 i 𝑡, 𝑖 |= 𝜓1 or 𝑡, 𝑖 |= 𝜓2

𝑡, 𝑖 |= 𝜓 i 𝑡, 𝑖 + 1 |= 𝜓
𝑡, 𝑖 |= 𝜓1U𝜓2 i ∃ 𝑗 ≥ 𝑖 . 𝑡, 𝑗 |= 𝜓2 and ∀𝑖 ≤ 𝑘 < 𝑗 . 𝑡, 𝑘 |= 𝜓1

A trace 𝑡 satises an LTL formula𝜓 , written 𝑡 |= 𝜓 , if 𝑡, 0 |= 𝜓 .

QPTL. QPTL [209] extends LTL with quantication over atomic propositions. QPTL
formulas𝜓 are dened as follows. It can express all 𝜔-regular trace properties [146].

𝜓 F ∃𝑎.𝜓 | ∀𝑎.𝜓 | \
\ F 𝑎 | ¬\ | \ ∨ \ | \ | \

where 𝑎 ∈ AP . We did not dene the until operatorU as native part of QPTL as it can
be derived using propositional quantication [143]. Additional operators like can
be derived as in LTL. For simplicity, we assume that propositional variable names in
formulas are cleared of double occurrences. QPTL inherits the semantics of LTL with
additional rules for the propositional quantication.

𝑡, 𝑖 |= ∃𝑎.𝜓 i ∃𝑡 ′ ∈ (2AP)𝜔 . 𝑡 ′ =AP\{𝑎} 𝑡 and 𝑡 ′, 𝑖 |= 𝜓

Section 2.3. Denitions of Logics 24

𝑡, 𝑖 |= ∀𝑎.𝜓 i ∀𝑡 ′ ∈ (2AP)𝜔 . if 𝑡 ′ =AP\{𝑎} 𝑡 then 𝑡 ′, 𝑖 |= 𝜓

FO[<]. First-order monadic logic of order, written FO[<], is a rst-order logic evalu-
ated on traces. Let𝑉1 = {𝑥,𝑦, . . .} be a set of rst-order variables. The syntax of FO[<]
consists of rst-order quantication, unary predicates 𝑃𝑎 for every 𝑎 ∈ AP , and two
binary relations < and =.

𝜓 F 𝑃𝑎 (𝑥) | 𝑥 < 𝑦 | 𝑥 = 𝑦 | ¬𝜓 | 𝜓 ∨𝜓 | ∃𝑥 .𝜓

As for LTL, we evaluate FO[<] with respect to a trace 𝑡 over AP . Additionally, let
V1 : 𝑉1 → N be an assignment function for the variables. The interpretation of <
and = is xed as the respective interpretation on N. We dene the semantics of FO[<]
formulas as follows.

V1, 𝑡 |= 𝑃𝑎 (𝑥) i 𝑎 ∈ 𝑡 [V1(𝑥)]
V1, 𝑡 |= 𝑥 < 𝑦 i V1(𝑥) < V1(𝑦)
V1, 𝑡 |= 𝑥 = 𝑦 i V1(𝑥) = V1(𝑦)
V1, 𝑡 |= ¬𝜓 i V1, 𝑡 6 |= 𝜓
V1, 𝑡 |= 𝜓1 ∨𝜓2 i V1, 𝑡 |= 𝜓1 or V1, 𝑡 |= 𝜓2

V1, 𝑡 |= ∃𝑥 .𝜓 i ∃𝑖 ∈ N.V1 [𝑥 ↦→ 𝑖], 𝑡 |= 𝜓

A FO[<] formula is closed if it does not contain free occurrences of variables. A trace
overAP satises a closed formula𝜓 , written 𝑡 |= 𝜓 , i ∅, 𝑡 |= 𝜓 . A FO[<] formula𝜓 is in
prenex normal form if𝜓 starts with a sequence of quantiers followed by a quantier-
free formula. Every FO[<] formula can be transformed into an equivalent formula in
prenex normal form. The same holds for all FO/SO logics considered in this work.

Kamp’s theorem [144] (in the formulation of [109]) establishes that LTL and FO[<]
are expressively equivalent. This might be surprising considering that LTL is a modal
logic whereas FO[<] has the full power of rst-order quantication.

Theorem 2.2 (Kamp’s Theorem[144, 109]). LTL and FO[<] are equally expressive.

S1S. S1S, the second-order logic of one successor [36], is strictly more expressive than
FO[<] due to its second-order quantiers. Let 𝑉1 be a set of rst-order variables as
before and let 𝑉2 = {𝑋,𝑌, . . .} be a set of second-order variables. Compared with
FO[<], the terms of S1S do not contain the < relation but a function 𝑆 for the successor
of a term and the constant min to address the minimal element.

𝜏 F 𝑥 | min | 𝑆 (𝜏)
𝜓 F 𝜏 ∈ 𝑋 | 𝜏 = 𝜏 | ¬𝜓 | 𝜓 ∨𝜓 | ∃𝑥 .𝜓 | ∃𝑋 .𝜓

Section 2.3. Denitions of Logics 25

Here, 𝑋 ∈ 𝑉2 ∪ {𝑋𝑎 | 𝑎 ∈ AP}. We interpret S1S formulas with respect to a rst-order
valuation V1 : 𝑉1 → N and a second-order valuation V2 : 𝑉2 → 2N. The value of a
term is dened as:

[𝑥]V1 = V1(𝑥)
[min]V1 = 0
[𝑆 (𝜏)]V1 = [𝜏]V1 + 1

Let 𝜓 be an S1S formula with free rst-order variables 𝑉 ′
1 ⊆ 𝑉1 and free second-order

variables𝑉 ′
2 ⊆ 𝑉2 ∪ {𝑋𝑎 | 𝑎 ∈ AP}. We dene the satisfaction relationV1,V2 |= 𝜓 with

respect to two valuationsV1,V2 assigning all free variables in 𝑉 ′
1 and 𝑉 ′

2 as follows.

V1,V2 |= 𝜏 ∈ 𝑋 i [𝜏]V1 ∈ V2(𝑋)
V1,V2 |= 𝜏1 = 𝜏2 i [𝜏1]V1 = [𝜏2]V1

V1,V2 |= ¬𝜓 i V1,V2 6 |= 𝜓
V1,V2 |= 𝜓1 ∨𝜓2 i V1,V2 |= 𝜓1 orV1,V2, 𝑡 |= 𝜓2

V1,V2 |= ∃𝑥 .𝜓 i ∃𝑖 ∈ N.V1 [𝑥 ↦→ 𝑖],V2 |= 𝜓
V1,V2 |= ∃𝑋 .𝜓 i ∃𝐴 ⊆ N.V1,V2 [𝑋 ↦→ 𝐴] |= 𝜓

We call an S1S formula𝜓 closed if every free variable is a second-order variable of the
form 𝑋𝑎 with 𝑎 ∈ AP . We say that a trace 𝑡 over 2AP satises a closed S1S formula 𝜓 ,
written 𝑡 |= 𝜓 , if ∅,V2 |= 𝜓 , where ∅ denotes the empty rst-order valuation andV2 is
the valuation that assigns each free 𝑋𝑎 in𝜓 to the set {𝑖 ∈ N | 𝑎 ∈ 𝑡 [𝑖]}.

In a result similar to Kamp’s theorem, it was shown that QPTL and S1S are equally
expressive. This result in particular implies that both logics have the same expressive-
ness as Büchi automata.

Theorem 2.3 ([146]). QPTL and S1S are equally expressive.

2.3.2 Branching-time Logics

CTL
∗
. CTL∗ is a branching-time logic that extends the syntax LTL with a path quan-

tier E that existentially quanties a branch from a node in a tree. The syntax, where
𝜓 denotes state formulas and \ denotes path formulas, is given as follows:

𝜓 F 𝑎 | ¬𝜓 | 𝜓 ∨𝜓 | E\
\ F 𝜓 | ¬\ | \ ∨ \ | X\ | \ U\

where 𝑎 ∈ AP . The semantics of CTL∗ is dened over an AP-labeled tree (T , 𝐿) with
nodes 𝑆 . Given a node 𝑠 ∈ 𝑆 and a path 𝑝 in paths(T), we dene the semantics of CTL∗

Section 2.3. Denitions of Logics 26

state and path formulas as follows:

𝑠 |=(T ,𝐿) 𝑎 i 𝑎 ∈ 𝐿(𝑠)
𝑠 |=(T ,𝐿) ¬𝜓 i 𝑠 6 |=(T ,𝐿) 𝜓

𝑠 |=(T ,𝐿) 𝜓1 ∨𝜓2 i 𝑠 |=(T ,𝐿) 𝜓1 or 𝑠 |=(T ,𝐿) 𝜓2

𝑠 |=(T ,𝐿) E\ i ∃𝑝 ∈ paths(T , 𝑠). 𝑝 |=(T ,𝐿) \

𝑝 |=(T ,𝐿) 𝜓 i 𝑝 [0] |=(T ,𝐿) 𝜓

𝑝 |=(T ,𝐿) ¬\ i 𝑝 6 |=(T ,𝐿) \

𝑝 |=(T ,𝐿) \1 ∨ \2 i 𝑝 |=(T ,𝐿) \1 or 𝑝 |=(T ,𝐿) \2

𝑝 |=(T ,𝐿) X\ i 𝑝 [1,∞] |=(T ,𝐿) \

𝑝 |=(T ,𝐿) \1 U\2 i ∃𝑖 ≥ 0. 𝑝 [𝑖,∞] |=(T ,𝐿) \2 and ∀0 ≤ 𝑗 < 𝑖 . 𝑝 [𝑗,∞] |=(T ,𝐿) \1

Similar to LTL, we use F\ ≡ trueU\ and G\ ≡ ¬ F¬\ . For a labeled tree (T , 𝐿) and a
CTL∗ formula𝜓 , we write (T , 𝐿) |= 𝜓 if T has root 𝑟 such that 𝑟 |=(T ,𝐿) 𝜓 .

QCTL
∗
. Similarly to how QPTL extends LTL with the possibility to reassign atomic

propositions, CTL∗ can be extended to QCTL∗ [108]. In [108], QCTL∗ has been intro-
duced with dierent semantics: two which evaluate formulas direclty on nite transi-
tion systems and one which evaluates the formulas on trees. As we evaluate temporal
logics with respect to traces and trees and not with respect to the underlying transition
system, we follow the tree semantics of the logic. We extend the syntax of CTL∗ state
formulas with propositional quantication.

𝜓 F 𝑎 | ¬𝜓 | 𝜓 ∨𝜓 | E\ | ∃𝑎.𝜓

The semantics for the additional rule is given as follows.

𝑠 |=(T ,𝐿) ∃𝑎.𝜓 i ∃𝐿′. 𝐿′ =AP\{𝑎} 𝐿 and 𝑠 |=(T ,𝐿′) 𝜓

MPL. Monadic path logic (MPL) [4] is a second-order branching-time logic. MPL is
syntactically similar to FO[<] but has additional second-order variables and quanti-
ers. As before, let 𝑉1 = {𝑥,𝑦, . . .} be a set rst-order variables and 𝑉2 = {𝑋,𝑌, . . .} be
a set of second-order variables. We dene the set of MPL formulas as follows.

𝜓 F 𝑥 ∈ 𝑋 | 𝑥 < 𝑦 | 𝑥 = 𝑦 | ¬𝜓 | 𝜓 ∨𝜓 | ∃𝑥 .𝜓 | ∃𝑋 .𝜓

As a branching-time logic, MPL is interpreted over AP-labeled trees (T , 𝐿). First-
order variables are assigned nodes in the tree and second-order variables sets of nodes.
We represent a node by the nite path leading to it. Let V1 : 𝑉1 → nPaths(T) and

Section 2.3. Denitions of Logics 27

V2 : 𝑉2 → 2nPaths(T) . Let 𝜓 be a MPL formula with free rst-order variables 𝑉 ′
1 ⊆ 𝑉1

and free second-order variables 𝑉 ′
2 ⊆ 𝑉2 ∪ {𝑋𝑎 | 𝑎 ∈ AP}. We dene the satisfaction

relation V1,V2 |=(T ,𝐿) 𝜓 as follows, where V1 and V2 assign all free variables 𝑉 ′
1 and

𝑉 ′
2 .

V1,V2 |=(T ,𝐿) 𝑥 ∈ 𝑋 i V1(𝑥) ∈ V2(𝑋)
V1,V2 |=(T ,𝐿) 𝑥 < 𝑦 i V1(𝑥) v V1(𝑦)
V1,V2 |=(T ,𝐿) 𝑥 = 𝑦 i V1(𝑥) = V1(𝑦)
V1,V2 |=(T ,𝐿) ¬𝜓 i V1,V2 6 |=(T ,𝐿) 𝜓

V1,V2 |=(T ,𝐿) 𝜓1 ∨𝜓2 i V1,V2 |=(T ,𝐿) 𝜓1 orV1,V2 |=(T ,𝐿) 𝜓2

V1,V2 |=(T ,𝐿) ∃𝑥 .𝜓 i ∃𝑝 ∈ nPaths(T) .V1 [𝑥 ↦→ 𝑝],V2 |=(T ,𝐿) 𝜓

V1,V2 |=(T ,𝐿) ∃𝑋 .𝜓 i ∃𝑝 ∈ paths(T) .
V1,V2 [𝑋 ↦→ {𝑝′ ∈ nPaths(T) | 𝑝′ v 𝑝}] |=(T ,𝐿) 𝜓

MPL’s second-order quantication can only quantify full paths of T . A second-order
variables 𝑋 is therefore assigned with the set of all prexes of a path 𝑝 of T . We call
an MPL formula 𝜓 closed if every free variable is a second-order variable of the form
𝑋𝑎 with 𝑎 ∈ AP . We say that an AP-labeled tree (T , 𝐿) satises a closed MPL formula
𝜓 , written (T , 𝐿) |= 𝜓 , if ∅,V2 |= 𝜓 , where V2 is the valuation that assigns each free
𝑋𝑎 in𝜓 to the set {𝑝 ∈ nPaths(T) | |𝑝 | = 𝑛 and 𝑎 ∈ 𝐿(𝑝 [𝑛 − 1]) for some 𝑛 ∈ N>0}.

Theorem 2.4 ([182]). MPL and CTL∗ are expressively equivalent.

MSO. Monadic second-order logic (MSO) interpreted over labeled trees shares the
syntax and most of its semantics with MPL. The only dierence is the valuation of
the second-order quantication, where we lift the requirement that the quantied set
encodes a full path.

V1,V2 |=(T ,𝐿) ∃𝑋 .𝜓 i ∃𝑃 ⊆ nPaths(T) .V1,V2 [𝑋 ↦→ 𝑃] |=(T ,𝐿) 𝜓

Theorem 2.5 ([162]). MSO and QCTL∗ are expressively equivalent.

2.3.3 Linear-time Hyperlogics

HyperLTL. HyperLTL [50] extends LTL with explicit trace quantication. Let 𝑉𝜋 =

{𝜋1, 𝜋2, . . .} be an innite set of trace variables. HyperLTL formulas are dened by the
grammar:

𝜑 F ∀𝜋. 𝜑 | ∃𝜋. 𝜑 | 𝜓
𝜓 F 𝑎𝜋 | ¬𝜓 | 𝜓 ∨𝜓 | 𝜓 | 𝜓 U𝜓

Section 2.3. Denitions of Logics 28

where 𝑎 ∈ AP and 𝜋 ∈ 𝑉𝜋 . Here, ∀𝜋. 𝜑 and ∃𝜋. 𝜑 denote universal and existential
trace quantication, and 𝑎𝜋 requires the atomic proposition 𝑎 to hold on trace 𝜋 . The
semantics of HyperLTL is dened with respect to a set of traces 𝑇 . Let Π : 𝑉𝜋 → 𝑇 be
a trace assignment that maps trace variables to traces in 𝑇 . The satisfaction relation
for HyperLTL is dened with respect a set of traces 𝑇 .

Π, 𝑖 |=𝑇 𝑎𝜋 i 𝑎 ∈ Π(𝜋) [𝑖]
Π, 𝑖 |=𝑇 ¬𝜑 i Π, 𝑖 6 |=𝑇 𝜑
Π, 𝑖 |=𝑇 𝜑1 ∨ 𝜑2 i Π, 𝑖 |=𝑇 𝜑1 or Π, 𝑖 |=𝑇 𝜑2
Π, 𝑖 |=𝑇 𝜑 i Π, 𝑖 + 1 |=𝑇 𝜑
Π, 𝑖 |=𝑇 𝜑1U 𝜑2 i ∃ 𝑗 ≥ 𝑖 . Π, 𝑗 |=𝑇 𝜑2 and ∀𝑖 ≤ 𝑘 < 𝑗 . Π, 𝑘 |=𝑇 𝜑1
Π, 𝑖 |=𝑇 ∃𝜋. 𝜑 i ∃𝑡 ∈ 𝑇 .Π[𝜋 ↦→ 𝑡], 𝑖 |=𝑇 𝜑
Π, 𝑖 |=𝑇 ∀𝜋. 𝜑 i ∀𝑡 ∈ 𝑇 .Π[𝜋 ↦→ 𝑡], 𝑖 |=𝑇 𝜑

A trace set 𝑇 satises a HyperLTL formula 𝜑 , written 𝑇 |= 𝜑 , if ∅, 0 |=𝑇 𝜑 . HyperLTL
formulas are syntactically required to be in negation normal formal. Nevertheless, they
are closed under Boolean connectives [50].

To refer to HyperLTL formula, we often use 𝑄𝜋.𝜓 to denote a formula starting
with either an existential or a universal quantier. We also use regular expressions to
dene quantier prexes, e.g., 𝑄𝑛∀∗ denotes the set of HyperLTL formulas that start
with 𝑛 arbitrary quantiers followed by an arbitrary number of ∀ quantiers. This also
applies to any extension of HyperLTL.

HyperQPTL. HyperQPTL [195] extends QPTL with explicit trace quantication. We
add atomic formulas 𝑝 , which are independent of the trace variables, and prenex propo-
sitional quantication ∃𝑝. 𝜑 to the syntax.

𝜑 F ∃𝜋. 𝜑 | ∀𝜋. 𝜑 | ∃𝑝. 𝜑 | ∀𝑝. 𝜑 | 𝜓
𝜓 F 𝑎𝜋 | 𝑝 | ¬𝜓 | 𝜓 ∨𝜓 | 𝜓 | 𝜓 U𝜓

HyperQPTL inherits the semantics of HyperLTL with additional rules for the new syn-
tactic constructs.

Π, 𝑖 |=𝑇 𝑝 i ∀𝑡 ∈ 𝑇 . 𝑝 ∈ 𝑡 [𝑖]
Π, 𝑖 |=𝑇 ∃𝑝. 𝜑 i ∃𝑡𝑝 ∈ (2{𝑝})𝜔 ,𝑇 ′ ⊆ (2AP)𝜔 ,Π′ : 𝑉𝜋 → 𝑇 ′.∀𝑡 ∈ 𝑇 ′. 𝑡 ={𝑝} 𝑡𝑝 and

𝑇 =AP\{𝑝} 𝑇
′ and Π =AP\{𝑝} Π

′ and Π′, 𝑖 |=𝑇 ′ 𝜑

Π, 𝑖 |=𝑇 ∀𝑝. 𝜑 i ∀𝑡𝑝 ∈ (2{𝑝})𝜔 ,𝑇 ′ ⊆ (2AP)𝜔 ,Π′ : 𝑉𝜋 → 𝑇 ′. if ∀𝑡 ∈ 𝑇 ′. 𝑡 ={𝑝} 𝑡𝑝 and
𝑇 =AP\{𝑝} 𝑇

′ and Π =AP\{𝑝} Π
′, then Π′, 𝑖 |=𝑇 ′ 𝜑

Section 2.3. Denitions of Logics 29

LTL with Team Semantics. Team semantics are an alternative semantics to the clas-
sic Tarski semantics. In the case of LTL, team semanticsmaintain the syntax of the logic
but assign a semantics based on sets traces. TeamLTL thus constitutes a linear-time
hyperlogic. As a hyperlogic, TeamLTL was rst studied in [153], where it was called
LTL with synchronous team semantics. Logics with team semantics are typically not
closed under classical negation and adding Boolean negation usually adds a consider-
able amount of expressiveness. We therefore dene the syntax of TeamLTL in negation
normal form, where negation only occurs directly before atomic propositions.

𝜓 F 𝑎 | ¬𝑎 | 𝜓 ∧𝜓 | 𝜓 ∨𝜓 | 𝜓 | 𝜓 U𝜓 | 𝜓W𝜓

We dene the satisfaction relation 𝑇, 𝑖 |= 𝜑 of TeamLTL as follows.

𝑇, 𝑖 |= 𝑎 i ∀𝑡 ∈ 𝑇 . 𝑎 ∈ 𝑡 [𝑖]
𝑇, 𝑖 |= ¬𝑎 i ∀𝑡 ∈ 𝑇 . 𝑎 ∉ 𝑡 [𝑖]
𝑇, 𝑖 |= 𝜓1 ∧𝜓2 i 𝑇, 𝑖 |= 𝜓1 and 𝑇, 𝑖 |= 𝜓2

𝑇, 𝑖 |= 𝜓1 ∨𝜓2 i ∃𝑇1,𝑇2.𝑇1 ∪𝑇2 = 𝑇 and 𝑇1, 𝑖 |= 𝜓1 and 𝑇2, 𝑖 |= 𝜓2

𝑇, 𝑖 |= 𝜓 i 𝑇, 𝑖 + 1 |= 𝜓
𝑇, 𝑖 |= 𝜓1U𝜓2 i ∃ 𝑗 ≥ 𝑖 .𝑇 , 𝑗 |= 𝜓2 and ∀𝑖 ≤ 𝑘 < 𝑗 .𝑇 , 𝑘 |= 𝜓1

𝑇, 𝑖 |= 𝜓1W𝜓2 i ∀𝑗 ≥ 𝑖 .𝑇 , 𝑗 |= 𝜓1 or ∃ 𝑗 ≤ 𝑘.𝑇 , 𝑘 |= 𝜓2

The interesting part of the denition is the evaluation of the ∨ operator. It splits the
set and requires that each subsets satises one of the subformulas. In particular, one
of the trace sets might also be empty. Note that 𝑇, 𝑖 |= false i 𝑇 = ∅. The pair (𝑇, 𝑖) is
called a team.

FO[<, 𝐸]. The linear hyperlogic FO[<, 𝐸] [95] extends FO[<] with a binary predicate
𝐸, called equal-level predicate, which relates points in time. The syntax of FO[<, 𝐸] is
obtained by extending the syntax of FO[<] with 𝐸 (𝑥,𝑦). Given a set 𝑉1 of rst-order
variables, we dene the syntax of FO[<, 𝐸] formulas as follows.

𝜏 F 𝑃𝑎 (𝑥) | 𝑥 < 𝑦 | 𝑥 = 𝑦 | 𝐸 (𝑥,𝑦)
𝜑 F 𝜏 | ¬𝜑 | 𝜑1 ∨ 𝜑2 | ∃𝑥 . 𝜑

where 𝑎 ∈ AP and 𝑥,𝑦 ∈ 𝑉1. While FO[<] formulas are interpreted over a trace 𝑡 ,
we interpret an FO[<, 𝐸] formula 𝜑 over a set of traces 𝑇 . Compared with FO[<], we
assign rst-order variables with elements from the domain𝑇 ×N. Let 𝜑 be an FO[<, 𝐸]
formula with free rst-order variables 𝑉 ′

1 ⊆ 𝑉1. We dene the satisfaction relation
V1 |=𝑇 𝜑 with respect to𝑇 and a rst-order valuationV1 : 𝑉1 → 𝑇 ×N, which assigns

Section 2.3. Denitions of Logics 30

all variables free variables 𝑉 ′
1 of 𝜑 .

V1 |=𝑇 𝑃𝑎 (𝑥) i 𝑎 ∈ 𝑡 [𝑖] for 𝑡 = #1(V1(𝑥)) and 𝑖 = #2(V1(𝑥))
V1 |=𝑇 𝑥 < 𝑦 i #1(V1(𝑥)) = #1(V1(𝑦)) and #2(V1(𝑥)) < #2(V1(𝑦))
V1 |=𝑇 𝑥 = 𝑦 i V1(𝑥) = V1(𝑦)
V1 |=𝑇 𝐸 (𝑥,𝑦) i #2(V1(𝑥)) = #2(V1(𝑦))
V1 |=𝑇 ¬𝜓 i V1 6 |=𝑇 𝜓
V1 |=𝑇 𝜓1 ∨𝜓2 i V1 |=𝑇 𝜓1 orV1 |=𝑇 𝜓2

V1 |=𝑇 ∃𝑥 .𝜓 i ∃𝑡 ∈ 𝑇 . ∃𝑖 ∈ N.V1 [𝑥 ↦→ (𝑡, 𝑖)] |=𝑇 𝜓

Recall that #𝑖 (𝑥) denes the 𝑖th projection on 𝑥 . We use the < predicate to enforce page 20
that two points lie on the same trace. A trace set 𝑇 satises a closed FO[<, 𝐸] formula
𝜑 , written 𝑇 |= 𝜑 , if ∅ |=𝑇 𝜑 . As opposed to LTL and FO[<], HyperLTL and FO[<, 𝐸]
are not equally expressive.

Theorem 2.6 ([95]). FO[<, 𝐸] is strictly more expressive than HyperLTL.

2.3.4 Branching-time Hyperlogics

Branching-time hyperlogics are, as standard branching-time logics, interpreted on la-
beled trees. The increased expressiveness of branching-time hyperlogics lies in the fact
that hyperlogics can relate multiple branches of arbitrary distance.

HyperCTL
∗
. HyperCTL∗ [50] extends CTL∗ with explicit path variables and quanti-

cation. Quantication in HyperCTL∗ ranges over the paths in a tree. Let𝑉𝜋 be a set of
path variables. HyperCTL∗ formulas are generated by the following grammar:

𝜑 F 𝑎𝜋 | ¬𝜑 | 𝜑 ∨ 𝜑 | X𝜑 | 𝜑 U𝜑 | ∃𝜋. 𝜑

where 𝑎 ∈ AP and 𝜋 ∈ 𝑉𝜋 . The semantics of a HyperCTL∗ formula is dened with
respect to an AP-labeled tree (T , 𝐿) and a path assignment Π : 𝑉𝜋 → paths(T).

Π, 𝑖 |=(T ,𝐿) 𝑎𝜋 i 𝑎 ∈ 𝐿(Π(𝜋) [𝑖])
Π, 𝑖 |=(T ,𝐿) ¬𝜑 i Π, 𝑖 6 |=(T ,𝐿) 𝜑

Π, 𝑖 |=(T ,𝐿) 𝜑1 ∨ 𝜑2 i Π, 𝑖 |=(T ,𝐿) 𝜑1 or Π, 𝑖 |=(T ,𝐿) 𝜑2

Π, 𝑖 |=(T ,𝐿) X𝜑 i Π, 𝑖 + 1 |=(T ,𝐿) 𝜑

Π, 𝑖 |=(T ,𝐿) 𝜑1 U𝜑2 i ∃ 𝑗 ≥ 𝑖 .Π, 𝑗 |=(T ,𝐿) 𝜑2 and ∀𝑖 ≤ 𝑘 < 𝑗 .Π, 𝑘 |=(T ,𝐿) 𝜑1

Π, 𝑖 |=(T ,𝐿) ∃𝜋. 𝜑 i ∃𝑝 ∈ paths(T). 𝑝 [0, 𝑖] = Π(Y) [0, 𝑖]
and Π[𝜋 ↦→ 𝑝, Y ↦→ 𝑝], 𝑖 |=(T ,𝐿) 𝜑

Section 2.3. Denitions of Logics 31

where we use Y to denote the last path that was added to the path assignmentΠ. We say
that a AP-labeled tree (T , 𝐿) satises a HyperCTL∗ formula 𝜑 , written as (T , 𝐿) |= 𝜑 ,
if ∅, 0 |=(T ,𝐿) 𝜑 .

Chapter 3

c

An Expressiveness Hierarchy of

Hyperlogics

In this chapter, we conduct a comprehensive expressiveness study of dierent types
of logics for the specication of hyperproperties. We consider three classes of hyper-
logics: temporal hyperlogics, rst-order and second-order hyperlogics, and variants of
LTL with team semantics.

The rst part of the study is inspired by Kamp’s famous theorem [144], which states
(in the formulation of Gabbay et al. [109]) that LTL and monadic rst-order logic of
order FO[<] are expressively equivalent. This result might seem quite surprising: LTL
is a purely modal logic, while FO[<] uses rst-order quantication to reason about the
trace. Both logics have been lifted to hyperlogics: LTL has been extended with trace
quantication resulting in HyperLTL, and FO[<] has been equipped with a so-called
equal-level predicate, resulting in FO[<, 𝐸]. Contrary to Kamp’s theorem, however,
the potential analog that FO[<, 𝐸] and HyperLTL might be expressively equivalent is
known not to be true [95]. Motivated by this unexpected result, we systematically
compare the expressiveness of temporal hyperlogics with trace and path quantiers
and rst-order/second-order hyperlogics with the equal-level predicate. We follow the
known hierarchy of standard logics. Similar to Kamp’s thereom, there exist number of
equivalence results for pairs of temporal and FO/SO logics: QPTL and S1S are expres-
sively equivalent, as are the branching-time logics CTL∗ and MPL as well as QCTL∗
and MSO.

The results of our study are depicted in Figure 3.1. They show that it is in general
the case that the equal-level predicate adds more expressive power to rst-order and
second-order logics than trace and path quantication adds to an equivalent temporal
logic. There are subtle dierences, however, which depend on the way we interpret
the “straight-forward” extension of a logic to a hyperlogic. Propositional quantiers
in QPTL, for example, reassign an atomic proposition on the trace. Consequently,
HyperQPTL, as rst dened in [195], reassigns atomic propositions uniformly across

32

Section 3.0. 33

FO[<] = LTL [109]

S1S = QPTL [146]

>

(a)

MPL = CTL∗ [182]

MSO = QCTL∗ [162]

>

(b)

HyperLTL

FO[<, 𝐸]

HyperQPTL

S1S[𝐸] = HyperQPTL+
(Thm. 3.5)

< [95]

< (Thm. 3.2)

< (Thm. 3.7)

(c)

HyperCTL∗

MPL[𝐸]

HyperQ-CTL∗

MSO[𝐸] = HyperQCTL∗
(Thm. 3.20)

< (Thm. 3.16)

< (Thm. 3.18)

< (Thm. 3.19)

(d)

Figure 3.1: The linear-time hierarchies of standard logics (a) and hyperlogics (c), and
the branching-time hierarchies of standard logics (b) and hyperlogics (d). Novel results
are annotated with the corresponding theorem number. Commonly known results are
not annotated.

all traces. If the quantier reassigned the proposition dierently on every trace, we
would obtain a more expressive logic (which we call HyperQPTL+). A similar obser-
vation can be made for the branching-time logics QCTL∗ and HyperQCTL∗.

Both temporal and FO/SO hyperlogics rely on some sort of explicit quantication,
either trace quantication as in HyperLTL or simultaneous trace and time quantica-
tion as in FO[<, 𝐸]. The algorithmic success of LTL over rst-order logics for the spec-
ication of linear-time properties stems from the fact that its modal operators replace
explicit quantication of points in time. As a consequence, LTL often allows for a more
concise and readable formulation of the same property. The natural question to ask is
whether a purely modal logic for hyperproperties would have similar advantages. A
candidate for such a logic is LTL with team semantics [153]. Under team semantics,
LTL expresses hyperproperties without explicit references to traces. Instead, each sub-
formula is evaluated with respect to a set of traces, called a team. Temporal operators
advance time on all traces of the current team. The crucial operator in TeamLTL is ∨,
called split operator under team semantics, which splits a set of traces in two.

The second part of our study integrates TeamLTL and extensions thereof into the
hierarchy of linear-time hyperlogics. We build on the fact that TeamLTL andHyperLTL
are of incomparable expressiveness [153], which already suggests that the logics con-
stitute a fundamentally dierent approach to express hyperproperties. Indeed, relating
the expressiveness of those two types of logics is a challenging task, even if TeamLTL
and quantier-based temporal hyperlogics are both based on temporal logics. The re-
sults of the second part of our expressiveness study are illustrated in Figure 3.2. We

Section 3.0. 34

HyperLTL

HyperQPTL

HyperQPTL+ TeamLTL(6,A1 ,∼⊥)

left-at
TeamLTL(6,A1)

<
<

>

(Thm. 3.14)

>

(Thm. 3.12)

> (Thm. 3.8)

<>| [153]

Figure 3.2: Variants of TeamLTL versus linear-time temporal hyperlogics. Novel results
are annotated with the corresponding theorem number. Results from earlier sections
are not annotated.

focus on two extensions of TeamLTL, TeamLTL(6,A1 ,∼⊥) and TeamLTL(6,A1), which
can express all (downward-closed) LTL-denable Boolean relations. We show that the
expressiveness of TeamLTL(6,A1 ,∼⊥) is captured by HyperQPTL+, which sits at the
top of the linear-time hierarchy. For TeamLTL(6,A1), we can dene a fragment we
call left-at, for which we can show inclusion in HyperQPTL.

Outline. Section 3.1 presents the study of temporal and FO/SO hyperlogics for linear-
time logics. In Section 3.2, we extend this hierarchy with our results on the expressive-
ness of variants of TeamLTL. Section 3.3 covers our results on branching-time temporal
and FO/SO hyperlogics.

Publications. Section 3.1 is mostly based on [55]. The proposal of HyperQPTL+ as
alternative denition of HyperQPTL and the example from Section 3.1.3 stem from
[84]. The inclusion of HyperQPTL+ in the linear-time hierarchy was added for this
thesis. Section 3.2 contains material from [225]. Section 3.3 is again based on [55].
The denition of HyperQ-CTL∗ as weaker version of HyperQCTL∗ was added for this
thesis.

[55] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The
Hierarchy of Hyperlogics. 34th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS 2019).

[84] Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Leander Tentrup. Real-
izing Omega-regular Hyperproperties. 32nd International Conference on Com-
puter-Aided Verication (CAV 2020).

Section 3.1. The Hierarchy of Linear-time Hyperlogics 35

[225] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang.
Linear-timeTemporal LogicwithTeamSemantics: Expressivity andCom-

plexity. 41st IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2021).

3.1 The Hierarchy of Linear-time Hyperlogics

We commence our study of the expressiveness of hyperlogics with the linear-time
hierarchy. Based on the known hierarchy of linear-time trace properties depicted in
Figure 3.1a, we compare the expressiveness of hyperlogics that result from extending
temporal logics with trace quantication and rst-order/second-order logics with the
equal-level predicate.

For this section and the rest of the chapter, we require, without loss of generality,
that all variables occurring in a formula are distinct. Furthermore, formulas all range
over the same set of propositions AP . Where applicable, formulas are also assumed
to be closed. In the following, we dene a range of translations between dierent
logics. Most of these translations are linear and follow closely the inductive structure
of the formula. Once the translation is spelled out, its correctness followswith straight-
forward inductive reasoning only using the semantics of the respective logics. In such
cases, we omit the details of the inductive proofs.

In our translations, we repeatedly use the following HyperLTL formulas, which
can also be used in all syntactic extensions of HyperLTL. Formula once(𝑎, 𝜋) indicates
that proposition 𝑎 holds exactly once on trace 𝜋 .

once(𝑎, 𝜋) B ¬𝑎𝜋 U(𝑎𝜋 ∧ ¬𝑎𝜋)

We also use once(𝑝) if 𝑝 is a propositionally quantied variable in HyperQPTL, i.e.,
when it does not refer to a specic trace. Formula equalTrace(𝜋, 𝜋 ′) denotes that two
trace variables refer to the same trace (or path).

equalTrace(𝜋, 𝜋 ′) B
∧
𝑎∈AP

𝑎𝜋 ↔ 𝑎𝜋 ′

3.1.1 HyperQPTL versus FO[<, 𝑬]

As a rst result, we establish the connection between FO[<, 𝐸] and HyperQPTL.

Lemma 3.1. HyperQPTL is at least as expressive as FO[<, 𝐸].

Proof. We give a linear translation [·]HQPTL from FO[<, 𝐸] to HyperQPTL such that page 29
page 28for all trace sets𝑇 and all FO[<, 𝐸] formulas 𝜑 in prenex normal form, we obtain𝑇 |= 𝜑

Section 3.1. The Hierarchy of Linear-time Hyperlogics 36

i 𝑇 |= [𝜑]HQPTL. We encode each rst-order variable 𝑥 as a combination of a trace
variable 𝜋𝑥 and a propositional variable 𝑝𝑥 , which indicates the time component of 𝑥 .
We enforce 𝑝𝑥 to hold exactly once.

[𝑃𝑎 (𝑥)]HQPTL B (𝑝𝑥 → 𝑎𝜋𝑥)
[𝑥 < 𝑦]HQPTL B (𝑝𝑥 → 𝑝𝑦) ∧ equalTrace(𝜋𝑥 , 𝜋𝑦)
[𝑥 = 𝑦]HQPTL B (𝑝𝑥 ↔ 𝑝𝑦) ∧ equalTrace(𝜋𝑥 , 𝜋𝑦)
[𝐸 (𝑥,𝑦)]HQPTL B (𝑝𝑥 ↔ 𝑝𝑦)
[¬𝜑]HQPTL B ¬[𝜑]HQPTL

[𝜑1 ∨ 𝜑2]HQPTL B [𝜑1]HQPTL ∨ [𝜑2]HQPTL

[∃𝑥 . 𝜑]HQPTL B ∃𝜋𝑥 . ∃𝑝𝑥 . once(𝑝𝑥) ∧ [𝜑]HQPTL

Since we assume 𝜑 to be in prenex normal form, [𝜑]HQPTL can be transformed into
a valid HyperQPTL formula. As a side remark, note that we could convert [𝜑]HQPTL
into a formula that only uses and as temporal operators. We would require that
𝜑 is in negation normal form and add the rules for ∧,W, and ∀. In the case of 𝑥 < 𝑦,
the relation between 𝑝𝑥 and 𝑝𝑦 can alternatively be stated as (𝑝𝑦 → ¬𝑝𝑥) by
exploiting the fact that 𝑝𝑥 and 𝑝𝑦 are required to hold exactly once. �

Theorem 3.2. HyperQPTL is strictly more expressive than FO[<, 𝐸].

Proof. With Lemma 3.1, we are left to show that there are properties that HyperQPTL
can express, but FO[<, 𝐸] cannot. We apply a similar technique as in [195]: consider
the class of single-trace trace sets. In this class, HyperQPTL is expressively equiva-
lent to QPTL and FO[<, 𝐸] is expressively equivalent to FO[<], which is equivalent to
LTL [144]. It is known, however, that QPTL is strictly more expressive than LTL since
QPTL can express any 𝜔-regular language [212], which LTL cannot [178]. �

3.1.2 S1S[𝑬] versus HyperQPTL

We dene S1S[𝐸] and introduce HyperQPTL+ as alternative denition of HyperQPTL.
We subsequently show that S1S[𝐸] and HyperQPTL+ are expressively equivalent and
strictly more expressive than the traditional denition of HyperQPTL.

S1S[𝑬]. We extend S1S with the equal-level predicate to obtain a hyperlogic. Let page 24
𝑉1 = {𝑥1, 𝑥2, . . .} be a set of rst-order variables and 𝑉2 = {𝑋1, 𝑋2, . . .} be a set of
second-order variables. The syntax of S1S[𝐸] formulas 𝜑 is dened as follows:

𝜏 F 𝑥 | min(𝑥) | 𝑆 (𝜏)
𝜑 F 𝜏 ∈ 𝑋 | 𝜏 = 𝜏 | 𝐸 (𝜏, 𝜏) | ¬𝜑 | 𝜑 ∨ 𝜑 | ∃𝑥 . 𝜑 | ∃𝑋 . 𝜑

Section 3.1. The Hierarchy of Linear-time Hyperlogics 37

Here, 𝑥 ∈ 𝑉1 is a rst-order variable, 𝑆 denotes the successor relation, and min(𝑥)
indicates the minimal element of the trace addressed by 𝑥 . Furthermore, 𝐸 (𝜏, 𝜏) is the
equal-level predicate and 𝑋 ∈ 𝑉2 ∪ {𝑋𝑎 | 𝑎 ∈ AP}. We interpret S1S[𝐸] formulas over
a set of traces 𝑇 . As in the case of FO[<, 𝐸], the domain of the rst-order variables is
𝑇 × N. Let V1 : 𝑉1 → 𝑇 × N and V2 : 𝑉2 → 2𝑇×N be the rst-order and second-order
valuation, respectively. The value of a term is dened as follows.

[𝑥]V1 B V1(𝑥)
[min(𝑥)]V1 B (#1(V1(𝑥)), 0)

[𝑆 (𝜏)]V1 B (#1([𝜏]V1), #2([𝜏]V1) + 1)

Let𝜑 be an S1S[𝐸] formulawith free rst-order variables𝑉 ′
1 ⊆ 𝑉1 and free second-order

variables𝑉 ′
2 ⊆ 𝑉2∪{𝑋𝑎 | 𝑎 ∈ AP}. We dene the satisfaction relationV1,V2 |=𝑇 𝜑 with

respect to two valuationsV1,V2 assigning all free variables in 𝑉 ′
1 and 𝑉 ′

2 as follows.

V1,V2 |=𝑇 𝜏 ∈ 𝑋 i [𝜏]V1 ∈ V2(𝑋)
V1,V2 |=𝑇 𝜏1 = 𝜏2 i [𝜏1]V1 = [𝜏2]V1

V1,V2 |=𝑇 𝐸 (𝜏1, 𝜏2) i #2([𝜏1]V1) = #2([𝜏2]V1)
V1,V2 |=𝑇 ¬𝜑 i V1,V2 6 |=𝑇 𝜑
V1,V2 |=𝑇 𝜑1 ∨ 𝜑2 i V1,V2 |=𝑇 𝜑1 or V1,V2 |=𝑇 𝜑2
V1,V2 |=𝑇 ∃𝑥 . 𝜑 i ∃(𝑡, 𝑛) ∈ 𝑇 × N.V1 [𝑥 ↦→ (𝑡, 𝑛)],V2 |=𝑇 𝜑
V1,V2 |=𝑇 ∃𝑋 . 𝜑 i ∃𝐴 ⊆ 𝑇 × N.V1,V2 [𝑋 ↦→ 𝐴] |=𝑇 𝜑

We call an S1S[𝐸] formula 𝜑 closed if every free variable is a second-order variable
of the form 𝑋𝑎 with 𝑎 ∈ AP . We say that a trace set 𝑇 over AP satises a closed
S1S[𝐸] formula 𝜑 , written𝑇 |= 𝜑 , if ∅,V2 |=𝑇 𝜑 , where ∅ denotes the empty rst-order
valuation andV2 assigns each free 𝑋𝑎 in 𝜑 to the set {(𝑡, 𝑖) ∈ 𝑇 × N | 𝑎 ∈ 𝑡 [𝑖]}.

HyperQPTL
+
. The denition of HyperQPTL based on QPTL is straightforward. page 28

However, one could argue that it is not the only way to extend QPTL to a hyper-
logic. The original idea of QPTL is to “color” the trace by introducing additional atomic
propositions. The way HyperQPTL is dened, that idea is translated to sets of traces by
coloring the traces uniformly. An alternative approach could be to color every trace in-
dividually by quantifying a standard atomic proposition for every propositional quan-
tication. We introduce this logic as HyperQPTL+ and examine is expressiveness as
opposed to S1S[𝐸] and HyperQPTL.

Similar to HyperQPTL, HyperQPTL+ extends the syntax of HyperLTL with quan-
tication over propositions. In contrast, HyperQPTL+’s propositional quantication
does not add a single trace over 2{𝑝} but (re)assigns an atomic proposition 𝑎 ∈ AP . To

Section 3.1. The Hierarchy of Linear-time Hyperlogics 38

distinguish between propositional quantication of HyperQPTL and HyperQPTL+, we
use 𝑎, 𝑏, . . . for quantied propositional variables in HyperQPTL+ while we use 𝑝, 𝑞, 𝑟
for uniform quantication. The syntax of the logic is given as follows. In comparison
to HyperQPTL, all propositional variables are annotated with a trace variable.

𝜑 F ∃𝜋. 𝜑 | ∀𝜋. 𝜑 | ∃𝑎. 𝜑 | ∀𝑎. 𝜑 | 𝜓
𝜓 F 𝑎𝜋 | ¬𝜓 | 𝜓 ∨𝜓 | 𝜓 | 𝜓 U𝜓

Propositional quantication is evaluated as follows.

Π, 𝑖 |=𝑇 ∃𝑎. 𝜑 i ∃𝑇 ′ ⊆ (2AP)𝜔 ,Π′ : 𝑉𝜋 → 𝑇 ′.𝑇 =AP\{𝑎} 𝑇
′ and Π =AP\{𝑎} Π

′

and Π′, 𝑖 |=𝑇 ′ 𝜑

Π, 𝑖 |=𝑇 ∀𝑎. 𝜑 i ∀𝑇 ′ ⊆ (2AP)𝜔 ,Π′ : 𝑉𝜋 → 𝑇 ′. if 𝑇 =AP\{𝑎} 𝑇
′ and Π =AP\{𝑎} Π

′

then Π′, 𝑖 |=𝑇 ′ 𝜑

Note that the propositional quantication of HyperQPTL+ subsumes HyperQPTL’s
propositional quantication, as we can express with two universal trace quantiers
that 𝑝 is uniform across all traces. We show that S1S[𝐸] and HyperQPTL+ are equally
expressive.

Lemma 3.3. S1S[𝐸] is at least as expressive as HyperQPTL+.

Proof. We describe a linear translation from HyperQPTL+ to S1S[𝐸], which employs
ideas based on the translation fromHyperLTL to FO[<, 𝐸] described in [95]. Compared
with FO[<, 𝐸], S1S[𝐸] does not have a < operator. We thus simulate the operator with
second-order quantication. Given two terms 𝜏 and 𝜏′, the following formula expresses
that 𝜏 refers to an earlier point than 𝜏′.

𝜏 < 𝜏′ B ∃𝑋 . 𝜏 ∉ 𝑋 ∧ 𝜏′ ∈ 𝑋
∧ ∀𝑥 . (𝑥 ∈ 𝑋 → 𝑆 (𝑥) ∈ 𝑋) ∧ ∀𝑦. 𝐸 (𝑥,𝑦) → (𝑥 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋)

The formula quanties over a set of points on traces which is closed under successor.
Furthermore, the smallest 𝑖 for which there is a (𝑡, 𝑖) ∈ 𝑋 is the same for all traces 𝑡 .
Therefore, if 𝜏′ is in the set and 𝜏 is not, then 𝜏′ must refer to a later point in time.
Compared with FO[<, 𝐸], our denition does not enforce that 𝜏 and 𝜏′ reside on the
same trace. Using S1S[𝐸]’s native negation and equality between terms, this denition
also gives us ≤.

We use two designated sets of rst-order variables 𝑉 𝑡1 ,𝑉 𝑖1 ⊆ 𝑉1, where we use
𝑉 𝑡1 = {𝑥𝜋 , 𝑥𝜋 ′, . . .} to refer to traces and 𝑉 𝑖1 = {𝑖1, 𝑖2, . . .} to indicate time. Given a
HyperQPTL+ formula 𝜑 and a term 𝜏 that indicates the current point in time, we com-
positionally construct the S1S[𝐸] formula with free second-order variables {𝑋𝑎 | 𝑎 ∈

Section 3.1. The Hierarchy of Linear-time Hyperlogics 39

AP} as follows.

[𝑎𝜋]S1S[𝐸]𝜏 B ∃𝑥 .min(𝑥) = 𝑥𝜋 ∧ 𝐸 (𝑥, 𝜏) ∧ 𝑥 ∈ 𝑋𝑎
[¬𝜑]S1S[𝐸]𝜏 B ¬[𝜑]S1S[𝐸]𝜏

[𝜑1 ∨ 𝜑2]S1S[𝐸]𝜏 B [𝜑1]S1S[𝐸]𝜏 ∨ [𝜑2]S1S[𝐸]𝜏

[𝜑]S1S[𝐸]𝜏 B [𝜑]S1S[𝐸](𝑆 𝜏)

[𝜑1U 𝜑2]S1S[𝐸]𝜏 B ∃𝑥 . 𝜏 ≤ 𝑥 ∧ [𝜑2]S1S[𝐸]𝑥 ∧ ∀𝑦. 𝜏 ≤ 𝑦 < 𝑥 → [𝜑1]S1S[𝐸]𝑦

[∃𝜋. 𝜑]S1S[𝐸]𝜏 B ∃𝑥𝜋 .min(𝑥𝜋) = 𝑥𝜋 ∧ [𝜑]S1S[𝐸]𝜏

[∃𝑎. 𝜑]S1S[𝐸]𝜏 B ∃𝑋𝑎 . [𝜑]S1S[𝐸]𝜏

In the above translation, we keep the invariant that all rst-order variables used to
indicate traces quantify the minimum element of the trace. For a HyperQPTL+ formula
𝜑 , we dene

[𝜑]S1S[𝐸] B ∃𝑥 . [𝜑]S1S[𝐸]min(𝑥)

With a simple inductive argument it follows that for each HyperQPTL+ formula 𝜑 and
trace set 𝑇 , 𝑇 |= 𝜑 i 𝑇 |= [𝜑]S1S[𝐸]. �

Lemma 3.4. HyperQPTL+ is at least as expressive as S1S[𝐸].

Proof. We give a translation from an S1S[𝐸] formula in prenex form to HyperQPTL+.

[𝜏 ∈ 𝑋]HQPTL+ B isMember (𝜏, 𝑎𝑋)
[𝜏1 = 𝜏2]HQPTL

+

B isEqual(𝜏1, 𝜏2)
[𝐸 (𝜏1, 𝜏2)]HQPTL

+

B isLevel(𝜏1, 𝜏2)
[¬𝜑]HQPTL+ B ¬[𝜑]HQPTL+

[𝜑1 ∨ 𝜑2]HQPTL
+

B [𝜑1]HQPTL
+ ∨ [𝜑2]HQPTL

+

[∃𝑥 . 𝜑]HQPTL+ B ∃𝜋𝑥 . ∃𝑖𝑥 . once(𝑖𝑥 , 𝜋𝑥) ∧ [𝜑]HQPTL+

[∃𝑋 . 𝜑]HQPTL+ B ∃𝑎𝑋 . [𝜑]HQPTL+

We use HyperQPTL+’s second-order quantication to denote a point on a trace. While
the quantication of 𝑖𝑥 re-assigns the proposition on all traces, we only refer to it
on trace 𝜋𝑥 and therefore only require that it holds exactly once on 𝜋𝑥 . To translate
S1S[𝐸]’s terms, we use predicates isMember , isEqual, and isLevel, which straightfor-
wardly unpack the terms as follows. The predicate isMember (𝜏, 𝑎𝑋) checks if proposi-
tion 𝑎𝑋 holds on the trace and point in time denoted by 𝜏 .

isMember (𝑆𝑛 (min(𝑥)), 𝑎𝑋) B 𝑛 𝑎𝑋𝜋𝑥

isMember (𝑆𝑛 (𝑥), 𝑎𝑋) B (𝑖𝑥𝜋𝑥 → 𝑛 𝑎𝑋𝜋𝑥)

Section 3.1. The Hierarchy of Linear-time Hyperlogics 40

The predicate isLevel(𝜏, 𝜏′) checks if two terms refer to the same point in time.

isLevel(𝑆𝑛 (min(𝑥)), 𝑆𝑛 (min(𝑦))) B true

isLevel(𝑆𝑚 (min(𝑥)), 𝑆𝑛 (𝑦)) B 𝑚−𝑛 𝑖
𝑦

𝜋𝑦
if 𝑛 ≤ 𝑚

isLevel(𝑆𝑚 (𝑥), 𝑆𝑛 (min(𝑦))) B 𝑛−𝑚 𝑖𝑥𝜋𝑥 if𝑚 ≤ 𝑛

isLevel(𝑆𝑚 (𝑥), 𝑆𝑛 (𝑦)) B

{
(𝑖𝑥𝜋𝑥 → 𝑚−𝑛 𝑖

𝑦

𝜋𝑦
)

(𝑖𝑦
𝜋𝑦

→ 𝑛−𝑚 𝑖𝑥𝜋𝑥)
if 𝑛 ≤ 𝑚
if𝑚 ≤ 𝑛

isLevel(𝜏1, 𝜏2) B false otherwise

Finally, the predicate isEqual(𝜏, 𝜏′) checks if two terms refer to the same trace and
point in time.

isEqual(𝜏1, 𝜏2) B equalTrace(𝜋𝑥 , 𝜋𝑦) ∧ isLevel(𝜏1, 𝜏2)

where the base variable of 𝜏1 is 𝑥 , and the one of 𝜏2 is y. Now, let 𝜑 be a closed S1S[𝐸]
formula. The above translation shows that for any set of traces 𝑇 ⊆ (2AP)𝜔 , 𝑇 |= 𝜑 i
𝑇 |= [𝜑]HQPTL+ . �

From the above two lemmas we obtain the following theorem.

Theorem 3.5. HyperQPTL+ and S1S[𝐸] are equally expressive.

We establish that in contrast to HyperQPTL [195], the model checking problem of
HyperQPTL+ and S1S[𝐸] is undecidable.

Theorem 3.6. The S1S[𝐸] model checking problem is undecidable.

Proof. The S1S[𝐸] model checking problem is to decide for a formula 𝜑 and transition
system S, if traces(S) |= 𝜑 . We prove this lemma by a reduction from deterministic
2-counter machines. We describe a simple trace set 𝑇 such that given a 2CM M with page 21
an initial conguration 𝑠0, we can construct an S1S[𝐸] formula 𝜑M,𝑠0 such thatM halts
on 𝑠0 i𝑇 |= 𝜑M,𝑠0 . We spell out the main ideas of the reduction. First, we note that we
can express in S1S[𝐸] that a set 𝑋𝑠 contains exactly the nodes of a single innite trace.

trace(𝑋𝑠) B ∃𝑥 . 𝑥 ∈ 𝑋𝑠 ∧ ∀𝑦.𝑦 ∈ 𝑋𝑠 ↔ min(𝑦) = min(𝑥)

Each 2CM conguration 𝑠 is encoded as a trace over atomic propositions 𝑐1, 𝑐2, and 𝑙
which are all true exactly once on the trace. A state where the rst counter has value
𝑣 is encoded as a trace 𝑡 with 𝑐1 ∈ 𝑡 [𝑣]. If 𝑙 is true at position 𝑖 , the next instruction
to be executed is instruction 𝑙𝑖 . If the 2CM has 𝑚 instructions, 𝑙 cannot appear later
than at position 𝑚 − 1. We call the S1S[𝐸] formula encoding that a set 𝑋𝑠 encodes a
valid conguration cong(𝑋𝑠). We choose 𝑇 to be the innite set of traces containing

Section 3.1. The Hierarchy of Linear-time Hyperlogics 41

the trace encoding for all congurations 𝑠 ∈ {(𝑖, 𝑣1, 𝑣2) ∈ N3 | 0 ≤ 𝑖 ≤ 𝑚}, where𝑚
is the number of instructions of the 2CM. Note that 𝑇 is clearly producible by a nite
transition system. We can give an S1S[𝐸] formula succ𝑖 (𝑋𝑠, 𝑋𝑠 ′), which is true i the
next instruction to be executed in 𝑠 is instruction 𝑙𝑖 and conguration 𝑠′ is the single
next conguration. We give an exemplary formula for the case that 𝑙𝑖 is of the second
instruction type and that the rst counter is tested for 0.

succ𝑖 (𝑋𝑠, 𝑋𝑠 ′) B ∀𝑥 ∈ 𝑋𝑠, 𝑦 ∈ 𝑋𝑠 ′ . 𝑆𝑖 (min(𝑥)) ∈ 𝑋𝑙
∧ (min(𝑥) ∈ 𝑋𝑐1 → 𝑆 𝑗 (min(𝑦)) ∈ 𝑋𝑙

∧ (𝐸 (𝑥,𝑦) → (𝑥 ∈ 𝑋𝑐1 ↔ 𝑦 ∈ 𝑋𝑐1) ∧ (𝑥 ∈ 𝑋𝑐2 ↔ 𝑦 ∈ 𝑋𝑐2)))
∧ (min(𝑥) ∉ 𝑋𝑐1 → 𝑆𝑘 (min(𝑦)) ∈ 𝑋𝑙

∧ (𝐸 (𝑥,𝑦) → (𝑆 (𝑥) ∈ 𝑋𝑐1 ↔ 𝑦 ∈ 𝑋𝑐1) ∧ (𝑥 ∈ 𝑋𝑐2 ↔ 𝑦 ∈ 𝑋𝑐2)))

Given amachineM with initial conguration 𝑠0, we give an S1S[𝐸] formula halting(𝑋)
which is true i the set of traces 𝑋 encodes a sequence of congurations that form a
halting computation in M. The formula halting(𝑋) is a conjunct of the following
requirements:

• 𝑋 is a union of nitelymany encoded congurations𝑋𝑠 . We express this in S1S[𝐸]
by stating that 𝑋 contains only full traces that encode valid congurations and
that there is an upper bound on the points in 𝑋 where 𝑐1 and 𝑐2 occur.

∀𝑥 ∈ 𝑋 .min(𝑥) ∈ 𝑋 ∧ 𝑆 (𝑥) ∈ 𝑋 ∧ (∀𝑋𝑠 ⊆ 𝑋 . trace(𝑋𝑠) → cong(𝑋𝑠))
∧ ∃𝑥 ∈ 𝑋 .∀𝑦 ∈ 𝑋 . 𝑥 < 𝑦 → 𝑦 ∉ 𝑋𝑐1 ∧ 𝑦 ∉ 𝑋𝑐2

• 𝑋 is predecessor closed with respect to the instructions of the machine, i.e., if
𝑋𝑠 is a conguration in 𝑋 , then either 𝑋𝑠 encodes the initial conguration 𝑠0, or
there is a 𝑋𝑠 ′ ⊆ 𝑋 such that succ𝑖 (𝑋𝑠 ′, 𝑋𝑠) for some 𝑖 .

∀𝑋𝑠 ⊆ 𝑋 . trace(𝑋𝑠) ∧ cong(𝑋𝑠) →
∃𝑋𝑠 ′ ⊆ 𝑋 . trace(𝑋𝑠 ′) ∧ cong(𝑋𝑠 ′) ∧

∨
1≤𝑖≤𝑚

succ𝑖 (𝑋𝑠, 𝑋𝑠 ′)

• There is the encoding of a halting conguration 𝑋halt in 𝑋 .

Using the ideas presented above, we can dene 𝜑M,𝑠0 as a formula that checks whether
there is a subset 𝑋 of 𝑇 which encodes a halting computation of M starting in 𝑠0, i.e.,
𝜑M,𝑠0 B ∃𝑋 . halting(𝑋). �

Finally, we can state the last theorem that completes the linear-time hierarchy.

Section 3.2. TeamLTL in the Linear-time Hierarchy 42

Theorem 3.7. S1S[𝐸] and HyperQPTL+ are strictly more expressive than HyperQPTL.

Proof. As HyperQPTL+ trivially subsumes HyperQPTL, this follows from Theorem 3.5
and Theorem 3.6, since theHyperQPTLmodel checking problem is decidable [195]. �

3.1.3 A Case for HyperQPTL

In many aspects, HyperQPTL can be seen as the sweet spot in the linear-time hierarchy
of hyperlogics. As opposed to HyperQPTL+ and S1S[𝐸], the model checking problem
of HyperQPTL is still decidable [195] (which is a strong argument in the context of
formal methods). Besides the fact that HyperQPTL is strictly more expressive than
FO[<, 𝐸], HyperQPTL formulas also need fewer quantiers to express the same state-
ment. Temporal operators are algorithmically easier to handle than rst-order quanti-
ers, a reason the success of LTL over rst-order logic. This is also makes HyperQPTL
formulas oftentimes easier to read than their FO[<, 𝐸] equivalent.

As an illustration, consider the class of promptness properties, e.g., bounded wait-
ing for a grant. The property states that if some agent requests access to a shared
resource at point in time 𝑖 , then it will be granted access within a bounded amount of
time. The bound may depend on the point in time 𝑖 where access to the resource was
requested. However, it may not depend on the current trace. We express this property
in HyperQPTL as follows.

∀𝑖 . ∃𝑏.∀𝜋. (𝑖 ∧ req𝜋 → 𝑏 ∧ (¬𝑏 U grant𝜋))

The formula states that for every point in time 𝑖 , there exists a bound 𝑏 such that if
a trace requires access at point in time 𝑖 , then it will not have to wait longer than
until the next occurrence of 𝑏. Note that this property diers from saying “all traces
are eventually granted access”, where the bound may also depend on the trace under
consideration. In that scenario, each of the innitely many traces could wait arbitrarily
long for the grant. In particular, it could happen that with each trace, the waiting time
is longer than before. While this formula could be translated to FO[<, 𝐸] (𝑡 and𝑏 are not
𝜔-regular, they just quantify points in time), the formulation in HyperQPTL focuses
on the crucial alternation of the type of quantier: rst quantify the points in time,
then quantify the trace. In HyperQPTL, we do not need the quantiers that FO[<, 𝐸]
would need for the temporal operators.

3.2 TeamLTL in the Linear-time Hierarchy

Temporal team logics constitute a new, fundamentally dierent approach to specifying
hyperproperties. Team logics argue over teams; in the case of TeamLTL, the team is a

Section 3.2. TeamLTL in the Linear-time Hierarchy 43

set of traces. The syntax of LTL with team semantics is that of LTL but the semantics
dier. In LTL with team semantics, ∨ serves as a split operator, which splits the team
(i.e., the trace set) during the evaluation of a formula. This enables us to express prop-
erties of subsets of traces. As an example, consider the case that an unknown input
determines the behavior of the system. Depending on the input, its execution traces
either agree on 𝑎 or on 𝑏. We can express the property in HyperLTL with three trace
quantiers:

∃𝜋1, 𝜋2.∀𝜋. (𝑎𝜋1 ↔ 𝑎𝜋) ∨ (𝑏𝜋2 ↔ 𝑏𝜋)

In TeamLTL, the same property can be simply expressed as

(𝑎 6 ¬𝑎) ∨ (𝑏 6 ¬𝑏)

The Boolean or operator6 expresses that in the current team, either the left side holds
on all traces or the right side does. The use of the 6 operator reveals another strength
of TeamLTL: its modularity. The research on team semantics (see Chapter 5 for re- page 71
lated work) has a rich tradition of studying extensions of team logics with new atomic
statements and operators. They constitute a well-dened way to increase a logic’s ex-
pressiveness in a step-by-step manner. Besides 6, examples are Boolean negation ∼,
the inclusion atom ⊆, and universal subteam quantiers A and A1 . Inclusion atoms
have been found to be fascinating for their ability to express recursion in the rst-
order setting [110]. The operator A1 can express all LTL-denable properties. With the
introduction of generalized atoms, TeamLTL even permits custom extensions.

Possibly most interesting in the context of hyperproperties are dependence atoms.
A dependence atom dep(𝑥1, . . . , 𝑥𝑛) is satised by a team 𝑋 if any two assignments
assigning the same values to the variables 𝑥1, . . . , 𝑥𝑛−1 also assign the same value to 𝑥𝑛 .
For example, the TeamLTL formula

(dep(𝑖1, 𝑖2, 𝑜)) ∨ (dep(𝑖2, 𝑖3, 𝑜))

states that the set of traces can be decomposed into two parts; in the rst part, the
output 𝑜 is determined by the inputs 𝑖1 and 𝑖2, and in the second part, 𝑜 is determined
by the inputs 𝑖2 and 𝑖3.

Only very few results are known about the expressive power of temporal log-
ics with team semantics. This applies, in particular, to how TeamLTL compares to
quantier-based temporal hyperlogics. What is known is that HyperLTL and TeamLTL
are incomparable in expressiveness [153]. In this section, we identify two extensions of
TeamLTL that can express all (and all downward closed, respectively) Boolean relations
on LTL properties of teams, and present translations from these logics to HyperQPTL
and HyperQPTL+.

Section 3.2. TeamLTL in the Linear-time Hierarchy 44

3.2.1 Expressive Extensions of TeamLTL

First, we recap some typical properties associated with logics with team semantics.

Downward closure property. If 𝑇, 𝑖 |= 𝜑 and 𝑇 ′ ⊆ 𝑇 , then 𝑇 ′, 𝑖 |= 𝜑 .

Empty team property. ∅, 𝑖 |= 𝜑

Flatness property. 𝑇, 𝑖 |= 𝜑 i ∀𝑡 ∈ 𝑇 . {𝑡}, 𝑖 |= 𝜑

Singleton equivalence property. {𝑡}, 𝑖 |= 𝜑 i 𝑡, 𝑖 |= 𝜑

In the singleton equivalence property, the rightmost satisfaction relation |= is that of
standard LTL. A team logic has one of the above properties if every formula of the
logic has the property. TeamLTL satises downward closure, singleton equivalence,
and the empty team property [153]. TeamLTL does not satisfy atness; for instance,
the formula 𝑝 is not at [153].

We dene extensions of TeamLTL that are typical for logics with team semantics,
i.e., dependence atoms, inclusion atoms, subteam quantiers, and Boolean negation
and disjunction. We then introduce LTL-denable generalized atoms for TeamLTL
and present the two extensions of TeamLTL we use in the rest of the section.

Dependence atoms are of the form dep(𝜓1, . . . ,𝜓𝑛,𝜓) and inclusion atoms are given
as𝜓1, . . . ,𝜓𝑛 ⊆ 𝜓 ′

1, . . . ,𝜓
′
𝑛 , where all𝜓,𝜓𝑖 , and𝜓 ′

𝑖 are LTL formulas interpreted with the
standard semantics of LTL. Dependence atoms state that the value of𝜓 for team (𝑇, 𝑖)
is functionally determined by that of 𝜓1, . . . ,𝜓𝑛 . For TeamLTL, they were rst dened
in [153]. Inclusion atoms state that each value combination of 𝜓1, . . . ,𝜓𝑛 must also
occur as a value combination for𝜓 ′

1, . . . ,𝜓
′
𝑛 . Their formal semantics is dened as:

𝑇, 𝑖 |= dep(𝜓1, . . . ,𝜓𝑛,𝜓) i ∀𝑡, 𝑡 ′ ∈ 𝑇 . if
∧

1≤ 𝑗≤𝑛
(𝑡, 𝑖 |= 𝜓 𝑗 i 𝑡 ′, 𝑖 |= 𝜓 𝑗)

then (𝑡, 𝑖 |= 𝜓 i 𝑡 ′, 𝑖 |= 𝜓)
𝑇, 𝑖 |= 𝜓1, . . . ,𝜓𝑛 ⊆ 𝜓 ′

1, . . . ,𝜓
′
𝑛 i ∀𝑡 ∈ 𝑇 . ∃𝑡 ′ ∈ 𝑇 .

∧
1≤ 𝑗≤𝑛

𝑡, 𝑖 |= 𝜓 𝑗 i 𝑡 ′, 𝑖 |= 𝜓 ′
𝑗

As an example, let 𝑜1, . . . , 𝑜𝑛 be some observable outputs and 𝑠 be a secret. The atom
(𝑜1, . . . , 𝑜𝑛, 𝑠) ⊆ (𝑜1, . . . , 𝑜𝑛,¬𝑠) expresses a form of noninference by stating that an
observer cannot infer the current value of the secret from the (observable) outputs.
We also consider other connectives commonly used for logics with team semantics:
Boolean disjunction 6, Boolean negation ∼, and universal subteam quantiers A and A1 ,
with their semantics dened as:

𝑇, 𝑖 |= 𝜓1 6𝜓2 i 𝑇, 𝑖 |= 𝜓1 or 𝑇, 𝑖 |= 𝜓2

𝑇, 𝑖 |= ∼𝜓 i 𝑇, 𝑖 6 |= 𝜓

Section 3.2. TeamLTL in the Linear-time Hierarchy 45

𝑇, 𝑖 |= A𝜓 i ∀𝑇 ′ ⊆ 𝑇 .𝑇 ′, 𝑖 |= 𝜓
𝑇, 𝑖 |= A1𝜓 i ∀𝑡 ∈ 𝑇 . {𝑡}, 𝑖 |= 𝜓

While ∨ under team semantics expresses that the trace set can be split into two sets, 6
states that either the whole set satises 𝜓1 or the whole set satises 𝜓2. The operator
A enforces that formula 𝜓 is downward closed as in the downward closedness prop-
erty, and A1 enforces atness. If A is a set of non-standard operators, we denote by
TeamLTL(A) the extension of TeamLTL with the operators in A. For any operator ◦,
we simply write TeamLTL(A, ◦) instead of TeamLTL(A ∪ {◦}).

TeamLTL(∼) is a very expressive logic; all of the above operators have been shown
to be expressible in TeamLTL(∼) [130, 168]. To systematically explore variants of
TeamLTL that fall between plain TeamLTL and TeamLTL(∼), we employ two represen-
tative logics, namely TeamLTL(6,A1) and TeamLTL(6,A1 ,∼⊥). Here, ∼⊥ is syntactic
sugar for ∼false, which enforces that the trace set 𝑇 contains at least one trace. We
therefore also call it the non-empty-team operator. These logics form an interesting
extension of TeamLTL: they are more expressive than plain TeamLTL and less expres-
sive than TeamLTL(∼). But most importantly, we show that they can express a general
class of Boolean relations over teams (𝑇, 𝑖). To do so, we describe the notion of LTL-
denable generalized atoms for TeamLTL.

These atoms were rst introduced, in the rst-order team semantics setting, by
Kuusisto [156] using generalized quantiers. First-order-denable generalized atoms
for TeamLTL were also briey mentioned in [153].

Denition 3.1 (Generalized atoms for LTL). An𝑛-ary generalized atom #𝐺 (𝜓1, . . . ,𝜓𝑛)
is a tuple of 𝑛 LTL formulas𝜓1, . . . ,𝜓𝑛 together with a set𝐺 of 𝑛-ary relations over the
Boolean domain. Its team semantics is dened as follows.

𝑇, 𝑖 |= #𝐺 (𝜓1, . . . ,𝜓𝑛) i {((𝑡, 𝑖 |= 𝜓1), . . . , (𝑡, 𝑖 |= 𝜓𝑛)) | 𝑡 ∈ 𝑇 } ∈ 𝐺

Generalized atoms describe properties of teams (𝑇, 𝑖) (think of a team as a “trace
set slice”) by reducing each trace to its valuation on some LTL properties and then
stating which valuations are allowed to occur together in a slice. One of the simplest
generalized atoms is the unary atom #𝐺 (𝑎) with𝐺 = {{true}, {false}, ∅}, which is true
for trace set 𝑇 at position 𝑖 if all traces in 𝑇 agree on the value of 𝑎 at position 𝑖 .
The empty set is necessary in 𝐺 for the case that 𝑇 is empty. Similarly, A1𝜓 can be
interpreted as a unary generalized atom with𝐺 = {{true}, ∅}. For each arity 𝑛, we can
also dene the 𝑛-ary dependence atom as generalized atom. The binary dependence
atom dep(𝜓,𝜓 ′) can be expressed as generalized atom #𝐺 (𝜓,𝜓 ′)with𝐺 = {𝐴 ⊆ {0, 1}2 |
if (𝑎, 𝑏1) ∈ 𝐴 and (𝑎, 𝑏2) ∈ 𝐴 then 𝑏1 = 𝑏2}.

A generalized atom #𝐺 (𝜓1, . . . ,𝜓𝑛) is downward closed if 𝐺 is downward closed,
i.e., if 𝑅 ∈ 𝐺 and 𝑅′ ⊆ 𝑅, then 𝑅′ ∈ 𝐺 . We denote by Aall and Adc the set of all and

Section 3.2. TeamLTL in the Linear-time Hierarchy 46

all generalized atoms and the set of all downward-closed generalized atoms. Using a
straightforward induction we can prove that for any setA of downward closed atoms
and operators (an operator is downward closed if it preserves downward closedness),
the logic TeamLTL(A) is downward closed as well. For instance, TeamLTL(dep,6,A1)
is downward closed.

The next proposition establishes that TeamLTL(6,A1) can express all downward-
closed generalized atoms. Additionally, adding∼⊥ to the logic is sucient to express all
generalized atoms. The translation given in the proposition is inspired by an analogous
one given in [231] for propositional team logics.

Proposition 3.8. TeamLTL(6,A1) is expressively equivalent to TeamLTL(Adc,6), and
TeamLTL(6,A1 ,∼⊥) is expressively equivalent toTeamLTL(Aall,6).

Proof. First, note that the size of 𝐺 and the contained relations are by construction
nite. For any 𝑅 ∈ 𝐺 and (𝑏1, . . . , 𝑏𝑛) ∈ 𝑅, let 𝑏 B (𝑏1, . . . , 𝑏𝑛) and ®𝜓𝑏 B 𝜓

𝑏1
1 ∧ . . .∧𝜓𝑏𝑛𝑛 ,

where we dene 𝜓 true
𝑖 B 𝜓𝑖 and 𝜓 false

𝑖
B ¬𝜓𝑖 in negation normal form. We prove that

for any 𝑛-ary generalized atom #𝐺 (𝜓1, . . . ,𝜓𝑛), we have that

#𝐺 (𝜓1, . . . ,𝜓𝑛) ≡>
𝑅∈𝐺

∨
𝑏∈𝑅

A1
(®𝜓𝑏 ∧ ∼⊥

)
If #𝐺 is downward closed, we show that the above translation can be simplied, re-
moving the need for the non-empty-team operator.

#𝐺 (𝜓1, . . . ,𝜓𝑛) ≡ >
𝑅∈𝐺

∨
𝑏∈𝑅

A1 ®𝜓𝑏

Let È ®𝜓 É(𝑡,𝑖) B ((𝑡, 𝑖 |= 𝜓1), . . . , (𝑡, 𝑖 |= 𝜓𝑛)) for any trace 𝑡 and 𝑖 ∈ N. First, we observe
that for every trace set 𝑇 and 𝑖 ∈ N

𝑇, 𝑖 |= A1 ®𝜓𝑏 ⇔ 𝑇 = ∅ or ∀𝑡 ∈ 𝑇 . È ®𝜓É(𝑡,𝑖) = 𝑏
⇔ {È ®𝜓É(𝑡,𝑖) | 𝑡 ∈ 𝑇 } ⊆ {𝑏}

Thus, due to the team semantics of the ∨ operator,

𝑇, 𝑖 |=
∨
𝑏∈𝑅

A1 ®𝜓𝑏 ⇔ {È ®𝜓É(𝑡,𝑖) | 𝑡 ∈ 𝑇 } ⊆ 𝑅

If we add the requirement that every team generated by every disjunct above is non-
empty, we get

𝑇, 𝑖 |=
∨
𝑏∈𝑅

(
A1 ®𝜓𝑏 ∧ ∼⊥

)
⇔ {È ®𝜓É(𝑡,𝑖) | 𝑡 ∈ 𝑇 } = 𝑅.

Section 3.2. TeamLTL in the Linear-time Hierarchy 47

Therefore, if #𝐺 (𝜓1, . . . ,𝜓𝑛) is downward closed, then

𝑇, 𝑖 |=>
𝑅∈𝐺

∨
𝑏∈𝑅

A1 ®𝜓𝑏

⇔ {È ®𝜓 É(𝑡,𝑖) | 𝑡 ∈ 𝑇 } ⊆ 𝑅 for some 𝑅 ∈ 𝐺 , by def. of 6 and reasoning above

⇔ {È ®𝜓 É(𝑡,𝑖) | 𝑡 ∈ 𝑇 } = 𝑅′ for some 𝑅′ ⊆ 𝑅

⇔ 𝑇, 𝑖 |= #𝐺 (𝜓1, . . . ,𝜓𝑛) as 𝐺 is downward closed, so 𝑅′ ∈ 𝐺

If #𝐺 (𝜓1, . . . ,𝜓𝑛) is not downward closed, then we get

𝑇, 𝑖 |=>
𝑅∈𝐺

∨
𝑏∈𝑅

(
A1 ®𝜓𝑏 ∧ ∼⊥

)
⇔ {È ®𝜓 É(𝑡,𝑖) | 𝑡 ∈ 𝑇 } = 𝑅 for some 𝑅 ∈ 𝐺 by reasoning above
⇔ 𝑇, 𝑖 |= #𝐺 (𝜓1, . . . ,𝜓𝑛) by Denition 3.1 since 𝑅 ∈ 𝐺

This concludes the proof. �

3.2.2 TeamLTL versus HyperQPTL
+

We relate the expressiveness of TeamLTL(6,A1) and TeamLTL(6,A1 ,∼⊥) to fragments
of HyperQPTL+. As discussed in Section 3.1.2, HyperQPTL+ can simulate uniform
propositional quantication. We describe fragments of HyperQPTL+ by restricting the
quantier prexes of formulas. We use ∃𝜋 /∀𝜋 to denote trace quantication, ∃𝑝 /∀𝑝
for uniform propositional quantication, and ∃+ /∀+ for non-uniform propositional
quantication. We use ∃ (∀, respectively) if we do not need to distinguish between
the dierent types of existential (universal, respectively) quantiers. As before, we
also write 𝑄 to refer to both ∃ and ∀. As an example, ∀∗∃∗HyperQPTL+ refers to
HyperQPTL+ formulas with quantier prex {∀𝑝 ,∀+,∀𝜋 }∗{∃𝑝, ∃+, ∃𝜋 }∗.

We show that TeamLTL(6,A1) and TeamLTL(6,A1 ,∼⊥) can be translated to the
prex fragments ∃+𝑄

∗
𝑝∃∗

𝜋∀𝜋 and ∃+𝑄
∗
𝑝∀𝜋 of HyperQPTL+. The translations provide in-

sight into the limits of the expressiveness of dierent extensions of TeamLTL. In partic-
ular, they show that one existential second-order quantier ∃+ is sucient to simulate
the generation of subteams with the ∨ operator. The dierence between downward-
closed team properties and general team properties manifests itself by a dierent need
for trace quantiers: for downward-closed properties, a single ∀𝜋 quantier is enough,
whereas in the general case, we need a ∃∗

𝜋∀𝜋 quantier alternation.
As a prerequisite for the translation, we formulate two lemmas. The rst lemma

states that for every TeamLTL(⊆,6,A1 ,∼⊥) formula𝜓 , the formula A1𝜓 can be treated
as an LTL formula. This result is not surprising, as the A1 operator evaluates 𝜓 indi-
vidually for every trace in the team. Proving the result requires a careful construction,

Section 3.2. TeamLTL in the Linear-time Hierarchy 48

however. As an intermediate step, we prove that we can remove any occurrence of ⊆,
6, A1 , and ∼⊥ from𝜓 such that it remains equivalent under LTL semantics.

Lemma 3.9. Given a TeamLTL(⊆,6,A1 ,∼⊥) formula 𝜓 , we can construct a TeamLTL
formula𝜓 ∗ such that for all traces 𝑡 and 𝑖 ∈ N, {𝑡}, 𝑖 |= 𝜓 i {𝑡}, 𝑖 |= 𝜓 ∗.

Proof. To construct𝜓 ∗, we describe a function elim, which for TeamLTL(⊆,6,A1 ,∼⊥)
formula𝜓 , eliminates all occurrences of ⊆, 6, A1 , and ∼⊥ such that for every 𝑡 , we have
{𝑡}, 𝑖 |= elim(𝜓) i {𝑡}, 𝑖 |= 𝜓 . Handling operators ⊆ and A1 is simple: as both sides
of ⊆ contain LTL formulas, we can replace ⊆ with a simple equivalence; occurrences
of A1 can just be dropped. If both subformulas do not contain a ∼⊥ expression, then
𝜓1 6 𝜓2 can just be replaced with 𝜓1 ∨ 𝜓2. The main diculty is to translate the ∨
operator in combination with ∼⊥. During the recursive evaluation of the formula, the
current team might be empty because of a split, which causes ∼⊥ to evaluate to false.
The idea is to “bubble up” any occurrences of ∼⊥ in𝜓 . The result of elim(𝜓) is either a
formula \ or a formula \ ∧ ∼⊥ such that \ is a TeamLTL formula. In the construction
below, we use elim(𝜓) = \ to state that elim(𝜓) does not contain a ∼⊥ expression. In
an expression \ ∧ ∼⊥, \ might also be empty, i.e., equal to true.

elim(𝜓1, . . . ,𝜓𝑛 ⊆ 𝜓 ′
1, . . . ,𝜓

′
𝑛) B

∧
1≤𝑖≤𝑛𝜓𝑖 ↔ 𝜓 ′

𝑖

elim(𝜓) B 𝜓 if𝜓 = 𝑎,¬𝑎, or ∼⊥
elim(A1𝜓) B elim(𝜓)elim(𝜓1 ∨𝜓2) B

∼⊥ ∧ \1 ∧ \2 if elim(𝜓1) = ∼⊥ ∧ \1 and elim(𝜓2) = ∼⊥ ∧ \2
∼⊥ ∧ \1 if elim(𝜓1) = ∼⊥ ∧ \1 and elim(𝜓2) = \2
\1 ∨ \2 else{

elim(𝜓1 6𝜓2) B
∼⊥ ∧ (\1 ∨ \2) if elim(𝜓1) = ∼⊥ ∧ \1 and elim(𝜓2) = ∼⊥ ∧ \2
\1 ∨ \2 else{

elim(𝜓1 ∧𝜓2) B
∼⊥ ∧ \1 ∧ \2 if elim(𝜓1) = ∼⊥ ∧ \1 or elim(𝜓2) = ∼⊥ ∧ \2
\1 ∧ \2 else{

elim(𝜓) B
∼⊥ ∧ \ if elim(𝜓) = ∼⊥ ∧ \
\ else{

elim(𝜓1U𝜓2) B
∼⊥ ∧ (\1U \2) if elim(𝜓2) = ∼⊥ ∧ \2
\1U \2 else{

elim(𝜓1W𝜓2) B
∼⊥ ∧ (\1W \2) if elim(𝜓1) = ∼⊥ ∧ \1 and elim(𝜓2) = ∼⊥ ∧ \2
\1W \2 else

The above translation preserves the truth value of formulas over trace sets of cardinal-

Section 3.2. TeamLTL in the Linear-time Hierarchy 49

ity at most 1. On singleton trace sets, \ and ∼⊥∧\ are equivalent. Thus, for both cases,
if elim(𝜓) = \ or if elim(𝜓) = ∼⊥ ∧ \ , we set𝜓 ∗ = \ and the statement follows. �

As TeamLTL satises the singleton equivalence property, we obtain the following
corollary from the above lemma.

Corollary 3.10. Given a TeamLTL(⊆,6,A1 ,∼⊥) formula 𝜓 , we can construct an LTL
formula𝜓 ∗ such that for all traces 𝑡 and 𝑖 ∈ N, {𝑡}, 𝑖 |= 𝜓 i 𝑡, 𝑖 |= 𝜓 ∗.

As a second prerequisite for the translation, we show that the evaluation of a
TeamLTL(6,A1 ,∼⊥) formula can only create countably many dierent teams, even
if the formula is evaluated on an uncountable trace set. We show that for every set of
traces 𝑇 , there is a countable set H ⊆ 2𝑇 such that the split operator ∨ only chooses
trace sets from H , independently of the formula𝜓 .

Lemma 3.11. For every set 𝑇 of traces over AP , there exists a countable H ⊆ 2𝑇 such
that for every TeamLTL(6,A1 ,∼⊥) formula𝜓 and 𝑖 ∈ N,

𝑇, 𝑖 |= 𝜓 i 𝑇, 𝑖 |=H 𝜓

where |=H is dened such that in the evaluation of ∨, the subsets 𝑇1 and 𝑇2 are both
required to be in H .

Proof. First note that we cannot chooseH as the set of all subsets of𝑇 , as this set might
be uncountable. We therefore inductively dene a nondeterministic function traceSets,
which takes a trace set𝑇 , a natural number 𝑖 , and a TeamLTL(6,A1 ,∼⊥) formula𝜓 and
returns a set of sets of tracesH as follows.

traceSets(𝑇, 𝑖,𝜓) B {𝑇 } (if𝜓 = 𝑎,¬𝑎,∼⊥, or A1𝜓 ′)
traceSets(𝑇, 𝑖, 𝜓) B traceSets(𝑇, 𝑖 + 1,𝜓)
traceSets(𝑇, 𝑖,𝜓1 ∧𝜓2) B traceSets(𝑇, 𝑖,𝜓1) ∪ traceSets(𝑇, 𝑖,𝜓2)
traceSets(𝑇, 𝑖,𝜓1 6𝜓2) B traceSets(𝑇, 𝑖,𝜓1) ∪ traceSets(𝑇, 𝑖,𝜓2)
traceSets(𝑇, 𝑖,𝜓1 ∨𝜓2) B traceSets(𝑇1, 𝑖,𝜓1) ∪ traceSets(𝑇2, 𝑖,𝜓2) ∪ {𝑇 }

(where 𝑇1 and 𝑇2 are guessed nondeterministically such that 𝑇1 ∪𝑇2 = 𝑇)
traceSets(𝑇, 𝑖,𝜓1 ◦𝜓2) B

⋃
𝑗≥𝑖

(
traceSets(𝑇, 𝑗,𝜓1) ∪ traceSets(𝑇, 𝑗,𝜓2)

)
where ◦ = U or ◦ = W. As the countable union of countable sets is countable, any
set generated by traceSets(𝑇, 𝑖,𝜓) is countable. Now, we choose

H B
⋃
𝑖∈N

𝜓∈TeamLTL(6,A1 ,∼⊥)

traceSets(𝑇, 𝑖,𝜓)

Section 3.2. TeamLTL in the Linear-time Hierarchy 50

First, 𝑇, 𝑖 |= 𝜓 i 𝑇, 𝑖 |=H 𝜓 holds for the above H by the denition of traceSets. As
N and the formulas of TeamLTL(6,A1 ,∼⊥) are both countable sets, H is countable.
The denition of traceSets is nondeterministic, thus H denes possibly uncountable
many sets simultaneously. The proof is therefore not constructive, it just proves the
existence of a suitable set, depending on how the trace set has to be split in case of ∨
to match the evaluation of 𝑇, 𝑖 |= 𝜓 . �

Having established the necessary lemmas, we can now prove that HyperQPTL+
subsumes TeamLTL(6,A1 ,∼⊥).

Theorem 3.12. For every 𝜓 ∈ TeamLTL(6,A1 ,∼⊥), there exists an equivalent formula
𝜑 in the ∃+𝑄

∗
𝑝∃∗

𝜋∀𝜋 fragment of HyperQPTL+. If 𝜓 ∈ TeamLTL(6,A1), 𝜑 can be dened
in the ∃+𝑄

∗
𝑝∀𝜋 fragment.

Proof. Let 𝑎H , 𝑝 , and 𝑟 be distinct propositional variables. We dene a compositional
translation [·]HQPTL

+

(𝑝,𝑟) such that for every team (𝑇, 𝑖) and TeamLTL(6,A1 ,∼⊥) formula
𝜓 , we obtain

𝑇, 𝑖 |= 𝜓 i ∅, 𝑖 |=𝑇 ∃𝑎H . ∃𝑝, 𝑟 . [𝜓]HQPTL
+

(𝑝,𝑟) ∧ ∀𝜋. 𝑎H𝜋 ∧ 𝑝𝜋 ∧ 𝑟𝜋

Note that by our convention formulated in the denition of HyperQPTL+ (cf. Sec-
tion 3.1.2), ∃𝑎H is the normal quantication of HyperQPTL+, while all other propo-
sitional variables are uniformly quantied. We require that the uniformly quantied
propositional variables 𝑝 and 𝑟 satisfy the formula once for trace 𝜋 . This can be easily page 35
added to the formula, so we don’t make it explicit for readability. The idea behind the
translation is the following. Let 𝑇 ′ denote the trace set obtained from 𝑇 by evaluating
the quantier ∃𝑎H .

• The variable 𝑎H is used to encode the countable set H of sets of traces given by
Lemma 3.11. For each 𝑖 ∈ N, 𝑎H encodes the set {𝑡 [0] |AP 𝑡 [1] |AP . . . | 𝑡 ∈ 𝑇 ′, 𝑎H ∈
𝑡 [𝑖]} ∈ H , i.e., all traces on which 𝑎H holds in position 𝑖 . Note that the choice of
𝑎H may depend on 𝑇 .

• The uniformly quantied variable 𝑝 points to a set from H . The set indicated
by 𝑝 encodes the set that is used in the current evaluation. We use the formula
(𝑝𝜋 ∧ 𝑎H𝜋) to check if trace 𝜋 is in the set of traces encoded by 𝑝 .

• The uniformly quantied variable 𝑟 refers to the time step that is used for the
current evaluation.

After xing a suitable interpretation of 𝑎H , the conjunct 𝑎H𝜋 ∧ 𝑝𝜋 ∧ 𝑟𝜋 expresses that
the current trace set contains all traces of 𝑇 and that we start the evaluation at point

Section 3.2. TeamLTL in the Linear-time Hierarchy 51

in time 𝑖 . The translation is dened inductively as follows:

[𝑎]HQPTL
+

(𝑝,𝑟) B ∀𝜋. (𝑝𝜋 ∧ 𝑎H𝜋) → (𝑟𝜋 ∧ 𝑎𝜋)

[¬𝑎]HQPTL
+

(𝑝,𝑟) B ∀𝜋. (𝑝𝜋 ∧ 𝑎H𝜋) → (𝑟𝜋 ∧ ¬𝑎𝜋)

[𝜓1 6𝜓2]HQPTL
+

(𝑝,𝑟) B [𝜓1]HQPTL
+

(𝑝,𝑟) ∨ [𝜓2]HQPTL
+

(𝑝,𝑟)

[𝜓1 ∧𝜓2]HQPTL
+

(𝑝,𝑟) B [𝜓1]HQPTL
+

(𝑝,𝑟) ∧ [𝜓2]HQPTL
+

(𝑝,𝑟)

[𝜓]HQPTL
+

(𝑝,𝑟) B ∃𝑟 ′. (𝑟𝜋 ↔ 𝑟 ′𝜋) ∧ [𝜓]HQPTL
+

(𝑝,𝑟 ′)

[∼⊥]HQPTL
+

(𝑝,𝑟) B ∃𝜋. (𝑝𝜋 ∧ 𝑎H𝜋)

[A1𝜓]HQPTL
+

(𝑝,𝑟) B ∀𝜋. (𝑝𝜋 ∧ 𝑎H𝜋) → (𝑟𝜋 ∧𝜓 ∗
𝜋)

[𝜓1 ∨𝜓2]HQPTL
+

(𝑝,𝑟) B ∃𝑝′. ∃𝑝′′. (𝑝𝜋 ∧ 𝑎H𝜋) ↔ ((𝑝′𝜋 ∨′ 𝑝′𝜋) ∧ 𝑎H𝜋)

∧ [𝜓1]HQPTL
+

(𝑝 ′,𝑟) ∧ [𝜓2]HQPTL
+

(𝑝 ′′,𝑟)

[𝜓1U𝜓2]HQPTL
+

(𝑝,𝑟) B ∃𝑝𝑟 ′. 𝑟 ≤ 𝑟 ′ ∧ [𝜓2]HQPTL
+

(𝑝,𝑟 ′) ∧ ∀𝑝 𝑟 ′′. 𝑟 ≤ 𝑟 ′′ ∧ 𝑟 ′′ < 𝑟 ′ → [𝜓1]HQPTL
+

(𝑝,𝑟 ′′)

[𝜓1W𝜓2]HQPTL
+

(𝑝,𝑟) B ∀𝑝 𝑟 ′. 𝑟 ≤ 𝑟 ′ → [𝜓1]HQPTL
+

(𝑝,𝑟 ′) ∨ ∃𝑝𝑟 ′′. 𝑟 ≤ 𝑟 ′′ ∧ 𝑟 ′′ ≤ 𝑟 ′ ∧ [𝜓2]HQPTL
+

(𝑝,𝑟 ′′)

where 𝑟 < 𝑟 ′ B (𝑟𝜋 ↔ 𝑟 ′𝜋), and 𝑟 ≤ 𝑟 ′ B (𝑟𝜋 → 𝑟 ′𝜋). In case of A1𝜓 , we
use the LTL formula𝜓 ∗ from Corollary 3.10. As A1𝜓 is a at formula, A1𝜓 is equivalent
to 𝜓 ∗ under the standard LTL semantics. For the LTL formula 𝜓 ∗, we write 𝜓 ∗

𝜋 for the
equivalent ∀ HyperLTL formula that quanties a single 𝜋 and annotates every atomic
proposition of 𝜓 ∗ with 𝜋 . The resulting HyperQPTL+ formula can be transformed to
an equivalent prenex formula of the required fragments. �

3.2.3 TeamLTL versus HyperQPTL

In this subsection, we introduce a left-at fragment for TeamLTL(6,A1) formulas and
show that formulas from that fragment can be translated to HyperQPTL.

Denition 3.2 (The left-at fragment). Let A be a collection of atoms and operators.
A TeamLTL(A) formula belongs to the left-at fragment if in each of its subformulas
of the form𝜓1U𝜓2 or𝜓1W𝜓2,𝜓1 is a at formula.

Such dened fragment allows for arbitrary use of the operator, and therefore
remains incomparable to HyperLTL [153]. For instance,

dep(𝑎, 𝑏) ∨ dep(𝑐, 𝑑)

is a nontrivial formula in this fragment. It states that the set of traces can be par-
titioned into two parts, one where eventually 𝑎 determines the value of 𝑏, and an-

Section 3.2. TeamLTL in the Linear-time Hierarchy 52

other one where eventually 𝑐 determines the value of 𝑑 . The property is not express-
ible in HyperLTL, because HyperLTL cannot state the property “there is a point in
time at which 𝑝 holds on all (or innitely many) traces” [34]. The relation of left-at
TeamLTL(6,A1) to FO[<, 𝐸] remains open.

Left-atness is a semantic property. We show that checking a TeamLTL(A) for-
mula for atness of is strongly tied to the satisability problem of the logic. If A1 ∈ A,
then the problems are even equivalent.

Lemma 3.13. Let A ⊆ {⊆,6,∼⊥,A1 }. If satisability checking of TeamLTL(A,A1) is
decidable, then so is checking atness of TeamLTL(A,A1) formulas. If satisability of
TeamLTL(A) is undecidable, then so is checking atness of TeamLTL(A) formulas.

Proof. For the rst direction, assume that the satisability problem of TeamLTL(A,A1)
is decidable. Then a TeamLTL(A) formula 𝜓 is at i 𝜓 = A1𝜓 is unsatisable. For
the other direction, we show that for any formula 𝜓 ∈ TeamLTL(A), 𝜓 is unsatis-
able i 𝜓 is at and 𝜓 ∗ from Corollary 3.10 is not satisable under the LTL semantics.
Again, we prove the equivalence by distinguishing two direction. First, assume that𝜓
is unsatisable. Since no trace set 𝑇 satises 𝜓 , it is trivially at. By Corollary 3.10,
𝜓 ∗ is not satisable under the LTL semantics. Conversely, suppose 𝜓 is at and 𝜓 ∗ is
not satisable. By Corollary 3.10, {𝑡}, 𝑖 6 |= 𝜓 for every 𝑡 . It then follows, by atness,
that 𝑇, 𝑖 6 |= 𝜓 for every team 𝑇 . Thus 𝜓 is not satisable. Now, since LTL satisability
is in PSPACE [211], we can conclude that checking atness of𝜓 must be undecidable,
otherwise unsatisability checking of𝜓 would be decidable. �

There exist only few results on the satisability problem of TeamLTL and its ex-
tensions. Satisability of TeamLTL without additional connectives is reducible to LTL
satisability checking [153]. We expect that this result carries over to TeamLTL(A1).
Satisability checking for TeamLTL(⊆,6) is undecidable [225]. As a remedy, the A1

operator denes a syntactic fragment that guarantees atness. This fragment is well-
dened in the sense that, by denition, a TeamLTL formula𝜓 is at i it is equivalent
to the formula A1𝜓 . In the following, we therefore assume that for all subformulas of
the form𝜓1U𝜓2 and𝜓1W𝜓2,𝜓1 is of the form A1𝜓 ′

1.
We now describe a translation from the left-at fragment of TeamLTL(6,A1) to

the ∃∗
𝑝∀𝜋 fragment of HyperQPTL. We make use of the fact that satisfaction of at

formulae 𝜓 can be determined with the usual (single-traced) LTL semantics. In the
evaluation of𝜓 , it is thus sucient to consider only nitely many trace subsets, whose
temporal behavior can be reected by existentially quantied 𝑝-sequences.

Theorem 3.14. ∃∗
𝑝∀𝜋 HyperQPTL subsumes the left-at fragment of TeamLTL(6,A1).

Proof. We describe a linear compositional translation [·]HQPTL𝑟 such that the following

Section 3.3. The Hierarchy of Branching-time Hyperlogics 53

equivalence holds for every trace set 𝑇 .

𝑇 |= 𝜓 i 𝑇 |= ∃𝑟 0, 𝑟𝜓1, . . . , 𝑟𝜓𝑛 , 𝑑𝜌1, . . . , 𝑑𝜌𝑚 .∀𝜋. 𝑟 0 ∧ ¬𝑟 0 ∧ [𝜓]HQPTL
𝑟 0

Above, [𝜓]HQPTL
𝑟 0

is a quantier-free formula with free propositional variables 𝑟 0, and
𝑟𝜓1, . . . , 𝑟𝜓𝑛 and 𝑑𝜌1, . . . , 𝑑𝜌𝑚 , and a free trace variable 𝜋 . The idea of the translation is
that each propositional variable 𝑟𝜓𝑖 indicates a point in time at which a subformula𝜓𝑖
of 𝜓 must hold true. Propositional variables 𝑑𝜌𝑖 resolve the decision of 6-choices for
subformula 𝜌𝑖 . The key observation is that the creation of subteams with ∨ is only
possible in positive positions of the formula. In other words, all ∨ operators are in the
scope of existential temporal decisions. Thus, a team is described by the existentially
chosen points at which all traces have to synchronize. As the split is also an existential
decision, and there are only nitely many synchronization points (the bound is given
by the number of subformulas in 𝜓), there are only nitely many teams that need
to be considered in the evaluation. The synchronization points are encoded with the
propositional variables, and the universal quantier ∀𝜋 sorts each trace into one of the
nitely many teams. We dene [·]HQPTL𝑟 as follows.

[𝑝]HQPTL𝑟 B (𝑟 → 𝑝𝜋)
[¬𝑝]HQPTL𝑟 B (𝑟 → ¬𝑝𝜋)
[𝜓]HQPTL𝑟 B (𝑟 ↔ 𝑟𝜓) ∧ [𝜓]HQPTL

𝑟𝜓

[A1𝜓]HQPTL𝑟 B (𝑟 → 𝜓 ∗)
[𝜓1 ∧𝜓2]HQPTL𝑟 B [𝜓1]HQPTL𝑟 ∧ [𝜓2]HQPTL𝑟

[𝜓1 ∨𝜓2]HQPTL𝑟 B [𝜓1]HQPTL𝑟 ∨ [𝜓2]HQPTL𝑟

[𝜓1 6𝜓2]HQPTL𝑟 B (𝑑𝜓16𝜓2 → [𝜓1]HQPTL𝑟) ∧ (¬𝑑𝜓16𝜓2 → [𝜓2]HQPTL𝑟)
[𝜓1U𝜓2]HQPTL𝑟 B (𝑟 → 𝑟𝜓1 U 𝑟𝜓2) ∧ (𝑟𝜓1 → 𝜓 ∗

1) ∧ [𝜓2]HQPTL
𝑟𝜓2

[𝜓1W𝜓2]HQPTL𝑟 B (𝑟 → 𝑟𝜓1 W 𝑟𝜓2) ∧ (𝑟𝜓1 → 𝜓 ∗
1) ∧ [𝜓2]HQPTL

𝑟𝜓2

In the above translation, 𝜓 ∗ and 𝜓 ∗
1 are the corresponding LTL formulas from Corol-

lary 3.10. We assume that all propositional variables occurring in the translation are
quantied as described above. �

3.3 The Hierarchy of Branching-time Hyperlogics

Similar to the case for linear-time logics, CTL∗ is expressively equivalent to MPL, and
the extension of CTL∗ with propositional quantication, QCTL∗, is equivalent to MSO
(see Figure 3.1b). We show that the observations from the linear-time hierarchy of

Section 3.3. The Hierarchy of Branching-time Hyperlogics 54

hyperlogics mostly also apply to the branching-time hierarchy: the equal-level predi-
cate adds in general more expressiveness to FO/SO logics than path quantiers add to
temporal logics.

There is one dierence, though. According to the denition of QCTL∗, proposi-
tional quantiers may choose the value of the quantied proposition dierently in
every node of the tree. We show that the straight-forward extension to hyperproper-
ties, HyperQCTL∗, has the same expressiveness as MSO extended with the equal-level
predicate. This observation strongly resembles the observation in the linear-time hier-
archy, where HyperQPTL+ has the expressiveness of S1S[𝐸]. Inspired by HyperQPTL,
we therefore introduce HyperQ-CTL∗ as a weaker version of HyperQCTL∗. And in-
deed, the expressiveness of HyperQ-CTL∗ falls in between the ones of MPL[𝐸] and
HyperQCTL∗.

MPL[𝐸]. MPL[𝐸] is a straight-forward extension of MPL with the equal-level pred- page 26
icate. We just add the additional term 𝐸 (𝑥,𝑦) to the syntax of MPL. The semantics of
the operator is dened as follows.

V1,V2 |=(T ,𝐿) 𝐸 (𝑥,𝑦) i |V1(𝑥) | = |V1(𝑦) |

Lemma 3.15. MPL[𝐸] is at least as expressive as HyperCTL∗.

Proof. We use MPL’s rst-order quantication to keep track of the current time and
use its second-order quantication to quantify the correct path. Given a HyperCTL∗
formula 𝜑 , and a rst-order variable 𝑖 , we inductively construct an MPL[𝐸] formula
[𝜑]MPL[𝐸]

𝑖
as follows.

[𝑎𝜋]MPL[𝐸]
𝑖

B ∃𝑥 . 𝑥 ∈ 𝑋𝜋 ∧ 𝐸 (𝑥, 𝑖) ∧ 𝑥 ∈ 𝑋𝑎
[¬𝜑]MPL[𝐸]

𝑖
B ¬[𝜑]MPL[𝐸]

𝑖

[𝜑1 ∨ 𝜑2]MPL[𝐸]
𝑖

B [𝜑1]MPL[𝐸]
𝑖

∨ [𝜑2]MPL[𝐸]
𝑖

[X𝜑]MPL[𝐸]
𝑖

B ∃ 𝑗 > 𝑖 .¬(∃𝑘. 𝑖 < 𝑘 < 𝑗) ∧ [𝜑]MPL[𝐸]
𝑗

[𝜑1 U𝜑2]MPL[𝐸]
𝑖

B ∃ 𝑗 ≥ 𝑖 . [𝜑2]MPL[𝐸]
𝑗

∧ ∀𝑘. 𝑖 ≤ 𝑘 < 𝑗 → [𝜑1]MPL[𝐸]
𝑘

[∃𝜋. 𝜑]MPL[𝐸]
𝑖

B ∃𝑋𝜋 . prex (𝑋𝜋 , 𝑋Y, 𝑖) ∧ [𝜑]MPL[𝐸]
𝑖

As MPL’s second-order quantication always spans full (innite) paths, we only need
to guarantee that the newly quantied path branches of the current one at position 𝑖 .
This is encoded in the prex function dened as

prex (𝑋𝜋 , 𝑋Y, 𝑖) B ∀𝑗 ≤ 𝑖, 𝑥 . 𝐸 (𝑥, 𝑗) → 𝑥 ∈ 𝑋𝜋 ↔ 𝑥 ∈ 𝑋Y

where we use𝑋Y to denote the second-order variable that was quantied most recently

Section 3.3. The Hierarchy of Branching-time Hyperlogics 55

(i.e. closest in the scope to 𝑋𝜋). 𝑋Y can be easily obtained from the syntax tree of the
formula. If 𝑋𝜋 is not in the scope of any other second-order quantier (i.e., it is the
rst path that is quantied), then we replace prex (𝑋𝜋 , 𝑋Y, 𝑖) with true. Finally, for any
HyperCTL∗ formula 𝜑 , we obtain the following equivalent MPL[𝐸] formula.

[𝜑]MPL[𝐸] B ∃𝑧.∀𝑧′.¬𝑧′ < 𝑧 ∧ [𝜑]MPL[𝐸]
𝑧

The formula quanties the root level of the tree and evaluates the formula at this point.
�

Theorem 3.16. MPL[𝐸] is strictly more expressive than HyperCTL∗.

Proof. It is known that HyperCTL∗ cannot express the property “there exists a point
in time at which all traces agree on the value of 𝑎” [34]. In MPL[𝐸], we can express the
property as follows.

∃𝑖 .∀𝑥,𝑦. 𝐸 (𝑥, 𝑖) ∧ 𝐸 (𝑦, 𝑖) → 𝑥 ∈ 𝑋𝑎 ↔ 𝑦 ∈ 𝑋𝑎

With Lemma 3.15, the statement follows. �

Variants of HyperQCTL
∗
. We dene two extensions of HyperCTL∗ with proposi-

tional quantication: HyperQ-CTL∗ and HyperQCTL∗. The more straight-forward
extension of QCTL∗ with path quantiers (similar to how HyperCTL∗ extends CTL∗)
yields HyperQCTL∗. The less expressive variant, HyperQCTL∗, requires that the quan-
tied propositional variable has the same value on nodeswhich reside on the same level
of the tree. Syntactically, both logics add propositional quantication to the syntax of
HyperCTL∗. As for HyperQPTL, we dene the syntax of HyperQ-CTL∗ to additionally
contain a rule 𝑝 for an atomic proposition without path variable. Note that in both log-
ics, both types of quantiers (propositional and path) are allowed to occur in the scope
of temporal operators. The semantics of propositional quantication in HyperQCTL∗
is dened as follows.

Π, 𝑖 |=(T ,𝐿) ∃𝑝. 𝜑 i ∃𝐿′ : 𝑆 → 2AP . 𝐿′ =AP\{𝑝} 𝐿 and Π, 𝑖 |=(T ,𝐿′) 𝜑

For HyperQ-CTL∗, the semantics requires the new labeling function to assign 𝑝
uniformly across all paths. We also need to give an evaluation for the propositional
variable without the path annotation.

Π, 𝑖 |=(T ,𝐿) 𝑝 i ∀𝑟 ∈ nPaths(T) . |𝑟 | = 𝑖 + 1 → 𝑝 ∈ 𝐿(𝑟 [𝑖])
Π, 𝑖 |=(T ,𝐿) ∃𝑝. 𝜑 i ∃𝑡𝑝 ∈ (2{𝑝})𝜔 , ∃𝐿′ : 𝑆 → 2AP . 𝐿′ =AP\{𝑝} 𝐿 and

∀𝑟 ∈ paths(T) . trace𝐿′ (𝑟) ={𝑝} 𝑡𝑝 and Π, 𝑖 |=(T ,𝐿′) 𝜑

Section 3.3. The Hierarchy of Branching-time Hyperlogics 56

In the following, if we need to distinguish between the type of quantication, we use
∃𝑝. 𝜑 for HyperQ-CTL∗ and ∃𝑎. 𝜑 for HyperQCTL∗. Similarly to the case of linear-
time hyperlogics, we obtain the result that HyperQ-CTL∗, even though it is restricted
to uniform quantication, is strictly more expressive than MPL[𝐸].

Lemma 3.17. HyperQ-CTL∗ subsumes MPL[𝐸].

Proof. The proof is very similar to the proof that HyperQPTL subsumes FO[<, 𝐸] given
in Lemma 3.1. As before, we encode MPL[𝐸]’s rst-order quantication with a combi-
nation of path quantication and propositional quantication to encode the time. The
resulting formula has no quantier in the scope of a temporal operator. It is therefore,
syntactically, a HyperQPTL formula (interpreted on a tree). We only give the rules in
which the translation diers from the translation [·]HQPTL given in Lemma 3.1. As
MPL[𝐸]’s second-order quantication quanties full paths, we just use a path quanti-
er to encode the set.

[𝑥 ∈ 𝑋𝑎]HQ
-CTL∗ B G(𝑝𝑥 → 𝑎𝜋𝑥)

[𝑥 ∈ 𝑋]HQ-CTL∗ B equalTrace(𝜋𝑋 , 𝜋𝑥)
[∃𝑋 . 𝜑]HQ-CTL∗ B ∃𝜋𝑋 . [𝜑]HQ-CTL∗

Above, 𝑋𝑎 is a set that is free in the MPL[𝐸] formula (i.e., it is interpreted by the tree
the formula is evaluated on), whereas 𝑋 is quantied by a second-order quantier. �

Theorem 3.18. HyperQ-CTL∗ is strictly more expressive than MPL[𝐸].

Proof. With Lemma 3.17, we are left to show that HyperQ-CTL∗ is strictly more ex-
pressive than MPL[𝐸]. The proof proceeds as the one for Theorem 3.2. Consider the
model of linear trees, i.e., trees in which each node has a unique successor. For this
class of models, MPL[𝐸] is equivalent to FO[<], since the equal-level predicate col-
lapses to equality and second-order quantication in MPL[𝐸] can only quantify the
unique single path. Likewise, HyperQ-CTL∗ collapses to QPTL. But it is known that
QPTL can express all 𝜔-regular properties [212] and FO[<], which is equivalent to
LTL, cannot [178]. �

Finally, the unrestricted propositional quantication is more expressive than uni-
form propositional quantication, as in the case of linear-time hyperlogics.

Theorem 3.19. HyperQCTL∗ is strictly more expressive than HyperQ-CTL∗.

Proof. HyperQCTL∗ subsumesHyperQ-CTL∗, as we can statewith two universal quan-
tiers that a proposition 𝑝 has to be chosen uniformly for all traces: ∀𝜋, 𝜋 ′.G(𝑝𝜋 ↔
𝑝𝜋 ′). To show that HyperQCTL∗ is strictly more expressive, consider the class of mod-
els in which every node in the tree has exactly one successor except for the root, which

Section 3.3. The Hierarchy of Branching-time Hyperlogics 57

may have innitely many successors. On this class of models, HyperQCTL∗ is equiv-
alent to HyperQPTL+ and HyperQ-CTL∗ collapses to HyperQPTL. As HyperQPTL+ is
strictly more expressive than HyperQPTL by Theorem 3.7, the statement follows. �

Lastly, we extendMSOwith the equal-level predicate. As forMPL[𝐸], the extension
is straight-forward in the branching-time setting.

MSO[𝐸]. MSO[𝐸] adds the equal level predicate (as dened for MPL[𝐸] at the be-
ginning of this section) to the denition of MSO on trees. It thus allows for full page 27
second-order quantication.

Theorem 3.20. HyperQCTL∗ and MSO[𝐸] are expressively equivalent.

Proof. To prove that HyperQCTL∗ subsumesMSO[𝐸], we build on the translation from
MPL[𝐸] to HyperQ-CTL∗ in the proof of Lemma 3.17 and alter the rules for the second-
order quantication.

[𝑥 ∈ 𝑋]HQCTL∗ = G(𝑎𝑥𝜋𝑥 → 𝑎𝑋𝜋𝑥)
[∃𝑋 . 𝜑]HQCTL∗ = ∃𝑎𝑋 . [𝜑]HQCTL∗

Conversely, we build on the translation from HyperCTL∗ to MPL[𝐸] from Lemma 3.15.
The translation uses the fact that MPL[𝐸]’s second-order quantication can only quan-
tify full paths. This we have to encode in MSO[𝐸]. We dene a predicate fullPath(X)
that expresses that a set 𝑋 contains exactly the nodes of one path.

fullPath(𝑋) B (∃𝑥 .∀𝑦.𝑦 ≮ 𝑥) ∧ ∀𝑥 ∈ 𝑋 . (∃𝑦 ∈ 𝑋 .𝑦 > 𝑥) ∧ (∀𝑧 ∈ 𝑋 . 𝐸 (𝑥, 𝑧) → 𝑥 = 𝑧)

The formula expresses that𝑋 contains the root of the tree, that every element contains
at least one successor, and that there are no two dierent nodes on the same level. For
the translation from HyperQCTL∗ to MSO[𝐸], we only give the rules that dier from
the translation from HyperCTL∗ to MPL[𝐸] in Lemma 3.15.

[∃𝜋. 𝜑]MSO[𝐸]
𝑖

= ∃𝑋𝜋 . fullPath(𝑋𝜋) ∧ prex (𝑋𝜋 , 𝑋Y, 𝑖) ∧ [𝜑]MSO[𝐸]
𝑖

[∃𝑎. 𝜑]MSO[𝐸]
𝑖

= ∃𝑋𝑎 . [𝜑]MSO[𝐸]
𝑖

As in the proof before, the nal formula rst quanties the root level of the tree. �

Chapter 4

c

Satisability of Temporal Safety and

Temporal Liveness

The satisability problem is a key question to understand a logic. Algorithmically, it
constitutes an important preprocessing step (e.g., to detect implications between spec-
ications) and has a long tradition as target in reductions (see Section 1.3 for an in- page 8
troduction). Reasoning about satisability for hyperproperties is signicantly harder
than it is for trace properties. LTL satisability checking is PSPACE-complete [211].
For HyperLTL, the problem is highly undecidable in general, namely Σ1

1-complete [98].
While formulas from the ∃∗∀∗ fragment can still be decided in EXPSPACE [82], ∀∃
quantier alternations quickly lead to undecidability. Nevertheless, the ∀∗∃∗ fragment
contains many relevant properties like generalized noninterference [176], program re-
nement [51], and software doping [62]. Despite its importance, positive results for
the ∀∗∃∗ fragment have been very rare and were only obtained by heavy restrictions
on the use of temporal operators or by assuming nite models [173] (see related work
in Chapter 5). Algorithms, even if incomplete, are similarly missing. page 71

In this chapter, we aim to dene expressive fragments of HyperLTL that comprise
formulas with ∀∃ quantier alternations but also have a simpler satisability problem.
Towards this goal, we dene the notion of temporal safety and temporal liveness: a
HyperLTL formula is temporal safety (resp. temporal liveness) if its LTL body describes
a safety (resp. liveness) property. We rst show that for studying satisability, our
fragments are more suitable than the existing denition of hypersafety and hyperlive-
ness dened by Clarkson and Schneider [51]. The classication into safety and live-
ness properties has a long tradition in the study of trace properties, where especially
the restriction to safety properties often yields easier algorithms. Indeed, we show
that for the temporal safety fragment, the complexity of the problem drops to coRE-
completeness. We obtain the result by a reduction to rst-order logic, which opens
the door for the use of common rst-order techniques such as resolution, tableau, and
related methods [198] for the reasoning with hyperproperties. For temporal liveness,

58

Section 4.1. Temporal Safety 59

on the other hand, we show that any HyperLTL formula can be translated to an eq-
uisatisable formula in the temporal liveness fragment. This shows that the fragment
stays Σ1

1-complete.
Finally, to complement our results, we propose a general approximation algorithm

to nd the largest model of ∀∃∗ HyperLTL specications. Our experimental evalua-
tion shows that our algorithm nicely complements the only other existing approach
that can handle ∀∃∗ formulas, which iteratively searches for models of bounded size
[83]. Additionally, out implementation can also prove unsatisability for some formu-
las (which is impossible in bounded approaches).

Outline. In Section 4.1, we dene the notion of temporal safety, compare the deni-
tion to hypersafety, and present our complexity results for temporal safety hyperprop-
erties. Section 4.2 has the same structure but for liveness properties. Finally, Section 4.3
proposes the new algorithm for nding largest models of ∀∃∗ HyperLTL formulas in-
cluding an evaluation of the algorithm in comparison to existing tools.

Publications. This chapter is based on the following publication.

[25] Raven Beutner, David Carral, Bernd Finkbeiner, Jana Hofmann, and Markus
Krötzsch. Deciding Hyperproperties Combined with Functional Speci-

cations. 37th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
2022).

4.1 Temporal Safety

In this section, we study the satisability problem of temporal safety HyperLTL formu-
las. We begin by dening temporal safety and argue why, compared with hypersafety,
it is the more suitable fragment in the context of satisability. Subsequently, we show
that temporal safety specications reduce the general Σ1

1-hardness of HyperLTL [98]
to coRE-complete. Even though we are primarily interested in simplifying the satis-
ability problem for ∀∗∃∗ formulas, we state denitions and theorems more generally
for full HyperLTL if possible.

The following two propositions establish that the fragment of Denition 2.4 for- page 20
mulas does not really simplify the satisability problem of HyperLTL. The main rea-
son is that deciding if a HyperLTL formula describes a hypersafety property is already
highly undecidable. This follows from the fact that deciding whether a formula is
hypersafety can be encoded in unsatisability of HyperLTL [81] and that HyperLTL
unsatisability checking is Π1

1-hard [98].

Proposition 4.1. Deciding if a HyperLTL formula is hypersafety is Π1
1-hard.

Section 4.1. Temporal Safety 60

On the other hand, if we know that a HyperLTL formula describes a hypersafety
property, then deciding satisability is not harder than deciding LTL satisability.

Proposition 4.2. Given a HyperLTL formula 𝜑 that describes a hypersafety property,
satisability of 𝜑 is decidable in PSPACE.

Proof. As hypersafety properties are closed under subsets [51], 𝜑 is satisable i it
is satisable by a single trace model. Therefore, we can change all quantiers in 𝜑
to universal ones, resulting in an equisatisable (but not equivalent) ∀∗ formula, for
which satisability is decidable in PSPACE [82]. �

To obtain a fragment that simplies the satisability problem and for which which
membership is still decidable, we introduce the fragment of temporally safe formulas.

Denition 4.1. A HyperLTL formula 𝑄𝜋1 . . . 𝑄𝜋𝑛 .𝜓 is a temporal safety formula if 𝜓
(interpreted as an LTL formula over AP𝜋1 ∪ . . . ∪ AP𝜋𝑛) describes a safety property.

As safety is recognizable for LTL [210], membership of temporal safety is decidable
as well. We show that temporal safety also constitutes a larger subclass of properties
than hypersafety (within the ∀∗∃∗ fragment). Hypersafety properties are closed under
subsets and are therefore always satisable by a single trace model (if satisable at
all) [51]. Temporal safety, on the other hand, can enforce models with innitely many
traces as witnessed by the following formula.(

∃𝜋. 𝑎𝜋
)
∧

(
∀𝜋. (𝑎𝜋 → ¬𝑎𝜋)

)
∧

(
∀𝜋. ∃𝜋 ′. (𝑎𝜋 ↔ 𝑎𝜋 ′)

)
The formula above can be arranged as a ∀∗∃∗ HyperLTL formula. To satisfy the for-
mula, proposition 𝑎 may only hold once per trace. Additionally, for every trace, there
exists one where 𝑎 occurs one step later. We now show that ∀∗ temporal safety sub-
sumes all ∀∗∃∗ hypersafety formulas.

Lemma 4.3. For every ∀∗∃∗ formula describing a hypersafety property, there exists an
equivalent ∀∗ temporal safety formula.

We prove the above lemma with the following two propositions. The rst propo-
sition establishes that ∀∗∃∗ hypersafety formulas can be equivalently expressed with
universal formulas.

Proposition 4.4. For every ∀∗∃∗ formula describing a hypersafety property, there exists
an equivalent ∀∗ formula.

Proof. Let 𝜑 = ∀𝜋1 . . . 𝜋𝑛 . ∃𝜋 ′1 . . . 𝜋 ′𝑚 .𝜓 be a hypersafety formula. For any function
𝑔 : {1, . . . ,𝑚} → {1, . . . , 𝑛} (of which there are 𝑛𝑚 many), we dene𝜓 [𝑔] as the formula

Section 4.1. Temporal Safety 61

obtained by replacing each trace variable 𝜋 ′𝑖 with 𝜋𝑔(𝑖) . Now dene

𝜑′ B ∀𝜋1 . . . 𝜋𝑛 .
∨

𝑔:{1,...,𝑚}→{1,...,𝑛}
𝜓 [𝑔]

We claim that 𝜑 ≡ 𝜑′. It is easy to see that 𝜑′ implies 𝜑 , as the disjunction gives an
explicit witness for the existential quantiers. For the other direction, assume 𝑇 |= 𝜑
for some model 𝑇 . Let 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 be arbitrary. As 𝜑 is a hypersafety property (cf.
Denition 2.4) and {𝑡1, . . . , 𝑡𝑛} ⊆ 𝑇 , we get that {𝑡1, . . . , 𝑡𝑛} |= 𝜑 . In particular, if we page 20

bind each 𝜋𝑖 to 𝑡𝑖 (in 𝜑), we get witness traces 𝑡 ′1, . . . , 𝑡 ′𝑚 ∈ {𝑡1, . . . , 𝑡𝑛} for the existential
quantiers in 𝜑 . Now dene 𝑔 by mapping each 1 ≤ 𝑗 ≤ 𝑚 to 𝑖 ∈ {1, . . . , 𝑛} such that
𝑡 ′𝑗 = 𝑡𝑖 . The trace assignment [𝜋1 ↦→ 𝑡1, . . . , 𝜋𝑛 ↦→ 𝑡𝑛] satises𝜓 [𝑔] . As we can nd such
a 𝑔 for every 𝑡1, . . . , 𝑡𝑛 ∈ 𝑇 , we get that 𝑇 |= 𝜑′ as required. �

Note that by denition of hypersafety, if 𝜑 is hypersafety and 𝜑′ ≡ 𝜑 , then 𝜑′ is
hypersafety. Thus, the following proposition nishes the proof of Lemma 4.3.

Proposition 4.5. For every ∀∗ hypersafety formula, there exists an equivalent ∀∗ tem-
poral safety formula.

Proof. Let 𝜑 = ∀𝜋1 . . . 𝜋𝑛 .𝜓 be a hypersafety HyperLTL formula. Similarly to the proof
of Proposition 4.4, for any function 𝑓 : {1, . . . , 𝑛} → {1, . . . , 𝑛}, we dene the formula
𝜓 [𝑓] as the formula obtained by replacing each trace variable 𝜋𝑖 for 1 ≤ 𝑖 ≤ 𝑛 with
𝜋𝑓 (𝑖) . We dene 𝜑′ B ∀𝜋1 . . . 𝜋𝑛 .𝜓 ′ where

𝜓 ′ B
∧

𝑓 :{1,...,𝑛}→{1,...,𝑛}
𝜓 [𝑓]

By the semantics of universal quantication, it is easy to see that 𝜑 ≡ 𝜑′. We claim that
𝜓 ′ expresses a safety propertywhen interpreted as trace property overAP𝜋1∪. . .∪AP𝜋𝑛 .
Take any trace 𝑡 over AP𝜋1 ∪ . . . ∪ AP𝜋𝑛 with 𝑡 6 |= 𝜓 ′ (as in the denition of safety,
cf. Denition 2.2). We need to show that there exists a 𝑢 v 𝑡 such that for any 𝑡 ′ page 19
with 𝑢 v 𝑡 ′, 𝑡 ′ 6 |= 𝜓 ′. Let 𝑇 = {𝑡1, . . . , 𝑡𝑛} be the set obtained by splitting 𝑡 into 𝑛
traces, i.e., 𝑡𝑖 is a trace over AP that mirrors the assignments of propositions in AP𝜋𝑖
in 𝑡 . By construction of 𝑇 , we get 𝑇 6 |= 𝜑′ and, as 𝜑 ≡ 𝜑′ and 𝜑 is hypersafety, we
get a nite set of nite traces 𝑈 v 𝑇 such that no extension of 𝑈 satises 𝜑 . We
assume that w.l.o.g. that 𝑈 = {𝑢1, . . . , 𝑢𝑛}, where 𝑢𝑖 v 𝑡𝑖 for each 𝑖 . This assumption
is valid, as we can replace multiple prexes of the same 𝑡𝑖 by the longest among those
prexes. Furthermore, we can add an arbitrary prex of each 𝑡𝑖 that previously had
no prex in 𝑈 and maintain the property that any extension of 𝑈 does not satisfy 𝜑 .
We further assume, again w.l.o.g., that all 𝑢𝑖 have the same length, say 𝑘 . Now dene
𝑢 as the nite trace (of length 𝑘) over AP𝜋1 ∪ . . . ∪ AP𝜋𝑛 , where the assignment to

Section 4.1. Temporal Safety 62

AP𝜋𝑖 is taken from 𝑢𝑖 . As 𝑢𝑖 v 𝑡𝑖 for each 𝑖 , we get 𝑢 v 𝑡 . It remains to argue that
𝑢 cannot be extended to a trace 𝑡 ′ such that 𝑡 ′ |= 𝜓 ′. Let 𝑡 ′ be any trace with 𝑢 v 𝑡 ′.
Again, we split 𝑡 ′ into traces 𝑡 ′1, . . . , 𝑡 ′𝑛 . Now, 𝑇 ′ = {𝑡 ′1, . . . , 𝑡 ′𝑛} satises 𝑈 v 𝑇 ′, so
𝑇 ′ 6 |= 𝜑 . By the semantics of universal quantication, there thus exists an 𝑓 such that
[𝜋1 ↦→ 𝑡 ′

𝑓 (1), . . . , 𝜋𝑛 ↦→ 𝑡 ′
𝑓 (𝑛)] 6|= 𝜓 and therefore [𝜋1 ↦→ 𝑡 ′1, . . . , 𝜋𝑛 ↦→ 𝑡 ′𝑛] 6|= 𝜓 [𝑓] . This

implies that 𝑡 ′ 6 |= 𝜓 [𝑓] in the LTL semantics and we obtain 𝑡 ′ 6 |= 𝜓 ′ as required. �

We do not claim that every ∀∗ hypersafety formula is temporally safe. Instead,
Proposition 4.5 only states that there exists an equivalent temporally safe formula. For
example, ∀𝜋∀𝜋 ′. (𝑎𝜋 ∧ ¬𝑎𝜋 ′) is unsatisable and thus a hypersafety property but
(𝑎𝜋 ∧ ¬𝑎𝜋 ′) is not a safety property.
Having established that temporal safety spans a broad spectrum of properties, we

now establish that the general analytical hardness of HyperLTL satisability check-
ing [98] drops to coRE-completeness for temporal safety. We show the upper bound
by giving an eective translation from temporally safe HyperLTL to rst-order logic
using the fact that satisability of rst-order logic is coRE-complete [115]. Our trans-
lation thus enables the application of rst-order satisability solvers in the realm of
hyperproperties.

Lemma 4.6. The satisability problem of temporally safe HyperLTL is in coRE.

Proof. Let 𝜑 = 𝑄1𝜋1 . . . 𝑄𝑛𝜋𝑛 .𝜓 be a temporally safe HyperLTL formula. Let A𝜓 =

(𝑄𝜓 , 𝑞0,𝜓 , Σ𝜓 , 𝛿𝜓) be a safety automaton over Σ𝜓 = 2AP𝜋1∪...∪AP𝜋𝑛 that accepts𝜓 (when page 19
interpreted as an LTL formula over AP𝜋1 ∪ . . . ∪ AP𝜋𝑛). We dene in the following
an equisatisable rst-order formula Θ, which can be computed from 𝜑 . For readabil-
ity, we use two-sorted rst-order logic, which is equisatisable to standard rst-order
logic. We use two sorts: Trace, which contains trace variables, and TimePoint, which
contains time variables. We use the constant 𝑖0 : TimePoint to indicate the initial time
point. The predicate Succ(·, ·) over TimePoint × TimePoint encodes the successor re-
lation on time. For each 𝑎 ∈ AP , we use a predicate 𝑃𝑎 (·, ·) over Trace × TimePoint
to indicate that on trace 𝑡 , 𝑎 holds at point in time 𝑖 . Intuitively, Θ encodes the set of
accepting runs throughA for the sort Trace. For each state 𝑞 ∈ 𝑄𝜓 , we use a predicate
State𝑞 over Trace𝑛 × TimePoint. Informally, State𝑞 (𝑥1, . . . , 𝑥𝑛, 𝑖) indicates that a run of
A on traces 𝑥1, . . . , 𝑥𝑛 is in state 𝑞 at timepoint 𝑖 . We rst ensure that each point in
time has a successor and that the set of traces is non-empty.

𝜓succ B ∀𝑖 : TimePoint . ∃𝑖′ : TimePoint . Succ(𝑖, 𝑖′)
𝜓non-empty B ∃𝑥 : Trace. true

For each state 𝑞 ∈ 𝑄𝜓 , we construct a formula 𝜌𝑞 (over free variables 𝑥1, . . . , 𝑥𝑛), de-

Section 4.1. Temporal Safety 63

scribing the next state in an accepting run through A for traces 𝑥1, . . . , 𝑥𝑛 .

𝜌𝑞 B ∀𝑖, 𝑖′ : TimePoint . State𝑞 (𝑥1, . . . , 𝑥𝑛, 𝑖) ∧ Succ(𝑖, 𝑖′)

→
∨

(𝑞,𝐴,𝑞′)∈𝛿𝜓

(∧
𝑎𝜋𝑗 ∈𝐴

𝑃𝑎 (𝑥 𝑗 , 𝑖) ∧
∧
𝑎𝜋𝑗 ∉𝐴

¬𝑃𝑎 (𝑥 𝑗 , 𝑖) ∧ State𝑞′ (𝑥1, . . . , 𝑥𝑛, 𝑖′)
)

The formula states that if the run for 𝑥1, . . . , 𝑥𝑛 is at point in time 𝑖 in state 𝑞, and if 𝑖′
is a successor of 𝑖 , then the run is in a valid successor state in the next time point.

Note that we cannot encode that for every 𝑖 , there is a unique 𝑖′ such that Succ(𝑖, 𝑖′),
as this would require an interpreted equality relation. This is not a problem, how-
ever, as we only need to enforce the existence of at least one accepting run through
the automaton. Similarly, there might be several State𝑞 predicates which are true for
(𝑥1, . . . , 𝑥𝑛, 𝑖). But then, there must be a valid successor state inA for each of the states
(𝑥1, . . . , 𝑥𝑛) might be in at point in time 𝑖 . Finally, Θ is dened as follows

Θ B 𝑄1𝑥1 : Trace. . . . 𝑄𝑛𝑥𝑛 : Trace. 𝜓succ ∧𝜓non-empty ∧ State𝑞0 (𝑥1, . . . , 𝑥𝑛, 𝑖𝑜) ∧
∧
𝑞∈𝑄

𝜌𝑞

The last two conjuncts together ensure that all trace tuples chosen by the quantiers
have an innite run in A starting in the initial state and in the initial time point. We
show that the FOL formula Θ and HyperLTL formula 𝜑 are equisatisable.

For the rst direction, assumeΘ is satisable and x a rst-order model. The model
xes a domain for the two sorts and the valuation of the predicates on these domains.
Let the set 𝑋 be the set of elements from the Trace domain that are assigned to some
variable 𝑥𝑖 in any possible evaluation of the quantiers. We iteratively construct a
trace for any element of 𝑋 . To do so, let 𝑖0, 𝑖1, . . . be a xed sequence of elements from
TimePoint such that Succ(𝑖 𝑗 , 𝑖 𝑗+1) for any 𝑗 ∈ N and 𝑖0 is the constant described above.
This sequence exists by the construction of Θ but might not be unique and elements
might occur several times. For each element 𝑣 ∈ 𝑋 , we dene a trace 𝑡𝑣 ∈ Σ𝜔 , by setting
𝑡𝑣 [𝑛] B {𝑎 | 𝑃𝑎 (𝑣, 𝑖𝑛)} for every 𝑛 ∈ N. We choose 𝑇 B {𝑡𝑣 | 𝑣 ∈ 𝑋 } is a model of 𝜑 .
Let (𝑣1, . . . , 𝑣𝑛) be the elements from 𝑋 assigned to the quantiers in Θ. We mimic the
choice in 𝜑 ’s quantiers and receive (𝑡1𝑣 , . . . , 𝑡𝑛𝑣). By the construction of 𝜌𝑞 , A𝜓 has a
run on (𝑡1𝑣 , . . . , 𝑡𝑛𝑣), which means that (𝑡1𝑣 , . . . , 𝑡𝑛𝑣) |= 𝜓 .

For the other direction, assume that 𝜑 is satisable by trace set𝑇 , which we choose
as domain for sort Trace. For TimePoints, we choose the set of natural numbers with
𝑖0 = 0. We set 𝑃𝑎 (𝑡, 𝑖) to true i 𝑎 ∈ 𝑡 [𝑖]. For every assignment of (𝑡1, . . . 𝑡𝑛) to the trace
variables, we x a run throughA and set State𝑞 (𝑡1, . . . , 𝑡𝑛, 𝑖) to true i the the run is in
state 𝑞 in step 𝑖 . The resulting structure satises Θ.

Finally, note that our construction is limited to safety automata. For Büchi au-
tomata, we could not ensure innitely many visits to an accepting state. �

Section 4.1. Temporal Safety 64

To complement the upper bound, we show coRE-hardness by reducing the com-
plement of the halting problem of deterministic Turing machines. With the proof we
also show that already a single operator with nested operators suces for coRE-
hardness. This ts into the line of results from recent years that hardness of a class
of HyperLTL formulas is often achieved with a relatively simple temporal operator
structure [173, 82].

Lemma 4.7. The satisability problem of temporally safe HyperLTL is coRE-hard al-
ready for formulas of the form ∀∃∗. 𝜓 , where𝜓 only contains operators.

Proof. We reduce from the non-halting problem of deterministic Turing machines on
the empty word, which is coRE-complete. We assume, w.l.o.g., that the tape of the
Turing machine is left-bounded and only takes a step to the left when this is possible.
We encode the position of the head with a propositionℎ. Throughout the construction,
we maintain the invariant that ℎ is set exactly once on all relevant traces. We cannot
enforce this property directly as it would require to nest multiple operators. We
encode the alphabet Γ and the set of states 𝑄 with sets of atomic propositions 𝑆Γ and
𝑆𝑄 . We enforce that in each step, exactly one proposition of each set is set to true.

∀𝜋.
(∨
𝑎∈𝑆Γ

(
𝑎𝜋 ∧

∧
𝑏 ∈ 𝑆Γ
𝑏 ≠ 𝑎

¬𝑏𝜋
)
∧

∨
𝑎∈𝑆𝑄

(
𝑎𝜋 ∧

∧
𝑏 ∈ 𝑆𝑄
𝑏 ≠ 𝑎

¬𝑏𝜋
))

We x the current state to be the one that holds in the position of the head. Initially,
the TM is in state 𝑞0, the head at position 0, and the tape is blank. We use # for the
blank symbol. We require that the initial conguration is present in the set.

∃𝜋. ℎ𝜋 ∧ 𝑞0𝜋 ∧ (#𝜋 ∧ ¬ℎ𝜋)

We encode the possible transitions with a ∀𝜋. ∃𝜋 ′ formula. We ensure that if the con-
guration encoded by 𝜋 is a valid one as described above, then the successor congu-
ration is also valid. For correct transitions, all positions on 𝜋 ′ that are not left or right
of the head in 𝜋 must remain unchanged. Second, the head must move either left or
right and the symbol and state propositions are only allowed to change in the position
of the old head.

𝜓LxorR B
(
(¬ℎ𝜋 ∧ ¬ℎ𝜋 ∧ ¬ℎ𝜋) →

∧
𝑎∈AP

𝑎𝜋 ↔ 𝑎𝜋 ′

)
∧ ℎ𝜋 →

(
¬ℎ𝜋 ′ ∧ (ℎ𝜋 ′ ⊕ ℎ𝜋 ′) ∧

(∧
𝑎∈Γ

(𝑎𝜋 ↔ 𝑎𝜋 ′) ∧ (𝑎𝜋 ↔ 𝑎𝜋 ′)
))

In the formula above, ⊕ denotes the “exclusive or” operator. Now we translate each
transition (𝑞, 𝑎), (𝑞′, 𝑎′, 𝐿) ∈ 𝛿 as follows. If the head moves right instead of left, we

Section 4.2. Temporal Liveness 65

change the position of the operator accordingly.

𝜓trans1 B (ℎ𝜋 ∧ 𝑎𝜋 ∧ 𝑞𝜋) → ℎ𝜋 ′ ∧ 𝑞′𝜋 ′ ∧ 𝑎′𝜋 ′

The nal transition formula is the following.

∀𝜋. ∃𝜋 ′. (𝜓LxorR ∧ (𝜓trans1 ∨𝜓trans2 ∨ . . .))

We only encode transitions in which 𝑞′ ∉ 𝐹 , i.e., only those transitions that do not
make the Turing machine halt. The conjunction of the above formulas can be easily
transformed into a ∀∃2 formula with a single and only operators in the scope of
. The encoded TM has an innite non-halting run i the conjunction of the above

formulas has a satisfying model. The trace set might not only contain the witnessing
run but also non-valid congurations or non-reachable congurations, which we can
just ignore. �

From Lemma 4.6 and Lemma 4.7, we obtain the nal theorem.

Theorem 4.8. The satisability problem of temporally safe HyperLTL is coRE-complete.

4.2 Temporal Liveness

The natural counterparts of safety properties are liveness properties, which postulate
that “something good happens eventually”. Similar to the case of hypersafety, hy-
perliveness as a fragment is not well-suited when studying satisability: any hyper-
liveness property is, by denition, satisable. Encouraged by the results on temporal
safety, we study HyperLTL formulas whose body describes a liveness property.

Denition 4.2. A HyperLTL formula 𝑄𝜋1 . . . 𝑄𝜋𝑛 .𝜓 is a temporal liveness formula if
𝜓 (interpreted as an LTL formula over AP𝜋1 ∪ . . .∪AP𝜋𝑛) describes a liveness property.

As opposed to the safety case (cf. Lemma 4.3), temporal liveness and hyperliveness
are incomparable, also when restricted to the ∀∗∃∗ fragment. In temporal liveness, we
can easily express falsity as ∀𝜋∀𝜋 ′. (𝑎𝜋 ∧ ¬𝑎𝜋 ′), which is not hyperliveness. Con-
versely, the formula ∀𝜋∃𝜋 ′. (𝑎𝜋 = 𝑎𝜋 ′) is hyperliveness (as we can always add more
witness traces) but not expressible in temporal liveness (because of the operator).

Analogous to Theorem 4.8, we consider the full fragment of temporal liveness.
Unlike the fragment of temporal safety, the class of temporal liveness is Σ1

1-hard.

Theorem 4.9. The satisability problem is Σ1
1-hard for temporal liveness HyperLTL for-

mulas.

Section 4.2. Temporal Liveness 66

To prove Theorem 4.9, we show that we can reduce every ∀∗∃∗ HyperLTL formula
to an equisatisable formula from the ∀∗∃∗ temporal liveness fragment.

Theorem 4.10. Let 𝜑 be a ∀∗∃∗ HyperLTL formula. Then there is a computable ∀∗∃∗

formula 𝜑′ such that 𝜑′ is a temporal liveness property, and 𝜑 and 𝜑′ are equisatisable.

Proof. Let 𝜑 = ∀𝜋1, . . . , 𝜋𝑛 . ∃𝜋 ′1, . . . , 𝜋 ′𝑚 .𝜓 . We distinguish between two cases, based on
the satisability of 𝜓 . Whether 𝜓 is satisable is decidable in PSPACE as 𝜓 is an LTL
formula. First, assume that 𝜓 is unsatisable. Then 𝜓 ≡ false and 𝜑 is unsatisable
as well (as 𝑇 must be non-empty by the denition of HyperLTL satisability). We page 22
choose 𝜑′ to be ∀𝜋, 𝜋 ′. (𝑎𝜋 ∧ ¬𝑎𝜋 ′). Clearly, 𝜑′ is a temporal liveness formula and
also unsatisable. In the second case, assume that𝜓 is satisable. The idea is to move
the start position of the formula under a operator. We introduce a fresh atomic
proposition † and ensure that all traces satisfy the liveness property († ∧ ¬†).
The unique position where † ∧ ¬† holds (the last time that † is true) is then the
“start position” to evaluate the formula. We dene

𝜓 ′ B

(𝑛+𝑚∧
𝑖=1

†𝜋𝑖 ∧
(𝑛+𝑚∧

𝑖=1
¬ †𝜋𝑖

)
∧𝜓

)
and𝜑′ B ∀𝜋1, . . . , 𝜋𝑛 . ∃𝜋 ′1, . . . , 𝜋 ′𝑚 .𝜓 ′. As𝜓 is satisable,𝜓 ′ is a liveness property. Thus,
𝜑′ is a temporal liveness formula. We claim that 𝜑 is satisable i 𝜑′ is satisable. For
the rst direction, assume that 𝑇 is a model for 𝜑 . The model with † added to the rst
step of all traces satises 𝜑′. For the other direction, let𝑇 be a model of 𝜑′. We assume
w.l.o.g. that there is no set 𝑇 ′ (𝑇 such that 𝑇 ′ is also a model for 𝜑′. As 𝑇 is a model
of 𝜑′, there exists a skolem function 𝑓 : 𝑇𝑛 → 𝑇𝑚 that assigns the witness traces for
every possible choice of the universal quantiers. Let’s represent𝑇 as a directed graph
where every trace is a node, and if 𝑓 (𝑠) = 𝑠′ for any two tuples of traces 𝑠 and 𝑠′, and
𝑡𝑖 ∈ 𝑠 and 𝑡 𝑗 ∈ 𝑠′ with 𝑡𝑖, 𝑡 𝑗 ∈ 𝑇 , then we draw a directed edge from node 𝑡𝑖 to node
𝑡 𝑗 . As𝑇 is minimal, the resulting graph is strongly connected. Otherwise, there would
be a strongly connected component whose traces also satisfy 𝜑′. Formula 𝜑′ enforces
that for any 𝑡1, . . . , 𝑡𝑛+𝑚 with 𝑓 (𝑡1, . . . , 𝑡𝑛) = (𝑡𝑛+1, . . . , 𝑡𝑛+𝑚), † holds for the last time at
a time point that is common for all traces 𝑡1, . . . , 𝑡𝑛+𝑚 . As the graph representing 𝑇 is
strongly connected, the last position where † holds is the same for all traces in 𝑇 . Let
𝑖 be this position. Then {𝑡 [𝑖,∞] | 𝑡 ∈ 𝑇 } is a model of 𝜑 . �

Note that the above proof does not change the quantier structure in the case that
the body of the formula is satisable.

The denitions of liveness for trace properties (cf. Denition 2.2) and hyperlive- page 19
ness (cf. Denition 2.4) imply that a property is satisable. As demonstrated by The- page 20
orem 4.9, the same does not hold for temporal liveness hyperproperties. We can, how-
ever, identify a fragment within temporal liveness for which the intuition that liveness

Section 4.3. Finding Largest Models 67

implies satisability transfers to the realm of hyperproperties. We say an LTL property
𝜓 is a deterministic liveness property if it is a liveness property and can be recognized
by a deterministic Büchi automaton. page 19

Proposition 4.11. HyperLTL formulas of the form𝜑 = ∀∃∗.𝜓 , where𝜓 is a deterministic
liveness property, are always satisable and have a nite model.

Proof. Let 𝜑 = ∀𝜋1. ∃𝜋2, . . . , 𝜋𝑛 .𝜓 be such that 𝜓 is quantier-free and let A𝜓 be a
deterministic Büchi automaton for𝜓 over AP𝜋1 ∪ . . . ∪ AP𝜋𝑛 . The crucial property we
use is that for a deterministic liveness property, we can always reach an accepting state
even after having read an arbitrary nite word. We claim that there always exists a
nite model 𝑇 = {𝑡1, . . . , 𝑡𝑛}. For any 𝑖 ∈ {1, . . . , 𝑛} dene 𝑓 (𝑖) as the tuple (1, . . . , 𝑖 −
1, 𝑖+1, . . . , 𝑛). We construct 𝑡1, . . . , 𝑡𝑛 such that if 𝑡𝑖 is chosen for the universal trace, then
𝑡 𝑓 (𝑖) [0], . . . , 𝑡 𝑓 (𝑖) [𝑛−1] can be picked for the existential traces. We iteratively construct
a model as follows. Initially, we set 𝑢1 = . . . = 𝑢𝑛 = 𝜖 . In the 𝑗th iteration, let 𝑖 =

(𝑗%𝑛) + 1, i.e., we iterate through 1, . . . , 𝑛. As A is a deterministic Büchi automaton
describing a liveness property, there exist non-emptywords𝑢′1, . . . , 𝑢′𝑛 of some common
nite length such that zip(𝑢𝑖 · 𝑢′𝑖 , 𝑢 𝑓 (𝑖) [0] · 𝑢′𝑓 (𝑖) [0], . . . , 𝑢 𝑓 (𝑖) [𝑛−1] · 𝑢

′
𝑓 (𝑖) [𝑛−1]) leads to an

accepting state in A. Continue the next iteration with each 𝑢𝑘 extended with 𝑢′
𝑘
. We

set 𝑡1, . . . 𝑡𝑛 as the innite traces constructed in the limit. By construction, for every
𝑖 ∈ {1, . . . , 𝑛}, the unique run of the trace zip(𝑡𝑖, 𝑡 𝑓 (𝑖) [0], . . . , 𝑡 𝑓 (𝑖) [𝑛−1]) visits an accepting
state innitely often. �

4.3 Finding Largest Models

To complement the decidability results from the previous sections, we propose a new
(incomplete) algorithm to prove satisability and unsatisability of∀∃∗ HyperLTL for-
mulas. So far, the only available algorithm checks for nite models of bounded size and
then iteratively increases the bound [83]. The approach nds smallest models but can-
not determine unsatisability. The insight for our algorithm is that ∀∃∗ formulas are
closed under union, therefore, a formula 𝜑 is satisable i there is a (unique) largest
model satisfying 𝜑 . To nd the largest model of a formula, we iteratively eliminate
choices for the ∃∗ quantiers for which there are no witness traces when chosen as
∀ trace. Thereby, we do not only nd largest models but can also detect unsatisabil-
ity. Our incremental elimination is similar to a recent algorithm used in the context of
nite-trace properties [33]. Both approaches have been developed independently.

4.3.1 Algorithm

Let 𝜑 = ∀𝜋. ∃𝜋1, . . . , 𝜋𝑛 .𝜓 be a HyperLTL formula. Let A𝜓 be a Büchi automaton over
AP𝜋 ∪ AP𝜋1 ∪ . . . ∪ AP𝜋𝑛 which expresses 𝜓 . We dene A∀ and A∃𝑖 as the automata

Section 4.3. Finding Largest Models 68

Algorithm 1Algorithm that searches for the largest model of a∀∃𝑛 property. Initially,
A is a Büchi automaton that accepts the body the HyperLTL property.
1: procedure findModel(A)
2: if L(A∀) = ∅ then

3: return UNSAT;
4: if L(A∃𝑖) ⊆ L(A∀) for all 1 ≤ 𝑖 ≤ 𝑛 then

5: return SAT, model: L(A∀);
6: Anew B A ∩A∀

𝜋1 ∩ . . . ∩ A∀
𝜋𝑛
;

7: findModel(Anew);

(over AP) that existentially projectA on the alphabet AP𝜋 and AP𝜋𝑖 , respectively. Our
algorithm is depicted in Algorithm 1. Initially, we call findModel(A𝜓).

The rst candidate is A = A𝜓 . The automaton A∀
𝜓
accepts all words for which

there exist witness traces for the existential quantiers. If L(A∀) = ∅, then 𝜑 is un-
satisable. If all potential witness traces in all L(A∃𝑖) are contained in L(A∀) (so
they have a witness trace themselves), 𝜑 is satisable and L(A∀) is a model. If nei-
ther is the case, we rene A by removing all traces that have an ∃-component that
is not in L(A∀). We dene Anew as the intersection A ∩ A∀

𝜋1 ∩ . . . ∩ A∀
𝜋𝑛

where
A∀
𝜋𝑖
is A∀ with the alphabet changed from AP to AP𝜋𝑖 . That means that we intersect

each ∃-component of A with its ∀-component. We can compute Anew via a standard
intersection construction on Büchi automata. Note that Anew might again produce
witness traces that themselves do not have witness traces in the current automaton,
so we continue recursively. The algorithm maintains the following invariant.

Proposition 4.12. In every iteration of the algorithm it holds that L(Anew) ⊆ L(A),
and for every trace set 𝑇 with 𝑇 |= ∀𝜋. ∃𝜋1, . . . , 𝜋𝑛 .𝜓 , we have 𝑇 ⊆ L(A∀).

Using Proposition 4.12 it is easy to see the following.

Lemma 4.13. Given a formula 𝜑 = ∀𝜋. ∃𝜋1, . . . , 𝜋𝑛 .𝜓 , if Algorithm 1 terminates with
UNSAT, the formula is unsatisable. If it terminates with SAT and model L(A∀), then
L(A∀) is the unique largest model of 𝜑 .

Models of ∀∗∃∗ formulas are, in general, not closed under union, so our algorithm
does not extend beyond ∀∃∗.

4.3.2 Implementation and Experiments

We have implemented the algorithm in a tool called LMHyper (Largest Models for
HyperLTL). LMHyper reads a ∀∃∗ HyperLTL formula 𝜑 and searches for a proof of
(un)satisability. Internally, we represent the current candidate model as a generalized

Section 4.3. Finding Largest Models 69

Table 4.1: Comparison of LMHyper andMGHyper on 100 random formulas. The time
is reported as the average time spent on solved cases in ms, #Iterations is the average
number of recursive calls needed by LMHyper. The timeout was 5sec.

MGHyper LMHyper

Size of AST %Solved Time %Solved Time #Iterations

15 95% 40 100% 235 0.38
16 93% 39 99% 239 0.44
17 95% 39 100% 221 0.43
18 92% 38 100% 201 0.39
19 95% 40 100% 180 0.43
20 97% 42 100% 215 0.27

Büchi automaton and use spot [71] to perform automata operations. The only other
available tool for ∀∃∗ HyperLTL satisability isMGHyper [83], which implements the
incremental approach to nd models of bounded size. We compare LMHyper against
MGHyper on two benchmark sets.

Random Formulas. We created a set of random ∀∃∗ formulas by sampling the LTL
body of the formula using randltl [71]. The results are given in Table 4.1. LMHyper
usually takes longer than MGHyper but can handle a larger percentage of formulas.
We observe that randomly generated HyperLTL formulas are, in most cases, satisable
by a model with a single trace, as the atomic propositions are seldom shared between
dierent trace variables. This explains the high success rate of MGHyper.

Innite and Large Models. We compiled a small number of more interesting prop-
erties that do not have single-trace models. Our results for this set of this set of bench-
marks are depicted in Table 4.2. The Innite instance expresses that a model has in-
nitely many traces. The Enforce-𝑛 formulas enforce a models that have at least 𝑛
traces. They are dened as

∀𝜋. ∃𝜋1, . . . , 𝜋𝑛 .
∧
𝑖≠ 𝑗

(𝑎𝜋𝑖 = 𝑎𝜋 𝑗)

The Unsatisable-𝑛 specications are unsatisable. They are dened as

∀𝜋. ∃𝜋 ′.¬𝑎𝜋 U(𝑎𝜋 ∧ ¬𝑎𝜋) ∧ 𝑛 ¬𝑎𝜋 ∧ (𝑎𝜋 ∧ 𝑎𝜋 ′)

The formula expresses that 𝑎 holds exactly once on each trace and that no 𝑎 occurs
after 𝑛 steps. However, it also requires that for every trace, there is another one where

Section 4.3. Finding Largest Models 70

Table 4.2: Comparison of LMHyper and MGHyper on hand-crafted formulas. We use
3 if the specication is satisable and 7 otherwise. The time is given in ms. #Iterations
denotes the number of recursive calls needed by LMHyper. The timeout was 5min.

MGHyper LMHyper

Instance Result Time Result Time #Iterations

Innite - TO 3 350 1
Enforce-2 3 444 3 262 0
Enforce-3 - TO 3 334 0
Enforce-5 - TO 3 491 0
Unsatisable-3 - TO 7 777 3
Unsatisable-5 - TO 7 1363 5
Unsatisable-9 - TO 7 1681 9

𝑎 occurs one step later. The formula is designed such that Algorithm 1 requires 𝑛 itera-
tions to discover unsatisability. MGHyper times out formost of the examples; even on
simple properties like Enforce-3. In contrast, LMHyper can verify properties enforcing
many traces in a single iteration because the number of iterations is independent of the
number of traces in a model. As expected, all Unsatisable-𝑛 formulas are discovered
to be unsatisable, and LMHyper requires the expected number of iterations.

Chapter 5

c

Related Work

We relate the rst part of the thesis to closely related work on temporal hyperlogics.
The introduction (Chapter 1) already discussed the foundational work which moti- page 1
vated this thesis; in this chapter, we want to go into more technical depth. We discuss
the expressiveness of similar hyperlogics and their satisability problem. We also pro-
vide more background on the use of team semantics in various logical areas.

Plain Hyperlogics. In this part of the thesis, we focused on hyperlogics that express
plain hyperproperties on trace sets containing 𝜔-regular traces produced by standard
nite-state transition systems. There are several such hyperlogics that we did not
include in our hierarchy; for some, the relation to our logics is still unknown. One
example is HyperPDL-Δ [121], which lifts Propositional Dynamic Logic [96] to hy-
perlogics. Its expressiveness falls between HyperQPTL and HyperLTL [121]. Another
example is HyperCTL∗lp [34], which is a linear interpretation of the branching-time
logic HyperCTL∗. It was introduced to unify the expressiveness of LTL extended with
the knowledge operator [126] and HyperLTL. It is not clear yet how this logic ts into
the linear-time hierarchy, the author of this thesis expects it to fall strictly between
HyperLTL and FO[<, 𝐸] (see Section 10.2.1 for more on future work). As an alter- page 133
native to rst-order logics with the equal-level predicate, Hypertrace Logic was pro-
posed [21]. It is a two-sorted rst-order logic, whose quantiers distinguish between
trace and time quantiers. We strongly suspect that Hypertrace Logic and FO[<, 𝐸]
are expressively equivalent but are not aware of any published result in that direction.
Beyond the realm of innite traces, there exists HyperLDL𝑓 [114], which reasons about
nite traces.

Hyperlogics with Additional Expressiveness. The interest in hyperlogics is par-
ticularly driven by privacy and information ow policies. It is therefore natural to de-
sign hyperlogics that can express asynchronous, quantitative, probabilistic, and timed
hyperproperties. There is vast body of work on specication languages for hyperprop-

71

Section 5.0. 72

erties, just because of the interest in information ow security alone. Here, we focus
on temporal hyperlogics.

Asynchronous hyperproperties align the traces in a way that dierent positions on
traces are related. This is necessary, for example, to specify stutter-equivalent prop-
erties or to relate systems with dierent clock cycles. H` [122] is a linear xpoint
hyperlogic that can advance time asynchronously on some of the quantied traces in
each step. Asynchronous hyperlogics have also been obtained by labeling the relevant
positions of a trace with an LTL formula [35, 27]. Another way to dene asynchronous
hyperlogics is to equip a logicwith quantication over trajectories, which describe how
to align the positions on the traces [22, 32, 136]. In a similar spirit, a very recent work
obtains asynchronous hyperlogics based on team semantics by quantifying a so-called
evaluation function [120]. A branching-time hyperlogic for asynchronous hyperprop-
erties is HyperATL∗ [26], which extends the game-based temporal logic ATL∗.

Quantitative hyperlogics aremotivated by the need to quantify the amount of infor-
mation that is leaked, for example to express declassication. Quantitative hyperlogics
have been obtained based on model counting [89], there also exist non-temporal logics
for the expression of quantitative hyperproperties [42, 204]. Probabilistic hyperprop-
erties are hyperproperties that reason about the probabilities of certain events hap-
pening. Probabilistic temporal hyperlogics are therefore often evaluated on Markov
chains [3, 228] or, to allow nondeterminism, on Markov decision processes [67, 2].
As a last class of hyperlogics, we want to mention logics for the expression of timed
requirements, e.g., HyperMTL based on metric temporal logic [136, 32].

Satisability of Hyperlogics. Satisability is a particularly hard problem for hy-
perlogics. HyperLTL is subsumed by many logics studied in this thesis, so its high
undecidability carries over to these logics. For HyperQPTL, propositional quantiers
are known to restrict the prex of the trace quantiers for which satisability is still
decidable [123]. For example, while ∃∗∀∗ HyperLTL formulas are decidable, they are
not when preceded with universal propositional quantication, i.e., the ∀∗𝑝∃∗

𝜋∀∗𝜋 frag-
ment of HyperQPTL is undecidable. In HyperCTL∗, the ∃∗∀∗ fragment is undecid-
able as well, as the existential traces might occur in the scope of a operator, which
acts as a universal quantier [123]. The general HyperCTL∗ satisability problem is
Σ2
1-complete [98]. For TeamLTL, it is known that TeamLTL(⊆,6) is Σ0

1-hard, while
TeamLTL(⊆,6,A) is Σ1

1-hard [225]. TeamLTL together with Boolean negation ∼, the
satisability problem is even equivalent to third-order arithmetic [168].

Team Semantics. The development of team semantics began with the introduction
of Dependence Logic [220], which adds the concept of functional dependence to rst-
order logic by means of new atomic dependence formulas. During the past decade,
team semantics has been generalized to propositional [232], modal [219], temporal

Section 5.0. 73

[152], and probabilistic [70] frameworks, and fascinating connections to elds such
as database theory [128], statistics [61], real-valued computation [129], and quantum
information theory [139] has been identied. In the modal team semantics setting,
model checking and satisability problems have been shown to be decidable, see [134]
for an overview of the complexity landscape. Expressiveness and denability of related
logics is also well understood, see, e.g., [135, 150, 205]. The study of temporal logics
with team semantics was initiated in [152], where team semantics for computational
tree logic CTL was given. In [120], a new semantics for TeamLTL and TeamCTL∗ was
proposed, which extends the logics to capture more asynchronous hyperproperties.
TeamLTL(∼) has recently also been related to team-based rst-order and second-order
logics in a Kamp-like analysis [151].

Part II

Synthesizing Smart Contracts

74

Chapter 6

c

Preliminaries

In this part of the thesis, we study the synthesis of nite and innite state systems
from linear-time properties and hyperproperties. As this part is concerned with syn-
thesis, we extend the preliminaries from the rst part (cf. Chapter 2) with denitions page 18
for state machines that distinguish between inputs and outputs of a system. We also
explicitly introduce innite-state machines. Furthermore, we dene temporal stream
logic, a logic which was designed to enable ecient synthesis of systems with data
from innite domains. As a concrete challenge, we consider the synthesis of the tempo-
ral control ow of smart contracts. We therefore briey introduce the Solidity features
we use.

6.1 Reactive Synthesis

In task of reactive synthesis is to construct a reactive system from a given specication
𝜑 . A reactive system receives inputs from an environment and reacts with outputs such
that the resulting traces satisfy the specication.

LTL and HyperLTL Realizability. The realizability problem formulates the syn-
thesis problem in terms of a strategy function, which takes a nite sequence of in-
puts and reacts with an output. Let a set AP = 𝐼 ∪ 𝑂 be given. In this part, we
always assume that 𝐼 ∩ 𝑂 = ∅. A strategy over AP is a function 𝜎 : (2𝐼)+ → 2𝑂
that maps sequences of input valuations 2𝐼 to an output valuation 2𝑂 . Strategies can
thus be arranged as strategy trees as illustrated in Figure 6.1. Given an input se-
quence 𝑤 = 𝑤0𝑤1𝑤2 · · · ∈ (2𝐼)𝜔 , the trace corresponding to a strategy 𝜎 is dened
as 𝑤 ∪ 𝜎 (𝑤) B (𝑤0 ∪ 𝜎 (𝑤0)) (𝑤1 ∪ 𝜎 (𝑤0𝑤1)) . . . ∈ (2𝐼∪𝑂)𝜔 . Given a strategy 𝜎 , we
denote by traces(𝜎) the set {𝑤 ∪ 𝜎 (𝑤) | 𝑤 ∈ (2𝐼)𝜔 }. We say that a strategy 𝜎 sat-
ises an LTL formula 𝜓 if for every 𝑡 ∈ traces(𝜎), it holds that 𝑡 |= 𝜓 . It satises a
HyperLTL formula 𝜑 if traces(𝜎) |= 𝜑 . A strategy function is not necessarily nitely

75

Section 6.1. Reactive Synthesis 76

𝜖

𝜎 (∅)

𝜎 (∅∅)
...

∅

𝜎 (∅{𝑖})
...

{𝑖}

∅

𝜎 ({𝑖})

𝜎 ({𝑖}∅)
...

∅

𝜎 ({𝑖}{𝑖})
...

{𝑖}

{𝑖}

Figure 6.1: The strategy tree for an LTL strategy 𝜎 branching on a single input 𝑖 .

representable. Compared to the realizability problem, the synthesis problem asks for a
nite representation of a strategy, e.g., in form of a Mealy machine.

Mealy Machines. We represent reactive systems with Mealy machines [179], which
separate the alphabet into input and output symbols, i.e., Σ = Σin∪Σout and Σin∩Σout =

∅. AMealymachine is a tuple (𝑆, 𝑠0, Σin, Σout, 𝛿), where 𝑆 is a set of states, 𝑠0 is the initial
state, Σin is the input alphabet, Σout is the output alphabet, and 𝛿 ⊆ 𝑆 × Σin × Σout × 𝑆
is the transition relation. We mostly call Mealy machines just state machines. We call
a state machine M nite-state machine if both Σ and 𝑆 are nite, and innite-state
machine otherwise. An innite sequence 𝑡 ∈ Σ𝜔 is a trace of M if there is an innite
sequence of states 𝑟 ∈ 𝑆𝜔 such that 𝑟 [0] = 𝑠0 and (𝑟 [𝑖], 𝑡 [𝑖] |Σin, 𝑡 [𝑖] |Σout , 𝑟 [𝑖 + 1]) ∈ 𝛿
for all points in time 𝑖 ∈ N. A nite sequence of states 𝑟 ∈ 𝑆+ results in a nite trace
𝑡 ∈ Σ+. We denote the set of all traces of M by traces(M) and the set of all nite
traces by nTraces(M). We dene Mealy machines to be possibly nondeterministic;
the transition relation is therefore a relation, not a function. A Mealy machine M
implements a strategy if, in each state, there is exactly one outgoing transition for
every valuation of input variables, i.e., if 𝛿 is a function of type 𝑆 × Σin → Σout × 𝑆 .

Safety Games. In the second part of this work, we frequently consider properties that
are safety properties representable by safety automata. A safety automaton over page 19

page 19Σ = Σin ∪ Σout induces a safey game, where the environment player and the system
player take turns in choosing the next input symbol and output symbol, respectively.
Each pair of input and output symbol together determines the next transition. The
winning region 𝑆W ⊆ 𝑆 is the maximal subset of states such that in every state, there
exists at least one transition into said subset for every input symbol. The winning
region can be computed by determining the xpoint of the following set of equations.

Ar0(𝑆) = 𝑆
Ar𝑖+1(𝑆) = Ar𝑖 (𝑆) \ noSucc(Ar𝑖 (𝑆))
where noSucc(𝑆′) B {𝑠 ∈ 𝑆′ | ∃𝐴in ∈ Σin.¬∃𝐴out ∈ Σout . (𝑠, 𝐴in, 𝐴out, 𝑠

′) ∈ 𝛿 ∧ 𝑠′ ∈ 𝑆′}

Section 6.2. Temporal Stream Logic 77

𝑞1

𝑞2

𝑞3

¬𝑎
| 𝑏

¬𝑎 | ¬𝑏
𝑎 | (𝑏 ∨ ¬𝑏)

¬𝑎 | ¬𝑏

𝑎 | ¬𝑏

¬𝑎 | ¬𝑏

Figure 6.2: Winning region for assumption (𝑎 → ¬𝑎) and guarantee ((𝑏 →
¬𝑏) ∧ (𝑎 → ¬𝑏)).

The winning region of a safety game can be computed in linear time in the size of
the automaton [64]. The property represented by the safety automaton is realizable
i the winning region contains the initial state. Note that a winning region does not
necessarily implement a strategy, as a state might contain several transitions for the
same input symbol. To obtain a strategy from the winning region, one can simply x
a transition for every input.

Many of our specications are contain assumptions, which restrict the allowed
input sequences, and guarantees. When depicting winning regions of such speci-
cations, we only depict the transitions of the winning region whose inputs are al-
lowed by the assumption. That means we do not include the “winning sink state”
that the systems enters once an assumption is violated. As an example, consider
the specication with input 𝑎, output 𝑏, assumption (𝑎 → ¬𝑎), and guaran-
tee ((𝑏 → ¬𝑏) ∧ (𝑎 → ¬𝑏). The winning region for this example, which is
depicted in Figure 6.2, contains all traces that satisfy both assumption and guarantee.
We use the symbol | to separate inputs and outputs in the transition labels.

6.2 Temporal Stream Logic

We introduce the syntax and semantics of TSL [93] following [91, 93]. TSL extends
LTL with the concept of cells, which hold data from an arbitrary domain. To abstract
from concrete data points, TSL employs uninterpreted functions and predicates. A
TSL formula describes a system that receives a stream of inputs, abstracts from the
concrete values using predicates, and produces a stream of cell updates using function
applications. We formally dene values, functions, and predicates. The set of all values
is denoted by V , the Boolean values by B ⊆ V . An 𝑛-ary function 𝑓 : V𝑛 → V
computes a value from 𝑛 values. An 𝑛-ary predicate 𝑝 : V𝑛 → B assigns a Boolean
value to𝑛 values. The sets of all functions and predicates are denoted by F andP ⊆ F ,
respectively. Constants are both 0-ary functions and values.

Let I and C be the set of inputs and cells, and let Σ𝐹 and Σ𝑃 ⊆ Σ𝐹 be the set of

Section 6.2. Temporal Stream Logic 78

function and predicate symbols. Function terms 𝜏 𝑓 are recursively dened by

𝜏 𝑓 F s | 𝑓 𝜏 𝑓 . . . 𝜏 𝑓

where s ∈ I ∪ C and 𝑓 is an n-ary function symbol. Predicate terms 𝜏𝑝 are obtained
by applying a predicate to function terms. The sets of all function and predicate terms
are denoted by T𝐹 and T𝑃 ⊆ T𝐹 , respectively. TSL formulas are built according to the
following grammar:

𝜓 F ¬𝜓 | 𝜓 ∧𝜓 | 𝜓 | 𝜓 U𝜓 | 𝜏𝑝 | Èc� 𝜏 𝑓 É

where c ∈ C, 𝜏𝑝 ∈ T𝑃 , and 𝜏 𝑓 ∈ T𝐹 . An update term Èc� 𝜏𝑓 É denotes that the value
of function term 𝜏𝑓 is assigned to cell c. We denote the set of update terms with T𝑈 .
As for LTL, we also use the derived operators , , and W.

Function and predicate terms are syntactic objects, i.e. the term 𝑝 (𝑓 c) only be-
comes meaningful when we assign, for example, c to the value 3, 𝑓 to the function
𝑓 (𝑥) = 𝑥 + 1 and 𝑝 to 𝑝 (𝑥) = 𝑥 > 0. To assign a semantic interpretation to func-
tion and predicate symbols, we use an interpretation 〈·〉 : Σ𝐹 → F . A cell assignment
C→ T𝐹 is a total function assigning exactly one function term to each cell. The set of
all assignments C→ T𝐹 is denoted by C. A computation 𝜍 ∈ C𝜔 describes the control
ow of the cells, i.e., which function term is associated with a cell at which point in
time. For every cell c ∈ C, let initc be a designated value assigned initially to c. Input
streams I𝜔 are innite sequences of assignments of inputs to values.

Given a computation 𝜍 , an input stream], and a point in time 𝑖 , we can evaluate a
function term 𝜏 𝑓 . The evaluation function [〈·〉 : C𝜔 × I𝜔 × N × T𝐹 → V is dened as

[〈·〉 (𝜍,], 𝑖, s) B

] 𝑖 s s ∈ I
inits s ∈ C ∧ 𝑖 = 0
[〈·〉 (𝜍,], 𝑖−1, 𝜍 (𝑖−1) s) s ∈ C ∧ 𝑖 > 0

[〈·〉 (𝜍,], 𝑖, 𝑓 𝜏0 . . . 𝜏𝑛) B 〈𝑓 〉 [〈·〉 (𝜍,], 𝑖, 𝜏0) . . . [〈·〉 (𝜍,], 𝑖, 𝜏𝑛)

Note that] 𝑖 s denotes the value that input stream] assigns to input s at position
𝑖 . Likewise, 𝜍 𝑖 s is the function term that 𝜍 assigns to cell s at point in time 𝑖 . As an
example, to compute the value of cell x in step 𝑖 , wemight obtain from the computation
that x is updated to 𝑓 x in step 𝑖 , so we recursively evaluate x in step 𝑖 − 1 and apply
the function assigned to 𝑓 to the result. We evaluate a TSL formula 𝜓 with respect to
an assignment function 〈·〉, an input stream] ∈ I𝜔 , a computation 𝜍 ∈ C𝜔 , and a time
step 𝑖 ∈ N. In most cases, the semantics is very similar to LTL. The only dierence is
that predicate terms are evaluated with the evaluation function, and update terms are

Section 6.2. Temporal Stream Logic 79

𝜖

𝜎 (∅)

𝜎 (∅∅)
...

∅

𝜎 (∅{𝑝 (𝑥)})
...

{𝑝 (𝑥)}

∅

𝜎 ({𝑝 (𝑥)})

𝜎 ({𝑝 (𝑥)}∅)
...

∅

𝜎 ({𝑝 (𝑥)}{𝑝 (𝑥)})
...

{𝑝 (𝑥)}

{𝑝 (𝑥)}

Figure 6.3: The strategy tree for a TSL strategy 𝜎 branching on a single predicate term
T𝑃 = {𝑝 (𝑥)}.

true if they occur syntactically in the computation.

𝜍,], 𝑖 |=〈·〉 ¬𝜓 i 𝜍,], 𝑖 6 |=〈·〉 𝜓

𝜍,], 𝑖 |=〈·〉 𝜓1 ∧𝜓2 i 𝜍,], 𝑖 |=〈·〉 𝜓1 and 𝜍,], 𝑖 |=〈·〉 𝜓2

𝜍,], 𝑖 |=〈·〉 𝜓 i 𝜍,], 𝑖 + 1 |=〈·〉 𝜓

𝜍,], 𝑖 |=〈·〉 𝜓1U𝜓2 i ∃ 𝑗 ≥ 𝑖 . 𝜍,], 𝑗 |=〈·〉 𝜓2 and ∀𝑖 ≤ 𝑘 < 𝑗 . 𝜍,], 𝑘 |=〈·〉 𝜓1

𝜍,], 𝑖 |=〈·〉 Èc� 𝜏É i 𝜍 𝑖 c ≡ 𝜏
𝜍,], 𝑖 |=〈·〉 𝑝 𝜏1 . . . 𝜏𝑛 i [〈·〉 (𝜍,], 𝑖, 𝑝 𝜏1 . . . 𝜏𝑛)

We use ≡ to syntactically compare two terms. An execution (𝜍,]) satises a TSL for-
mula𝜓 if 𝜍,], 0 |=〈·〉 𝜓 holds (written 𝜍,] |=〈·〉 𝜓). A TSL formula𝜓 is satisable i there
exists an interpretation 〈·〉 and an execution (𝜍,]) such that 𝜍,] |=〈·〉 𝜓 holds [90].

TSL realizability. The realizability problem of a TSL formula 𝜓 asks whether there
exists a strategy which reacts to predicate evaluations with cell updates according to𝜓 .
Formally, a TSL strategy is a function 𝜎 : (2T𝑃)+ → C. The TSL strategy tree, depicted
in Figure 6.3 for the example of a single predicate, looks very similar to an LTL strategy
tree. The dierence is that the branches are labeled with a set of predicate terms that
are set to true by the environment in the respective step.

Given a strategy 𝜎 and an input stream], we can dene the resulting computation
𝜎 (]). To compute the cell updates at point in time 𝑖 , we require the current inputs as
well as the history of cell updates:

𝜎 (]) (𝑖) B 𝜎 ({𝜏𝑝 ∈ T𝑃 | [〈·〉 (𝜎 (]),], 0, 𝜏𝑝)} . . . {𝜏𝑝 ∈ T𝑃 | [〈·〉 (𝜎 (]),], 𝑖, 𝜏𝑝)})

Note that in order to dene 𝜎 (]) (𝑖), the denition uses 𝜎 (]). This is well-dened, since
the evaluation function [〈·〉 (𝜍,], 𝑖, 𝜏) only uses 𝜍 0 . . . 𝜍 (𝑖 − 1).

Denition 6.1 (TSL realizability [93]). A TSL formula𝜓 is realizable i there exists a

Section 6.2. Temporal Stream Logic 80

strategy 𝜎 : (2T𝑃)+ → C such that for every input stream] ∈ I𝜔 and every assignment
function 〈·〉 : Σ𝑃 → F , it holds that 𝜎 (]),] |=〈·〉 𝜓 .

Past-time TSL. TSL can be extended with past-time temporal operators. As for LTL,
these do not extend the expressiveness of the logic but allow for a more concise formu-
lation of properties. A denition of LTL with past-time operators can be found, e.g.,
in [48, 132]. We use operators yesterday , weak yesterday , historically , once ,
since S, which are dened as follows.

𝜍,], 𝑖 |=〈·〉 𝜓 i
{
𝜍,], 𝑖 − 1 |=〈·〉 𝜓 for 𝑖 > 0
false else

𝜍,], 𝑖 |=〈·〉 𝜓1 S𝜓2 i ∃ 𝑗 ≤ 𝑖 . 𝜍,], 𝑗 |=〈·〉 𝜓2 ∧ ∀𝑗 < 𝑘 ≤ 𝑖 . 𝜍,], 𝑘 |=〈·〉 𝜓1

Similar to future-time operators, and can be dened in terms of the since operator
as 𝜓 = trueS𝜓 and 𝜓 = ¬ ¬𝜓 . The operator is dened as 𝜓 = ¬ ¬𝜓 .
Unlike the “strong” yesterday operator, evaluates to true in the rst step.

We denote by pastTSL (and pastLTL, respectively) the logic that only contains past-
time operators except for an optional operator at the highest level. Formulas without
a leading operator are called initial formulas; formulas with a operator invariants.
A computation 𝜍 and an input stream] satisfy an initial pastTSL formula𝜓 if 𝜍,], 0 |=〈·〉 𝜓

holds. They satisfy an invariant 𝜓 if 𝜍,], 𝑖 |=〈·〉 𝜓 holds for all points in time 𝑖 ∈ N.
PastTSL formulas can also be evaluated on nite traces as its formulas only depend
on the past of a trace. For nite input streams and computations,] and 𝜍 satisfy an
invariant𝜓 if |] | = |𝜍 | = 𝑛 and 𝜍,], 𝑖 |=〈·〉 𝜓 holds for all 𝑖 ∈ N with 0 ≤ 𝑖 < 𝑛.

Approximation of TSL in LTL. We quickly recap the approximation of TSL in LTL
from [93]. The main idea is to forget the fact that predicates must evaluate to the
same value if evaluated on cells that hold the same value. Then, every predicate 𝜏𝑝 and
update term Èx � 𝜏 𝑓 É can be replaced with an atomic proposition 𝑎𝜏𝑝 and 𝑎x_to_𝜏 𝑓 ,
respectively, which is denoted by syntacticConversion(𝜓) for a given TSL formula 𝜓 .
For example, (𝑝 (x) → Èx � 𝑓 (x)É) translates to (𝑎𝑝_x → 𝑎x_to_f_x). We call the
set of atomic propositions obtained in that translation AP𝜓 . Atomic propositions for
predicate terms are inputs, propositions for update terms are outputs. Additionally,
one ensures that in each step, exactly one update proposition holds for each cell.

cellProps(𝜑) B
(∧
c∈C

∨
𝜏∈T c

𝑈

(
𝑎𝜏 ∧

∧
𝜏 ′∈T c

𝑈
\{𝜏}

¬𝑎𝜏 ′
))

where T c
𝑈

is the set of all update terms of cell c and 𝑎𝜏 is the atomic proposition asso-
ciated with term 𝜏 .

Section 6.3. Solidity 81

We dene the approximating LTL formula [𝜓]atomic as follows.

[𝜓]atomic B syntacticConversion(𝜓) ∧ cellProps(𝜓)

What gets lost in the approximation is the fact that terms that evaluate to the same
value according to the TSL semantics must also have the same value in the LTL ap-
proximation. For example, after the update Èx� yÉ is performed, the predicate terms
𝑝 (x) and 𝑝 (y) must be assigned the same value in the next step. This behavior cannot
be fully captured in LTL; the two atomic propositions 𝑎𝑝_x and 𝑎𝑝_y can be assigned
dierent values by a strategy. The approximation is thus sound but not complete: any
strategy for the LTL formula is also one for the TSL formula, but counterstrategies of
the environment may be spurious.

6.3 Solidity

Most of the techniques we present in this part of the thesis are not limited to smart
contracts. We therefore use only few specic Solidity features, mostly in the translation
of our state machines to Solidity. We briey introduce these features and refer to the
Ethereum [101] and Solidity [102] documentations for details.

Solidity is a statically typed, mostly object-oriented programming language that
reads like C++ but implements specic constructs for the development of smart con-
tracts. Solidity uses methods and elds to store data. Methods can be labeled as public
or private, where public is the default. Accounts on the Ethereum blockchain (which
are either users or contracts) can call all public methods of a contract. If a method is
labeled payable, the caller can attach Ether (the native cryptocurrency of Ethereum)
to the call, e.g., to pay for an item in an auction. The current caller of the method can
be accessed by msg.sender, the attached value by msg.value. Especially important is
the rollback functionality revert(), which undos all eects of the current call. It is
used, e.g., to implement preconditions of a method.

Every execution that changes the state of a smart contract costs gas. When calling
a smart contract, the caller has to provide the amount of gas of needed for the transac-
tion. Every unit of gas has a xed price in Ether. When implementing a smart contract,
it is therefore important to keep the cost of gas low. Operations with high gas costs,
are, for example, lookups in a mapping.

Chapter 7

c

Parameterized Synthesis of

Smart Contracts

Smart contracts are small programs that typically implement auctions, voting proto-
cols, digital coins, marketplaces, or asset transfers. As such, smart contracts often
involve monetary transactions between the parties. Recent history has witnessed nu-
merous bugs in smart contracts, some of which led to substantial monetary losses.
One critical area is the implicit state machine of a contract: to justify the removal of a
trusted third party – a major selling point for smart contracts – all parties must trust
that the contract indeed enforces the agreed order of transactions. Formal methods
provide formal guarantees and thus play a major role in these eorts, also because of
the relatively small size of most smart contracts. Indeed, the code is law paradigm is
more and more shifting towards a specication is law paradigm [9]. Formal verication
has been applied successfully to prove the correctness of the underlying state machine
of existing smart contracts [188, 215, 227, 184].

Synthesis, i.e., the automatic construction of Solidity code directly from a temporal
specication, has received only little attention so far. The idea to employ synthesis as
an alternative to verication applies especially in the context of smart contracts. Many
contracts belong to some standardized class like the ERC20 token standard. Whenever
the contract is extended with new functionality, the contract has to be veried again.
Synthesis, in contrast, is a property-oriented approach and enables an incremental and
modular development process: specications can be easily extended with additional
conjuncts for new functionality. The implications of the extension on the statemachine
are handled by the synthesis algorithm.

Recent work [91] proposed to synthesize the control ow graph of a smart contract
from the past-time fragment of temporal stream logic. TSL extends linear-time tem-
poral logic (LTL) with the concept of elds together with uninterpreted functions and
predicates. The uninterpreted predicates facilitate reasoning about the control ow
of the contract and its elds as they store data from potentially innite domains. For

82

Section 7.0. 83

example,

(close → sender = owner() ∧ numberVotes > cNum())

expresses the invariant that method close can only be called by the owner of the con-
tract and only if the value of eld numberVotes is larger than some constant threshold
cNum(). As demonstrated in [91], temporal control ows of smart contracts can be
specied as safety properties expressed in pastTSL. This leads to ecient symbolic
algorithms, which are implemented in the tool SCSynt. The tool also translates the
synthesized state machine into Solidity code.

In this chapter, we extend pastTSL synthesis to improve its usefulness for smart
contracts. First, building on the eciency of the approach, we embed the synthesis
in a feedback loop that nds potential specication errors. In particular, it warns the
developer about free choices (which often indicate that the system is under-specied)
and potential deadlocks. Second, we observe that many smart contract specications
need to distinguish between calls to the same method but with dierently assigned
parameters. ERC20 token systems, for example, do not have a single global control ow
but instead a “local” control ow for each address. If address nwants to spend k tokens
of m’s account, mmust have approved that nmay spend at least that many tokens. It is
not possible to express such properties directly in TSL. We therefore extend TSL with
the concept of universally quantied parameters. The following formula expresses the
above property, where transferFrom is a method parameterized with m and n, and
approved is a eld mapping from two addresses to a positive integer.

∀m.∀n. (transferFrom(m,n) → approved(m,n) ≥ arg@amount)

Above, arg@amount denotes an additional parameter of transferFrom that does not
have to be quantied as is never occurs as a eld parameter. Due to the universal quan-
tication, the formula describes an innite-state machine. This poses the challenge to
synthesize a nite representation of the system that can be translated into a Solidity
contract with moderate gas consumption. To do so, we represent the innite-state
machine with a hierarchical structure of small nite-state machines that communicate
with each other.

We developed this work with Solidity in mind as a step towards a less error-prone
development of smart contracts. Our approach generalizes to a broader class of pro-
grams, however. The idea of specifying the temporal control ow of a program with
parameterized pastTSL is not specic to smart contracts or Solidity. Neither is the
general workow that embeds the synthesis in an analysis of the state machine with
respect to free choices and deadlocks.

Section 7.1. Recap: Synthezing Smart Contract State Machines from PastTSL 84

Outline. We rst recap the synthesis of smart contract control ow graphs from pure
pastTSL [91]. In Section 7.2, we present the workow that embeds the synthesis into an
analysis of the specication. Section 7.3 denes parameterized pastTSL and illustrates
the use of the logic on the examples of a voting protocol and an ERC20 token contract.
Subsequently, in Section 7.4, we discuss how to synthesize Solidity smart contracts
fromparameterized specications, building on the synthesis frompure pastTSL. Lastly,
Section 7.5 discusses our implementation of the presented approaches as extension of
SCSynt. To evaluate our approach, we specify and synthesize various smart contracts.
We compare the gas consumption of our synthesized contracts with other approaches
that produce formally veried contracts and also with manually written contracts.

Publications. This chapter builds on the following paper, which is at the point of
submitting this thesis under peer-review. The paper introduces the idea to use pastTSL
for smart contract synthesis as well as the extensions described in this chapter. Only
the latter is a contribution of this thesis.

[91] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. Reactive
Synthesis of Smart Contract Control Flows. arXiv 2022. URL: https://
arxiv.org/abs/2205.06039.

7.1 Recapitulation: Synthezing Smart Contract State

Machines from PastTSL

In this section, we recap the approach presented in [91], which proposes to specify the
temporal behavior of smart contracts in the past-time fragment of TSL. This enables
an ecient BDD-based synthesis, which is implemented in SCSynt. The idea of the
approach is to focus on the specication of the underlying state machine of a smart
contract. The synthesized state machine is translated to Solidity code, which forms
the backbone of the contract. The code can afterwards be augmented with additional
functionality if needed. As long as no assumption formulated in the specication is
violated in the process, the resulting contract will have a correct temporal control ow.

7.1.1 Specication

The developer species the contract in pastTSL, a fragment of TSL which describes
invariants over the history of a trace up to the current point. TSL is a convenient logic
to not only describe the correct order of method calls but also how elds need to be
updated to ensure a correct control ow. This can be achieved through TSL’s cells and
uninterpreted functions and predicates. To avoid confusion, we call Solidity functions

https://arxiv.org/abs/2205.06039
https://arxiv.org/abs/2205.06039

Section 7.1. Recap: Synthezing Smart Contract State Machines from PastTSL 85

1 Methods: vote, close, reveal
2 Fields: voters
3 Functions: ∈, add
4 Predicates: >, =

5 Constants: owner(), cTime()
6 Inputs: time , sender
7
8 --- Assumptions ---
9 (time > cTime() → time > cTime());
10
11 --- Requirements ---
12 (close → sender = owner());
13 (vote → ¬(sender ∈ voters));
14 (vote → ¬(time > cTime()));
15 (close → time > cTime());
16 (close → ¬close);
17 (reveal → close);
18
19 --- Obligations ---
20 (vote → Èvoters � add(sender , voters)É);
21 (¬vote → Èvoters � votersÉ);

Specication 7.1: Simple voting specication in pastLTL.

methods and reserve the notion of functions for TSL. We use TSL’s cells to describe the
data ow of contract’s elds and use uninterpreted predicates to state access rights and
other requirements on the values of the methods’ parameters. In the context of smart
contexts, we therefore use “cell” and “eld” interchangeably. The TSL specication
abstracts from the concrete implementation of functions and predicates and instead
states when a method may be called and how elds have to be updated depending on
the valuation of the predicates.

We illustrate the idea with a simple specication of a voting contract given in Spec-
ication 7.1. The voting contract will serve (in various forms) as running example in
this and the following chapter. Method calls are modeled with Boolean inputs (e.g.,
vote). Formally, Boolean inputs do not exist in TSL, vote is thus syntactic sugar for
a predicate over an input, e.g., isVote(methodinput). Checks on a method’s argu-
ments (e.g., sender = owner()) use uninterpreted predicates (= in this case). The
assignments of the contract’s elds are described as updates. A specication is divided
into three parts: assumptions, requirements, and obligations.

Assumptions provide information on the uninterpreted predicates in the specica-
tion. In Specication 7.1, we use the assumption that time is monotone, i.e., if it passes
a threshold like the constant cTime(), it stays greater than the threshold (l. 9). As-

Section 7.1. Recap: Synthezing Smart Contract State Machines from PastTSL 86

sumptions also constitute a way to interact with deductive verication tools for smart
contracts. If the developer is condent that they can prove some pre- and postcondi-
tions of a method, this can be added as an assumption. As an example, we could extend
the voting specication with the following formulation of a Hoare triple.

(numberOf(voters) > 10 ∧ vote → (numberOf(voters) > 10))

The above formula states if there has been more than 10 voters, then an additional vote
will not decrease that number. Assumptions added to the formula need to be enforced
outside the synthesis algorithm. Hoare triples like the one above can be proven using
deductive verication tools like Celestial for smart contracts [66]. Other assumptions
are made true by the implementation of a predicate, e.g., a transitivity assumption on
the > predicate. In addition to the assumptions provided by the developer, SCSynt
adds the assumption that only one method is called at a time. This assumption is
enforced in the translation to Solidity using a Boolean ag, which also prevents reen-
trancy attacks [174].

Requirements dene the allowed sequence of method calls based on the history
of method calls and on predicates on the elds and method arguments. In Speci-
cation 7.1, we state, for example, that reveal can only happen after close has been
called (l. 17). Lastly, obligations describe when and how elds need to be updated. In
the above specication, we require that the current sender is added to the list of voters
when vote is called (l. 20). Otherwise, voters has to remain unchanged (l. 21).

7.1.2 Synthesis and Translation to Solidity

Given the specication, the tool SCSynt synthesizes a state machine implementing a
strategy that satises the specication (if there is any). While TSL synthesis is in gen-
eral undecidable [93], correct solutions can be found through approximation in LTL,
which works very well in practice [93, 112, 92]. SCSynt follows the approximation
described in [93], extended with past-time temporal operators. The resulting formula
is a past-time LTL formula that describes a safety property. For past-time LTL for- page 19
mulas, synthesis is very ecient for two reasons. First, to evaluate a pastLTL formula
at point in time 𝑖 , one only needs to know the evaluation of all subformulas at point
𝑖 − 1 [132]. This makes it possible to construct a pastLTL formula’s safety automaton page 19
with a linear traversal of the formula. The resulting safety game can also be solved in page 76
linear time with respect to the automaton [64]. SCSynt implements the computation
of the winning region symbolically using BDDs to represent the safety automaton. It
also minimizes the resulting winning region. If the specication is realizable, the tool
returns a strategy. The only realizing strategy for the voting specication is depicted
as state machine in Figure 7.1.

Section 7.2. Free Choices and Deadlock Detection 87

𝑞1 𝑞2
vote ∧ ¬ (sender ∈ voters)
∧ ¬ (time > cTime()) |

Èvoters� add(sender, voters)É close ∧ sender = owner()
∧ time > cTime() |
Èvoters� votersÉ

reveal ∧
time > cTime() |

Èvoters� votersÉ

Figure 7.1: Synthesized state machine for Specication 7.1.

1 function vote(uint _choice) public {
2 if(currState == <source state of 𝑡1> && <guard of 𝑡1>){
3 currState = <target state of 𝑡1>
4 <field updates of 𝑡1>
5 } else if(currState == <source state of 𝑡2> && <guard of 𝑡2>)

{
6 currState = <target state of 𝑡2>
7 <field updates of 𝑡2>
8 } else if ...
9 else{
10 revert ();
11 }
12 }

Solidity Code 7.1: Sketch of generated Solidity code for method vote.

The state machine implementing the strategy is automatically translated to So-
lidity code. Solidity Code 7.1 shows the skeleton of the code generated for the vote

method. The developer only needs to provide a signature which indicates, e.g., the
types of elds and methods. Furthermore, they must implement the (usually simple)
uninterpreted functions and predicates. Common functions and predicates such as
addition + and the > predicate are translated automatically. Further keywords are
value, sender, balance, and owner, which are translated to msg.sender, msg.value,
address(this).balance, and an owner eld which is set in the constructor. The if
statements implement the transition system logic. If none of the guards evaluates to
true, the call to the method is reverted. The signature of the method has a _choice

parameter, which stands for the actual vote of the caller. In our example specication,
we did not specify how the handle the vote itself and how to ensure that the correct
winner is chosen, this must still be implemented by hand.

7.2 Free Choices and Deadlock Detection

We extend the synthesis described in the last section with an analysis for potential
specication errors. This kind of feedback loop is made possible by the eciency of

Section 7.2. Free Choices and Deadlock Detection 88

Control Flow Specification

Methods: m1,...,mn
Fields: v1,...,vm
Functions: f1,...,fl
Predicates: p1,...,po
Constants: c1,...,cp
Inputs: i1,...,iq

Synthesis

Solidity Code
Refine Specification

Free Choices
Approval

contract SC {
⋮

}

Dead Locks

Refine Specification

State MachineAssumptions

Requirements

Obligations

Func. & Pred.
Implementation

f1 := ...

⋮
fl := ...

p1 := ...

⋮
po := ...

Approval

Approval

Figure 7.2: Synthesis workowwith analysis regarding free choices and potential dead-
locks.

the synthesis that allows the developer to go back and x the specication and obtain
timely feedback. Our analysis searches for free choices and potential deadlocks in the
synthesized state machine. The resulting workow from the developer’s perspective
is depicted in Figure 7.2.

Free choices indicate that the specication is realizable by multiple strategies. In
many cases, this is not intended andmeans that the contract is under-specied. A spec-
ication admits multiple strategies if in some state of the winning region, there exists
two output valuations for the same input valuation. In the specication of the voting
contract given in Specication 7.1, for example, it is easy to forget the obligation that
eld voters should not change if votewas not called. This would result in two strate-
gies for the case that method close is called: either set update Èvoters � votersÉ
or update Èvoters� add(sender, voters)É.

Deadlocks indicate that, at some point, there is an allowed combination of predicate
evaluations such that no method can be called. For the deadlock detection, we require
the developer to label predicate terms as determined. We call a predicate term deter-
mined if it has a xed value at every step (until a method is called successfully). Some
predicate terms can be syntactically recognized as determined, e.g., predicate terms
that only have elds and constants, i.e., no inputs, as base terms. The value of such
a predicate term cannot change until a method is called that changes the value of the
elds. Predicate terms like sender ∈ voters, in contrast, are not determined as the
evaluation always depends on the input sender.

As an example, we extend the voting specication such that the election can only
close once a minimum number of votes has been cast. We use an additional eld
numVotes, which records the number of votes. The extended specication is depicted
in Specication 7.2. In the specication, there are two determined predicate terms:
numVotes > cNum() and time > cTime(). The rst predicate term is determined as
it does not contain any input variable. The second predicate term does contain an in-
put variable (time), but as it is supposed to refer to the current time and since time is
monotone, the predicate term cannot switch to false once it evaluates to true. If both
predicate terms are labeled as determined by the developer, SCSynt warns of a poten-
tial deadlock: in the initial state, there is no callable method if both time > cTime()

Section 7.3. Specifying Smart Contracts with Parameterized PastTSL 89

1 ...
2 Fields: ..., numVotes
3 Constants: ..., cNum()
4
5 --- Additional Assumptions ---
6 (vote ∧ numVotes > cNum() → numVotes > cNum());
7
8 --- Additional Requirements ---
9 (close → numVotes > cNum());
10
11 --- Additional Obligations ---
12 (vote → ÈnumVotes � addOne(numVotes)É);
13 (close → ÈnumVotes � numVotesÉ);

Specication 7.2: Extended voting specication.

𝑞1

𝑞2

𝑞3

vote ∧
¬ time > cTime() ∧

¬ numVotes > cNum() ∧ . . .

vote ∧ ¬ time > cTime(
) ∧

numVot
es > cNum()

∧ . . .

close ∧ time > cTime() ∧
numVotes > cNum() ∧ . . .

Figure 7.3: Deadlock in state machine of the extended voting specication.

and numVotes ≤ cNum() hold. Figure 7.3 depicts the part of the synthesized state
machine that contains the deadlock. To prevent a deadlock, the specication can be
adapted, e.g., by weakening the voting or closing condition. For now, this analysis can
only warn of potential deadlocks. We labeled the time > cTime() predicate term as
determined since it is determined if it is set to true. If it is false, then it is not deter-
mined, as it might switch to true as time progresses. Our analysis would warn of a
potential deadlock also in a state that requires the term to be false to progress, as we
do not distinguish for which values a predicate term is determined.

7.3 Specifying Smart Contracts with Parameterized

PastTSL

We formally dene TSL with parameters and demonstrate how to use pastTSL with
parameters for the specication of smart contract control ows.

Section 7.3. Specifying Smart Contracts with Parameterized PastTSL 90

7.3.1 Parameterized TSL

Technically, parameterized TSL is TSL with innitely many constants and cells. Let 𝑃
be a set of parameters. We dene the syntax of parameterized TSL with respect to 𝑃
and a setC𝑃 of parameterized cells. Each parameterized cell is of the form c(𝑝1, . . . , 𝑝𝑚)
with 𝑝1, . . . , 𝑝𝑚 ∈ 𝑃 . A parameterized TSL formula is a formula ∀𝑝1, . . . ,∀𝑝𝑛 .𝜓 , where
𝜓 is a TSL formula with cells from C𝑃 and which allows parameters 𝑃 as base terms in
function terms and predicate terms. We require that the formula is closed, i.e., every
parameter occurring in𝜓 must be bound in the quantier prex.

TSL formulas with parameters must be evaluated with respect to a domain for the
parameters. Let P be such a (possibly innite) set. To keep the denition of the se-
mantics simple, we assume that P is a subset of the set of constants, i.e., 0-ary function
terms. We use ` : 𝑃 → P to denote a function that instantiates all parameters. For each
parameter instantiation ` : 𝑃 → P, we further assume that c(` (𝑝1), . . . , ` (𝑝𝑚)) ∈ C,
i.e., that the instantiation of a parameterized cell refers to a normal cell. The set of cells
C may be innite. Given a parameterized TSL formula ∀𝑝1, . . . ,∀𝑝𝑛 .𝜓 , let𝜓 [`] be the
formula obtained by replacing all parameters in𝜓 according to `. As P is a subset of the
set of constants and c(` (𝑝1), . . . , ` (𝑝𝑚)) ∈ C,𝜓 [`] is a TSL formula. Given a computa-
tion 𝜍 and an input stream], we dene 𝜍,] |= ∀𝑝1, . . . ,∀𝑝𝑛 .𝜓 i ∀` : 𝑃 → P. 𝜍,] |= 𝜓 [`].

7.3.2 Parameterized Voting Specication

Using parameters, we can specify the voting example from last section more directly
using a parameterized version of the votemethod. Wewrite vote(m) for a method call
with parameter m, which is syntactic sugar for isVote(methodinput, m). Parameters
can either refer to a parameter of the method’s signature or to the caller of the mes-
sage. For the translation to Solidity, the developer needs to indicate for each parameter
whether it should be instantiated with the caller or one of the method’s arguments. In
this example, m is the caller of the method. Compared with the voting specication
from Section 7.1.1, we do not have to use a eld that stores the voters in order to make
sure that everybody only votes once. Instead, we simply state:

∀m. (vote(m) → ¬vote(m))

The formula says that whenever vote is called by sender m, then vote has not been
called in the past by that sender.

7.3.3 ERC20 Token System

As a second example we illustrate how specications with parameters can be used
to specify an ERC20 token system. We mainly follow the Open Zeppelin documen-

Section 7.3. Specifying Smart Contracts with Parameterized PastTSL 91

tation [187] but also add additional functionality. An ERC20 token system provides
a platform to transfer tokens between dierent accounts. The core contract consists
of methods transfer, transferFrom, and approve. We do not model getters like
totalSupply or balanceOf as they are not relevant for the temporal behavior of the
contract. From a synthesis point-of-view, the challenge is that there is not only a global
control ow but also one for each pair of accounts interacting with the contract. For
example, if n wants to send tokens from m’s account to someone else, then m must
have approved at least the requested amount to n. We tackle this challenge with a
parameterized TSL specication using two parameters m and n. We use m for the con-
tract from which tokens are subtracted and, whenever dierent from m, parameter n
for the contract that initiates the transfer. In the following, we do not explicitly add
the universal quantication as all parameters are always universally quantied. First,
whenever either transfer or transferFrom is called, mmust have a sucient balance.

(transfer(m) ∨ transferFrom(m,n) → sufficientFunds(m, arg@amount))

We use arg@ to label the current method’s arguments that are not modeled as TSL
parameters. We do not have to distinguish between calls to transfer with dierent
values for amount, therefore we model the argument as normal TSL input. If n wants
to transfer from m’s account, the amount must have been approved.

(transferFrom(m,n) → approved(m,n) ≥ arg@amount)

The parameterized eld approved(m,n) records the amount of tokens m allows n to
spend in their name. It must be updated appropriately when approve(m,n) is called
or when some of it is spent.

(approve(m,n) → Èapproved(m,n)� arg@amountÉ)

(transferFrom(m,n) → Èapproved(m,n)� approved(m,n) − arg@amountÉ)

(¬(transferFrom(m,n) ∨ approve(m,n))
→ Èapproved(m,n)� approved(m,n)É)

The Open Zeppelin ERC20 contract also oers various extensions of the core contract,
one of which is the ability to pause all transfers by calling pause in case anything suspi-
cious happens. unpause resumes all transfers. To illustrate how the use of parameters
might lead to complex control ows, we additionally add method localPause(m) and
localUnpause(m). While pause stops all other method calls, localPause(m) should
only stop transfers from m’s account. We specify that no method call can happen after

Section 7.4. Specifying Smart Contracts with Parameterized PastTSL 92

𝑠1 𝑠2𝑠3 𝑠4

localPause(m)pause

localUnpause(m)unpause

pause

unpause

approve(m,n) ∨
(transfer(m) ∧ sufficientFunds(m,a)) ∨
(transferFrom(m,n) ∧ sufficientFunds(m,a) ∧ approved(m,n) ≥ a)

Figure 7.4: Synthesized state machine of the ERC20 token system with local pause
function. Predicates that are not relevant for the transition and all eld updates are
omitted for readability. We also write a instead of arg@amount.

pause until unpause is called.

(transferFrom(m,n) ∨ transfer(m) ∨ approve(m,n) ∨ localPause(m)

∨ localUnpause(m)

→ (¬pause S unpause) ∨ ¬pause)

In contrast, localPause(m) only stops method calls related to m’s account; all others
can continue.

(transferFrom(m,n) ∨ transfer(m) ∨ approve(m,n)

→ (¬localPause(m) S localUnpause(m)) ∨ ¬localPause(m))

Finally, we want that pause and unpause cannot be called twice without the respective
other in between. Additionally, unpause cannot be called if pause has not been called
at least once.

(unpause → (¬unpause S pause))

(pause → (¬pause S unpause) ∨ ¬pause)

The same two formulas are also required for localPause and localUnpause.
As parameters are universally quantied, the specication describes the same state

machine for each of the innitelymany instantiations of the parameters. This statema-
chine is depicted in Figure 7.4. The dierent instances are not independent, however.
The contract can be in a dierent state for (m = 1, n = 2) and (m = 3, n = 4). But, if
pause is called, both must move to a state when no transfer is possible. In the next
section we discuss how we can represent the implied innite-state machine in Solid-
ity such that we ensure a correct interaction between the instances and keep the gas
consumption at a reasonable level.

Section 7.4. Parameterized PastTSL Synthesis 93

7.4 Parameterized PastTSL Synthesis

In this section, we describe how to extend the pastTSL synthesis described in [91] to
specications with universally quantied parameters. We rst dene parameterized
LTL and how the TSL approximation in LTL [93] can be extended to approximating
parameterized TSL by parameterized LTL. We subsequently state the problem de-
nition in terms of parameterized LTL formulas, present the synthesis algorithm, and
argue the correctness of our approach. Finally, we discuss the expressiveness limits of
parameterized pastTSL for specifying the temporal control ow of smart contracts.

7.4.1 Parameterized LTL

Parameterized LTL has been studied in the settings parameterized verication [10]
and parameterized synthesis [140]. We dene it analogously to parameterized TSL
and restrict ourselves to universally quantied formulas. Let AP be a set of parame-
terized atomic propositions, i.e., a set of propositions of the form 𝑎(𝑝1, . . . , 𝑝𝑚), where
𝑝1, . . . , 𝑝𝑚 ∈ 𝑃 . A parameterized LTL formula overAP is a closed formula∀𝑝1, . . . , 𝑝𝑛 .𝜓
such that 𝑝1, . . . , 𝑝𝑛 ∈ 𝑃 and 𝜓 is an LTL formula over AP . In this section, we usually
denote the sequence 𝑝1, . . . , 𝑝𝑚 with some 𝑃𝑖 , for which we also use set notation. We
assume that every proposition occurs with only one sequence of parameters, i.e., there
are no 𝑎(𝑃𝑖), 𝑎(𝑃 𝑗) ∈ AP with 𝑃𝑖 ≠ 𝑃 𝑗 . If 𝑎 is not parameterized, 𝑃𝑖 = ∅.

We evaluate parameterized LTL formulas with respect to the domain P. Given a
sequence of parameters 𝑃𝑖 = (𝑝1, . . . , 𝑝𝑚) and an instantiation function ` : 𝑃 → P, we
write 𝑃𝑖 [`] for (` (𝑝1), . . . , ` (𝑝𝑚)). For 𝑎(𝑃𝑖) ∈ AP we write, slightly abusing notation,
𝑎 ∈ AP and 𝑎[`] for 𝑎(𝑃𝑖 [`]). As for parameterized TSL, 𝜑 [`] is the formula where all
atomic propositions are instantiated according to `. LetAPP = {𝑎[`] | 𝑎 ∈ AP, ` : 𝑃 →
P} be the set of all possible instantiations of AP . As there are no two 𝑎(𝑃𝑖), 𝑎(𝑃 𝑗) ∈ AP
with 𝑃𝑖 ≠ 𝑃 𝑗 , for any 𝛼 ∈ APP, there is exactly one 𝑎 such that 𝑎[`] = 𝛼 for some
`. Note that there might be multiple `, `′ such that 𝑎[`] = 𝑎[`′]. A trace 𝑡 over APP
satises a parameterized LTL formula ∀𝑝1, . . . , 𝑝𝑛 .𝜓 if for all `, it holds that 𝑡 |= 𝜓 [`].

We extend the LTL approximation of TSL to an approximation of parameterized page 80
TSL with parameterized LTL. We translate TSL predicate and update terms to LTL in-
put and output propositions as described in [93] but list all parameters a term contains
as part of the proposition. For example, a(m) > b(n) is translated to the parameterized
proposition 𝑐 (𝑚,𝑛), where 𝑐 is some suitable name for the predicate term.

7.4.2 Problem Denition

Let a parameterized pastLTL formula 𝜑 = ∀𝑝1, . . . , 𝑝𝑛 .𝜓 be given, which is the approx-
imation of a parameterized pastTSL formula specifying a smart contract. We denote

Section 7.4. Parameterized PastTSL Synthesis 94

the set of atomic propositions that correspond to some method call f(𝑃𝑖) by 𝐼call ⊆ 𝐼

and the set of output propositions that denote self-updates of elds o(𝑃𝑖) by𝑂self ⊆ 𝑂 .
Our aim is to synthesize a state machine that represents a smart contract from the

parameterized LTL formula. We dene when an innite-state machine implements a
smart contract with parameters.

Denition 7.1. Let AP = 𝐼 ∪𝑂 be a set of parameterized propositions and let P be a
parameter domain. An innite-state machineM over 2APP implements a smart contract
if (i) for each transition (𝑠, 𝐴, 𝑠′) ∈ 𝛿 , there is exactly one𝛼 ∈ 𝐴 such that there is a ` and
a f(𝑃𝑖) ∈ 𝐼call with 𝛼 = f(𝑃𝑖)[`] and (ii) in every state 𝑠 ∈ 𝑆 , for every instance `, and
all inputs 𝐴𝐼 ⊆ 𝐼 , there exists a transition (𝑠, 𝐴, 𝑠′) ∈ 𝛿 such that {𝑎[`] | 𝑎 ∈ 𝐴𝐼 } ⊆ 𝐴.

The denition requires that in each state of the state machine, every instance must
have the possibility to make progress. In each transition, on the other hand, the state
machine processes a method call for exactly one instance of the parameters. This cor-
responds to the intuition that only one method with certain arguments can be called
at a time. This does not mean that only one instance makes progress per transition.
For example, if localPause(m) is called with m = 1 in the ERC20 token system from
Section 7.3.3, this aects all instances with ` (m) = 1. To project on steps relevant
for an instance `, we project the traces of M to steps that either include a method
call to ` or a non-self-update of one of `’s elds. For 𝐴 ⊆ APP, we dene 𝐴` as
{𝛼 ∈ 𝐴 | ∃𝑎 ∈ AP . 𝛼 = 𝑎[`]}. Given 𝑡 ∈ traces(M), let 𝑡 ′ = (𝑡 [0])` (𝑡 [1])`
Now, we dene 𝑡` to be the trace obtained from 𝑡 ′ by deleting all positions 𝑖 such
that (𝑡 [𝑖]`) |𝑂 ⊆ 𝑂self and ¬∃f(𝑃𝑖) ∈ 𝐼call . f(𝑃𝑖)[`] ∈ 𝑡 ′[𝑖]. Note that 𝑡` might
be a nite trace even if 𝑡 is innite. Since 𝑡` only deletes steps from 𝑡 that do not
change the value of the cells, 𝑡` still constitutes a sound computation regarding the
original pastTSL formula. We dene traces` (M) = {𝑡` | 𝑡 ∈ traces(M)}. Similarly,
nTraces` (M) = {𝑡` | 𝑡 ∈ nTraces(M)}.

Denition 7.2. A state machine implementing a smart contract satises a pastLTL
formula 𝜑 = ∀𝑝1. , . . . ,∀𝑝𝑚 .𝜓 if for all traces 𝑡` ∈ traces` (M) and instances `, we have
𝑡` |= 𝜓 [`].

7.4.3 Synthesizing Smart Contracts with Parameters

To synthesize a state machine implementing a smart contract, we have to solve two
challenges. First, the state machine needs to be nitely representable, which is a com-
mon challenge also faced in program synthesis or distributed reactive synthesis (see
Chapter 9). Second, we need to handle (in)dependencies between parameterized page 128

methods. Consider for example the ERC20 token system described in Section 7.3.3.
Here, we have two parameters m and n. If method localPause(m) is called for some

Section 7.4. Parameterized PastTSL Synthesis 95

𝑞1 𝑞2

𝐾 = {𝑠1, 𝑠2 } 𝐾 = {𝑠3, 𝑠4 }

(in_𝑠1 ∨ in_𝑠2)
∧ pause

unpause ∧
(in_𝑠3 ∨ in_𝑠4)

(a) System for ∅.

𝑞1 𝑞2

𝐾 = {𝑠1, 𝑠3 } 𝐾 = {𝑠2, 𝑠4 }

in_𝑠1 ∧
localPause(m)

localUnpause(m)
∧ in_𝑠2

transfer(m)
∧ in_𝑠1

(b) System for {m}.

𝑞1

𝐾 = {𝑠1, 𝑠2, 𝑠3, 𝑠4 }

in_𝑠1 ∧
(approve(m,n) ∨

transferFrom(m,n))

(c) System for {m, n}.

Figure 7.5: Synthesized state machines for all parameter sets with non-empty method
set. For readability, we only display the knowledge states for each state and, for each
transition, the method and the guards concerning the knowledge states; predicates and
eld updates are omitted.

address m = 1, the next state may not depend on predicates over parameter n like
approved(m,n) >= arg@amount, as n is not assigned in the call to localPause(m).
While this is quite obvious from the programming perspective, it is not from the per-
spective of strategies represented as state machines: a strategy needs to know all input
propositions in order to decide on what transition to take. We have to resolve this dis-
crepancy between the dierent ways of thinking about a system, while also bearing in
mind that the implementation in Solidity should be as gas ecient as possible.

Approach in a Nutshell. In a nutshell, we proceed as follows. First, we interpret
the specication as being unquantied, i.e., we treat parameters as being part of the
proposition’s name. The synthesized nite-state machine then describes the behavior
of a single instance of the parameters. The dierent instances depend on each other;
therefore, it is not possible to just keep a duplicate of the state machine for every
instance: again, if localPause(m) is called for m = 1, this needs to be recorded in all
state machines for instances that share the value of m. We would have to iterate over
mappings to update all state machines of so-far observed instances, which would be
very costly in Solidity.

To obtain a more feasible solution, we therefore describe an algorithm to split the
synthesized state machine into multiple machines, one for each subset of parameters
that occur in method call propositions. Together, these systems represent the full sys-
tem. For the ERC20 example, we obtain the three systems depicted in Figure 7.5. Each
node is labeled with a “knowledge” set 𝐾 . If we follow a run of the original system in
all subsystems, the knowledge states denote which state the original system might be
in. 𝐾 = {𝑠1, 𝑠2} in state 𝑞1 of Figure 7.5a, for instance, means that the original system
must be either in state 𝑠1 or in state 𝑠2. We furthermore add guards to the transitions,
where in_𝑠1 means that the subsystem can only take the transition if it knows for sure
that the full system is currently in state 𝑠1. The systems share their knowledge about

Section 7.4. Parameterized PastTSL Synthesis 96

the state of the original system in a hierarchical structure. A subsystem for parame-
ters 𝑃𝑖 may share its knowledge only with systems for parameters 𝑃 𝑗 ⊇ 𝑃𝑖 . We dene
an independence check that is successful if every subsystem comes at every state to a
denite conclusion whether a transition can be taken.

In the following, we rst describe two technical requirements that the synthesized
nite-state machine has to satisfy in order to be split into multiple state machines.
Then, we describe the splitting algorithm, the independence criterion, and how the
distributed knowledge about the current state of the system can be put together again
to construct an innite-state machine. Finally, we argue that the approach is sound,
i.e., if a system is decomposable according to the requirements and the independence
criterion, then the implied innite-state machine describes a smart contract that pro-
duces traces which satisfy the parameterized formula.

Technical Requirements. Let 𝜑 = ∀𝑝1 . . .∀𝑝𝑛 .𝜓 and let W be the nite-state ma-
chine over AP that represents the winning region of𝜓 . Let 𝑆W be the states ofW and
𝛿W its transition relation. We dene two requirements on W which can be checked
easily by inspecting all its transitions. The rst requirement ensures that calls to a
method parameterized with parameter sequence 𝑃𝑖 only lead to eld updates parame-
terized with the same parameter sequence.

Requirement 1 (Local Updates). For every transition (𝑠, 𝐴, 𝑠′) ∈ 𝛿W , if o(𝑃𝑖) ∈ 𝐴 |𝑂
and o(𝑃𝑖) ∉ 𝑂self , then there is a method call proposition f(𝑃𝑖) ∈ 𝐴.

Second, whether a method can be called at a given state must not depend on pred-
icates that are parameterized with parameters that are not included in the current
method call. We formalize this by requiring that for every method call transition, there
is another transition for the same method with a dierent valuation of such irrelevant
input propositions.

Requirement 2 (Independence of Irrelevant Predicates). For every (𝑠, 𝐴, 𝑠′) ∈ 𝛿W , if
f(𝑃𝑖) ∈ 𝐴, then for every 𝑎(𝑃 𝑗) ∈ 𝐼 with 𝑃 𝑗 * 𝑃𝑖 and 𝑎(𝑃 𝑗) ∉ 𝐼call , there is a transition
(𝑠, 𝐴′, 𝑠′) with 𝑎(𝑃 𝑗) ∈ 𝐴 i 𝑎(𝑃 𝑗) ∉ 𝐴′ and 𝐴 |𝑂 = 𝐴′

|𝑂 .

Splitting Algorithm. If W satises the above requirements, we proceed to split the
state machine into multiple state machines, one for every subset 𝑃𝑖 of parameters. Each
W𝑃𝑖 projects W to the method calls parameterized with parameters 𝑃𝑖 . Furthermore,
we label each state of every W𝑃𝑖 with the current knowledge of the state machine
regarding the global state of the contract. The algorithm to construct W𝑃𝑖 combines
several standard automata-theoretic concepts:

1. Introduce a new guard proposition in_𝑠 for every state 𝑠 ∈ 𝑆W of W. For every
transition (𝑠, 𝐴, 𝑠′) ∈ 𝛿W , replace 𝐴 with 𝐴 ∪ {in_𝑠}.

Section 7.4. Parameterized PastTSL Synthesis 97

2. Label all transitions (𝑠, 𝐴, 𝑠′) ∈ 𝛿W for which there is no f(𝑃𝑖) ∈ 𝐴 with 𝜖 . The
result is a nondeterministic safety automaton with 𝜖-edges. page 19

3. W𝑃𝑖 is obtained by determinizing the safety automaton using the standard subset
construction. This removes all 𝜖 transitions. During the construction, we label
each state with the subset of 𝑆W it represents, these are the knowledge sets.

The subset construction employed in the algorithm above was initially dened for
nondeterministic nite automata [196]. As safety automata are basically NFAs without
accepting states, the construction can be straightforwardly applied to safety automata
with 𝜖-edges. We use 𝑆𝑖 for the states ofW𝑃𝑖 , 𝛿𝑖 for its transition relation, and𝐾𝑖 : 𝑆𝑖 →
2𝑆W for the knowledge sets. Note that every transition in W is labeled with exactly
onemethod call proposition and is therefore present in exactly oneW𝑃𝑖 . The following
two propositions follow from the correctness of the standard subset construction for
the determinization of nite automata. The rst proposition states that the outgoing
transitions of a state 𝑠𝑖 ∈ W𝑃𝑖 are exactly the outgoing transitions of all states 𝑠 ∈
𝐾𝑖 (𝑠𝑖).

Proposition 7.1. For every state 𝑠𝑖 ∈ 𝑆𝑖 , if 𝑠 ∈ 𝐾𝑖 (𝑠𝑖), then (𝑠, 𝐴, 𝑠′) ∈ 𝛿W i (𝑠𝑖, 𝐴 ∪
{in_𝑠}, 𝑠′𝑖) ∈ 𝛿𝑖 .

The second one states that the knowledge labels in W𝑃𝑖 are consistent with the
transitions ofW.

Proposition 7.2. Let (𝑠, 𝐴, 𝑠′) ∈ 𝛿W with f(𝑃𝑖) ∈ 𝐴. Then, for every state 𝑠𝑖 ∈ 𝑆𝑖

with 𝑠 ∈ 𝐾𝑖 (𝑠𝑖), and every transition (𝑠𝑖, 𝐴 ∪ {in_𝑠}, 𝑠′𝑖) ∈ 𝛿𝑖 , it holds that 𝑠′ ∈ 𝐾𝑖 (𝑠′𝑖).
Furthermore, for every 𝑠 𝑗 of W𝑃 𝑗 with 𝑖 ≠ 𝑗 , if 𝑠 ∈ 𝐾 𝑗 (𝑠 𝑗), then 𝑠′ ∈ 𝐾 𝑗 (𝑠 𝑗).

Check for Independence. We now dene the check if transitions in W𝑃𝑖 can be
taken independently of the current state of allW𝑃 𝑗 with 𝑃 𝑗 * 𝑃𝑖 . If the check is positive,
we can implement the system eciently in Solidity: when a method f(𝑃𝑖) is called,
we only need to make progress in systemW𝑃𝑖 and whether the transition can be taken
only depends on the states ofW𝑃 𝑗 with 𝑃 𝑗 ⊆ 𝑃𝑖 and on the values of the parameters in
𝑃𝑖 . We describe the translation to Solidity in more detail in Section 7.5.

Let 𝑠𝑖 and 𝑠′𝑖 be states inW𝑃𝑖 and𝐴 ⊆ AP . Let𝐺 (𝑠𝑖 ,𝐴,𝑠 ′𝑖) = {𝑠 | (𝑠𝑖, 𝐴∪{in_𝑠}, 𝑠′𝑖) ∈ 𝛿𝑖}
be the set of all guard propositions that occur on transitions from 𝑠𝑖 to 𝑠′𝑖 with 𝐴. Let
𝑃 𝑗1, . . . 𝑃 𝑗𝑙 be the maximum set of parameter subsets such that 𝑃 𝑗𝑘 ⊆ 𝑃𝑖 for 1 ≤ 𝑘 ≤ 𝑙 .
A transition (𝑠𝑖, 𝐴, 𝑠′𝑖) is independent if for all states 𝑠 𝑗1, . . . , 𝑠 𝑗𝑙 with 𝑠 𝑗𝑘 ∈ 𝑆 𝑗𝑘 either

(i) 𝐾𝑖 (𝑠𝑖) ∩
⋂

1≤𝑘≤𝑙 𝐾 𝑗𝑘 (𝑠 𝑗𝑘) ⊆ 𝐺 (𝑠𝑖 ,𝐴,𝑠 ′𝑖) or

(ii) (𝐾𝑖 (𝑠𝑖) ∩
⋂

1≤𝑘≤𝑙 𝐾 𝑗𝑘 (𝑠 𝑗𝑘)) ∩𝐺 (𝑠𝑖 ,𝐴,𝑠 ′𝑖) = ∅.

Section 7.4. Parameterized PastTSL Synthesis 98

The check combines the knowledge of W𝑃𝑖 in state 𝑠𝑖 with the knowledge of each
combination of states from W𝑃 𝑗1

, . . . ,W𝑃 𝑗𝑙
. For each potential combination, it must

be possible to determine whether transition (𝑠𝑖, 𝐴, 𝑠′𝑖) can be taken. If the rst condi-
tion is satised, then the combined knowledge leads to the denite conclusion thatW
is currently in a state where an 𝐴-transition can be taken. If the second condition is
satised, if denitely cannot be taken. If none of the two is satised, then the com-
bined knowledge of 𝑃𝑖 and all 𝑃 𝑗𝑘 is not sucient to reach a denite answer. Note that
some state combinations 𝑠𝑖, 𝑠 𝑗1, . . . , 𝑠 𝑗𝑙 might be impossible to reach. But then, we have
that 𝐾𝑖 (𝑠𝑖) ∩

⋂
1≤𝑘≤𝑙 𝐾 𝑗𝑘 (𝑠 𝑗𝑘) = ∅ and the second condition is satised. The check is

successful if all transitions (𝑠𝑖, 𝐴, 𝑠′𝑖) in all 𝛿𝑖 are independent.

Construction of the Innite-state Machine. If the above check is successful, all
W𝑃𝑖 together represent an innite-state machineM that implements a smart contract.
We constructM as follows. A state inM is a collection of 𝑛 = |2𝑃 | functions 𝑓1, . . . , 𝑓𝑛 ,
where 𝑓𝑖 : P𝑚 → 𝑆𝑖 if 𝑃𝑖 = (𝑝𝑖1, . . . , 𝑝𝑖𝑚). Each 𝑓𝑖 indicates in which state of W𝑃𝑖

instance ` currently is. The initial state is the collection of functions that all map to
the initial states of their respective W𝑃𝑖 . For every state 𝑠 = (𝑓1, . . . , 𝑓𝑛) of M, every
𝑃𝑖 ⊆ 𝑃 , and every instance `, we add a transition where 𝑃𝑖 [`] makes progress and all
other instances stay idle. Let 𝑓𝑖 (𝑃𝑖 [`]) = 𝑠𝑖 , 𝑠′𝑖 ∈ 𝑆𝑖 , 𝐴 ⊆ AP , and𝐺 (𝑠𝑖 ,𝐴,𝑠 ′𝑖) = {𝑠 | (𝑠𝑖, 𝐴 ∪
{in_𝑠}, 𝑠′𝑖) ∈ 𝛿𝑖}. Let 𝑃 𝑗1, . . . 𝑃 𝑗𝑙 be all subsets of 𝑃𝑖 . If 𝐾𝑖 (𝑠𝑖) ∩

⋂
1≤𝑘≤𝑙 𝐾 𝑗𝑘 (𝑓 𝑗𝑘 (𝑃 𝑗𝑘 [`])) ⊆

𝐺 (𝑠𝑖 ,𝐴,𝑠 ′𝑖) , we add the transition (𝑠, 𝐴′, 𝑠′) toM, where 𝐴′ and 𝑠′ are dened as follows.

𝐴′ = {𝑎[`] | 𝑎 ∈ 𝐴} ∪ {𝑜 [`′] | 𝑜 ∈ 𝑂self , 𝑜 [`′] ≠ 𝑜 [`]}
𝑠′ = (𝑓1, . . . , 𝑓𝑖 [𝑃𝑖 [`] ↦→ 𝑠′𝑖], . . . , 𝑓𝑛)

The label 𝐴′ sets all propositions of instance ` as in 𝐴 and sets all other input proposi-
tions to false. Of all other outputs propositions, it only sets those denoting self-updates
to true.

We observe that, as W describes a collection of strategies for 𝜓 , M describes a
smart contract as dened in Denition 7.1. It remains to prove that the traces of M
satisfy 𝜑 according to Denition 7.2. Most of the work is done in the following lemma.
We deneW` as the state machine that replaces the transition labels ofW with their
instantiations according to `, i.e., if (𝑠, 𝐴, 𝑠′) ∈ W, then (𝑠, 𝐴[`], 𝑠′) ∈ W` .

Lemma 7.3. For every `, traces` (M) ∪nTraces` (M) = traces(W`) ∪nTraces(W`).

Proof. We show that every (nite or innite) run 𝑟M of M can be matched with a (-
nite or innite) run 𝑟W`

of W` (and vice versa) such that trace` (𝑟M) = trace(𝑟W`
).

For the rst direction of the equality, we show that every transition of 𝑟M can be
either matched with a transition in W` or constitutes a step which is removed in
the trace 𝑡` = trace(𝑟M)` . For the other direction, we show that every transition of

Section 7.4. Parameterized PastTSL Synthesis 99

𝑟W`
can be matched with a transition in M. Assume M is currently in state 𝑠 =

(𝑓1, . . . , 𝑓𝑛) of 𝑟M andW` is in state 𝑠W of 𝑟W`
. We keep the invariant that 𝑠W ∈ 𝐾` =⋂

1≤ 𝑗≤𝑛 𝐾 𝑗 (𝑓 𝑗 (𝑃 𝑗 [`])).

• For the rst direction, assume that the next transition of M is (𝑠, 𝐴, 𝑠′) with 𝑠′ =
(𝑓 ′1 , . . . , 𝑓 ′𝑛). Let 𝐵 ⊆ AP be such that 𝐵 [`] = 𝐴` . By construction ofM, there is an
instance `′ and parameter subset 𝑃𝑖 such that there is exactly one f(𝑃𝑖 [`′]) ∈ 𝐴.
Let 𝐵′ ⊆ AP be such that 𝐵′[`′] = 𝐴` ′ . We distinguish two cases.

– Assume 𝑃𝑖 [`] = 𝑃𝑖 [`′]. Let 𝑠𝑖 = 𝑓𝑖 (𝑃𝑖 [`′]) and 𝑠′𝑖 = 𝑓 ′𝑖 (𝑃𝑖 [`′]). Let𝐺 (𝑠𝑖 ,𝐵′,𝑠 ′
𝑖
) =

{𝑠 | (𝑠𝑖, 𝐵′ ∪ {in_𝑠}, 𝑠′𝑖) ∈ 𝛿𝑖}. Let 𝑃 𝑗1, . . . 𝑃 𝑗𝑙 be all subsets of 𝑃𝑖 and 𝐾 =

𝐾𝑖 (𝑠𝑖) ∩
⋂

1≤𝑘≤𝑙 𝐾 𝑗𝑘 (𝑓 𝑗𝑘 (𝑃 𝑗𝑘 [`′])). By denition of the independence check
employed to construct M, 𝐾 ⊆ 𝐺 (𝑠𝑖 ,𝐵′,𝑠 ′

𝑖
) . As 𝑃𝑖 [`] = 𝑃𝑖 [`′], we have that

𝐾` ⊆ 𝐾 and thus also 𝐾` ⊆ 𝐺 (𝑠𝑖 ,𝐵′,𝑠 ′
𝑖
) . Therefore, by the invariant, 𝑠W ∈

𝐺 (𝑠𝑖 ,𝐵′,𝑠 ′
𝑖
) and there is a transition (𝑠W, 𝐵′, 𝑠′W) inW.

Now, if `′ = `, there is a transition (𝑠W, 𝐵 [`], 𝑠′W) in W` , what shows that
the step in M can be mirrored in W` . Otherwise, if `′ ≠ `, 𝐵 and 𝐵′ agree
on the propositions parameterized with 𝑃𝑖 . By construction of M, 𝐵 has all
inputs not parameterized with 𝑃𝑖 set to false and only self-updates of cells
not parameterized with 𝑃𝑖 set to true. By Requirements 1 and 2, since there
is a transition (𝑠W, 𝐵′, 𝑠′W) in W, there is also a transition (𝑠W, 𝐵, 𝑠′W) in
W and therefore a transition (𝑠W, 𝐵 [`], 𝑠′W) inW` .
All that remains to show is that the invariant is preserved by both transitions
(𝑠W, 𝐵 [`], 𝑠′W) and (𝑠W, 𝐵′[`′], 𝑠′W). That means that we need to show that
𝑠′W ∈ 𝐾′

` for 𝐾′
` =

⋂
1≤ 𝑗≤𝑛 𝐾 𝑗 (𝑓 ′𝑗 (𝑃 𝑗 [`])) in either case. Since 𝑠W ∈ 𝐾` , we

have that for every 𝑗 , 𝑠W ∈ 𝐾 𝑗 (𝑓 𝑗 (𝑃 𝑗 [`])). Furthermore, f(𝑃𝑖) ∈ 𝐵 and
f(𝑃𝑖) ∈ 𝐵′. For 𝑗 ≠ 𝑖 we have that 𝑓 ′𝑗 = 𝑓 𝑗 and, therefore, by Proposition 7.2,
𝑠′W ∈ 𝐾 𝑗 (𝑓 ′𝑗 (𝑃 𝑗 [`])). Furthermore, 𝐾` ⊆ 𝐺 (𝑠𝑖 ,𝐵′,𝑠 ′

𝑖
) and (𝑠𝑖,𝐶 ∪{in_𝑠W}, 𝑠′𝑖) ∈

𝛿𝑖 , for both 𝐶 = 𝐵 and 𝐶 = 𝐵′. Therefore, again by Proposition 7.2, 𝑠′W ∈
𝑓𝑖 [𝑃𝑖 [`] ↦→ 𝑠′𝑖]. Thus, 𝑠′W ∈ 𝐾 𝑗 (𝑓 𝑗 (𝑃 𝑗 [`])) for all 𝑗 and the invariant holds
for 𝑠′W .

– Assume 𝑃𝑖 [`] ≠ 𝑃𝑖 [`′]. By construction of M, there is no g(𝑃 𝑗) ∈ 𝐵. As
W satises Requirement 1, so does every W𝑃𝑖 . Together with how M is
constructed, it follows that 𝐵 |𝑂 ⊆ 𝑂self . Thus, by denition of 𝑡` , the tran-
sition will not appear in 𝑡` and W` thus stays in its current state. In re-
mains to show that the invariant is maintained by the transition inM. Since
𝑃𝑖 [`] ≠ 𝑃𝑖 [`′], we have by denition of M that 𝑓 𝑗 (𝑃 𝑗 [`]) = 𝑓 ′𝑗 (𝑃 𝑗 [`]) for
all 𝑗 , and therefore the invariant is maintained.

• For the second direction, assume that the next transition ofW` is (𝑠W, 𝐵 [`], 𝑠′W)
for some 𝐵 ⊆ AP . By construction ofW, there is a parameter subset 𝑃𝑖 such that

Section 7.4. Parameterized PastTSL Synthesis 100

some f(𝑃𝑖) ∈ 𝐵. By our invariant, 𝑠W ∈ 𝐾𝑖 (𝑠𝑖), therefore, by Proposition 7.1,
there is a transition (𝑠𝑖, 𝐵 ∪ {in_𝑠W}, 𝑠′𝑖) ∈ 𝛿𝑖 . By construction of M, there is a
transition from (𝑓1, . . . , 𝑓𝑛) to (𝑓 ′1 , . . . , 𝑓 ′𝑛) such that 𝑓 ′𝑖 (𝑃𝑖 [`]) = 𝑠′𝑖 . Furthermore,
the transition is labeled with 𝐴 such that 𝐴` = 𝐵 [`].
It remains to show that the invariant is maintained by the transition. For 𝑗 ≠ 𝑖 ,
𝑓 ′𝑗 = 𝑓 𝑗 and therefore, by Proposition 7.2, 𝑠′W ∈ 𝐾 𝑗 (𝑓 𝑗 (𝑃 𝑗 [`])). Furthermore, since
(𝑠𝑖, 𝐵 ∪ {in_𝑠W}, 𝑠′𝑖) ∈ 𝛿𝑖 , again by Proposition 7.2, it holds that 𝑠′W ∈ 𝐾𝑖 (𝑠′𝑖) and
therefore, by denition of 𝑓 ′𝑖 = 𝑓𝑖 [𝑃𝑖 [`] ↦→ 𝑠′𝑖], 𝑠′W ∈ 𝐾𝑖 (𝑓 ′𝑖 (𝑃𝑖 [`])). Therefore,
the invariant is maintained for the transition. �

Not every innite run ofM corresponds to an innite run inW` for every `. There-
fore, the above lemma only holds for the union of nite and innite traces. However,
as we work with past-time logics, a trace satises a formula i all its prexes sat-
isfy the formula. Thus, a state machine M satises a pastLTL formula 𝜓 i for every
𝑡 ∈ traces(M)∪nTraces(M), it holds that 𝑡 |= 𝜓 . From the above lemmawe therefore
directly obtain the desired correctness result forM.

Theorem 7.4. Let 𝜑 = ∀𝑝1, . . . 𝑝𝑚 .𝜓 be a parameterized pastLTL formula obtained by
approximating a parameterized pastTSL formula 𝜌 . If W |= 𝜓 , W satises Require-
ments 1 and 2, and can be split into W𝑃1, . . . ,W𝑃𝑛 such that the check for independence
is successful, thenM |= 𝜑 .

Since all parameters are universally quantied, it follows from the soundness of
the LTL approximation of TSL formulas [93] that the innite-state machine M then
also satises the original pastTSL formula 𝜌 .

7.4.4 Limitations in Expressiveness

Most of the limitations of our approach originate from the trade-o between the ex-
pressiveness of our specication language and the performance of the tool SCSynt.
One way to increase the expressiveness of the logic would be to combine pastTSL
with domain-specic reasoning. There have been approaches to extend TSL with the-
ories [90] and to include SMT solving into the synthesis loop [171]. The latter has only
been successful for small specications, however, as it needs an increasing number
of renement loops for larger specications. A very recent approach combines TSL
with SyGuS to automatically generate assumptions that make the specication realiz-
able [43]. This approach might be more suitable for our setting, since we rely on fast
synthesis to give the developer feedback on free choices and deadlocks.

Regarding the extension of pastTSLwith parameters, themajor limitation is thatwe
currently cannot handle existential quantiers. In the example of the ERC20 contract,
this forbids us to use a eld funds(m) to store the balance of all users of the contract. If

Section 7.5. Implementation and Evaluation 101

we were to try, we could use an additional parameter r for the recipient of the tokens
and state the following.

∀m, n, r. (transferFrom(m,n,r) ∨ transfer(m,r)

→ Èfunds(m)� funds(m) − arg@amountÉ
∧ Èfunds(r)� funds(r) + arg@amountÉ)

However, for completeness, we would have to specify that the funds eld does not
spuriously increase, which would require existential quantiers.

∀r. (Èfunds(r)� funds(r) + arg@amountÉ
→ ∃m. ∃n. transferFrom(m,n,r) ∨ transfer(m,r))

A similar limitation stems from Requirement 1, which requires that a eld parameter-
ized with set 𝑃𝑖 can only be updated by a method which is also parameterized with
𝑃𝑖 . As for existential quantiers, we would otherwise not be able to distinguish spu-
rious updates from intended updates of elds. While it might be hard to extend the
approach with arbitrary existential quantication, it should be possible for future work
to include existential quantication that prevents spurious updates. One could, for ex-
ample, dene some sort of “lazy synthesis”, which only does a non-self-update when
necessary.

7.5 Implementation and Evaluation

In this section, we describe how we extended SCSynt with the features described in
this chapter. We furthermore report on our evaluation of the extended variant of SC-
Synt with regard to size and gas consumption of the generated contracts.

7.5.1 Implementation

We integrated the analysis for specication errors and the handling of parameters as
part of the toolchain of SCSynt, which is mostly implemented in Python. Given a pa-
rameterized pastTSL specication, we interpret the formula as unparameterized, and
let SCSynt compute its winning region by solving the safety game of the safety au-
tomaton. We analyze the winning region for free choices and, if the user provides
determined predicates, for potential deadlocks. Finally, if the specication is parame-
terized, we split the system as described in Section 7.4.

The general schema of the Solidity code for parameterized specications can be
found in Solidity Code 7.2. We dene enums for the states of all statemachines (l. 2) and
store the initial and the current state of each system (l. 6,7). As the current state of a

Section 7.5. Implementation and Evaluation 102

1 contract <contract_name> {
2 enum State<P𝑖> { s1, . . ., skP𝑖 } // state machine states
3 enum KState { s1, . . ., sk𝐾 } // knowledge labels
4 <type> private kMap<P𝑖>; // sharing of knowledge
5 // initial and current states
6 State<P> private init<P𝑖> = State<P𝑖>.<initial state>;
7 <type> private currState<P𝑖>;
8 // constants
9 <type> private immutable <c_name>;
10 <type> private immutable <c_name> = <definition>;
11 // fields
12 <type> <access_modifier> <f_name>;
13 address private owner;
14 bool inMethod = false;
15 constructor(<args>) {
16 <init. of knowledge maps>
17 owner = msg.sender;
18 <c_name> = <definition>; // init. of constants
19 }
20 function m𝑖(<parameters>,<args>) public <is_payable> {
21 require(! inMethod);
22 inMethod = true;
23 <state_machine_logic_for_m𝑖>
24 inMethod = false;
25 }
26 }

Solidity Code 7.2: Skeleton of generated Solidity code. kP𝑖 is the number of states in
the state machine for P𝑖 , k𝐾 is the number of states in the full state machine.

state machine may dier for dierent instantiations of the parameters, currState<P𝑖>
is a mapping that maps the instance to a state. We dene a further enum for the
states of the original system, which we use to denote the knowledge of the states (l. 3,
see Section 7.4). For every two parameter sets, we dene and initialize knowledgemaps
(l. 4,16) that implement the sharing of knowledge for pairs of states. The knowledge
maps are nested mappings, which take a state from each of the two parameter sets and
a state from the original system and return whether the original state is in the shared
knowledge of the two parameter sets.

The rest of the code is similar to code produced for non-parameterized specica-
tions. We declare all constants and elds that appear in the specication as well as a
variable storing the owner’s address (l. 8-13). Constants are labeled immutable and
can either be assigned a predened value provided by the developer (l. 10), or they can
be initialized in the constructor (l. 9,18). The transition system logic is implemented

Section 7.5. Implementation and Evaluation 103

in each of the methods of the contract. The parameters of a method are included as
arguments or replaced with the corresponding xed interpretation (e.g, if m is always
msg.sender). This information needs to be provided by the developer as part of a sig-
nature that also denes the type of the methods and elds. As described in Section 7.1,
the code also includes a ag inMethod (l. 14) that enforces the assumption that method
calls are atomic and protects against reentrancy attacks.

7.5.2 Evaluation

We evaluate SCSynt with regard to the conciseness of the generated Solidity con-
tracts. We synthesized ten dierent smart contracts, for some we needed specica-
tions with parameters, for others we did not. The specications without parameters
stem from [91] and are not a contribution of this thesis, only their evaluation regard-
ing conciseness is. The average synthesis time for the full tool chain was 2 seconds.
The largest specication took 12 seconds to synthesize. The runtime of our extensions
(the analysis and the splitting of the state machine for parameterized specications) is
negligible as they are performed on the minimized transition system, which has less
then 10 states for all our specications. We compare the generated Solidity code to
handwritten contracts found in the literature in terms of both size and average gas
consumption. Since the reference contracts do not provide any formal guarantees, we
further compare SCSynt’s Solidity code to formally correct contracts generated by two
other approaches. First, we briey describe the contracts we use as benchmarks.

Benchmark Contracts. Our evaluation includes a range of typical smart contracts
that have a non-trivial underlying state machine. For each benchmark, we indicate
whether the contract is parameterized and against which other implementation we
compare the code produced by SCSynt.

• ERC20 Token System (parameterized, reference implementation: [186]). This is a
typical ERC20 token system following the Open Zeppelin documentation [187].
The specication is similar to the one presented in Section 7.3.3, but does not
contain the parameterized methods for pausing and unpausing a contract.

• ERC20 Token System Extended (parameterized). This is the contract described in
Section 7.3.3 that extends the classical ERC20 token system with dierent meth-
ods for pausing.

• Coin Toss (not parameterized, reference implementation: [193]). Following the
description of [230], this contracts implements the toss of a coin. Two parties
bet on which side the coin lands. The rst party commits to a side and places
a wager. Then, the second party accepts the bet and deposits at least the same
amount. The winner receives both wagers.

Section 7.5. Implementation and Evaluation 104

• Voting (parameterized, reference implementation: [104]). This is the parameter-
ized version of the voting contract described in Section 7.1.1 and Section 7.3.2.

• Asset Transfer (not parameterized, reference implementation: [229]). This con-
tract describes the safe transfer of an asset between two parties. Our specica-
tion follows the description of the state machine in Microsoft’s Azure Blockchain
Workbench [230]. Similar versions of the contract are described in [227, 66].

• Blinded Auction (not parameterized, reference implementation: [99]). This is a
typical auction protocol with the special feature that all bids are hashed such
that the current highest bid is not known while the auction is still ongoing. Our
specication follows the description in [174].

• Crowd Funding (not parameterized, reference implementation: [194]). In a crowd
funding protocol, users can send coins to fund a project. If the project is not
funded before a time limit is reached, all users can reclaim their contribution.
Otherwise, the owner receives the stock. Our specication follows the description
in [216].

• NFT Auction (parameterized, reference implementation: [13]). This is a compar-
atively large contract from Avolabs that implements an NFT auction combined
with a buy-now feature. The original implementation has over 1400 lines of
code. We specied the main requirements on the control ow as described in
the README of Avolabs’ GitHub.

• Simple Auction (not parameterized, reference implementation: [103]). This is a
simple version of an auction, similar to the blinded auction but without the hash-
ing of the bids. A description can be found in [100].

• Ticket System (not parameterized, reference implementation written by the au-
thors). This contracts describes a small ticket system. Users can by tickets for a
specic amount of time. As long as the sale is still open, they can also return their
tickets and claim a refund.

We evaluate SCSynt in two categories: comparison to handwritten contracts with-
out formal guarantees on the temporal control ow and comparison to automatically
generated contracts with formal guarantees.

Comparison to Handwritten Contracts. We compare the Solidity code generated
by SCSynt to handwritten contracts for the same contracts found in the literature but
without formal guarantees. We compare the contracts in their size, i.e., the number of
lines of Solidity code, and in their average gas consumption. For a fair comparison, we

Section 7.5. Implementation and Evaluation 105

Table 7.1: Comparison in terms of contract size and average gas consumption of the
contracts generated by SCSynt to the handwritten reference contracts (Ref.). The gas
consumption is the sum of the average gas consumption of the deployment and all
methods.

ERC20 ERC20 Ext. Coin Toss Voting

SCSynt Ref. SCSynt Ref. SCSynt Ref. SCSynt Ref.

#Lines 100 62 124 – 65 32 69 37
Gas 1837260 1076141 2390510 – 1092107 760954 1043467 769302

Asset Transfer Blinded Auction Crowd Funding

SCSynt Ref. SCSynt Ref. SCSynt Ref.

#Lines 74 62 107 91 55 24
Gas 1354451 998507 1513171 1484856 816614 455736

NFT Auction Simple Auction Ticket System

SCSynt Ref. SCSynt Ref. SCSynt Ref.

#Lines 300 457 55 35 46 21
Gas 4831300 3307183 759418 712151 647039 461578

extend our code with the implementation of the contract beyond the specied control
ow. The resulting contracts thus implement exactly the same features. We measured
the gas consumption using the True Suite [218]. The results are shown in Table 7.1.
We see that SCSynt generates signicantly shorter Solidity code for the NFT auction
protocol. This is mostly due to code duplication at various locations in the handwritten
contract which is needed to structure the code and to make it readable. Since SCSynt
produces code that, by construction, adheres to the specication and is thus correct,
the code duplication is not necessary in our code; resulting in 35% fewer lines of code.
For the other contracts, SCSynt generates longer Solidity code. It seems that SCSynt
has an advantage in terms of code length for more complicated and thus generally
longer smart contracts.

In terms of average gas consumption, the handwritten contracts have an advantage
over SCSynt’s code. On average, our synthesized code consumes 40% more gas than
the handwritten, non-veried code. Approximately one third of the overhead stems
from SCSynt’s capability of preventing reentrancy attacks (see Section 7.1.1): without
the additional code for preventing the attacks, SCSynt’s code consumes only 25%more
gas than the handwritten contracts. When distinguishing between contracts obtained
from parameterized specications and specications without parameters, we see that
the average gas overhead for parameterized contracts is 50.6% as compared to 34.5% for

Section 7.5. Implementation and Evaluation 106

non-parameterized contracts. Considering that the implementation of the hierarchical
systems and the sharing of knowledge needs some machinery like additional enums
and mappings, this dierence is not huge and was to be expected.

Comparison with Contracts with Formal Guarantees. There are no other tools
available which synthesize the control ow of a smart contract including guards on
the inputs and the control ow of the contract’s elds. As a remedy, we consider
two other approaches that generate Solidity code and provide formal guarantees on
the control ow. The rst approach automatically synthesizes a state machine from
LTL specications which is then translated to Solidity code [216]. It cannot express
access rights, e.g., that only the owner can call certain methods. The second approach,
the VeriSolid framework [174, 175], generates Solidity code from a handwritten state
machine. It cannot express access rights either.

Both approaches provide Solidity code for the blinded auction benchmark. There-
fore, we compare the code generated by SCSynt to their contracts. Both the synthe-
sized state machine of the rst approach and the manually dened state machine of
the VeriSolid framework are very similar to ours except for the access rights which
they lack. We observe that the Solidity code generated by the LTL synthesis approach
apparently misses guards regarding the time limits. We adapted their code to match
their state machine. The resulting code is 12% shorter than the contract generated with
SCSynt and consumes 2% less gas. Since the LTL synthesis approach does not prevent
reentrancy attacks, we further compare the approaches when disabling SCSynt’s reen-
trancy prevention. Then, the generated contracts are of similar length and SCSynt’s
contract consumes 11% less gas on average. The VeriSolid framework cannot han-
dle that the same method can be invoked in several states; in that case, the method is
duplicated, one copy for each state in which it can be invoked. In the blinded auction
contract, this only occurs for a single method. Thus, their code size for the blinded
auction is only slightly aected by the code duplication. SCSynt’s contract consumes
12% more gas on average. When disabling SCSynt’s reentrancy prevention, the dier-
ence in the average gas consumption of both contracts is negligible: SCSynt’s contract
consumes 0.3% more gas on average.

Chapter 8

c

Smart Contract Synthesis Modulo

Hyperproperties

In the previous chapter, we synthesized smart contracts from trace properties that de-
scribe their functional behavior. Smart contracts often additionally need to satisfy hy-
perproperties, however. Existing work on hyperproperties in smart contracts focuses
on verifying concrete information ow policies such as integrity [41, 40] or eective
callback freedom [118, 6]. Hyperproperties are not limited to information ow policies,
though. To establish the users’ trust in a contract, one has to additionally show that a
contract satises hyperproperties such as robustness and symmetry. In a voting con-
tract, for example, all candidates should be treated symmetrically and a vote from the
owner of the contract should not count more than any other vote. In this chapter, we
develop two variants of a novel temporal hyperlogic, HyperTSL, to express the wide
range of hyperproperties relevant in the context of smart contracts. We then show how
to synthesize smart contracts from specications given in HyperTSL. We approach the
task from two angles. First, we investigate the general synthesis problem of the logic
and show how to approximate the in general undecidable problem. Second, we pro-
pose a two-step approach to include HyperTSL properties in the synthesis of smart
contracts from pastTSL specications as described in last chapter.

We develop two extensions of TSL to hyperproperties: HyperTSL and HyperTSLrel.
We dene HyperTSL as a conservative extension of TSL. It adds quantication over
multiple executions; predicates, functions, and updates then refer to one of the quan-
tied executions. In an election with two candidates A and B, this makes it possible to
state that two traces have the same winner A if they agree on the votes for A:

∀𝜋, 𝜋 ′. (voteA𝜋 ↔ voteA𝜋 ′) → (Èwinner� A()É𝜋 ↔ Èwinner� A()É𝜋 ′)

The second hyperlogic, HyperTSLrel, can relate multiple executions within a predicate.
Here, we can state that the winners on two executions are always the same as long as

107

Section 8.1. 108

the votes are always the same:

∀𝜋, 𝜋 ′. (vote𝜋 = vote𝜋 ′) → (winner𝜋 = winner𝜋 ′)

Note that the = predicate ranges over two dierent execution variables 𝜋 and 𝜋 ′. In
TSL, all functions and predicates are uninterpreted, but = would probably be imple-
mented as actual equality.

Our goal is to synthesize smart contract control ow graphs that satisfy HyperTSL
and HyperTSLrel specications. Inherited from TSL, the synthesis problem is undecid-
able already for a single universal or existential quantier. We show, however, that the
∀∗ fragment of HyperTSL can be approximated in ∀∗ HyperLTL, for which there exists
a bounded synthesis approach implemented in BoSyHyper [86]. For the ∃∗ fragment
of HyperTSL, we present an approximation based on LTL satisability checking.

As a step towards actual smart contract synthesis, we build on the synthesis from
pastTSL from [91] as described in Section 7.1. We present a two-step approach to page 84
synthesize a contract that adheres to HyperTSL specications. First, we check if the
combination of a given TSL specication with a ∀∗ HyperTSL specication lets the
hyperproperty “collapse” to a simple trace property. We show that the check is unde-
cidable in general, but can to some extend be approximated in a fragment of HyperLTL
for which satisability checking is decidable. If this is not the case, we synthesize the
winning regions of the pastTSL specication and prune the system to nd a strategy
that implements a ∀∗ HyperTSL property. Our implementation shows that we can au-
tomatically construct a voting contract which satises several hyperproperties.

Outline. In Section 8.1, we introduce HyperTSL and HyperTSLrel. We continue by
showing how hyperproperties in smart contracts can be specied in the logics in Sec-
tion 8.2. In Section 8.3, we discuss the general HyperTSL synthesis problem and present
approximations in LTL and HyperLTL. Finally, in Section 8.4 and Section 8.5, we show
how to integrate HyperTSL specications in the contract synthesis from pastTSL.

Publications. This chapter presents the contents of the following publication.

[58] Norine Coenen, Bernd Finkbeiner, Jana Hofmann, and Julia Tillman. Smart Con-

tract Synthesis Modulo Hyperproperties. To appear at the 36th IEEE Computer
Security Foundations Symposium (CSF 2023).

Parts of the above paper build on the results of Julia Tillman’s Bachelor thesis at
Saarland University in 2020, which the author of this thesis supervised together with
Norine Coenen. The Bachelor’s thesis contains earlier versions of the logics HyperTSL
and HyperTSLrel as well as the approximation of∀∗ HyperTSL synthesis via HyperLTL.

Section 8.1. TSL for Hyperproperties 109

8.1 TSL for Hyperproperties

We extend TSL with execution quantiers to allow reasoning about hyperproperties
for innite-state systems. Compared with other temporal logics describing trace prop-
erties, there is not a single straight-forward way to lift TSL to a hyperlogic.

Function and Predicate Interpretations. There are two options to deal with func-
tion and predicate interpretations. The rst is to interpret functions and predicates
dierently across multiple executions. This would make sense, for example, to model
multiple components of a system. Most of the hyperproperties, however, concern the
behavior of the same system when executed several times. Functions and predicates
like equality and addition mostly stay the same across several executions. We there-
fore decide to quantify the function and predicate interpretation before quantifying
executions.

Domain of Updates and Predicates. Another question is whether predicates, func-
tions, and update terms may contain terms evaluated on dierent executions. In the
case of update terms, the answer should probably be no: an update of the form Èc𝜋 �
𝑓 (c𝜋 ′)É would mean that the system could access the value of a cell at the same point
in time but on a dierent execution. This does not seem realistic for a real system,
which would have to store all possible values a cell c could hold at some point in time.
Additionally, the execution chosen for 𝜋 ′ dierswith every quantier evaluation. Pred-
icates ranging over multiple executions, on the other hand, would be useful. One could
state a stronger version of observational determinism, namely “if two traces agree on
the value of input 𝑥 , then also cell c is always updated to the same term”, written as
(𝑥𝜋 = 𝑥𝜋 ′) → (Èc� 𝑓 (𝑥)É𝜋 ↔ Èc� 𝑓 (𝑥)É𝜋 ′). We therefore dene two logics:

HyperTSL, in which we allow predicates to range only over the same execution, and
HyperTSLrel, which relates multiple executions using predicates.

8.1.1 HyperTSL

We dene HyperTSL as an extension of TSL. The denition of function terms 𝜏 𝑓 and page 77
predicate terms 𝜏𝑝 are the same as in TSL. The syntax of HyperTSL is given as follows.
Let 𝑉𝜋 be a set of trace variables.

𝜑 F ∀𝜋. 𝜑 | ∃𝜋. 𝜑 | 𝜓
𝜓 F ¬𝜓 | 𝜓 ∧𝜓 | 𝜓 | 𝜓 U𝜓 | 𝜏𝑝𝜋 | Èc� 𝜏 𝑓 É𝜋

where 𝜋 ∈ 𝑉𝜋 , c ∈ C, 𝜏𝑝 ∈ T𝑃 , and 𝜏 𝑓 ∈ T𝐹 . We evaluate a HyperTSL formula 𝜑
with respect to a set of executions 𝐸 ⊆ C𝜔 × I𝜔 , an execution assignment function Π,

Section 8.2. Specifying Hyperproperties in Smart Contracts 110

and a point in time 𝑖 . We omit the cases for ¬, ∧, , and U, which follow closely the
respective cases in TSL.

Π, 𝐸, 𝑖 |=〈·〉 Èc� 𝜏 𝑓 É𝜋 i #1(Π(𝜋)) 𝑖 c ≡ 𝜏 𝑓

Π, 𝐸, 𝑖 |=〈·〉 (𝑝 𝜏1 . . . 𝜏𝑛)𝜋 i [〈·〉 (#1(Π(𝜋)), #2(Π(𝜋)), 𝑖, 𝑝 𝜏1 . . . 𝜏𝑛)
Π, 𝐸, 𝑖 |=〈·〉 ∃𝜋. 𝜑 i ∃𝑒 ∈ 𝐸.Π[𝜋 ↦→ 𝑒], 𝐸, 𝑖 |=〈·〉 𝜑

Π, 𝐸, 𝑖 |=〈·〉 ∀𝜋. 𝜑 i ∀𝑒 ∈ 𝐸.Π[𝜋 ↦→ 𝑒], 𝐸, 𝑖 |=〈·〉 𝜑

Given an assignment function 〈·〉 : Σ𝐹 → F , a set of executions 𝐸 satises a HyperTSL
formula 𝜑 , written 𝐸 |=〈·〉 𝜑 , if ∅, 𝐸, 0 |=〈·〉 𝜑 .

8.1.2 HyperTSLrel

In HyperTSLrel, predicate terms are dened with respect to the set of executions vari-
ables 𝑉𝜋 . If 𝜏1, . . . , 𝜏𝑛 are function terms, 𝜋1, . . . 𝜋𝑛 ∈ 𝑉𝜋 , and 𝑝 is an 𝑛-ary predicate
symbol, then 𝑝 𝜏1𝜋1 . . . 𝜏

𝑛
𝜋𝑛

is a predicate term. The syntax of HyperTSLrel is that of Hy-
perTSL with the exception that we denote predicate terms as 𝜏𝑝𝜋1,...,𝜋𝑛 instead of 𝜏

𝑝
𝜋 . The

semantics of HyperTSLrel is that of HyperTSL except for the semantics of the predicate,
which we dene as follows.

Π, 𝐸, 𝑖 |=〈·〉 𝑝 𝜏
1
𝜋1 . . . 𝜏

𝑛
𝜋𝑛

i 〈𝑝〉 𝑣1 . . . 𝑣𝑛
where 𝑣 𝑗 = [〈·〉 (#1(Π(𝜋 𝑗)), #2(Π(𝜋 𝑗)), 𝑖, 𝜏 𝑗) for 1 ≤ 𝑗 ≤ 𝑛

Satisfaction of a HyperTSLrel formula is dened as for HyperTSL.

8.2 Specifying Hyperproperties in Smart Contracts

In this section, we discuss how HyperTSL and HyperTSLrel can express hyperproper-
ties of smart contracts. As running example, we again use a simple voting protocol.
Compared with the voting specication in Section 7.1.1, this time, we focus on how to page 84
handle the vote, not that everybody only votes once. We assume that there are nitely
many candidates. For this simple example, we restrict ourselves to the case of two
candidates.

The specication of the contract is given in Specication 8.3. It describes an elec-
tion where users can vote for either candidate A or candidate B by calling methods
voteA or voteB, respectively. The contract can be closed by the owner by calling
method close. The contract has two elds, votesA and votesB, to store the number
of votes recorded for the candidates. Furthermore, winner holds the current winner
chosen by the contract. The winner is updated in every step in which the contract

Section 8.2. Specifying Hyperproperties in Smart Contracts 111

1 Methods: voteA, voteB, close, reveal
2 Fields: votesA, votesB
3 Functions: addOne
4 Predicates: >, =

5 Constants: owner(), A(), B()
6 Inputs: sender
7
8 --- Assumptions ---
9 ¬(votesA > votesB ∧ votesB > votesA);
10 ¬(votesA > votesB) ∧ ¬(votesB > votesA);
11
12 --- Requirements ---
13 (close → sender = owner());
14 (voteA ∨ voteB → ¬close);
15
16 --- Obligations ---
17 (voteA → ÈvotesA � votesA + 1É);
18 (voteB → ÈvotesB � votesB + 1É);
19 (¬voteA → ÈvotesA � votesAÉ);
20 (¬voteB → ÈvotesB � votesBÉ);
21
22 ((voteA ∨ voteB) → Èwinner � A()É ∨ Èwinner � B()É);
23 ((voteA ∨ voteB) ∧ votesA > votesB → Èwinner � A()É);
24 ((voteA ∨ voteB) ∧ votesB > votesA → Èwinner � B()É);
25 (close → Èwinner � winnerÉ);

Specication 8.3: Specication of handling a vote in a voting contract.

receives a vote, so either Èwinner � A()É or Èwinner � B()É holds. A() and B()

are constants. For a successful synthesis, the specication also includes arithmetic
assumption on the > predicate.

Not all of the properties desired of such a contract are expressible in TSL. Especially
when it comes to fairness properties, we need to state hyperproperties. We show how
hyperproperties in a voting contract can be expressed in HyperTSL and HyperTSLrel.
We use the following syntactic sugar.

sameWinner (𝜋, 𝜋 ′) B (Èwinner� A()É𝜋 ↔ Èwinner� A()É𝜋 ′) ∧
(Èwinner� B()É𝜋 ↔ Èwinner� B()É𝜋 ′)

The formula states that two executions 𝜋 and 𝜋 ′ choose the same winner.

Section 8.2. Specifying Hyperproperties in Smart Contracts 112

Determinism. As rst property, we state that the winner of the election should be
determined by the sequence of votes received.

∀𝜋, 𝜋 ′. sameWinner (𝜋, 𝜋 ′)W
(
(voteA𝜋 = voteA𝜋 ′) ∨ (voteB𝜋 = voteB𝜋 ′)

)
The formula states that for any two executions, as long as they receive the exact same
calls to voteA and voteB, they should always set the same winner. As an alternative
denition of determinism, we could state a local version using the > predicate. We
express that the choice of the winner is strictly determined by the current evaluation
of the > predicate on the votes and the current vote.

∀𝜋, 𝜋 ′.
(
((votesA > votesB)𝜋 ↔ (votesA > votesB)𝜋 ′)
∧ ((votesB > votesA)𝜋 ↔ (votesB > votesA)𝜋 ′)
∧ (voteA𝜋 ↔ voteA𝜋 ′) ∧ (voteB𝜋 ↔ voteB𝜋 ′)
→ sameWinner (𝜋, 𝜋 ′)

) (8.1)

This formula states in particular that if A and B received the same number of votes, the
winner must be the same on both executions. Note that the formula implicitly entails
that any other predicate/input does not inuence the winner. For example, the evalu-
ation of the predicate term sender = owner() should not inuence the winner eld.
In HyperTSLrel, we can express determinism by relating executions with predicates.
Instead of abstracting from the concrete number of votes using the > predicate, we
could state local determinism as follows.

∀𝜋, 𝜋 ′.
(
votesA𝜋 = votesA𝜋 ′ ∧ votesB𝜋 = votesB𝜋 ′ → sameWinner (𝜋, 𝜋 ′)

)
Symmetry. A prominent fairness condition in systems with multiple agents is sym-
metry, which requires that agents are treated symmetrically. In the voting case, this
means, e.g., that if two traces swap the votes for A and B, then the winner must also be
swapped.

∀𝜋, 𝜋 ′.
(
(Èwinner� A()É𝜋 ↔ Èwinner� B()É𝜋 ′)
∧ (Èwinner� B()É𝜋 ↔ Èwinner� A()É𝜋 ′)

)
W

(
(voteA𝜋 = voteB𝜋 ′) ∨ (voteB𝜋 = voteA𝜋 ′)

) (8.2)

The fairness property implies that the winner cannot be brute-forced to always be
candidate A or candidate B in case of a tie.

No harm. A typical monotonicity criterion in elections states that a vote for the cur-
rently leading candidate should not harm the candidate. Translated to our context, this

Section 8.3. Synthesis from HyperTSL Specications 113

means that a vote for candidate A does not lead to B being the winner instead of A. We
formulate this condition as follows in HyperTSL.

∀𝜋, 𝜋 ′.
(∧
𝑥∈T𝑃

𝑥𝜋 ↔ 𝑥𝜋 ′
)
U

((∧
𝑥∈T𝑃

𝑥𝜋 ↔ 𝑥𝜋 ′
)

∧ voteA𝜋 ∧ voteB𝜋 ′ ∧
(∧
𝑥∈(T𝑃\{voteA,voteB})

𝑥𝜋 ↔ 𝑥𝜋 ′
))

→ (Èwinner� A()É𝜋 ′ → Èwinner� A()É𝜋)

(8.3)

The formula describes two executions on which all predicate terms evaluate to the
same value except for one point in time at which the rst execution receives a vote for
A while the second receives a vote for B. Then, A is the winner in the rst trace as least
as often as A is in the second one.

Elections with Multiple Candidates. HyperTSLrel can specify hyperproperties in
contracts with an unknown number of candidates. Assume that instead of voteA and
voteB, the contract has a single method vote, which receives an argument cand in-
dicating which candidate the caller is voting for. Now, the winner eld ranges over a
domain of unknown size. We express determinism as follows.

∀𝜋, 𝜋 ′.
(
(winner𝜋 = winner𝜋 ′)W(¬(arg@cand𝜋 = arg@cand𝜋 ′))

)
(8.4)

8.3 Synthesis from HyperTSL Specications

In this section, we dene the synthesis problem of HyperTSL and argue whyHyperTSL
is better suited for synthesis than HyperTSLrel. HyperTSL inherits the undecidable
realizability problem from TSL. We show that ∀∗ HyperTSL synthesis can be soundly
approximated by HyperLTL synthesis, i.e, a strategy for the HyperLTL approximation
can be translated to a strategy in HyperTSL. The ∃∗ fragment of HyperTSL synthesis
can be approximated by LTL satisability to prove unrealizability.

Denition 8.1. A HyperTSL formula 𝜑 is realizable i there exists a strategy 𝜎 :
(2T𝑃)+ → C such that for every interpretation 〈·〉 : Σ𝑃 → F , the set constructed
from all input streams satises 𝜑 , i.e., {(𝜎 (]),]) |] ∈ I𝜔 } |=〈·〉 𝜑 .

The above denition denes the realizability problem of HyperTSL by generalizing
the denition of TSL realizability, similarly to howHyperLTL realizability generalizes page 79
LTL realizability. The strategy has the same type as a TSL strategy, i.e., it generates an
execution by reacting to the predicate evaluations for the current input stream. The
resulting set of executions must satisfy the HyperTSL formula.

Section 8.3. Synthesis from HyperTSL Specications 114

In HyperTSLrel, formulas contain predicates that relate multiple executions. How-
ever, a system can still only react to the inputs it receives, i.e., it cannot include the
evaluation of such predicates in its decision making. A denition of the realizability
problem could therefore only contain predicates not ranging over multiple executions.
This makes many formulas unrealizable or only realizable by trivial strategies most
likely not intended by the developer.

Consider again Formula (8.4) in Section 8.2. The evaluation of the terms winner𝜋 =

winner𝜋 ′ and arg@cand𝜋 = arg@cand𝜋 ′ depends on the chosen executions 𝜋 and 𝜋 ′ and
can therefore not be known to the system. The predicate symbol = is uninterpreted
and could be implemented with any binary predicate. A strategy must be winning
for all interpretations. The only winning strategy is therefore the trivial one to always
copy the value of arg@cand to the winner eld. That way, the = predicate must always
evaluate the same on the two predicate terms.

The above observations make HyperTSL the better candidate to extend TSL syn-
thesis to hyperproperties. This is only the case for synthesis, though, and as long
as predicates and functions remain uninterpreted. If we considered HyperTSLrel syn-
thesis with the theory of equality, much more meaningful strategies would be possi-
ble. HyperTSLrel might also be useful for model checking, where formulas can contain
predicates that are not part of the system. So far, there are only few preliminary works
that study TSL synthesis with theories [171, 90]. TSL model checking has not been
studied at all.

8.3.1 Realizability of ∀∗ HyperTSL

We show that the fact that TSL synthesis can by approximated by LTL synthesis carries
over to ∀∗ HyperTSL. Given a TSL formula𝜓 , let [𝜓]atomic be the LTL formula obtained
by the LTL approximation of 𝜓 . Given an execution 𝑒 = (𝜍,]) ∈ C𝜔 × I𝜔 and an page 80
interpretation 〈·〉, we dene the corresponding LTL trace [𝑒] 〈·〉atomic over AP𝜓 .

[𝑒] 〈·〉atomic(𝑖) B {𝑎𝜏𝑝 | [〈·〉 (𝜍,], 𝑖, 𝜏𝑝)} ∪ {𝑎x_to_𝜏 𝑓 | 𝜍 𝑖 x ≡ 𝜏 𝑓 }

Theorem 1 in [93] states that for a TSL formula 𝜓 , if [𝜓]atomic is realizable, then 𝜓
is realizable. Actually, their proof shows the following stronger result.

Proposition 8.1 (Proof of Theorem 1 in [93]). For any TSL formula 𝜓 , execution 𝑒 ,
interpretation 〈·〉, and point in time 𝑖 , it holds 𝑒, 𝑖 |=〈·〉 𝜓 i [𝑒] 〈·〉atomic, 𝑖 |= [𝜓]atomic .

This results entails that realizability of [𝜓]atomic implies realizability of 𝜓 ; the op-
posite direction does not hold (see Section 6.2). Every execution 𝑒 can be mapped to page 80
a trace [𝑒] 〈·〉atomic, but there are traces 𝑡 over AP𝜓 such that there is no execution 𝑒 with
[𝑒] 〈·〉atomic = 𝑡 . The approximation is still valuable, because strategies found for the LTL

Section 8.3. Synthesis from HyperTSL Specications 115

approximations carry over to strategies for the TSL specication. We show that this
result can be lifted to ∀∗ HyperTSL and ∀∗ HyperLTL. Given a set of executions 𝐸, we
set [𝐸] 〈·〉atomic = {[𝑒] 〈·〉atomic | 𝑒 ∈ 𝐸} and also lift [·]atomic to HyperTSL formulas by setting
[𝜏𝜋]atomic = ([𝜏]atomic)𝜋 with 𝜏 being either a predicate term or an update term.

Lemma 8.2. For any HyperTSL formula 𝜑 , set of executions 𝐸, and interpretation 〈·〉, it
holds 𝐸 |=〈·〉 𝜑 i [𝐸] 〈·〉atomic |= [𝜑]atomic.

Proof. Let 𝜑 = (∃∗∀∗)𝑘 .𝜓 be a HyperTSL formula consisting of 𝑘 blocks of ∃∗∀∗ quan-
tiers. For the rst direction, let 𝐸 |=〈·〉 𝜑 . We show [𝐸] 〈·〉atomic |= [𝜑]atomic. Let 𝜑 [𝑖] be
the subformula of 𝜑 starting from the 𝑖th quantier block with 1 ≤ 𝑖 ≤ 𝑘 . We keep
the invariant to only construct trace assignments Π such that there exists an execution
assignment Π̂ with Π(𝜋) = [Π̂(𝜋)] 〈·〉atomic and Π̂, 𝐸, 0 |=〈·〉 𝜑 [𝑖]. When choosing the wit-
ness traces for the existential variables 𝜋 𝑖+11 , . . . 𝜋 𝑖+1𝑛 of the (𝑖 +1)th quantier block, we
choose Π(𝜋 𝑖+1𝑗) = [𝑒𝑖+1𝑗] 〈·〉atomic where 𝑒

𝑖+1
𝑗 is assigned to 𝜋 𝑖+1𝑗 by the proof of satisfaction

of 𝜑 [𝑖] with respect to the current execution assignment Π̂. Now, by Proposition 8.1
and a simple induction over the structure of 𝜓 , we get Π, [𝐸] 〈·〉atomic, 0 |= 𝜓 . The argu-
ment is similar for the other direction since for every 𝑡 ∈ [𝐸] 〈·〉atomic, there exists an 𝑒 ∈ 𝐸
such that [𝑒] 〈·〉atomic = 𝑡 . �

Note that the above lemma does not extend to HyperTSLrel as predicates over mul-
tiple executions cannot be mapped to HyperLTL. The lemma entails the following the-
orem. We will also reuse the lemma in Section 8.4.

Theorem 8.3. Let 𝜑 be a ∀∗ HyperTSL formula. If [𝜑]atomic is realizable, then 𝜑 is real-
izable.

Proof. Let AP𝜑 = AP in ∪ APout be the atomic propositions obtained in the translation
[𝜑]atomic, where AP in are the propositions generated for predicate terms and APout the
propositions for update terms, respectively. Let 𝜎HyperLTL : (2AP in)+ → 2APout be the
realizing strategy for [𝜑]atomic. We claim that the following strategy 𝜎 realizes 𝜑 .

𝜎 (𝑃1 . . . 𝑃𝑖) c B 𝜏 𝑓 i [Èc� 𝜏 𝑓 É]atomic ∈ 𝜎HyperLTL([𝑃1]atomic . . . [𝑃𝑖]atomic)

Here, we lift [·]atomic to sets by [𝑃 𝑗]atomic = {[𝜏𝑝]atomic | 𝜏𝑝 ∈ 𝑃 𝑗 }. By denition of
cellProps, the function term 𝜏 𝑓 is unique for every 𝑖 and every cell c. We show that page 80
𝜎 realizes 𝜑 . Let 〈·〉 be any interpretation. Let 𝐸 = {(𝜎 (]),]) |] ∈ I𝜔 } be the set
of executions obtained from 𝜎 and 𝑇 = traces(𝜎) be the set of traces obtained from
𝜎HyperLTL. Notice that [𝐸] 〈·〉atomic ⊆ 𝑇 , but 𝑇 may not be a subset of [𝐸] 〈·〉atomic. Since
𝑇 |= [𝜑]atomic and since universal properties are downwards-closed, also [𝐸] 〈·〉atomic |=
[𝜑]atomic. Therefore, by Lemma 8.2, we have 𝐸 |=〈·〉 𝜑 . �

Section 8.3. Synthesis from HyperTSL Specications 116

This theorem approximates ∀∗ HyperTSL synthesis by ∀∗ HyperLTL synthesis.
Even for HyperLTL, this problem is undecidable [86]. However, there exists an im-
plementation of bounded synthesis for ∀∗ HyperLTL in the tool BoSyHyper [86]. This
approach searches for smallest systems implementing the formula. The ecient reduc-
tion from∀∗ HyperTSL to HyperLTL opens the door to apply BoSyHyper to HyperTSL.

8.3.2 Realizability of ∃∗
HyperTSL

Theorem 8.3 uses the downwards closedness of ∀∗ HyperLTL properties. This is nec-
essary since a strategy for HyperTSL produces “fewer” traces than a strategy for the
translation of the formula to HyperLTL does. Consequently, the proof does not ex-
tend to HyperTSL formulas with existential quantiers. We show how to translate the
synthesis problem of ∃∗ HyperTSL formulas to a TSL satisability problem, which we
can approximate by LTL satisability checking using the translation from TSL to LTL
from [93]. In contrast to the case of ∀∗ HyperTSL formulas, the approximation of ex-
istential properties in LTL can be used to show unrealizability instead of realizability.

Theorem 8.4. Given an ∃∗ HyperTSL formula 𝜑 , there exists a TSL formula 𝜓TSL such
that 𝜑 is realizable i𝜓 is satisable.

Proof. Let 𝜑 = ∃𝜋1, . . . , 𝜋𝑛 .𝜓 . We encode the fact that all traces in a model of 𝜑 are
producible by a strategy:

𝜑strat B ∀𝜋, 𝜋 ′.
(∧
𝜏𝑢∈T𝑈

𝜏𝑢𝜋 ↔ 𝜏𝑢𝜋 ′

)
W

(∨
𝜏𝑝∈T𝑃

𝜏
𝑝
𝜋 = 𝜏

𝑝

𝜋 ′

)
The formula states that while two executions have the same predicate evaluations,
they have to perform the same updates. Formula 𝜑′ = ∃𝜋1, . . . , 𝜋𝑛 .𝜓 ∧ 𝜑strat ensures
that the executions chosen as witnesses for 𝜋1, . . . , 𝜋𝑛 can be arranged in a strategy
tree. Thus, 𝜑 and 𝜑′ are equi-realizable. The additional conjunct also ensures that 𝜑′ is
satisable i it is realizable. Formula 𝜑′ is satisable i it is satisable by 𝑛 executions.
The ∀ quantiers in 𝜑′ quantify over these 𝑛 executions. We can therefore create an
equisatisable ∃𝑛 formula by “unrolling” the ∀ quantiers. Let 𝜑strat = ∀𝜋, 𝜋 ′.𝜓strat.
We dene:

𝜑new B ∃𝜋1, . . . , 𝜋𝑛 .𝜓 ∧
∧

1≤𝑖, 𝑗≤𝑛
𝜓strat [𝜋 ↦→ 𝜋𝑖, 𝜋

′ ↦→ 𝜋 𝑗]

We use the notation 𝜓 [𝜋 ↦→ 𝜋 ′] to indicate 𝜓 with every occurrence of 𝜋 replaced
by 𝜋 ′. Now, we have that 𝜑 is realizable i 𝜑new is satisable. The above formula is
satisable i the TSL formula 𝜓TSL is satisable, where we construct 𝜓TSL by creating
𝑛 copies of each input and each cell. �

Section 8.4. Pseudo Hyperproperties 117

It is an open question whether the two approximations for ∀∗ HyperTSL and ∃∗

HyperTSL can be combined to approximate formulas with quantier alternations. The
challenge here is that universal properties are best over-approximated to obtain real-
izability results, whereas existential properties would need an under-approximation.

8.4 Pseudo Hyperproperties

We have shown that universal HyperTSL formulas can be approximated by HyperLTL
synthesis. This result is, as of now, mostly of theoretic interest. The realizability prob-
lem of ∀∗ HyperLTL is undecidable [86]. Bounded hyperproperty synthesis is also still
in its infancy.

In this and the following section, we present a more feasible approach to synthe-
size smart contract control ows. We use the fact that we do not synthesize a sys-
tem from hyperproperties only, but in combination with trace properties describing
the functional properties of the contract. We therefore extend the synthesis approach
described in Section 7.1 with methods for HyperTSL. In this section, we discuss the page 84
challenges of combining the synthesis from pastTSLwith HyperTSL specications. We
then analyze whether the combination of hyperproperties with trace properties leads
to “pseudo” hyperproperties. In Section 8.5, we synthesize the most general system
from the trace properties and resolve free choices with a repair-like algorithm.

8.4.1 Combining PastTSL Synthesis with HyperTSL

If we inspect the winning region of the voting specication from Specication 8.3, we
notice that the system has free choices. The state machine is depicted in Figure 8.1. The
TSL specication leaves the free choice which candidate is the winner when neither
one has the majority of votes. Strategies permitted by the winning region are, for
example, to always choose A as winner, or go for the candidate who got the last vote.

Which strategies are considered to be suitable is described by the HyperTSL formu-
lations of local determinism (Formula (8.1) in Section 8.2), symmetry (Formula (8.2)),
and the no harm property (Formula (8.3)). Our goal is to combine the TSL specication
with the HyperTSL specications to obtain a satisfactory strategy. Since the speci-
cation of the voting contract abstracts from the concrete number of votes with the >
predicate, we need to add the following assumption to make the combination of the
specications realizable.

∀𝜋, 𝜋 ′.
(
((votesA > votesB)𝜋 ↔ (votesA > votesB)𝜋 ′)
∧ ((votesB > votesA)𝜋 ↔ (votesB > votesA)𝜋 ′)

)
W (voteA𝜋 = voteA𝜋 ′ ∨ voteB𝜋 = voteB𝜋 ′)

Section 8.4. Pseudo Hyperproperties 118

𝑠1

𝑠3

𝑠2

clos
e ∧ send

er = owne
r()

∧

¬(vA > vB) ∧
¬(vB > vA) ∧

ÈvA�
vAÉ ∧

ÈvB�
vBÉ ∧

Èw�
wÉ

¬(vA > vB) ∧ ¬(vB > vA) ∧
(Èw� A()É ∨ Èw� B()É) ∧

(
(voteA ∧ ÈvA� vA + 1É ∧ ÈvB� vBÉ)

∨ (voteB ∧ ÈvB� vB + 1É ∧ ÈvA� vAÉ))

(
(¬(vA > vB) ∧ Èw� B()É)
∨(¬(vB > vA) ∧ Èw� A()É)

)
∧(

(voteA ∧ ÈvA� vA + 1É ∧ ÈvB� vBÉ)
∨ (voteB ∧ ÈvB� vB + 1É ∧ ÈvA� vAÉ)

)

close ∧ sender = owner() ∧ Èw� wÉ

close ∧ sender = owner() ∧ Èw� wÉ

Figure 8.1: Winning region for Specication 8.3 as synthesized by SCSynt [91]. We
write w instead of winner, and vA and vB instead of votesA and votesB, respectively.

The property states that the evaluation of the > predicate is the same for every two
executions as long as they receive the same sequence of votes. The property is satised
when implementing +1 as increment and > as “greater than”.

When combining the TSL specication of the voting contract with local determin-
ism, symmetry, and the no harm property, we observe that there is only one valid
strategy left to resolve a tie. Local determinism states that the winner may only de-
pend on the greater predicate on the votes and the vote cast in the current step. This
forbids to take into account the past of the trace, e.g., by choosing the winner dier-
ently in the rst and in the second step. Symmetry forbids to hard code and always let
the same candidate win in case of a tie. Together with local determinism, the winner
must therefore truly depend on the current vote. In combination with local determin-
ism and symmetry, the no harm property forbids to let A win if the current vote is for
B (and vice versa). This leaves as only option to resolve a tie to let the candidate win
who got the current vote. In this case, we could therefore replace the hyperproperties
with a trace property describing exactly this strategy, which leads to a much easier
synthesis problem.

8.4.2 Denition of Pseudo Hyperproperties

As a human, it can be hard ro recognize when a hyperproperty together with a trace
property describes “only” a trace property. We therefore propose to preprocess the
specication by checking whether the hyperproperties in conjunction with the trace
properties eectively dene a trace property. To do so, we introduce the notion of

Section 8.4. Pseudo Hyperproperties 119

pseudo hyperproperties. We rst investigate the problem for the general denition
based on equivalence checking, and subsequently consider the special case of synthe-
sis.

Denition 8.2. A hyperproperty𝐻 is a pseudo hyperproperty i there is a trace prop-
erty 𝑃 such that

∀𝑇 ⊆ (2AP)𝜔 .𝑇 ∈ 𝐻 i ∀𝑡 ∈ 𝑇 . 𝑡 ∈ 𝑃

If 𝐻 is a pseudo hyperproperty, 𝐻 describes the trace property 𝑃 =
⋃
𝑇∈𝐻 𝑇 . For

proofs we use the following fact.

Proposition 8.5. 𝐻 is a pseudo hyperproperty i 𝐻 is closed under union and subsets,
i.e., if 𝑇,𝑇 ′ ∈ 𝐻 , then 𝑇 ∪𝑇 ′ ∈ 𝐻 ; and if 𝑇 ∈ 𝐻 and 𝑇 ′ ⊆ 𝑇 , then 𝑇 ′ ∈ 𝐻 .

The downwards closure property in the above proposition implies that only hy-
perproperties expressible with ∀∗ formulas can be pseudo hyperproperties. The fol-
lowing proposition establishes the convenient fact that if a ∀∗ HyperTSL formula 𝜑
describes a pseudo hyperproperty, then the formula obtained by using only a sin-
gle execution variable in the body of the formula is equivalent to 𝜑 . The proposi-
tion is close to the corresponding result for HyperLTL, which has been observed in
context of using HyperLTL synthesis for the synthesis of linear distributed architec-
tures [86]. Given a HyperTSL formula 𝜑 = ∀𝜋1, . . . , 𝜋𝑛 .𝜓 , we dene its ∀1 counterpart
as 𝜑 [𝜋] B ∀𝜋.𝜓 [𝜋1 ↦→ 𝜋, . . . , 𝜋𝑛 ↦→ 𝜋].

Proposition 8.6. A ∀∗ HyperTSL formula 𝜑 describes a pseudo hyperproperty i 𝜑 ≡
𝜑 [𝜋].

Proof. Following from Proposition 8.5, we have that a hyperproperty 𝐻 is a pseudo
hyperproperty i

∀𝑇 ⊆ (2AP)𝜔 .𝑇 ∈ 𝐻 i ∀𝑡 ∈ 𝑇 . {𝑡} ∈ 𝐻

Thus, for any set of executions 𝐸 and any interpretation 〈·〉, we have 𝐸 |=〈·〉 𝜑 i ∀𝑒 ∈
𝐸. {𝑒} |=〈·〉 𝜑 i 𝐸 |=〈·〉 𝜑 [𝜋]. �

The proposition describes how to check if a HyperTSL property is a pseudo hyper-
property, namely by checking if 𝜑 is equivalent to 𝜑 [𝜋]. If it is, the TSL formula 𝜑 [𝜋]
can be used for synthesis. The check is undecidable for HyperTSL, however.

Theorem 8.7. It is undecidable whether a HyperTSL formula 𝜑 describes a pseudo hy-
perproperty.

Proof. The proof follows from undecidability of the satisability problem of TSL [90].
The formula 𝜑 = ∀𝜋, 𝜋 ′.(𝑝 𝑎)𝜋 ↔ (𝑝 𝑎)𝜋 ′ is not a pseudo hyperproperty as there exists
an interpretation of 𝑝 and sets 𝐸 and 𝐸′ such that 𝐸 consists of executions for which 𝑝 𝑎

Section 8.4. Pseudo Hyperproperties 120

always evaluates to true, and 𝐸′ consists of executions for which 𝑝 𝑎 always evaluates
to false. 𝐸 and 𝐸′ are not closed under union for 𝜑 . Now, let a TSL formula𝜓 be given
for which we assume w.l.o.g. that 𝑝 is a fresh predicate and 𝑎 is a fresh input. Since
∀𝜋, 𝜋 ′. false is a pseudo hyperproperty, the formula ∀𝜋, 𝜋 ′. ((𝑝 𝑎)𝜋 ↔ (𝑝 𝑎)𝜋 ′) ∧𝜓𝜋 is
a pseudo hyperproperty i 𝜓 is unsatisable. Here, 𝜓𝜋 denotes the formula obtained
by lifting𝜓 to a HyperTSL formula by annotating predicate and update terms with the
trace variable 𝜋 . �

Fortunately, the above negative result comes with the remedy that we can approx-
imate the problem in HyperLTL, which is a result of Lemma 8.2.

Theorem 8.8. Let 𝜑 be a HyperTSL formula. If [𝜑]atomic is a pseudo hyperproperty, then
so is 𝜑 .

Proof. Using Proposition 8.5, we prove that the set of sets of traces that are accepted
by 𝜑 is closed under union and subsets. This follows from Lemma 8.2 together with
the observation that for every set of executions 𝐸 and interpretation 〈·〉, [𝐸] 〈·〉atomic =⋃
𝑒∈𝐸 [𝑒]

〈·〉
atomic, i.e., [𝐸 ∪ 𝐸′] 〈·〉atomic = [𝐸] 〈·〉atomic ∪ [𝐸′] 〈·〉atomic, and 𝐸 ⊆ 𝐸′ i [𝐸] 〈·〉atomic ⊆

[𝐸′] 〈·〉atomic. �

Using the above result, we can translate a ∀∗ HyperTSL formula to HyperLTL
and check its equivalence with the corresponding ∀1 formula. For HyperLTL, this
check is decidable, because of the decidability of satisability for the ∃∗∀∗ fragment of
HyperLTL [86]. A HyperLTL formula𝜑 = ∀𝜋1, . . . , 𝜋𝑛 .𝜓 is equivalent to its∀1 counter-
part𝜑 [𝜋], i𝜑 [𝜋] → 𝜑 (because of the semantics of the∀). Bymerging the quantiers,
this implication is valid i the formula

∃𝜋1, . . . , 𝜋𝑛 .∀𝜋.¬𝜓 ∧𝜓 [𝜋1 ↦→ 𝜋, . . . 𝜋𝑛 ↦→ 𝜋]

is unsatisable. Thus, if the check returns UNSAT, theHyperTSL formula is guaranteed
to describe a pseudo hyperproperty, so we can replace the hyperproperty with its TSL
version.

8.4.3 Pseudo Hyperproperties in Synthesis

So far, we described the check for pseudo hyperproperties in terms of satisability
checking. This can be useful to detect superuous specications or mistakes. For
example, the developer could have already specied in TSL that in case of a tie, the
current vote determines the winner.

(¬(votesA > votesB) ∧ ¬(votesB > votesA) → (Èwinner� A()É ↔ voteA))

Section 8.4. Pseudo Hyperproperties 121

With this specication, the hyperproperties stated in Section 8.2 are entailed by the
specication. In the case of the no harm property, for example, the check with EAHy-
per reveals correctly within 0.003 seconds that the conjunction of the trace properties
with the no harm property is a pseudo hyperproperty.

Without the above TSL specication, however, the check for the conjunction of
local determinism, symmetry, and the no harm property is labeled as a hyperproperty
by EAHyper, even though there is only one possible strategy. The reason for that is the
dierence between realizability and satisability. Consider the following two traces.

(1) {voteA, Èwinner� A()É}𝜔

(2) {voteB, Èwinner� A()É}𝜔

In the rst trace, neither votesA > votesB nor votesB > votesA holds, and there is
always a vote for A, who is always the winner. The second trace is similar but there
is always a vote for B. As single sets, both traces satisfy all three hyperproperties.
Together, they do not (because of the symmetry requirement). Therefore, EAHyper
returns that the conjunction of the properties is not a pseudo hyperproperty (even
in combination with the full contract specication). When solving the realizability
problem, however, we do not need to nd an equivalent trace property, it is enough
to nd a trace property which evaluates the same on all sets generated by strategies.
We therefore adapt the notion of pseudo hyperproperties to realizability. We give the
denition for hyperproperties of traces over AP in ∪APout , but the denition applies to
traces of any type, particularly also to hyperproperties over TSL-like executions.

Denition 8.3. Let𝐻 be a hyperproperty over atomic propositionsAP = AP in∪APout .
𝐻 is a pseudo hyperproperty in the context of realizability if there is a trace property
𝑃 such that

∀𝜎 : (2AP in)+ → 2APout . traces(𝜎) ∈ 𝐻 i ∀𝑡 ∈ traces(𝜎). 𝑡 ∈ 𝑃

The denition implies that a HyperTSL formula 𝜑 is a pseudo hyperproperty in the
context of realizability i there is a TSL formula 𝜓 such that a strategy 𝜎 realizes 𝜑
i 𝜎 realizes 𝜓 . Unfortunately, 𝜓 may not be realized by the same strategies as 𝜑 [𝜋].
To show why, we give an example in HyperLTL, but the reasoning carries over to
HyperTSL. Consider the example of the following HyperLTL formulas over input 𝑖
and output 𝑜 , which are abstract, simplied versions of local determinism, symmetry,
and the no harm property.

∀𝜋, 𝜋 ′. (𝑖𝜋 ↔ 𝑖𝜋 ′) → (𝑜𝜋 ↔ 𝑜𝜋 ′)
∀𝜋, 𝜋 ′. (𝑖𝜋 = 𝑖𝜋 ′) → (𝑜𝜋 = 𝑜𝜋 ′)
∀𝜋, 𝜋 ′. 𝑖𝜋 ∧ ¬𝑖𝜋 ′ ∧ 𝑜𝜋 ′ → 𝑜𝜋

Section 8.4. Pseudo Hyperproperties 122

The properties are not temporal, so they are realizable i there are values 𝑜1, 𝑜2 such
that {{𝑖, 𝑜1}𝜔 , {¬𝑖, 𝑜2}𝜔 } satises the three formulas. Let 𝜑 be their conjunction. There
are only four possible assignments of 𝑜1, 𝑜2 to Boolean values, each of which corre-
sponds to a possible strategy. Indeed, for every possible strategy, 𝜑 is satised i the
trace property 𝑖 ↔ 𝑜 is satised. The same does not hold for the trace property true,
which is equivalent to𝜑 [𝜋]. Unfortunately, the general problem is undecidable already
for HyperLTL, due to the undecidability of the realizability problem of the ∀∗ fragment
of HyperLTL.

Theorem 8.9. Given a HyperLTL formula 𝜑 , it is in general undecidable if there exists
an LTL formula𝜓 such that for all strategies 𝜎 , traces(𝜎) |= 𝜑 i ∀𝑡 ∈ traces(𝜎). 𝑡 |= 𝜓 .

Proof. We showundecidability by a reduction from the∀∗HyperLTL realizability prob-
lem, which is undecidable [86]. Let 𝜌 be a∀∗HyperLTL formula overAP = AP in∪APout .
We assumew.l.o.g. thatAP in is non-empty. We dene𝜑 as follows, where𝑜 is an output
proposition that does not occur in 𝜌 .

𝜑 B 𝜌 ∧ ∀𝜋, 𝜋 ′. 𝑜𝜋 ↔ 𝑜𝜋 ′

We claim that 𝜌 is unrealizable i there exists an LTL formula 𝜓 such that for all
strategies 𝜎 , traces(𝜎) |= 𝜑 i ∀𝑡 ∈ traces(𝜎). 𝑡 |= 𝜓 . If 𝜌 is unrealizable, then we
choose 𝜓 B false. Since 𝜌 is unrealizable, it holds for all 𝜎 that traces(𝜎) 6|= 𝜑 i
∀𝑡 ∈ traces(𝜎). 𝑡 |= 𝜓 . For the other direction, assume that 𝜌 is realizable and that
there exists a suitable LTL formula 𝜓 . Let 𝜎 be the realizing strategy of 𝜌 . Since 𝑜 is
fresh for 𝜌 , we can extend 𝜎 to 𝜎1 and 𝜎2, where 𝜎1 adds 𝑜 to the rst output (for any
input), and 𝜎2 does not add 𝑜 (also for any input). Both strategies realize 𝜑 , therefore,
by our assumption, both strategies realize𝜓 . Now, let 𝑖 ∈ AP in be any input. We dene
𝜎3 as the strategy that adds 𝑜 to the rst output exactly if 𝑖 holds in the rst position
of the input sequence. Since every trace generated by 𝜎3 is either a trace of 𝜎1 or 𝜎2,
𝜎3 realizes𝜓 . However, it does not realize 𝜑 , which contradicts our assumption. �

Lastly, we observe that we can decide if a HyperTSL formula is a pseudo hyper-
property if the formula contains as conjunct a local determinism formula like the one
in our running example. We dene local determinism in the general case as follows.

localDeterminism B ∀𝜋, 𝜋 ′. (
∧
𝜏𝑝∈T𝑃

(𝜏𝑝𝜋 ↔ 𝜏
𝑝

𝜋 ′) →
∧
𝜏𝑐∈T𝑈

(𝜏𝑐𝜋 ↔ 𝜏𝑐𝜋 ′))

Proposition 8.10. For every ∀∗ HyperTSL formula 𝜑 over predicate terms T𝑃 and update
terms T𝑈 , if 𝜑 ≡ localDeterminism ∧ 𝜑′, then deciding whether 𝜑 is a pseudo hyperprop-
erty in the context of realizability is equivalent to a Boolean SAT problem.

Section 8.5. Resolving Choices with Repair 123

The above proposition follows from the observation that localDeterminism ∧ 𝜑′ is
realizable i there is a positional strategy that always assigns the same cell updates for
the same predicate evaluations, independently of the trace’s past. In this case, there
are only nitely many combinations of predicate evaluations and the problem becomes
nite.

8.5 Resolving Choices with Repair

We discuss how the combination of a TSL specication with HyperTSL formulas can
be synthesized. If the hyperproperty is not a pseudo hyperproperty, we propose to
synthesize the winning region of the trace property and then check if free choices can
be resolved such that the hyperproperty is satised. This is a repair algorithm addi-
tionally respecting the distinction between inputs and outputs. We rst give a formal
denition of the problem. As observed several times, the formal problem is undecid-
able for HyperTSL, but a sound approximation can be achieved through HyperLTL.We
then discuss how to simplify the problem for ∀∗ formulas and present a prototype im-
plementation, which successfully repairs the synthesized voting contract with respect
to determinism, symmetry, and the no harm property. We rst dene what constitutes
a free choices and renements in Mealy machines. page 76

Denition 8.4. A free choice in a Mealy machine (𝑆, 𝑠0, Σin, Σout, 𝛿) consists of a state
𝑠 ∈ 𝑆 and an input 𝑖 ∈ Σin such that there are at least two outputs 𝑜1, 𝑜2 ∈ Σout with
(𝑠, 𝑖, 𝑜1, 𝑠1) ∈ 𝛿 and (𝑠, 𝑖, 𝑜2, 𝑠2) ∈ 𝛿 for some 𝑠1, 𝑠2 ∈ 𝑆 .

Denition 8.5. A Mealy machine M̂ is a renement of a Mealy machine M if 𝑆 = 𝑆 ,
𝑠0 = 𝑠0, Σ̂in = Σin, Σ̂out = Σout , and 𝛿 ⊆ 𝛿 such that for every 𝑠 ∈ 𝑆, 𝑖 ∈ Σin, if there are
𝑜 ∈ Σout and 𝑠′ ∈ 𝑆 such that 𝛿 (𝑠, 𝑖, 𝑜, 𝑠′), then there are 𝑜 ∈ Σout and 𝑠′ ∈ 𝑆 such that
𝛿 (𝑠, 𝑖, 𝑜, 𝑠′) and 𝛿 (𝑠, 𝑖, 𝑜, 𝑠′).

The above denition ensures that every strategy of M̂ is one ofM, and ifM denes
a set of strategies for a TSL property 𝜓 , then a M̂ still describes at least one strategy
for𝜓 . Our goal is to reneM such that M̂ models a HyperTSL property 𝜑 .

The systemM is produced from the LTL approximation, it might therefore contain
spurious traces which, for any interpretation, cannot be produced by a combination of
an input stream and a computation. We dene when such a system satises a Hyper-
TSL formula.

Denition 8.6. Let 𝜑 be a HyperTSL formula over T𝑃 ,T𝑈 and let M be a Mealy ma-
chine over Σin = 2[T𝑃]atomic , Σout = 2[T𝑈]atomic . M models 𝜑 if for every interpretation
〈·〉:

{(𝜍,]) | ∃𝑡 ∈ traces(M). 𝑡 = [(𝜍,])] 〈·〉atomic} |=〈·〉 𝜑

Section 8.6. Implementation and Experiments 124

The denition creates, for each interpretation, the set of executions which have a
trace through M and then checks if 𝜑 is satised on these sets. The denition thus
ignores spurious traces that might be contained inM. We show that we cannot check
the satisfaction of a HyperTSL formula on such a system directly.

Lemma 8.11. Given a HyperTSL formula 𝜑 , it is undecidable whether a Mealy machine
M over Σin = 2[T𝑃]atomic , Σout = 2[T𝑈]atomic models 𝜑 .

Proof. We show that the problem is already undecidable for TSL formulas expressed
in HyperTSL as ∀𝜋.𝜓𝜋 , where 𝜓𝜋 is the 𝜋-indexed version of a TSL formula 𝜓 . We
proceed by reduction from the unsatisability problem of TSL [90]. Let 𝜓 be a TSL
formula. 𝜓 is unsatisable if for every 〈·〉 and every 𝜍 ,], it holds that 𝜍,] |=〈·〉 ¬𝜓 . Let
M be the system that produces every trace over 2[T𝑃]atomic ∪ 2[T𝑈]atomic . Then,M models
∀𝜋.¬𝜓𝜋 i𝜓 is unsatisable. �

However, owing to Lemma 8.2, for every ∀∗ HyperTSL formula 𝜑 , if a Mealy ma-
chineM models [𝜑]atomic, then it also models 𝜑 .

Theorem8.12. Let a∀∗ HyperTSL formula and aMealymachineM over Σin = 2[T𝑃]atomic ,
Σout = 2[T𝑈]atomic be given. IfM models [𝜑]atomic, then M models 𝜑 .

Proof. For every 〈·〉, letM〈·〉 = {(𝜍,]) | ∃𝑡 ∈ traces(M). 𝑡 = [(𝜍,])] 〈·〉atomic}. By construc-
tion, [M〈·〉] 〈·〉atomic ⊆ traces(M). SinceM |= [𝜑]atomic and since universal properties are
downwards closed, [M〈·〉] 〈·〉atomic |= [𝜑]atomic and by Lemma 8.2 we haveM〈·〉 |=〈·〉 𝜑 . �

Based on this theorem, we repair the synthesized transition system with respect
to the corresponding HyperLTL formula. To do so, we enumerate all renements that
leave exactly one transition for each choice. Thereby, the renement still implements
a strategy. Since the HyperLTL formula is a universal, this approach detects a cor-
rect renement i there is one. Note that also with respect to HyperLTL, this cannot
be a complete method, as ∀∗ HyperLTL synthesis is undecidable [86]. The general
problem of repairing HyperLTL formulas has been discussed in [30], the problem is
NP-complete for ∀∗ HyperLTL. An approach similar to our has been described for con-
troller synthesis in [31], which distinguishes between controllable and uncontrollable
inputs. Implementations have not been developed yet.

8.6 Implementation and Experiments

We implemented a prototype of the repair algorithm as a Python script. Given a syn-
thesized smart contract in form of aMealymachine and a universal HyperLTL formula,
the script checks if the complete system satises the property. If not, it searches for free

Section 8.6. Implementation and Experiments 125

Table 8.1: Results of the prototype implementation of the repair algorithm. Times are
given in seconds. #Calls refers to the number of nuXmv calls that were needed to nd
a repair.

Only vote + close + owner Full

Property Time #Calls Time #Calls Time #Calls Time #Calls

Local Determinism 0.170 1 0.475 1 2.577 1 7.049 1
Local Symmetry 0.229 2 1.251 6 64.90 86 308.1 120
Global No Harm 0.163 1 0.473 1 2.786 1 219.9 86
Determinism 0.147 1 0.612 1 27.63 35 6.825 1
Symmetry 0.254 2 1.630 6 29.03 35 6.571 1
No Harm 0.170 1 0.704 1 2.993 1 90.81 35
Determinism
+ Symmetry
+ No Harm

0.274 3 2.105 6 217.7 256 760.4 256

choices and, if there are any, self-composes the system 𝑛 times for 𝑛 traces in the quan-
tier prex. It then checks if one of the possibilities to resolve the choices satises the
LTL body of the HyperLTL formula. For LTL model checking, we use the state-of-the-
art model checker nuXmv [39]. Using our implementation, we conducted experiments
on dierent versions of the voting contract and on a blinded auction contract.

Voting Contract. We repaired four variants of the voting protocol specied in Spec-
ication 8.3 with respect to the hyperproperties described in this chapter. The results
are depicted in Table 8.1. None of the three systems initially satises either of the
properties, the number of calls given in the table therefore refers to the number of
renements tested with nuXmv.

The rst variant (“Only vote”) reduces the contract to the core specication needed
for the hyperproperties to make sense. It has a vote method and can be implemented
as a single-state system. It has two inputs with a free choice; in each case there are two
possible transitions. The second variant (“+ close”) adds the closemethod and initial
assumptions, resulting in a three-state system with four choices, again each with two
options. The third variant (“+ owner”) is the contract as described in Specication 7.1.
It has eight choices. This results in 28 dierent combinations that need to be checked.

Lastly, we extended the voting contract with additional features following the vot-
ing example of the Solidity Documentation [104]. The extended version additionally
records the registered voters in a eld voters. It also records the addresses that have
voted in a eld voted (similar to Section 7.1.1). The contract also has two additional page 84
methods: giveRightToVote may be called by the owner of the contract and adds ad-

Section 8.6. Implementation and Experiments 126

dresses to voters; getWinner may be called after the voting has been closed to learn
which candidate won. The synthesized state machine has again eight choices but is
naturally larger than the state machine depicted in Figure 8.1.

Determinism, local determinism, symmetry, and the no harm property refer to the
formulas given in Section 8.2. For symmetry, we included the necessary assumption
described in Section 8.4.1. The “global no harm” property formulates the no harm prop-
erty with a single instead ofW. Local symmetry states symmetry with respect to the
greater predicate as well as the voteA and voteB inputs, similar to local determinism.

Blind Auction. As a second contract, we specied a blind auction in TSL, follow-
ing [99]. This is the same contract used as benchmark in Section 7.5.2. Similar to the page 103
voting protocol, we had to restrict ourselves to a nite number of bidders, otherwise
the hyperproperties would not have been expressible in HyperTSL. The idea of a blind
auction is that bidders send a hash of their actual bid and deposit a value which might
be higher or lower than the actual bid. After the bidding is closed, bidders reveal their
bids. If the hash ts the revealed bid and the deposited value is higher than the actual
bid, the bid is valid. The winner of the auction is the bidder with the highest valid bid.
Bidders can also withdraw their deposits once a higher bid was revealed.

We specied the contract with two bidders. We usemethods bidA and bidB for bids
as well as closeBidding, revealA, revealB, closeRevealing, and withdraw. One of
the temporal requirements is that bids can only be placed as long as the bidding has
not been closed.

(bidA ∨ bidB → ¬closeBidding)

The specication contains elds bidsA, bidsB, highestBidder, and highestBid. One
of the obligations on the elds is to update highestBid if bidder A reveals a correct
bid which is higher than all bids revealed so far.

(revealA ∧ valid(arg@bid, arg@secret) ∧ arg@bid > highestBid

→ ÈhighestBid� arg@bidÉ)

In the above specication, bid and secret are arguments to the method revealA. Sim-
ilar to the voting case, the specication leaves the free choice which bid is stored as
highest bid if the currently revealed bid is the same is the current highest bid. The syn-
thesized state machine leaves free choices at two states. Using our implementation, we
obtained strategies to resolve a tie in a way that local determinism or local symmetry
are satised. For local determinism, the tool needed 1 call to nuXmv and took a run-
ning time of 11.13s. For symmetry, it took 2 calls to nuXmv with a total running time
of 17.42s.

Section 8.6. Implementation and Experiments 127

Evaluation. Our experiments show that the hyperproperties discussed in this chapter
are realizable for multiple variants of a voting contract and a blinded auction. The
evaluation shows that the runtime mainly depends on the number of choices that had
to be tested with nuXmv. The runtime also increases with larger formulas and larger
state machines. This implementation is only a prototype built in order to check if
the idea to resolve free choices via repair works for relevant hyperproperties. There
are many options to improve its performance. For example, one could switch to a
model checker that is based on Büchi or Parity automata (e.g., spot [71]). Like this,
the LTL formula (which stays the same for every call) would have to be translated to
an automaton only once.

Chapter 9

c

Related Work

Similarly to Part I, we complement the motivating work discussed in the introduction
with a more extensive discussion of directly related results. We discuss the related
work on the synthesis of smart contracts, how other approaches model the temporal
control ow as state machines, and hyperproperties occurring in the context of smart
contracts. Furthermore, we compare our technique based on parameters with parame-
terized synthesis approaches and discuss the use of TSL for synthesis. For more related
work on hyperlogics, we refer to Chapter 5. page 71

Synthesis of Smart Contracts. Apart from [91], there is only little work so far on
reactive synthesis for smart contracts. The major challenge in synthesizing smart con-
tracts is the question of “how to strike a balance between simplicity and expressivity
[...] to allow eective synthesis of practical smart contracts” [216]. The authors of [216]
propose to apply reactive synthesis from LTL specications to obtain state machines
describing the contract’s control ow. The approach does not include any reasoning
about the contract’s data. The problem of separating data and control ow has been
proposed to overcome by splitting contracts into a tuple of protocol, properties, and
rules [206]. The protocol is a regular language; properties are given in linear dynamic
logic on nite traces (LDL𝑓) and range over method calls and atomic propositions;
rules dene the reaction to transactions with JavaScript code. The level of formality in
the provided guarantees in the above work remains vague, however. Apart from tem-
poral logics, it has been proposed to use deontic logics (logics including obligations
like “must” and “may”) to express contracts closely to their formulation in natural lan-
guage [107]. The resulting contracts are an interface rather than executable code and
have no means to express the temporal control ow of the smart contract.

Smart Contract Modeling with State Machines. Besides synthesis from logical
specications, another line of work is to model the control ow of a contract with
a formal model and translate it to Solidity code. In the FSolidM and VeriSolid frame-

128

Section 9.0. 129

works [174, 175], the user generates a graphical representation of a nite statemachine,
which is translated to Solidity code. The transition labels consist of transactions and
guards but do not include access rights. The state logic of smart contracts has also been
modeled using Petri nets [235] augmented with guards, which are model-checked for
basic errors like deadlocks and then translated to Solidity code. Smart contracts have
also been modeled in the Business Process Model and Notation (BPMN) [47, 167] and
Unied Modeling Language (UML) [111] standards.

Hyperproperties in Smart Contracts. The analysis of smart contract with respect
to hyperproperties is still in its infancy. Most work focuses on analyzing contracts
with respect to a specic property. The DAO bug [180], a reentrancy bug that led to
the theft of $50 million in 2016, was a turning point in the research on smart contracts.
To prevent such bugs in the future, formal properties have been proposed to formalize
the desired behavior. To distinguish benign reentrancy from an attack, one needs to
compare execution traces. Thus, these properties are often hyperproperties. As an
example, call integrity, which formulates that a smart contract may not depend on
untrusted code, has been identied to be a ∀2 hyperproperty [117]. Another property
is callback freedom [118], which is a ∀∃ hyperproperty [6].

Parameterized Synthesis. Parameterized synthesis has been studied mainly in the
context of distributed architectures, in which several components of the system inter-
act with each other. Here, the system is parameterized in the number of the compo-
nents it contains, e.g., the number of clients [140]. The problem is undecidable in gen-
eral, even for simpler structures such as token rings, but bounded synthesis approaches
have been applied successfully [148, 147]. For the restriction to safety properties, pa-
rameterized synthesis has also been tackled by using Angluin’s L∗ algorithm [172].
Compared with our approach, parameterized synthesis does not have to deal with the
implicit hierarchy of our setting, which requires that outputs may only depend on
some inputs, depending on the how they are parameterized. Parameterized synthesis
is also usually not studied in the context of software.

Temporal Stream Logic (TSL). TSL has been designed specically for the synthesis
of systems with arbitrary data domains. TSL has been used successfully to synthe-
size larger hardware systems, e.g., a full space shooter arcade game running on an
FPGA [112]. First applications for software systems were in the domain of functional
programs [92]. The abstraction from the concrete implementation of predicates and
functions calls for the combination of reactive synthesis with domain-specic reason-
ing and SMT solving [90, 171]. Combining TSL with domain-specic reasoning with-
out sacricing a good performance still remains a challenge. Recently, TSL synthesis

Section 9.0. 130

has been combined with syntax-guided synthesis, which is used to automatically con-
struct assumptions about functions and predicates [43]. As we have experienced as
well, such assumptions are sometimes needed to make a specication realizable. It
might therefore be interesting to see if this approach also works in our setting.

Chapter 10

c

Discussion

In this thesis, we have studied logical methods for reasoning about hyperproperties.
We have investigated both sides of the logical medal: the relative expressiveness of
dierent logics and algorithms for the satisability and synthesis problems. Regarding
the former, we have considered a variety of hyperlogics based on dierent logical prin-
ciples. Our expressiveness study shows that quantier-based temporal hyperlogics and
rst-order/second-order hyperlogics can be arranged in a true hierarchy of hyperlog-
ics, whereas temporal logics with team semantics provide a fundamentally dierent
perspective on hyperproperties. We also proposed logics tailored for the expression
of (hyper)properties in innite-state systems with data and illustrated their use in the
context of smart contracts. Algorithmically, we have shown that while reasoning about
hyperproperties is a challenge, solutions can be obtained with careful constructions of
expressive logical fragments and suitable approximations. This observation applies
to both the satisability and the synthesis problem, for which we proposed fragments
that build on safety properties and described sound approximations for these generally
undecidable problems.

In the following, we rst discuss some concluding observations that result from
this thesis. Subsequently, we provide an outlook on how to further advance the theory
of hyperlogics based on the results of this thesis.

10.1 Conclusions

The Two Dimensions of Hyperproperties. Linear-time hyperproperties describe
sets of traces and as such add – compared with linear-time trace properties – a second
dimension to the model. The result is a special form of grid: while the time dimension
is strictly ordered, the trace dimension is not; the set does not even have to be enumer-
able in general. The logics we include in our expressiveness study use dierent types
of quantication over this grid, which explains the resulting hierarchy of hyperlogics.

131

Section 10.1. Conclusions 132

HyperLTL employs rst-order quantication on the trace dimension followed by rst-
order quantication (in form of temporal operators) on the time dimension. FO[<, 𝐸]
is more expressive as it mixes these two types of quantiers. HyperQPTL adds another
layer of expressiveness by mixing the trace quantiers with second-order quantica-
tion over the time dimension. Finally, HyperQPTL+ features second-order quanti-
cation over both dimensions. Our hierarchy thus leaves open certain combinations
of quantiers, e.g., second-order trace quantiers mixed with rst-order time quanti-
ers. Similar observations have been made in [21] for Hypertrace Logic and for the
dierence between HyperLTL and FO[<, 𝐸] also in [95].

Safety Properties for Logical Reasoning. For both the satisability and the synthe-
sis problem, some sort of restriction to safety properties has been the key to obtaining
simpler algorithms; for the satisability problem in the form of temporal safety and
for the synthesis problem in the form of the past-time fragment of TSL. This is not
entirely surprising as similar observations have been made for safety properties in
various areas [154, 133]. It is interesting, however, that the hyperproperty setting in-
duces various ways to obtain a safety fragment. There is the notion of hypersafety,
which is very useful especially for the verication of hyperproperties [77, 213]. For
satisability, temporal safety proved to be more suitable. In the synthesis setting, we
only restricted the trace properties (given as TSL specications) to the safety fragment
and considered arbitrary ∀∗ HyperTSL formulas.

Combining Functional Properties and Hyperproperties. To actually synthesize
smart contracts from hyperproperties, the main idea was to treat the HyperTSL hyper-
property separately from the TSL trace properties. Before, hyperproperty synthesis
has been studied in isolation only [86, 84]. This is valid, of course, since hyperproper-
ties subsume trace properties. Moving some of the algorithmic task to trace property
synthesis, however, made it possible to synthesize a solution within very reasonable
time. A similar observation has been made in the context of HyperLTL satisability:
in [25], simple ∀∗∃∗ HyperLTL formulas have been combined with arbitrary LTL for-
mulas. This resulted, among others, in the rst decidability result for formulas that
can enforce models with innitely many traces (note that a dierent part of [25] forms
the contribution of Chapter 4).

Algorithms for Expressive Logics. Especially the second part of this thesis showed
that algorithms based on expressive logics can be successful, even if the general prob-
lems are undecidable. The expressiveness of (parameterized) TSL andHyperTSL allows
for a precise expression of software properties, mainly because of the concept of cells,
which can be used to model elds. The combination of cells and (uninterpreted) func-
tions and predicates also makes the logics quite readable. The approximations based

Section 10.2. Outlook 133

on LTL and HyperLTL leverage the algorithms available for these logics. That way,
we may sacrice completeness but obtain readable logics that can express the desired
functionality, while we are also able to construct solutions in many cases.

10.2 Outlook

Finally, we want to point to open challenges and interesting directions to advance the
knowledge about the expressiveness of hyperlogics and associated algorithms.

10.2.1 Expressiveness

The hierarchy presented in Chapter 3 contains a variety of dierent logics, but such a
work can never be considered complete. There are several questions that result from
our work.

Epistemic Logics. An immediate rst question concerns previously proposed logics
whose expressiveness should fall between that of HyperLTL and HyperQPTL+. One
class of such logics are epistemic logics, as previously discussed in [56]. Epistemic
logics express the knowledge of agents or components acting in distributed systems.
One way to obtain such logics is by extending temporal logics with the knowledge
operator K [126]. LTLK and HyperLTL are known to be of incomparable expressive-
ness [34], while HyperQPTL subsumes both logics [195]. The proof from [195] can
be easily adapted to show that FO[<, 𝐸] subsumes LTLK and also HyperLTL extended
with K . The remaining open question is whether FO[<, 𝐸] is strictly more expressive
thanHyperLTLK . A possible candidate formula that distinguishes the two logics might
be the property “there are two points in time such that all traces repeat their 𝑎-value
seen at the rst position at the second position. The formula is expressible in FO[<, 𝐸]
as follows:

∃𝑡1, 𝑡2.∀𝑥,𝑦. 𝐸 (𝑡1, 𝑥) ∧ 𝐸 (𝑡2, 𝑦) ∧ 𝑥 ≤ 𝑦 → 𝑃𝑎 (𝑥) ↔ 𝑃𝑎 (𝑦)

In the formula above, 𝑥 ≤ 𝑦 enforces that 𝑥 and 𝑦 reside on the same trace. A proof
that the above formula indeed is not expressible in HyperLTLK is still outstanding.
One possible rst step could be to relate HyperLTLK to the linear interpretation of
HyperCTL∗ as dened in [34]. Both logics might be expressively equivalent.

Understanding Team Semantics. Our expressiveness study shows that linear-time
logics with teams semantics are hard to compare to quantier-based linear-time hyper-
logics. It seems like we do not yet fully understand the expressiveness of TeamLTL and
related logics. For example, we do not knowwhether TeamLTL (and TeamLTL(6)) are

Section 10.2. Outlook 134

subsumed by HyperQPTL. A problem that is open since the introduction of TeamLTL
in 2018 [153] is the question whether TeamLTL model checking is decidable. This
problem is a real challenge due to the split operator ∨, which can split the trace set
𝑇 in any way, possibly resulting in two trace sets that cannot be produced by Kripke
structures. Similarly interesting is the relation of branching-time logics with team se-
mantics (as proposed, e.g., in [152, 120]) and logics like HyperCTL∗ and HyperQCTL∗.
Here, the major question is whether these logics are similarly hard to compare as their
linear-time analogs are.

Beyond our Hierarchy. As a second step, we should expand the hierarchy beyond
logics that express hyperproperties over 𝜔-regular words. As discussed in Chapter 5,
various types of hyperlogics have been proposed whose expressiveness most likely
does not fall between the ones of HyperLTL and HyperQPTL+, for example probabilis-
tic hyperlogics or logics over real-valued streams. Other types like some asynchronous
hyperproperties might be expressible in a second-order hyperlogic, e.g., by quantifying
stutter-equivalent sets of traces. The challenge here is to nd a suitable framework or
logic that enables an extensive study of these quite dierent logics. By understanding
the relative expressiveness of these hyperlogics, we could gain knowledge about the
conceptual dierences and about the complexity of the associated algorithms.

10.2.2 Algorithms

Logical reasoning for hyperproperties remains a challenging task. Based on the expe-
rience and observations made in this thesis, we suggest a few directions for further
algorithmic investigation.

Simplifying Hyperproperty Reasoning. One of our algorithmic observations is
that in the case of hyperproperties, dierent versions of safety simplify many prob-
lems. It would be interesting to reevaluate known algorithmic results for HyperLTL
with respect to its hypersafety and especially its temporal safety fragments. For exam-
ple, synthesis of ∀∗ HyperLTL might be simpler when restricting the body to temporal
safety. Another algorithmic observation is that keeping trace properties and hyper-
properties separate can lead to new algorithms. Hyperproperties usually occur not in
isolation but are evaluated with respect to a system that can be described with trace
properties. Especially for synthesis, it might beworth to study this approachmore gen-
erally. One questions is, for example, for which classes of (hyper)properties a system
synthesized from trace properties can be rened to satisfy the hyperproperty. The re-
pair approach could also be extended to not only remove transitions from the winning
region but also to unroll the system.

135

Algorithms and Parameters for HyperTSL. The introduction of HyperTSL and
HyperTSLrel has opened many exciting paths for future work. A rst question is how
to approximate the HyperTSL realizability problem for formulas with quantier alter-
nations. As the approximations naturally lose information on the content of the cells, it
might be challenging to deal with spurious counterexamples in the presence of quanti-
er alternations. In another direction, Chapter 7 has shown that many smart contracts
are best specied using parameters. The obvious next step is to extend HyperTSL with
universally quantied parameters. Here, the rst question would be in which order the
dierent types of quantiers may appear in a formula. Lastly, as a way to prot from
the expressiveness of HyperTSLrel, one would have to include theories (e.g., the theory
of equality) into the synthesis from HyperTSLrel specications. Prior work has made
steps in that direction for TSL [171, 90], one could extend these ideas to HyperTSLrel.
Using theories, HyperTSLrel could also be interesting in the context of model checking
smart contracts or other innite-state systems.

Bibliography

[1] 2018. Bamboo: a language for morphing smart contracts. Retrieved August 12,
2022 from https://github.com/pirapira/bamboo

[2] Erika Ábrahám, Ezio Bartocci, Borzoo Bonakdarpour, and Oyendrila Dobe.
2020. Probabilistic Hyperproperties with Nondeterminism. In Automated Tech-
nology for Verication and Analysis - 18th International Symposium, ATVA 2020,
Hanoi, Vietnam, October 19-23, 2020, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 12302), Dang Van Hung and Oleg Sokolsky (Eds.). Springer, 518–534.
https://doi.org/10.1007/978-3-030-59152-6_29

[3] Erika Ábrahám and Borzoo Bonakdarpour. 2018. HyperPCTL: A Temporal Logic
for Probabilistic Hyperproperties. InQuantitative Evaluation of Systems - 15th In-
ternational Conference, QEST 2018, Beijing, China, September 4-7, 2018, Proceed-
ings (Lecture Notes in Computer Science, Vol. 11024), Annabelle McIver and An-
drás Horváth (Eds.). Springer, 20–35. https://doi.org/10.1007/978-3-319-
99154-2_2

[4] Karl Raymond Abrahamson. 1980. Decidability and Expressiveness of Logics of
Processes. Ph.D. Dissertation. University of Washington, Seattle, WA, USA.

[5] Shreya Agrawal and Borzoo Bonakdarpour. 2016. Runtime Verication of k-
Safety Hyperproperties in HyperLTL. In IEEE 29th Computer Security Founda-
tions Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. IEEE Com-
puter Society, 239–252. https://doi.org/10.1109/CSF.2016.24

[6] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert
Rubio, and Mooly Sagiv. 2020. Taming Callbacks for Smart Contract Modularity.
Proc. ACM Program. Lang. 4, OOPSLA (2020), 209:1–209:30. https://doi.org/
10.1145/3428277

[7] Mack W. Alford, Leslie Lamport, and Geo P. Mullery. 1984. Basic Concepts.
In Distributed Systems: Methods and Tools for Specication, An Advanced Course,

136

https://github.com/pirapira/bamboo
https://doi.org/10.1007/978-3-030-59152-6_29
https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1145/3428277
https://doi.org/10.1145/3428277

137

April 3-12, 1984 and April 16-25, 1985, Munich, Germany (Lecture Notes in Com-
puter Science, Vol. 190), Mack W. Alford, Jean-Pierre Ansart, Günter Hommel,
Leslie Lamport, Barbara Liskov, Geo P. Mullery, and Fred B. Schneider (Eds.).
Springer, 7–43. https://doi.org/10.1007/3-540-15216-4_12

[8] Bowen Alpern and Fred B. Schneider. 1985. Dening Liveness. Inf. Process. Lett.
21, 4 (1985), 181–185. https://doi.org/10.1016/0020-0190(85)90056-0

[9] Pedro Antonino, Juliandson Ferreira, Augusto Sampaio, and A. W. Roscoe. 2022.
Specication is Law: Safe Creation and Upgrade of Ethereum Smart Contracts.
CoRR abs/2205.07529 (2022). https://doi.org/10.48550/arXiv.2205.07529
arXiv:2205.07529

[10] Krzysztof R. Apt and Dexter Kozen. 1986. Limits for Automatic Verication of
Finite-State Concurrent Systems. Inf. Process. Lett. 22, 6 (1986), 307–309. https:
//doi.org/10.1016/0020-0190(86)90071-2

[11] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,
Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon
French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Pe-
ter Sewell. 2019. ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS. Proc.
ACM Program. Lang. 3, POPL (2019), 71:1–71:31. https://doi.org/10.1145/

3290384

[12] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric
Tronel. 2017. Hypercollecting Semantics and its Application to Static Analy-
sis of Information Flow. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-
20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 874–887.
https://doi.org/10.1145/3009837.3009889

[13] Avolabs. 2021. NFT Auction Contract. Retrieved August 12, 2022 from https:

//github.com/avolabs-io/nft-auction

[14] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram Rajamani. 2004.
SLAM and Static Driver Verier: Technology Transfer of Formal Meth-
ods inside Microsoft. Technical Report MSR-TR-2004-08. 22 pages.
https://www.microsoft.com/en-us/research/publication/slam-and-

static-driver-verifier-technology-transfer-of-formal-methods-

inside-microsoft/

[15] Musard Balliu, Mads Dam, and Gurvan Le Guernic. 2011. Epistemic Tem-
poral Logic for Information Flow Security. In Proceedings of the 2011 Work-
shop on Programming Languages and Analysis for Security, PLAS 2011, San Jose,

https://doi.org/10.1007/3-540-15216-4_12
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.48550/arXiv.2205.07529
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3009837.3009889
https://github.com/avolabs-io/nft-auction
https://github.com/avolabs-io/nft-auction
https://www.microsoft.com/en-us/research/publication/slam-and-static-driver-verifier-technology-transfer-of-formal-methods-inside-microsoft/
https://www.microsoft.com/en-us/research/publication/slam-and-static-driver-verifier-technology-transfer-of-formal-methods-inside-microsoft/
https://www.microsoft.com/en-us/research/publication/slam-and-static-driver-verifier-technology-transfer-of-formal-methods-inside-microsoft/

138

CA, USA, 5 June, 2011, Aslan Askarov and Joshua D. Guttman (Eds.). ACM, 6.
https://doi.org/10.1145/2166956.2166962

[16] Tomáš Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and
Martin Suda. 2021. Proceedings of SAT Competition 2021: Solver and Bench-
mark Descriptions. Department of Computer Science Report Series B, vol. B-
2021-1, Department of Computer Science, University of Helsinki (2021). https:

//helda.helsinki.fi/handle/10138/333647

[17] Tomáš Balyo, Nils Froleyks, Marijn Heule, Markus Iser, Matti Järvisalo, and
Martin Suda. 2021. The Results of SAT Competition 2021. Retrieved August
12, 2022 from https://satcompetition.github.io/2021/slides/ISC2021-

fixed.pdf

[18] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information
Flow by Self-Composition. In 17th IEEE Computer Security Foundations Work-
shop, (CSFW-17 2004), 28-30 June 2004, Pacic Grove, CA, USA. IEEE Computer
Society, 100–114. https://doi.org/10.1109/CSFW.2004.17

[19] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. For-
mal Certication of Code-Based Cryptographic Proofs. In Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Ben-
jamin C. Pierce (Eds.). ACM, 90–101. https://doi.org/10.1145/1480881.

1480894

[20] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.
2012. Probabilistic Relational Reasoning for Dierential Privacy. In Proceedings
of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012, John
Field and Michael Hicks (Eds.). ACM, 97–110. https://doi.org/10.1145/

2103656.2103670

[21] Ezio Bartocci, Thomas Ferrère, Thomas A. Henzinger, Dejan Nickovic, and
Ana Oliveira da Costa. 2022. Flavors of Sequential Information Flow. In Veri-
cation, Model Checking, and Abstract Interpretation - 23rd International Confer-
ence, VMCAI 2022, Philadelphia, PA, USA, January 16-18, 2022, Proceedings (Lec-
ture Notes in Computer Science, Vol. 13182), Bernd Finkbeiner and Thomas Wies
(Eds.). Springer, 1–19. https://doi.org/10.1007/978-3-030-94583-1_1

[22] Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and
César Sánchez. 2021. A Temporal Logic for Asynchronous Hyperproperties. In

https://doi.org/10.1145/2166956.2166962
https://helda.helsinki.fi/handle/10138/333647
https://helda.helsinki.fi/handle/10138/333647
https://satcompetition.github.io/2021/slides/ISC2021-fixed.pdf
https://satcompetition.github.io/2021/slides/ISC2021-fixed.pdf
https://doi.org/10.1109/CSFW.2004.17
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1007/978-3-030-94583-1_1

139

Computer Aided Verication - 33rd International Conference, CAV 2021, Virtual
Event, July 20-23, 2021, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 12759), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 694–717.
https://doi.org/10.1007/978-3-030-81685-8_33

[23] Bernhard Beckert and Mattias Ulbrich. 2018. Trends in Relational Program Veri-
cation. In Principled Software Development - Essays Dedicated to Arnd Poetzsch-
Heter on the Occasion of his 60th Birthday, Peter Müller and Ina Schaefer (Eds.).
Springer, 41–58. https://doi.org/10.1007/978-3-319-98047-8_3

[24] Nick Benton. 2004. Simple relational correctness proofs for static analyses and
program transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2004, Venice, Italy, Jan-
uary 14-16, 2004, Neil D. Jones and Xavier Leroy (Eds.). ACM, 14–25. https:

//doi.org/10.1145/964001.964003

[25] Raven Beutner, David Carral, Bernd Finkbeiner, Jana Hofmann, and Markus
Krötzsch. 2022. Deciding Hyperproperties Combined with Functional Speci-
cations. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, Haifa, Israel, August 2 - 5, 2022, Christel Baier and Dana Fisman (Eds.).
ACM, 56:1–56:13. https://doi.org/10.1145/3531130.3533369

[26] Raven Beutner and Bernd Finkbeiner. 2021. A Temporal Logic for Strategic
Hyperproperties. In 32nd International Conference on Concurrency Theory, CON-
CUR 2021, August 24-27, 2021, Virtual Conference (LIPIcs, Vol. 203), Serge Haddad
and Daniele Varacca (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
24:1–24:19. https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

[27] Raven Beutner and Bernd Finkbeiner. 2022. Software Verication of Hyper-
properties Beyond k-Safety. In Computer Aided Verication - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.).
Springer, 341–362. https://doi.org/10.1007/978-3-031-13185-1_17

[28] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella Béguelin. 2016. For-
mal Verication of Smart Contracts: Short Paper. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, PLAS@CCS 2016,
Vienna, Austria, October 24, 2016, Toby C. Murray and Deian Stefan (Eds.). ACM,
91–96. https://doi.org/10.1145/2993600.2993611

https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/3531130.3533369
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.1145/2993600.2993611

140

[29] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yun-
shan Zhu. 2003. Bounded Model Checking. Adv. Comput. 58 (2003), 117–148.
https://doi.org/10.1016/S0065-2458(03)58003-2

[30] Borzoo Bonakdarpour and Bernd Finkbeiner. 2019. Program Repair for Hyper-
properties. In Automated Technology for Verication and Analysis - 17th Inter-
national Symposium, ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceed-
ings (Lecture Notes in Computer Science, Vol. 11781), Yu-Fang Chen, Chih-Hong
Cheng, and Javier Esparza (Eds.). Springer, 423–441. https://doi.org/10.

1007/978-3-030-31784-3_25

[31] Borzoo Bonakdarpour and Bernd Finkbeiner. 2020. Controller Synthesis for Hy-
perproperties. In 33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, June 22-26, 2020. IEEE, 366–379. https://doi.org/10.1109/
CSF49147.2020.00033

[32] Borzoo Bonakdarpour, Pavithra Prabhakar, and César Sánchez. 2020. Model
Checking Timed Hyperproperties in Discrete-Time Systems. In NASA Formal
Methods - 12th International Symposium, NFM 2020, Moett Field, CA, USA, May
11-15, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12229), Ritchie
Lee, Susmit Jha, and Anastasia Mavridou (Eds.). Springer, 311–328. https:

//doi.org/10.1007/978-3-030-55754-6_18

[33] Borzoo Bonakdarpour and Sarai Sheinvald. 2021. Finite-Word Hyperlanguages.
In Language and Automata Theory and Applications - 15th International Confer-
ence, LATA 2021, Milan, Italy, March 1-5, 2021, Proceedings (Lecture Notes in Com-
puter Science, Vol. 12638), Alberto Leporati, Carlos Martín-Vide, Dana Shapira,
and Claudio Zandron (Eds.). Springer, 173–186. https://doi.org/10.1007/

978-3-030-68195-1_17

[34] Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. 2015. Unifying Hyper
and Epistemic Temporal Logics. In Foundations of Software Science and Compu-
tation Structures - 18th International Conference, FoSSaCS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science,
Vol. 9034), Andrew M. Pitts (Ed.). Springer, 167–182. https://doi.org/10.

1007/978-3-662-46678-0_11

[35] Laura Bozzelli, Adriano Peron, and César Sánchez. 2021. Asynchronous Ex-
tensions of HyperLTL. In 36th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–13. https:

//doi.org/10.1109/LICS52264.2021.9470583

https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1007/978-3-030-31784-3_25
https://doi.org/10.1109/CSF49147.2020.00033
https://doi.org/10.1109/CSF49147.2020.00033
https://doi.org/10.1007/978-3-030-55754-6_18
https://doi.org/10.1007/978-3-030-55754-6_18
https://doi.org/10.1007/978-3-030-68195-1_17
https://doi.org/10.1007/978-3-030-68195-1_17
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1007/978-3-662-46678-0_11
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1109/LICS52264.2021.9470583

141

[36] J. Richard Büchi. 1960. Weak Second-Order Arithmetic and Finite Automata.
Mathematical Logic Quarterly 6 (1960), 66–92. https://doi.org/10.1002/

malq.19600060105

[37] J. Richard Büchi and Lawrence H. Landweber. 1969. Solving Sequential Con-
ditions by Finite-State Strategies. Trans. Amer. Math. Soc. 138 (1969), 295–311.
http://www.jstor.org/stable/1994916

[38] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. 1990. Symbolic Model Checking: 10ˆ20 States and Beyond. In Pro-
ceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990. IEEE Computer Society, 428–
439. https://doi.org/10.1109/LICS.1990.113767

[39] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio,
Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano
Tonetta. 2014. The nuXmv Symbolic Model Checker. In Computer Aided Verica-
tion - 26th International Conference, CAV 2014, Held as Part of the Vienna Summer
of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8559), Armin Biere and Roderick Bloem (Eds.). Springer,
334–342. https://doi.org/10.1007/978-3-319-08867-9_22

[40] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers. 2020. Securing
Smart Contracts with Information Flow. In International Symposium on Founda-
tions and Applications of Blockchain (FAB).

[41] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers. 2021. Composi-
tional Security for Reentrant Applications. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE, 1249–1267.
https://doi.org/10.1109/SP40001.2021.00084

[42] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel
Vulnerabilities using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, Bhavani Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 875–890. https:

//doi.org/10.1145/3133956.3134058

[43] Wonhyuk Choi, Bernd Finkbeiner, Ruzica Piskac, and Mark Santolucito. 2022.
Can Reactive Synthesis and Syntax-Guided Synthesis Be Friends?. In PLDI ’22:
43rd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil
Dillig (Eds.). ACM, 229–243. https://doi.org/10.1145/3519939.3523429

https://doi.org/10.1002/malq.19600060105
https://doi.org/10.1002/malq.19600060105
http://www.jstor.org/stable/1994916
https://doi.org/10.1109/LICS.1990.113767
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1109/SP40001.2021.00084
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3519939.3523429

142

[44] Stephen Chong, K. Vikram, and Andrew C. Myers. 2007. SIF: Enforcing Con-
dentiality and Integrity in Web Applications. In Proceedings of the 16th USENIX
Security Symposium, Boston, MA, USA, August 6-10, 2007, Niels Provos (Ed.).
USENIX Association. https://www.usenix.org/conference/16th-usenix-

security-symposium/sif-enforcing-confidentiality-and-integrity-

web

[45] Andrey Chudnov, George Kuan, and David A. Naumann. 2014. Information
Flow Monitoring as Abstract Interpretation for Relational Logic. In IEEE 27th
Computer Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July,
2014. IEEE Computer Society, 48–62. https://doi.org/10.1109/CSF.2014.

12

[46] Alonzo Church. 1957. Applications of Recursive Arithmetic to the Problem of
Circuit Synthesis. In Summaries of the Summer Institute of Symbolic Logic, Cornell
University, Ithaca, NY. 3–50. https://doi.org/10.2307/2271310

[47] Claudio Di Ciccio, Alessio Cecconi, Marlon Dumas, Luciano García-Bañuelos,
Orlenys López-Pintado, Qinghua Lu, Jan Mendling, Alexander Ponomarev,
An Binh Tran, and IngoWeber. 2019. Blockchain Support for Collaborative Busi-
ness Processes. Inform. Spektrum 42, 3 (2019), 182–190. https://doi.org/10.

1007/s00287-019-01178-x

[48] Alessandro Cimatti, Marco Roveri, and Daniel Sheridan. 2004. Bounded Verica-
tion of Past LTL. In Formal Methods in Computer-Aided Design, 5th International
Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004, Proceedings
(Lecture Notes in Computer Science, Vol. 3312), Alan J. Hu and Andrew K. Mar-
tin (Eds.). Springer, 245–259. https://doi.org/10.1007/978-3-540-30494-

4_18

[49] Edmund M. Clarke. 2008. The Birth of Model Checking. In 25 Years of Model
Checking - History, Achievements, Perspectives (Lecture Notes in Computer Science,
Vol. 5000), Orna Grumberg and Helmut Veith (Eds.). Springer, 1–26. https:

//doi.org/10.1007/978-3-540-69850-0_1

[50] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski,
Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties.
In Principles of Security and Trust - Third International Conference, POST 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings. 265–284. https:

//doi.org/10.1007/978-3-642-54792-8_15

https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-web
https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-web
https://www.usenix.org/conference/16th-usenix-security-symposium/sif-enforcing-confidentiality-and-integrity-web
https://doi.org/10.1109/CSF.2014.12
https://doi.org/10.1109/CSF.2014.12
https://doi.org/10.2307/2271310
https://doi.org/10.1007/s00287-019-01178-x
https://doi.org/10.1007/s00287-019-01178-x
https://doi.org/10.1007/978-3-540-30494-4_18
https://doi.org/10.1007/978-3-540-30494-4_18
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15

143

[51] Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In Pro-
ceedings of the 21st IEEE Computer Security Foundations Symposium, CSF 2008,
Pittsburgh, Pennsylvania, USA, 23-25 June 2008. IEEE Computer Society, 51–65.
https://doi.org/10.1109/CSF.2008.7

[52] Michael J. Coblenz. 2017. Obsidian: A Safer Blockchain Programming Language.
In Proceedings of the 39th International Conference on Software Engineering, ICSE
2017, Buenos Aires, Argentina, May 20-28, 2017 - Companion Volume, Sebastián
Uchitel, Alessandro Orso, andMartin P. Robillard (Eds.). IEEE Computer Society,
97–99. https://doi.org/10.1109/ICSE-C.2017.150

[53] Norine Coenen, Raimund Dachselt, Bernd Finkbeiner, Hadar Frenkel, Christo-
pher Hahn, Tom Horak, Niklas Metzger, and Julian Siber. 2022. Explaining Hy-
perproperty Violations. In Computer Aided Verication - 34th International Con-
ference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.).
Springer, 407–429. https://doi.org/10.1007/978-3-031-13185-1_20

[54] Norine Coenen, Bernd Finkbeiner, Hadar Frenkel, Christopher Hahn, Niklas
Metzger, and Julian Siber. 2022. Temporal Causality in Reactive Systems. In Au-
tomated Technology for Verication and Analysis - 20th International Symposium,
ATVA 2022, Virtual Event, October 25-28, 2022, Proceedings (Lecture Notes in Com-
puter Science, Vol. 13505), Ahmed Bouajjani, Lukás Holík, and Zhilin Wu (Eds.).
Springer, 208–224. https://doi.org/10.1007/978-3-031-19992-9_13

[55] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2019.
The Hierarchy of Hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE,
1–13. https://doi.org/10.1109/LICS.2019.8785713

[56] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2020.
The Hierarchy of Hyperlogics: A Knowledge Reasoning Perspective. Retrieved
August 12, 2022 from https://www.react.uni-saarland.de/publications/

CFHH20.html

[57] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, Jana Hofmann, and Yan-
nick Schillo. 2021. Runtime Enforcement of Hyperproperties. InAutomated Tech-
nology for Verication and Analysis - 19th International Symposium, ATVA 2021,
Gold Coast, QLD, Australia, October 18-22, 2021, Proceedings (Lecture Notes in
Computer Science, Vol. 12971), Zhe Hou and Vijay Ganesh (Eds.). Springer, 283–
299. https://doi.org/10.1007/978-3-030-88885-5_19

https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/ICSE-C.2017.150
https://doi.org/10.1007/978-3-031-13185-1_20
https://doi.org/10.1007/978-3-031-19992-9_13
https://doi.org/10.1109/LICS.2019.8785713
https://www.react.uni-saarland.de/publications/CFHH20.html
https://www.react.uni-saarland.de/publications/CFHH20.html
https://doi.org/10.1007/978-3-030-88885-5_19

144

[58] Norine Coenen, Bernd Finkbeiner, Jana Hofmann, and Julia Tillman. 2022. Smart
Contract Synthesis Modulo Hyperproperties. https://doi.org/10.48550/

ARXIV.2208.07180 To appear at the 36th IEEE Computer Security Foundations
Symposium (CSF 2023).

[59] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. 2019.
Verifying Hyperliveness. In Computer Aided Verication - 31st International Con-
ference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran
(Eds.). Springer, 121–139. https://doi.org/10.1007/978-3-030-25540-4_7

[60] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In
Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, May 3-
5, 1971, Shaker Heights, Ohio, USA, Michael A. Harrison, Ranan B. Banerji, and
Jerey D. Ullman (Eds.). ACM, 151–158. https://doi.org/10.1145/800157.

805047

[61] Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and Jouko Väänä-
nen. 2019. A Logical Approach to Context-Specic Independence. Ann. Pure
Appl. Logic 170, 9 (2019), 975–992. https://doi.org/10.1016/j.apal.2019.

04.004

[62] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and Hol-
ger Hermanns. 2017. Is Your Software on Dope? - Formal Analysis of Surrep-
titiously "enhanced" Programs. In Programming Languages and Systems - 26th
European Symposium on Programming, ESOP 2017, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Swe-
den, April 22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201),
Hongseok Yang (Ed.). Springer, 83–110. https://doi.org/10.1007/978-3-

662-54434-1_4

[63] Ádám Darvas, Reiner Hähnle, and David Sands. 2005. A Theorem Proving Ap-
proach to Analysis of Secure Information Flow. In Security in Pervasive Com-
puting, Second International Conference, SPC 2005, Boppard, Germany, April 6-8,
2005, Proceedings (Lecture Notes in Computer Science, Vol. 3450), Dieter Hutter and
Markus Ullmann (Eds.). Springer, 193–209. https://doi.org/10.1007/978-

3-540-32004-3_20

[64] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. 1998. Concurrent
Reachability Games. In 39th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA. IEEE Computer
Society, 564–575. https://doi.org/10.1109/SFCS.1998.743507

https://doi.org/10.48550/ARXIV.2208.07180
https://doi.org/10.48550/ARXIV.2208.07180
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1109/SFCS.1998.743507

145

[65] Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure
Multi-execution. In 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19
May 2010, Berleley/Oakland, California, USA. IEEE Computer Society, 109–124.
https://doi.org/10.1109/SP.2010.15

[66] Samvid Dharanikota, Suvam Mukherjee, Chandrika Bhardwaj, Aseem Rastogi,
and Akash Lal. 2021. Celestial: A Smart Contracts Verication Framework. In
Formal Methods in Computer Aided Design, FMCAD 2021, New Haven, CT, USA,
October 19-22, 2021. IEEE, 133–142. https://doi.org/10.34727/2021/isbn.

978-3-85448-046-4_22

[67] Rayna Dimitrova, Bernd Finkbeiner, and Hazem Torfah. 2020. Probabilistic
Hyperproperties of Markov Decision Processes. In Automated Technology for
Verication and Analysis - 18th International Symposium, ATVA 2020, Hanoi,
Vietnam, October 19-23, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12302), DangVanHung andOleg Sokolsky (Eds.). Springer, 484–500. https:
//doi.org/10.1007/978-3-030-59152-6_27

[68] Goran Doychev and Boris Köpf. 2017. Rigorous Analysis of Software Coun-
termeasures against Cache Attacks. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.).
ACM, 406–421. https://doi.org/10.1145/3062341.3062388

[69] Geir Dullerud and Fernando Paganini. 2000. A Course in Robust Control Theory.
Springer New York, NY. https://doi.org/10.1007/978-1-4757-3290-0

[70] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema.
2018. Probabilistic Team Semantics. In FoIKS (Lecture Notes in Computer Sci-
ence, Vol. 10833). Springer, 186–206. https://doi.org/10.1007/978-3-319-

90050-6_11

[71] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. 2016. Spot 2.0 - A Framework for
LTL and Omega-Automata Manipulation. In Automated Technology for Veri-
cation and Analysis - 14th International Symposium, ATVA 2016, Chiba, Japan,
October 17-20, 2016, Proceedings (Lecture Notes in Computer Science, Vol. 9938),
Cyrille Artho, Axel Legay, and Doron Peled (Eds.). 122–129. https://doi.

org/10.1007/978-3-319-46520-3_8

[72] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,

https://doi.org/10.1109/SP.2010.15
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_22
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1007/978-3-030-59152-6_27
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1007/978-1-4757-3290-0
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1007/978-3-319-46520-3_8

146

Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,March 4-
7, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3876), Shai Halevi and
Tal Rabin (Eds.). Springer, 265–284. https://doi.org/10.1007/11681878_14

[73] Rüdiger Ehlers. 2010. Symbolic Bounded Synthesis. In Computer Aided Verica-
tion, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings (Lecture Notes in Computer Science, Vol. 6174), Tayssir Touili, Byron
Cook, and Paul B. Jackson (Eds.). Springer, 365–379. https://doi.org/10.

1007/978-3-642-14295-6_33

[74] E. Allen Emerson and Joseph Y. Halpern. 1986. "Sometimes" and "Not Never"
Revisited: on Branching versus Linear Time Temporal Logic. J. ACM 33, 1 (1986),
151–178. https://doi.org/10.1145/4904.4999

[75] Anna Ernst. 2020. Polizei ermittelt nach Hacker-Angri in einem Todesfall.
Retrieved August 12, 2022 from https://www.sueddeutsche.de/panorama/

duesseldorf-uniklinikum-erpressung-hacker-angriff-1.5035140

[76] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. 1995. Rea-
soning About Knowledge. MIT Press. https://doi.org/10.7551/mitpress/

5803.001.0001

[77] Azadeh Farzan and Anthony Vandikas. 2019. Automated Hypersafety Verica-
tion. In Computer Aided Verication - 31st International Conference, CAV 2019,
New York City, NY, USA, July 15-18, 2019, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 200–
218. https://doi.org/10.1007/978-3-030-25540-4_11

[78] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. 2017. BoSy: An
Experimentation Framework for Bounded Synthesis. In Computer Aided Veri-
cation - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28,
2017, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 10427), Rupak
Majumdar and Viktor Kuncak (Eds.). Springer, 325–332. https://doi.org/

10.1007/978-3-319-63390-9_17

[79] Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. 2009. An Antichain Al-
gorithm for LTL Realizability. In Computer Aided Verication, 21st International
Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings (Lecture
Notes in Computer Science, Vol. 5643), Ahmed Bouajjani and Oded Maler (Eds.).
Springer, 263–277. https://doi.org/10.1007/978-3-642-02658-4_22

[80] Bernd Finkbeiner. 2016. Synthesis of Reactive Systems. In Dependable Soft-
ware Systems Engineering, Javier Esparza, Orna Grumberg, and Salomon Sickert

https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1007/978-3-642-14295-6_33
https://doi.org/10.1145/4904.4999
https://www.sueddeutsche.de/panorama/duesseldorf-uniklinikum-erpressung-hacker-angriff-1.5035140
https://www.sueddeutsche.de/panorama/duesseldorf-uniklinikum-erpressung-hacker-angriff-1.5035140
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-642-02658-4_22

147

(Eds.). NATOScience for Peace and Security Series - D: Information andCommu-
nication Security, Vol. 45. IOS Press, 72–98. https://doi.org/10.3233/978-

1-61499-627-9-72

[81] Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. 2019. Canonical Repre-
sentations of k-Safety Hyperproperties. In 32nd IEEE Computer Security Foun-
dations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019. IEEE, 17–31.
https://doi.org/10.1109/CSF.2019.00009

[82] Bernd Finkbeiner and Christopher Hahn. 2016. Deciding Hyperproperties. In
27th International Conference on Concurrency Theory, CONCUR 2016, August 23-
26, 2016, Québec City, Canada (LIPIcs, Vol. 59), Josée Desharnais and Radha Ja-
gadeesan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:14.
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13

[83] Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. 2018. MGHyper: Check-
ing Satisability of HyperLTL Formulas Beyond the ∃∗∀∗ Fragment. In Auto-
mated Technology for Verication and Analysis - 16th International Symposium,
ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings (Lecture Notes
in Computer Science, Vol. 11138), Shuvendu K. Lahiri and Chao Wang (Eds.).
Springer, 521–527. https://doi.org/10.1007/978-3-030-01090-4_31

[84] Bernd Finkbeiner, Christopher Hahn, JanaHofmann, and Leander Tentrup. 2020.
Realizing Omega-regular Hyperproperties. In Computer Aided Verication - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Pro-
ceedings, Part II (Lecture Notes in Computer Science, Vol. 12225), Shuvendu K.
Lahiri and Chao Wang (Eds.). Springer, 40–63. https://doi.org/10.1007/

978-3-030-53291-8_4

[85] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Le-
ander Tentrup. 2018. Synthesizing Reactive Systems from Hyperproperties. In
Proceedings of CAV (LNCS, Vol. 10981). Springer, 289–306. https://doi.org/

10.1007/978-3-319-96145-3_16

[86] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Lean-
der Tentrup. 2020. Synthesis from Hyperproperties. Acta Informatica 57, 1-2
(2020), 137–163. https://doi.org/10.1007/s00236-019-00358-2

[87] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. 2017. EAHyper: Sat-
isability, Implication, and Equivalence Checking of Hyperproperties. In Com-
puter Aided Verication - 29th International Conference, CAV 2017, Heidelberg,

https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.3233/978-1-61499-627-9-72
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-030-01090-4_31
https://doi.org/10.1007/978-3-030-53291-8_4
https://doi.org/10.1007/978-3-030-53291-8_4
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/978-3-319-96145-3_16
https://doi.org/10.1007/s00236-019-00358-2

148

Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes in Computer Sci-
ence, Vol. 10427), Rupak Majumdar and Viktor Kuncak (Eds.). Springer, 564–570.
https://doi.org/10.1007/978-3-319-63390-9_29

[88] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
2017. Monitoring Hyperproperties. In Runtime Verication - 17th International
Conference, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings (Lecture
Notes in Computer Science, Vol. 10548), Shuvendu K. Lahiri and Giles Reger (Eds.).
Springer, 190–207. https://doi.org/10.1007/978-3-319-67531-2_12

[89] Bernd Finkbeiner, Christopher Hahn, and Hazem Torfah. 2018. Model Check-
ing Quantitative Hyperproperties. In Computer Aided Verication - 30th Interna-
tional Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC
2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 10981), Hana Chockler and Georg Weissenbacher (Eds.). Springer,
144–163. https://doi.org/10.1007/978-3-319-96145-3_8

[90] Bernd Finkbeiner, Philippe Heim, and Noemi Passing. 2022. Temporal Stream
Logic modulo Theories. In Foundations of Software Science and Computation
Structures - 25th International Conference, FOSSACS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 13242), Patricia Bouyer and Lutz Schröder (Eds.). Springer, 325–346.
https://doi.org/10.1007/978-3-030-99253-8_17

[91] Bernd Finkbeiner, Jana Hofmann, Florian Kohn, and Noemi Passing. 2022. Reac-
tive Synthesis of Smart Contract Control Flows. https://doi.org/10.48550/

ARXIV.2205.06039

[92] Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. 2019. Syn-
thesizing Functional Reactive Programs. In Proceedings of the 12th ACMSIGPLAN
International Symposium onHaskell, Haskell@ICFP 2019, Berlin, Germany, August
18-23, 2019, Richard A. Eisenberg (Ed.). ACM, 162–175. https://doi.org/10.

1145/3331545.3342601

[93] Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. 2019. Tem-
poral Stream Logic: Synthesis Beyond the Bools. InComputer Aided Verication -
31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and
Serdar Tasiran (Eds.). Springer, 609–629. https://doi.org/10.1007/978-3-

030-25540-4_35

https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-030-99253-8_17
https://doi.org/10.48550/ARXIV.2205.06039
https://doi.org/10.48550/ARXIV.2205.06039
https://doi.org/10.1145/3331545.3342601
https://doi.org/10.1145/3331545.3342601
https://doi.org/10.1007/978-3-030-25540-4_35
https://doi.org/10.1007/978-3-030-25540-4_35

149

[94] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for
Model Checking HyperLTL and HyperCTL∗. In Computer Aided Verication -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206), Daniel Kroening
and Corina S. Pasareanu (Eds.). Springer, 30–48. https://doi.org/10.1007/

978-3-319-21690-4_3

[95] Bernd Finkbeiner and Martin Zimmermann. 2017. The First-Order Logic of Hy-
perproperties. In 34th Symposium on Theoretical Aspects of Computer Science,
STACS 2017, March 8-11, 2017, Hannover, Germany (LIPIcs, Vol. 66), Heribert
Vollmer and Brigitte Vallée (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 30:1–30:14. https://doi.org/10.4230/LIPIcs.STACS.2017.30

[96] Michael J. Fischer and Richard E. Ladner. 1979. Propositional Dynamic Logic of
Regular Programs. J. Comput. Syst. Sci. 18, 2 (1979), 194–211. https://doi.

org/10.1016/0022-0000(79)90046-1

[97] Limor Fix. 2008. Fifteen Years of Formal Property Verication in Intel. Springer
Berlin Heidelberg, Berlin, Heidelberg, 139–144. https://doi.org/10.1007/

978-3-540-69850-0_8

[98] Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. 2021.
HyperLTL Satisability is Σ1

1-complete, HyperCTL* Satisability is Σ2
1-complete.

In 46th International Symposium on Mathematical Foundations of Computer Sci-
ence, MFCS 2021, August 23-27, 2021, Tallinn, Estonia (LIPIcs, Vol. 202), Filippo
Bonchi and Simon J. Puglisi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 47:1–47:19. https://doi.org/10.4230/LIPIcs.MFCS.2021.47

[99] Ethereum Foundation. 2019. Blind Auction Contract. Retrieved August
12, 2022 from https://docs.soliditylang.org/en/v0.8.16/solidity-by-

example.html#blind-auction

[100] Ethereum Foundation. 2021. Simple Auction Contract. Retrieved August 12, 2022
from https://docs.soliditylang.org/en/v0.6.8/solidity-by-example.

html#simple-open-auction

[101] Ethereum Foundation. 2022. Introduction to Ethereum. RetrievedAugust 12, 2022
from https://ethereum.org/en/developers/docs/intro-to-ethereum/

[102] Ethereum Foundation. 2022. Solidity Documentation. Retrieved August 12, 2022
from https://docs.soliditylang.org/en/v0.8.16/

https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1007/978-3-540-69850-0_8
https://doi.org/10.1007/978-3-540-69850-0_8
https://doi.org/10.4230/LIPIcs.MFCS.2021.47
https://docs.soliditylang.org/en/v0.8.16/solidity-by-example.html#blind-auction
https://docs.soliditylang.org/en/v0.8.16/solidity-by-example.html#blind-auction
https://docs.soliditylang.org/en/v0.6.8/solidity-by-example.html#simple-open-auction
https://docs.soliditylang.org/en/v0.6.8/solidity-by-example.html#simple-open-auction
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://docs.soliditylang.org/en/v0.8.16/

150

[103] Fourswords. 2022. Simple Auction Contract. Retrieved August 12,
2022 from https://fourswords.io/docs/smartcontracts/solidity-

guide/solidity-examples/

[104] Fourswords. 2022. Voting Contract. Retrieved August 12, 2022
from https://fourswords.io/docs/smartcontracts/solidity-

guide/solidity-examples/

[105] Anthony C. J. Fox, Michael J. C. Gordon, andMagnus O.Myreen. 2010. Specica-
tion and Verication of ARM Hardware and Software. In Design and Verication
of Microprocessor Systems for High-Assurance Applications, David S. Hardin (Ed.).
Springer, 221–247. https://doi.org/10.1007/978-1-4419-1539-9_8

[106] Nissim Francez. 1983. Product Properties and Their Direct Verication. Acta
Informatica 20 (1983), 329–344. https://doi.org/10.1007/BF00264278

[107] Christopher Frantz and Mariusz Nowostawski. 2016. From Institutions to Code:
Towards Automated Generation of Smart Contracts. In 2016 IEEE 1st Interna-
tional Workshops on Foundations and Applications of Self* Systems (FAS*W),
Augsburg, Germany, September 12-16, 2016, Sameh Elnikety, Peter R. Lewis, and
Christian Müller-Schloer (Eds.). IEEE, 210–215. https://doi.org/10.1109/

FAS-W.2016.53

[108] Tim French. 2001. Decidability of Quantifed Propositional Branching Time Log-
ics. InAI 2001: Advances in Articial Intelligence, 14th Australian Joint Conference
on Articial Intelligence, Adelaide, Australia, December 10-14, 2001, Proceedings.
165–176. https://doi.org/10.1007/3-540-45656-2_15

[109] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. 1980. On the
Temporal Analysis of Fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Las Vegas, Nevada) (POPL
’80). ACM, NewYork, NY, USA, 163–173. https://doi.org/10.1145/567446.

567462

[110] Pietro Galliani and Lauri Hella. 2013. Inclusion Logic and Fixed Point Logic.
In Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy (LIPIcs, Vol. 23), Simona Ronchi Della Rocca (Ed.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 281–295. https://doi.org/10.4230/

LIPIcs.CSL.2013.281

[111] Peter Garamvolgyi, Imre Kocsis, Benjamin Gehl, and Attila Klenik. 2018. To-
wards Model-Driven Engineering of Smart Contracts for Cyber-Physical Sys-
tems. In 48th Annual IEEE/IFIP International Conference on Dependable Systems

https://fourswords.io/docs/smartcontracts/solidity-guide/solidity-examples/
https://fourswords.io/docs/smartcontracts/solidity-guide/solidity-examples/
https://fourswords.io/docs/smartcontracts/solidity-guide/solidity-examples/
https://fourswords.io/docs/smartcontracts/solidity-guide/solidity-examples/
https://doi.org/10.1007/978-1-4419-1539-9_8
https://doi.org/10.1007/BF00264278
https://doi.org/10.1109/FAS-W.2016.53
https://doi.org/10.1109/FAS-W.2016.53
https://doi.org/10.1007/3-540-45656-2_15
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.4230/LIPIcs.CSL.2013.281

151

and Networks Workshops, DSN Workshops 2018, Luxembourg, June 25-28, 2018.
IEEE Computer Society, 134–139. https://doi.org/10.1109/DSN-W.2018.

00052

[112] Gideon Geier, Philippe Heim, Felix Klein, and Bernd Finkbeiner. 2019. Syntroids:
Synthesizing a Game for FPGAs using Temporal Logic Specications. In 2019
Formal Methods in Computer Aided Design, FMCAD 2019, San Jose, CA, USA,
October 22-25, 2019, ClarkW. Barrett and Jin Yang (Eds.). IEEE, 138–146. https:
//doi.org/10.23919/FMCAD.2019.8894261

[113] Malik Ghallab, Dana S. Nau, and Paolo Traverso. 2004. Automated Planning:
Theory and Practice. Elsevier. https://doi.org/10.1016/B978-1-55860-

856-6.X5000-5

[114] Giuseppe De Giacomo, Paolo Felli, Marco Montali, and Giuseppe Perelli. 2021.
HyperLDLf: a Logic for Checking Properties of Finite Traces Process Logs. In
Proceedings of the Thirtieth International Joint Conference on Articial Intelli-
gence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, Zhi-Hua
Zhou (Ed.). ijcai.org, 1859–1865. https://doi.org/10.24963/ijcai.2021/

256

[115] Kurt Gödel. 1930. Die Vollständigkeit der Axiome des Logischen Funktio-
nenkalküls. Monatshefte für Mathematik und Physik 37, 1 (1930), 349–360.
https://doi.org/10.1007/BF01696781

[116] Joseph A. Goguen and José Meseguer. 1982. Security Policies and Security Mod-
els. In 1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April
26-28, 1982. 11–20. https://doi.org/10.1109/SP.1982.10014

[117] Ilya Grishchenko, Matteo Maei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In Prin-
ciples of Security and Trust - 7th International Conference, POST 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Com-
puter Science, Vol. 10804), Lujo Bauer and Ralf Küsters (Eds.). Springer, 243–269.
https://doi.org/10.1007/978-3-319-89722-6_10

[118] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online Detection of Eectively
Callback Free Objects with Applications to smart contracts. Proc. ACM Program.
Lang. 2, POPL (2018), 48:1–48:28. https://doi.org/10.1145/3158136

https://doi.org/10.1109/DSN-W.2018.00052
https://doi.org/10.1109/DSN-W.2018.00052
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.23919/FMCAD.2019.8894261
https://doi.org/10.1016/B978-1-55860-856-6.X5000-5
https://doi.org/10.1016/B978-1-55860-856-6.X5000-5
https://doi.org/10.24963/ijcai.2021/256
https://doi.org/10.24963/ijcai.2021/256
https://doi.org/10.1007/BF01696781
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1145/3158136

152

[119] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.
2020. Spectector: Principled Detection of Speculative Information Flows. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 1–19. https://doi.org/10.1109/SP40000.2020.00011

[120] Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. 2022.
Temporal Team Semantics Revisited. In LICS ’22: 37th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, Christel
Baier and Dana Fisman (Eds.). ACM, 44:1–44:13. https://doi.org/10.1145/

3531130.3533360

[121] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020. Propo-
sitional Dynamic Logic for Hyperproperties. In 31st International Conference on
Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Vir-
tual Conference) (LIPIcs, Vol. 171), Igor Konnov and Laura Kovács (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 50:1–50:22. https://doi.org/10.
4230/LIPIcs.CONCUR.2020.50

[122] Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2021. Au-
tomata and xpoints for asynchronous hyperproperties. Proc. ACM Program.
Lang. 5, POPL (2021), 1–29. https://doi.org/10.1145/3434319

[123] Christopher Hahn. 2021. Logical and Deep Learning Methods for Temporal Rea-
soning. Ph.D. Dissertation. Saarland University, Saarbrücken, Germany. https:
//publikationen.sulb.uni-saarland.de/handle/20.500.11880/32183

[124] Ákos Hajdu and Dejan Jovanovic. 2020. SMT-Friendly Formalization of the So-
lidity Memory Model. In Programming Languages and Systems - 29th European
Symposium on Programming, ESOP 2020, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-
30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075), Peter Müller
(Ed.). Springer, 224–250. https://doi.org/10.1007/978-3-030-44914-8_9

[125] Joseph Y. Halpern and YoramMoses. 1984. Knowledge and Common Knowledge
in a Distributed Environment. In Proceedings of the Third Annual ACM Sympo-
sium on Principles of Distributed Computing, Vancouver, B. C., Canada, August
27-29, 1984, Tiko Kameda, Jayadev Misra, Joseph G. Peters, and Nicola Santoro
(Eds.). ACM, 50–61. https://doi.org/10.1145/800222.806735

[126] Joseph Y. Halpern andMoshe Y. Vardi. 1989. The Complexity of Reasoning about
Knowledge and Time. I. Lower Bounds. J. Comput. Syst. Sci. 38, 1 (1989), 195–237.
https://doi.org/10.1016/0022-0000(89)90039-1

https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.1145/3531130.3533360
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.4230/LIPIcs.CONCUR.2020.50
https://doi.org/10.1145/3434319
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32183
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/32183
https://doi.org/10.1007/978-3-030-44914-8_9
https://doi.org/10.1145/800222.806735
https://doi.org/10.1016/0022-0000(89)90039-1

153

[127] Christian Hammer and Gregor Snelting. 2009. Flow-sensitive, context-sensitive,
and object-sensitive information ow control based on program dependence
graphs. Int. J. Inf. Sec. 8, 6 (2009), 399–422. https://doi.org/10.1007/

s10207-009-0086-1

[128] Miika Hannula and Juha Kontinen. 2016. A Finite Axiomatization of Conditional
Independence and Inclusion Dependencies. Inf. Comput. 249 (2016), 121–137.
https://doi.org/10.1016/j.ic.2016.04.001

[129] Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni Virtema. 2020.
Descriptive Complexity of Real Computation and Probabilistic Independence
Logic. In LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, Saarbrücken, Germany, July 8-11, 2020, Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller (Eds.). ACM, 550–563. https://doi.org/

10.1145/3373718.3394773

[130] Miika Hannula, Juha Kontinen, Jonni Virtema, andHeribert Vollmer. 2018. Com-
plexity of Propositional Logics in Team Semantic. ACM Trans. Comput. Log. 19,
1 (2018), 2:1–2:14. https://doi.org/10.1145/3157054

[131] David Harel and Amir Pnueli. 1984. On the Development of Reactive Systems. In
Logics and Models of Concurrent Systems - Conference proceedings, Colle-sur-Loup
(near Nice), France, 8-19 October 1984 (NATO ASI Series, Vol. 13), Krzysztof R. Apt
(Ed.). Springer, 477–498. https://doi.org/10.1007/978-3-642-82453-1_17

[132] Klaus Havelund and Grigore Rosu. 2002. Synthesizing Monitors for Safety Prop-
erties. In Tools andAlgorithms for the Construction andAnalysis of Systems, 8th In-
ternational Conference, TACAS 2002, Held as Part of the Joint European Conference
on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002,
Proceedings (Lecture Notes in Computer Science, Vol. 2280), Joost-Pieter Katoen
and Perdita Stevens (Eds.). Springer, 342–356. https://doi.org/10.1007/3-

540-46002-0_24

[133] Klaus Havelund and Grigore Rosu. 2004. Ecient Monitoring of Safety Proper-
ties. Int. J. Softw. Tools Technol. Transf. 6, 2 (2004), 158–173. https://doi.org/

10.1007/s10009-003-0117-6

[134] Lauri Hella, Antti Kuusisto, Arne Meier, and Jonni Virtema. 2019. Model check-
ing and Validity in Propositional and Modal Inclusion Logics. J. Log. Comput.
29, 5 (2019), 605–630. https://doi.org/10.1093/logcom/exz008

[135] Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema. 2014. The
Expressive Power of Modal Dependence Logic. In Advances in Modal Logic

https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1145/3157054
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/s10009-003-0117-6
https://doi.org/10.1007/s10009-003-0117-6
https://doi.org/10.1093/logcom/exz008

154

10, invited and contributed papers from the tenth conference on "Advances in
Modal Logic," held in Groningen, The Netherlands, August 5-8, 2014, Rajeev Goré,
Barteld P. Kooi, and Agi Kurucz (Eds.). College Publications, 294–312. http:

//www.aiml.net/volumes/volume10/Hella-Luosto-Sano-Virtema.pdf

[136] Hsi-Ming Ho, Ruoyu Zhou, and Timothy M. Jones. 2019. On Verifying Timed
Hyperproperties. In 26th International Symposium on Temporal Representation
and Reasoning, TIME 2019, October 16-19, 2019, Málaga, Spain (LIPIcs, Vol. 147),
Johann Gamper, Sophie Pinchinat, and Guido Sciavicco (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 20:1–20:18. https://doi.org/10.4230/

LIPIcs.TIME.2019.20

[137] Wilfrid Hodges. 1997. Compositional Semantics for a Language of Imperfect
Information. Log. J. IGPL 5, 4 (1997), 539–563. https://doi.org/10.1093/

jigpal/5.4.539

[138] Tzu-Han Hsu, César Sánchez, and Borzoo Bonakdarpour. 2021. Bounded Model
Checking for Hyperproperties. In Tools and Algorithms for the Construction and
Analysis of Systems - 27th International Conference, TACAS 2021, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 12651), Jan Friso Groote and Kim Guld-
strand Larsen (Eds.). Springer, 94–112. https://doi.org/10.1007/978-3-

030-72016-2_6

[139] Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. 2017. A Logic for Ar-
guing About Probabilities in Measure Teams. Arch. Math. Logic 56, 5-6 (2017),
475–489. https://doi.org/10.1007/s00153-017-0535-x

[140] Swen Jacobs and Roderick Bloem. 2012. Parameterized Synthesis. In Tools and
Algorithms for the Construction and Analysis of Systems - 18th International Con-
ference, TACAS 2012, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings (Lecture Notes in Computer Science, Vol. 7214), Cormac Flanagan and
Barbara König (Eds.). Springer, 362–376. https://doi.org/10.1007/978-3-

642-28756-5_25

[141] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanán, Yang Liu, and Jun
Sun. 2020. Semantic Understanding of Smart Contracts: Executable Opera-
tional Semantics of Solidity. In 2020 IEEE Symposium on Security and Privacy,
SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1695–1712. https:

//doi.org/10.1109/SP40000.2020.00066

http://www.aiml.net/volumes/volume10/Hella-Luosto-Sano-Virtema.pdf
http://www.aiml.net/volumes/volume10/Hella-Luosto-Sano-Virtema.pdf
https://doi.org/10.4230/LIPIcs.TIME.2019.20
https://doi.org/10.4230/LIPIcs.TIME.2019.20
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1093/jigpal/5.4.539
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/978-3-030-72016-2_6
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1007/978-3-642-28756-5_25
https://doi.org/10.1007/978-3-642-28756-5_25
https://doi.org/10.1109/SP40000.2020.00066
https://doi.org/10.1109/SP40000.2020.00066

155

[142] Robert B. Jones, John W. O’Leary, Carl-Johan H. Seger, Mark D. Aagaard, and
Thomas F. Melham. 2001. Practical Formal Verication in Microprocessor De-
sign. IEEE Des. Test Comput. 18, 4 (2001), 16–25. https://doi.org/10.1109/

54.936245

[143] Roope Kaivola. 1997. Using Automata to Characterise Fixed Point Temporal Logics.
Ph.D. Dissertation. University of Edinburgh. College of Science and Engineering.
School of Informatics.

[144] Hans W. Kamp. 1968. Tense Logic and the Theory of Linear Order. Ph.D. Disser-
tation. Computer Science Department, University of California at Los Angeles,
USA.

[145] Thomas Kaplan, Ian Austen, and Selam Gebrekidan. 2019. Boeing Planes Are
Grounded in U.S. After Days of Pressure. Retrieved August 12, 2022 from https:

//www.nytimes.com/2019/03/13/business/canada-737-max.html

[146] Yonit Kesten and Amir Pnueli. 1995. A Complete Proof Systems for QPTL. In
Proceedings, 10th Annual IEEE Symposium on Logic in Computer Science, San
Diego, California, USA, June 26-29, 1995. 2–12. https://doi.org/10.1109/

LICS.1995.523239

[147] Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. 2013. PARTY Parameter-
ized Synthesis of Token Rings. In Computer Aided Verication - 25th Interna-
tional Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-
ings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Hel-
mut Veith (Eds.). Springer, 928–933. https://doi.org/10.1007/978-3-642-

39799-8_66

[148] Ayrat Khalimov, Swen Jacobs, and Roderick Bloem. 2013. Towards Ecient
Parameterized Synthesis. In Verication, Model Checking, and Abstract Interpre-
tation, 14th International Conference, VMCAI 2013, Rome, Italy, January 20-22,
2013. Proceedings (Lecture Notes in Computer Science, Vol. 7737), Roberto Gia-
cobazzi, Josh Berdine, and Isabella Mastroeni (Eds.). Springer, 108–127. https:

//doi.org/10.1007/978-3-642-35873-9_9

[149] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA,
USA,May 19-23, 2019. IEEE, 1–19. https://doi.org/10.1109/SP.2019.00002

https://doi.org/10.1109/54.936245
https://doi.org/10.1109/54.936245
https://www.nytimes.com/2019/03/13/business/canada-737-max.html
https://www.nytimes.com/2019/03/13/business/canada-737-max.html
https://doi.org/10.1109/LICS.1995.523239
https://doi.org/10.1109/LICS.1995.523239
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-35873-9_9
https://doi.org/10.1007/978-3-642-35873-9_9
https://doi.org/10.1109/SP.2019.00002

156

[150] Juha Kontinen, Julian-Steen Müller, Henning Schnoor, and Heribert Vollmer.
2015. A Van Benthem Theorem for Modal Team Semantics. In 24th EACSL An-
nual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin,
Germany (LIPIcs, Vol. 41), Stephan Kreutzer (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 277–291. https://doi.org/10.4230/LIPIcs.CSL.

2015.277

[151] Juha Kontinen and Max Sandström. 2021. On the Expressive Power of TeamLTL
and First-Order Team Logic over Hyperproperties. In Logic, Language, Informa-
tion, and Computation - 27th International Workshop, WoLLIC 2021, Virtual Event,
October 5-8, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13038),
Alexandra Silva, Renata Wassermann, and Ruy J. G. B. de Queiroz (Eds.).
Springer, 302–318. https://doi.org/10.1007/978-3-030-88853-4_19

[152] Andreas Krebs, Arne Meier, and Jonni Virtema. 2015. A Team Based Variant of
CTL. In 22nd International Symposium on Temporal Representation and Reasoning,
TIME 2015, Kassel, Germany, September 23-25, 2015, Fabio Grandi, Martin Lange,
and Alessio Lomuscio (Eds.). IEEE Computer Society, 140–149. https://doi.

org/10.1109/TIME.2015.11

[153] Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. 2018.
Team Semantics for the Specication and Verication of Hyperproperties. In
43rd International Symposium on Mathematical Foundations of Computer Science
(MFCS 2018) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 117),
Igor Potapov, Paul Spirakis, and JamesWorrell (Eds.). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 10:1–10:16. https://doi.org/

10.4230/LIPIcs.MFCS.2018.10

[154] Orna Kupferman andMoshe Y. Vardi. 1999. Model Checking of Safety Properties.
In Computer Aided Verication, 11th International Conference, CAV ’99, Trento,
Italy, July 6-10, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1633),
Nicolas Halbwachs and Doron A. Peled (Eds.). Springer, 172–183. https://

doi.org/10.1007/3-540-48683-6_17

[155] Robert P. Kurshan. 2008. Verication Technology Transfer. Springer Berlin Hei-
delberg, Berlin, Heidelberg. 46–64 pages. https://doi.org/10.1007/978-3-

540-69850-0_3

[156] Antti Kuusisto. 2015. A Double Team Semantics for Generalized Quantiers.
Journal of Logic, Language and Information 24, 2 (2015), 149–191. https://

doi.org/10.1007/s10849-015-9217-4

https://doi.org/10.4230/LIPIcs.CSL.2015.277
https://doi.org/10.4230/LIPIcs.CSL.2015.277
https://doi.org/10.1007/978-3-030-88853-4_19
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1007/3-540-48683-6_17
https://doi.org/10.1007/978-3-540-69850-0_3
https://doi.org/10.1007/978-3-540-69850-0_3
https://doi.org/10.1007/s10849-015-9217-4
https://doi.org/10.1007/s10849-015-9217-4

157

[157] Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. 2018. Formal
Specication and Verication of Smart Contracts for Azure Blockchain. CoRR
abs/1812.08829 (2018). arXiv:1812.08829 http://arxiv.org/abs/1812.08829

[158] Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE
Trans. Software Eng. 3, 2 (1977), 125–143. https://doi.org/10.1109/TSE.

1977.229904

[159] Leslie Lamport. 2002. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley. http://research.microsoft.

com/users/lamport/tla/book.html

[160] Leslie Lamport. 2019. Industrial Use of TLA+. Retrieved August
12, 2022 from https://lamport.azurewebsites.net/tla/industrial-use.

html?unhideBut=hide-amazon&unhideDiv=amazon

[161] Frederic Lardinois. 2017. With Cosmos DB, Microsoft wants to build
one database to rule them all. Retrieved August 12, 2022 from
https://techcrunch.com/2017/05/10/with-cosmos-db-microsoft-

wants-to-build-one-database-to-rule-them-all/

[162] François Laroussinie and Nicolas Markey. 2014. Quantied CTL: Expressiveness
and Complexity. Logical Methods in Computer Science 10, 4 (2014). https:

//doi.org/10.2168/LMCS-10(4:17)2014

[163] Charlie Lee. 2017. Hackers Seize $32 Million in Ethereum in Parity Wallet Breach.
Retrieved August 12, 2022 from https://www.ccn.com/hackers-seize-32-

million-in-parity-wallet-breach/

[164] Czestaw Lejewski. 1959. Time and Modality, By A. N. Prior, Clarendon Press:
Oxford University Press, 1957. Pp. viii 148. Philosophy 34, 128 (1959), 56–59.
https://doi.org/10.1017/S0031819100029776

[165] LeonidAnatolevich Levin. 1973. Universal Sequential Search Problems. Problems
of Information Transmission 9, 3 (1973).

[166] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-
val Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Mem-
ory from User Space. In 27th USENIX Security Symposium, USENIX Secu-
rity 2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and Adri-
enne Porter Felt (Eds.). USENIX Association, 973–990. https://www.usenix.

org/conference/usenixsecurity18/presentation/lipp

http://arxiv.org/abs/1812.08829
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://lamport.azurewebsites.net/tla/industrial-use.html?unhideBut=hide-amazon&unhideDiv=amazon
https://lamport.azurewebsites.net/tla/industrial-use.html?unhideBut=hide-amazon&unhideDiv=amazon
https://techcrunch.com/2017/05/10/with-cosmos-db-microsoft-wants-to-build-one-database-to-rule-them-all/
https://techcrunch.com/2017/05/10/with-cosmos-db-microsoft-wants-to-build-one-database-to-rule-them-all/
https://doi.org/10.2168/LMCS-10(4:17)2014
https://doi.org/10.2168/LMCS-10(4:17)2014
https://www.ccn.com/hackers-seize-32-million-in-parity-wallet-breach/
https://www.ccn.com/hackers-seize-32-million-in-parity-wallet-breach/
https://doi.org/10.1017/S0031819100029776
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp

158

[167] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo Weber,
and Alexander Ponomarev. 2019. Caterpillar: A Business Process Execution En-
gine on the Ethereum Blockchain. Softw. Pract. Exp. 49, 7 (2019), 1162–1193.
https://doi.org/10.1002/spe.2702

[168] Martin Lück. 2020. On the Complexity of Linear Temporal Logic with Team
Semantics. Theor. Comput. Sci. 837 (2020), 1–25. https://doi.org/10.1016/

j.tcs.2020.04.019

[169] Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. 2020. Practical
Synthesis of Reactive Systems from LTL Specications via Parity Games. Acta
Informatica 57, 1-2 (2020), 3–36. https://doi.org/10.1007/s00236-019-

00349-3

[170] Inês Lynce and João Marques-Silva. 2006. Ecient Haplotype Inference with
Boolean Satisability. In Proceedings, The Twenty-First National Conference on
Articial Intelligence and the Eighteenth Innovative Applications of Articial In-
telligence Conference, July 16-20, 2006, Boston, Massachusetts, USA. AAAI Press,
104–109. http://www.aaai.org/Library/AAAI/2006/aaai06-017.php

[171] Benedikt Maderbacher and Roderick Bloem. 2021. Reactive Synthesis Mod-
ulo Theories Using Abstraction Renement. CoRR abs/2108.00090 (2021).
arXiv:2108.00090 https://arxiv.org/abs/2108.00090

[172] Oliver Markgraf, Chih-Duo Hong, Anthony W. Lin, Muhammad Najib, and
Daniel Neider. 2020. Parameterized Synthesis with Safety Properties. In
Programming Languages and Systems - 18th Asian Symposium, APLAS 2020,
Fukuoka, Japan, November 30 - December 2, 2020, Proceedings (Lecture Notes in
Computer Science, Vol. 12470), Bruno C. d. S. Oliveira (Ed.). Springer, 273–292.
https://doi.org/10.1007/978-3-030-64437-6_14

[173] Corto Mascle and Martin Zimmermann. 2020. The Keys to Decidable HyperLTL
Satisability: Small Models or Very Simple Formulas. In 28th EACSL Annual
Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona,
Spain (LIPIcs, Vol. 152), Maribel Fernández and Anca Muscholl (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 29:1–29:16. https://doi.org/

10.4230/LIPIcs.CSL.2020.29

[174] Anastasia Mavridou and Aron Laszka. 2018. Designing Secure Ethereum Smart
Contracts: A Finite State Machine Based Approach. In Financial Cryptography
and Data Security - 22nd International Conference, FC 2018, Nieuwpoort, Curaçao,
February 26 - March 2, 2018, Revised Selected Papers (Lecture Notes in Computer

https://doi.org/10.1002/spe.2702
https://doi.org/10.1016/j.tcs.2020.04.019
https://doi.org/10.1016/j.tcs.2020.04.019
https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/s00236-019-00349-3
http://www.aaai.org/Library/AAAI/2006/aaai06-017.php
https://arxiv.org/abs/2108.00090
https://doi.org/10.1007/978-3-030-64437-6_14
https://doi.org/10.4230/LIPIcs.CSL.2020.29
https://doi.org/10.4230/LIPIcs.CSL.2020.29

159

Science, Vol. 10957), Sarah Meiklejohn and Kazue Sako (Eds.). Springer, 523–540.
https://doi.org/10.1007/978-3-662-58387-6_28

[175] Anastasia Mavridou, Aron Laszka, Emmanouela Stachtiari, and Abhishek
Dubey. 2019. VeriSolid: Correct-by-Design Smart Contracts for Ethereum. In Fi-
nancial Cryptography and Data Security - 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lec-
ture Notes in Computer Science, Vol. 11598), Ian Goldberg and Tyler Moore (Eds.).
Springer, 446–465. https://doi.org/10.1007/978-3-030-32101-7_27

[176] Daryl McCullough. 1988. Noninterference and the Composability of Security
Properties. In Proceedings of the 1988 IEEE Symposium on Security and Privacy,
Oakland, California, USA, April 18-21, 1988. IEEE Computer Society, 177–186.
https://doi.org/10.1109/SECPRI.1988.8110

[177] Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking.
In Computer Aided Verication, 15th International Conference, CAV 2003, Boul-
der, CO, USA, July 8-12, 2003, Proceedings (Lecture Notes in Computer Science,
Vol. 2725), Warren A. Hunt Jr. and Fabio Somenzi (Eds.). Springer, 1–13. https:

//doi.org/10.1007/978-3-540-45069-6_1

[178] RobertMcNaughton and Seymour A. Papert. 1971. Counter-Free Automata (M.I.T.
Research Monograph No. 65). The MIT Press.

[179] George H. Mealy. 1955. A method for synthesizing sequential circuits. The Bell
System Technical Journal 34, 5 (1955), 1045–1079. https://doi.org/10.1002/

j.1538-7305.1955.tb03788.x

[180] Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong,
Gabrielle Fletcher, Ryan Sanayhie, Henry M. Kim, and Marek Laskowski. 2019.
Understanding a Revolutionary and Flawed Grand Experiment in Blockchain:
The DAO Attack. J. Cases Inf. Technol. 21, 1 (2019), 19–32. https://doi.org/

10.4018/JCIT.2019010102

[181] Marvin L. Minsky. 1967. Computation: Finite and Innite Machines. Prentice-
Hall, Inc., USA.

[182] Faron Moller and Alexander Moshe Rabinovich. 1999. On the Expressive Power
of CTL. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento,
Italy, July 2-5, 1999. IEEE Computer Society, 360–368. https://doi.org/10.

1109/LICS.1999.782631

https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1109/SECPRI.1988.8110
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1007/978-3-540-45069-6_1
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.4018/JCIT.2019010102
https://doi.org/10.1109/LICS.1999.782631
https://doi.org/10.1109/LICS.1999.782631

160

[183] David A. Naumann. 2020. Thirty-Seven Years of Relational Hoare Logic: Re-
marks on Its Principles and History. In Leveraging Applications of Formal Meth-
ods, Verication and Validation: Engineering Principles - 9th International Sympo-
sium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece,
October 20-30, 2020, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 12477), Tiziana Margaria and Bernhard Steen (Eds.). Springer, 93–116.
https://doi.org/10.1007/978-3-030-61470-6_7

[184] Zeinab Nehai, Pierre-Yves Piriou, and Frédéric F. Daumas. 2018. Model-
Checking of Smart Contracts. In IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), iThings/GreenCom/CPSCom/SmartData 2018, Halifax, NS,
Canada, July 30 - August 3, 2018. IEEE, 980–987. https://doi.org/10.1109/

Cybermatics_2018.2018.00185

[185] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeu. 2015. How Amazon Web Services Uses Formal Meth-
ods. Commun. ACM 58, 4 (March 2015), 66–73. https://doi.org/10.1145/

2699417

[186] Open Zeppelin. 2022. ERC20 Token System Contract. Retrieved Au-
gust 12, 2022 from https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/9b3710465583284b8c4c5d2245749246bb2e0094/

contracts/token/ERC20/ERC20.sol

[187] Open Zeppelin. 2022. ERC20 Token System Documentation. Retrieved Au-
gust 12, 2022 from https://docs.openzeppelin.com/contracts/2.x/api/

token/erc20

[188] Anton Permenev, Dimitar K. Dimitrov, Petar Tsankov, Dana Drachsler-Cohen,
and Martin T. Vechev. 2020. VerX: Safety Verication of Smart Contracts. In
2020 IEEE Symposium on Security and Privacy, S&P 2020, San Francisco, CA,
USA, May 18-21, 2020. IEEE, 1661–1677. https://doi.org/10.1109/SP40000.
2020.00024

[189] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. 2006. Synthesis of Reactive(1) De-
signs. In Verication, Model Checking, and Abstract Interpretation, 7th Interna-
tional Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006, Proceed-
ings (Lecture Notes in Computer Science, Vol. 3855), E. Allen Emerson and Kedar S.
Namjoshi (Eds.). Springer, 364–380. https://doi.org/10.1007/11609773_24

https://doi.org/10.1007/978-3-030-61470-6_7
https://doi.org/10.1109/Cybermatics_2018.2018.00185
https://doi.org/10.1109/Cybermatics_2018.2018.00185
https://doi.org/10.1145/2699417
https://doi.org/10.1145/2699417
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9b3710465583284b8c4c5d2245749246bb2e0094/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9b3710465583284b8c4c5d2245749246bb2e0094/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/9b3710465583284b8c4c5d2245749246bb2e0094/contracts/token/ERC20/ERC20.sol
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1109/SP40000.2020.00024
https://doi.org/10.1007/11609773_24

161

[190] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October -
1 November 1977. 46–57. https://doi.org/10.1109/SFCS.1977.32

[191] Amir Pnueli and Roni Rosner. 1989. On the Synthesis of a Reactive Module.
In Conference Record of the Sixteenth Annual ACM Symposium on Principles of
Programming Languages, Austin, Texas, USA, January 11-13, 1989. ACM Press,
179–190. https://doi.org/10.1145/75277.75293

[192] Rob Price. 2016. Digital currency Ethereum is cratering because of a $50 million
hack. Retrieved August 12, 2022 from https://www.businessinsider.

com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-

allegedly-stolen-2016-6

[193] Program the Blockchain. 2022. Coin Toss Contract. Retrieved Au-
gust 12, 2022 from https://programtheblockchain.com/posts/2018/03/

16/flipping-a-coin-in-ethereum/

[194] Program the Blockchain. 2022. Crowdfunding Contract. Retrieved Au-
gust 12, 2022 from https://programtheblockchain.com/posts/2018/01/

19/writing-a-crowdfunding-contract-a-la-kickstarter/

[195] Markus N. Rabe. 2016. A Temporal Logic Approach to Information-Flow Con-
trol. Ph.D. Dissertation. Saarland University. http://scidok.sulb.uni-

saarland.de/volltexte/2016/6387/

[196] Michael O. Rabin and Dana S. Scott. 1959. Finite Automata and Their Decision
Problems. IBM J. Res. Dev. 3, 2 (1959), 114–125. https://doi.org/10.1147/

rd.32.0114

[197] J. Richard Büchi. 1966. Symposium onDecision Problems: On aDecisionMethod
in Restricted Second Order Arithmetic. In Logic, Methodology and Philosophy of
Science, Ernest Nagel, Patrick Suppes, and Alfred Tarski (Eds.). Studies in Logic
and the Foundations of Mathematics, Vol. 44. Elsevier, 1–11. https://doi.

org/10.1016/S0049-237X(09)70564-6

[198] John Alan Robinson and Andrei Voronkov (Eds.). 2001. Handbook of Auto-
mated Reasoning. Elsevier and MIT Press. https://doi.org/10.1016/B978-

044450813-3/50000-X

[199] Hartley Rogers. 1987. Theory of Recursive Functions and Eective Computability.
MIT Press, Cambridge, MA, USA.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://www.businessinsider.com/dao-hacked-ethereum-crashing-in-value-tens-of-millions-allegedly-stolen-2016-6
https://programtheblockchain.com/posts/2018/03/16/flipping-a-coin-in-ethereum/
https://programtheblockchain.com/posts/2018/03/16/flipping-a-coin-in-ethereum/
https://programtheblockchain.com/posts/2018/01/19/writing-a-crowdfunding-contract-a-la-kickstarter/
https://programtheblockchain.com/posts/2018/01/19/writing-a-crowdfunding-contract-a-la-kickstarter/
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1016/B978-044450813-3/50000-X
https://doi.org/10.1016/B978-044450813-3/50000-X

162

[200] David M. Russino. 1998. AMechanically Checked Proof of IEEE Compliance of
the Floating Point Multiplication, Division and Square Root Algorithms of the
AMD-K7™ Processor. LMS Journal of Computation and Mathematics 1 (1998),
148–200. https://doi.org/10.1112/S1461157000000176

[201] Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive
Security Analysis. In Proceedings of the 23rd IEEE Computer Security Foundations
Symposium, CSF 2010, Edinburgh, United Kingdom, July 17-19, 2010. IEEE Com-
puter Society, 186–199. https://doi.org/10.1109/CSF.2010.20

[202] Andrei Sabelfeld and David Sands. 2009. Declassication: Dimensions and Prin-
ciples. J. Comput. Secur. 17, 5 (2009), 517–548. https://doi.org/10.3233/

JCS-2009-0352

[203] Shmuel Safra. 1988. On the Complexity of omega-Automata. In 29th Annual
Symposium on Foundations of Computer Science, White Plains, New York, USA,
24-26 October 1988. IEEE Computer Society, 319–327. https://doi.org/10.

1109/SFCS.1988.21948

[204] Shubham Sahai, Pramod Subramanyan, and Rohit Sinha. 2020. Verication
of Quantitative Hyperproperties Using Trace Enumeration Relations. In Com-
puter Aided Verication - 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part I (Lecture Notes in Computer Sci-
ence, Vol. 12224), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, 201–224.
https://doi.org/10.1007/978-3-030-53288-8_11

[205] Katsuhiko Sano and Jonni Virtema. 2019. Characterising Modal Denability of
Team-Based Logics via the Universal Modality. Ann. Pure Appl. Log. 170, 9 (2019),
1100–1127. https://doi.org/10.1016/j.apal.2019.04.009

[206] Naoto Sato, Takaaki Tateishi, and Shunichi Amano. 2018. Formal Requirement
Enforcement on Smart Contracts Based on Linear Dynamic Logic. In IEEE In-
ternational Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Comput-
ing (CPSCom) and IEEE Smart Data (SmartData), iThings/GreenCom/CPSCom/S-
martData 2018, Halifax, NS, Canada, July 30 - August 3, 2018. IEEE, 945–954.
https://doi.org/10.1109/Cybermatics_2018.2018.00181

[207] Sven Schewe and Bernd Finkbeiner. 2007. Bounded Synthesis. In Automated
Technology for Verication and Analysis, 5th International Symposium, ATVA
2007, Tokyo, Japan, October 22-25, 2007, Proceedings (Lecture Notes in Computer
Science, Vol. 4762), Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino, and

https://doi.org/10.1112/S1461157000000176
https://doi.org/10.1109/CSF.2010.20
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.3233/JCS-2009-0352
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/978-3-030-53288-8_11
https://doi.org/10.1016/j.apal.2019.04.009
https://doi.org/10.1109/Cybermatics_2018.2018.00181

163

Yoshio Okamura (Eds.). Springer, 474–488. https://doi.org/10.1007/978-

3-540-75596-8_33

[208] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton
Trunov, and Ken Chan Guan Hao. 2019. Safer smart contract programming
with Scilla. Proc. ACM Program. Lang. 3, OOPSLA (2019), 185:1–185:30. https:

//doi.org/10.1145/3360611

[209] Aravinda Prasad Sistla. 1983. Theoretical Issues in the Design and Verication of
Distributed Systems. Ph.D. Dissertation. Harvard University.

[210] A. Prasad Sistla. 1994. Safety, Liveness and Fairness in Temporal Logic. Formal
Aspects Comput. 6, 5 (1994), 495–512. https://doi.org/10.1007/BF01211865

[211] A. Prasad Sistla and Edmund M. Clarke. 1985. The Complexity of Propositional
Linear Temporal Logics. J. ACM 32, 3 (1985), 733–749. https://doi.org/10.

1145/3828.3837

[212] A. Prasad Sistla, Moshe Y. Vardi, and PierreWolper. 1985. The Complementation
Problem for Büchi Automata with Applications to Temporal Logic (Extended
Abstract). InAutomata, Languages and Programming, 12th Colloquium, Nafplion,
Greece, July 15-19, 1985, Proceedings. 465–474. https://doi.org/10.1007/

BFb0015772

[213] Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare Logic for Verifying k-Safety
Properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016, Chandra Krintz and Emery D. Berger (Eds.). ACM, 57–69. https:

//doi.org/10.1145/2908080.2908092

[214] Rosalie Steier. 1985. Authors. Commun. ACM 28, 1 (Jan. 1985), 1–2. https:

//doi.org/10.1145/2465.314899

[215] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu K. Lahiri, and Isil
Dillig. 2021. SmartPulse: Automated Checking of Temporal Properties in Smart
Contracts. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Fran-
cisco, CA, USA, 24-27 May 2021. IEEE, 555–571. https://doi.org/10.1109/

SP40001.2021.00085

[216] Dmitrii Suvorov and Vladimir Ulyantsev. 2019. Smart Contract Design
Meets State Machine Synthesis: Case Studies. CoRR abs/1906.02906 (2019).
arXiv:1906.02906 http://arxiv.org/abs/1906.02906

https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1007/978-3-540-75596-8_33
https://doi.org/10.1145/3360611
https://doi.org/10.1145/3360611
https://doi.org/10.1007/BF01211865
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/BFb0015772
https://doi.org/10.1007/BFb0015772
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2465.314899
https://doi.org/10.1145/2465.314899
https://doi.org/10.1109/SP40001.2021.00085
https://doi.org/10.1109/SP40001.2021.00085
http://arxiv.org/abs/1906.02906

164

[217] The Anaconda Team. 2019. Understanding and Improving Conda’s perfor-
mance. Anaconda Blog (2019). Retrieved August 12, 2022 from https://www.

anaconda.com/blog/understanding-and-improving-condas-performance

[218] True Suite. 2021. https://www.trufflesuite.com. Accessed: 2021-11-18.

[219] Jouko Väänänen. 2008. Modal Dependence Logic. In New Perspectives on
Games and Interaction, Vol. 4. Amsterdam University Press Amsterdam, 237–
254. https://doi.org/10.5117/9789089640574

[220] Jouko A. Väänänen. 2007. Dependence Logic - A New Approach to Independence
Friendly Logic. London Mathematical Society student texts, Vol. 70. Cambridge
University Press, USA. http://www.cambridge.org/de/knowledge/isbn/

item1164246/?site_locale=de_DE

[221] Moshe Y. Vardi. 2001. Branching vs. Linear Time: Final Showdown. In Tools
and Algorithms for the Construction and Analysis of Systems, 7th International
Conference, TACAS 2001 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings
(Lecture Notes in Computer Science, Vol. 2031), Tiziana Margaria and Wang Yi
(Eds.). Springer, 1–22. https://doi.org/10.1007/3-540-45319-9_1

[222] Moshe Y. Vardi. 2007. Automata-Theoretic Model Checking Revisited. In Ver-
ication, Model Checking, and Abstract Interpretation, 8th International Confer-
ence, VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings (Lecture Notes in
Computer Science, Vol. 4349), Byron Cook and Andreas Podelski (Eds.). Springer,
137–150. https://doi.org/10.1007/978-3-540-69738-1_10

[223] Moshe Y. Vardi. 2009. From Philosophical to Industrial Logics. In Logic and Its
Applications, Third Indian Conference, ICLA 2009, Chennai, India, January 7-11,
2009. Proceedings (Lecture Notes in Computer Science, Vol. 5378), Ramaswamy Ra-
manujam and Sundar Sarukkai (Eds.). Springer, 89–115. https://doi.org/10.
1007/978-3-540-92701-3_7

[224] Moshe Y. Vardi and Pierre Wolper. 1994. Reasoning About Innite Computa-
tions. Inf. Comput. 115, 1 (1994), 1–37. https://doi.org/10.1006/inco.

1994.1092

[225] Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang.
2021. Linear-Time Temporal Logic with Team Semantics: Expressivity and
Complexity. In 41st IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021,
Virtual Conference (LIPIcs, Vol. 213), Mikolaj Bojanczyk and Chandra Chekuri

https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://www.anaconda.com/blog/understanding-and-improving-condas-performance
https://www.trufflesuite.com
https://doi.org/10.5117/9789089640574
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE
https://doi.org/10.1007/3-540-45319-9_1
https://doi.org/10.1007/978-3-540-69738-1_10
https://doi.org/10.1007/978-3-540-92701-3_7
https://doi.org/10.1007/978-3-540-92701-3_7
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1006/inco.1994.1092

165

(Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 52:1–52:17. https:

//doi.org/10.4230/LIPIcs.FSTTCS.2021.52

[226] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2021. oo7: Low-Overhead Defense Against Spectre At-
tacks via Program Analysis. IEEE Trans. Software Eng. 47, 11 (2021), 2504–2519.
https://doi.org/10.1109/TSE.2019.2953709

[227] Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong Pan, Isil Dillig, Cody
Born, Immad Naseer, and Kostas Ferles. 2019. Formal Verication of Workow
Policies for Smart Contracts in Azure Blockchain. In Veried Software. Theories,
Tools, and Experiments - 11th International Conference, VSTTE 2019, New York
City, NY, USA, July 13-14, 2019, Revised Selected Papers (Lecture Notes in Computer
Science, Vol. 12031), Supratik Chakraborty and Jorge A. Navas (Eds.). Springer,
87–106. https://doi.org/10.1007/978-3-030-41600-3_7

[228] Yu Wang, Siddhartha Nalluri, Borzoo Bonakdarpour, and Miroslav Pajic. 2021.
Statistical Model Checking for Hyperproperties. In 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE,
1–16. https://doi.org/10.1109/CSF51468.2021.00009

[229] Microsoft Azure Blockchain Workbench. 2019. Asset Transfer Contract.
Retrieved August 12, 2022 from https://github.com/Azure-Samples/

blockchain/blob/master/blockchain-workbench/application-and-

smart-contract-samples/asset-transfer/ethereum/AssetTransfer.sol

[230] Microsoft Azure Blockchain Workbench. 2021. Asset transfer sample from
the Azure Blockchain Workbench. Retrieved August 12, 2022 from https:

//github.com/Azure-Samples/blockchain/tree/master/blockchain-

workbench/application-and-smart-contract-samples/asset-transfer

[231] Fan Yang and Jouko Väänänen. 2016. Propositional Logics of Dependence. An-
nals of Pure and Applied Logic 167, 7 (2016), 557 – 589. https://doi.org/10.

1016/j.apal.2016.03.003

[232] Fan Yang and Jouko Väänänen. 2017. Propositional Team Logics. Annals of Pure
and Applied Logic 168, 7 (2017), 1406 – 1441. https://doi.org/10.1016/j.

apal.2017.01.007

[233] Steve Zdancewic and Andrew C. Myers. 2003. Observational Determinism
for Concurrent Program Security. In 16th IEEE Computer Security Foundations
Workshop (CSFW-16 2003), 30 June - 2 July 2003, Pacic Grove, CA, USA. 29.
https://doi.org/10.1109/CSFW.2003.1212703

https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52
https://doi.org/10.1109/TSE.2019.2953709
https://doi.org/10.1007/978-3-030-41600-3_7
https://doi.org/10.1109/CSF51468.2021.00009
https://github.com/Azure-Samples/blockchain/blob/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer/ethereum/AssetTransfer.sol
https://github.com/Azure-Samples/blockchain/blob/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer/ethereum/AssetTransfer.sol
https://github.com/Azure-Samples/blockchain/blob/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer/ethereum/AssetTransfer.sol
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/asset-transfer
https://doi.org/10.1016/j.apal.2016.03.003
https://doi.org/10.1016/j.apal.2016.03.003
https://doi.org/10.1016/j.apal.2017.01.007
https://doi.org/10.1016/j.apal.2017.01.007
https://doi.org/10.1109/CSFW.2003.1212703

166

[234] Lantian Zheng and Andrew C. Myers. 2004. Dynamic Security Labels and Non-
interference (Extended Abstract). In Formal Aspects in Security and Trust: Second
IFIP TC1WG1.7Workshop on Formal Aspects in Security and Trust (FAST), an event
of the 18th IFIP World Computer Congress, August 22-27, 2004, Toulouse, France
(IFIP, Vol. 173), Theodosis Dimitrakos and Fabio Martinelli (Eds.). Springer, 27–
40. https://doi.org/10.1007/0-387-24098-5_3

[235] Nejc Zupan, Prabhakaran Kasinathan, Jorge Cuellar, and Markus Sauer. 2020.
Secure Smart Contract Generation Based on Petri Nets. In Blockchain Technology
for Industry 4.0. Springer, Singapore, 73–98. https://doi.org/10.1007/978-

981-15-1137-0_4

https://doi.org/10.1007/0-387-24098-5_3
https://doi.org/10.1007/978-981-15-1137-0_4
https://doi.org/10.1007/978-981-15-1137-0_4

	Introduction
	Reactive Systems and Temporal Logics
	Hyperproperties
	Satisfiability and Synthesis
	Smart Contracts
	Contributions
	Expressiveness of Hyperlogics
	Algorithms for Hyperlogics

	Publications
	Structure of This Thesis

	I The Hierarchy of Hyperlogics
	Preliminaries
	Properties
	Models of Computation
	Definitions of Logics
	Linear-time Logics
	Branching-time Logics
	Linear-time Hyperlogics
	Branching-time Hyperlogics

	An Expressiveness Hierarchy of Hyperlogics
	The Hierarchy of Linear-time Hyperlogics
	HyperQPTL versus FO[<,E]
	S1S[E] versus HyperQPTL
	A Case for HyperQPTL

	TeamLTL in the Linear-time Hierarchy
	Expressive Extensions of TeamLTL
	TeamLTL versus HyperQPTL+
	TeamLTL versus HyperQPTL

	The Hierarchy of Branching-time Hyperlogics

	Satisfiability of Temporal Safety and Temporal Liveness
	Temporal Safety
	Temporal Liveness
	Finding Largest Models
	Algorithm
	Implementation and Experiments

	Related Work

	II Synthesizing Smart Contracts
	Preliminaries
	Reactive Synthesis
	Temporal Stream Logic
	Solidity

	Parameterized Synthesis of Smart Contracts
	Recap: Synthezing Smart Contract State Machines from PastTSL
	Specification
	Synthesis and Translation to Solidity

	Free Choices and Deadlock Detection
	Specifying Smart Contracts with Parameterized PastTSL
	Parameterized TSL
	Parameterized Voting Specification
	ERC20 Token System

	Parameterized PastTSL Synthesis
	Parameterized LTL
	Problem Definition
	Synthesizing Smart Contracts with Parameters
	Limitations in Expressiveness

	Implementation and Evaluation
	Implementation
	Evaluation

	Smart Contract Synthesis Modulo Hyperproperties
	TSL for Hyperproperties
	HyperTSL
	HyperTSLrel

	Specifying Hyperproperties in Smart Contracts
	Synthesis from HyperTSL Specifications
	Realizability of * HyperTSL
	Realizability of * HyperTSL

	Pseudo Hyperproperties
	Combining PastTSL Synthesis with HyperTSL
	Definition of Pseudo Hyperproperties
	Pseudo Hyperproperties in Synthesis

	Resolving Choices with Repair
	Implementation and Experiments

	Related Work
	Discussion
	Conclusions
	Outlook
	Expressiveness
	Algorithms

	Bibliography

