2,229 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Systems multiple molecule drug design with less side-effects via drug data mining and genome-wide data identification

    Get PDF
    BackgroundDrugs fail in the clinic for two main reasons; one is that they do not work and another is that they are not safe. As such, two of the most important steps in developing new drugs should be drug targets identification and side-effect validation.AimsThe identification of drug targets and their restoration of cellular dysfunctions to normal cellular functions with less side-effects are considered as drug design specifications of systems medicine discovery. Since the effect on the normal expression of house-keeping genes and proteins is also considered as a restriction on drug design, the proposed multi-molecules drug strategy might be helpful for systems drug design with less-side effects.Methods By systems biology method, genetic and epigenetic networks (GENs) are constructed to identify network biomarker for drug targets of diseases by genome-wide high throughput data. An integration of computational network- based approach for multiple drug targets with drug data mining is also proposed for systems drug discovery with more precise medicine and less side-effects. Finally, some systematic drug design specifications for drug design are proposed to restore to the normal functions of multiple drug targets with less side-effects.Results A systematic method is introduced to find multiple drug targets based on pathogenic mechanism investigated by network identification through genome-wide high- throughput data. Then a multi-molecule drug design strategy is also proposed to select a set of multi-molecule drugs with less side-effects via drug data mining method.ConclusionSystematic engineering design methods seem applicable to systems drug discovery and design

    Predictive genomics: A cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data

    Full text link
    We discuss a cancer hallmark network framework for modelling genome-sequencing data to predict cancer clonal evolution and associated clinical phenotypes. Strategies of using this framework in conjunction with genome sequencing data in an attempt to predict personalized drug targets, drug resistance, and metastasis for a cancer patient, as well as cancer risks for a healthy individual are discussed. Accurate prediction of cancer clonal evolution and clinical phenotypes will have substantial impact on timely diagnosis, personalized management and prevention of cancer.Comment: 5 figs, related papers, visit lab homepage: http://www.cancer-systemsbiology.org, Seminar in Cancer Biology, 201

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome
    • …
    corecore