4 research outputs found

    Constructing Markov logic networks from first-order default rules

    No full text
    Expert knowledge can often be represented using default rules of the form “if A then typically B”. In a probabilistic framework, such default rules can be seen as constraints on what should be derivable by MAP-inference. We exploit this idea for constructing a Markov logic network M from a set of first-order default rules D, such that MAP inference from M exactly corresponds to default reasoning from D, where we view first-order default rules as templates for the construction of propositional default rules. In particular, to construct appropriate Markov logic networks, we lift three standard methods for default reasoning. The resulting Markov logic networks could then be refined based on available training data. Our method thus offers a convenient way of using expert knowledge for constraining or guiding the process of learning Markov logic networks.status: publishe

    Learning, Probability and Logic: Toward a Unified Approach for Content-Based Music Information Retrieval

    Get PDF
    Within the last 15 years, the field of Music Information Retrieval (MIR) has made tremendous progress in the development of algorithms for organizing and analyzing the ever-increasing large and varied amount of music and music-related data available digitally. However, the development of content-based methods to enable or ameliorate multimedia retrieval still remains a central challenge. In this perspective paper, we critically look at the problem of automatic chord estimation from audio recordings as a case study of content-based algorithms, and point out several bottlenecks in current approaches: expressiveness and flexibility are obtained to the expense of robustness and vice versa; available multimodal sources of information are little exploited; modeling multi-faceted and strongly interrelated musical information is limited with current architectures; models are typically restricted to short-term analysis that does not account for the hierarchical temporal structure of musical signals. Dealing with music data requires the ability to tackle both uncertainty and complex relational structure at multiple levels of representation. Traditional approaches have generally treated these two aspects separately, probability and learning being the usual way to represent uncertainty in knowledge, while logical representation being the usual way to represent knowledge and complex relational information. We advocate that the identified hurdles of current approaches could be overcome by recent developments in the area of Statistical Relational Artificial Intelligence (StarAI) that unifies probability, logic and (deep) learning. We show that existing approaches used in MIR find powerful extensions and unifications in StarAI, and we explain why we think it is time to consider the new perspectives offered by this promising research field
    corecore