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Abstract. Expert knowledge can often be represented using default
rules of the form “if A then typically B”. In a probabilistic framework,
such default rules can be seen as constraints on what should be derivable
by MAP-inference. We exploit this idea for constructing a Markov logic
networkM from a set of first-order default rules D, such that MAP infer-
ence fromM exactly corresponds to default reasoning from D, where we
view first-order default rules as templates for the construction of proposi-
tional default rules. In particular, to construct appropriate Markov logic
networks, we lift three standard methods for default reasoning. The re-
sulting Markov logic networks could then be refined based on available
training data. Our method thus offers a convenient way of using expert
knowledge for constraining or guiding the process of learning Markov
logic networks.

1 Introduction

Markov logic is a popular framework for statistical relational learning [20]. For-
mulas in Markov logic essentially correspond to weighted first-order formulas,
which act as soft constraints on possible worlds. In current applications, the
weights are typically learned from data, while the first-order formulas are either
hand crafted or obtained using standard rule learning methods.

The fact that a domain expert could manually specify (some of) the formu-
las, or could inspect learned formulas, is an important strength of Markov logic.
Unfortunately, the weights associated with these formulas do not have an easily
interpretable meaning. This limits the potential of Markov logic, as it means that
domain experts cannot offer much guidance in terms of how the weights should
be set (e.g. in applications with little or no training data) or cannot verify the
quality of learned weights (e.g. in applications where the quality of the training
data is in doubt). Often, however, Markov logic networks (MLN) are not used
for evaluating probabilities but for finding the most likely truth assignment of
unobserved variables, given the available evidence, i.e. for maximum a posteriori
(MAP) reasoning. In such cases, the precise values of the weights are only rele-
vant inasmuch as they influence the result of MAP queries. In this setting, we can
instead ask for constraints on how MAP reasoning should behave as opposed to
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asking a domain expert to specify weights. For example, the expert could specify
constraints such as “if all we know is that x is a bird, then using MAP reasoning
we should be able to conclude that x can fly”, which is in agreement with the
semantics of the default rule “birds can typically fly” in System P [13, 2].

Thus, a domain expert could be involved in the process of learning an MLN
by providing a set of defaults, which are interpreted as constraints on the ranking
of possible worlds induced by the MLN. Taking this idea one step further, in this
paper, we show how a specific MLN can be constructed from the default rules
provided by the expert. Constructing this MLN requires us to select a specific
probability distribution that is compatible with the defaults. This selection prob-
lem is closely related to the problem of defining the closure of a set of defaults,
which has been widely studied in the field of non-monotonic reasoning [14, 9, 10].
In particular, several proposals to define this closure are based on constructing
a specific probability distribution [4, 10]. As we will show, it is possible to lift
these approaches and thus obtain an efficient and principled way to construct
MLNs that are compatible with a given set of defaults.

To date, the use of expert knowledge for guiding or even replacing weight
learning has only received limited attention. One exception is [17], which con-
structs an MLN based on (potentially inconsistent) conditional probabilities pro-
vided by domain experts. While this can be useful in some applications, it relies
on the ability of experts to provide meaningful probability estimates. However,
humans are notoriously poor at judging likelihood. For example, properties that
are common among the typical elements of a class of objects are often assumed
to be likely in general [22]. Moreover, experts may be able to specify which prop-
erties are most likely to hold, in a given context, without being able to quantify
their likelihood. In such situations, our default-rule-based approach would be
more natural than approaches that force experts to estimate probabilities. On
the other hand, our approach will only provide meaningful results for MAP
queries: numerical input will be difficult to avoid if we want the constructed
MLN to produce satisfactory conditional probability estimates.

This paper is structured as follows. The next section recalls some prelimi-
naries from Markov logic and the non-monotonic reasoning literature. Then in
Section 3 we show how three well-known approaches to non-monotonic reasoning
can be implemented as MAP inference in a particular MLN. By lifting the con-
structions from Section 3, in Section 4 we show how MLNs can be constructed
whose MAP-consequences are compatible with a given set of first-order default
rules. Finally, Section 5 evaluates the performance of the resulting MLNs in a
standard classification task.

2 Background

2.1 Markov logic networks

A Markov logic network (MLN) [20] is a set of weighted formulas (F,wF ), where
F is a classical first-order formula and wF is a real number, intuitively reflecting
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a penalty that is applied to possible worlds that violate F . We will sometimes
also use the notation wF : F to denote the formula (F,wF ). Given a set of
constants C, an MLN M induces the following probability distribution on the
set of possible worlds ω:

pM(ω) =
1

Z
exp

 ∑
(F,wF )∈M

wFnF (ω)

 , (1)

where nF (x) is the number of true groundings of F in the possible world ω, and
Z =

∑
ω p(ω) is a normalization constant to ensure that p can be interpreted

as a probability distribution. Sometimes, formulas (F,wF ) with wF = +∞ are
considered to represent hard constraints. In such cases, we define pM(ω) = 0
for all possible worlds that do not satisfy all of the hard constraints, and only
formulas with a real-valued weight are considered in (1) for the possible worlds
that do.

The main inference task for MLNs which we will consider is full MAP infer-
ence. Given a set of ground literals (the evidence), MAP inferences aims to com-
pute the most probable configuration of all unobserved variables (the queries).
Standard approaches for performing MAP inference include a strategy based on
MaxWalkSAT [20] and a cutting plane based strategy [21, 16]. Given a set of
ground formulas E, we write max(M, E) for the set of most probable worlds of
the MLN that satisfy E. We will also consider the following inference relation,
initially proposed for penalty logic in [7]:

(M, E) `MAP α iff ∀ω ∈ max(M, E) : ω |= α (2)

withM an MLN, α a ground formula and E a set of ground formulas. Note that
(M, E) `MAP α means that the formula α is satisfied in all the most probable
worlds which are compatible with the available evidence.

2.2 Reasoning about default rules in System P

A variety of approaches have been proposed to reason about default rules of
the form “if α then typically β holds”, which we will denote as α |∼β. Most
approaches are based on the idea of defining a preference order over possible
worlds and insisting that β is true in the most preferred (i.e. the most normal)
of the worlds in which α is true [18, 13, 19, 9, 3]. The axioms of System P [13]
capture a set of desirable properties for an inference relation for default rules:

Reflexivity α |∼α
Left logical equivalence If α ≡ α′ and α |∼β then α′ |∼β
Right weakening If β |= β′ and α |∼β then α |∼β′
OR If α |∼ γ and β |∼ γ then α ∨ β |∼ γ
Cautious monotonicity If α |∼β and α |∼ γ then α ∧ β |∼ γ
CUT If α ∧ β |∼ γ and α |∼β then α |∼ γ
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where α ≡ α′ and β |= β′ refer to equivalence and entailment from clas-
sical logic. Note that applying the axioms of System P to a set of defaults
∆ = {α1 |∼β1, ..., αn |∼βn} corresponds to a form of monotonic reasoning about
defaults. However, as the set of consequences that can be obtained in this way is
limited, it is common to consider a non-monotonic inference relation whose set
of consequences is closed under the axioms of System P as well as the following
property:

Rational monotonicity If α |∼β and we cannot derive α |∼¬γ then α∧γ |∼β.

In this paper, we will consider three such inference relations: the rational closure
[19], the lexicographic closure and the maximum entropy closure. A default α |∼β
is tolerated by a set of defaults γ1 |∼ δ1, ..., γm |∼ δm if the classical formula α ∧
β ∧

∧
i(¬γi ∨ δi) is consistent. The rational closure is based on a stratification

∆1, ...,∆k of ∆, where each ∆j contains all defaults α |∼β from ∆ \ (∆1 ∪
...∆j−1) which are tolerated by ∆\(∆1∪ ...∪∆j−1). It can be shown that such a
stratification always exists when ∆ satisfies some natural consistency properties
(see [19] for details). Intuitively, ∆1 contains the most general default rules, ∆2

contains exceptions to the rules in ∆1, ∆3 contains exceptions to the rules in ∆2,
etc. This stratification is known as the Z-ordering. Let j be the smallest index
for which ∆rat

α = {¬α∨β|α |∼β ∈ ∆j ∪ ...∪∆k}∪{α} is consistent. Then α |∼β
is in the rational closure of ∆ if ∆rat

α |= β. When a set of hard rules Γ needs to
be enforced, the Z-ordering can be generalized as follows [3]. Each set ∆j then
contains those defaults α |∼β for which Γ ∪ {α ∧ β} ∪ {¬αi ∨ βi : (αi |∼βi) ∈
∆ \ (∆1 ∪ ... ∪ ∆j−1)}. Finally, we define ∆k = Γ , where ∆1, ...,∆k−1 is the
stratification of ∆ that was obtained.

The rational closure encodes the intuition that in case of conflict, specific
rules should have priority over more generic ones. However, it requires us to
ignore all the defaults in ∆1 ∪ ... ∪ ∆j−1, even defaults which are intuitively
unrelated to this conflict. The lexicographic closure [1] addresses this issue as
follows. For a propositional interpretation ω, we write sat(ω,∆j) for the number
of defaults satisfied by ω, i.e. sat(ω,∆j) = |{α |∼β : (α |∼β) ∈ ∆j , ω |= ¬α ∨
β}|. We say that an interpretation ω1 is lex-preferred over an interpretation ω2,
written ω1 ≺ ω2, if there exists a j such that sat(ω1, ∆j) > sat(ω2, ∆j) while
sat(ω1, ∆i) = sat(ω2, ∆i) for all i > j. The default α |∼β is in the lexicographic
closure of ∆ if β is satisfied in all the most lex-preferred models of α, i.e. ∀ω ∈
JαK : (ω 6|= β)⇒ ∃ω′ ∈ JαK : ω′ ≺ ω, where JαK is a shorthand for {ω : ω |= α}.

Another approach to default reasoning is based on the principle of maximum
entropy [10]. To describe how the maximum-entropy ranking of possible worlds
can be computed, we need some additional terminology. A possible world ω is
said to falsify a rule α |∼β if ω |= α ∧ ¬β and said to verify it if ω |= α ∧ β.
A set of default rules ∆ is said to be a minimal core if for any rule α |∼β,
the set {α |∼¬β} ∪ (∆ \ {α |∼β}) is a consistent set of default rules, meaning
that a Z-ordering of this set exists. Given a minimal core set of defaults ∆, the
maximum-entropy ranking is obtained as follows [10]. Let Γ be the set of rules
tolerated by ∆. For each rule r ∈ Γ , we set κME(r) = 1. While Γ 6= ∆ we repeat
the following steps. Let Ω be the set of models ω which do not falsify any of the
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rules in ∆ \ Γ and verify at least one of these rules. For each model ω ∈ Ω, we
compute κME(ω) =

∑
{κME(α |∼β) : (α |∼β) ∈ Γ, ω |= α ∧ ¬β}. Let ω∗ be the

model in Ω with minimum rank. Each rule α |∼β that is verified by ω∗ is added
to Γ , and its rank is computed as κME(α |∼β) = 1 + κME(ω∗).

3 Encoding ground default theories in Markov logic

It is well-known [14] that any set of defaults ∆ which is closed under the axioms
of System P and rational monotonicity corresponds to a linear ranking κ of
possible worlds, such that α |∼β iff κ(α ∧ β) > κ(α ∧ ¬β), where we write κ(γ)
for a formula γ as an abbreviation for max{κ(ω) : ω |= γ}. Since the ranking κ
can be encoded as a probability distribution, and every probability distribution
on possible worlds can be represented as an MLN, it is clear that there must
exist an MLN M such that (α |∼β) ∈ ∆ iff (M, α) `MAP β. More generally, for
any (i.e. not necessarily closed) set of defaults ∆, there exists an MLN M such
that (M, α) `MAP β iff α |∼β is in the rational closure of ∆, and similar for
the lexicographic and maximum-entropy closures. We now show how the MLNs
corresponding to these three closures can be constructed.

Transformation 1 (Rational closure) Let ∆ be a set of ground default rules
and let Θ be a set of hard constraints (clauses). Let ∆1, ...,∆k be the Z-ordering

of ∆∪Θ. Let the MLNM be defined as follows:
⋃k
i=1({(¬ai∨¬α∨β,∞) : α |∼β ∈

∆i}∪{(ai, 1)}∪{(φ,∞) : φ ∈ Θ})∪
⋃k
i=2{(ai∨¬ai−1,∞)} where ai are auxiliary

literals. Then (M, α) `MAP β iff α |∼β is in the rational closure of (∆,Θ).

Transformation 2 (Lexicographic closure) Let ∆ be a set of ground de-
fault rules and let Θ be a set of hard constraints (clauses). Let ∆1, ...,∆k be

the Z-ordering of ∆ ∪ Θ. Let the MLN M be defined as follows:
⋃k
i=1{(¬α ∨

β, λi) : α |∼β ∈ ∆i} ∪ {(φ,∞) : φ ∈ Θ} where λi = 1 +
∑i−1
j=1 |∆j | · λj for i > 1

and λ1 = 1. Then (M, α) `MAP β iff α |∼β is in the lexicographic closure of
(∆,Θ).

Transformation 3 (Maximum-entropy closure) Let ∆ be a set of ground
default rules and let Θ be a set of hard constraints (clauses). Let κ be weights of
rules corresponding to the maximum-entropy closure of ∆∪Θ. Let the MLN M
be defined as follows: {(¬α ∨ β, κ(α |∼β)) : α |∼β ∈ ∆} ∪ {(φ,∞) : φ ∈ Θ}.
Then (M, α) `MAP β iff α |∼β is in the maximum-entropy closure of (∆,Θ).

Example 1. Consider the default rules∆ = {bird |∼flies, antarctic∧bird |∼¬flies}.
Then M1 = {(¬a1 ∨ ¬bird ∨ flies,∞), (¬a2 ∨ ¬antarctic ∨ ¬bird ∨ ¬flies,
∞), (a1, 1), (a2, 1), (a2 ∨ ¬a1,∞)} is the result of Transformation 1 , and
M2 = {(¬bird ∨ flies, 1), (¬antarctic ∨ ¬bird ∨ ¬flies, 2)} is the result of Trans-
formation 2, which in this example coincides with the result of Transformation
3.
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4 Encoding non-ground default theories in Markov logic

While reasoning with default rules has mostly been studied at the propositional
level, a few authors have considered first-order default rules [8, 12]. Similar as for
probabilistic first-order rules [11], two rather different semantics for first-order
defaults can be considered. On the one hand, a default such as P (x) |∼Q(x)
could mean that the most typical objects that have the property P also have
the property Q. On the other hand, this default could also mean that whenever
P (x) holds for a given x, in the most normal worlds Q(x) will also hold. In other
words, first-order defaults can either model typicality of objects or normality
of worlds [8]. In this paper, we will consider the latter interpretation. Given
that we only consider finite universes (as is usual in the context of MLNs), we
can then see a first order default as a template for propositional defaults. For
example P (x) |∼Q(x) can be seen as a compact notation for a set of defaults
{P (c1) |∼Q(c1), ..., P (cn) |∼Q(cn)}. Note that this approach would not be pos-
sible for first-order defaults that model the typicality of objects.

In particular, the first-order default theories we will consider consist of first-
order logic formulas (hard rules) and default rules of the form α |∼β, where α
is a conjunction of literals and β is a disjunction of literals. Our approach can
be straightforwardly extended to quantified default rules, where the scopes of
quantifiers may be the whole default rules, and not just either the antecedent or
the consequent of a rule. While this could be of interest, we do not consider this
for the ease of presentation.

Definition 1 (Markov logic model of a first-order default theory). Let
(∆,Θ) be a first-order default theory with ∆ the set of default rules and Θ the
set of hard rules. A Markov logic network M is a model of the default logic
theory ∆ ∪ Θ if it holds that: (i) P [X = ω] = 0 whenever ω 6|= Θ, and (ii) for
any default rule α |∼β ∈ ∆ and any grounding substitution θ of the unquantified
variables of α |∼β, either {αθ} ∪ Θ ` ⊥ or (M, αθ) `MAP βθ. We say that
(∆,Θ) is satisfiable if it has at least one model.

Below we will describe three methods for constructing Markov logic models of
first-order default theories, generalizing Transformations 1–3. For convenience,
we will use typed formulas (nevertheless, we will assume that default rules given
on input are not typed for simplicity). For instance, when we have the formula
α = owns(person : X, thing : Y ) and the set of constants of the type person is
{alice, bob} and the set of constants of the type thing is {car} then α corresponds
to the ground formulas owns(alice, car) and owns(bob, car). In cases where there
is only one type, we will not write it explicitly. For a constant or variable x, we
write τ(x) to denote its type. Two formulas F1 and F2 (either both conjunctions
or both disjunctions of literals) are said to be isomorphic when there is an
injective substitution θ of the variables of F1 such that F1θ ≡ F2 (where ≡
denotes logical equivalence). Two default rules D1 = α1 |∼β1 and D2 = α2 |∼β2
are said to be isomorphic, denoted D1 ≈ D2, if there exists a substitution θ
of the variables of D1 such that α1θ ≡ α2 and β1θ ≡ β2. Two default theories
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∆1 ∪Θ1 and ∆2 ∪Θ2 are said to be isomorphic, denoted by ∆1 ∪Θ1 ≈ ∆2 ∪Θ2,
if there is a bijection i from elements of ∆1 ∪ Θ1 to elements of ∆2 ∪ Θ2 such
that for any F ∈ ∆1 ∪ Θ1, i(F ) ≈ F . When j is a permutation of a subset of
constants from ∆ ∪ Θ then j(∆ ∪ Θ) denotes the default theory obtained by
replacing any constant c from the subset by its image j(c).

Definition 2 (Interchangeable constants). Let ∆ ∪ Θ be a non-ground de-
fault theory. A set of constants C is said to be interchangeable in ∆ ∪ Θ if
j(∆ ∪Θ) ≈ ∆ ∪Θ for any permutation j of the constants in C.

The set of maximal interchangeable subsets of a set of constants is the uniquely
defined partition of this set and will be called the interchangeable partition. To
check whether a set of constants C is interchangeable, it is sufficient to check
that j(∆ ∪ Θ) ≈ ∆ ∪ Θ for those permutations which swap just two constants
from C. Note that the constants do not actually need to appear in ∆ ∪ Θ. It
trivially holds that constants which do not appear in ∆∪Θ are interchangeable.
When I = {C1, . . . , Cn} is the interchangeable partition of a set of constants then
we may introduce a new type typelexmin(Ci) for every Ci ∈ I (where lexmin(C)
denotes the lexically3 smallest element from C ). When D = α |∼β is a ground
default rule, we write variabilize(D) to denote the following default rule:

∧
{Vc 6=

Vd : c, d ∈ const(D), τ(c) = τ(d)}∧α′ |∼β′ where const(D) is the set of constants
appearing in D and α′ and β′ are obtained from α and β by respectively replacing
all constants c by a new variable Vc of type τ(c). Here 6= is treated as a binary
predicate which is defined in the set of hard rules Θ.

Let C be a set of constants and let I = {C1, . . . , Cn} be the interchange-
able partition of the constants from C. Two ground default rules α1 |∼β1 and
α2 |∼β2 are said to be weakly isomorphic w.r.t. I if variabilize(α1 |∼β1) and
variabilize(α2 |∼β2) are isomorphic4.

Definition 3 (Ground representatives). Let D = α |∼β be a default rule
and let I = {C1, . . . , Cn} be the interchangeable partition of constants. A set
of ground representatives of D w.r.t. I is a maximal set of groundings of D
by constants from

⋃
Ci∈I Ci such that no two of these groundings are weakly

isomorphic w.r.t. I. (If α |∼β is typed then we only consider groundings which
respect the typing of variables.)

A set of ground representatives of a default rule D = α |∼β can be constructed
in time O(|I||D|). While this is exponential in the size of the default rule (which
is usually small), it is only polynomial in the number of classes in the inter-
changeable partition I and does not depend on the total number of constants.

Let ∆ ∪ Θ be a first-order default theory and C a set of constants. Let R =⋃
α |∼ β∈∆Rα |∼ β where Rα |∼ β denotes a set of ground representatives of α |∼β.

The rational closure for the first-order default theory is based on the partition5

3 Here, we are just ordering the constants by the lexical ordering of their names.
4 We will omit “w.r.t. I” when it is clear from the context.
5 With a slight abuse of terminology, we will call ∆∗

1 ∪ · · · ∪∆∗
k the partition of ∆∪Θ

even though it is strictly speaking only a partition of ∆∗.
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∆∗1 ∪ ... ∪∆∗k of the set

∆∗ = {variabilize(α |∼β) : α |∼β ∈ R and {α} ∪Θ 6` ⊥}

where ∆∗j is the set of default rules variabilize(α |∼β) ∈ ∆∗ \ (∆∗1 ∪ · · · ∪∆∗j−1)
such that

{α ∧ β} ∪ {¬αi ∨ βi : (αi |∼βi) ∈ ∆∗ \ (∆∗1 ∪ ... ∪∆∗j−1)} ∪Θ (3)

has a model with Herbrand universe C. When all rules α′ |∼β′ from the set

∆∗α |∼ β = {variabilize(α′ |∼β′) : α′ |∼β′ is a ground representative of α |∼β},

are contained in the same partition class ∆∗j then we can simplify ∆∗j by setting
∆∗j := ∆∗j ∪ {α |∼β} \∆∗α |∼ β . Furthermore, note that checking the existence of
Herbrand models can be carried out using cutting-plane inference which means
that it is seldom needed to ground the set of default rules completely. We can
now present the lifted counterparts to Transformations 1–3.

Transformation 4 (Lifted rational closure) Let ∆ be a set of default rules
and let Θ be a set of hard constraints. Let ∆∗1 ∪ · · · ∪ ∆∗k be the partition of

∆∪Θ, defined by (3). Let the MLN M be defined as follows:
⋃k
i=1{(¬ai ∨¬α∨

β,∞) : α |∼β ∈ ∆∗i } ∪ {(ai, 1)} ∪ {(φ,∞) : φ ∈ Θ} ∪ {(ai ∨ ¬ai−1,∞)} where ai
are auxiliary (ground) literals. If (∆,Θ) is satisfiable then M is a Markov logic
model of (∆,Θ).

Transformation 5 (Lifted lexicographic entailment) Let ∆ be a set of de-
fault rules, let Θ be a set of hard constraints, and let U be the considered set of
constants. Let ∆∗1 ∪ · · · ∪ ∆∗k be the partition of ∆ ∪ Θ, defined by (3). Let the

MLNM be defined as follows:
⋃k
i=1{(¬α∨β, λi) : α |∼β ∈ ∆i}∪{(φ,∞) : φ ∈ Θ}

where λi = 1+
∑i−1
j=1

∑
α |∼ β∈∆∗

j
|U||vars(α |∼ β)| ·λj for i > 1 and λ1 = 1. If (∆,Θ)

is satisfiable then M is a Markov logic model of (∆,Θ).

Note that lexicographic entailment may lead to MLNs with very large weights.6

Next, we describe a lifted variant of maximum-entropy entailment. Let ∆∪Θ
be a first-order default theory and I the interchangeable partition of constants
from a given set C. Let ∆∗1 ∪ · · · ∪∆∗k be the partition of ∆∪Θ, defined as in (3)
(without the simplification of merging default rules), and let Γ := ∆∗1. First, we
construct an MLN M containing the rules from Γ and set their weights equal
to 1. For every ∆∗j with j > 1, while ∆∗j 6⊆ Γ , we repeat the following steps.
We construct a new MLN M′ by adding to the MLN M all rules from the set
{¬α∨β : α |∼β ∈ (∆∗j∪. . . ∆∗k)\Γ} as hard constraints (i.e. with infinite weights).
For every α |∼β ∈ ∆∗j \ Γ , we construct its ground representative α′ |∼β′ (note

6 Although existing MLN systems are not able to work with weights as large as are
sometimes produced, due to numerical issues, we have implemented an MLN system
based on cutting-plane MAP inference which can work with arbitrarily large weights.
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that there is only one ground representative up to isomorphism for any rule in
∆∗j , which follows from the construction of ∆∗j ) and we find a most probable
world ωα |∼ β of (M′, α′); let us write pα |∼ β for its penalty, i.e. the sum of the
weights of the violated rules. Note that ωα |∼ β verifies the default rule α |∼β and
only falsifies rules in Γ , exactly as in the propositional version of the maximum-
entropy transformation. We then select the rules α |∼β with minimum penalty
pα |∼ β , add them to Γ and to the MLN M with the weight set to 1 + pα |∼ β . If
M′ does not have any models, the initial set of defaults cannot be satisfiable,
and we end the procedure.

Transformation 6 (Lifted maximum-entropy entailment) Let ∆ be a set
of default rules, let Θ be a set of hard constraints, and let U be the considered set
of constants. Let M be the MLN obtained in the last iteration of the procedure
described above. If (∆,Θ) is satisfiable thenM is a Markov logic model of (∆,Θ).

Example 2. Let us consider the following defaults:

bird(X) |∼flies(X) bird(X) ∧ antarctic(X) |∼¬flies(X)

bird(X) ∧ antarctic(X) ∧ (X 6= Y ) ∧ sameSpecies(X,Y ) |∼ antarctic(Y )

Let the set of constants be given by C = {tweety, donald, beeper}. Then the
lexicographic transformation yields the MLN {(φ1, 1), (φ2, 4), (φ3, 4)} while the
maximum entropy transformation yields {(φ1, 1), (φ2, 2), (φ3, 3)}, where φ1 =
¬bird(X)∨flies(Y ), φ2 = ¬bird(X)∨¬sameSpecies(X,Y )∨¬(X 6= Y )∨¬bird(Y )∨
¬antarctic(X) ∨ antarctic(Y ) and φ3 = ¬bird(X) ∨ ¬antarctic(X) ∨ ¬flies(X).

As the next example illustrates, it is sometimes necessary to split the initial
default rules into several typed specializations.

Example 3. Consider the following defaults: bird(X) ∧ (X 6= tweety) |∼flies(X),
bird(X) ∧ antarctic(X) |∼¬flies(X) and bird(X) ∧ antarctic(X) ∧ (X 6= Y ) ∧
sameSpecies(X,Y ) |∼ antarctic(Y ). Then the lexicographic transformation yields
the MLN {(φ1, 1), (φ2, 1), (φ3, 7), (φ4, 7)}, where:

φ1 =¬bird(τtweety : X) ∨ ¬antarctic(τtweety : X) ∨ ¬flies(τtweety : X),

φ2 =¬bird(τbeeper : X) ∨ ¬(τbeeper : X 6= τtweety : tweety) ∨ flies(τbeeper : X),

φ3 =¬bird(τbeeper : X) ∨ ¬antarctic(τbeeper : X) ∨ ¬flies(τbeeper : X),

φ4 =¬bird(X) ∨ ¬sameSpecies(X,Y ) ∨ ¬(X 6= Y ),¬bird(Y ) ∨ ¬antarctic(X)

Note that the transformation had to introduce new types corresponding to the
interchangeable sets of constants {{tweety}, {beeper, donald}}. The rule φ4 was
created by merging rules with different typing, which was made possible by
the fact that all the respective differently typed rules ended up with the same
weights. The maximum entropy transformation leads to six such rules.
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5 Evaluation

In this section we describe experimental evaluation of the methods presented
in this paper. The implementation of the described methods is available for
download7.

We have evaluated the proposed methods using the well-known UW-CSE
dataset, which describes the Department of Computer Science and Engineer-
ing at the University of Washington [20]. The usual task is to predict the
advisedBy(person, person) predicate from the other predicates. A set of rules
for this domain has previously been collected for the experiments in [20]. These
rules, however, cannot be used as default rules because they are not satisfiable
in the sense of Definition 1. Therefore, in order to evaluate our method, we have
used the following consistent set of default rules.

D1 : |∼¬advisedBy(S,P)

D2 : advisedBy(S,P1) |∼¬tempAdvisedBy(S,P2)

D3 : advisedBy(S,P) ∧ publication(Pub,S) |∼ publication(Pub,P)

D4 : (P1 6= P2) ∧ advisedBy(S,P1) |∼¬advisedBy(S,P2)

D5 : advisedBy(S,P) ∧ ta(C,S,T) |∼ taughtBy(C,P,T)

D6 : professor(P) ∧ student(S) ∧ publication(Pub,P) ∧ publication(Pub,S)

|∼ advisedBy(S,P)

D7 : professor(P) ∧ student(S) ∧ publication(Pub,P) ∧ publication(Pub,S)∧
tempAdvisedBy(S,P2) |∼¬advisedBy(S,P)

D8 : (S1 6= S2) ∧ advisedBy(S2,P) ∧ ta(C,S2,T) ∧ ta(C,S1,T)∧
taughtBy(C,P,T) ∧ student(S1) ∧ professor(P) |∼ advisedBy(S1,P)

D9 : (S1 6= S2) ∧ advisedBy(S2,P) ∧ ta(C,S2,T) ∧ ta(C,S1,T)∧
taughtBy(C,P,T) ∧ student(S1) ∧ professor(P) ∧ tempAdvisedBy(S1,P2)

|∼¬advisedBy(S1,P)

Recall that default rules α |∼β in our setting correspond to statements of the
form: for any grounding substitution θ, βθ is true in all most probable worlds of
(M, αθ). Thus the default rules α |∼β we consider should be such that an expert
believes that αθ being the only evidence, it would make sense to conclude βθ.
Seen with this perspective in mind, rule D1 states that in absence of any knowl-
edge, we assume that persons S and P are not in the advisedBy relationship.
Rule D2 states that if we only know that S has an advisor then we conclude that
S does not have a temporary advisor. Rule D3 states that advisors are typically
co-authors of their students’ papers. Rule D4 states that students typically only
have one advisor. The rest of the rules can be interpreted similarly. Note that
rules D7 and D9 encode exceptions to rules D6 and D8.

7 https://github.com/supertweety/mln2poss
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MaxEnt LEX ONES LEARNED
TP FP TP FP TP FP TP FP

AI 10± 0 7± 0 10± 0 7± 0 8.6± 0.7 4.9± 0.9 10± 0 2± 0
GRA. 4± 0 5± 0 4± 0 5± 0 3.5± 0.7 3.9± 0.7 2± 0 2± 0
LAN. 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 0 1± 0
SYS. 10.5± 0.5 3.5± 0.5 11± 0 3± 0 7.2± 1.1 2.4± 0.5 4± 0 0± 0
THE. 3± 0 3± 0 3± 0 3± 0 3± 0 1.7± 0.7 2± 0 1± 0

Table 1. Experimental results for MLNs obtained by the described methods (the
numbers represent absolute counts).

We computed the lexicographic and maximum-entropy transformations of
these rules using our implementation of the described methods.8 We evaluated
the obtained MLNs on the five different subject areas of the UW-CSE dataset,
which is the standard methodology. Specifically, we computed the average num-
ber of true positives and false positives9 for the advisedBy predicate over 10 runs
of MAP inference, noting that the results can depend on the specific MAP state
that is returned. For comparison, we have used an MLN with the same set10 of
rules but with weights learned discriminatively using Tuffy [15] (LEARNED),
and an MLN with the same set of rules but with all weights set to 1 (ONES).
The results are shown in Table 1. The maximum entropy and lexicographic en-
tailment have highest recall but at the cost of also having a higher number of
false positives. Note that the number of pairs which can potentially be in the
advisedBy relationship is in the order of hundreds or even thousands but the
true number of pairs of people in this relationship is in the order of just tens.
The baseline method ONES has largest variance.

6 Conclusion

We have discussed the problem of constructing a Markov logic network (MLN)
from a set of first-order default rules, where default rules are seen as constraints
on what should be derivable using MAP inference. The proposed construc-
tion methods have been obtained by lifting three well-known methods for non-
monotonic reasoning about propositional default rules: the rational closure, the

8 Our implementation is based on a cutting-plane inference method for MAP inference
implemented using the SAT4J library [5] and the MLN system Tuffy [15].

9 Note that using AUC as an evaluation metric would not make sense in this case be-
cause of the way the MLNs are constructed by our approach. The construction can
produce MLNs which make sensible predictions when used together with MAP in-
ference but which do not have to be meaningful for the given datasets as probability
distributions. After all, our MLN construction methods do not assume any informa-
tion from which the probabilities could be inferred, except qualitative information
on rankings of possible worlds expressed by default rules.

10 We had to remove D3 for efficiency reasons, though.
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lexicographic closure and the maximum-entropy closure. As our evaluation with
the UW-CSE dataset illustrates, our method can be used to construct useful
MLNs in scenarios where no training data is available. In the future, we would
like to explore the connections between our proposed lifted transformations and
the lifted inference literature. For example, identifying interchangeable constants
is known as shattering in lifted inference [6].

Acknowledgement. We thank the anonymous reviewers for their detailed com-
ments. This work has been supported by a grant from the Leverhulme Trust
(RPG-2014-164).

A Proofs

Here we provide formal justifications for the transformations presented in this
paper11. We start by proving correctness of the ground transformations.

Proposition 1. Let ∆ be a set of default rules. Let ∆rat, ∆lex and ∆ent be
the rational, lexicographic and maximum entropy closure of ∆, respectively. Let
Mrat, Mlex and Ment be Markov logic networks obtained from ∆ by Transfor-
mation 1, 2 and 3, respectively. Then the following holds for any default rule
α |∼β:

1. α |∼β ∈ ∆rat if and only if (Mrat, {α}) `MAP β,
2. α |∼β ∈ ∆lex if and only if (Mlex, {α}) `MAP β,
3. α |∼β ∈ ∆ent if and only if (Ment, {α}) `MAP β.

Proof. Throughout the proof, let ∆ = ∆1 ∪∆2 ∪ · · · ∪∆k be the Z-ordering of
∆.

1. Let α |∼β ∈ ∆rat be a default rule. Let j be the smallest index such that
∆rat
α = {¬γ∨δ|γ |∼ δ ∈ ∆j∪...∪∆k}∪{α} is consistent. Recall that α |∼β ∈ ∆rat

if and only if ∆rat
α |= β. By the construction of the MLNMrat it must hold that

(Mrat, {α}) `MAP ¬ai for every i < j and also (Mrat, {α}) `MAP ai for all i ≥ j.
Therefore all ¬α∨β, such that α |∼β ∈ ∆i where i ≥ j, must be true in all most
probable worlds of (Mrat, {α}). But then necessarily we have: if ∆rat

α |= β then
(Mrat, {α}) `MAP β. Similarly, to show the other direction of the implication,
let us assume that (Mrat, {α}) `MAP β. Then we can show using basically the
identical reasoning as for the other direction that the set of formulas ¬α ∨ β
which must be satisfied in all most probable worlds of (Mrat, {α}) is equivalent
to the set of formulas in ∆rat

α .
2. It holds that α |∼β ∈ ∆lex if and only if β is true in all lex-preferred

models of α, i.e. ∀ω ∈ JαK : (ω 6|= β) ⇒ ∃ω′ ∈ JαK : ω′ ≺ ω where ≺ is the lex-
preference relation based on Z-ordering defined in Section 2.2. What we need to
show is that for any possible worlds ω, ω′ it holds ω ≺ ω′ if and only PMlex(ω) >
PMlex(ω′) where PMlex is the probability given by the MLN Mlex, from which

11 For brevity we omit hard rules here because generalizations of the proofs to involve
hard rules are rather straightforward, but a bit too verbose.
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correctness of the lexicographic transformation will follow. But this actually
follows immediately from the way we set the weights in Transformation 2, as the
penalty for not satisfying one formula corresponding to a default rule in ∆i is
greater than the sum of penalties for not satisfying all formulas corresponding
to the default rules in

⋃
j<i∆j .

3. This follows directly from the results in the paper [10] in which maximum
entropy closure was introduced. An explicit ranking function on possible worlds
was derived in that paper, which we explicitly use in the transformation.

Next we show correctness of the non-ground transformations. We start by
proving properties of the non-ground counterpart of Z-ordering.

Proposition 2. Let ∆∗ be a default theory and C be a set of constants (uni-
verse). Let ∆ be the set of groundings12 of default rules from ∆∗. Let ∆ =
∆1∪· · ·∪∆k be Z-ordering of the set of ground default rules ∆. Let ∆∗1∪· · ·∪∆∗k
be as defined by Eq. 3. Then a ground default rule α |∼β is in ∆i if and only if
a rule isomorphic to variabilize(α |∼β) is in ∆∗i .

Proof. (Sketch) This proposition follows from the simple observation that Eq.
3 is equivalent to checking whether the ground default rule α |∼β is tolerated
by the set of groundings of the default rules γ |∼ δ ∈ ∆∗ \ (∆∗1 ∪ · · · ∪ ∆∗j−1)

(because we explicitly ask there about existence of a Herbrand model13 with
universe C). Since the answer, whether it is tolerated or not, must be the same
for every default rule weakly isomorphic to α |∼β, it follows that this is equivalent
to checking this condition for all groundings of variabilize(α |∼β), which must
then necessarily give us an equivalent result to what we would obtain by Z-
ordering performed on the explicitly enumerated groundings. The statement of
the proposition then follows from this.

In other words, what the above proposition states, is that if we replace non-
ground rules in the particular ∆∗i ’s by all their groundings then this partitioning
of ground default rules must be equivalent to what we would obtain by directly
Z-ordering the ground default rules in the set R.

Proposition 3. Let ∆∗ be a set of non-ground default rules and C be a set of
constants (universe). Let ∆rat, ∆lex and ∆ent be the rational, lexicographic and
maximum entropy closure, respectively, of the set of default rules obtained by
grounding ∆∗. Let Mrat, Mlex and Ment be Markov logic networks obtained
from ∆∗ by Transformation 4, 5 and 6, respectively. Then the following holds
for any ground default rule α |∼β:

1. α |∼β ∈ ∆rat if and only if (Mrat, {α}) `MAP β,

12 Recall that the formulas in ∆∗ are typed according to interchangeability of constants.
The groundings must respect the typing information. This will be the case whenever
we speak of groundings in this section.

13 However, this does not mean that we need to ground this theory completely in order
to solve it, e.g. by using cutting plane inference we can avoid the need to ground it
completely.
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2. α |∼β ∈ ∆lex if and only if (Mlex, {α}) `MAP β,
3. α |∼β ∈ ∆ent if and only if (Ment, {α}) `MAP β.

Proof. 1. This case follows from Proposition 1 and Proposition 2 by noticing
that the constructed MLNs, when grounded, are the same as what the ground
Transformation 1 would produce if applied on all groundings of default rules
from ∆∗.

2. From Proposition 2 we have that, if we ground the MLN produced by
Transformation 5, then the structure of the MLN will be identical to what we
would obtain if we applied Transformation 2 on all groundings of default rules
from ∆∗. While the weights of the formulas are not the same, it is still guaranteed
that ω ≺ ω′ if and only PMlex(ω) > PMlex(ω′), where ≺ is the lex-preference
relation. This is because the term |C||vars(α |∼ β)|, which is used to define the
weights in Transformation 5, is an upper bound on the number of groundings
of a default rule α |∼β (this implies that the sum of all weights of groundings
of formulas in the MLN which correspond to default rules from

⋃
i<j ∆i will be

smaller than the weight of a single formula corresponding to a default rule from
∆j which is what we need).

3. (Sketch) To show the last part of this proposition, we would basically
need to replicate a more detailed reasoning from the proof of Proposition 2
because maximum entropy closure needs to create a partitioning of the set of
default rules which refines Z-ordering. Since no new ideas are needed for this
proof and because of space limitations, we omit details. The basic idea is the
same as for the non-ground Z-ordering – we only process representatives of the
non-ground default rules and we can show that we would obtain an equivalent
result if we processed all groundings of the default rules by the procedure from
Transformation 3.
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