29 research outputs found

    Micro-, Meso- and Macro-Connectomics of the Brain

    Get PDF
    Neurosciences, Neurolog

    Phantoms for diffusion-weighted imaging and diffusion tensor imaging quality control: a review and new perspectives

    Get PDF
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQIntroduction: Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) combine magnetic resonance imaging (MRI) techniques and diffusion measures. In DWI, the contrast is defined by microscopic motion of water protons. Nowadays, DWI has become important for early diagnostic of acute stroke. DTI images are calculated from DWI images acquired in at least six directions, which give information of diffusion directionality, making it possible to reconstruct axonal or muscle fiber images. Both techniques have been applied to study body structures in healthy and pathological conditions. Currently, it is known that these images and derived parameters are quite sensitive to factors related to acquisition and processing. Magnetic field inhomogeneity, susceptibility, chemical shift, radiofrequency (RF) interference, eddy currents and low signal-to-noise ratio (SNR) can have a more harmful effect in diffusion data than in T1- or T2-weighted image data. However, even today there are not reference phantoms and guidelines for DWI or DTI quality control (QC). Review: Proposals for construction and use of DWI and DTI QC phantoms can be found in literature. DWI have been evaluated using containers filled by gel or liquid with tissue-like MRI properties, as well as using microfabricated devices. DTI acquisitions also have been checked with these devices or using natural or artificial fiber structures. The head phantom from American College of Radiology (ACR) is also pointed out as an alternative for DTI QC. This article brings a discussion about proposed DWI and DTI phantoms, challenges involved and future perspectives for standardization of DWI and DTI QC.332156165FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ2013/07559-3310860/2014-

    Improving the Tractography Pipeline: on Evaluation, Segmentation, and Visualization

    Get PDF
    Recent advances in tractography allow for connectomes to be constructed in vivo. These have applications for example in brain tumor surgery and understanding of brain development and diseases. The large size of the data produced by these methods lead to a variety problems, including how to evaluate tractography outputs, development of faster processing algorithms for tractography and clustering, and the development of advanced visualization methods for verification and exploration. This thesis presents several advances in these fields. First, an evaluation is presented for the robustness to noise of multiple commonly used tractography algorithms. It employs a Monte–Carlo simulation of measurement noise on a constructed ground truth dataset. As a result of this evaluation, evidence for obustness of global tractography is found, and algorithmic sources of uncertainty are identified. The second contribution is a fast clustering algorithm for tractography data based on k–means and vector fields for representing the flow of each cluster. It is demonstrated that this algorithm can handle large tractography datasets due to its linear time and memory complexity, and that it can effectively integrate interrupted fibers that would be rejected as outliers by other algorithms. Furthermore, a visualization for the exploration of structural connectomes is presented. It uses illustrative rendering techniques for efficient presentation of connecting fiber bundles in context in anatomical space. Visual hints are employed to improve the perception of spatial relations. Finally, a visualization method with application to exploration and verification of probabilistic tractography is presented, which improves on the previously presented Fiber Stippling technique. It is demonstrated that the method is able to show multiple overlapping tracts in context, and correctly present crossing fiber configurations

    Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping

    Get PDF
    To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks

    Metabolic and Blood Flow Properties of Functional Brain Networks Using Human Multimodal Neuroimaging

    Get PDF
    The brain has a high energetic cost to support neuronal activity, requiring both oxygen and glucose supply from the cerebral vascular system. Additionally, the brain functions through complex patterns of interconnectivity between neuronal assemblies giving rise to functional network architectures that can be investigated across multiple spatial scales. Different brain regions have different roles and importance within these network architectures, with some regions exhibiting more global importance by being involved in cross-network communication while other being predominantly involved in local connections. There are indications that regions exhibiting a more global role in inter networks connectivity are characterized by a higher and more efficient metabolic profile, leading to differences in metabolic properties when compared to more locally connected regions. Understanding the link between oxygen/glucose metabolism and functional features of brain network architectures, across different spatial scales, is of primary importance. This thesis consists of three original studies combining human brain resting-state multimodal neuroimaging and transcriptional data to investigate the glucose/oxygen metabolic costs of brain functional connectivity. We quantified glucose metabolism from positron emission tomography, and oxygen metabolism and functional connectivity from magnetic resonance imaging. In the first study, we highlight how the oxygen/glucose metabolism of brain regions can non-linearly relate to their functional hubness, within the resting-state networks of the brain across a nested hierarchy. We found that an increase in oxygen/glucose metabolism is associated with a non-linear increase in functional hubness where increase rates are both network- and scale-dependent. In the second study, we show specific transcriptional signatures that characterize the oxygen/glucose metabolic costs of regions involved in network global versus local centrality. This study highlights the different metabolic profiles of local and global regions, with gene expression related to oxidative metabolism and synaptic pathways being enriched in association with spatial patterns in common with resting blood flow and metabolism (oxygen and glucose) and globally-connected regions. In the third study, we demonstrate that there are oxygen/glucose metabolic costs to the functional integration and segregation of resting-state networks. We highlight that the metabolic costs of functional integration could reflect the hierarchical organization of the brain from unimodal to transmodal regions

    Conserved and divergent mechanisms of cortical development across mammalian brain evolution

    Get PDF

    The Neural Correlates of Visual Hallucinations in Parkinson's Disease

    Get PDF
    Visual hallucinations are common in Parkinson’s disease (PD) and linked to worse outcomes: increased mortality, higher carer burden, cognitive decline, and worse quality of life. Recent functional studies have aided our understanding, showing large-scale brain network imbalance in PD hallucinations. Imbalance of different influences on visual perception also occurs, with impaired accumulation of feedforward signals from the eyes and visual parts of the brain. Whether feedback signals from higher brain control centres are also affected is unknown and the mechanisms driving network imbalance in PD hallucinations remain unclear. In this thesis I will clarify the computational and structural changes underlying PD hallucinations and link these to functional abnormalities and regional changes at the cellular level. To achieve this, I will employ behavioural testing, diffusion weighted imaging, structural and functional MRI in PD patients with and without hallucinations. I will quantify the use of prior knowledge during a visual learning task and show that PD with hallucinations over-rely on feedback signals. I will examine underlying structural connectivity changes at baseline and longitudinally and will show that posterior thalamic connections are affected early, with frontal connections remaining relatively preserved. I will show that PD hallucinations are associated with a subnetwork of reduced structural connectivity strength, affecting areas crucial for switching the brain between functional states. I will assess the role of the thalamus as a potential driver of network-level changes and show preferential medial thalamus involvement. I will utilise data from the Allen Institute transcription atlas and show how differences in regional gene expression in health contributes to the selective vulnerability of specific white matter connections in PD hallucinations. These findings reveal the structural correlates of visual hallucinations in PD, link these to functional and behavioural changes and provide insights into the cellular mechanisms that drive regional vulnerability, ultimately leading to hallucinations

    Brain structure and function in Huntington's disease gene carriers far from predicted disease onset

    Get PDF
    Whilst there are currently no available disease modifying therapies for Huntington’s Disease (HD), recent progress in huntingtin-lowering strategies hold great promise. Initiating therapies early in the disease course will be important and a complete characterisation of the premanifest period will help inform when to initiate disease modifying therapies and the biomarkers that may be useful in such trials. Previous research has characterised the premanifest period up to approximately 15 years from predicted onset, but even at this early stage the disease process is already underway as evidenced by striatal and white matter atrophy, reductions in structural connectivity within brain networks, rising biofluid biomarkers of neuronal dysfunction, elevations in psychiatric symptoms and emerging subtle cognitive impairments. In order to understand how early neurodegeneration can be detected and which measures are most sensitive to the early disease processes, we need to look even earlier in the disease course. This thesis documents the recruitment and analysis of the HD Young Adult Study: a premanifest cohort further from predicted clinical onset than previously studied with an average of 24 years prior to predicted onset. Differences between gene carriers and controls were examined across a range of imaging, cognitive, neuropsychiatric and biofluid measures. The structural and functional brain connectivity in this cohort is then investigated in further detail. By providing a detailed characterisation of brain structure and function in the early premanifest period along with the most sensitive biomarkers at this stage, this work will inform future treatment strategies that may seek to delay the onset of functional impairments in HD

    The topology of structural brain connectivity in diseases and spatio-temporal connectomics

    Get PDF
    The brain is a complex system, composed of multiple neural units interconnected at different spatial and temporal scales. Diffusion MRI allows probing in vivo the anatomical connectivity between different cortical areas through white matter tracts. In parallel, functional MRI records neural-related signals of brain activity. Particularly, during rest (in absence of specific external task) reproducible dynamical patterns of functional synchronization have been shown across different brain areas. This rich information can be conveniently represented in the form of a graph, a mathematical object where nodes correspond to cortical regions and are connected by edges representing anatomical connections. On the top of this structural network, or brain connectome, individual nodes are associated to functional signals representing neural activity over observation periods. Network science has fundamentally contributed to the characterization of the human connectome. The brain is a small-world network, able to combine segregation and integration aspects. These properties allow functional specialization on the one side, and efficient communication between distant brain areas on the other side, supporting complex cognitive and executive functions. Graph theoretical methods quantify brain topological properties, and allow their comparison between different populations and conditions. In fact, brain connectivity patterns and interdependences between anatomical substrate and functional synchronization have been proved to be impaired in a variety of brain disorders, and to change across human development and aging. Despite these important advancements in the understanding of the brain structure and functioning, many questions are currently unanswered. It is not clear for instance how structural connectivity features are related to individual cognitive capabilities and deficits, and if they have the concrete potential to distinguish pathological subgroups for early diagnosis of brain diseases. Most importantly, it is not yet understood how the connectome topology relates to specific brain functions, and how the transmission of information happens on the top of the structural connectivity infrastructure in order to generate observed functional dynamics. This thesis was motivated by these interdisciplinary inputs, and is the result of a strong interaction between biological and clinical questions on the one hand, and methodological development needs on the other hand. First, we have contributed to the characterization of the human connectome in health and pathologies by adapting and developing network measures for the description of the brain architecture at different scales. Particularly, we have focused on the topological characterization of subnetworks role within the overall brain network. Importantly, we have shown that the topological alteration of distinct brain subsystems may be a biomarker for different brain disorders. Second, we have proposed an original network model for the joint representation of brain structural and functional connectivity properties. This flexible spatio-temporal framework allows the investigation of functional dynamics at multiple temporal scales. Importantly, the investigation of spatio-temporal graphs in healthy subjects have allowed to disclose temporal relationships between local brain activations in resting state recordings, and has highlighted functional communication principles across the brain structural network
    corecore