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Abstract 
 

 

Visual hallucinations are common in Parkinson’s disease (PD) and linked to 

worse outcomes: increased mortality, higher carer burden, cognitive decline, 

and worse quality of life. Recent functional studies have aided our 

understanding, showing large-scale brain network imbalance in PD 

hallucinations. Imbalance of different influences on visual perception also 

occurs, with impaired accumulation of feedforward signals from the eyes 

and visual parts of the brain. Whether feedback signals from higher brain 

control centres are also affected is unknown and the mechanisms driving 

network imbalance in PD hallucinations remain unclear. 

In this thesis I will clarify the computational and structural changes 

underlying PD hallucinations and link these to functional abnormalities and 

regional changes at the cellular level. To achieve this, I will employ 

behavioural testing, diffusion weighted imaging, structural and functional 

MRI in PD patients with and without hallucinations. I will quantify the use 

of prior knowledge during a visual learning task and show that PD with 

hallucinations over-rely on feedback signals. I will examine underlying 

structural connectivity changes at baseline and longitudinally and will show 

that posterior thalamic connections are affected early, with frontal 

connections remaining relatively preserved. I will show that PD 

hallucinations are associated with a subnetwork of reduced structural 

connectivity strength, affecting areas crucial for switching the brain between 

functional states. I will assess the role of the thalamus as a potential driver 

of network-level changes and show preferential medial thalamus 

involvement. I will utilise data from the Allen Institute transcription atlas 

and show how differences in regional gene expression in health contributes 
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to the selective vulnerability of specific white matter connections in PD 

hallucinations.  

These findings reveal the structural correlates of visual hallucinations in PD, 

link these to functional and behavioural changes and provide insights into 

the cellular mechanisms that drive regional vulnerability, ultimately leading 

to hallucinations. 
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Impact Statement 
 

This thesis aims to shed light onto the mechanisms of visual hallucinations 

in Parkinson’s disease to facilitate further research and inform the design of 

clinical trials. The findings of this thesis have significant potential impacts 

on research.  

Although it is established that Parkinson’s-hallucinations are associated 

with deficits in visual processing, I showed for the time that patients with 

hallucinations over-rely on feedback signals, with overweighting of prior 

knowledge when viewing ambiguous visual stimuli. In addition, I clarified 

the underlying changes in white matter structure in patients with 

Parkinson’s and hallucinations both at the white matter tract and network 

level, linking the imbalance of feedforward and feedback signals to 

underlying structural connectivity changes. This provides new information 

on the neural mechanisms of visual hallucinations in Parkinson’s disease.  

The finding of evolving longitudinal white matter changes in patients with 

Parkinson’s hallucinations with relatively preserved grey matter provides 

further in-vivo evidence that white matter changes may precede grey matter 

changes in Parkinson’s and highlights the importance of biomarkers 

targeting the white matter. Clarifying the imaging correlates of Parkinson’s-

hallucinations could also inform the design of future clinical trials: aiding 

patient recruitment or assessing response to treatments under investigation.  

Using emerging analytical frameworks such as network control theory, I 

was able to examine the effect that structural connectivity changes have on 

brain function. The finding that brain regions important for switching the 

brain between different states are preferentially affected in Parkinson’s 

patients with hallucinations and the predisposition for a segregated, less 

connected substate of functional connectivity, provide support for 
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mechanistic models of visual hallucinations implicating attentional network 

imbalance and furthers our understanding of how hallucinations are 

generated in Parkinson’s. Linking the regional distribution of structural 

brain changes identified by imaging, to regional expression of genes, I shed 

light on the biological processes and cell types driving regional vulnerability 

of these regions; this could inform future molecular-level research into 

potential therapeutic targets.  

The medial mediodorsal thalamic subnucleus was identified as a region 

showing white and, later, grey matter changes in Parkinson’s patients with 

hallucinations, with changes correlating with hallucination severity. This 

subnucleus plays a role in regulating prefrontal cortex function (and 

therefore feedback signals) and could be a potential therapeutic target for 

deep brain stimulation. Finally, correlating regional structural changes with 

regional neurotransmitter density and receptor gene expression, specific 

neurotransmitter receptors were identified as possible neuromodulatory 

targets, potentially opening new avenues for treatments of this highly 

distressing symptom.  

This thesis’ findings have implications for the mechanisms of hallucinations 

in other conditions, as similar pathways may be disrupted, and may 

influence research in schizophrenia, delirium and other dementias.  

The work described in this thesis has led to 8 first author publications in 

high-impact, peer-reviewed journals including Brain, Movement Disorders 

and Neurology. In addition, this work was presented at national and 

international conferences, facilitating dissemination to the global scientific 

community. Finally, I have disseminated my findings to people with 

Parkinson’s and their families through the Lewy body disease Rare 

Dementia Support Group, and a UCL Lunch Hour Lecture.  
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“Knowledge of the fact differs from knowledge of the reason for the fact.” 

 Aristotle, Αναλυτικά Ύστερα ~384BC 
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1. Introduction 

 

1.1 Thesis aims 

Although traditionally thought of as a movement disorder, non motor 

symptoms and particularly visual hallucinations are extremely common and 

distressing in Parkinson’s disease (PD) and are associated with worse 

outcomes (Fénelon et al., 2000; Aarsland et al., 2007). Despite this the 

neural correlates of hallucinations are not clearly understood and there are 

no effective treatments to date.  

Neuroimaging and pathological studies so far have failed to identify a single 

brain region responsible for PD-associated visual hallucinations with 

multiple spatially distinct regions exhibiting changes in gray matter volume 

and thickness, white matter connectivity or functional activation (Pezzoli et 

al., 2017). Indeed, increasing evidence suggests that visual hallucinations 

originate from imbalance between large scale whole brain networks (Muller 

et al., 2014), particularly imbalance between feedforward signals (sensory 

evidence from our eyes and lower level visual areas) and feedback signals 

(from higher order brain areas to areas further down the cortical hierarchy) 

(Powers et al., 2016). 

Visuospatial deficits and reduced accumulation of sensory evidence have 

been described in patients with Parkinson’s and visual hallucinations 

(O’Callaghan et al., 2017) but changes in feedback signals have not been 

demonstrated. In this thesis I aim to quantify the use of prior knowledge 

(mediated by feedback signals) in patients with PD with and without 

hallucinations and test whether overweighting of prior knowledge also 

contributes to hallucinations.  
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Feedback and feedforward signals are communicated between regions 

through white matter connections. Additionally, there is evidence that 

changes in white matter may occur early in PD (Chung et al., 2009) and 

imaging techniques to assess white matter changes may therefore be more 

sensitive. In this thesis I will evaluate the micro-structural and macro-

structural white matter changes associated with PD-hallucinations and 

assess the longitudinal progression of white and gray matter changes in 

patients with compared to those without hallucinations.  

To better understand why specific white matter connections are vulnerable, I 

will characterise how the structural brain network changes in patients with 

PD-hallucinations and examine whether regional gene expression profiles of 

the healthy brain relate to regional white matter connectivity loss in PD-

hallucinations.  

Finally, to better understand the effect that changes in white matter structure 

have on brain function, I will clarify how functional dynamic connectivity 

changes in PD with hallucinations. I will then use network control theory to 

model the transitions between states of functional connectivity in patients 

with and without hallucinations. I will correlate these with neurotransmitter 

systems using regional density profiles and gene expression profiles from 

healthy brains.  

 

1.2 Introduction 

Hallucinations are common in PD, affecting 30-70% of patients (Fénelon et 

al., 2000; Hely et al., 2008). Although hallucinations can occur in all 

sensory modalities, visual hallucinations are the most frequent, most typical 

of PD and occur earlier in the disease process (Fénelon et al., 2000; ffytche 

et al., 2017; Clegg et al., 2018). The spectrum of PD-associated visual 

hallucinations is wide, ranging from minor hallucinations, such as passage 
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hallucinations (a fleeting image or brief vision of a person, animal, or object 

passing within the periphery of the visual field) and visual 

illusions/misperceptions (e.g., mistaking a pile of clothes in the room corner 

for a dog) (Figure 1.1) to complex, well-structured visual scenes (ffytche et 

al., 2017) (Figure 1.2). Both types of hallucinations commonly co-occur 

(Fénelon et al., 2011; Lenka et al., 2019) and minor hallucinations almost 

always precede the onset of complex visual hallucinations (Mack et al., 

2012; Lenka et al., 2019). In addition, insight into whether experienced 

images are real or not is initially preserved but often withers during the 

course of the disease (Fénelon et al., 2000; Weil et al., 2016). 

 

 

Figure 1.  1 Example of a misperception.  

Misperceptions can occur normally but are exaggerated in PD patients.  

From Towel or Dog?: 

https://www.reddit.com/r/funny/comments/gw6ow9/towel_or_dog/ 
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Figure 1. 2. Charles Doyle, Self portrait 1832-93. 

One of the sketchbooks used by the artist during his residence in the Royal Montrose 

Lunatic Asylum in Scotland. Although it is not known whether Charles Doyle was 

affected by Parkinson’s disease, the painting is a good representation of the complex 

visual hallucinations associated with Parkinson’s. Descriptions of hallucinations 

from study participants include:   

“Strange people come in the house at night; I cannot see their legs and they sit 

around staring. They go away when we turn on the lights.” 

“I can often see little cats running around on the floor towards me. Sometimes I can 

feel them touching my legs. They keep me company.” 

Painting downloaded from the V&A with permission. 
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Visual hallucinations are thought to be specific to the presence of Lewy 

Body pathology and can therefore be a useful discriminator of PD from 

other parkinsonian syndromes such as Multiple System Atrophy or 

Progressive Supranuclear Palsy (Williams et al., 2008). Additionally, it is 

well established that visual hallucinations are linked with negative 

outcomes. They are frequently distressing, distracting and a harbinger of 

dementia (Hobson and Meara, 2004; Galvin et al., 2006). Furthermore, they 

are associated with increased mortality (Goetz and Stebbins, 1995), 

increased carer burden (Aarsland et al., 2000) and worse quality of life 

(McKinlay et al., 2007). They are also the strongest predictor of nursing 

home placement in people with PD (Aarsland et al., 2000). Despite their 

impact on patients and families, our understanding of how visual 

hallucinations are produced remains limited (Weil et al., 2016; Onofrj et al., 

2019).  

 

1.3. Parkinson’s hallucinations: a disorder of brain networks 

Early theoretical models for visual hallucinations in PD proposed that the 

presence of hallucinations was a result of pharmacological treatment, 

specifically levodopa administration (Moskovitz et al., 1978; Poewe, 2003). 

However, visual hallucinations can be seen in early disease, even in 

untreated patients and irrespective of levodopa doses (Barnes and David, 

2001; Biglan et al., 2007).  

Other theoretical models trying to attribute visual hallucinations in PD to a 

single deficit have also been disproven. The Dream Intrusion Model 

considers the source of hallucinated images to be endogenous imagery 

produced during dreaming, potentially associated with Rapid Eye 

Movement (REM) sleep intrusions during wakefulness (Arnulf et al., 2000; 

Manni et al., 2002). Although the risk of visual hallucinations is increased 
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in patients with REM sleep behaviour disorder (Lee and Weintraub, 2012) 

and there is a temporal link of hallucinations with sleep (Manni et al., 

2002), visual hallucinations in PD often occur in association with non-REM 

sleep or in polysomnographically proven wakefulness (Lee and Weintraub, 

2012) and therefore cannot be explained by the Dream Intrusion Model.  

Another proposed mechanism of PD-associated hallucinations is a deficit in 

reality monitoring (Barnes et al., 2003). Patients with PD and visual 

hallucinations perform worse than non-hallucinators in judging the source of 

an item in visual and memory tasks, despite similar performance in item 

recognition and rely more on a sense of familiarity (recognising an item as 

being presented before but not specifically remembering its previous 

presentation) (Barnes et al., 2003). These results were interpreted as a bias 

toward attributing an internally generated event to an external source, which 

could give rise to a hallucinated image. However, this model, similar to 

other single-cause models, does not explain the widespread cognitive 

deficits and pathological changes seen in PD-associated hallucinations 

(Muller et al., 2014).  

In addition, multiple brain regions are affected in patients with visual 

hallucinations associated with Parkinson’s and more generally Lewy body 

disease, suggesting a more complex multi-region pathology giving rise to 

PD-hallucinations. Lewy body pathology has been demonstrated in the 

amygdala and parahyppocampal gyrus (Harding et al., 2002; 

Papapetropoulos et al., 2006), inferior temporal cortex (Harding et al., 2002; 

Papapetropoulos et al., 2006; Gallagher et al., 2011), superior and lateral 

frontal cortex (Gallagher et al., 2011), inferior parietal cortex and cingulate 

cortex (Papapetropoulos et al., 2006) in patients with PD-hallucinations. 

Increased tau and amyloid pathology has also been seen in patients with PD 

and visual hallucinations within the frontal cortex, parietal cortex and 

hippocampus (Jacobson et al., 2014) and PD patients with visual 
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hallucinations show reduced amyloid in their cerebrospinal fluid (CSF), 

suggestive of Alzheimer’s like pathology (Ffytche et al., 2017).  

Similarly, neuroimaging studies have also shown a diverse pattern of 

changes affecting many spatially and functionally distinct regions. Studies 

assessing gray matter volume using Voxel Based Morphometry (VBM), 

have shown diverse and inconsistent results: gray matter volume reduction 

has been reported in several areas including the lingual gyrus, cingulate, 

superior parietal lobule, precuneus, hippocampi and superior frontal lobule 

(Ramírez-Ruiz et al., 2007; Ibarretxe-Bilbao et al., 2008, 2010; Meppelink 

et al., 2011; Janzen et al., 2012; Watanabe et al., 2013; Goldman et al., 

2014; Pagonabarraga et al., 2014). Although different criteria for defining 

hallucinations and diverse methodology (for example, whole brain vs 

regions of interest analyses and different correction methods for multiple 

comparisons) may play a role in the difference in results (Lenka et al., 

2015), and gray matter volume loss may be a relatively late occurrence in 

the disease process, these findings further support the idea that visual 

hallucinations in PD do not originate from damage in a single brain region.  

To account for these multidimensional changes, more recent models of PD 

hallucinations have adopted a more integrated approach focusing on the 

interplay between networks rather than single cognitive domains or brain 

regions. These models suggest that PD-associated hallucinations arise due to 

a shift in the relative effects of different networks (Muller et al., 2014). 

Indeed, imbalance of large scale brain networks has been increasingly 

shown in association with PD-hallucinations across multiple different types 

of brain networks: computational brain networks, functional brain networks 

and structural brain networks.    
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Figure 1. 3. Variable and inconsistent results of gray matter atrophy from 

Voxel Based Morphometry (VBM) studies in patients with Parkinson’s 

hallucinations 

Pictured in red are regions that have been reported to show grey matter 

atrophy in more than two VBM studies, in a recent meta-analysis of visual 

hallucinations in Parkinson’s disease. From: (Lenka et al., 2015) 
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1.4. Computational brain networks  

Perception in the human brain can be studied in the framework of predictive 

coding: here perception is seen as the adoption of a hypothesis explaining 

the cause of a sensation, an inference that takes into account both 

expectations from prior knowledge and sensory input (Friston and Kiebel, 

2009; Cavanagh, 2011; Parr et al., 2018). Priors are constantly compared to 

incoming sensory evidence across the cortical hierarchy and prediction 

errors are computed. If the priors are more precise than the sensory inputs 

themselves they will dominate inference, ignoring prediction errors (Friston 

and Kiebel, 2009; Feldman and Friston, 2010; Teufel et al., 2013). In 

contrast, if prediction errors are more precise, they will dominate priors and 

update to a new belief or inference.  

Hierarchical predictive coding as the basis of human perception is supported 

by experimental evidence in the healthy brain (Walsh et al., 2020). In each 

level of the cortical hierarchy distinct neural populations exist giving rise to 

distinct feedforward and feedback connections (Markov et al., 2014) and 

oscillating at different frequencies (Bastos et al., 2015). Additionally, 

unexpected stimuli or omission of expected stimuli (therefore increased 

prediction error) lead to increased neural responses (de Lange et al., 2018) 

and expectations can induce signals in early sensory regions (Kok et al., 

2016). There is therefore evidence that expectations or priors directly affect 

perception and that the brain has cell populations and neuroanatomical 

connections whose activity is consistent with the predictive coding model.  

In this context, visual hallucinations, or experiencing visual percepts that are 

not objectively there, can be thought of as false inference which arises when 

the integration of sensory input and prior knowledge is altered (Fletcher and 

Frith, 2009; Adams et al., 2013; Powers et al., 2016; Corlett et al., 2019). 

This framework has been applied to the study of hallucinations in non-
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neurodegenerative diseases. Hallucinations experienced by healthy 

individuals or in the context of psychiatric illness are associated with a shift 

towards prior knowledge and away from sensory evidence (Teufel et al., 

2015; Alderson-Day et al., 2017; Davies et al., 2018; Stuke et al., 2021). 

Conditioned auditory hallucinations (via sensory conditioning establishing a 

visual stimulus as a predictor for a near-threshold auditory stimulus) in 

healthy individuals are also mediated by strong priors and those individuals 

with a prior diagnosis of psychosis were more susceptible (Powers et al., 

2017). In addition to a propensity to hallucinate when stimuli are noisy 

(Powers et al., 2017), this relative increase in the weighting of prior 

knowledge in people who experience hallucinations is linked with improved 

performance in disambiguating ambiguous visual and auditory signals 

(Teufel et al., 2015; Alderson-Day et al., 2017; Davies et al., 2018). Higher 

weighted priors could also be the product of lower precision of sensory 

evidence and there are several ways that imbalance between feedforward 

and feedback signals could lead to hallucinations (Figure 1.4).  

Abnormal integration of priors with sensory information could also underlie 

hallucinations in neurodegeneration. Several visual-processing deficits have 

been described in PD including contrast sensitivity (Davidsdottir et al., 

2005; Silva et al., 2005), colour vision (Silva et al., 2005; Matar et al., 

2019), attention (Norton et al., 2015), biological motion and skew (Jaywant 

et al., 2016; Weil et al., 2017), visual evoked potentials (Murphy et al., 

2020), even visual acuity (Hamedani et al., 2020; Han et al., 2020). The 

presence of visual-processing deficits is increased in PD patients with visual 

hallucinations (Diederich et al., 2005; Weil et al., 2016; Matar et al., 2019) 

and sensory evidence accumulation is impaired in patients with PD and 

visual hallucinations (O’Callaghan et al., 2017). 
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Figure 1. 4. Hypotheses for hierarchical computational model disruption in psychosis. 

Lower sensory regions like the visual cortex (V1) communicate with higher brain areas via 

feedforward signals (red arrows) and higher brain regions communicate their prior expectations 

through feedback connections (green arrows). The thickness of the arrows represents their 

relative weighting; changes in this can lead to hallucinations.  

Hallucinations can be the result of increased weighting of sensory evidence (A), or decreased 

weighting of priors (B), although there is less evidence to support this. Hallucinations could also 

be the result of relative increase in precision of priors (C) in addition to relative decrease in 

precision of sensory evidence, or finally they could be the results of just increased weighting of 

priors (D).  

From (Haarsma et al., 2020) 
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However hallucinations can also occur in patients without any lower or 

higher visual deficits (Gallagher et al., 2011; Weil et al., 2016) making a 

solely feedforward explanation for the occurrence of hallucinations less 

attractive. Increased likelihood of visuoperceptual deficits in PD patients 

with hallucinations is in favour of a relative lower precision of sensory 

evidence (Figure 1.4, panel C) but whether prior knowledge is also 

overweighted is not yet clear. A recent study showed that patients with PD 

and presence hallucinations (the sensation that somebody is nearby when no 

one is present) but not those with visual hallucinations were more sensitive 

to robotic-induced presence hallucination when exposed to conflicting 

sensorimotor information suggesting stronger priors (Bernasconi et al., 

2021). This study however did not assess visual perception and whether 

priors are overweighted in visual hallucinations as well is not yet known. 

Quantifying the use of prior knowledge in PD-associated hallucinations 

could provide important insights in how the balance of feedforward and 

feedback processes becomes impaired in PD giving rise to visual 

hallucinations.  

 

1.5. Functional brain networks 

Functional brain networks are also imbalanced in patients with PD and 

visual hallucinations, giving rise to a recent attractive theoretical model 

which suggests that hallucinations in PD are the result of breakdown in the 

connectivity of networks involved in attention and conscious perception 

(Shine et al., 2014): the Dorsal Attention Network (DAN) involved in tasks 

requiring exogenous attention, the Ventral Attention Network (VAN) 

responsible for salience monitoring, and the Default Mode Network (DMN) 

which is activated during internally focused tasks (Figure 1.5).  
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The Attentional Networks hypothesis suggests that visual hallucinations in 

Parkinson’s disease are caused by overactivity of the DMN and VAN 

reinforcing false images that remain unchecked due to a failure to engage 

the DAN. The resulting over-reliance on the DMN, which has been 

repeatedly observed in PD-associated hallucinations (Yao et al., 2014; Shine 

et al., 2015; Onofrj et al., 2017), leads to hallucinated images as the DMN is 

poorly suited to interpret ambiguous sensory images.  

Increased connectivity between the regions participating in the DMN, 

specifically the right middle frontal gyrus, bilateral posterior cingulate and 

precuneus (Yao et al., 2014) as well as between DMN and the visual system 

is seen in PD patients with hallucinations (Shine et al., 2015). A different 

study showed decoupling of DMN activity with increased connectivity of 

the posterior cingulate cortex posterior regions of task-positive networks 

and visual association areas, which correlated with the severity of the 

hallucinations (Bejr-Kasem et al., 2019). Other regions within the DMN 

such as the inferior partietal lobule and posterior cingulate also exhibit 

aberrant functional connectivity in PD patients with visual hallucinations 

(Franciotti et al., 2015).  

Similar changes are seen in association with cognitive impairment with 

increased connectivity of the DMN to occipital and parietal regions in PD 

patients with mild cognitive impairment (Baggio et al., 2015; Abós et al., 

2017) and increased within-DMN connectivity in patients with Lewy body 

dementia (Schumacher et al., 2018). DMN decoupling has also been 

described in association with the psychedelic drug LSD which can also 

cause visual hallucinations (Carhart-Harris et al., 2016). And preserved 

metabolism of the posterior cingulate cortex, a key region of the DMN, is an 

established feature of Parkinson’s dementia and Dementia with Lewy bodies 

where visual hallucinations are prominent (Whitwell et al., 2017).  
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Figure 1.  5 The attentional network model of PD-associated hallucinations  

Large scale functional networks show imbalance in PD with visual 

hallucinations. According to attentional network model, visual hallucinations 

in PD arise due to over-reliance on the DMN in processing ambiguous stimuli 

(due to impaired input from the VIS) with aberrant DMN activation and 

relative reduced DAN recruitment.  

DAN: Dorsal attentional network, VAN: Ventral attentional network, DMN: 

Default mode network, VIS: visual cortex 

From: (Weil et al., 2016). 
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The DMN plays a key role in self-referential thought, internally generated 

imagery and integration of sensory evidence with prior sensations (Callard 

and Margulies, 2014) and altered DMN connectivity is in keeping with 

relatively stronger/overweighted priors in PD-hallucinations. Although the 

attentional network hypothesis is supported by increasing evidence of 

functional network disruption in PD hallucinators, the mechanisms that 

drive this functional network imbalance are less clear.  

 

1.6. Structural Brain Networks 

Although, as discussed above, functional imaging studies have significantly 

advanced our understanding of visual hallucinations in PD (Shine et al., 

2014, 2015; Yao et al., 2014, Hepp et al., 2017b), less is known about the 

structural brain changes in PD-associated hallucinations. However, deriving 

inferences about the structure of physical brain connections from activation 

patterns seen in functional MRI is indirect and prone to assumptions 

(Vázquez-Rodríguez et al., 2019). Given that structural connectivity impacts 

functional connectivity and is likely to be more reflective of the brain 

anatomy (Goñi et al., 2014; Messé et al., 2015; Vázquez-Rodríguez et al., 

2019), structural imaging techniques could be a powerful tool to investigate 

hallucinations in vivo.  

The majority of structural imaging studies of PD-associated hallucinations 

so far have focused on gray matter (GM) volume using Voxel Based 

Morphometry (VBM), with diverse and inconsistent results as previously 

discussed (Figure 1.3). As atrophy was described in association with PD-

hallucinations in many spatially distinct locations, subsequent studies 

employed network lesion mapping to attempt to identify common 

neuroanatomical substrates. This combines atrophy maps with resting state 

functional connectivity estimates from healthy human brains to assess 
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whether the areas of atrophy participate in a common functional network 

(Boes et al., 2015). Using network lesion mapping, a recent study has 

shown that brain lesions that lead to visual hallucinations were connected to 

the lateral geniculate nucleus of the thalamus (Kim et al., 2019), similarly a 

networked centered in the lateral geniculate nucleus was identified to be 

associated with PD-hallucinations in a meta-analysis of studies assessing 

GM volume (Weil et al., 2019).   

However, GM loss is a relatively late event in PD, limiting the sensitivity of 

imaging methods assessing GM. In contrast axonal changes seem to occur 

relatively early. Axonal dystrophic changes occur even before axonal loss, 

suggesting that alpha-synuclein accumulation in the axonal compartment 

happens early in the disease process (Chung et al., 2009). Exogenous alpha-

synuclein in neuronal cultures leads to formation of endogenous pathology 

that starts within the axon (Volpicelli-Daley et al., 2011). Mouse models for 

leucine rich repeat kinase 2 (LRRK2) gene, the commonest genetic cause of 

PD, exhibit axonal pathology before neurite loss (Li et al., 2009). Therefore, 

techniques sensitive to axonal changes, such as diffusion weighted imaging 

(DWI), are most likely to detect early structural changes in PD-associated 

hallucinations. 

DWI allows non-invasive in vivo study of WM architecture (Le Bihan et al., 

2001) (for details see Chapter 2). It is usually analysed using the diffusion 

tensor model (diffusion tensor imaging (DTI)) that uses metrics averaged 

across voxels to derive measures such as fractional anisotropy (FA) and 

mean diffusivity (MD). DTI studies of visual hallucinations in PD have 

shown altered WM integrity within the optic nerve and optic radiation (Lee 

et al., 2016) and tracts from the cholinergic nucleus basalis of Meynert to 

parietal and occipital cortical regions (Hepp et al., 2017a) in tract of interest 

analysis. In addition, broadly reduced connectivity strength has also been 

reported in PD hallucinations, preferentially affecting nodes of the “diverse 
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club”, areas that are proposed to integrate across more specialist modules 

(Hall et al., 2019).  

 

 

Figure 1. 6. Network of visual hallucinations identified by network lesion mapping.  

A. Coordinates of gray matter atrophy across all included studies in this meta-analysis. 

Each study is represented by a different colour. 

B. Network overlap of functional whole-brain connectivity maps: this overlaps on the 

lateral geniculate nucleus bilaterally. 

From: (Weil et al., 2019). 



30 

 

However, classical DTI-based approaches have only limited ability to model 

crossing fibres, (Jbabdi et al., 2010; Tournier et al., 2011; Jones et al., 2013) 

making them difficult to interpret, and limiting their specificity, especially 

in regions containing crossing fibres, which amount to up to 90% of brain 

white matter (Jeurissen et al., 2013). Additionally, although providing 

insights to the structural changes that accompany visual hallucinations in 

PD, DWI studies have not directly examined the impact that these changes 

have on functional dynamics or the factors that make specific brain regions 

more vulnerable to white matter loss.  

 

1.7. Drivers of network imbalance 

Computational, functional and structural brain networks become imbalanced 

in PD to produce visual hallucinations. Impaired transition or switching 

between different functional network activation has been proposed as 

possible driver, for example failure to disengage the DMN and/or failure to 

activate the DAN (Muller et al., 2014). However, the drivers behind this 

impaired between-states transition remain unclear.  

Recently, the thalamus has been postulated as a possible driver of network 

imbalance in PD-hallucinations (Onofrj et al., 2019; Russo et al., 2019). 

The thalamus is a particularly well-connected brain region and plays a 

crucial role in filtering sensory information, primarily via connections with 

its first order nuclei like the lateral geniculate nucleus; this has been 

identified as a possible key region in studies using network lesion mapping 

as previously described (Kim et al., 2019; Weil et al., 2019).  

In addition, higher order thalamic nuclei such as the mediodorsal thalamic 

nucleus regulate the function of crucial DMN brain regions including the 

prefrontal cortex (PFC) (Mitchell, 2015; Anastasiades et al., 2021). Reduced 
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connectivity or degeneration of the mediodorsal thalamus could lead to 

unregulated PFC activity and subsequently increased feedback signals to 

regions lower in the cortical hierarchy. Changes in thalamic-PFC 

connectivity have been described in association with hallucinations in the 

context of psychiatric disease (Anticevic et al., 2014).  

In PD-associated visual hallucinations, the thalamus shows hypometabolism 

and atrophy (Nishio et al., 2017) and alpha-synuclein pathology is 

particularly evident in the thalamus including associative and higher order 

nuclei in patients with PD (Halliday, 2009). In addition, both in PD 

dementia and Dementia with Lewy Bodies, theta rhythms, which are 

considered as a marker of thalamocortical dysfunction gradually evolve as 

the disease progresses and predict cognitive decline (Bonanni et al., 2008). 

Theta rhythms have also been recorded during active hallucinations in PD 

(Dauwan et al., 2019). This evidence of thalamocortical dysfunction in 

association with PD-hallucinations has lead to the hypothesis that loss of 

thalamic modulation leads to DMN decoupling and aberrant activation. 

However the specific spatial profile of thalamic involvement in PD-

hallucinations remains unclear, understanding the specific grey matter 

changes within thalamic subnuclei as well as white matter connectivity 

changes from the thalamus to the cortex could provide useful insights to the 

mechanisms of PD-associated hallucinations. 

 

1.8. Bridging brain structure and function 

Although advances in WM imaging such as high tensor models can improve 

the fidelity of structural brain connectivity and similarly, functional MRI 

can provide an improved estimate of brain activation during tasks or rest, 

our understanding of how brain structure gives rise to behaviour remains 
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limited (Mišić and Sporns, 2016). Structural connectivity provides a 

principled way to represent the organization of brain networks, and to a 

large extent predicts brain activation patterns at rest (Messé et al., 2015) but 

it cannot model the relationship between brain structure and behaviour.  

Additionally, recent evidence suggest that structure-function relationships 

may differ across brain regions (Vázquez-Rodríguez et al., 2019). The 

relationship between structural and functional connectivity also varies 

during aging. Stronger coupling of structural and functional connectivity is 

seen during brain maturation from infancy to adolescence (Hagmann et al., 

2010) and continues to increase with age (Betzel et al., 2014). Altered 

structural-functional connectivity coupling has been described in the 

presence of neurological and psychiatric disease (Zhang et al., 2011; Cocchi 

et al., 2014; Koubiyr et al., 2019) and has been correlated with cognitive 

function (Baum et al., 2020). Understanding the link between structural 

connectivity and activation (functional) coupling of brain regions is critical 

to understanding the link between structural degeneration and behavioral 

change in neurodegeneration.  

Several analytical methods can be used to examine the relationship between 

structural and functional connectivity. One method to achieve this is by 

concurrent, longitudinal investigation of brain structural and functional 

connectivity; similar approaches have provided useful insights in 

Huntington’s disease (McColgan et al., 2017).  

An alternative approach is provided by network control theory, a powerful 

emerging framework that combines structural connectivity measures and 

linear estimates of local dynamics to provide a metric of the extent of 

influence of one part of the network over other parts of the brain and in 

changing brain states; this is termed controllability (Gu et al., 2015). 

Network control theory can therefore determine regions responsible for 
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shifting the brain between difference functional states using structural 

imaging data. Given the emphasis on shifts between brain networks as a key 

driver of PD hallucinations (Muller et al., 2014), brain controllability is 

likely to provide important insights into how hallucinations arise in PD. 

Network control theory can also directly model how the structural 

connectome guides transitions between functional states (Gu et al., 2015, 

2017; Betzel et al., 2016); this could be particularly useful in better 

understanding how specific changes in functional connectivity that underly 

PD-hallucinations may occur.  

Given the complex and multidimensional changes seen in PD-associated 

hallucinations in brain structure, function and behaviour, multivariate 

approaches are likely needed, linking multiple brain variables and 

phenotypic data (Mišić and Sporns, 2016).  

 

1.9 Linking changes in brain networks to molecular processes 

and neurotransmitter systems 

As previously discussed network neuroscience can provide useful insights to 

the brain structural and functional changes that underly hallucinations in 

PD. Until recently, these changes in macroscopic brain networks were 

abstract and difficult to relate to changes in structure and function at the 

cellular level. The creation of the Allen Human Brain Atlas (AHBA) by the 

Allen Institute of Brain Science (Hawrylycz et al., 2015) provides a way to 

link regional changes identified by brain imaging to regional gene 

expression. AHBA contains a database of expression levels of 20,737 genes 

across the human brain. It was constructed postmortem from the brains of 6 

human donors with no history of psychiatric or neuropathological disorders. 

RNA was extracted from 900 anatomically defined regions represented by 

58,692 probes. Importantly, prior to RNA sampling, donors’ brains 
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underwent postmortem MRI; this allowed all samples to be labelled in MRI 

space resulting to a regional gene expression map of the healthy human 

brain that can be associated with MRI-derived metrics.  

Using data from AHBA, studies have shown that spatially and functionally 

correlated brain regions share similar gene expression profiles (Richiardi et 

al., 2015; Krienen et al., 2016). Similar gradients of cortical organisation 

following the rostro-caudal axis seem to guide both regional gene 

expression (Bernard et al., 2012) and structural and functional connectivity 

(Paquola et al., 2019) as well as cyto-architecture and cellular composition 

(Fornito et al., 2019). Regional gene expression also seems to drive 

connectivity between regions and connectome topology (Fornito et al., 

2019); correlating changes in structural and functional connectivity 

measures to regional gene expression differences provides a unique 

opportunity to assess brain structure and function across scales.  

Studies correlating imaging with regional gene expression have already 

provided useful insights to the drivers of regional vulnerability in the 

presence of disease: in schizophrenia (Romme et al., 2017), Huntington’s 

disease (McColgan et al., 2018), autism (Romero-Garcia et al., 2019). In 

PD, differential expression of predetermined candidate genes is associated 

with cortical atrophy patterns (Freeze et al., 2018, 2019) and functional 

connectivity loss (Rittman et al., 2016).  

In this thesis, I will use data from AHBA to investigate the gene expression 

profiles associated with regional vulnerability to connectivity loss in PD 

patients with visual hallucinations. This will provide insights to the 

biological processes and cell-types involved in PD-hallucinations. Using 

gene expression data for neurotransmitter receptors, in combination with 

neurotransmitter density profiles from PET-derived atlases from healthy 

brains (Dukart et al., 2021), I will also assess whether specific 
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neurotransmitter systems are important in the transitioning between 

functional states and could be therefore crucial in the temporal dynamic 

changes underlying hallucinations in PD.  
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2. General Methods 

 

2.1 Introduction 

This chapter describes the patient cohorts that were included in this thesis, 

including the clinical assessments performed, basics of MRI, including the 

acquisition and processing of diffusion weighting imaging and resting state 

functional data (fMRI), the specific acquisition and quality control of 

imaging data, and pre-processing steps for structural, diffusion weighted 

imaging and fMRI data. These methods were used in several of the 

experiments presented in this thesis. Additional methods were used in 

specific individual studies, such as a visual learning task and signal 

detection theory; these are described in the relevant chapters. As there was 

some variability in included participants and methods in individual 

experiments, each data chapter of this thesis also contains a methods 

section, describing the relevant methods used in more detail. 

 

2.2 Study cohorts 

Two main cohorts were used in this thesis:  

• Lewy Body Disease (LBD) cohort (n=57): Chapter 3.  

Including patients (n=37) with a diagnosis of either Parkinson’s 

disease (PD) or Dementia with Lewy Bodies (DLB) and age-

matched controls (n=20).  

• Vision in Parkinson’s disease (VIPD) cohort (n=135): Chapters 4, 

5 and 6. 

Including patients with Parkinson’s disease (n=100) and age-

matched controls (n=35). 
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Both cohorts were recruited to the National Hospital for Neurology and 

Neurosurgery (NHNN) under the Vision in Parkinson’s disease study (PD 

Rimona Weil, NRES Queen Square Ethics Committee reference 

15/LO/00476. Patients with PD or DLB were recruited from clinics in 

NHNN or affiliated hospitals, as well as the Queen Square Movement 

Disorders Consortium database and Parkinson’s UK. Controls were 

recruited from spouses of patients taking part in the study, the UCL Institute 

of Cognitive Neuroscience volunteer databases and newspaper 

advertisements. 

The LBD cohort underwent a single study visit, including a visual learning 

task (described in Chapter 3), as well as questionnaires and clinical 

assessments. The VIPD cohort underwent 3 study visits, at Baseline, at 18 

months (Visit 2) and at 36 months (Visit 3; this is still underway). Each visit 

included the same questionnaires and clinical assessments as the LBD 

cohort, blood test sampling, and brain imaging. The VIPD study protocol is 

seen in Table 2.1.  

The author personally recruited and tested all participants of the LBD cohort 

(n=57) within a period of 6 months. In addition, the author contributed to 

the recruitment and testing of participants in the VIPD cohort, in the second 

and third study visits. All participants received a detailed information sheet 

summarising the study objectives and design as well as potential risks prior 

to the study. Prior to testing, all participants gave written informed consent. 
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Table 2.1. Vision in Parkinson’s disease study protocol 

Assessments Baseline Visit Visit 2 Visit 3 

Behavioural 

& Clinical 

Measures 

Consent Consent Consent 

Demographics & 

History 

Demographics & 

History 

Demographics & 

History 

Questionnaires Questionnaires Questionnaires 

Cognitive testing Cognitive testing Cognitive testing 

Motor 

assessments 

Motor 

assessments 

Motor 

assessments 

Visual testing Visual testing Visual testing 

Blood tests Genetic testing 

and 

neurofilament 

light 

Neurofilament 

light 

Neurofilament 

light and plasma 

tau 

Brain 

imaging 

MP2RAGE, 

diffusion 

weighted 

imaging, resting 

state functional 

MRI, 

Quantitative 

susceptibility 

mapping 

MP2RAGE, 

diffusion 

weighted imaging 

MP2RAGE, 

diffusion 

weighted 

imaging, resting 

state functional 

MRI, 

Quantitative 

susceptibility 

mapping 
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Questionnaires 

All participants reported details on demographics as well as a patient history 

questionnaire providing information including: PD/DLB diagnosis, 

medications, other medical history, family history and past education. 

Participants with a diagnosis of PD/DLB were also screened on each study 

visit for symptoms and signs that would raise the suspicion of an atypical 

parkinsonian syndrome (frequent falls, gaze palsy, severe autonomic 

dysfunction etc). Controls were also assessed and were excluded if they had 

a history of neurological disorders or head injury; they were also excluded 

from later visits if a subsequent diagnosis of mild cognitive impairment 

(MCI) or dementia was made.  

All participants with PD satisfied the United Kingdom Parkinson’s Disease 

Society Brain Bank criteria for Parkinson’s disease, the Movement Disorder 

Society criteria for Parkinson’s disease dementia or the Dementia with 

Lewy Bodies Consortium Criteria for DLB (Gibb and Lees, 1988; Emre et 

al., 2007; McKeith et al., 2017). Patients with LBD were classified as 

hallucinators (VH) if they scored ≥1 on question 2 of the Movement 

Disorder Society Unified Parkinson’s Disease Rating Scale (UPDRS: “Over 

the past week have you seen, heard, smelled or felt things that were not 

really there?”) (Goetz et al., 2008). 

Participants also provided detailed information on experienced hallucinatory 

phenomena using the University of Miami Parkinson's Disease 

Hallucinations Questionnaire (UM-PDHQ) (Papapetropoulos et al., 2008). 

The questionnaire is seen in Appendix 1. It provides quantitative information 

on both the severity and the frequency of hallucinations across all sensory 

modalities but focusing on visual hallucinations and has been validated for 

use in PD (Papapetropoulos et al., 2008). Participants also completed a 

questionnaire on mood, the Hospital Anxiety and Depression Scale (HADS) 
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(Zigmond and Snaith, 1983); this is an easy to use, quick self-assessment 

questionnaire and has been shown to be a reliable screening tool for 

depression and anxiety in an outpatient setting (Hansson et al., 2009). The 

REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ) was 

also administered to gather information on sleep (Stiasny-Kolster et al., 

2007, as REM sleep behaviour disorder is a condition often presenting as an 

early manifestation of PD and patients with PD and REM sleep behaviour 

disorder may have increased risk of cognitive impairment (Mao et al., 

2020). VIPD participants on Visit 3 also completed the Clinician 

Assessment of Fluctuation (Walker et al., 2000) questionnaire which 

provides information on cognitive fluctuations.  

Cognitive assessments 

Both general and domain-specific measures of cognition were collected at 

each study visit. General cognition was assessed using the Mini-Mental 

State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) 

(Dalrymple-Alford et al., 2010; Creavin et al., 2016). Domain specific 

cognitive assessments were also performed using two tests per cognitive 

domain as per the recent Movement Disorder Society recommendations for 

assessment of cognitive impairment and dementia in PD (Litvan et al., 

2012). Specific cognitive tasks per domain included:  

• Attention: Digit span backwards (Wechsler, D, 2008) and Stroop: 

Naming (Stroop, 1935) 

• Executive function: Stroop Interference (Stroop, 1935) and Category 

fluency (Rende et al., 2002) 

• Memory: Word Recognition Task (Warrington, 1984) and Logical 

Memory (Wechsler, D, 2008) 

• Language: Graded Naming Task(Warrington, 1997) and Letter 

fluency (Rende et al., 2002), and  
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• Visuospatial: Benton’s Judgment of Line (Benton et al., 1978) and 

the Hooper Visual Organization Test (Hooper, 1983).  

Parkinson’s dementia was defined as diagnosis of PD and a MoCA score 

≤25 as per the Movement Disorder Society Task Force Criteria (Emre et al., 

2007). PD with Mild Cognitive Impairment (PD-MCI) was defined as 

impaired performance (<1.5 standard deviation SD of control performance) 

on at least two domain neuropsychological tests (Litvan et al., 2012). A 

composite cognitive z score (averaged across the 5 individual cognitive 

domains) was also computed for each participant (Maiti et al., 2020). 

For the study visit of the LBD cohort and the Baseline Visit and most of 

Visit 2 of the VIPD cohort, cognitive assessments and questionnaires were 

completed in person by the author or another trained member of the study 

team. For Visit 3 and part of Visit 2 of the VIPD cohort, the cognitive 

assessments and questionnaires were performed remotely due to coronavirus 

restrictions; this allowed data collection to continue during lockdown but 

also limit the time participants spent in person and minimise fatigue and 

anxiety for participants.  

Visual assessments 

All participants underwent visual assessments at each study visit; these were 

performed during in-person visits. Visual acuity was assessed using the 

LogMAR at a distance of 2m (Sloan, 1959), colour vision using the D15 

(Farnsworth, 1947) and contrast sensitivity using the Pelli-Robson test at a 

distance of 1m (Pelli et al., 1988). For both visual acuity and contrast 

sensitivity, each eye was tested separately and binocularly with glasses and 

the best score was selected for further analyses.  

Disease specific measures 

Disease specific measures were also collected for participants with 

PD/DLB. The Movement Disorder Society revision of the Unified 
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Parkinson’s Disease Rating Scale (UPDRS), was used to assess motor 

function: this comprises of a questionnaire as well as a motor examination 

(Goetz et al., 2008). Smell was assessed using Sniffin’ Sticks (Hummel et 

al., 1997). Levodopa dose equivalence scores (LEDD) were also calculated 

for all participants with PD or DLB (Tomlinson et al., 2010). 

 

Table 2.2. Levodopa equivalent doses for drugs used to treat 

parkinsonian symptoms (adapted from (Tomlinson et al., 2010)). 

Drug class Drug Total LED (mg/100mg 

Levodopa) 

Levodopa Levodopa 100 

Controlled release Levodopa 133 

Duodopa 90 

COMT 

inhibitors 

Entacapone Levodopa dose × 0.33 

Tolcapone Levodopa dose × 0.5 

Dopamine 

agonists 

Pramipexole 1mg salt 

Ropinirole 5 

Rotigotine 3.3 

MAO-B 

inhibitors 

Selegiline 10mg (oral) 10 

Rasagiline 1 

Other Amantadine 100 

Apomorphine (infusion or 

intermittent injections) 
10 

COMT: catechol-O-methyl transferase; MAO-B: monoamine oxidase type B. 

 

 



43 

 

2.3. Principles of MRI  

Magnetic resonance imaging (MRI) produces images from the nuclei of 

hydrogen ions. Hydrogen ions are found in the majority of human tissue as 

tissues are mostly composed of fat and water, both containing hydrogen 

atoms. The nucleus of a hydrogen ion consists of a singly positively charged 

proton which is constantly spinning thereby generating a magnetic field. 

The magnetic fields of hydrogen protons are normally randomly orientated, 

but when an external magnetic field (B0) is applied, they become aligned 

either in parallel or antiparallel to the external magnetic field. The majority 

of protons becomes aligned parallel to the external magnetic field (as this 

requires less energy) leading to a change in the protons’ rotational axis. The 

frequency of this rotational change (how many times the protons spins 

around its axis per second) or Larmor frequency is determined by: 

𝜔0 = 𝛾𝛣0 

where γ is a constant, the gyromagnetic ratio, of a particular element 

(hydrogen in this case) and B0 is the strength of the externally applied 

magnetic field. Protons that are spinning in parallel to B0 gradually cancel 

each other out in all directions other than the z-axis along B0, thereby 

resulting in a sum magnetic field which parallels B0 or longitudinal 

magnetisation. 

When a radiofrequency pulse (RF) is applied at the Larmor frequency, 

energy is transferred from the RF pulse to the protons, a phenomenon called 

magnetic resonance. The protons move to a higher energy state and become 

antiparallel to the external magnetic field B0; in addition the RF pulse 

causes the protons to move in the same direction at the same time, or in 

phase. This results to a new sum magnetic field transverse to B0 (in the x-y 

plane) which moves at the Larmor frequency. Because the transverse field is 
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moving, if a conductive received coil is placed in its proximity an electrical 

current will be generated forming an MR signal. When the RF pulse is 

switched off the protons gradually fall out of phase and return to a lower 

energy state, this is known as relaxation. Relaxation occurs in two ways: 

longitudinal relation (or T1, “Time 1”) when the longitudinal magnetization 

protons start moving from the higher to the lower energy state and 

transverse relaxation (or T2, “Time 2”) when the transverse sum magnetic 

field begins to dissipate as the protons dephase. Both types of relaxation 

occur simultaneously and result to the signal decaying in direction and 

magnitude over time.  The MR signal generated from the spiraling sum 

magnetization vector is termed free induction decay. As the magnetic field 

gradients that are used to localise the MR signal can further disrupt free 

induction decay, the MR signal is measured in the form of an echo signal. 

This is done either by an additional 180 o RF pulse applied after the initial 

90o pulse (spin echo) or by refocusing a magnetic field gradient (gradient 

echo).  

Formation of MR images 

Differences in the relaxation times (T1 and T2) between different tissues 

lead to different signal intensities between them. When the main difference 

in between-tissue signal intensity is attributed mainly due to differences in 

T1 relaxation time this is a T1-weighted image; these are primarily 

generated by manipulating the repetition time (TR), or the time between two 

RF pulses. Shorter TR allows T1 relaxation differences to develop before 

the next RF pulse. When the main difference in signal intensity is caused by 

spin-spin interactions within tissues or T2 relaxation, this is called a T2-

weighted image. Longer times between the application of the RF pulse and 

the induction of the signal in the coil (echo time or TE) are needed to 

maximise these local differences between different tissue types. Therefore, 

longer TR and TE generate a T2-weighted image whilst shorter TR and TE 
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generates a T1-weighted image. T2 relaxation is also affected by 

inhomogeneity within the local magnetic field due to tissue inhomogeneity 

(T2* relaxation). MR signal intensity can of course be influenced by many 

other parameters as well including proton density, blood flow, repetition 

time, echo time, and magnetic susceptibility. However in the case of T1 and 

T2 weighted images, relaxation time is the most important determinant of 

signal intensity.  

The MRI signal then needs to be localised in space, which is achieved by 

three magnetic field gradients applied across three axes:  

1) a slice selection gradient field. Thich is generated along a chosen 

axis to alter the strength of B0 so that protons within the gradient 

field have different Larmor frequencies. As the RF pulse is applied 

as a range rather than a single frequency, this field leads to a slice of 

a specific thickness being excited.   

2) a phase encoding gradient. After the RF pulse is applied protons 

are in phase. Applying a phase-encoding gradient along another axis 

causes some protons to spin faster than other depending on their 

position on this gradient. When the gradient is switched off, all of 

the protons are exposed to the same magnetic field again (they 

therefore have the same frequency) but are now out of phase and can 

be differentiated.  

3) a frequency encoding gradient, applied with and perpendicular 

to the phase encoding gradient. This helps to differentiate the signal 

from protons with different frequencies, as it alters the protons 

rotational frequencies depending on their position on the gradient.  

This pulse sequence is repeated many times with each repetition increasing 

the phase encoding gradient (keeping the slice selection and frequency 

encoding gradient the same). Each repetition of the phase encoding 

generates a signal echo, stored in “k-space” as a line of data in the matrix. 
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Data in “k-space” undergo Fourier transform and are finally converted into 

an image (Currie et al., 2013).  

 

2.4. Diffusion Weighted imaging 

Diffusion weighted imaging (DWI) is acquired using Echo-planar imaging 

(EPI) which allows the acquisition of multiple signal echoes from one TR; 

this shortens acquisition times and also reduces artifacts due to in-scanner 

motion (Mansfield, 1977; Poustchi-Amin et al., 2001). EPI is based on a 

rapidly oscillating frequency encoding gradient (rather than static); each 

oscillation then corresponds to signal echo, or one line of data in “k-space”.  

In DWI, the intensity of the MR signal depends on the diffusion of water 

molecules in a magnetic field. This can be measured using a pulsed gradient 

spin echo sequence which adds two additional gradient pulses to an EPI 

sequence causing a phase shift (Stejskal and Tanner, 1965). The phase shift 

resulting from the diffusion encoding gradient varies across the gradient and 

therefore diffusion, causing displacement will lead to higher phase shift, so 

reduced intensity of the MR signal. The gradient is commonly defined by its 

diffusion weighting, or b-value:  

𝑏 =  𝛾2𝐺2𝛿2(𝛥 −
𝛿

3
) 

where γ is the gyromagnetic ratio, G is the amplitude of the diffusion 

gradient, δ the duration of the diffusion gradient and Δ the diffusion time 

interval (Hagmann et al., 2006). By repeating gradient pulses in multiple 

directions more data points are acquired, and the resulting diffusion image is 

more detailed.  
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Diffusion tensor imaging 

The classical method of modelling DWI data is diffusion tensor imaging 

(DTI) which is based on the assumption that water molecules show 

anisotropic diffusion, with a diffusion tensor represented as an ellipsoid 

parallel to the axon in white matter (the main direction of diffusion is 

parallel to the axon) (Figure 2.1). This distribution can be described 

mathematically as a 3x3 matrix as diffusion occurs in 6 planes and can be 

modelled from 6 data points; it can be then decomposed into 3 eigenvectors 

λ1, λ2 and λ3 (Figure 2.1). The diffusion tensor will differ between different 

tissue types (Figure 2.1) and to a lesser degree within the white matter itself 

thereby providing information on white matter integrity and structure with 

metrics such as fractional anisotropy (FA), the directional preference of 

diffusion and mean diffusivity (MD), the average diffusion rate across all 

directions (Le Bihan et al., 2001).  

 

Figure 2. 1. The Diffusion Tensor 

A. The diffusion tensor as an ellipsoid with eigenvectors λ1, λ2 and λ3 in the principle axes of diffusion 

B. Differences in tissue type result in different orientation and anisotropy of diffusion. Within the 

cerebrospinal fluid (CSF), diffusion is unrestricted and isotropic, within the grey matter (GM) diffusion 

is still relatively isotropic but less free or restricted, and in the white matter (WM) diffusion is less 

restricted along the axon and is anisotropic. 
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The diffusion tensor model is simple and performs well when all white 

matter fibres within a voxel are oriented in the same direction. However 

when white matter fibres are oriented perpendicular to each other (crossing 

fibres) the diffusion tensor will not be able to disentangle different 

directions of diffusion and derived metrics will not be able to assess the 

integrity of underlying white matter. In addition, DTI will not be able to 

track and delineate the underlying white matter pathways in regions of 

crossing fibres potentially resulting to spurious connections. As crossing 

fibres may be found in 70-90% of white matter (Jeurissen et al., 2013), 

other models that can account for different white matter orientations are 

needed (Tournier et al., 2011).  

Constrained spherical deconvolution 

Several models have been developed in recent years to overcome the 

problem of crossing fibres; one such model includes constrained spherical 

deconvolution (CSD). CSD is based on the principle that the DWI signal 

from all fibre populations is similar: the main signal follows the main axis 

of the fibres and is relatively preserved across fibres. Based on this 

principle, the DWI signal for a canonical fibre population is the sum of the 

signals of all the fibre population within a voxel, The observed DWI signal 

can therefore be deconvolved to calculate the fibre orientation distribution 

(FOD) for each fibre population within a voxel after calculating the 

response function: the signal attenuation from individual fibre populations 

across the z axis (Figure 2.2).  
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CSD uses spherical harmonics to calculate the coefficients of the fibre 

orientation density function that minimise the least-squares fit of the 

predicted signal within a given voxel and the sum of squares of the negative 

amplitudes (Dell’Acqua and Tournier, 2019). This is a computationally 

efficient approach (Tournier et al., 2007) and is very high performing 

compared to other algorithms (Ramirez-Manzanares et al., 2011; Neher et 

al., 2015). By including additional compartments in the model, an extension 

of CSD termed multi-shell multi-tissue CSF can also account for signal 

from non white matter tissues providing an even more accurate estimation 

of FODs (Jeurissen et al., 2014; Hollander, T. et al., 2016).  

+ = = 

Signal 1 Signal 2 Total Signal FOD Fibre Response function 

Figure 2. 2. Spherical deconvolution. 

The signal from multiple separate white matter fibre populations within a 

voxel contributes to the total observed signal from DWI. Given the 

assumption that all fibre populations show the same signal profile, this is 

equivalent to the convolution of the spere of a fibre orientation distribution 

(FOD) with the fibre response function. 

Adapted from Dell’Acqua and Tournier, 2019. 
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The response function of each tissue type (white matter, grey matter and 

cerebrospinal fluid) is calculated with the dwi2response command at MRtrix 

(Tournier et al., 2019) and then spherical deconvolution of the response 

function is performed using the command dwi2fod resulting in the FOD; 

this applies a non-negativity constraint to the algorithm as negative FODs 

are not biologically plausible (Tournier et al., 2007; White and Dale, 2009).  

Advanced acquisition protocols including multi-shell data with at least 3 

different b-values is needed for multi-shell multi-tissue CSD; this was 

possible for the acquired DWI data used in this thesis therefore allowing for 

a more accurate FOD estimation. In addition, a high b-value (b=2000 

s/mm2) was acquired; higher b-values further improve CSD performance 

(Tournier et al., 2007). 

Fixel-based analysis 

Based on CSD, Fixel-based analysis is an emerging framework that derives 

quantitative metrics within specific fibre populations within voxels (which 

is termed fixel) instead of comparing measures averaged across voxels 

(Raffelt et al., 2017).  

Fixel based analysis can be used to derive three quantitative metrics at a 

subject level (Figure 2.3):  

• Fibre density (FD) or apparent fibre density: FD is calculated as 

the integral of each fixel’s FOD amplitude and is proportional to the 

intra-axonal volume of fibre bundles aligned with that fixel. FD is 

therefore sensitive to within-voxel changes and is a measure of 

microstructural white matter changes within a tract (Raffelt et al., 

2012). 
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• Fibre cross-section (FC): FC is calculated as the extent of distortion 

(change in fixel orientation) that needs to be applied to each fixel to 

spatially normalise the subject to the study template:  

𝑭𝑪𝒇 =  
𝒅𝒆𝒕(𝑱)

||𝑱𝒗𝒇̂||
 

where det is the matrix determinant, 𝒗̂𝒇 is the vector of the direction 

of fixel f, and J is the Jacobian matrix at the fixel’s location within 

the voxel. FC is therefore a relative metric of bundle cross-section 

and is calculated based on a study template. Values of > 1 compared 

to the template, imply larger cross-section in that subject than 

average and lower values suggest atrophy of a tract (Raffelt et al., 

2017). FC provides information on the relative size of fibre bundlers 

and is therefore a metric of macrostructural changes within the white 

matter (Raffelt et al., 2017). 

• Combined measure of fibre density and cross-section (FDC): FDC 

is calculated as FDC = FD * FC for each fixel. As such it takes into 

account both macrostructural (reduced FC) and microstructural 

(reduced FD) changes and is an overall measure of a white matter 

fibre’s ability to relay information (Raffelt et al., 2017).  

In Chapters 4 and 5 of this thesis I describe fixel-based analysis across the 

whole white matter in the VIPD cohort, specifically examining changes in 

white matter macro- and micro-structure in patients with PD with and 

without hallucinations. In addition, CSD was used to derive FODs that were 

then used for tractography and structural connectome construction, 

described in Chapters 6 and 7.  
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Figure 2.3. Metrics derived from Fixel-based analysis  

A normal white matter fibre is shown on the top in a 

diagrammatic cross-section. In the presence of 

degeneration, this fibre can become less dense or show 

microstructural changes (reduced fibre density or FD), 

can show macrostructural changes or become thinner 

(reduced fibre cross-section or FC) or can show both 

micro- and macro-structural changes (reduced combined 

FDC metric).  
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2.5. Functional MRI  

As with the case of DWI, functional MRI images are acquired using EPI 

acquisitions. Functional MRI is based on the principle that oxygenated and 

deoxygenated forms of haemoglobin have different properties: 

deoxyhaemoglobin is paramagnetic whilst oxyhaemoglobin is weakly 

diamagnetic (Pauling and Coryell, 1936). Therefore deoxyhaemoglobin 

induces a magnetic field parallel to the external field B0 whilst 

oxyhaemoglobin has minimal effect on the signal. This means that regions 

with high deoxyhaemoglobin will show reduced T2 and T2* weighted MR 

signal; this is the basis of the Blood Oxygen Level Dependent (BOLD) 

signal.  

Metabolic demands (for example hypoglycaemia or anaesthesia) lead to 

changes in cerebral blood flow and subsequent increased BOLD signal 

(Ogawa et al., 1990, 1992; Turner et al., 1991). Increased neuronal activity 

also leads to increased blood flow. This haemodynamic response to 

neuronal activity occurs in 3 stages: 1) first there is an initial decrease in 

BOLD signal below baseline as oxygen consumption leads to increased 

deoxyhaemoglobin, 2) then a large increase of BOLD signal occurs due to 

increased blood flow leading to a net increase in oxyhaemoglobin and 3) 

finally, the BOLD signal returns below the baseline as blood supply is again 

diminished.  

The basis of the haemodynamic response is not fully understood. Both 

increased oxygen consumption and increased glucose consumption due to 

neuronal activity have been postulated (Heeger and Ress, 2002). However 

the BOLD response has been observed in the presence of both hyperoxia 

and hyperglycaemia (Wolf et al., 1997; Lindauer et al., 2010). The relative 

delay in peak blood flow after increased neuronal activity also suggests that 

neurons can meet any increased needs for oxygen or glucose irrespective of 
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blood flow. Multiple other factors including astrocyte-induced 

vasodilatation, replenishing nutrient stores, or neurotransmitter control, have 

been postulated, however it is likely that many factors contribute to the 

BOLD response (Hillman, 2014). Although the basis of the BOLD response 

is not clear, the relationship between neuronal activity and BOLD response 

has been clearly demonstrated (Logothetis et al., 2001) and measuring 

BOLD signal can therefore be an indirect measure of underlying neuronal 

activity.  

Resting state functional MRI (rsfMRI) 

Even in the absence of an explicit task, temporally correlated low-frequency 

variations in regional BOLD signal (therefore in regional blood flow and 

underlying neuronal activity) are seen across spatially remote brain regions 

(Biswal et al., 1995). These fluctuations are correlated with fluctuations in 

underlying neuronal activity measured by electrophysiology (Shmuel and 

Leopold, 2008) and with activation patterns seen during tasks (Smith et al., 

2009). Additionally, patterns of co-activations between brain regions, or 

resting state networks are stable and reproducible across individuals and in 

multiple samples (Rosazza and Minati, 2011). rsfMRI is advantageous in 

clinical populations, as no specific task is required; this can be particularly 

useful in patients with cognitive impairment as in the VIPD cohort.  

Functional connectivity (or co-activation patterns between regions) during 

rest is not static but has been shown to fluctuate over time (Chang and 

Glover, 2010). This dynamic or time-varying functional connectivity where 

the brain switches between different dynamic states (Hutchison et al., 2013; 

Allen et al., 2014; Shine et al., 2016) may be more representative of 

cognitive states than static approaches (Liégeois et al., 2019). Several 

analysis methods have been developed to assess the dynamic aspects of 

spontaneous brain activity captured using rsfMRI. In Chapter 7  I use one 
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such method, applying sliding temporal windows, to assess the differences 

in temporal dynamics between patients with Parkinson’s with and without 

hallucinations.  

 

2.6. MRI data acquisition 

All MRI data for the VIPD cohort were acquired in the same 3T Siemens 

scanner with a 64-channel coil, performed in the Wellcome Centre for 

Human Neuroimaging, 12 Queen Square.  

Resting state functional (rsfMRI) was acquired using the following 

parameters: gradient-echo EPI, TR=70 ms, TE=30 ms, flip angle=90°, 

FOV=192×192, voxel size=3x3x2.5 mm, 105 volumes. During rsfMRI, 

participants were instructed to lie quietly with their eyes open and try to 

avoid falling asleep. This was confirmed by monitoring and post-scan 

debriefing. The total acquisition time for rsfMRI was approximately 9 

minutes. 

Diffusion-weighted imaging (DWI) was acquired using the following 

parameters: b=50s/mm2 /17 directions, b=300s/mm2 /8 directions, 

b=1000s/mm2 /64 directions, b=2000s/mm2 /64 directions, 2x2x2mm 

isotropic voxels, TE=3260ms, TR=58ms, 72 slices, 2mm thickness, 

acceleration factor=2. Acquisition time for DWI was approximately 11 

minutes. Importantly DWI acquisition included more than 3 b-values and a 

maximum b-value >1000; this allowed for the application of multi-shell 

multi-tissue CSD and improved the fidelity and performance of acquired 

fixel-based analysis metrics and subsequent tractography. 

Structural MPRAGE data (magnetization prepared rapid acquisition 

gradient echo) was acquired using: 1×1×1mm voxel, TE=3.34ms, 
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TR=2530ms, flip angle=7°. Acquisition time for MPRAGE was 

approximately 9 minutes. 

 

2.7. MRI Quality Control  

Prior to MRI pre-processing, all volumes of raw datasets for all acquisitions 

were visually inspected. Each volume was evaluated for the presence of 

artefact and any scan with ≥15 volumes containing artefacts was excluded 

(Roalf et al., 2016).   

rsfMRI is particularly sensitive to artefacts arising from head motion, as 

even sub-millimiter movements can distort derived estimates of functional 

connectivity independent of the chosen analysis approach (Power et al., 

2012, 2014; Van Dijk et al., 2012) which can distort group differences. 

Additional quality assurance steps were taken to minimise the effect of 

motion artefact, using the MRI quality control tool (MRIQC) (Esteban et 

al., 2017). Framewise displacements, the subtle in-scanner movements from 

volume-to-volume were calculated using MRIQC. Rotational displacements 

were calculated as the displacement on the surface of a sphere with radius 

50 mm (the approximate mean distance from the cerebral cortex to the 

centre of the head) using the following equation:  

𝐹𝐷𝑖 = |𝛥𝑑𝑖𝑥| +  |𝛥𝑑𝑖𝑦| +  |𝛥𝑑𝑖𝑧| +  |𝛥𝑎𝑖| +  |𝛥𝛽𝑖| +  |𝛥𝛾𝑖| 

where Δdix = d(i − 1)x − dix and similarly for all the rigid body parameters 

(Δdiy, Δdiy, ai, βi and γi) (Power et al., 2012).  

Stringent criteria were adopted to exclude high motion participants, as this 

has been shown to be both effective and efficient with higher reliability in 

detecting group differences (Parkes et al., 2018). Specifically, participants 

were excluded from rsfMRI analyses if any of the following criteria was 
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met: 1) mean frame-wise displacement >0.3mm, 2) any frame-wise 

displacement >5mm, or 3) outliers >30% of the whole sample.  

In addition to excluding high motion participants, image quality metrics 

were extracted for both functional images and structural images and 

compared across the groups of interest to ensure that any group differences 

were not a result of systematic differences in image quality. Specifically the 

following measures were used as measures of noise:  

• Coefficient of joint variation (CJV): CJV has been proposed as an 

objective, quantitative measure of intensity non-uniformity. It is 

calculated as:  

𝐶𝐽𝑉 =
𝜎(𝑊𝑀) +  𝜎(𝐺𝑀) 

𝜇(𝑊𝑀) −   𝜇(𝐺𝑀)
 

where σ is the standard deviation and μ is the mean intensity of a 

given tissue class, WM is white matter and GM is grey matter. 

Large intensity non-uniformity and head motion will result in higher 

values, therefore lower values indicate better image quality 

(Ganzetti et al., 2016). 

• Signal to noise ratio (SNR): This is an important measure of noise, 

calculated within the tissue mask of the gray matter (GM) as:  

𝑆𝑁𝑅 =
𝜇(𝐺𝑀)

𝜎(𝐴𝐼𝑅)
 

where σ is the standard deviation and μ is the mean intensity of a 

given tissue class (Magnotta et al., 2006). 

• Entropy focus criterion (EFC): EFC is a metric of ghosting and 

blurring induced by head motion; this is indirectly assessed by the 

Shannon entropy of voxel intensities and calculated as:  

𝐸 =  − ∑
𝐵𝑗

𝐵𝑚𝑎𝑥
ln [ 

𝐵𝑗

𝐵𝑚𝑎𝑥
]

𝑆

𝑗=1
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where S is the total number of pixels, Bj is the modulus of the value 

of the jth image pixel and Bmax is equal to: 

𝐵𝑚𝑎𝑥 = √∑ 𝐵𝑗
2

𝑆

𝑗=1

 

EFC is then calculated by normalising the entropy criterion E by the 

maximum entropy allowing comparison across images (Atkinson et 

al., 1997). 

 

2.8. MRI data pre-processing  

Structural T1-weighted images  

Following quality control, structural images underwent pre-processing and 

automatic segmentation using FreeSurfer v6.0 (https://freesurfer.net/). 

Automatic segmentation is particularly advantageous when dealing with 

large sample sizes, reducing time whilst maintaining accuracy and 

improving reproducibility. The Freesurfer implementation is based on a 

probabilistic model using a surface-based coordinate system to calculate the 

probability of a specific anatomical structure occurring in a specific brain 

region as well as the probability that a structure contains specific MR 

properties (Fischl et al., 1999). Freesurfer combines these with prior 

knowledge about anatomical location, to label cortical and subcortical 

structures according to a specific atlas, as well as to derive structural 

measurements. The choice of atlas or parcellation used in the studies 

presented in this thesis differed according to the specific research question; 

the specific parcellation and reasons for choosing it will be discussed in 

individual chapters.  

Irrespective of parcellation choice, the Freesurfer pipeline performs the 

following steps:  

https://freesurfer.net/
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• Skull stripping is first performed: signal from non-brain tissue is 

removed 

• The T1-weighted image is registered to Talairach space (Talairach 

and Tournoux, 1988) through affine registration (preserved global 

image features) 

• Intensity normalisation: the signal intensity of white and grey matter 

is homogenised. This allows for better subsequent distinction 

between tissue types and improves segmentation results. 

• Initial labelling of cortical and subcortical structures. 

• Bias field correction: tissue types are classified and a bias-free 

image created. The residual image is generated by subtracting the 

bias-free image from the original one; this is used to estimate the 

bias field (Gispert et al., 2004). 

• Non-linear registration of the T1-weighted image to the Talairach 

atlas. Cortical and subcortical structures are then re-labelled.  

For the purposes of longitudinal analysis in Chapter 5, the dedicated 

longitudinal pipeline from Freesurfer was used (Reuter et al., 2012) after the 

Baseline and Visit 2 scans for each VIPD participant were processed with 

default parameters following the above pipeline. An unbiased within-subject 

template image was created for each participant using inverse consistent 

registration and taking into account both the Baseline and Visit 2 image. 

Subsequent processing steps were initialized from the within-subject 

template, thereby increasing accuracy and statistical power (Reuter et al., 

2012). After longitudinal processing, surface reconstructions of the template 

and of images at Baseline and Visit 2 were inspected, corrected, and 

reprocessed where necessary.  
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Diffusion weighted images  

Following quality control steps described previously, DWI images 

underwent denoising (Veraart et al., 2016) using the dwidenoise command 

and removal of Gibbs ringing artefacts (Kellner et al., 2016) using the 

mrdegibbs command in MRtrix  (Tournier et al., 2019). Motion and 

distortion correction was then performed using the dwipreproc pipeline in 

MRtrix (Tournier et al., 2019). This performs the following corrections: 

• EPI distortion correction (Holland et al., 2010) using two b0 images 

one acquired in the phase encoded direction (PE) and one in the 

reversed direction.  

• B0-field inhomogeneity correction using FSL’s topup tool 

(Andersson et al., 2003) 

• Eddy-current and movement distortion correction (Andersson and 

Sotiropoulos, 2016) using FSL’s eddy tool. This shows better 

performance than previous methods (Graham et al., 2016). 

Then DWI images underwent bias field correction (Tustison et al., 2010) 

using the dwibiascorrect command. This improves subsequent brain mask 

estimation. Finally, a brain mask was estimated using the dwi2mask 

command; this removes non-brain matter from the image. After brain mask 

calculation, each mask was visually inspected to assess whether non-brain 

matter was included or whether brain matter was inappropriately removed 

from the image; masks were manually corrected if required.  

The response function was then estimated for each participant’s grey matter, 

white matter and cerebrospinal fluid using dwi2response followed by a 

group averaged white matter response function estimation (Tournier et al., 

2013). The DWI spatial resolution of diffusion weighted images was then 

upsampled to a voxel size of 1.3 mm3 using cubic interpolation as this has 

been shown to improve anatomical contrast and downstream template 
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building, registration and statistics and is recommended for fixel based 

analysis (Tournier et al., 2019). Global intensity normalisation was then 

used across subjects to allow comparisons between participants (Raffelt et 

al., 2017).  

Next, fibre orientation distributions (FODs) were calculated for each 

participant via the Multi-Shell Multi-Tissue Constrained Spherical 

Deconvolution (MSMT-CSD) using the group average response function for 

each of the three tissue types (grey matter, white matter and CSF) 

(Hollander, T. et al., 2016).  

An unbiased, study-specific FOD template was created using FOD images 

from 30 randomly-selected subjects (20 Parkinson’s disease, 10 healthy 

controls) in accordance with previous studies using fixel-based analysis 

(Mito et al., 2018). Each subject’s FOD image was then registered to the 

template using FOD-guided non-linear registration (Raffelt et al., 2011). 

Fixel-based metrics (fibre density (FD), fibre cross-section (FC) and 

combined fibre density and cross-section (FDC)) were then calculated for 

each participant in template-space. 

Functional images 

Preprocessing of rsfMRI data was performed using fMRIPrep 1.5.0, which 

offers a standardised, automated processing pipeline (Esteban et al., 2019). 

The first 4 volumes were discarded to allow for steady state equilibrium. 

Functional data was slice-time corrected using 3dTshift from AFNI (Cox, 

1996) and motion corrected using mcflirt (Jenkinson et al., 2002). Distortion 

correction was performed using a TOPUP implementation (Andersson et al., 

2003). This was followed by co-registration to the corresponding T1-

weighted image using boundary-based registration with six degrees of 

freedom (Greve and Fischl, 2009). Motion correcting transformations, field 

distortion correcting warp, BOLD-to-T1w transformation and T1w-to-
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template (MNI) warp were concatenated and applied in a single step using 

antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Physiological noise regressors were extracted applying CompCor (Behzadi 

et al., 2007). Spurious sources of signal were removed through linear 

regression: six motion parameters, mean signal from white matter and 

cerebrospinal fluid. I did not regress global signal given the lack of 

consensus and potential to distort group differences (Saad et al., 2012).  
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3. Quantifying the use of prior knowledge in 

Parkinson’s associated hallucinations 

 

3.1 Introduction 

Dementia with Lewy Bodies and the related Parkinson’s Disease Dementia 

are together the second most common cause of dementia in the elderly 

(Rahkonen et al., 2003) accounting for approximately 15% of all dementia 

cases, with more than 130,000 people affected in the UK. Although they 

may differ in the sequence of onset of dementia and parkinsonism, but with 

disease progression, they produce a similar clinical phenotype and 

underlying pathological changes. These similarities have led to expert 

consensus that they are a continuum of Lewy Body disease (LBD: Dementia 

with Lewy Bodies and Parkinson’s disease) rather than separate entities 

(Rahkonen et al., 2003). Considering the two diseases together can provide 

useful insights into common mechanisms leading to the same symptom of 

hallucinations, an approach that has been advocated in recent years 

(Jellinger, 2012; Postuma et al., 2016; Weil et al., 2017).  

One common symptom of LBD is visual hallucinations, which affect up to 

70% of patients (Fénelon et al., 2000; Hely et al., 2008). Hallucinations are 

associated with worse outcomes in LBD: cognitive decline, increased 

mortality (Hobson and Meara, 2004), higher carer burden (Aarsland et al., 

2007), worse quality of life (McKinlay et al., 2007) and higher likelihood of 

nursing home placement (Aarsland et al., 2000). However, despite their 

importance for patients and carers, the neural mechanisms of visual 

hallucinations remain poorly understood and treatment options for visual 

hallucinations are limited (Fénelon et al., 2000; Weil et al., 2016).  
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A recent, useful framework for visual hallucinations suggests that they can 

be thought of as false inference, which arises due to impaired integration of 

sensory input and prior knowledge during visual perception (Fletcher and 

Frith, 2009; Adams et al., 2013; Powers et al., 2016; Corlett et al., 2019). 

Indeed, recent evidence suggests that hallucinations occurring in healthy 

individuals or due to psychiatric disease are associated with an increased 

influence of prior knowledge and reduced influence of sensory evidence 

when viewing ambiguous visual or auditory stimuli (Teufel et al., 2015; 

Alderson-Day et al., 2017; Powers et al., 2017; Davies et al., 2018). 

Visual hallucinations in LBD are associated with visual-processing deficits 

(Diederich et al., 2005; Williams-Gray et al., 2013; Fereshtehnejad et al., 

2019) and impaired accumulation of sensory evidence (O’Callaghan et al., 

2017). However, hallucinations are also experienced by patients without any 

visual deficits (Gallagher et al., 2011; Weil et al., 2016) making a solely 

bottom-up explanation for the occurrence of hallucinations less attractive.  

The aim of the study presented in this chapter is to test the hypothesis that 

visual hallucinations in LBD are associated with an increased weighting of 

prior knowledge. To quantify the use of prior knowledge during visual 

perception, a visual learning paradigm was used where sensory evidence 

remained constant but prior knowledge was manipulated by supplying 

participants with information and comparing performance before and after 

information was provided.  

I hypothesised that:  

1) patients with LBD and visual hallucinations would show greater 

improvement in performance compared to patients with LBD who 

did not experience hallucinations after receiving prior knowledge  

2) this performance benefit would be higher in those patients with 

more severe hallucinations. 



65 

 

3.2 Methods 

Study Participants 

A total of 57 participants were recruited to this study: 37 patients with LBD 

and 20 age-matched unaffected controls (LBD cohort, Chapter 2.1). All 

patients with LBD satisfied either the United Kingdom Parkinson’s Disease 

Society Brain Bank criteria for Parkinson’s disease, the Movement Disorder 

Society criteria for Parkinson’s disease dementia or the Dementia with 

Lewy Bodies Consortium Criteria for DLB (Gibb and Lees, 1988; Emre et 

al., 2007; McKeith et al., 2017). Patients with LBD were further classified 

as habitual hallucinators (LBD-VH, n=17) if they scored ≥1 on question two 

of the Movement Disorder Society Unified Parkinson’s Disease Rating 

Scale (UPDRS: “Over the past week have you seen, heard, smelled or felt 

things that were not really there?”) (Goetz et al., 2008). All other 

participants were classified as LBD non VH. Details on the phenotype, 

frequency and severity of visual hallucinations were collected using the 

University of Miami Parkinson's Disease Hallucinations Questionnaire 

(UM-PDHQ) (Papapetropoulos et al., 2008).  

All assessments and the experimental task were performed with patients in 

the ON state. The full list of clinical and neuropsychological assessments used 

in the LBD cohort are described in Chapter 2.1 and in the relevant publication 

(Zarkali et al., 2019). In brief, motor function was assessed using the UPDRS 

(Goetz et al., 2008). General cognition using Mini-Mental State Examination 

(MMSE) and Montreal Cognitive Assessment (MoCA) (Dalrymple-Alford et 

al., 2010; Creavin et al., 2016). In addition two specific tasks were assessed 

per cognitive domain Attention: Digit span backwards (Wechsler, D, 2008), 

Stroop test: Naming subtest (Stroop, 1935), Executive function: Stroop 

Interference (Stroop, 1935), Category fluency (Rende et al., 2002), Memory: 

Word Recognition Task (Warrington, 1984), Logical Memory (Wechsler, D, 
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2008), Language: Graded Naming Task (Warrington, 1997), Letter fluency 

(Rende et al., 2002), Visuospatial: Benton’s Judgment of Line (Benton et al., 

1978), Hooper Visual Organization Test (Hooper, 1983). Visual acuity was 

assessed using the 6-meter Snellen chart, colour vision using the D15 

(Farnsworth, 1947) and contrast sensitivity using the Pelli-Robson (Pelli et 

al., 1988).  

Experimental design and procedure 

A visual learning paradigm was used with two-tone images as stimuli. 

These appear when first seen as meaningless black and white patches 

(Figure 3.1) but after the template from which they were created is seen 

(therefore prior knowledge is given (Figure 3.2, opposite)) they generate a 

strong, coherent percept (Dolan et al., 1997; Moore and Cavanagh, 1998; 

Hegdé and Kersten, 2010; Hsieh et al., 2010; Cavanagh, 2011; Teufel et al., 

2015).  

Figure 3.1 Two-tone stimuli.  

Example of a test stimulus (Left) and control stimulus 

(Right). Both have similar characteristics, but the test 

images contain a person whilst the control images do not. 
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Disambiguation of two-tone images after prior knowledge is provided is 

mediated primarily by top-down influences and therefore can be used as a 

proxy to quantify the effect that top-down influences have on visual 

perception (Dolan et al., 1997; Hsieh et al., 2010; Teufel et al., 2015; 

Davies et al., 2018). To do this, the performance of participants in 

disambiguating the two-tone images was assessed before and after prior 

knowledge was supplied using a block design (Figure 3.3).  

The experiment consisted of 6 sessions, each with three trial blocks: 

- Before block: where participants were presented with 10 two-tone 

images (examples in Figure 3.1)  

Figure 3.2 Example of a template image. 

This image was used to create the test stimulus in Figure 3. 1. 
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- Template block: participants presented with 20 coloured images 

(the templates for the 10 two-tone images of the Before block and 10 

distractor images) in random order, and 

- After block: repetition of the 10 two-tone images of the Before 

block (their order was randomised). 

This lead to a total of 60 Before and After trials per participant. The order of 

images presented within each block was randomised. On each trial 

participants were presented with an image (two-tone or colour) for 800ms. 

Then they were asked to indicate whether they saw a person or not in the 

image by keyboard press (Figure 3.3). There was no time limit on the 

response to account for expected prolonged reaction times of the LBD 

cohort. Participant responses during the Template blocks were not used in 

the analysis, but were recorded to ensure that participants were actively 

observing the template images thus receiving optimal prior information. 

The experiment started with a practice session identical to the experimental 

sessions; only participants achieving >=65% discrimination sensitivity in 

the practice session proceeded to the experiment. All recruited participants 

passed this threshold, and therefore none were excluded from subsequent 

analyses. Each experimental session (comprised of a Before, Template and 

After block) lasted ~7 minutes with a total experiment time of ~45 minutes.  

The experiment was conducted using a Dell XPS9570 15’ laptop with a 4k 

display at maximum brightness setting. The stimuli were presented with a 

custom application made on Unity (version 2018.3.0b4) with participants 

seated at distance ~60cm from the screen. The experimental procedure is 

described in Figure 3.3.  
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Figure 3.3. Illustration of the experimental procedure. 

(Opposite) 

A. Individual trial: Participants are presented with an image and asked to 

indicate whether the image contains a person or not. Response was 

observer-paced without time limit to ensure capture from our clinical 

groups. 

B. Experiment Section: First, in the Before Block, participants are 

presented with 10 two-tone images (5 test stimulus, 5 controls) in random 

order. Then, participants are presented with a Template block of 20 colour 

images in random order (including all templates for the two-tone stimuli 

shown in the Before Block). After each presented template image 

participants are asked again to indicate the presence of a person. This 

facilitates participant compliance by keeping the task simple and also 

ensures that participants actively observe the template images so optimal 

prior knowledge of the two-tone image content is provided. Finally, in the 

After Block, participants are presented with the same two-tone images as in 

Before Block in random order. 

C. Experiment: The experiment consists of 6 sections and starts with a 

training section, identical to the experimental sections but with two-tone 

images that are easier to disambiguate. Only participants with >65% 

discrimination sensitivity proceed to the main experiment (all participants 

achieved this threshold). 
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Stimulus generation procedure 

A total of 150 two-tone images were created with a custom Python script 

using coloured high-definition template images of people and animals which 

were downloaded from https://stocksnap.io and https://www.pexels.com/ 

under the Creative Commons License. Template images were resized to 

500x500 pixels using cubic interpolation and converted to grayscale. Image 

noise was cleared through opening (erosion followed by dilation) with a 1x1 

kernel. A Gaussian blur was applied with a 9x9 kernel. Finally, a binary and 

Otsu threshold were applied (Sezgin and Sankur, 2004) (Figure 3.4).  

The code used to generate the stimuli as well as the individual stimuli is 

available: https://github.com/AngelikaZa/Increased-weighting-on-prior-

knowledge-in-Lewy-Body-associated-visual-hallucinations.-

BrainComms2019   

 

Figure 3.4. Illustration of the stimulus creation process. 

Template images were resized to 500x500 pixels using cubic interpolation 

and converted to grayscale. Image noise was cleared through opening 

(erosion followed by dilation) using a 1x1 kernel. A Gaussian blur was 

applied with a 9x9 kernel. Finally, a binary and Otsu threshold were 

applied to each image (Sezgin and Sankur, 2004) resulting to the final Two-

tone image. 

https://stocksnap.io/
https://www.pexels.com/
https://github.com/AngelikaZa/Increased-weighting-on-prior-knowledge-in-Lewy-Body-associated-visual-hallucinations.-BrainComms2019
https://github.com/AngelikaZa/Increased-weighting-on-prior-knowledge-in-Lewy-Body-associated-visual-hallucinations.-BrainComms2019
https://github.com/AngelikaZa/Increased-weighting-on-prior-knowledge-in-Lewy-Body-associated-visual-hallucinations.-BrainComms2019
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The resulting two-tone images were piloted with 17 healthy volunteers to 

assess discrimination sensitivity before and after viewing the templates. 

Two-tone images that were too easy to disambiguate (≥75% of volunteers) 

before viewing the template or too difficult after seeing the template (≤25% 

of volunteers) were excluded. From the remaining two-tone images, 60 were 

randomly selected (30 of people and 30 of animals) for the main 

experiment. The presentation time of 800ms chosen in the experiment was 

also guided by reaction time data collected during pilot testing. Seventeen 

healthy volunteers were asked to indicate the presence of a person in the 

two-tone stimuli using a keyboard press without any prior information and 

without presentation time limit. A keyboard press triggered the next 

stimulus to be presented. Decision time was recorded and 800ms (mean + 

2SD) was chosen for the main experiment. 

Statistical analysis 

Correct responses and reaction times for each participant and each trial were 

recorded in the Before and After blocks and analysed using signal detection 

theory (Tanner and Swets, 1954). In each experimental trial there are four 

possible outcomes: hit (person present in the presented stimulus and 

participant says "yes''), miss (person present and participant says "no''), false 

alarm (person absent and participant says "yes"), and correct rejection 

(person absent and participant says "no"). In this way, we can derive hit 

rates and false alarm rates from the collected responses; this was done 

separately for the Before and After Blocks.  

I then derived discrimination sensitivity (d’): a measure of the observer’s 

ability to distinguish ‘signal’ from ‘noise’ distributions (independent of any 

bias) from the following equation:  

d' = z(h) - z(f) 

where h: hit rate, f: false alarm rate. 
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Criterion (c) was also derived: a measure of the bias the observer has to detect a 

signal (Macmillan and Creelman, 1991), using:  

c = -1/2[z(h) + z(f)] 

where h: hit rate, f: false alarm rate. 

Independent t-samples and ANOVAs were used to compared normally 

distributed continuous variables with Tukey post-hoc test and Mann-

Whitney and Kruskall-Wallis for non-normally distributed ones, with 

Nemeyni post-hoc test (Shapiro-Wilk test and visual inspection used to test 

normality). In the main comparison of interest (LBD-VH vs LBD-non-VH) 

I also performed uncorrected t-tests and Kruskall-Wallis tests, to avoid 

missing small but potentially important differences between the two groups. 

The statistical significance threshold was set at p<0.05. All statistical 

analysis was performed in Python 3 (Jupyter Notebook 5.5.0). 

 

3. 3. Results  

57 participants were included: 17 patients with LBD and visual 

hallucinations (LBD-VH), 20 patients with LBD without hallucinations 

(LBD-non-VH) and 20 age-matched controls.  

Demographics and results of clinical assessments  

The three study groups did not significantly differ in demographics, 

education, low level vision, and general cognition (Table 3.1).  

Of three measures of higher-level visuospatial perception, only one differed 

between groups: the Hooper test [Kruskal-Wallis: H=86, p<0.001] with 

post-hoc analysis attributing this difference to lower performance in LBD-

VH compared to controls [U=86, p=0.005] whilst no difference in 

performance was seen between LBD-VH and LBD-non-VH [U=141, not 
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significant]; the other two visuo-perceptual measures (Judgement of Line 

orientation and Visual Object and Space Perception Battery) were not 

significantly different between any group. Depression scores in the Hospital 

Anxiety and Depression Scale were higher in LBD-VH [H=24.133, 

p<0.001] but were below the threshold for diagnosis of depression in this 

scale (Bjelland et al., 2002; Mondolo et al., 2006). 

Of LBD-VH participants n=3 had a diagnosis of Dementia with Lewy 

Bodies and the remaining n=14 of Parkinson’s disease, whilst n=2 of the 

LBD non VH patients had a diagnosis of Dementia with Lewy Bodies and 

n=16 had Parkinson’s disease. Apart from diagnostic distinctions, there 

were no statistically significant differences between patients with a 

diagnosis of Dementia with Lewy Bodies and those with Parkinson’s 

disease in disease duration, clinical or demographic measures (Table 3.2). 

Importantly, LBD-VH participants did not differ in any of the neuropsychology 

measures except for lower MOCA (U=7.0, p=0.043), worse Stroop interference 

time (U=7.0, p=0.044) and worse performance on Logical Memory Test in 

those with Dementia with Lewy Bodies (U=1.0, p=0.006). 
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Table 3. 1. Demographics and clinical characteristics, LBD cohort 

Attribute Controls 

n = 20 

LBD non 

VH 

n = 20 

LBD VH 

n = 17 

p value* 

Demographics Age in years 69.7 (6.9) 68.9 (7.1) 68 (6.9) 0.457b 

 Male (%) 11 (55) 13 (65) 7 (41.2) 0.079b 

 Years in Education 15.9 (2.6) 15.9 (2.3) 15.4 (2.9) 0.567a 

Mood (HADS)  Depression score 2.2 (2.2) 2.5 (2.5) 4.5 (2.4) 0.017b 

 Anxiety score 4.3 (2.6) 4.5 (4.1) 5.2 (2.9) 0.212b 

Vision Visual acuity (bilateral) 1.1 (0.2) 1.1 (0.2) 1.0 (0.2) 0.216b 

 Contrast sensitivity (Pelli 

Robson) (log units) 

(bilateral) 

1.7 (0.2) 1.7 (0.1) 1.5 (0.2) 0.017b 

 Colour vision (D15) 0.2 (0.4) 0.8 (1.3) 0.4 (1.3) 0.180b 

Neuropsychology MMSE 29.5 (0.7) 29 (1.5) 28 (2.1) 0.057b 

 MOCA 27.8 (1.2) 26.8 (3.1) 25.5 (3.7) 0.131b 

Attention Digit span backwards 8.4 (2.4) 7.2 (2.6) 7.1 (2.2) 0.860a 

 Stroop: Naming (sec) 38.1 (6.5) 35.8 (8.5) 44.7 (14.5) 0.007b 

Executive function Stroop: Interference (sec) 69.1 (14.2) 66.7 (22.9) 83 (27.2) 0.062b 

 Category fluency 19.7 (4.4) 19.8 (4.3) 17.8 (5.6) 0.219a 

Memory Word Recognition Task 24.8 (0.4) 23.2 (1.9) 23.6 (2.0) 0.219b 

 Logical Memory 

(delayed) 

12.4 (4.3) 10.1 (3.9) 11.1 (2.8) 0.309a 

Language Graded Naming Task 24.4 (2.5) 23.8 (3.9) 22.3 (3.9) 0.079b 

 Letter Fluency 16 (4.7) 14.6 (5.5) 12.8 (4.2) 0.297a 

Visuospatial VOSP  56.2 (2.0) 54.6 (3.3) 52.8 (5.4) 0.397b 

 Benton’s Judgement of 

Line Orientation 

24.4 (4.3) 25.4 (4.1) 22.3 (4.4) 0.071b 

 Hooper’s Visual 

organisation test 

25.6 (2.4) 23.2 (3.9) 21.7 (4.9) 0.187b 

Disease specific Age at diagnosis - 64.4 (9.0) 63.4 (7.3) 0.719a 

 Disease duration - 4.5 (4.6) 4.6 (2.7) 0.944a 

 RBDSQ - 4.2 (2.5) 5.1 (3.0) 0.190b 

 UPDRS Total - 38.7 (13.4) 52.8 (15.6) 0.003b 

 UPDRS Question 1.2 - - 1.76 (0.73) - 

 Miami Hallucinations 

Questionnaire 

- - 5.2 (1.9) - 

 UPDRS part 3 (motor 

score) 

- 24.7 (7.5) 30.5 (10.6) 0.136b 

 LEDD (mg) - 401.9 

(288.3) 

406 (244.8) 0.500 

 Smell test - 23.2 (3.9) 21.6 (4.9) 0.082a 

LBD-VH: Patients with Lewy Body Disease and hallucinations; LBD-non-VH: patients without 

hallucinations. 

All data shown (except gender) are mean (SD).  *Uncorrected P values shown are for comparison between 

LBD/VH and LBD/non-VH (comparison of interest), in bold statistically significant values (p<0.05).  a 

Student t test. bMann-Whitney test.  HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state 

examination; MOCA: Montreal cognitive assessment; VOSP: Visual Object and Space Perception Battery 

UPDRS: Unified Parkinson’s disease rating scale; LEDD: Total Levodopa equivalent daily dose; RBDSQ: 

REM sleep behaviour disorder screening questionnaire. 
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Table 3. 2. Comparison between participants with Parkinson’s disease 

and patients with Dementia with Lewy bodies 

 

Attribute PD 

n = 32 

DLB 

n = 5 

p value* 

Demographics Age in years 69.3 (7.2) 67.8 (6.4) 0.817a 

 Male (%) 17 (40.1) 3 (60) 0.398b 

 Years in Education 15.6 (2.6) 16.0 (3.2) 0.730a 

Mood (HADS)  Depression score 3.2 (2.5) 5.3 (3.3) 0.033b 

 Anxiety score 4.4 (3.7) 5.8 (2.1) 0.043b 

Vision Visual acuity (bilateral) 1.1 (0.2) 1.0 (0.2) 0.339b 

 Contrast sensitivity (Pelli 

Robson) (log units) 

(bilateral) 

1.6 (0.2) 1.5 (0.2) 0.168b 

 Colour vision (D15) 0.5 (1.2) 1.5 (1.9) 0.052b 

Neuropsychology MMSE 28.9 (1.5) 26.4 (2.3) 0.005b 

 MOCA 27.1 (2.4) 20.6 (3.8) 0.002b 

Attention Digit span backwards 7.3 (2.3) 6.0 (2.9) 0.257a 

 Stroop: Naming (sec) 25.2 (7.9) 39.4 (12.1) 0.029b 

Executive function Stroop: Interference (sec) 69.6 (21.4) 118.8 (28.2) 0.002b 

 Category fluency 19.8 (4.5) 13.0 (3.9) 0.003a 

Memory Word Recognition Task 23.7 (1.6) 21.4 (3.0) 0.036b 

 Logical Memory (delayed) 11.6 (2.7) 6.8 (1.5) 0.001a 

Language Graded Naming Task 23.5 (3.7) 19.8 (4.1) 0.026b 

 Letter Fluency 14.6 (4.6) 14 (3.6) 0.007a 

Visuospatial VOSP  54.0 (4.3) 52.0 (4.9) 0.420b 

 Benton’s Judgement of 

Line Orientation 

23.8 (3.9) 16.7 (2.3) 0.328b 

 Hooper’s Visual 

organisation test 

22.9 (4.3) 19.9 (4.6) 0.073b 

Disease specific Hallucinations (%) 14 (33.3) 3 (60.0) 0.480b 

 Miami Hallucinations 

Questionnaire 

2.2 (2.8) 3.8 (3.8) 0.154 

 Disease duration 4.8 (3.8) 2.4 (2.3) 0.168a 

 RBDSQ 4.3 (2.7) 6.2 (3.0) 0.073b 

 UPDRS Total 44.8 (16.0) 47.2 (16.9) 0.395b 

 UPDRS part 3 (motor 

score) 

27.4 (9.9) 28.4 (7.1) 0.420b 

 LEDD (mg) 409.1 (257.8) 370.0 (343.4) 0.764a 

 Smell test 7.5 (3.2) 6.0 (3.0) 0.258a 

PD: Parkinson’s Disease; DLB: Dementia with Lewy Bodies; VH: Visual hallucinations. 

All data shown (except gender) are mean (SD).  
a Student t test. bMann-Whitney test. 

HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state examination; MOCA: 

Montreal cognitive assessment; VOSP: Visual Object and Space Perception Battery UPDRS: Unified 

Parkinson’s disease rating scale; LEDD: Total Levodopa equivalent daily dose; RBDSQ: REM sleep 

behaviour disorder screening questionnaire. 



77 

 

Prior knowledge leads to greater performance improvement in 

patients who hallucinate.  

All participants improved in performance in the After compared to the Before 

block, as expected by the experimental design. This was true both for absolute 

percentage correct [t=4.12, Hedge’s g=0.77, p<0.001] and discrimination 

sensitivity, d’ [t= 3.73, Hedge’s g=0.69, p<0.001]. A between-groups ANOVA 

revealed that this improvement differed between the three study groups in 

percentage correct [F(2,54)=4.90, p=0.011] and d’ [F(2,54)= 3.18, r2=0.11, 

p=0.049] (Figure 3.5). Post-hoc testing showed that this group difference was 

driven by a difference between patients with LBD with and without 

hallucinations [t=2.35, Hedge’s g=0.75, p=0.025].  

Hallucinators improved more than double the amount the non-hallucinators did 

after prior knowledge was provided (in the After block after the template 

images were seen): improvement in d’ (d’ diff) was mean ±SD = 0.20 ±0.46 in 

LBD-non-VH versus 0.54 ±0.41 in LBD-VH (Figure 3.6). To ensure that the 

observed difference in improvement was not secondary to a ceiling effect 

(LBD-non-VH or controls performing at ceiling in the Before block) I tested 

the variance of d’ between the three groups using the Levene’s test of variance: 

if an effect was due to ceiling performance in the Before block in a certain 

group, we would expect a lower variance in this group compared to other 

groups. Variance was not significantly different in LBD-VH compared to LBD-

non-VH or controls in the Before block (Levene’s test of variance W= 1.09, 

p=0.344) or the After block (W=0.77, p=0.469), suggesting that neither of the 

three groups was performing at ceiling in either block. Additionally, even 

participants with high performance in the Before block (higher d’) were able to 

improve in the After block with higher d’ in the Before block associated with 

higher improvement in d’ (r2=0.260, df=40, β=0.1376 p=0.001). Therefore, 

although a ceiling effect can not be excluded in LBD non VH, there is no 

evidence to suggest that this was driving group differences observed in this 

study. 
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Figure 3.5. Improvement in performance in patients with LBD with and 

without hallucinations and controls. 

Discrimination sensitivity (d’) in the Before block (dark green) and in the 

After blocks (light green) across the three study groups. Error bars depict 

standard deviation. * denote statistically significant differences across the 

specific groups in discrimination sensitivity improvement (d’ improvement in 

the After block compared to the Before block). 

LBD non VH: patients with Lewy Body disease (LBD) without hallucinations, 

LBD VH: patients with LBD and habitual, at least weekly visual 

hallucinations 
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Of the 17 patients with LBD and VH, 4 (23.5%) had provoked, 3 (17.3%) 

formed, and 10 (58.8%) animate hallucinations; hallucination severity on the 

UM-PDHQ scale was mean ±SD = 5.2 ±1.9. Importantly, in those patients with 

habitual hallucinations, performance improvement (d-diff) was correlated with 

hallucination severity [r2=0.617, df=16, p<0.001], with higher improvement in 

patients with more severe hallucinations. This correlation remained significant 

after correcting for the observed differences in contrast sensitivity, Stroop 

naming scores, depression scale scores and UPDRS as well as MMSE, 

levodopa equivalent dose and Hooper [df=7, t=2.549, p=0.038].  

Improvement was driven by a reduction in false alarm rates. 

The difference in performance improvement was primarily secondary to a 

greater reduction in false alarm rate in LBD-VH: -0.07 ±0.07 in LBD VH 

compared to -0.01 ±0.08 in LBD-non-VH [t=2.19, Hedge’s g=0.70, 

p=0.035] (Figure 3.6). LBD-VH participants had higher false alarm rates in 

the Before block than LBD-non-VH [Mann-Whitney U=114, p=0.043] but 

did not differ in false alarm rates in the After block [U=150, p=0.269]. Hit 

rate did not significantly differ between LBD-VH and LBD-non-VH in 

either the Before [U=122, p=0.073] or After block [U=145, p=0.221]. 

Importantly, criterion also did not significantly differ between groups in 

either the Before [F(2,54)=0.902, p=0.412] or After blocks [F(2,54)=0.527, 

p=0.593], thus excluding a  significant response bias difference between 

groups.  

Figure 3.6 Improvement in performance in patients with LBD with and without 

hallucinations (Opposite)  

A. False alarm rates in LBD with and without hallucination (VH). 

B. Criterion (c). Lower values suggest a response bias to indicate the presence of a person 

independent of whether a test or control image is shown. 

C. Discrimination sensitivity (d’): higher values suggest better ability to correctly 

disambiguate the two-tone images. In all panels confidence intervals 95% are shown. 
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3.4. Discussion 

This is the first study showing that patients with LBD hallucinations place a 

relatively higher weighting on prior knowledge in perceptual inference:  

improvement in the visual disambiguation task following receipt of prior 

knowledge was more than double in LBD-VH compared to LBD-non-VH.  

Hallucinations in LBD are usually progressive, often starting as illusions or 

misperceptions followed in time with the development of complex and vivid 

hallucinations (Mosimann et al., 2004). Insight, although initially present is 

also often lost with disease progression and delusional ideas around 

hallucinations can also occur (Weil et al., 2016). I found that severity of 

hallucinations, as assessed using a validated disease-specific questionnaire 

(UM-PDQH) was associated with greater improvement in performance and 

therefore an even higher effect of prior knowledge. This may provide some 

insights into how hallucinations progress during the disease. The whole 

visual system, as early as the retina, shows visual changes in LBD and 

evidence suggests that at least some of these changes happen early in the 

disease process (Williams-Gray et al., 2013; Erskine et al., 2019; Han et al., 

2020). Early damage in the low-level visual system could result in 

decreased sensory precision (a loss of signal/noise). This is supported by a 

decreased drift rate in an attentional task, implying slower evidence 

accumulation in patients with Parkinson’s disease and hallucinations 

compared to those without hallucinations (O’Callaghan et al., 2017).  

In this study, I show an increase in false alarms and lower d’ at baseline, 

implying closer ‘signal’ and ‘noise’ distributions in LBD-VH. Improvement 

in performance after prior information was given (viewing of coloured 

template images) in hallucinators was mostly realised as a reduction in false 

alarms rather than an increase in hits. This is in keeping with evidence that 

acquiring prior beliefs in this task sharpens basic sensory tuning curves 
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(Davies et al., 2018): this effect may be even greater in those with least 

sensory precision. Whether hallucinations in LBD-VH are solely 

attributable to loss of sensory precision is unclear: it could also be that the 

precision of these patients’ prior beliefs increases in absolute terms, 

alongside sensory precision loss. In this cohort, there was no strong 

evidence for sensory precision loss in hallucinators as their performance in 

low-level visual tasks was overall comparable to LBD-VH, but 

visuoperceptual deficits are described in LBD. A task specifically designed 

to measure the separately the relative contributions of priors and likelihoods 

could shed further light into the mechanisms of LBD-hallucinations 

(Karvelis et al., 2018). 

Interestingly, there was wide variability in performance improvement in 

those patients who did not experience habitual hallucinations. This, in 

addition with the correlation between performance improvement and 

hallucination severity, raises the question of whether patients with LBD and 

greater improvement in performance are on the cusp of developing 

hallucinations in the near future. Future prospective studies in LBD could 

shed further light on this question and evaluate tests of prior knowledge as 

potential markers of hallucination-susceptibility. 

My findings are consistent with studies in psychiatric illness and 

hallucination-prone individuals. People at risk of or with early psychosis 

also show an overweighting of prior knowledge in a similar disambiguation 

task and have a perceptual advantage in disambiguating degraded visual or 

auditory stimuli (Teufel et al., 2015; Alderson-Day et al., 2017; Davies et 

al., 2018). This suggests that irrespective of pathophysiological diagnosis, 

hallucinations may share a computational mechanism across diseases. This 

could have useful implications in translating advances and treatments across 

fields. 
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It is important to note, that in this study all patients were examined in the 

ON state. Levodopa equivalent doses did not differ between LBD-VH and 

LBD non VH, however higher levodopa doses are associated with a higher 

risk of hallucinations (Fénelon et al., 2000; Gallagher et al., 2011) and 

striatal dopamine release is linked to hallucinations (Cassidy et al., 2018). 

Further studies specifically testing LBD patients both ON and OFF 

medications could provide further insights to the effect of dopamine on 

sensory integration.  

 

Publication statement 

The work included in this chapter has been published previously (Zarkali et 

al., 2019) and is included here as per the publisher’s policy with regards to 

thesis publications. 
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4. Imaging white matter in Parkinson’s associated 

hallucinations 

 

4.1 Introduction 

In the previous chapter I showed that patients with Parkinson’s disease (PD) 

and visual hallucinations show an increased weighting of prior knowledge 

relative to sensory evidence during visual perception (Chapter 3). As 

feedforward and feedback signals are communicated between regions via 

white matter connections, assessing the integrity of white matter in patients 

with PD and visual hallucinations could provide useful insights.  

Although Parkinson’s disease is classically thought of as a synucleinopathy 

(Spillantini et al., 1997), patients with non-motor symptoms and particularly 

cognitive involvement usually show a combination of pathologies at post 

mortem, with fibrillary amyloid-beta, intraneuronal hyperphosphorylated 

tau as well as alpha-synuclein inclusions (Compta et al., 2011). Occipital 

distribution of Lewy-related pathology is also linked to more rapid 

progression of Parkinson’s dementia (Toledo et al., 2016). Importantly, 

cognitive changes in Parkinson’s disease appear to involve early axonal 

involvement. Dystrophic axonal changes are seen before any neuronal loss 

is evident, suggesting that alpha-synuclein accumulation starts in the axonal 

compartment (Chung et al., 2009; Li et al., 2009). Exogenous alpha-

synuclein in neuronal cultures leads to formation of endogenous pathology 

that first starts in the axonal compartment (Volpicelli-Daley et al., 2011).  

Therefore, white matter changes, detected using diffusion-weighted MRI, 

may be more sensitive to early degenerative processes in PD than grey 

matter loss, as they reflect changes in axons rather than neuronal loss 

(Raffelt et al., 2017). Indeed, studies of diffusion weighted imaging (DWI) 
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analysed using the diffusion tensor model (DTI, see Chapter 2 for details) 

have shown white matter changes in patients with PD even in the absence of 

significant grey matter atrophy (Hattori et al., 2013; Duncan et al., 2016). 

Changes in white matter are also more pronounced in those patients with PD 

with worse cognition (Agosta et al., 2014; Duncan et al., 2016) and those 

with established dementia (Deng et al., 2013; Kamagata et al., 2017). 

However, the white matter alterations of PD-associated hallucinations are 

not yet fully understood.  

Fixel-based analysis (FBA) is an emerging framework that can quantify 

degenerative changes in fibre populations within a voxel (‘fixels’, see 

Chapter 2 for details) and is more robust in modelling crossing fibres, a 

significant limitation of DTI techniques (Tournier et al., 2007; Jeurissen et 

al., 2013). FBA allows the measurement of:  

1)  macrostructural changes in the morphology of the fibre bundle, 

the fibre cross-section (FC) 

2) microstructural changes in the density of fibres within a bundle 

the fibre density (FD), and  

3) overall white matter integrity, represented as changes in both 

cross section and density in fibre bundles  (FDC), which is a 

combination of both degenerative processes (Raffelt et al., 2017).  

This study aimed to investigate the microstructural and macrostructural 

white matter changes that accompany visual hallucinations in PD. I 

hypothesised that: 

a) Higher tensor models such as fixel-based analysis would be able to 

identify white matter changes in Parkinson’s associated 

hallucinations, outperforming DTI. 
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b) White matter connections between the thalamus and cortical 

structures as well as the posterior thalamic radiation would be 

preferentially affected in patients with PD and visual hallucinations. 

 

4.2 Methods 

Study Participants 

Participants were recruited from the Vision in Parkinson’s disease study 

(VIPD cohort, Chapter 2: Study Cohorts). 105 patients with PD were 

recruited of whom 19 had regular visual hallucinations (PD-VH) and 86 had 

no hallucinations (PD non VH); 35 unaffected controls were also recruited. 

All patients with PD satisfied the Queen Square Brain Bank criteria (Gibb 

and Lees, 1988). 

The full study protocol is described in Chapter 2, with all participants 

undergoing the same clinical assessments. An overview of the study 

methodology is seen in Figure 4.1.  

MRI data acquisition and preprocessing 

The protocol for MRI acquisition is described in Chapter 2.6. Pre-

processing of DWI images is described in Chapter 2.7. Following 

preprocessing, for each participant, fibre-orientation distributions (FODs) 

were computed using multi-shell 3-tissue constrained spherical-

deconvolution with the group-average response function for each tissue type 

(Hollander, T. et al., 2016). A group-averaged fibre orientation distribution 

(FOD) template was created from baseline imaging data from 30 randomly-

selected subjects (20 PD, 10 controls). Each participant’s FOD was 

registered to the template (Raffelt et al., 2011) and fixel-based metrics were 

derived (FD, FC, and FDC).  
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Figure 4.1. Overview of the processing steps involved in fixel- (FBA) 

and voxel-based (VBA) whole-brain analyses. 

(Opposite) 

A. Processing steps specific to FBA are shown on the left, and those 

specific to VBA on the right.  

B. Illustration of the derived FBA and VNA metrics. 

FOD: fibre orientation distribution; FA: fractional anisotropy; MD: 

mean diffusivity; FD: fibre density; FC: fibre cross-section; FDC: fibre 

density and cross-section. 

 

 

 

 

 

 

 

 

To compare the results of fibre-specific FBA with more commonly used 

measures of white matter integrity, I also performed a voxel-based analysis 

using the metrics of fractional anisotropy (FA) and mean diffusivity (MD). 

Following the DWI pre-processing steps, I derived the diffusion tensor from 

each participant’s FOD image (Veraart et al., 2013) and calculated an FA 

and MD map in each participant’s space. Each individual participant’s FA 

and MD maps were then transformed to template space, using the same 

warp generated during the FBA registration step. I then performed voxel-

wise analysis in template space (Figure 3.1A). 

Statistical analysis 

Group differences in clinical characteristics were assessed using independent 

t-samples and ANOVAs for normally distributed continuous variables, 

Mann-Whitney and Kruskall-Wallis for non-normally distributed variables 

and chi-square for categorical variables (with post-hoc Tukey test performed 

for ANOVA and Dunn test performed for Kruskal-Wallis) with a statistical 

significance threshold p<0.05. Normality was assessed both quantitatively 

using the Shapiro-Wilk test and through a visual assessment of the variable’s 

distribution.  
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Whole brain Fixel-based analysis 

To identify differences in fixel-based metrics I used whole brain FBA to 

identify regions with changes in FC, FD and FDC between 1) patients with 

PD and controls; 2) PD-VH and PD-non-VH. Whole brain FBA refers to the 

comparison of all white matter fixels within the brain, as is standard for this 

analysis (Mito et al., 2018). Group comparisons of the three FBA-derived 

measures were performed at each fixel level using a General Linear Model 

with age and total intracranial volume included as nuisance covariates. I 

used connectivity-based fixel enhancement for statistical inference (Raffelt 

et al., 2015): 2 million streamlines with default smoothing parameters 

(smoothing mm full-width at half-maximum, C=0.5, E=2, H=3), 5,000 

permutations using non-parametric permutation testing and family-wise 

error (FWE) correction for multiple comparison (significance threshold p < 

0.05).  

Whole brain Voxel based analysis 

Voxel-based analysis was performed using threshold-free cluster 

enhancement with the default parameters (dh =0.1, E =0.5, H =2) (Smith 

and Nichols, 2009) across the whole brain, as in the FBA, for the same 

comparator groups (FWE correction, p <0.05). 

Tract of interest analysis 

To investigate potential degeneration of selective fibre pathways within the 

visual system in patients with PD-associated hallucinations, I performed 

further tract of interest analyses. I had strong a priori hypotheses that tracts 

from visual processing regions to the rest of the brain would be affected. I 

therefore selected 11 white matter tracts involved in visual processing, 

based on anatomical DTI atlases (Wakana et al., 2007; Hua et al., 2008; 

Mori et al., 2008). These were: Posterior thalamic and optic radiations (Left 

and Right), Splenium, Body and Genu of the corpus callosum, Superior 
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longitudinal fasciculi (Left and Right), Inferior fronto-occipital fasciculi 

(Left and Right; the segmentation includes the inferior longitudinal 

fasciculus), and Superior fronto-occipital fasciculi (Left and Right). Mean 

FDC was calculated across each tract per participant and compared between 

PD-VH vs PD-non-VH; FDC was chosen as it is a combined metric and 

therefore would be most sensitive to both micro- and macro-structural 

changes. Statistical comparison was performed with a linear mixed model 

(age and intracranial volume included as nuisance covariates) in Python 3. 

A false discovery rate (FDR) correction was performed for the 11 tracts 

tested, using the Benjamini/Hochberg method. Results are displayed as as 

percentage difference from mean FDC (and 95% confidence interval) of the 

comparison group. 

 

4. 3. Results  

140 participants were included: 105 patients with Parkinson’s disease (PD) 

and 35 controls. 86 patients with Parkinson’s had no visual hallucinations 

(PD-non-VH) and 19 patients described recurrent visual hallucinations (PD-

VH). PD-VH participants and PD-non-VH participants did not significantly 

differ in demographics or low-level vision. PD-VH had higher total UPDRS 

score [63.5 ± 35.6 compared to 43.2 ± 20.6 in PD non VH, (U=481.5, 

p=0.003)] but motor scores were not significantly different. PD-VH 

participants had higher anxiety scores [7.7 ± 4.9 compared to 5.6 ± 3.8 in 

PD non VH, (U=566.5, p=0.037)] but this was below the scale’s threshold 

for the diagnosis of anxiety (Zigmond and Snaith, 1983). Of note, age, 

gender, intracranial volume and cognition did not significantly differ 

between hallucinators and non-hallucinators (Table 4.1). Demographics and 

results of clinical characteristics between PD and controls are seen in Table 

4.2. 
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Table 4. 1. Demographic and clinical characteristics of participants 

with Parkinson’s disease with and without hallucinations 

 

 

  

Participants with Parkinson’s with and without visual hallucinations 

Attribute PD / VH 

n=19 

PD non VH 

n=86 

Statistic 

Demographics Age (y) 
64.6 (8.2) 64.5 (7.9) 

t=0.09 

p=0.929 

 Male (%) 
6 (31.6) 49 (57.0) 

x2=3.07 

p=0.079 

 Years in Education 
17.1 (3.5) 17.1 (2.6) 

t=0.003 

p=0.997 

 Total Intracranial Volume 
1409.9 (106.7) 1467.4 (134.8) 

t=1.74 

p=0.085 

Mood (HADS)  Depression score 
4.8 (3.2) 3.8 (2.9) 

U=608.5 

p=0.081 

 Anxiety score 
7.7 (4.9) 5.6 (3.8) 

U=566.5 

p=0.037 

Vision LogMAR (best) 
-0.06 (0.1) -0.09 (0.2) 

U=656.5 

p=0.181 

 Pelli Robson (best) 
1.70 (0.2) 1.79 (0.2) 

U=1018.5 

p=0.073 

 D15 (total error score) 
3.6 (4.9) 4.1 (12.3) 

U=648 

p=0.196 

Cognition MMSE 
28.6 (1.8) 28.9 (1.1) 

U=865.0 

p=0.677 

 MOCA 
26.9 (3.1) 27.9 (2.1) 

U=1014.5 

p=0.094 

Disease specific 

Measures 

UPDRS 
63.5 (35.6) 43.2 (20.6) 

U=481.5 

p=0.005 

 UPDRS part 3 (motor score) 
29.2 (20.8) 22.2 (11.5) 

U=648.5 

p=0.162 

 UM-PDHQ 
4.8 (2.3) 0 (0) -  

 LEDD (mg) 
434.9 (210.3) 460.5 (267.8) 

U=838 

p=0.864 

 Disease duration 
4.8 (3.4) 4.1 (2.5) 

t=1.12 

p=0.263 

 Sniffin’ sticks 
3.6 (3.4) 4.1 (3.1) 

U=1003.5 

p=0.119 

 RBDSQ 
5.6 (2.5) 4.0 (2.4) 

U=503 

p=0.009 

All data shown are mean (SD) except gender.  

In bold characteristics that differed between the two groups. 

HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state examination; MOCA: Montreal 

cognitive assessment; UPDRS: Unified Parkinson’s disease rating scale; UM-PDHQ: University of Miami 

Hallucinations Questionnaire; LEDD: Total Levodopa equivalent dose; RBDSQ: REM sleep behaviour 

disorder screening questionnaire. 
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Table 4.2. Demographic and clinical characteristics in participants with 

Parkinson’s disease and controls 

 

Attribute PD  

n=105 

Controls 

n=35 
Statistic 

Demographics Age (y) 
64.5 (7.9) 66.7 (9.3) 

t=1.4 

p=0.169 

 Male (%) 
55 (52.4) 16 (45.8) 

x2=0.2 

p=0.626 

 Years in Education 
17.1 (2.8) 17.7 (2.3) 

t=1.2 

p=0.231 

 Total intracranial volume 
1456.9 (131.6) 1397.3 (104.8) 

t=2.4 

p=0.016 

Mood (HADS)  Depression score 
3.9 (2.9) 1.7 (2.0) 

U=2758.5 

p<0.001 

 Anxiety score 
5.9 (4.1) 3.7 (3.4) 

U=2433.5 

p=0.004 

Vision LogMar* 
-0.08 (0.2) -0.08 (0.2) 

U=2031.5 

p=0.349 

 Pelli Robson* 
1.78 (0.2) 1.79 (0.2) 

U=1762.5 

p=0.702 

 D15 (total error score) 
3.9 (1.2) 2.3 (6.6) 

U=2050 

p=0.221 

Cognition MMSE 
28.9 (1.3) 29.0 (1.0) 

U=1792 

p=0.819 

 MOCA 
27.8 (2.3) 28.7 (1.4) 

U=1439 

p=0.050 

Disease specific UPDRS 
46.9 (25.1) 9.3 (7.2) 

U=3596 

p<0.001 

 UPDRS part 3 (motor score) 
23.5 (13.8) 5.6 (4.8) 

U=3473 

p<0.001 

 LEDD (mg) 
455.8 (257.6) - 

- 

 Disease duration 
4.2 (2.7) - 

- 

 Sniffin’ sticks 
7.6 (3.2) 12.3 (2.5) 

U=450 

p<0.001 

 RBDSQ 
4.3 (2.5) 1.8 (1.4) 

U=2916.5 

p<0.001 

All data shown are mean (SD) except gender.  

* Best binocular score used; LogMAR: lower score implies better performance, Pelli Robson: higher score 

implies betterr performance. 

HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state examination; MOCA: Montreal 

cognitive assessment; UPDRS: Unified Parkinson’s disease rating scale; UM-PDHQ: University of Miami 

Hallucinations Questionnaire; LEDD: Total Levodopa equivalent dose; RBDSQ: REM sleep behaviour 

disorder screening questionnaire. 
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White matter changes in whole brain analysis 

Patients with PD-associated hallucinations showed white matter 

macrostructural changes, with reductions in FC within the splenium of the 

corpus callosum and the left optic radiation, compared with non-

hallucinators. The combined FDC metric that assesses micro- and 

macrostructural WM changes, showed large reductions (greater than 50% 

reduction) in PD-VH participants compared with PD-non-VH within the 

splenium of the corpus callosum. There were no significant changes in FD 

alone (Figure 4.2). 

In contrast, conventional tensor-based analysis did not show any statistically 

significant differences between PD-VH versus PD-non-VH participants. 

Additionally, whole brain tensor-based analysis did not show any changes 

between PD versus control participants. Whole brain FBA comparing PD 

and controls showed macrostructural white matter changes with reduced 

fibre cross-section (FC) in several fixels within the left corticospinal tract 

(Figure 4.3). There were no differences at the microstructural level, 

measured as fibre density (FD) or the combined metric FDC between PD 

and control. Within the PD group, overall disease progression as assessed 

using the UPDRS total score was associated with decreased FC within the 

splenium of the corpus callosum (Figure 4.3).  

Figure 4. 2. Fibre-specific reductions in PD-VH in whole-brain fixel-based analysis. 

(Opposite) 

A: PD VH vs PD non VH. Parkinson’s patients with hallucinations showed changes in white 

matter macrostructure (reduction in fibre cross-section (FC)) and overall ability to relay 

information (reduction in the combined FDC metric) compared to PD non VH. Colour bar 

reflects percentage reduction.  (FWE-corrected p<0.05) 

B: PD VH vs PD non VH, direction of fibres. Loss of fibre tracts in in PD-VH was particularly 

seen for left-right axons. (Colour bar reflects direction of fibre loss: (anterior-posterior: green; 

superior-inferior: blue; left-right: red). (FWE-corrected p <0.05) 
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Figure 4. 3. FC reduction in PD compared to controls (top) and within participants with PD 

according to UPDRS scores (down). 

Results are displayed as streamlines; streamline segments were cropped from the template 

tractogram to include only the points that correspond to fixels that significantly differed between 

participants with Parkinson’s disease (PD) and controls (FWE-corrected p-value <0.05). 

Streamlines are coloured by percentage reduction in the PD group compared to controls for 

fiber bundle cross-section (FC). 

Reduced FC was seen in multiple fixels within the left corticospinal tract. There were no 

differences at the microstructural level, measured as fibre density (FD) or the combined metric 

FDC between PD and control participants. Within the PD group, overall disease progression as 

assessed using the UPDRS total score was associated with decreased FC within the splenium of 

the corpus callosum.  
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White matter changes in tract of interest analysis 

Widespread reductions in mean tract FDC were seen in PD-VH compared to 

PD-non-VH in a tract of interest analysis. Specifically, changes were seen in 

the splenium (t= -2.026, p=0.043), genu (t= -2.356, p=0.018), inferior 

fronto-occipital fasciculus bilaterally (left: t= -2.566, p=0.010, right: t= -

2.506, p=0.012), posterior thalamic radiation bilaterally (left: t= -2.917, 

p=0.004, right= -2.331, p=0.020) and right superior longitudinal fasciculus 

(t=-2.640, p=0.008). The inferior fronto-occipital fasciculi bilaterally 

survived FDR correction for the 11 regions tested (right: p=0.033, left: 

p=0.033) and so did both posterior thalamic radiations (right: p=0.033, left: 

p=0.037), the genu (p=0.037) and right superior longitudinal fasciculus 

(p=0.033) (Figure 4.4).  

Higher hallucination severity was associated with lower mean FDC within 

the left posterior thalamic radiation, accounting for age and total intracranial 

volume, although this was just above statistical significance levels 

(r2=0.316, df=101, t=-1.955, p=0.053). 
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Figure 4. 4. Significant tracts in patients with Parkinson’s hallucinations, tract of interest analysis. 

Reduction (mean, 95% CI) in combined fibre density and cross-section (FDC) visualised as percentage 

reduction from the mean of patients with Parkinson’s disease without hallucinations (PD non VH). Tracts 

with significantly reduced FDC (p-value <0.05) are shown in colour whilst tracts where there are no 

significant changes in FDC are plotted in grey.  

The posterior thalamic radiations bilaterally, inferior fronto-occipital fasciculi bilaterally, genu and right 

superior longitudinal fasciculi survived FDR correction.  

L: Left, R: Right. 
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4.4. Discussion 

This study used fixel-based analysis to measure fibre-specific changes in 

patients with PD and visual hallucinations. Specifically, I have shown that:  

1) Patients with PD-associated visual hallucinations exhibit white 

matter changes within the splenium and the left posterior thalamic 

radiation.  

2) Widespread reductions in fibre cross section and the FDC metric 

(combining fibre density and cross section), suggesting that WM 

macrostructural changes occur in PD hallucinations together with 

changes that affect the ability to relay information between brain 

regions. 

The finding of axonal changes in posterior tracts in PD-VH is consistent 

with previous work using tensor-derived metrics that showed reduced 

fractional anisotropy in the optic nerve and optic radiation in an analysis of 

five manually determined regions of interest (Lee et al., 2016) and increased 

mean diffusivity within tracts from the nucleus basalis of Meynert to 

parietal and occipital regions in patients with Parkinson’s-associated 

hallucinations (Hepp et al., 2017a).  

In contrast, past whole brain tensor-based analyses had not revealed any 

specific white matter changes between PD hallucinators and non-

hallucinators (Lee et al., 2017; Firbank et al., 2018); whole brain voxel-

based analysis also failed to reveal any changes in our cohort. Since tensor-

based metrics are, by definition, averaged across a voxel, their results can be 

misleading particularly in the presence of crossing fibres (Jbabdi et al., 

2010). In contrast, the more sensitive and fibre-specific fixel-based analysis 

identified group differences in both fibre microstructure and macrostructure. 

This suggests that high-order diffusion models and specifically fixel-based 
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analysis may be a more sensitive and specific technique for examining white 

matter changes in the early stages of neurodegeneration. 

The posterior thalamic radiation connects the posterior thalamus with the 

occipital and posterior parietal cortex, including key regions of the default 

mode network (DMN), such as the posterior cingulate. Several functional 

studies have highlighted the role of attentional networks in the development 

of visual hallucinations (Shine et al., 2014, Yao et al., 2014). The finding of 

reduced connectivity from the thalamus to posterior brain regions including 

the DMN provides a mechanistic model, whereby lack of inhibition between 

these brain regions leads to aberrant DMN activation (Shine et al., 2014, 

Yao et al., 2014). 

In tract of interest analysis, I also saw FDC reductions within association 

fibres in PD hallucinators, specifically those connecting frontal and occipital 

lobes (inferior fronto-occipital fasciculi bilaterally and right superior 

longitudinal fasciculus). This highlights the importance of loss of fronto-

occipital connectivity in the development of hallucinations. 

There are a number of potential limitations to this study. I did not exclude 

participants with other pathologies that could influence white matter 

structure, such as white matter hyperintensities which could decrease fibre 

density. Although raw imaging data were visually inspected, and no 

clinically significant cerebrovascular disease was seen, the load of white 

matter hyperintensities was not systemically quantified or specifically 

controlled for. This is in keeping with other studies of fixel-based analysis 

in adults so far, none of which excluded participants with white matter 

hyperintensities (Grazioplene et al., 2018; Mito et al., 2018). Future studies 

could clarify the effect, if any, of white matter hyperintensities on fixel-

based metrics. The patients with PD hallucinations had higher anxiety and 

RBDSQ scores than the non-hallucinators. However anxiety scores were 
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below clinical significant threshold for depression (Zigmond and Snaith, 

1983) and the small observed changes in anxiety and RBD are unlikely to 

have resulted in white matter changes within tracts of the visual system. 

Participants underwent imaging acquisition while taking their usual 

dopaminergic medications. It seems unlikely that dopaminergic medications 

would directly affect structural integrity measures, and free water and 

corrected fractional anisotropy are not affected by levodopa (Chung et al., 

2017).  

In conclusion, this study showed that patients with PD-associated visual 

hallucinations have a characteristic pattern of fibre tract degeneration, 

involving the splenium and posterior thalamic radiation; these findings 

provide mechanistic support for attentional network changes in PD 

hallucinations.  

 

Publication statement 

Some of the work included in this chapter has been published previously 

(Zarkali et al., 2020) and is included here as per the publisher’s policy with 

regards to thesis publications. 
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5. Longitudinal alterations in white and grey matter 

in Parkinson’s associated hallucinations 

 

5.1 Introduction 

Visual hallucinations associated with Parkinson’s disease (PD) are 

accompanied by large macroscale brain network imbalance: with aberrant 

activation of the default mode network (DMN) and reduced activity of other 

networks such as the dorsal attentional network (Shine et al., 2014; Yao et 

al., 2014). Network changes are thought to underlie the associated impaired 

accumulation of sensory evidence (O’Callaghan et al., 2017), and in a 

previous chapter (Chapter 3), I showed that PD hallucinators show an 

increased weighting of prior knowledge relative to sensory evidence during 

visual perception. Widespread changes in brain structure have also been 

shown in PD-associated hallucinations with changes in grey matter volume 

across many regions including the precuneus, cingulate and superior and 

inferior frontal gyri (Lenka et al., 2015) and white matter structure within 

posterior tracts as well as at whole network level (Hall et al., 2019). 

However, our understanding of the drivers of these large-scale network 

changes remains unclear.  

The  thalamus is a connection-rich diencephalic hub critical for cortical 

sensory filtering (Cunningham et al., 2017; Wolff and Vann, 2019). It has 

been recently proposed as a potential key driver for unbalanced network 

activation (Esmaeeli et al., 2019; Onofrj et al., 2019; Russo et al., 2019). 

Thalamic hypometabolism and atrophy is seen in patients with PD and 

hallucinations (Nishio et al., 2017) and is also present in frontotemporal 

dementia associated with C9orf72 mutations where hallucinations are 

reported (Bocchetta et al., 2020). Reduced thalamic connectivity with the 
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prefrontal cortex is also seen in relation to hallucinations occurring in the 

context of psychosis (Anticevic et al., 2014). However, the thalamus is a 

heterogenous structure comprised of distinct nuclei with different cortical 

projections and functions (Wolff and Vann, 2019). Specific thalamic 

subnuclei may be implicated in visual hallucinations; changes at thalamic 

sub-nucleus level can now be assessed using a recently described 

probabilistic atlas (Iglesias et al., 2018).   

White matter changes, detected using diffusion-weighted MRI, may be more 

sensitive to early degenerative processes in PD than grey matter loss, as they 

reflect changes in axons rather than neuronal loss (Raffelt et al., 2017). 

White matter changes may occur at an earlier stage in PD (Chung et al., 

2009): in whole brain studies of PD and cognition, white matter loss is seen 

before significant grey matter atrophy (Hattori et al., 2013; Duncan et al., 

2016). 

The study described in this chapter aims to clarify the timeline of grey and 

white matter changes underlying visual hallucinations in PD and assess the 

relative involvement of the different thalamic nuclei. Specifically, I will: 

1) describe changes in whole brain cortical thickness and white 

matter micro- and macrostructural integrity at baseline and after 15 

months in PD patients with (PD-VH) and without hallucinations (PD 

non VH).  

2) I will describe changes in the grey matter volume of 50 thalamic 

sub-nuclei and macrostructural white matter integrity of their 

respective cortico-thalamic white matter projections at baseline and 

longitudinally.  

I hypothesise that cortico-thalamic connection loss will precede volume loss 

in PD-VH and that sub-regions of the thalamus will show differential 

vulnerability to degeneration in PD-VH compared to PD non VH. 
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5.2 Methods 

Study Participants 

Participants were recruited from the Vision in Parkinson’s disease study 

(VIPD cohort, Chapter 2: Study Cohorts). Only participants who had both 

grey matter structural and diffusion-weighted imaging satisfying pre-

determined quality control criteria at both study visits were included. A total 

of 140 participants were imaged at baseline. At Visit 2, 4 patients withdrew, 

11 were unable to be scanned due to evolving contra-indications, 3 were 

excluded due to a subsequent revision of their PD diagnosis, 19 were unable 

to participate due to COVID-19 imposed restrictions and 2 failed quality 

control for Visit 2 diffusion-weighted imaging. Therefore 101 participants 

were included in the study: 76 patients with PD and 25 controls. All patients 

with PD satisfied the Queen Square Brain Bank criteria (Gibb and Lees, 

1988). 

Participants with PD were classified as PD with visual hallucinations (PD-

VH, n=22) if they scored equal to or more than 1 for Question 2 of the 

UPDRS: “Over the past week have you seen, heard, smelled or felt things 

that were not really there?” in either study visit. All other participants with 

PD were classified as PD non VH (n=54). Further information on the 

frequency and severity of hallucinations was collected using the University 

of Miami Parkinson’s Disease Hallucinations Questionnaire (UM-PDHQ) 

(Papapetropoulos et al., 2008). 

The full study protocol is described in Chapter 2. Clinical assessments and 

imaging was undertaken at baseline and again at follow up (between 14 and 

20 months later (mean=15.4 months).  
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MRI data acquisition and preprocessing 

The protocol for MRI acquisition is described in Chapter 2.6. Preprocessing 

of structural images was performed using Freesurfer v6.0 longitudinal 

pipeline (for details see Chapter 2.8).  

In addition to whole grey matter segmentations, I derived thalamic sub-

nuclei volumes from each longitudinal Freesurfer reconstruction using a 

recently described Bayesian segmentation method based on a probabilistic 

atlas derived from histology (Iglesias et al., 2018). Volumes were derived 

for 25 sub-nuclei for each thalamus: anteroventral (AV), laterodorsal (LD), 

lateral posterior (LP), ventral anterior (VA), ventral anterior magnocellular 

(VAmc), ventral lateral anterior (VLa), ventral lateral posterior (VLp), 

ventral posterolateral (VPL), ventromedial (VM), central medial (CeM), 

central lateral (CL), paracentral (Pc), Centromedian (CM), parafascicular 

(Pf), paratenial (Pt), Reuniens medial ventral (MV-re), mediodorsal medial 

magnocellular (MDm), mediodorsal medial parvocellular (MDl), lateral 

geniculate (LGN), medial geniculate (MGN), limitans (L-Sg), pulvinar 

anterior (PuA), pulvinar medial (PuM), pulvinar lateral (PuL) and pulvinar 

inferior (PuI) (Figure. 5.1). 

Pre-processing of DWI images is described in Chapter 2.7. Following 

preprocessing, for each participant, fibre-orientation distributions (FODs) 

were computed using multi-shell 3-tissue constrained spherical-

deconvolution with the group-average response function for each tissue type 

(Hollander, T. et al., 2016). A group-averaged FOD template was created 

from baseline imaging data from 30 randomly-selected participants (20 PD, 

10 controls). Each participant’s FOD was registered to the template (Raffelt 

et al., 2011) and fixel-based metrics were derived. 
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Fixel based metrics are described in detail in Chapter 2.4; briefly the 

following were calculated:  

1. Fibre density (FD): a measure of microstructural changes within the 

tracts. (Raffelt et al., 2012).  

2. Fibre cross-section (FC): a measure of macrostructural white 

matter change, as it provides morphological information about 

relative sizes of fibre bundles (Raffelt et al., 2017).  

Figure 5. 1. Schematic representation of the Thalamic subnuclei, view 

from above 

AV: anteroventral, CeM: central medial, CM: centromedian, L_Sg: limitans, 

LD: laterodorsal, LGN: lateral geniculate, LP: lateral posterior, MDl: 

mediodorsal medial parvocellular, MDm: mediodorsal medial 

magnocellular, MGN: medial geniculate, MVRe: Reuniens medial ventral, 

Pf: parafascicular, PuA: pulvinar anterior, PuI: pulvinar inferior, PuL: 

pulvinar lateral, PuM: pulvinar medial, VA: ventral anterior, VAmc: ventral 

anterior magnocellular, VLa: ventral lateral anterior, VLp: ventral lateral 

posterior, VPL: ventral posterolateral, VM: ventromedial, CL: central 

lateral, Pc: paracentral, Pt: paratenial.  
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3. Combined measure of fibre density and cross-section (FDC): an 

overall measure of ability to relay information (Raffelt et al., 2017). 

To specifically assess the integrity of thalamic connections, I generated 

specific tracts of interest for each of the 50 thalamic subnuclei to the 

ipsilateral hemisphere. To achieve this, each thalamic subnucleus was 

registered to the population template using linear registration with NiftyReg 

(Modat et al., 2010). A tractogram for each thalamic sub-nucleus was then 

generated using probabilistic tractography on the population template in 

MRtrix3 (Tournier et al., 2019). Streamlines were initiated in each thalamic 

sub-nucleus to the ipsilateral hemisphere, with the rest of the thalamus 

excluded to minimise overlap between the different thalamic tracts. This 

resulted in a single fibre tract-of-interest from each thalamic sub-nucleus to 

the ipsilateral cortex. Mean FC was calculated across each of these tracts per 

participant; for the tract-based analysis, FC was chosen as prior work 

described in Chapter 3 and by other groups (Rau et al., 2019) showed that it 

may be the most sensitive fibre-specific metric in PD. 

Statistical analysis 

Group differences in demographics and clinical characteristics were assessed 

using independent t-samples and ANOVAs for normally distributed 

continuous data, Mann-Whitney and Kruskall-Wallis for non-normally 

distributed data and chi-square for categorical data (post-hoc Tukey for 

ANOVA and Dunn for Kruskal-Wallis); statistical significance was set at 

p<0.05. Normality was assessed using the Shapiro-Wilk test and visual 

assessment of the variable’s distribution.  

Whole brain Fixel-based analysis 

To identify differences in fixel-based metrics I used whole brain fixel based 

analysis using non-parametric permutation testing and connectivity-based 

fixel enhancement (CFE) (Raffelt et al., 2015). A tractogram (20 million 
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streamlines) was generated with whole-brain probabilistic tractography on 

the population FOD template and filtered to 2 million streamlines using 

SIFT (spherical-deconvolution informed filtering of tractograms) (Smith et 

al., 2013). CFE was performed on the resulting streamlines with default 

parameters (C=0.5, E=2, H=3), 5,000 permutations and family-wise error 

correction (FWE) for multiple comparisons. Statistical significance was set 

at FWE-corrected p<0.05 with cluster-extent-based threshold of 10 voxels. 

To identify white matter fixels for subsequent statistical comparisons, I used 

the John Hopkins University atlas, similar to previous studies (Mito et al., 

2018; Rau et al., 2019). Using this atlas as a mask of white-matter fixels 

only, whole-white-matter comparisons were performed at baseline between 

PD-VH and PD-non-VH, using age, gender and total intracranial volume as 

covariates. As longitudinal fixel based analyses are not currently available, 

to allow comparisons at Visit 2, I subtracted each baseline image from the 

Visit 2 image, as previously described (Genc et al., 2018) and performed 

whole-white-matter statistical analyses on these difference images with 

baseline age, gender, total intracranial volume and time between scans 

included as covariates.  

Whole brain cortical thickness analysis 

Differences in cortical thickness trajectories over time between PD-VH and 

PD non VH were assessed using Linear Mixed Effect models in MATLAB 

(The MathWorks, Inc) designed for longitudinal FreeSurfer data (Bernal-

Rusiel et al., 2013b, a). A spatiotemporal novel mass-univariate analysis 

was performed with cortical thickness as the dependent variable and a 

random intercept defining subject as a random factor. Additional regressors 

included the time between scans in years (baseline imaging was marked as 

0), age at baseline, gender, group (PD-VH vs PD non VH), and group-by-

time interaction (variable of interest). Significance maps for group-by-time 

interactions were corrected for multiple comparisons using FDR-correction 
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combined over both hemispheres. Significance maps were saved for later 

visualization in freeview. 

Thalamic sub-nucleus and Tract-of-interest analysis 

Thalamic volumes and mean tract FC at baseline were compared between PD-

VH and PD non VH using a linear mixed model with age, gender and total 

intracranial volumes as covariates. To assess differences in longitudinal rate 

of change for each thalamic sub-nucleus and each tract-of-interest 

respectively , I used a linear mixed model with group-by-time interaction as 

the variable of interest and group (PD-VH vs PD non VH), age, gender, and 

time between scans as regressors and a random intercept (corrected for 

multiple comparisons using FDR correction across 50 sub-nuclei/tracts). 

Correlational analyses of subnucleus volumes or mean tract FC with UM-

PDHQ scores (indicating hallucination severity) were performed using 

Spearman correlation coefficient.  

All statistical analyses were performed in Python3 using Jupyter Lab v1.2.6. 

The code used to perform these statistical analyses is available at:  

https://github.com/AngelikaZa/ThalamicSubnuclei.  

 

5. 3. Results  

This study included 101 participants: 22 PD-VH, 54 PD non VH, and 25 

controls. Groups were well-matched in terms of age, gender and years in 

education and there was no significant difference between PD-VH and PD 

non VH in terms of global cognition, disease duration, motor severity or 

levodopa-equivalent daily dose. Demographics and results of clinical 

assessments at baseline are shown in Table 5.1. At longitudinal follow up, 

PD-VH showed greater deterioration in cognitive performance than PD non 

VH (Table 5.2).  

https://github.com/AngelikaZa/ThalamicSubnuclei
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Table 5.1. Demographics and results of baseline clinical assessments 

Characteristic Controls 

n= 25 

PD non VH 

n= 54 

PD VH 

n= 22 

Statistic 

Age (years) 67.4 (8.2) 64.6 (8.1) 64.5 (8.0) r2=0.004, p=0.308 

Male (%) 12 (48.0) 36 (59.0) 6 (40%) x2=2.393. p=0.302 

Years of education 17.9 (2.2) 17.3 (2.6) 16.9 (3.8) H=0.755. p=0.686 

Vision     

Contrast sensitivity (Pelli Robson) * 1.8 (0.2) 1.8 (0.2) 1.7 (0.2) H=3.991. p=0.136 

Visual Acuity (LogMar) * -0.08 (0.2) -0.07 (0.2) -0.08 (0.1) H=1.761. p=0.136 

Colour vision (D15) * 1.2 (1.0) 1.2 (1.0) 1.6 (1.8) H=0.151. p=0.927 

General cognition     

MOCA 29 (1.2) 28.0 (2.3) 27.6 (1.8) H=6.009. p=0.050c 

MMSE 29.2 (0.9) 29.0 (1.2) 28.9 (1.3) H=0.332. p=0.847 

Mood     

HADS anxiety 3.5 (3.5) 5.1 (3.5) 8.0 (4.2) 
H=12.428 

p=0.002a,b,c 

HADS depression 1.2 (1.5) 3.7 (3.1) 4.8 (3.3) 
H=23.010 

p<0.001b,c 

Detailed neuropsychology     

Attention     

Digit span backwards 6.9 (2.4) 7.3 (2.2) 7.6 (2.4) r2=-0.021. p=0.748 

Stroop: Colour (sec) 31.9 (7.6) 32.6 (6.4) 38.3 (8.5) r2=0.068. p=0.012a,c 

Executive function     

Stroop: Interference (sec) 56.2 (14.3) 40.3 (20.1) 72.9 (26.6) H=7.025. p=0.029 a,c 

Category fluency 21.9 (4.8) 22.1 (6.0) 20.1 (4.0) H=1.380. p=0.502 

Memory     

Word Recognition Task 24.5 (1.0) 24.3 (2.3) 23.8 (1.2) H=5.130. p=0.077 

Logical Memory 12.8 (3.5) 13.3 (4.6) 13.5 (4.5) r2=-0.027. p=0.928 

Language     

Graded Naming Task 23.6 (1.0) 24.3 (2.5) 23.5 (3.1) H=0.899, p=0.638 

Letter Fluency 17.8 (5.1) 17.3 (5.3) 16.1 (4.9) H=0.682, p=0.711 

Visuospatial     

JLO 26 (3.4) 25.3 (3.7) 23.1 (4.8) H=4.019, P=0.134 

Hooper 25.9 (2.1) 25.0 (2.9) 23.9 (3.1) H=5.010, p=0.082 

Disease specific measures     

Years from diagnosis - 4.0 (2.5) 4.5 (2.7) U=403, p=0.238 
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UPDRS total score - 42.9 (19.4) 57.8 (24.3) U=289, p=0.014 

UPDRS motor score - 22.7 (11.7) 26.2 (15.2) U=395, p=0.052 

Right side affected at onset - 28 (45.9) 4 (26.7) x2=3.358, p=0.187 

RBDSQ - 3.8 (2.1) 5.7 (2.4) U=247, p=0.003 

Sniffin sticks - 7.6 (2.9) 6.9 (3.4) U=421.5, p=0.003 

LEDD - 427.1 (220.1) 431.0 (233.1) t=-0.061, p=0.951 

All data shown are mean (SD) except gender and affected size.  

In bold characteristics that significantly differed between groups. 
a Statistically significant difference between PD VH and PD non VH, b Statistically significant difference between 

PD non VH and controls, c Statistically significant difference between PD VH and controls  

* Best binocular score used; LogMAR and D15: lower score implies better performance, Pelli-Robson: higher 

score implies better performance. 
+ Higher values imply worse image quality, - Higher values imply better image quality 

HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state examination; MOCA: Montreal cognitive 

assessment; JLO: Benton’s Judgement of Line Orientation, UPDRS: Unified Parkinson's Disease Rating Scale; 

MCI: Mild Cognitive Impairment; RBDSQ: REM sleep behaviour disorder scale; LEDD: Levodopa Equivalent 

Dose. 
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Table 5.2. Longitudinal changes in patients with Parkinson’s disease  

Cognitive test 
PD non VH 

n= 54 

PD VH 

n= 22 

PD non VH 

n= 54 

PD VH 

n= 22 

Statistic 

General cognition Baseline visit 
Follow up visit 

(18 months) 
p-value* 

MOCA 28.0 (2.3) 27.6 (1.8) 28.1 (2.1) 25.5 (5.2) t=2.93, p=0.005 

MMSE 29.0 (1.2) 28.9 (1.3) 29.1 (1.0) 27.7 (3.2) U=317.5, p=0.030 

Attention      

Digit span backwards 7.3 (2.2) 7.6 (2.4) 7.9 (2.3) 7.6 (2.6) t=0.923, p=0.359 

Stroop: Colour (sec) 32.6 (6.4) 38.3 (8.5) 33.6 (8.7) 40.2 (3.8) U=394, p=0.362 

Executive function      

Stroop: Interference (sec) 40.3 (20.1) 72.9 (26.6) 59.1 (22.5) 70.7 (19.7) U=373, p=0.406 

Category fluency 22.1 (6.0) 20.1 (4.0) 20.4 (5.5) 18.8 (7.1) t=0.269, p=0.789 

Memory      

Word Recognition Task 24.3 (2.3) 23.8 (1.2) 24.1 (1.4) 24.0 (1.0) U=347.5, p=0.131 

Logical Memory (delayed) 13.3 (4.6) 13.5 (4.5) 12.7 (3.6) 13.0 (4.6) t=0.293, p=0.770 

Language      

Graded Naming Task 24.3 (2.5) 23.5 (3.1) 24.8 (2.9) 23.3 (4.1) U=437, p=0.395 

Letter Fluency 17.3 (5.3) 16.1 (4.9) 16.7 (4.4) 16.2 (6.1) t=-0.590, p=0.557 

Visuospatial      

JLO 25.3 (3.7) 23.1 (4.8) 25.3 (3.7) 21.9 (4.8) U=265, p=0.066 

Hooper 25.0 (2.9) 23.9 (3.1) 25.2 (3.2) 23.2 (5.0) U=424, p=0.333 

Motor Symptoms      

UPDRS total score 42.9 (19.4) 57.8 (24.3) 41.8 (6.3) 58.4 (17.2) t=0.345, p=0.731 

UPDRS motor score 22.7 (11.7) 26.2 (15.2) 21.7 (10.2) 26.1 (10.2) t=0.244, p=0.808 

LEDD 427.1 (220.1) 431.0 (233.1) 
427.1 

(220.1) 

431.0 

(233.1) 
- 

All data shown are mean (SD).  

* Statistical comparison of individual performance change (Performance in Follow up visit – Performance in 

Baseline visit) for each metric; using t test for normally distributed variables and Mann-Whitney for non-normally 

distributed variables. In bold characteristics that significantly differed in terms of change between Visit 2 and 

baseline between groups. 

JLO: Judgement of Line Orientation. 
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Cortical gray matter is relatively preserved in patients with PD and 

visual hallucinations despite widespread white matter changes 

At baseline, no statistically significant changes in cortical thickness were 

seen between PD-VH and PD non VH. Cortical thickness for both groups 

decreased at follow up, with significantly higher reductions longitudinally in 

PD-VH compared to PD non VH, in clusters including the left precuneus, 

bilateral precentral and postcentral gyrus, bilateral superior frontal and 

anterior cingulate gyrus, bilateral insula, right superior temporal gyrus, right 

supramarginal gyrus, and right lateral occipital gyrus (Figure 5.2, Table 

5.3).  

In contrast, PD-VH showed significant changes in white matter macro- and 

micro-structure compared to PD without hallucinations already at baseline 

(Figure 5.3): macrostructural changes (reduction in FC) and microstructural 

changes (reduction in FD) within the splenium of the corpus callosum and 

the left posterior thalamic radiation. Reductions were also seen in the 

combined FDC metric across the same regions, particularly within the 

splenium of the corpus callosum which showed over 30% reductions in 

FDC in PD-VH compared to PD non VH.  

White matter changes continued to develop longitudinally (Figure 5.4) with 

additional extensive macrostructural changes (FC reductions) in PD-VH 

compared to PD non VH within the splenium, bilateral posterior internal 

capsules, bilateral posterior thalamic radiations, bilateral tapetum, the left 

inferior and left superior fronto-occipital fasciculus (Figure 5.4). No 

changes were seen between PD with and without hallucinations in the 

longitudinal reduction of FD or FDC. 
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Figure 5. 2. Longitudinal whole-brain grey matter changes in PD with 

hallucinations. 

Changes in cortical thickness seen in patients with Parkinson’s disease with 

hallucinations (PD-VH) compared to those without hallucinations (PD non 

VH) at Visit 2 rendered on the surface.  

No statistically significant changes were seen in cortical thickness at 

baseline imaging. 

Colour coding indicates cluster significance for group-by-time interactions, 

on a logarithmic scale of p values (−log10) FDR corrected across both 

hemispheres. Positive values indicate PD-VH cortical thickness < PD non 

VH; negative values indicate PD-VH > PD non VH. 
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Figure 5. 3 Fibre tract-specific reductions at baseline in PD with hallucinations. 

PD-VH showed macrostructural changes (fibre cross-section (FC)) within the 

splenium of the corpus callosum and bilateral posterior thalamic radiations. 

Microstructural changes (reductions in fibre density (FD)) were also seen at baseline 

imaging, with FD reductions in PD-VH in the splenium of the corpus callosum, 

bilateral posterior thalamic radiations and the right corticospinal tract. Changes in 

the combined FDC metric were seen within the body and splenium of the corpus 

callosum, posterior thalamic radiations bilaterally, and the right corticospinal tract.  

Results are displayed as streamlines (FWE-corrected p <0.05). Streamlines are 

coloured by percentage reduction (colourbars) in PD-VH compared to PD non VH. 
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Figure 5. 4 Changes in white matter macrostructure in PD with 

hallucinations at longitudinal follow up.  

FC: Fibre cross-section. Results are displayed as streamlines; 

these correspond to fixels that significantly differed between PD 

low and high visual performers (FWE-corrected p <0.05). 

Streamlines are coloured by percentage reduction (colourbars) in 

PD-VH compared to PD non VH. 
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Table 5.3. Gray matter clusters showing significant longitudinal 

differences in cortical thickness between PD patients with and without 

hallucinations 

Changes in Cortical Thickness 

Tailarach Coordinates Hemisphere Anatomical location Number 

of 

vertices 

Size 

(mm2) 

Zmax 

x y z 

28.1 -20.8 37.8 L Precuneus 368 140.54 7.5 

-32.7 55.4 14.2 R 
Caudal anterior 

cingulate 
136 56.87 7.4 

29 13.8 27.1 R Precentral 143 39.47 7.4 

3.5 92.5 -31 R Rostral middle frontal 115 57.25 7.3 

27.7 -66.5 28.8 L Superior frontal 134 55.16 7.2 

-16 29.5 -12.3 L Insula 184 45.62 7.1 

-20.4 -11 42.5 L Postcentral 113 29.17 7.1 

-15.8 28.4 -31.5 L Insula 343 136.58 7 

5.7 67.6 30.9 L Superior frontal 196 98.74 6.9 

22.8 12.3 -5.5 R Postcentral 126 31.91 6.7 

-30.2 42.5 41.1 R Superior frontal 53 27.29 6.7 

38.1 48.9 -28.4 L 
Rostral anterior 

cingulate 
50 29.98 6.6 

16.7 25.3 -27.5 R Insula 152 57.93 6.6 

28.3 -29.1 31.3 R Supramarginal 91 24.73 6.6 

35.8 0.5 25.4 R Postcentral 84 22.18 6.4 

3.5 -86.9 -28.8 R Lateral occipital 19 9.09 6.3 

30.2 24.7 38.3 L Superior frontal 50 15.03 6.1 

-33.5 62.6 4.4 R 
Caudal anterior 

cingulate 
50 29.73 6.1 

39.4 -7 -29.4 R Superior temporal 29 9.06 6.1 

-4 93.4 -27.3 L Rostral middle frontal 41 21.08 6 

-27.7 36.1 11.5 L Precentral 25 9.54 5.9 

Anatomical locations extracted from aparc freesurfer annotation. 

Zmax indicates the -log10(pvalue) for the cluster, a threshold of 5.613 was calculated to represent 

FDR corrected values for both hemispheres.  

R: Right, L: Left hemispheres. 

No statistically changes were seen at baseline imaging between PD-VH and PD non VH participants. 
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Specific volume loss of the right mediodorsal thalamic nucleus is seen 

in PD-VH longitudinally and is preceded by respective white matter 

thalamic connection loss  

Thalamic volumes (for the whole of the thalamus as well as for the 50 

derived sub-nuclei) showed no significant difference between PD-VH and 

PD non VH at baseline, correcting for age, gender and total intracranial 

volume. However, when assessing differences in longitudinal thalamic sub-

nuclei volumes, PD-VH showed significantly higher reductions in grey 

matter volume of the right medial mediodorsal magnocellular nucleus 

(MDm: t=-3.018, FDR-corrected p-value, q<0.001) and the left paracentral 

thalamic nucleus (Pc: t=-3.490, q<0.001) compared to PD non VH (Figure 

5.5). Thalamic sub-nucleus volume loss was significantly correlated with 

hallucination severity for both the right MDm (rho=-0.362, p=0.001) and the 

left Pc nucleus (rho =-0.339, p=0.003).  

White matter tracts-of-interest from thalamic sub-nuclei to the ipsilateral 

hemisphere showed significant reductions in mean FC in PD-VH already at 

baseline; specifically in the right MDm and the right centromedial nucleus. 

Longitudinally, tracts-of-interest from 44 out of 50 thalamic subnuclei 

showed significant reductions in mean FC in PD-VH compared to PD non 

VH, adjusting for age, gender, total intracranial volume and time between 

scans and FDR-corrected across 50 tracts (Table 5.4). Longitudinal 

reduction in mean FC of these tracts was significantly correlated with 

hallucination severity (rho=-0.212, q<0.001).  
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Figure 5.5 Thalamic subnucleus changes in PD with hallucinations 

A. Longitudinal change in thalamic nuclei volumes for the right MDm (mediodorsal 

medial magnocellular) and the left Pc (paracentral subnucleus) in PD-VH, PD non 

VH in mm2. Corrected for age, gender, total intracranial volume and time between 

scan. P-value presented for the group-by-time interaction comparison between PD-VH 

and PD non VH participants. Error bars represent standard deviation. 

B. Change in thalamic nuclei volumes for the right MDm and the left Pc in PD 

participants was correlated with severity of visual hallucinations, assessed using the 

University of Miami Parkinson’s disease Hallucinations Questionnaire (UM-PDHQ).  
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Table 5.4. White matter thalamic tract differences in mean FC between 

patients with Parkinson’s disease and visual hallucinations (PD-VH) 

and without hallucinations (PD non VH). 

Tract Changes at Baseline  Visit 2 (18 months follow up) 

 beta p-value q-value beta p-value q-value 

Left AV -0.0167 0.073575 0.176 -0.159 0.005 0.006098 

Left CeM -0.01496 0.106572 0.176 -0.168 0.004 0.006098 

Left CM -0.01536 0.087835 0.176 -0.167 0.004 0.006098 

Left L_Sg -0.0143 0.151725 0.217 -0.157 0.005 0.006098 

Left LD -0.01729 0.078379 0.176 -0.162 0.005 0.006098 

Left LGN -0.01614 0.100528 0.176 -0.158 0.007 0.007609 

Left LP -0.00259 0.825082 0.855 -0.174 0.001 0.006098 

Left MDl -0.00856 0.442954 0.481 -0.146 0.002 0.006098 

Left MDm -0.01157 0.261344 0.297 -0.148 0.004 0.006098 

Left MGN -0.01538 0.092495 0.176 -0.165 0.004 0.006098 

Left MVRe -0.01651 0.064117 0.176 -0.167 0.004 0.006098 

Left Pf -0.01552 0.065164 0.176 -0.167 0.004 0.006098 

Left PuA -0.00886 0.838129 0.855 -0.131 0.027 0.028125 

Left PuI -0.01694 0.076763 0.176 -0.164 0.005 0.006098 

Left PuL -0.0134 0.160321 0.217 -0.166 0.005 0.006098 

Left PuM -0.01653 0.106226 0.176 -0.16 0.006 0.006818 

Left VA -0.01349 0.190176 0.241 -0.162 0.005 0.006098 

Left VAmc -0.01667 0.070042 0.176 -0.166 0.004 0.006098 

Left VLa -0.01213 0.197567 0.241 -0.168 0.004 0.006098 

Left VLp -0.012 0.217166 0.253 -0.165 0.004 0.006098 

Left VPL -0.01255 0.15604 0.217 -0.17 0.004 0.006098 

Left VM 0.054166 0.167992 0.221 0.683 0.004 0.006098 

Left CL -0.01582 0.104575 0.176 -0.158 0.005 0.006098 

Left Pc 0.046429 0.071154 0.176 0.493 0.041 0.060981 

Left Pt 0.046429 0.071154 0.176 0.072 0.086 0.087755 

Right AV -0.02101 0.020802 0.176 -0.158 0.005 0.006098 

Right CeM -0.01569 9.85E-06 <0.001 -0.169 0.003 0.006098 

Right CM -0.01791 0.041074 0.176 -0.166 0.004 0.006098 

Right L_S -0.02014 0.051005 0.176 -0.159 0.006 0.006818 

Right LD -0.02256 0.016982 0.176 -0.16 0.005 0.006098 
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Right LGN -0.01993 0.107471 0.176 -0.154 0.007 0.007609 

Right LP -0.01586 0.110677 0.176 -0.158 0.005 0.006098 

Right MDl 0.013326 0.432889 0.481 -0.128 0.005 0.006098 

Right MDm -0.03742 0.002003 0.05 -0.152 0.004 0.006098 

Right MGN -0.02135 0.112517 0.176 -0.16 0.005 0.006098 

Right MVRe -0.01951 0.032731 0.176 -0.163 0.004 0.006098 

Right Pf -0.015 0.088 0.176 -0.169 0.003 0.006098 

Right PuA -0.0088 0.520089 0.553 -0.154 0.005 0.006098 

Right PuI -0.02137 0.043955 0.176 -0.162 0.005 0.006098 

Right PuL -0.01752 0.061791 0.176 -0.165 0.004 0.006098 

Right PuM -0.02221 0.020873 0.176 -0.158 0.006 0.006818 

Right VA -0.01884 0.062591 0.176 -0.161 0.005 0.006098 

Right VAmc -0.02079 0.032996 0.176 -0.161 0.005 0.006098 

Right VLa -0.01488 0.11635 0.176 -0.167 0.004 0.006098 

Right VLp -0.01399 0.12015 0.177 -0.169 0.003 0.006098 

Right VPL -0.01395 0.079667 0.176 -0.17 0.003 0.006098 

Right VM 0.063079 0.090592 0.176 0.676 0.004 0.006098 

Right CL -0.00386 0.86107 0.861 -0.167 0.008 0.008511 

Right Pc 0.037085 0.202579 0.241 0.503 0.050 0.06098 

Right Pt 0.037085 0.202579 0.241 0.052 0.119 0.119 

AV: anteroventral, CeM: central medial, CM: centromedian, L_Sg: limitans, LD: 

laterodorsal, LGN: lateral geniculate, LP: lateral posterior, MDl: mediodorsal medial 

parvocellular, MDm: mediodorsal medial magnocellular, MGN: medial geniculate, MVRe: 

Reuniens medial ventral, Pf: parafascicular, PuA: pulvinar anterior, PuI: pulvinar inferior, 

PuL: pulvinar lateral, PuM: pulvinar medial, VA: ventral anterior, VAmc: ventral anterior 

magnocellular, VLa: ventral lateral anterior, VLp: ventral lateral posterior, VPL: ventral 

posterolateral, VM: ventromedial, CL: central lateral, Pc: paracentral, Pt: paratenial. 

In bold tracts showing FDR-corrected statistically significant differences between PD-VH 
and PD non VH participants.  
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Assessing a potential effect of anxiety and depression 

Given the observed differences in anxiety and depression between PD-VH 

PD non VH, I performed additional analyses to ensure the observed 

structural white and grey matter changes were not directly influenced by 

anxiety and depression scores. There was no statistically significant 

correlation between HADS depression and anxiety scores and the main 

structural grey and white matter changes seen in PD-VH: specifically the 

mean volume of the medial mediodorsal magnocellular thalamic subnucleus 

(MDm) or mean fibre cross section (FC) of thalamic white matter tracts, 

either at baseline or longitudinally (Table 5.5).  

Table 5.5. Relationship between anxiety and depression scores and 

thalamic volumes and white matter tract integrity 

 

Since HADS anxiety and depression scores were not correlated with the 

main outcome measures (MDm volume and tract FC) and they were 

inherently different in our compared groups (PD-VH versus PD non VH) 

they were not included as covariates, as this would reduce the sensitivity of 

the model to detect a true effect without improving specificity (Miller and 

Chapman, 2001; Rohrer, 2018). 

 

 
Relationship with MDm volume Relationship with mean tract FC 

 
Baseline Longitudinal 

difference 
Baseline 

Longitudinal 

difference 

HADS anxiety 
rho=0.009 

p=0.939 

rho=0.036 

p=0.758 

rho = -0.111 

p=0.338 

rho = -0.100 

p=0.388 

HADS depression 
rho=-0.102 

p=0.381 

rho=0.003 

p=0983 

rho=0.020 

p=0.863 

rho=-0.172 

p=0.138 

HADS: Hospital anxiety and depression questionnaire, higher scores indicate higher severity of 

anxiety or depression respectively. MDm: medial mediodorsal magnocellular thalamic 

subnucleus. FC: fibre cross section 
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4.4. Discussion 

This study sheds light on the timeline and spatial profile of structural brain 

changes in patients with Parkinson’s disease and visual hallucinations 

across the grey matter, white matter and thalamus. Specifically, I showed 

that:  

a. the right mediodorsal medial thalamus is affected in PD with 

hallucinations, with white matter tracts originating from the right 

mediodorsal thalamus showing macrostructural changes (reduced 

mean FC) at baseline followed by volume loss within the nucleus 

after longitudinal follow-up,  

b. widespread white matter micro- and macrostructural changes are 

present in PD with hallucinations already at baseline, in the absence 

of grey matter changes (cortical thickness) 

c. macrostructural white matter changes continue in PD with visual 

hallucinations over time involving many cortical-cortical 

connections and the majority of thalamo-cortical white matter 

d. differences in cortical thickness only evolve after follow up and are 

relatively mild in PD with compared to those without hallucinations. 

By using a recently described probabilistic atlas derived from ex vivo 

imaging and histology (Iglesias et al., 2018), I was able to detect 

differences in volumes within the right mediodorsal medial thalamic sub-

nucleus in PD with visual hallucinations. The mediodorsal medial nucleus 

is a higher order, associative thalamic nucleus with multiple reciprocal 

connections with the prefrontal and anterior cingulate cortex (Mitchell and 

Chakraborty, 2013). It plays an establised role in cognition, particularly in 

sustaining prefrontal cortex (PFC) activity during working and spatial 

memory (Parnaudeau et al., 2018) and monitoring and updating mental 

representations (Wolff and Vann, 2019). It  has also been implicated in 
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psychiatric disease; patients with schizophrenia show reduced functional 

activation within the mediodorsal medial thalamus and reduced functional 

connectivity to the PFC during executive tasks (Minzenberg et al., 2009); 

they also show grey matter atrophy in the mediodorsal thalamus (Cobia et 

al., 2017; Pergola et al., 2017). Reduced functional connectivity of the 

mediodorsal thalamus with the paracingulate and posterior cingulate has 

also been described in patients with Parkinson’s disease and cognitive 

impairment (Owens-Walton et al., 2019). The complex way that the 

mediodorsal medial thalamic sub-nucleus interacts with the PFC is not 

fully understood, however there is evidence to suggest that it may act as a 

regulator of PFC function (Pergola et al., 2018): reduced input from the 

mediodorsal medial nucleus, due to white matter degeneration and 

neuronal loss within the nucleus could result in subsequent unregulated 

PFC activity.  

In whole brain fixel-based analysis, there was a significant posterior 

predominance of white matter structural changes in PD-VH: changes in the 

splenium of the corpus callosum and posterior thalamic radiations were 

seen at baseline imaging and progressed further during follow up to 

involve multiple posterior tracts such as the tapetum and posterior internal 

capsules but frontal connections remained relatively preserved. Reduced 

connectivity between subcortical regions and visuo-spatial regions when 

combined with unregulated PFC activity (due to reduced control from the 

mediodorsal medial thalamic nucleus) which retains its other cortical white 

matter projections may partly explain the over-weighting of prior 

knowledge seen in Parkinson’s hallucinations (Chapter 3). 

Both in whole-brain and in thalamic sub-nucleus analyses, white matter 

macrostructural changes were detectable in PD-VH before any changes in 

cortical thickness or thalamic volume loss were evident. PD-VH showed 

significant macrostructural (reduced FC) and microstructural changes 
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(reduced FD) within posterior white matter tracts already at baseline, in 

the absence of any cortical thickness changes. In addition, the right 

mediodorsal medial thalamus which showed reduced volume in PD-VH 

compared to PD non-VH at follow up, showed macrostructural changes in 

its connections with the ipsilateral hemisphere at baseline.  

This result could be due to different sensitivity of the imaging modalities 

used to assess grey and white matter, however it does provides further 

support for the important role that white matter degeneration plays in PD. 

Axonal pathology has been demonstrated prior to dopaminergic neuronal 

loss in animal (Tofaris et al., 2006; Chung et al., 2009; Li et al., 2009) and 

in cell models (Volpicelli-Daley et al., 2011). Alpha-synuclein affects 

axonal growth with higher density, thinner axons seen in the brain of 

patients with early Parkinson’s disease (Schechter et al., 2020). Imaging 

biomarkers that assess white matter integrity such as fixel-based analysis 

might be more sensitive at picking up anatomical abnormalities at the 

earliest stages of PD; this is supported by our findings.  

Our finding of changes in thalamic grey and white matter in PD patients 

with hallucinations could underlie the more widespread network 

differences found in PD hallucinators (Shine et al., 2014; Yao et al., 2014; 

Hall et al., 2019)  The medial mediodorsal nucleus, which showed volume 

reduction in PD-hallucinators is a feasible target for deep brain stimulation 

which has been performed  in small numbers of patients with severe  

obsessive compulsive disorder (Maarouf et al., 2016). Given the changes in 

white matter connectivity from the medial mediodorsal nucleus to the 

cortex that we found in PD with hallucinations, further work in the 

connectivity between this subnucleus and the frontal cortex in particular 

could yield other possible connectomic targets for deep brain stimulation 

(Li et al., 2020) to treat hallucinations in PD. 
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Several methodological considerations need to be taken into account. Study 

participants underwent imaging acquisition whilst continuing their usual 

dopaminergic medications. Given that structural metrics were assessed it is 

unlikely that these will be affected by medication; additionally, levodopa 

equivalent doses did not differ between PD groups. Raw imaging data were 

visually inspected and no clinically significant cerebrovascular disease was 

seen, but due to the imaging acquisition protocols in the study, the presence 

of white matter hyperintensities could not be formally assessed and 

controlled for. No studies using fixel-based analysis so far have specifically 

controlled for white matter hyperintensities (Grazioplene et al., 2018; Mito 

et al., 2018; Rau et al., 2019), but these could decrease fibre density if they 

were present (Dhollander et al., 2017). It is not clear if white matter 

hyperintensities could have an effect on fibre cross-section which was the 

primary white matter metric particularly longitudinally, but this could be 

clarified in future studies.  

In conclusion, this study showed that patients with Parkinson’s disease and 

visual hallucinations show both white matter and grey matter degeneration 

longitudinally but white matter changes are detectable before any loss of 

cortical thickness can be seen. In addition, thalamic-cortical connectivity is 

affected in Parkinson’s-associated hallucinations, particularly within the 

mediodorsal nucleus. These findings provide mechanistic support for the 

role of the thalamus as a driver of network imbalance in Parkinson’s 

hallucinations, and support the use of imaging techniques aimed at white 

rather than grey matter in assessing early stages of Parkinson’s disease.  

 

Publication statement 

Some of the work included in this chapter (baseline white matter imaging) 

has been published previously (Zarkali et al., 2020) and is included here as 
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per the publisher’s policy with regards to thesis publications. Work 

describing longitudinal grey and white matter imaging (including thalamic 

subnuclei) has been submitted for publication and is currently under review. 
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6. Uncovering the biological processes driving white 

matter vulnerability in Parkinson’s hallucinations 

 

6.1 Introduction 

An attractive theoretical model for visual hallucinations in Parkinson’s 

disease (PD) is that they arise due to a shift in the balance of different 

networks, particularly those involved in attention and conscious perception, 

with overactivity of the Default Mode Network (DMN) and failure to 

engage the dorsal attention network (Muller et al., 2014, Shine et al., 2014b; 

Onofrj et al., 2019). Indeed, aberrant default mode network (DMN) 

activation has been repeatedly described in patients with PD and 

hallucinations (Shine et al., 2014a, 2015; Yao et al., 2014; Franciotti et al., 

2015). In addition to changes in the relative effects of functional brain 

networks, there is evidence of a failure to integrate sensory input and prior 

knowledge during visual perception in patients with PD and visual 

hallucinations: PD with hallucinations show impaired sensory evidence 

accumulation (O’Callaghan et al., 2017), visual-perceptual deficits (Weil et 

al., 2016) and in a previous chapter (Chapter 3) I showed that they also 

exhibit an over-reliance on prior knowledge. This imbalance in sensory 

integration and the functional activation of brain regions are likely to be 

mediated or influenced by changes in underlying structural connectivity.  

In previous chapters (Chapters 4 and 5) I showed that white matter shows 

macrostructural and microstructural changes in PD with hallucinations, with 

changes within the splenium of the corpus callosum and the left posterior 

thalamic radiation at baseline but subsequent widespread changes at 15 

months follow up. Changes at the network level have also been reported in 

PD with hallucinations, primarily affecting regions of the “diverse club” 
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which are thought to be crucial for integration across specialist modules 

(Hall et al., 2019). It is difficult however to infer from these studies what 

impact structural connectivity loss will have on functional dynamics, nor 

what factors make specific brain regions more vulnerable to connectivity 

loss.  

Network control theory is an emerging framework that tries to bridge 

structural network with functional dynamics (Gu et al., 2015). Specifically, 

using structural connectivity estimates and linear estimates of local 

dynamics, network control theory can be used to derive a measure of the 

extent of the influence one region (or node) of the network has over other 

parts of the brain and in facilitating the transitioning between brain states; 

this is called average controllability (Gu et al., 2015). Given the importance 

that relative shifts in activation between brain networks seem to play in PD 

hallucinations (Muller et al., 2014), controllability is likely to provide 

important insights into how hallucinations arise in PD. 

In this chapter I aim to clarify the structural connectivity changes in patients 

with PD and habitual visual hallucinations (PD-VH) at a network level. I 

will use network control theory to assess the average controllability in PD-

VH compared to those with PD without hallucinations at whole-network 

and subnetwork level; this will assess the effect structural changes will have 

on brain function. Finally, I will aim to shed light on the pathological 

processes that drive regional selective vulnerability to connectivity loss by 

assessing differences in regional gene expression between affected and 

unaffected regions. Regional gene expression in health has been shown to 

predict white matter connectivity loss in Huntington’s disease (McColgan et 

al., 2018) and schizophrenia (Romme et al., 2017) and expression of 

candidate genes has been associated with cortical atrophy in PD (Freeze et 

al., 2018, 2019). Characterising potential changes in regional gene 
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expression linked to connectivity loss in PD VH may provide important 

mechanistic insights.  

 

6.2 Methods 

Study Participants 

Participants were recruited from the Vision in Parkinson’s disease study 

(VIPD cohort, Chapter 2: Study Cohorts). All participants with baseline 

diffusion weighted imaging (DWI) and structural brain imaging scans 

passing predetermined quality control criteria were included in the study 

leading to 100 participants with PD and 34 unaffected controls included in 

this study. Patients with PD satisfied the Queen Square Brain Bank Criteria 

for PD (Emre et al., 2007). 

Participants with PD were classified as PD with visual hallucinations (PD-

VH, n=19) if they scored more than 1 for Question 2 of the UPDRS: “Over 

the past week have you seen, heard, smelled or felt things that were not 

really there?”. All other participants with PD were classified as PD non VH 

(n=81). Further information on the frequency and severity of hallucinations 

was collected using the University of Miami Parkinson’s Disease 

Hallucinations Questionnaire (UM-PDHQ) (Papapetropoulos et al., 2008). 

The full study protocol is described in Chapter 2.  

MRI data acquisition and preprocessing 

An overview of the study methodology is seen in Figure 6.1. The study 

protocol and preprocessing steps are described in Chapter 2 in detail. After 

DWI pre-processing, diffusion tensor metrics were calculated and 

constrained spherical deconvolution (CSD) performed, as implemented in 

MRtrix (Hollander, T. et al., 2016).  
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360 cortical regions of interest (ROIs) were generated by segmenting a 

structural T1-weighted image according to the Glasser segmentation which is 

based on a large number of participants (210), precisely aligned to each other 

(Glasser et al., 2016) and 19 subcortical ROIs were generated from the 

automatic Freesurfer parcellation (Fischl et al., 2002). ROIs were warped into 

DWI space by registering the structural image to the DWI image using FLIRT 

(Greve and Fischl, 2009). Anatomically constrained tractography was 

performed with 10 million streamlines (Smith et al., 2012) and then 

tractograms were reduced using the spherical deconvolution informed 

filtering of tractograms (SIFT2) algorithm (Smith et al., 2015) to reduce 

biases. The resulting set of streamlines was used to construct the structural 

brain network. 

For each participant, a structural connectivity matrix was then generated by 

determining whether each pair of ROIs were connected by a streamline; 

connections were weighted by streamline count and a cross-sectional area 

multiplier (Smith et al., 2015) and combined into 379 × 379 undirected and 

weighted connectivity matrices. As recommended by the authors of SIFT2, 

no threshold was applied to the connectivity matrices  (Smith et al., 2015). 
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Figure 6. 1. Overview of the study methodology 

(Opposite) 

1. Anatomically constrained tractography was used to determine white 

matter streamlines from diffusion weighted imaging (DWI) data for each 

participant. DWI were combined with an anatomical parcellation of 379 

brain regions (360 cortical/19 subcortical) to generate a connectivity matrix 

for each participant.  

2. Structural connectomes were compared between groups. Global topology 

metrics (degree strength, path length, clustering coefficient) and 

controllability were calculated for each participant and compared between 

PD vs controls, and PD with hallucinations (PD-VH) vs PD without 

hallucinations (PD-non-VH). Network-based statistics was then performed 

(contrasts: PD vs controls and PD-VH vs PD-non-VH, age and total 

intracranial volume as covariates) resulting to the identification of a VH-

subnetwork of reduced connectivity strength.  

3. Gene expression data were extracted from the Allen Brain atlas and 

mapped into the 180 cortical regions from the left hemisphere. An average 

regional gene expression level was calculated for each gene for each cortical 

region. Gene co-expression network analysis was then performed for the 180 

regions resulting to a network of 27 modules.  

4. The resulting gene co-expression network was examined to identify the 

modules associated with the VH-subnetwork: the summary profile 

(eigengene) for each module was correlated with presence in the VH-

subnetwork. Two modules were significantly associated after correction for 

multiple comparison’s, one downweighted (cyan module) and one 

upweighted (greenyellow module). Gene significance (the absolute value) of 

correlation between the gene and the trait (region’s presence in the VH 

subnetwork) was then calculated for each gene of the two VH-associated 

module. Enrichment analyses were performed using the gene lists for these 

two modules, ranked by gene significance.  

F: Frontal, T: Temporal, O: Occipital, L: Limbic, P: Parietal, S: Subcortical 
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Network topology and controllability 

Network control theory provides mathematically-derived predictions on the 

impact that structural connectivity has on brain function (Gu et al., 2015; 

Betzel et al., 2016). It models the role of a specific brain region in regulating 

whole-brain network function, in contrast to static graph theory metrics (Gu 

et al., 2015). According to this framework a brain network with k nodes, can 

be described as a collection of neural states; these can be mathematically 

described as simulated states (x) of the network over time steps t using the 

following equation: 

𝑥𝑡+1 = 𝐴𝑥 𝑡 + 𝐵𝑢𝑡 

where xt is a vector of all simulated states of all nodes k at time t, t are discrete 

time steps (t=1, 2, …), Ake is the network’s structural connectivity matrix (k 

number of nodes and e number of edges), B is a matrix of the control nodes 

in the network and ut is the energy applied to the control nodes B at time t.  

Using this framework, the influence that each brain region has on whole-brain 

function can be quantified using the metric of average controllability. 

Average controllability for a brain region (node) is a measure of the node’s 

ability to influence other brain regions, specifically its ability to drive the 

whole brain network into all possible states. Average controllability is 

calculated as the average input energy required to be applied to a control node 

to reach all possible target states of the network. Regions with high average 

controllability can therefore drive the brain network to many easily reachable 

states. Mathematically average controllability is defined as the trace of the 

controllability gramian (Trace(Wk)) (Tang et al., 2017) which is calculated 

as:  

𝑊𝑘 =  ∑ 𝐴𝑇𝐵𝑘

∞

𝑇=0

𝐵𝑘
𝑇𝐴𝑇 
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where A is the structural connectivity matrix, B is the control node matrix 

with k nodes and T is the control horizon. As previously described, I 

calculated average controllability for each node separately, therefore the 

matrix B was reduced to a one-dimensional vector Bk = (1 0 0 0 …)T where 

the first brain regions is the control node for which controllability is 

calculated. In this case k simply denotes this specific control node rather than 

all the nodes of the network.  

Average controllability at node- and network-level was calculated for each 

participant using: https://complexsystemsupenn.com/s/controllability_code-

smb8.zip. Then I compared average controllability between groups (PD-VH, 

PD non VH and controls).  

Finally, global network metrics were calculated for each participant’s 

structural connectome (Figure 6.1, Step 2): connectome density, clustering 

coefficient (metric of segregation), and characteristic path length (metric of 

integration) using the Brain Connectivity Toolbox (Bullmore and Sporns, 

2009).  

Network based statistics (NBS) 

I performed network-based statistic (NBS) to investigate whether visual 

hallucinations were associated with altered connectivity strength (Zalesky et 

al., 2010). A general linear model was used with contrasts of interest: 1) PD-

VH versus PD non VH and 2) PD versus controls. Age and total intracranial 

volume were included as nuisance covariates. Permutation testing with 

unpaired t-tests was performed with 5000 permutations, calculating a test 

statistic for each connection. A predetermined threshold of t = 3.1 was used 

(critical t-statistic for the study sample size) and family-wise error rate (FWE) 

of p<0.05 for multiple comparisons (Figure 6.1, Step 2). 

https://complexsystemsupenn.com/s/controllability_code-smb8.zip
https://complexsystemsupenn.com/s/controllability_code-smb8.zip
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Regional Gene Expression Analysis 

Gene expression microarray data were extracted from the Allen Institute for 

Brain Science transcriptome atlas (Hawrylycz et al., 2015). This was 

constructed postmortem from the brains of 6 human donors (aged 24-57 

years) with no prior history of psychiatric or neurological disease. The atlas 

contains a database of expression levels for 20,737 genes represented by 

58,692 probes across the cortical mantle and is available freely here: 

http://human.brain-map.org/static/download. Data from all six donors are 

available for the left hemisphere but only data from two donors are available 

for the right hemisphere; therefore, only left cortical regions (180 regions) 

were included in gene expression analyses similar to other studies (Romme 

et al., 2017; McColgan et al., 2018). The rigorous method of preprocessing 

by Arnatkevic̆iūtė et al. (Arnatkeviciūtė et al., 2019) was used to extract gene 

expression data and map them to the 180 left cortical ROIs of the Glasser 

atlas. Each tissue sample was assigned to a ROI using the MRI data for each 

donor. Distances between samples were evaluated on the cortical surface, 

with a 2 mm threshold. Probe-to-gene annotations were then updated using 

the Re-Annotator package (Arloth et al., 2015). Probes whose expression 

measures were above a background threshold in more than 50% of samples 

were selected and then a representative probe for each gene was chosen based 

on highest intensity. Expression data were normalised using scaled, outlier-

robust sigmoid normalisation and then compiled to form a 180 × 15745 

regional transcription matrix (Arnatkeviciūtė et al., 2019).  This process was 

performed using code from: https://github.com/BMHLab/AHBAprocessing. 

(Figure 5.1, Step 3). 

Different genes are not expressed in isolation in the brain but modules of 

genes which are part of the same functional subsystem tend to get expressed 

together (Carpenter and Sabatini, 2004; Oldham et al., 2008). I therefore used 

gene co-expression analysis to identify modules of highly co-expressed genes 

http://human.brain-map.org/static/download
https://github.com/BMHLab/AHBAprocessing
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that form a co-expression network. To construct gene co-expression networks 

I used weighted gene co-expression network analysis (WGCNA), one of the 

most widely used and validated methods (Langfelder and Horvath, 2008; 

Langfelder et al., 2011; Botía et al., 2017) using the WGCNA package in R 

(Zhang and Horvath, 2005; Langfelder and Horvath, 2008) and post-

processing with k-means (Botía et al., 2017). WGCNA uses measures of gene 

co-expression similarity to construct a network of gene-to-gene co-

expression; this can be represented as a NxN matrix for N number of genes, 

where each connection between two genes represents the interaction strength 

between them. This matrix is then transformed using topological overlap into 

a proximity matrix where a pair of genes has a high proximity if it is closely 

interconnected; this way clusters or modules of highly interconnected genes 

that are co-expressed can be identified.  

180 cortical ROIs of the left hemisphere were used in this analysis. Each 

region or node represented a different sample to construct a gene co-

expression network of the healthy brain for the specific parcellation. The 

nodes/samples that participated in the VH-subnetwork were classified as 

nodes/samples that had the trait of visual hallucinations (VH) whilst the 

others were classified as non-VH nodes/samples. As suggested by the 

WGCNA authors (Langfelder and Horvath, 2008) outliers were assessed 

using distance-based networks (Zhang and Horvath, 2005) and I excluded 

nodes which had more than 50% missing entries (3 nodes were excluded as a 

result). 

After the co-expression network was constructed and modules of highly-co-

expressed genes were identified, the module membership for each gene 

within a given module was calculated as the Pearson's correlation coefficient 

between gene expression values and the module eigengene. Genes with 
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higher module memberships are more representative of the module’s overall 

function and more likely to be critical components (Figure 6.1, Step 3).  

The summary profile (eigengene) for each module was correlated to the VH 

trait using biweight midcorrelation; this way modules that were significantly 

associated (following FDR-correction) with the VH-subnetwork were 

identified: VH-associated modules. For each VH-associated module, gene 

significance for the VH trait was calculated for each gene. Gene significance 

is defined as the absolute value of the correlation between the gene and the 

trait and can be considered as the association of individual genes with specific 

clinical information. In this study this clinical information reflects reduced 

structural connectivity seen in the brains of PD-VH participants.  

Enrichment Analyses 

Enrichment analysis of the VH-associated modules was performed by 

ranking the genes of these modules according to their gene significance 

(Figure 5.1, Step 4). Gene Ontology (GO) and KEGG pathway terms were 

analysed on g:Profiler using FDR correction for multiple comparisons and 

p<0.01 as the statistical significance threshold (Raudvere et al., 2019).  The 

reduce and visualize gene ontology tool (REVIGO) was used to visualise 

significant GO terms using semantic similarity (Supek et al., 2011). 

Expression-weighted Cell-type Enrichment Analysis (EWCE) was also 

performed to assess whether the VH-associated modules contained genes 

which where enriched more than expected by chance within a particular cell 

type (Skene and Grant, 2016). Target lists were the genes of the VH-

associated modules which were significantly (q<0.05) associated with VH 

trait, ranked according to their gene significance. Single-cell transcription 

data were used from AIBS (https://portal.brain-map.org/atlases-and-

data/rnaseq) containing data from the middle temporal gyrus (Hawrylycz et 

al., 2015) and replicated in a different human-derived dataset (Habib et al., 

https://portal.brain-map.org/atlases-and-data/rnaseq
https://portal.brain-map.org/atlases-and-data/rnaseq
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2017). EWCE was then performed with 100,000 bootstrap lists, controlling 

for transcript length and content and FDR-corrected for multiple 

comparisons. The EWCE package is available here: 

https://github.com/NathanSkene/EWCE. 

Statistical Analysis 

Demographics, clinical characteristics and network metrics were compared 

between the three groups using ANOVA (post-hoc Tukey) for normally 

distributed and Kruskal-Wallis (post-hoc Dunn) for non-normally 

distributed variables. Normality was assessed using the Shapiro-Wilk test 

and visual inspection of the variable’s distribution. For comparisons 

between PD-VH and PD-non-VH, t-tests for normally distributed, and 

Mann-Whitney for non-normally distributed variables were used. Statistical 

significance was defined as p<0.05. All analyses were performed using 

Python 3 (Jupyter Lab v1.0.2). 

 

6. 3. Results  

134 participants were included in the study: 19 had PD and habitual, at least 

weekly, visual hallucinations (PD-VH), 81 had PD without hallucinations 

(PD non VH, and 34 unaffected age-matched controls. Demographics and 

results of clinical assessments at baseline are shown in Table 6.1. 

Importantly there was no significant difference between PD-VH and PD non 

VH participants in terms of demographics, motor severity or levodopa 

equivalent doses. No participants were receiving antipsychotic medications, 

acetylcholinesterase inhibitors or anticholinergics at the time of the study. 

Details on the experienced hallucinatory phenomena by PD-VH participants 

are seen in Table 6.2.  

 

https://github.com/NathanSkene/EWCE
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Table 6.1. Demographics and results of baseline clinical assessments 

Attribute Controls 

n = 34 

PD non 

VH 

n=81 

PD-VH 

n=19 

Statistic p value 

Demographics Age (y) 66.4 (9.3) 64.4 (7.8) 64.6 (8.2) r2=0.003 0.459 

 Male (%) 16 (47.1) 47 (58.0) 6 (31.6) r2=0.022 0.086 

 Years in 

Education 
17.6 (2.3) 16.9 (2.7) 17.1 (3.5) r2=0.004 0.490 

 Total 

Intracranial 

Volume (ml) 

1397.3 

(106.4) 

1476.4 

(130.8) 

1409.9 

(106.7) 
r2=0.070 0.003a,c 

Mood (HADS)  Depression score 1.6 (2.0) 3.8 (2.9) 4.8 (3.2) r2=0.120 <0.001c 

 Anxiety score 3.8 (3.5) 5.6 (3.8) 7.7 (4.9) r2=0.071 0.0031a,b,c 

Vision LogMAR (best) * -0.08 (0.23) -0.08 (0.16) -0.06 (0.15) r2=0.013 0.854 

 Pelli Robson 

(best) * 
1.79 (0.2) 1.79 (0.2) 1.70 (0.2) r2=0.016 0.127 

 D15 (total error 

score) 
1.29 (1.2) 1.28 (1.1) 1.56 (1.6) r2=0.010 0.689 

Cognition MMSE 29.0 (1.0) 28.9 (1.1) 28.6 (1.8) r2=0.004 0.485 

 MOCA 28.8 (1.3) 28.0 (2.1) 26.9 (3.1) r2=0.051 0.011c 

Disease 

specific 

Measures 

UPDRS 

- 42.4 (20.2) 63.5 (35.6) U=444 0.004 

 UPDRS part 3 

(motor score) 
- 21.8 (11.2) 29.2 (20.8) U=604 0.129 

 UM-PDHQ 

(hallucination 

severity score) 

- 0 4.4 (2.3) - - 

 LEDD (mg) 
- 

456.9 

(265.0) 

434.9 

(210.3) 
U=787 0.948 

 Dopamine 

agonist use (%) 
- 48 (59.3) 9 (47.4) x2=39.59 0.999 

 Amantadine use 

(%) 
- 8 (9.8) 1 (5.3) x2=57.09 0.998 

 Disease duration - 4.0 (2.5) 4.8 (3.4) U=669.5 0.339 

 Sniffin’ sticks - 7.8 (3.1) 6.1 (3.4) U=940.5 0.159 

 RBDSQ - 4.0 (2.5) 5.6 (2.5) U=486 0.010 

All data shown are mean (SD) except gender.  

In bold characteristics that significantly differed between the PD-VH and PD-non-VH. 
a: significant difference between PD-VH and PD-non-VH; b: significant difference between PD-non-VH and 

controls; c: significant difference between PD-VH and controls. 

* Best binocular score used; LogMAR: lower score implies better performance, Pelli Robson: higher score 

implies betterr performance. 

HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state examination; MOCA: Montreal 

cognitive assessment; UPDRS: Unified Parkinson’s disease rating scale; UM-PDHQ: University of Miami 

Hallucinations Questionnaire (max score: 14); LEDD: Total Levodopa equivalent dose; RBDSQ: REM sleep 

behaviour disorder screening questionnaire. 
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Table 6.2. Characteristics of hallucinations experienced by patients 

with Parkinson’s disease (PD-VH).  

 

 

Hallucinations Characteristics PD-VH (n=19) 

Phenotype 
Complex hallucinations 

Minor hallucinations 

11 (57.9%) 

8 (42.1%) 

Frequency 
Less than once a week 

More than once a week 

11 (57.9%) 

8 (42.1%) 

Duration 

 

Less than 1 seconds 

Less than 10 seconds 

More than 10 seconds 

8 (42.1%) 

6 (31.6%) 

5 (26.3%) 

Insight 

 

Always preserved 

Sometimes preserved 

No insight 

13 (68.4%) 

4 (21.1%) 

2 (10.5%) 

Number of experienced images mean 

(sd) 
1 (0.67) 

Distress 

 

No distress 

Mild to moderate distress 

14 (73.7%) 

5 (26.3%) 

Participants were asked to reflect on all hallucinatory phenomena experienced within 

the previous month. 

Complex hallucinations included well form imagery (people, animals, etc), stationary 

or animate 

Minor hallucinations included passage hallucinations as well as non formed images 

(shadows etc) 
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Patients with PD and visual hallucinations exhibited a subnetwork of 

reduced connectivity strength. 

PD-VH participants showed a subnetwork of reduced structural connectivity 

strength compared to PD-non-VH participants (VH-subnetwork, using NBS 

controlling for age and total intracranial volume), comprised of 92 edges 

and 82 nodes (Figure 6.2). A list of all significant connections within the 

subnetwork is seen in Appendix 2.  

No significant subnetwork was identified in the opposite direction (meaning 

that the presence of hallucinations was not correlated with any increase in 

connectivity strength).  Importantly, no significant subnetwork was 

identified in PD compared to controls, nor in PD participants in relation to 

disease severity (total UPDRS score, motor UPDRS score) or general 

cognition (MoCA or MMSE), therefore these findings seem to be specific to 

hallucinations.  

Global network topology across (clustering coefficient and characteristic 

path length, and density) did not significantly differ between PD and 

controls, or PD-VH and PD-non-VH. 

PD with visual hallucinations showed reduced average controllability.  

As previously described (Bernhardt et al., 2019), average controllability in 

healthy controls was highest in the thalamus and temporal and prefrontal 

regions bilaterally (Figure 6.3, the full list of ranking is seen in Appendix 

3). Average controllability was significantly correlated with degree strength 

for each node (U=568, p<0.001), similar to previous work (Gu et al., 2015; 

Bernhardt et al., 2019).  

Next, I compared average controllability between PD-VH, PD non VH and 

controls. Within the VH-subnetwork, average controllability was 

significantly reduced in PD-VH compared to controls (Mann-Whitney: 
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U=176.5, p=0.003) and compared to PD-non-VH (U=526, p=0.014) (Figure 

6.3).  

 

Figure 6. 2. The VH – subnetwork 

Network based statistical analysis revealed a subnetwork of reduced 

structural connectivity strength in patients with Parkinson’s and visual 

hallucinations (PD-VH), FDR corrected for multiple comparisons, 

controlling for age and total intracranial volume. The subnetwork 

comprised of 92 edges and 82 nodes. The subnetwork was visualised 

using BrainNetViewer (Xia et al., 2013) 
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Figure 6. 3 Reduced controllability in PD-VH 

A. Controllability ranking in controls, visualised using PySurfer. 

B. Average controllability in the whole brain in controls, patients with Parkinson’s 

without (PD-non-VH) and with hallucinations (PD-VH). 

C. Average controllability in the VH-subnetwork in controls, PD-non-VH and PD-VH. 

* denotes statistically significant differences between the specific groups. 
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In contrast, differences in average controllability across the whole brain 

network were less pronounced (PD-VH versus controls U=233.5, p=0.049; 

PD-VH versus PD-non-VH (U=625, p=0.091) (Figure 5.3). Finally, the 

subnetwork of reduced connectivity strength seemed to preferentially affect 

regions of high controllability: nodes with higher average controllability in 

controls were more likely to participate within the VH subnetwork 

(U=572.5, p<0.001) (Figure 6.4). 

Figure 6. 4. Regions of higher average controllability within 

the VH-subnetwork. 

Nodes with higher average controllability in healthy control 

participants were more likely to be within the subnetwork. 
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Specific gene co-expression patterns are linked with presence of visual 

hallucinations in PD. 

Next, I examined whether the brain regions (nodes) of the VH-subnetwork 

which showed structural connectivity loss in PD-VH, differed in terms of 

gene co-expression from the rest of the brain. Gene co-expression networks 

of the left hemisphere of the healthy adult brain were constructed using gene 

expression data from the Allen atlas (Hawrylycz et al., 2015) resulting in a 

gene co-expression network of 27 modules, each of gene size ranging 

between 56-1735 genes (mean=583, standard deviation =564). Each module 

of the gene network was assessed on whether it was significantly associated 

with the presence of the brain region/node in the VH-subnetwork. Two 

modules of the network were significantly correlated (VH-associated 

modules): one had a negative correlation with the VH-subnetwork or was 

less expressed in regions that participated in the VH-subnetwork 

(“downweighted”, r= -0.183, FDR corrected p-value: q=0.014) and one had 

a positive correlation or was more expressed in regions of the VH-

subnetwork (“upweighted”, r=0.161, q=0.032). The two modules had a gene 

size of 284 and 601 respectively.  

For both of the VH-associated modules, gene module membership was 

highly correlated with gene significance for the VH-subnetwork which 

allowed the ranking of the genes of the two modules according to gene 

module memberships in subsequent enrichment analyses. 

Functional properties and cell types of the VH-associated modules. 

Gene ontology analysis was then performed for genes within the two VH-

associated modules. Most significant GO terms for the “downweighted” 

module included mRNA processing and metabolism, chromosome 

organisation, and histone lysine methylation. In contrast, for the 

“upweighted” module, the most significant GO terms included protein 
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localisation to membrane and organelle, protein targeting, mRNA 

catabolism and viral transcription (Figure 6.5, Table 6.3). Enrichment 

analysis using the KEGG database showed that the “upweighted” module 

was significantly enriched in terms related to ribosome (KEGG:03010, 

q<0.000, B=134, N=522, b=27); there were no statistically significant 

KEGG terms for the “downweighted” module. The full GO terms for the 

“upweighted” module are seen in Appendix 4 and for the “downweighted” 

module in Appendix 5. I then examined whether the VH-associated modules 

(genes ranked by gene significance) were enriched in specific cell types. 

The “downweighted” module was enriched in oligodendrocytes whilst the 

“upweighted” module was enriched in glutamatergic neurons and 

GABAergic interneurons (Figure 6.6). To ensure that these cell type 

enrichment results were not influenced by the chosen single-cell dataset, 

these findings were replicated in a separate dataset (Habib, 2017). A similar 

enrichment pattern was seen: the “downweighted” module was again 

enriched for oligodendrocyte markers and the “upweighted” module for 

neuronal cells and GABAergic interneurons (Figure 6.6). 

 

Figure 6. 5 Functional processes of VH-associated modules. 

(Opposite) 

Significant gene ontology (GO) terms for biological processes plotted 

in semantic space, where similar terms are clustered together. The top 

five most significant GO terms are labelled for each analysis. 

Redundant GO terms have been excluded. Markers are scaled based 

on the log10 q value for the significance of each GO term.  

Large blue circles are highly significant, while red circles are less 

significant (see colour bar).  

mRNA: messenger RNA. 



147 

 

 



148 

 

 

 

Figure 6. 6 Cell type enrichment for the downweighted and upweighted 

VH-associated module. 

A. Expression-weighted cell-type enrichment analysis (EWCE) for the VH 

associated modules using the AIBS dataset.  

B. Replication of EWCE results on a separate dataset (Habib, 2017).  

Data are presented as standard deviations from the mean. Marked with * 

are statistically significant (FDR corrected) results. 

ASC: astrocytes, END: endothelial cells, NSC: neuronal stem cells, OPC: 

Oligodendrocyte Precursor cells, MC: Microglia, exCA: Pyramidal CA, 

exPFC: Pyramidal prefrontal cortex, exDG: Granule neurons, 

hippocampus dentate gyrus, GABA: GABAergic interneurons, ODC: 

Oligodendrocytes. 
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Table 6. 3. Gene Ontology (GO) terms for biological processes 

associated with VH-associated modules. 

Downweighted Module 

GO term Description q value B N b 

GO:0006397 mRNA processing 0.001 517 272 25 

GO:0016071 mRNA metabolic process 0.005 860 272 32 

GO:0034968 histone lysine methylation 0.035 119 221 8 

GO:0035520 
monoubiquitinated protein 

deubiquitination 
0.035 10 161 3 

GO:0051276 chromosome organization 0.035 1238 180 28 

Upweighted Module 

GO term Description q value B N b 

GO:0006605 protein targeting 
1.38E-

07 
428 523 41 

GO:0019083 viral transcription 
5.06E-

07 
178 519 24 

GO:0000184 

nuclear-transcribed mRNA 

catabolic process, nonsense-

mediated decay 

5.06E-

07 
122 519 20 

GO:0072594 
establishment of protein 

localization to organelle 

6.61E-

07 
565 534 46 

GO:0090150 
establishment of protein 

localization to membrane 

1.07E-

06 
330 535 33 

The top five most significant GO terms are displayed for each connection type. Redundant GO 

terms have been removed. 

q value: log10 of the FDR adjusted p value; B: Total number of genes associated with a specific 

GO term;  

b:Number of genes in the intersection ; N: Number of genes in the target set (query size). 
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6.4. Discussion 

This study sheds light on network-level structural connectivity changes 

underlying visual hallucinations in Parkinson’s disease and sheds light on 

the underlying biological processes and cell types that may be contributing 

to regional selective vulnerability. Specifically, I showed that:  

a. PD-VH exhibit a subnetwork of reduced structural connectivity 

strength compared to PD non VH 

b. this subnetwork is crucial for brain integration normally, as regions 

that have high average controllability in healthy controls (are 

important for switching the brain between different states) 

preferentially participate in the VH-subnetwork 

c. regions of the VH-subnetwork show distinct gene expression 

patterns with “downweighted” genes related to mRNA metabolism, 

chromosome organisation and histone lysine methylation and 

“upweighted” genes related to protein targeting and localisation 

d. distinct cell-types seemed to be differentially expressed in regions of 

the VH-subnetwork with “downweighted” genes enriched in 

oligodendrocyte markers and “upweighted” genes enriched in 

glutamatergic and GABAergic neurons.  

Recent theoretical models of visual hallucinations in PD implicate an 

imbalance in relevant effects  of different brain networks, particularly 

attentional brain networks with aberrant DMN activation (Shine et al., 

2014a, 2015; Yao et al., 2014; Baggio et al., 2015). This study provides 

further evidence for these models by showing loss of structural connectivity 

within a subnetwork of normally high controllability; regions of this 

subnetwork are, in healthy controls, crucial for switching the brain between 

easily accessible states. Therefore, structural changes within these regions 

may explain the observed functional network changes as an inability to 
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switch between functional networks, for example inability to deactivate the 

DMN or activate the dorsal attention network.  

Other theoretical models strongly implicate thalamic regions as drivers of 

shifts in network control (Onofrj et al., 2017, 2019). Indeed there is growing 

evidence of thalamic involvement in PD hallucinations: lateral geniculate 

networks were identified as key regions in the development of 

hallucinations using network localisation techniques (Kim et al., 2019; Weil 

et al., 2019) and in the previous chapter (Chapter 4), I showed longitudinal 

changes within the mediodorsal thalamic subnucleus in patients with PD 

and visual hallucinations. Both the right and left thalamus participated in the 

VH-subnetwork of reduced structural connectivity strength seen in PD-VH; 

the thalamus was also amongst the brain regions of highest controllability 

ranking in healthy controls, implying significant influence over whole-brain 

function.  

Importantly, this study showed that white matter connectivity loss in PD-

VH is associated with distinct regional gene expression patterns. Regions 

participating in the VH-subnetwork showed a pattern of “downweighted” 

genes related to histone lysine methylation and mRNA processing. Histone 

methylation is crucial for transcriptional control (Greer and Shi, 2012) and 

closely related to DNA methylation (Cedar and Bergman, 2009) a hallmark 

of aging (Hannum et al., 2013; Marioni et al., 2015; Michalak et al., 2019). 

RNA segments also accumulate in aging neurons (Sudmant et al., 2018; 

Butler et al., 2019) and, recently, impaired repair of nucleic acids has been 

implicated as an age-related modifier of PD (Sepe et al., 2016). Brain 

regions which normally express lower levels of genes related to histone 

methylation and RNA processing could be more vulnerable to these age-

related changes.  
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Regions of the VH-subnetwork, which are vulnerable to structural 

connectivity loss, also showed “upweighted” genes related to protein 

localisation. Dysfunction of the autophagy-lysosome pathway, particularly 

chaperone-mediated autophagy, is thought to be an important mechanism of 

neurodegeneration in PD (Pan et al., 2008; Alvarez-Erviti et al., 2011), with 

lysosomal malfunction contributing to the accumulation of alpha-synuclein 

(Cuervo et al., 2010; Lawrence and Zoncu, 2019). Glucocerebrosidase 

activity is decreased in Parkinson’s disease, with associated impaired 

chaperone-mediated autophagy (Murphy et al., 2014). GBA mutations are 

linked with a higher PD risk and higher rate of hallucinations (Neumann et 

al., 2009; Brockmann et al., 2011), whilst the most common GBA-mutations 

associated with PD (N370S and L44P (Velayati et al., 2010)) are thought to 

induce endoplasmic reticulum stress through activation of the unfolded 

protein response (Mu et al., 2008; Doyle et al., 2011; Sanchez-Martinez et 

al., 2016). Upweighting of genes related to membrane and organelle 

localisation in affected regions, as well as the presence of macro-autophagy 

amongst significantly enriched GO-terms of the upweighted module 

(Appendix 4) provide further support to the key role of the autophagy-

lysosome pathway in PD, particularly in relation to hallucinations. 

Differential cell-type enrichment was also seen in regions of the VH-

subnetwork. Specifically, regions of the VH-subnetwork downweighted 

genes enriched in oligodendrocytes and upweighted genes enriched in 

neuronal cells. Oligodendrocytes have recently been implicated in PD, with 

heritability for PD enriched in oligodendrocyte-specific genes (Bryois et al., 

2019) and genetic alterations of oligodendrocyte populations within the 

putamen in the brain of patients with PD (Teeple et al., 2021). The 

structural connectivity changes we saw in PD-VH involved many 

connections between spatially remote areas. These longer connections are 

likely to rely more on myelination for signal transfer and oligodendrocytes 
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play a key role in myelination, remodelling of myelin and metabolic support 

of axons (Young et al., 2013; Pepper et al., 2018). Brain regions which 

normally are less rich in oligodendrocytes could be more vulnerable to 

losing these longer range connections in the presence of disease.  

Several limitations need to be taken into account. Structural connectivity 

estimates were derived from diffusion tractography which can be limited 

particularly in modelling crossing fibres. Our diffusion-weighted imaging 

data was multi-shell and underwent robust post-processing (Smith et al., 

2015) to provide the best possible estimate of underlying structural 

connectivity. Study participants underwent imaging whilst continuing their 

usual medications; however structural metrics were assessed, which are 

unlikely to be affected by medication, and levodopa equivalent doses did 

not differ between PD groups. Regional gene expression analyses used data 

from healthy human brains and should be interpreted with caution as 

transcription in PD in the cortex could differ from healthy controls. 

Clarifying potential transcriptome changes in PD using brain tissue of 

patients with and without hallucinations could be an area of future research. 

In conclusion, this study showed that PD-hallucinations are associated with 

a subnetwork of reduced structural connectivity strength. This subnetwork 

exerts control over distributed brain regions and is crucial for switching the 

brain between states. In addition, this subnetwork exhibits distinct gene 

expression patterns and cellular subtypes which may contribute to selective 

vulnerability to connectivity loss. These findings provide new insights into 

how hallucinations develop in PD and indicate potential therapeutic targets.  

Publication statement 

Work included in this chapter has been published previously (Zarkali et al., 

2020) and is included here as per the publisher’s policy with regards to 

thesis publications. 
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7. Bridging the gap between structural and functional 

connectivity 

 

7.1 Introduction 

Resting state functional MRI (rsfMRI) studies demonstrate significant 

network-level changes in functional connectivity of attentional brain 

networks in patients with PD-hallucinations (Muller et al., 2014), with 

overactivity of the Default Mode Network and impaired dorsal attention 

network involvement (Shine et al., 2014, 2015; Yao et al., 2014; Baggio et 

al., 2015). Although functional connectivity analyses of rsfMRI data has 

provided useful insights about altered patterns of between-regions 

interactions in PD-hallucinations, it provides a “static” image of functional 

connectivity, calculated over an entire scanning period.  

Functional connectivity however is not static but shows spontaneous, 

dynamic fluctuations over time where the brain switches between different 

dynamic states (Hutchison et al., 2013; Allen et al., 2014; Shine et al., 

2016); in fact dynamic functional connectivity may be more representative 

of behaviour than static approaches (Liégeois et al., 2019). Changes in 

dynamic functional connectivity have been described in PD early in the 

disease process (Cordes et al., 2018) and are associated with progression of 

motor symptoms as well as the development of cognitive impairment and 

dementia (Kim et al., 2017; Díez-Cirarda et al., 2018; Fiorenzato et al., 

2019). Changes in temporal functional dynamics have also been seen in 

schizophrenia and other psychiatric conditions (Sakoğlu et al., 2010; Kaiser 

et al., 2016; Rashid et al., 2016; Jin et al., 2017), and recent work showed 

imbalance of the temporal dynamics of integrated and segregated sub-states 

in disorders of consciousness (Luppi et al., 2019) and after administration of 
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the psychedelic LSD (Luppi et al., 2021). However, whether PD-

hallucinations are also associated with an imbalance between primarily 

integrated and segregated sub-states is not yet known.  

In the previous chapter I showed that PD patients with visual hallucinations 

show widespread changes in structural connectivity between brain regions, 

particularly affecting highly connected brain regions that are important for 

switching the brain between different states (Chapter 6). Structural 

connectivity guides the temporal progression between brain sub-states (Stiso 

et al., 2019; Cornblath et al., 2020) and the transitions between sub-states 

can be modelled using the framework of network control theory (Gu et al., 

2015, 2017; Betzel et al., 2016). Specifically, the optimal energy cost 

needed to move the brain from one sub-state to another can be calculated 

based on the structural network (Gu et al., 2015, 2017; Betzel et al., 2016).  

A substate that is less energy-demanding to maintain or requires 

significantly lower energy to transition to may be preferred. Therefore this 

framework can provide important insights to why a specific sub-state is 

predominantly seen in health and how the balance between sub-states may 

change in the presence of disease.  

This study will aim to clarify the pattern of temporal dynamics in PD-

associated visual hallucinations using rsfMRI; specifically, whether the 

balance between primarily integrated and primarily segregated sub-states is 

preserved in patients with PD and visual hallucinations compared to those 

without hallucinations and controls. I will show that patients with 

Parkinson’s and hallucinations show impaired temporal dynamics, with a 

predisposition towards a more segregated sub-state of functional 

connectivity. I will then used network control theory to calculate each 

individual’s required energy cost to transition from the integrated-to-the-

segregated substate and vice versa, as well as the cost to maintain each sub-

state. I predict that patients with Parkinson’s and visual hallucinations will 
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require less energy to transition from the integrated-to-segregated substate 

than those without hallucinations and controls. Finally, I will clarify the 

brain regions that mostly contribute to the transition from integrated-to-

segregated state; I will then relate the regional contribution to this state 

transition to neurotransmitter systems using PET-derived regional density 

profiles and regional gene expression data for neurotransmitter receptors 

from healthy human brains. 

 

7.2 Methods 

Study Participants 

Participants were recruited from the Vision in Parkinson’s disease study 

(VIPD cohort, Chapter 2: Study Cohorts). All participants with baseline 

diffusion weighted imaging (DWI), structural brain imaging and rsfMRI 

scans passing predetermined quality control criteria were included in the 

study leading to 123 included participants: 91 patients with PD and 32 

unaffected controls. Patients with PD satisfied the Queen Square Brain Bank 

Criteria for PD (Emre et al., 2007). 

As in previous studies, participants with PD were classified as PD with 

visual hallucinations (PD-VH, n=16) if they scored more than 1 for 

Question 2 of the UPDRS: “Over the past week have you seen, heard, 

smelled or felt things that were not really there?”. All other participants with 

PD were classified as PD non VH (n=75). Data on the frequency and 

severity of hallucinations was collected with the University of Miami 

Parkinson’s Disease Hallucinations Questionnaire (UM-PDHQ) 

(Papapetropoulos et al., 2008). The full study protocol is described in 

Chapter 2.  
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MRI data acquisition and pre-processing 

An overview of the study methodology is seen in Figure 7.1.  

The study protocol and quality control as well as pre-processing steps for 

diffusion-weighted imaging (DWI) and resting state functional MRI 

(rsfMRI) data is presented in detail in Chapter 2.  

Briefly, the MRI quality control tool (MRIQC) was used to assess the 

quality of resting state functional MRI (rsfMRI) data (Esteban et al., 2017). 

Participants were excluded if any of the following was met: 1) mean frame-

wise displacement (FD) >0.3mm, 2) any FD >5mm, or 3) outliers >30% of 

the whole sample. This led to 12 participants being excluded (11 PD, of 

whom 5 low visual performers, and 1 control). This resulted to the total of 

91 patients with PD (16 with visual hallucinations PD-VH and 75 without 

hallucinations, PD non VH) and 32 unaffected controls being included in 

our study. In addition, all volumes of raw DWI datasets were visually 

inspected and each volume evaluated for the presence of artefact; only scans 

with <15 volumes containing artefacts (Roalf et al., 2016) were included to 

subsequent structural analyses. As a result, 5 PD and 2 control participants 

were excluded from our structural analyses. 

To construct functional and structural connectivity matrices, each 

participant’s T1-weighted image was parcellated into 200 cortical and 32 

subcortical regions of interest (ROIs) using the Schaefer (Schaefer et al., 

2018) and Tian parcellations (Tian et al., 2020) respectively. Parcellations 

in the order of 200 regions result in connectomes with highest 

representativeness (Messé, 2020; Luppi and Stamatakis, 2021) and 

specifically the combined Schaefer-232 parcellation used here is one of the 

best performing across structural and functional connectomes (Luppi and 

Stamatakis, 2021). The same parcellation was used to construct functional 

and structural connectivity matrices for each participant. All analyses were 
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replicated using the more fine-grained version of the Schaefer and Tian 

parcellations with 400 cortical and 54 subcortical ROIs respectively.  
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Figure 7.  1. Overview of the study methodology 

(Opposite) 

A. Deriving predominantly integrated and segregated sub-states of 

dynamic functional connectivity.  After obtaining sliding-windows (each 44s 

duration) of dynamic functional connectivity for each participant, the joint 

histogram of participation coefficient and within-module degree Z-score was 

used for k-means clustering (k = 2). The cluster with highest average 

participation coefficient is then identified as the predominantly Integrated 

dynamic sub-state and the cluster with the lowest participation coefficient as 

the predominantly Segregated sub-state. Note that this is done for each 

participant separately leading to individually-defined Integrated and 

Segregated sub-states.   

B. Modelling state transitions. After deriving each individual’s Integrated 

and Segregated sub-states I used an optimal control framework to calculate the 

minimal control energy that needs to be applied to each node of the network to 

transition from a baseline state at time T0 to a target state at time T1000. Here, 

as an example, we illustrate the transition from the Integrated substate (in blue) 

to the Segregated state (in green) but minimal energies were also calculated for 

Segregated-to-Integrated transition as well as to maintain the integrated state 

(Integrated-to-integrated) and segregated state (segregated-to-segregated) using 

the same model. Minimal control energies were calculated for each subject 

based on their structural brain network, which was estimated using diffusion 

imaging and probabilistic tractography. Both sub-states were represented to the 

model as a vector of the sum connectivity strength for each node (1*232); here 

shown the top 20% of the nodes for the Integrated state (blue) and Segregated 

state (green). 

C. Linking with neurotransmitter systems. Minimal control energies to 

transition between and maintain functional sub-states were compared between 

patients with PD with (PD-VH) and without hallucinations (PD non VH). 

Transitions that differed between groups were then further explored to examine 

whether contributing nodes (requiring mode control energy) were associated 

with specific neurotransmitter systems. To do this, we calculated for each of 

the 232 regions of interest of our parcellation (Schaeffer 232: 200 cortical and 

32 subcortical regions) 1) mean neurotransmitter density profiles derived from 

PET data (serotonin (5HT1a, 5HT2a and 5HT1b), dopamine (D1 and D2) and 

GABAA receptors) and 2) gene expression profiles for each of 31 pre-selected 

genes encoding receptors for norepinephrine, acetylcholine, dopamine and 

serotonin. 
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Dynamic functional connectivity 

Following rsfMRI pre-processing, mean regional BOLD signal was 

calculated for all voxels belonging to each ROI. Functional connectivity 

between any two ROIs was quantified as the Pearson correlation coefficient 

between mean regional BOLD time-series. Dynamic connectivity matrices 

were derived using an overlapping sliding-window approach (Allen et al., 

2014): resting state data were divided into windows of 44s duration (63*TR) 

in steps of 1 repetition size (Figure 7. 1). The selected window was chosen 

to be within the recommended range (30-60s) for capturing functional 

connectivity fluctuations and overlapping windows were chosen as they 

minimise error from outliers and spurious correlations (Allen et al., 2014; 

Preti et al., 2017). This resulted to 63 windows of 44s duration. Within each 

temporal window, we calculated a 232*232 weighted adjacency matrix 

representing the functional connectome for that timepoint.  

We then identified sub-states of higher integration or segregation using a 

“cartographic profile” based on the module assignments of each ROI (Shine 

et al., 2016; Fukushima et al., 2018; Luppi et al., 2019, 2021). At each time 

point , the asymmetric algorithm  of Rubinov and Sporns (Rubinov and 

Sporns, 2011) was used to identify network modules by applying the 

community Louvain algorithm, which iteratively evaluates different ways of 

assigning nodes to modules, in order to maximise the resulting modularity 

function Q: 

𝑄 =  
1

𝜐+
∑(𝑤𝑖𝑗

+  −  𝑒𝑖𝑗
+)𝛿𝑀𝑖𝑀𝑗 −  

1

𝜐+ + 𝜐−
(𝑤𝑖𝑗

−  −  𝑒𝑖𝑗
−)𝛿𝑀𝑖𝑀𝑗 

𝑖𝑗

 

where 𝜐 is the total weight of the graph (sum of all the graph’s edges), wij is 

the signed weight of the edge between nodes i and j, eij is the weight of an 

edge divided by the total weight of the graph (superscripts denote + positive 

and - negative edges), and δMiMj is set to 1 when nodes i and j are in the 



161 

 

same module and 0 otherwise. We performed 100 iterations for each time-

resolved networks with module size resolution parameter γ set at the default 

γ=1. 

We then calculated participation coefficient and within-degree Z-score for 

each node using the Brain Connectivity Toolbox in MATLAB version 

2018b (https://www.mathworks.com/products/matlab.html). Participation 

coefficient was calculated as:  

𝑃𝑖 =  1 −  ∑ (
𝜅𝑖𝑠

𝑘𝑖
)

2
𝑀

𝑠=1

 

where κis is the strength of positive connections between node i and other 

nodes in module s, ki is the strength of all its positive connections, and M is 

the number of modules in the network, as identified by the modularity 

detection algorithm. The participation coefficient ranges between zero (no 

connections with other modules) and one (equal connections to all other 

modules). High mean participation coefficient within a network implies 

higher levels of integration between-modules.  

The within module degree Z-score Zi was calculated as:  

𝑧𝑖  =  
𝜅𝑖𝑠  −  𝜅̅𝑖𝑠

𝜎𝜅𝑖𝑠

 

where κis is the strength of connections between node i and other nodes in 

module s, and 𝜅̅is and σκis are respectively the average and the standard 

deviation of κis over all nodes belonging to module s.  

Joint histograms of participation coefficient and within-module Z-score 

were then derived for each timepoint (Shine et al., 2016) and for each 

participant, these were used to assign each timepoint to one of two clusters, 

using k-means clustering (k = 2). In addition to our a-priori hypothesis of 

two sub-states, k=2 was the optimal number of clusters overall in our cohort 

https://www.mathworks.com/products/matlab.html
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using the Calinski-Harabasz score (Figure 7.2).  Finally, the cluster with 

higher mean participation coefficient was labelled as the Integrated state, 

while the cluster with lower average participation coefficient was 

considered to be the Segregated state. For each subject, a centroid matrix of 

functional connectivity was computed for each state, as the element-wise 

median of the timepoint-specific FC matrices assigned to the cluster 

corresponding to that state.  

Figure 7. 2 Optimal number of clusters 

For all participants the Calinski-Harabasz score was calculated for 2-7 clusters. 

Cluster scores were ranked with best score (highest) ranked 1 and worse (lowest) score 

ranked 6 per participant. Line: mean, Shaded area: 95% confidence intervals) 
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I then calculated the proportion of time spent in each sub-state as the 

number of timepoints assigned to the sub-state divided by number of total 

timepoints (Luppi et al., 2021). Average dwell time spent in each sub-state 

was calculated as the number of consecutive windows/timepoints belonging 

to each sub-state and the number of transitions as the number of 

transitioning from one sub-state to the other; transitions were further divided 

into transitions from integrated-to-segregated and segregated-to-integrated 

sub-states.  

 

Network control analysis 

I examined how the structural brain network of each participant, composed 

of white matter tracts, constrains the brain in transitioning from one sub-

state of functional connectivity (Integrated and Segregated states) to the 

other.  

First a structural connectome was constructed. After DWI-image pre-

processing, diffusion tensor metrics were calculated for each participant and 

constrained spherical deconvolution performed (Hollander, T. et al., 2016). 

The raw T1-weighted images were registered to the diffusion-weighted 

image and five-tissue anatomical segmentation performed followed by 

anatomically constrained tractography with 10 million streamlines (Smith et 

al., 2012) and subsequent informed filtering of the tractograms using the 

spherical deconvolution informed filtering of tractograms (SIFT2) algorithm 

(Smith et al., 2015). The resulting set of streamlines was used to construct 

the structural brain network; connections, weighted by streamline count 

were combined to a 232*232 undirected weighted connectivity matrix.  

Then I used a linear time-invariance network model, as previously detailed 

(Gu et al., 2015; Betzel et al., 2016; Kim et al., 2018). In brief, this can 
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describe neural states as simulated states (x) of a network with n number of 

nodes over time steps t using: 

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

where x(t) is a vector (1*N nodes) that represents the brain state a given 

time t, n is the number of nodes (232 ROIs), matrix A represents the 

structural connectome n*n (normalised to ensure stability (Betzel et al., 

2016; Gu et al., 2017)), matrix B is the matrix of control nodes for the 

network with n*n dimensions and u(t) is the control energy applied for each 

node at a given time t. For all analyses presented, we chosen to not constrain 

the number of nodes that could be controlled, therefore B is an identity 

matrix, as all 232 ROIs were included as control nodes.  

This model can be used to derive the structural control energy necessary to 

transition from an initial state x(0) to a target state x(T) where T=1 is the 

control horizon (Betzel et al., 2016; Zöller et al., 2021) using the following 

equation:  

𝑚𝑖𝑛𝑢  ∫ (𝑥𝑇 − 𝑥(𝑡))
′
𝑆 (𝑥𝑇 − 𝑥(𝑡)) + 𝜌𝑢(𝑡)′ 𝑡(𝑡) 𝑑𝑡

𝑇

0

 

where xT is the target state (1*n vector where n is the number of nodes), S is 

the diagonal n*n matrix that selects a subset of states to constrain (here the 

identify matrix), ρ is the importance of the input penalty to the state penalty 

(here ρ=1) and T is the control horizon. 

As in this model, states are represented as a 1*232 vector, I represented the 

integrated and segregated sub-states by their sum connectivity profiles, 

comprised of the sum of the connection weights (pearson correlation 

coefficient) for each node to all other nodes; this was calculated separately 

for the integrated and segregated state.  
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I then used this equation to calculate the control energy needed to be applied 

to each node of the network to: 1) transition from the integrated-to-

segregated state, using as the baseline state of the model x0 the sum 

connectivity vector of the integrated state and as the target state xT, the sum 

connectivity vector of the segregated state, 2) transition from the 

segregated-to-integrated state, using as x0 the sum connectivity vector of the 

segregated state and state xT, the sum connectivity vector of the integrated 

state, and 3) persist within the integrated or within the segregated state, 

using the sum connectivity vector for that sub-state for both x0 and xT 

(Figure 6.1). A sum of the control energies that need to be applied across all 

nodes of the network represents the minimal energy for the specific 

transition. In this way, minimal transition and persistence energies were 

calculated for each individual’s own Integrated and Segregated functional 

sub-state using each individual’s own structural connectivity matrix.  

 

Statistical analyses 

Demographics and clinical characteristics were compared between the three 

groups using ANOVA with post-hoc Tukey for normally distributed and 

Kruskal-Wallis for non-normally distributed variables (normality assessed 

using Shapiro-Wilk test and visual inspection). For comparisons between 

PD-VH and PD-non-VH we performed t-tests for normally distributed, and 

Mann-Whitney for non-normally distributed variables. Statistical 

significance was defined as p<0.05.  

Temporal properties of the two dynamic sub-states were assessed by 

comparing mean dwell time in each sub-state, proportion spent in integrated 

vs segregated sub-state and number of transitions between PD-VH vs PD 

non VH and PD vs controls. As these measures were not normally 

distributed group-differences were tested using Kruskal Wallis (post hoc 
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Dunn, statistical significance p<0.05). Differences in transition and 

persistence energy between PD-VH and PD non VH were performed using 

repeated measures ANOVA (p<0.05, post-hoc Tukey).  

Additionally I investigated whether each of the two sub-states significantly 

differed amongst control, PD non VH and PD-VH using network-based 

statistics (NBS) (Zalesky et al., 2010). A general linear model was used 

with contrast of interest including PD-VH versus PD non VH and PD versus 

controls; age and total intracranial volume were included as covariates. 

Permutation testing with unpaired t-tests was performed with 5000 

permutations, calculating a test statistic for each connection. An a-priori 

threshold of t = 2.7 based on our sample size as well as family-wise error 

rate (FWE) of p<0.05 was applied. 

Correlation with Neurotransmitter systems. 

Finally, I aimed to identify whether the temporal changes in functional 

connectivity seen in PD-VH were associated with specific neurotransmitter 

systems (Figure 6.1). To do this I first calculated the regional control energy 

needed to transition towards and persist within a sub-state that was found to 

be more predominant in PD-VH. This metric was expressed as a vector 

1*232 with one control energy value per node. Neurotransmitter density 

profiles were then extracted for each of the 232 regions of interest (ROIs) of 

the parcellation using JuSpace (Dukart et al., 2021) using the included PET 

maps. Mean values for each ROI were extracted from JuSpace for: 

• Serotonin receptors 5-HT1A, 5-HT1B, 5-HT2A based on carbonyl-

(11)C]WAY-100635, [(11)C]P943, [(18)F]altanseri templates (Savli 

et al., 2012)  

• D1 receptors from the D1R-selective [11C]SCH23390 template 

(Kaller et al., 2017) 
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• D2/3 receptors from [(11)C]raclopride template (Alakurtti et al., 

2015) 

• and GABAa receptors from (11C)flumazenil template (Dukart et al., 

2018) 

Each of the templates was registered to MNl space and parcellated with the 

Schaefer 232 atlas and mean values of binding potential were extracted from 

each ROI using the built-in JuSpace function (Dukart et al., 2021). 

Expression profiles for genes of noradrenergic, cholinergic (nicotinic and 

muscarinic), dopaminergic and serotoninergic receptors were obtained using 

data from the Allen Human Brain Atlas (AHBA) (Hawrylycz et al., 2015). 

A recently described rigorous method of preprocessing (Arnatkevic Iūtė et 

al., 2019) was used to extract gene expression data from AHBA and map 

them to the 232 ROIs of our parcellation, in abagen (Markello et al., 2020). 

Each tissue sample was assigned to an ROI, using the AHBA MRI data for 

each donor. Data was pooled between homologous cortical regions to ensure 

adequate coverage of both the left (data from 6 donors) and right 

hemisphere (data from 2 donors). Distances between samples were 

evaluated on the cortical surface with a 2mm distance threshold. Probe-to-

gene annotations were updated in Re-Annotator (Arloth et al., 2015). Only 

probes where expression measures were above a background threshold in 

more than 50% of samples were selected. A representative probe for a gene 

was selected based on highest intensity. Gene expression data were 

normalised across the cortex using scaled, outlier-robust sigmoid 

normalisation. 15745 genes (of 20,737 initially included in the Allen atlas 

gene expression data) survived these quality assurance steps. Expression 

profiles for 31 pre-selected genes (Table 7.1) encoding neurotransmitter 

receptors were extracted for each cortical region of the parcellation.  
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Table 7.1. List of selected genes encoding neurotransmitter receptors. 

Gene symbol Receptor (subunit) name 

Norepinephrine 

ADRA1A  Alpha-1A adrenergic receptor 

ADRA1B  Alpha-1B adrenergic receptor 

ADRA1D  Alpha-1D adrenergic receptor 

ADRA2A  Alpha-2A adrenergic receptor 

ADRA2C  Alpha-2C adrenergic receptor 

Acetylcholine 

CHRM1  Muscarinic Acetylcholine Receptor M1 

CHRM2  Muscarinic Acetylcholine Receptor M2 

CHRM3  Muscarinic Acetylcholine Receptor M3 

CHRM4  Muscarinic Acetylcholine Receptor M4 

CHRM5  Muscarinic Acetylcholine Receptor M5 

CHRNA2  Nicotinic Cholinergic Receptor (Alpha 2) 

CHRNA3  Nicotinic Cholinergic Receptor (Alpha 3) 

CHRNA4  Nicotinic Cholinergic Receptor (Alpha 4) 

CHRNA6  Nicotinic Cholinergic Receptor (Alpha 6) 

CHRNA7  Nicotinic Cholinergic Receptor (Alpha 7) 

CHRNA10  Nicotinic Cholinergic Receptor (Alpha 10) 

CHRNB1  Nicotinic Cholinergic Receptor (Beta 1) 

CHRNB2  Nicotinic Cholinergic Receptor (Beta 2) 

Dopamine 

DRD1  Dopamine Receptor D1 

DRD2  Dopamine Receptor D2 

DRD4  Dopamine Receptor D4 

Serotonin  

HTR1A 5-Hydroxytryptamine Receptor 1A, G protein-coupled 

HTR1E 5-Hydroxytryptamine Receptor 1E, G protein-coupled 

HTR1F 5-Hydroxytryptamine Receptor 1F, G protein-coupled 

HTR2A 5-Hydroxytryptamine Receptor 2A, G protein-coupled 

HTR2C 5-Hydroxytryptamine Receptor 2C, G protein-coupled 

HTR3B 5-Hydroxytryptamine Receptor 3B, ionotropic 

HTR3C 5-Hydroxytryptamine Receptor 3C, ionotropic 

HTR4 5-Hydroxytryptamine Receptor 4, G protein-coupled 

HTR5A 5-Hydroxytryptamine Receptor 5A, G protein-coupled 

HTR7 5-Hydroxytryptamine Receptor 7, G protein-coupled 
ADRA2B, CHRNA1, CHRNA5, CHRNA9, CHRNB3, CHRND, CHRNE, DRD3, DRD5, HTR1B, 

HTR1D, HTR3D, HTR3E, HTR5BP, HTR6 were not included in the analysis as they failed 

preprocessing steps. 
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Table 7.2. Demographics and clinical assessments in the study cohort. 

Attribute Controls 

n = 32 

PD non VH 

n = 75 

PD-VH 

n = 16 

p value 

Demographics Age (years) 66.1 (9.4) 64.4 (7.8) 64.8 (8.6) 0.653 

Male (%) 13 (40.6) 41 (54.7) 5 (31.3) 0.029 

Years in Education 17.8 (2.5) 16.9 (2.6) 17.5 (3.6) 0.279 

Total Intracranial 

Volume (ml) 
1390.7 (96.6) 

1479.0 

(132.6) 

1407.3 

(114.8) 
0.002c 

Mood (HADS)  Depression score 1.7 (1.9) 3.9 (3.0) 4.7 (3.4) 0.032a,b,c 

Anxiety score 4.0 (3.5) 5.6 (3.8) 7.0 (4.4) <0.001c 

Vision Visual acuity 

(LogMAR) * 
-0.08 (0.23) -0.08 (0.16) -0.07 0.351 

Contrast sensitivity  

(Pelli Robson) * 
1.78 (0.2) 1.79 (0.2) 1.70 (0.2) 0.106 

Colour vision (D15 

total error score) 
2.4 (6.9) 3.4 (8.7) 2.7 (4.6) 0.681 

Cognition MMSE 29.0 (1.0) 28.9 (1.2) 28.6 (1.9) 0.883 

MOCA 29.0 (1.3) 28.2 (2.1) 26.9 (3.4) 0.047c 

Attention Digit span backwards 7.2 (2.1)  7.1 (2.3) 7.9 (2.3) 0.601 

 Stroop: colour (sec) 32.1 (6.7) 33.5 (7.6) 38.1 (9.1) 0.089 

Executive 

function 

Stroop: interference 

(sec) 
55.4 (11.6) 60.2 (19.2) 69.6 (23.9) 0.051 

 Category fluency 22.5 (5.1) 21.7 (5.9) 19.8 (7.4) 0.339 

Memory Word Recognition 

Task 
24.3 (1.2) 24.3 (1.2) 23.8 (0.9) 0.056 

 Logical Memory 14.1 (4.1) 13.5 (4.3) 12.5 (4.6) 0.617 

Language Graded Naming Task 22.5 (6.2) 23.9 (2.9) 23.7 (2.3) 0.802 

 Letter Fluency 16.4 (5.4) 16.7 (5.4) 17.7 (5.3) 0.509 

Visuospatial Benton’s Judgement of 

Line Orientation 
24.9 (5.6) 24.5 (3.7) 23.1 (5.3) 0.338 

 Hooper 25.7 (2.1) 24.7 (2.8) 23.3 (4.3) 0.074 

Disease specific 

Measures 

Disease duration - 3.9 (2.3) 5.3 (3.4) 0.044 

UPDRS total Score - 42.7 (20.8) 62.1 (38.5) 0.014 

UPDRS part 3 (motor) - 21.2 (11.3) 29.8 (22.6) 0.129 

UM-PDHQ 

(hallucination severity 

score) 

- - 4.6 (2.4) - 

LEDD (mg) - 437.0 (255.1) 450.0 (221.2) 0.295 

Sniffin’ sticks -   0.113 

RBDSQ - 4.0 (2.4) 5.1 (2.5) 0.055 

Image Quality 

metrics 

Mean framewise 

displacement 

0.17 (0.09) 0.18 (0.12) 0.23 (0.15) 0.177 

Coefficient of joint 

variation 

0.69 (0.26) 0.67 (0.20) 0.68 (0.26) 0.921 

Entropy focus criterion 0.59 (0.02) 0.60 (0.02) 0.59 (0.02) 0.045± 
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Total signal to noise 

ratio 

1.89 (0.17) 1.85 (0.18) 1.82 (0.11) 0.338 

All data shown are mean (SD) except gender.  

In bold characteristics that significantly differed between the PD-VH and PD-non-VH.  
a: significant difference between PD-VH and PD-non-VH; b: significant difference between PD-non-VH and 

controls; c: significant difference between PD-VH and controls. 
± No significant difference found between any comparison’s in post-hoc testing (Tukey) 

* Best binocular score used; LogMAR: lower score implies better performance, Pelli Robson: higher score 

implies beter performance. HADS: Hospital anxiety and depression scale; MMSE: Mini-mental state 

examination; MOCA: Montreal cognitive assessment; UPDRS: Unified Parkinson’s disease rating scale; UM-

PDHQ: University of Miami Hallucination Questionnaire (max score: 14); LEDD: Total Levodopa equivalent 

dose; RBDSQ: REM sleep behaviour disorder screening questionnaire. 

 

7. 3. Results 

A total of 123 participants were included; 16 with PD and visual 

hallucinations (PD-VH), 75 with PD without hallucinations (PD non VH) 

and 32 controls. Demographics and clinical assessment results are seen in 

Table 7.2.  

Preserved topology but impaired temporal properties of dynamic 

functional connectivity substates 

To examine the dynamic changes in functional connectivity underlying PD 

hallucinations, an a-priori clustering of dynamic functional connectivity into 

two sub-states was used, an Integrated and a Segregated state. No 

significant differences were seen in the two sub-states between PD versus 

controls or PD-VH versus PD non VH when comparing connectivity 

strength using network-based statistics.  

In contrast, there were significant changes in the temporal properties of the 

sub-states. PD-VH spent a significantly smaller proportion of time in the 

Integrated state (therefore higher proportion of time in the Segregated state) 

than PD non VH (β=-0.113, p=0.032) and controls (β=-0.128, p=0.026) 

(Figure 7.3). Within PD participants, the proportion of time spent in the 

Integrated state was signifinantly correlated with hallucination severity, 
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Figure 7. 3. Altered temporal properties of dynamic functional connectivity in 

PD-VH. 

A. PD-VH spent significantly less time in the Integrated sub-state of dynamic 

functional connectivity than patients without hallucinations (p=0.032) and 

controls (p=0.0262). Box shows the quartiles and whiskers extend to cover the 

whole distribution. 

B. The proportion of time spent in the integrated State was significantly correlated 

with hallucination severity in PD participants (Spearman’s correlation coefficient 

ρ=-0.259, p=0.013): participants with more severe hallucinations spent less time 

in the integrated sub-state. Shaded area represents 95% confidence intervals. 

measured by the UM-PDHQ (ρ=-0.259, p=0.013) (Figure 7.3). Mean dwell 

time in the Segregated state was higher in PD-VH than PD non VH (19.1 ± 

16.9 in PD-VH vs 9.5 ± 9.1 in PD non VH H=4.058, p=0.044), with no 

difference between the two groups in mean dwell time of the Integrated 

state (H = 2.166, p=0.141). No differences were seen in dwell time of either 

state between PD and controls. Finally, the total number of transitions were 

lower in PD-VH than PD non VH (5.7 ± 5.3 in PD-VH vs 8.5 ± 6.2 in PD 

non VH, H=3.87, p=0.049) but there was no difference when between the 

two groups when the number of transitions from integrated-to-segregated 

state and segregated-to-integrated state were examined separately.  
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Overall, these findings suggest that PD-VH spend more time overall in the 

Segregated state than PD non VH, with fewer total number of transitions 

and longer dwelling time within the Segregated state (Figure 7.3).  

Reduced energy costs to transition from the integrated to the 

segregated sub-state in PD-VH 

I next aimed to investigate whether the Segregated state predominance 

observed in PD-VH participants could be explained by differences in the  

ease of transition from the integrated-to-segregated state or vice versa or a 

difference in ease of maintaining the segregated state in PD-VH compared 

to PD non VH participants. To do this, I calculated the minimal control 

energy that needs to be applied to the structural network of each participant 

to 1) transition from integrated-to-segregated state 2) transition from 

segregated-to-integrated state 3) maintain the integrated, and 4) maintain the 

segregated state. I then examined whether transition and persistence 

energies in each sub-state differed between PD-VH and PD non VH. 

As previously described (Braun et al., 2019), persistence energy for the 

computationally more demanding Integrated state was higher than the 

Segregated state (repeated measures ANOVA main effect of Integrated to 

Segregated state persistence energy F(1,113) = 12.432, p<0.001) (Figure 

7.4). Similarly the minimal energy needed to transition from the less 

connected Segregated to the more interconnected Integrated state was 

higher (F(1,113)= 6.722, p=0.011). 
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Figure 7. 4. Mean minimal control energy to maintain and transition between sub-states 

LEFT: The minimal control energy that is required across the whole of the brain network (232 regions of 

interest) to maintain the Integrated substate (blue) was significantly higher than the energy needed to 

maintain the Segregated sub-state (green): repeated measures ANOVA main effect of integrated to 

segregated state persistence energy F(1,113) = 12.432, p<0.001). 

RIGHT: The minimal energy needed to transition from the less connected segregated to the more 

interconnected integrated state (green) was higher than that to transition from the segregated to the 

integrated state (blue, (F(1,113)= 6.722, p=0.011)) 
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PD-VH needed significantly lower control energy to transition from the 

integrated-to-segregated state than PD non VH (effect size Hedge’s g= 

0.922, t= 2.376, p=0.029) (Figure 7.5). The minimal control energy to 

transition from an integrated-to-segregated state was significantly correlated 

with the severity of hallucinations, with lower energy needed the higher the 

hallucination severity (ρ= -0.283, p=0.008) (Figure 7.5). There were no 

statistically significant differences between PD-VH and PD non VH in the 

minimal control energy needed to transition from segregated-to-integrated 

state (t= 1.346, p=0.195), or to persist within the Integrated (t=1.041, 

p=0.312) or Segregated sub-state (t=1.079, p=0.295).  

Transition from the integrated to the segregated state is driven 

by subcortical and more multimodal brain regions 

Next, I aimed to identify which brain regions contribute more to the 

transition from the integrated-to-segregated state (which nodes need more 

energy to be applied to make the transition). As expected, subcortical 

regions heavily contributed to the transition from the integrated to the 

segregated state with 25 subcortical nodes being amongst the top 20% of 

contributors (25 of 47 or 53.2%). Amongst the cortical nodes the top 

contributors included primarily right hemispheric regions (20 of 22 cortical 

nodes) including the cingulum, precuneus, inferior and superior temporal 

regions and medial frontal regions (Table 7.3, Figure 7.4). There was a 

significant correlation between the minimal transition energy from 

integrated-to-segregated state that was needed to be applied to each node 

and the node’s position in the cortical hierarchy, with higher amount of 

energy needed for more transmodal regions (ρ= 0.526, p<0.001) (Figure 

7.4).  
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Figure 7. 5. Changes in control energy to transition from the 

Integrated to the Segregated substate in PD-VH. 

(Opposite)  

A. Less minimal control energy is needed to transition from the 

Integrated to the Segregated substate for patients with Parkinson’s 

and visual hallucinations (PD-VH) than those without hallucinations 

(PD non VH). Log-transformed minimal control energy is presented. 

B. The log-transformed minimal control energy required across the 

whole of the network to transition from the Integrated to the 

Segregated substate was significantly correlated with severity in 

participants with Parkinson’s disease (Spearman’s correlation 

coefficient ρ=-0.283, p=0.008): participants with more severe 

hallucinations needed less energy to transition.  

C. There was regional variation in log-transformed minimal control 

energy needed to transition from the Integrated to the Segregated 

substate; darker colours denote higher amounts of energy required. 

Note that only cortical regions are plotted. 

D. The mean minimal control energy to transition from the Integrated 

to the Segregated substate across all nodes of the seven cortical and 

one subcortical resting state networks is plotted. Darker colours 

denote higher levels of the cortical hierarchy; also left to right: 

unimodal to transmodal regions. There was a significant correlation 

between the minimal transition energy from integrated-to-segregated 

state that was needed to be applied to each node and the nodes 

position in the cortical hierarchy, with higher amount of energy 

needed for more transmodal regions (ρ= 0.526, p<0.001). 
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Table 7.3. Top 20% of nodes that contribute to the transition from the 

integrated to the segregated state of dynamic functional connectivity  

 

Region 

Coordinates in MNI 

space 
Log(Energy) 

mean (std) 
Network 

x y z 

Cortical 

Occipital_Mid_L -22 -96 6 9.66 (8.49) Visual 

Cuneus_L -12 -72 22 9.65 (8.49) Visual 

Temporal_Sup_R 64 -24 8 9.70 (8.35) Somatosensory 

Temporal_Sup_R 44 -28 18 9.72 (8.81) Somatosensory 

Rolandic_Oper_R 60 0 10 9.59 (8.60) Somatosensory 

Postcentral_R 58 -4 30 9.63 (8.54) Somatosensory 

Paracentral_Lobule_R 6 -22 68 9.94 (8.62) Somatosensory 

Cingulum_Mid_R 10 -36 46 9.38 (8.48) VAN 

Temporal_Inf_R 46 -12 -34 9.79 (8.38) Limbic 

ParaHippocampal_R 26 -10 -32 9.59 (8.38) Limbic 

SupraMarginal_R 62 -38 36 8.73 (8.76) Frontoparietal 

Temporal_Inf_R 62 -42 -12 9.38 (8.60) Frontoparietal 

Cuneus_R 14 -70 36 9.39 (8.60) Frontoparietal 

Cingulum_Mid_R 6 -24 30 8.99 (8.78) Frontoparietal 

Cingulum_Mid_R 4 2 30 7.97 (7.90) Frontoparietal 

Cingulum_Ant_R 8 30 28 7.64 (7.77) Frontoparietal 

Angular_R 50 -58 44 9.49 (8.50) DMN 

Rectus_R 4 36 -14 9.59 (8.38) DMN 

Cingulum_Ant_R 8 42 4 8.74 (8.94) DMN 

Frontal_Sup_Medial_R 8 58 18 5.07 (5.50) DMN 

Frontal_Mid_R 28 30 42 7.92 (8.18) DMN 

Precuneus_R 6 -58 44 9.24 (8.41) DMN 

Subcortical      

Antrerior hippocampus R 26 -14 -20 9.55 (8.57) Subcortical 

Posterior hippocampus R 28 -32 -8 9.68 (8.87) Subcortical 

Lateral amygdala R 28 -2 -22 9.83 (8.30) Subcortical 

Medial amygdala R 22 -6 -16 5.49 (5.59) Subcortical 
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Dorsoposterior thalamus R 16 -30 2 9.86 (8.64) Subcortical 

Ventroanterior thalamus R 8.0 -10.0 6.0 9.22 (8.67) Subcortical 

Dorsoanterior thalamus R 12.0 -22.0 12.0 8.57 (8.19) Subcortical 

Nucleus accumbens, shell R 12.0 10.0 -6.0 9.61 (8.68) Subcortical 

Nucleus accumbens, core R 14.0 18.0 -2.0 9.05 (8.53) Subcortical 

Posterior globus pallidus R 24.0 -8.0 -2.0 7.55 (8.16) Subcortical 

Posterior Putamen R 30.0 -6.0 4.0 5.15 (5.45) Subcortical 

Anterior Caudate R 14.0 14.0 6.0 8.05 (7.60) Subcortical 

Posterior Caudate R  14.0 4.0 16.0 9.89 (9.13) Subcortical 

Antrerior hippocampus L -24.0 -14.0 -20.0 8.15 (8.26) Subcortical 

Posterior hippocampus L -26.0 -32.0 -8.0 9.32 (8.23) Subcortical 

Lateral amygdala L -26.0 -2.0 -22.0 8.36 (8.29) Subcortical 

Medial amygdala L -20.0 -6.0 -16.0 9.67 (8.64) Subcortical 

Dorsoposterior thalamus L -14.0 -30.0 2.0 9.74 (8.39) Subcortical 

Ventroanterior thalamus L -6.0 -10.0 6.0 8.22 (8.06) Subcortical 

Dorsoanterior thalamus L -10.0 -22.0 12.0 7.47 (6.76) Subcortical 

Nucleus accumbens, shell L -10.0 10.0 -6.0 7.66 (7.69) Subcortical 

Nucleus accumbens, core L -12.0 18.0 -2.0 9.30 (8.50) Subcortical 

Posterior globus pallidus L -22.0 -8.0 -2.0 7.30 (7.50) Subcortical 

Anterior Caudate L -12.0 14.0 6.0 9.87 (8.63) Subcortical 

Posterior Caudate L  -12.0 4.0 16.0 6.89 (7.14) Subcortical 

L: Left, R: Right hemisphere 
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Correlation with neurotransmitter systems 

Finally, I examined whether the transition from the integrated-to-segregated 

state, which was less costly for PD-VH participants is associated with 

specific neurotransmitter systems in the healthy brain. To do this, I 

correlated the mean regional control energy that is needed to be applied to 

each node to transition from the integrated-to-segregated state with mean 

regional expression values of neurotransmitter density (derived from PET 

data) and neurotransmitter receptor gene expression levels (derived from the 

Allen Brain atlas (Hawrylycz et al., 2015) in health; I tested this against 

spatially correlated null models through sphere permutations, then FDR-

corrected for multiple comparisons. 

There was a significant correlation between regional log(Energy) and 

density of 5-HT1b (ρ=-0.274, qspin=0.009), 5-HT2a (ρ=-0.347, qspin<0.001) 

and GABAA receptors (ρ=-0.317, qspin=0.022). Regional energy and regional 

expression levels of 5-HT2a receptors were also significantly correlated 

(ρ=-0.1438, qspin=0.044) as well as two GABAA receptors [GABRA1 (ρ=-

0.2437, qspin=0.020) and GABRA2 (ρ=0.128, qspin=0.023)]; gene expression 

data for 5-HT1b receptors were not available. Although noradrenergic and 

acetylcholinergic PET data were not available, genetic expression of 

noradrenergic (ADRA1B and ADRA2A), muscarinic (CHRM1, CHRM2, 

CHRM3, CHRM4) and nicotinic receptors (CHRNA3, CHRNA4, CHRNA7, 

CHRNB2). Gene expression of DRD2 was also correlated with regional 

control energy for the integrated-to-segregated state transition (ρ=0.318, 

qspin=0.013) but this was not replicated using density data derived from PET 

(ρ=0.056, qspin=0.800). Table 7.4 and Figure 7.6 show the correlation 

between regional control energy and transmitter density and regional gene 

expression.  
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Table 7.4. Neurotransmitter receptors showing density and gene 

expression correlations with regional control energy required to 

transition from the integrated to the segregated state. 

Receptor density 

Receptor Ligand Correlation coefficient q value 

5-HT1B Serotonin -0.274 0.009 

5-HT2A Serotonin -0.347 0.000 

GABA GABA -0.317 0.022 

Receptor gene expression 

Gene symbol Ligand Correlation coefficient q value 

ADRA1B Norepinephrine -0.154 0.018 

ADRA2A Norepinephrine -0.210 0.013 

CHRM1 Acetylcholine -0.279 0.018 

CHRM2 Acetylcholine -0.265 0.028 

CHRM3 Acetylcholine -0.223 0.018 

CHRM4 Acetylcholine 0.202 0.018 

CHRNA3 Acetylcholine 0.416 0.013 

CHRNA4 Acetylcholine -0.158 0.033 

CHNRA7 Acetylcholine -0.244 0.023 

CHNRB2 Acetylcholine 0.207 0.028 

DRD2 Dopamine 0.318 0.013 

HTR1E Serotonin -0.207 0.013 

HTR1F Serotonin -0.3301 0.013 

HTR2A Serotonin -0.144 0.044 

HTR5A Serotonin -0.311 <0.001 

GABRA1 GABA -0.244 0.020 

GABRA2 GABA 0.128 0.023 

GABRAB2 GABA 0.433 0.018 

GABRAD GABA -0.289 0.013 

GABRG1 GABA 0.227 0.023 

GABRG2 GABA -0.337 0.023 

GABRG3 GABA -0.217 0.044 
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CHRNA: Nicotinic Cholinergic Receptor (Alpha), DRD: Dopamine Receptor D, HTR: 5-

Hydroxytryptamine Receptor, ADRA: Alpha-1A adrenergic receptor, GABR: GABA 

Receptor 

Note that correlation coefficients of absolute values between 0.1 and 0.4 represent 

moderate correlation in our dataset. Q values are FDR-corrected p-values from spatial 

permutation testing (q-spin). 
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Figure 7. 6. Neurotransmitter correlates of Integrated-to-Segregated state transition. 

The log-transformed minimal control energy that needs to be applied to each node (A) 

was correlated with the mean regional receptor density of 5HT1b receptors (B), 5HT2a 

receptors (C) and GABA receptors (D).  

In all cases ρ is the Spearman correlation coefficient and q-spin is the FDR corrected p-

value derived following spatial permutations (p-spin, 1000 permutations). 
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7.4. Discussion 

This study sheds light on the alterations in temporal functional dynamics 

underlying visual hallucinations in Parkinson’s disease and examines how 

these specific patterns of temporal dynamics can be explained through brain 

structure.  Specifically, I showed that:  

a. PD-VH spend more time in a Segregated sub-state of functional 

connectivity than those without hallucinations, with fewer total 

number of transitions and longer dwelling time within the 

Segregated state 

b. the transition from the Integrated to the Segregated state is less 

energy demanding in PD-VH than PD non VH, therefore may be 

preferential 

c. the transition from the Integrated to the Segregated state is mediated 

primarily by transmodal brain regions and modulated by specific 

neurotransmitter systems, including serotoninergic and GABAergic 

receptors.  

The predisposition for a Segregated state in PD with hallucinations is in 

keeping with other studies in PD where patients with PD and cognitive 

impairment showed increased dwell time in a more segregated state and 

reduced transitions compared to those with intact cognition and healthy 

controls (Díez-Cirarda et al., 2018; Fiorenzato et al., 2019). No difference 

in terms of cognitive performance was seen between PD with and without 

hallucinations in our cohort, but visual hallucinations are associated with the 

development of subsequent dementia in PD (Aarsland et al., 2007). In 

schizophrenia, where hallucinations are also a core feature, similar findings 

of altered dwell time have been seen (Sakoğlu et al., 2010; Damaraju et al., 

2014) and this correlated with measures of hallucination severity (Weber et 

al., 2020).  I similarly saw a correlation with hallucination severity with 
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patients with more severe hallucinations spending less time in the Integrated 

state (and more time in the Segregated state) suggesting that this finding is 

specific to hallucinations.  

Only the temporal dynamics of functional connectivity were altered in PD 

with hallucinations: we found no differences in the Integrated or Segregated 

sub-states themselves between groups. This indicates that a change in the 

temporal balance between normal/preserved sub-states rather than a change 

in the sub-states themselves underly PD-hallucinations. Using a similar 

methodology, studies in loss of consciousness and LSD have shown within-

state changes particularly within the Integrated state(Luppi et al., 2019, 

2021), which is more linked to cognitive performance and alertness(Shine et 

al., 2016). As I examined the trait rather than the state of PD-hallucinations 

(participants were not actively experiencing visual hallucinations during 

scanning) it is possible that additional within-state changes could underly 

visual hallucinations in PD. In addition, although hallucinations in our 

participants were frequent (at least weekly) they were not universally 

complex and severe. However, LSD-induced visual hallucinations are 

primarily driven by serotoninergic system activation alone, and are 

associated with changes in other sensory modalities as well as ego-

dissolution, depersonalisation and time/space dysperceptions(Carhart-Harris 

et al., 2016), which are not seen in PD-associated hallucinations; the 

underlying changes in temporal dynamics may also be different.  

As temporal transition between functional sub-states is constrained by 

structural connectivity (Betzel et al., 2016; Stiso et al., 2019; Cornblath et 

al., 2020), I examined the energy cost of transitioning between and 

maintaining the Integrated and Segregated sub-state. PD-VH needed 

significantly low energy cost to transition from the integrated-to-segregated 

state than PD non VH, suggesting that this transition may be easier to 

achieve in hallucinators. This transition is mediated primarily by subcortical 
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and multimodal brain regions of the DMN, further highlighting the 

importance of the DMN in the development of visual hallucinations in PD 

(Shine et al., 2014).  

Interestingly, the brain regions contributing most to this transition from 

integrated-to-segregated state showed a correlation with specific 

neurotransmitter systems in health. Although directionality of the 

relationship is difficult to interpret as data on regional neurotransmitter 

density and gene expression were derived from healthy individuals, regional 

density of 5HT2A receptors was significantly correlated with the regional 

control energy needed to transition from integrated-to-segregated state; this 

was replicated using regional expression data for the 5HT2A receptor gene. 

Activation of 5HT2A receptors is a key mechanism for drug-induced 

hallucinations from LSD, psilocybin and ayahuasca(Geyer and 

Vollenweider, 2008) and both post mortem and in vivo studies have shown 

higher density of 5-HT2A receptors within frontal, temporal and occipital 

regions in patients with Parkinson’s disease and visual hallucinations(Cheng 

et al., 1991; Huot et al., 2010). Pimavanserin, an inverse agonist of 5-HT2A 

receptors, improves hallucinations in Parkinson’s (Cummings et al., 2014) 

and another anti-serotoninergic medication, Ondansetron, targeting 5HT3 

receptors, is currently being trialled (University College, London, 2019). 

Unfortunately, no receptor density or gene expression data were available 

for 5HT3 receptors but other serotoninergic receptors were also important 

for the integrated-to-segregated state transition including: 5HT1B (receptor 

density, no genetic expression data), 5HT1E, 5HT1F and 5HT5A (all genetic 

expression data only). This highlights the complexity of the serotoninergic 

system’s role in PD-hallucinations and suggests that anti-serotoninergic 

medications targeting multiple receptors could be potential therapeutic 

targets of PD-hallucinations.  
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Regional receptor density and gene expression for GABAergic receptors 

were also significantly correlated with regional transition energy. GABA 

concentration is reduced in the visual cortex of PD patients with visual 

hallucinations (Khundakar et al., 2016; Firbank et al., 2018), this may be a 

compensatory mechanism in PD-VH to increase stability in the presence of 

poor visual sensory evidence (van Loon et al., 2013; O’Callaghan et al., 

2017). Interestingly, the regional gene expression of noradrenergic 

(ADRA1B, ADRA2A) and cholinergic (muscarinic and nicotinic) receptors 

was also significantly correlated with the integrated-to-segregated state 

transmission although PET-derived density data was not available to 

replicate this finding. In contrast there was no correlation with dopaminergic 

receptors (DRD2 regional gene expression was correlated with regional 

control energy but this was not replicated when assessed regional density 

profiles). This highlights the role of transmitters other than dopamine in the 

development of PD-hallucinations. Convergent evidence have recently 

highlighted the importance of the noradrenergic system in non-motor 

symptoms of PD (Vazey and Aston-Jones, 2012; Iwaki et al., 2019; 

O’Callaghan et al., 2021) and noradrenaline plays a key role in modulating 

selective attention (Dahl et al., 2020); changes within the noradrenergic 

system may be involved in altered state transitions in PD-hallucinations.  

Several limitations need to be considered. Functional data, including time-

varying estimates, are susceptible to motion artefact; strict exclusion criteria 

were adopted to mitigate for this (Power et al., 2014). Global signal 

regression has been proposed as an additional tool to counteract residual 

artifacts from head motion (Power et al., 2014) however it could contain 

behaviourally-relevant information and affect group results (Saad et al., 

2012; Power et al., 2017), therefore we did not regress global signal in this 

study similar to prior work (Luppi et al., 2019, 2021). All participants were 

scanned receiving their usual dopaminergic medications and the same time 
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of day and levodopa equivalent doses did not significantly differ between 

PD-VH and PD non VH; however time and medication usage can influence 

rsfMRI (Orban et al., 2020) and further studies assessing PD patients ON 

and OFF levodopa might provide additional information. Similarly, 

differences in arousal can influence dynamic functional connectivity 

estimates (Tagliazucchi and Laufs, 2014); all participants were asked to 

remain awake during scanning with their eyes open, however differences in 

arousal could not be quantified between participants. Although brain 

networks are non-linear, I used a linear optimal control model. However 

linear models have been shown to provide important insight on non-linear 

dynamics (Honey et al., 2009). Finally, it is important to know that data on 

regional neurotransmitter density and gene expression profiles were derived 

from healthy human brains; therefore results relating to neurotransmitter 

receptor gene expression should be interpreted with caution. 

In conclusion, this study describes, for the first time, that temporal 

functional dynamics are altered in PD-hallucinations, with a predisposition 

towards a Segregated sub-state of functional connectivity. This Segregated 

state predominance can be explained by a reduced energy cost to transition 

from the integrated-to-segregated state in PD with hallucinations compared 

to those without hallucinations. This study quantified the brain regions that 

contribute most to this transition and clarified the neuromodulatory 

correlates of the integrated-to-segregated state transition in the healthy 

brain. Altogether, these findings provide mechanistic insights into visual 

hallucinations in PD and highlight potential therapeutic targets. 
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8. Summary and Conclusions 

 

8.1 Introduction 

In this thesis, I aimed to better clarify the neural correlates of visual 

hallucinations in Parkinson’s disease (PD). I began by quantifying the use of 

prior knowledge in PD (Chapter 3): I showed for the first time that, in 

addition to visuospatial deficits (implying less precise feedforward signals), 

patients with PD and visual hallucinations also overweight they prior 

knowledge when viewing ambiguous visual stimuli.  

To understand the structural correlates of PD-hallucinations, I then revealed 

how white matter micro- and macro-structure degenerates in PD patients 

with hallucinations (Chapter 4), particularly affected posterior tracts like the 

splenium and posterior thalamic radiations.  

I then examined the longitudinal changes in white matter and gray matter in 

PD-hallucinators (Chapter 5): I showed widespread white matter changes 

longitudinally in Parkinson’s hallucinators compared with non-

hallucinators, in the absence of cortical atrophy, as well as particular 

involvement of the mediodorsal medial thalamus. 

I clarified the structural connectivity changes at network level and showed 

that Parkinson’s-hallucinators exhibit a subnetwork of reduced connectivity 

strength (Chapter 6). Within this subnetwork, hallucinators showed reduced 

controllability (influence over other brain regions). I then linked these 

changes in white matter connectivity to reduced expression of genes 

associated with related to mRNA metabolism (enrichment in 

oligodendrocytes) and upweighted genes relate to protein localisation 

(enrichment in neuronal cells) (Chapter 6).  
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Finally, I clarified the temporal dynamical changes in functional 

connectivity underlying PD-hallucinations showing that patients with 

hallucinations spend more time in a more segregated, less inter-connected 

functional state (Chapter 7). I used network control theory to understand 

how changes in the structural brain network may lead to these altered 

functional dynamics and showed that the transition to this segregated 

functional state required less energy in PD-hallucinators, therefore may be 

preferential. Finally I linked the regional contribution to this transition to 

specific neurotransmitter receptors including 5HT2A, 5HT1B, GABA and 

cholinergic receptors using density profiles and gene expression data from 

healthy human brains (Chapter 7).  

In this chapter, I will review the main findings of experimental chapters, 

discuss their implications and the new questions and hypotheses that they 

have generated and describe future work. 

  

8.2 Network imbalance in Parkinson’s associated visual 

hallucinations 

This thesis has aided our understanding of network imbalance in PD 

hallucinations across scales: computational, structural and temporally 

dynamic functional networks.  

In Chapter 3 I used a visual learning paradigm to show that PD patients 

with hallucinations over-rely on feedback signals, with overweighting of 

prior knowledge when viewing ambiguous stimuli. This overweighting of 

prior knowledge was positively correlated to the severity of visual 

hallucinations: patients with more severe hallucinations improved even 

more in performance in the visual task after receiving prior knowledge. 

Changes in the balance between feedback and feedforward signals has been 
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postulated as a key mechanism leading to hallucinations (Powers et al., 

2016) and PD-hallucinations have been associated with deficits in visual 

processing (McKinlay et al., 2007; O’Callaghan et al., 2017); this was the 

first time that overweighting of prior knowledge was demonstrated in PD-

associated hallucinations. This finding clarifies the computational 

mechanisms of visual hallucinations in PD providing evidence of strong 

priors and weak sensory evidence both contributing to the development of 

hallucinations.  

In addition, in Chapters 4, 5 and 6 I clarified the alterations in structural 

connectivity in PD-hallucinations both at the white matter tract and network 

level. Structural connectivity constrains and predicts functional connectivity 

(Honey et al., 2009). Preserved or even increased brain activity measured 

during task or resting state fMRI may also occur in the presence of 

neurodegeneration despite underlying structural changes due to 

compensatory mechanisms. Structural changes could be more reliable and 

more representative of underlying pathology.  

Prior work has shown significant changes in functional brain networks in 

PD with hallucinations (Muller et al., 2014), however most structural 

studies so far focused on gray matter (Pezzoli et al., 2017). In Chapter 5 I 

showed that white matter changes are evident using diffusion-weighted 

imaging in PD with hallucinations in the absence of significant changes in 

cortical thickness; this is in keeping with animal and cell-level data (Chung 

et al., 2009; Volpicelli-Daley et al., 2011) and highlights the importance of 

neuroimaging methods assessing white matter in the study of PD 

hallucinations. Given the widespread white matter macrostructural changes 

that were seen longitudinally, diffusion-weighted imaging (analysed using 

higher tensor models such as fixel based analysis) could represent an 

attractive measure of impact on disease progression for future clinical trials 

assessing treatments of PD-associated visual hallucinations.  
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Finally, in Chapter 5 I showed that the mediodorsal medial thalamus is 

particularly affected in PD with hallucinations, with white matter tracts 

affected before gray matter volume loss occurs. The thalamus has been 

postulated as a potential driver of network changes in PD-hallucinations 

(Onofrj et al., 2019; Russo et al., 2019), but this has not been previously 

demonstrated. The mediodorsal thalamus specifically, plays a crucial role in 

directing attention via its connection to the superficial layers of the 

prefrontal cortex which in turn regulates areas further down the cortical 

hierarchy via feedback connections (Ouhaz et al., 2018; Anastasiades et al., 

2021). Gray matter loss or reduced connectivity of the mediodorsal and 

subsequent aberrant, unregulated prefrontal cortex activity could explain the 

increased feedback signals, or overweighting of prior knowledge seen in 

PD-hallucinators. Finally, the mediodorsal thalamus could be a potential 

therapeutic target for hallucinations as it is a region where deep brain 

stimulation can be applied; indeed this has been performed in patients with 

obsessive compulsive disorders (Maarouf et al., 2016). 

Unanswered questions and next steps 

Although this thesis has helped clarify the changes seen in brain networks in 

PD with hallucinations at different scales, the specific level in the hierarchy 

that changes in feedforward and feedback signals are seen still remains 

unclear. Feedback and feedforward circuits in health are arranged into 

distinct layers of grey matter close to the surface of the brain, with 

feedforward circuits in middle layers and feedback circuits in superficial 

and deeper layers (Muckli et al., 2015). Until now, the changes in brain 

circuits have not been shown in living patients, as conventional 3 Tesla MRI 

lacks the resolution to examine cortical layers. In future work I plan to 

leverage the greater anatomical detail and increased accuracy of 7 Tesla 

(7T) MRI to identify structural and functional changes within cortical 

layers.  
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As hallucinations are transient and unpredictable, they are challenging to 

directly elicit in the scanner. Instead, I will use a visual task to evoke 

Pareidolias, the perception of a face that is not there. Pareidolias occur more 

in patients with the related Demential with Lewy Bodies (DLB) and visual 

hallucinations (Uchiyama et al., 2012), correlate with hallucination severity 

(Uchiyama et al., 2012) and can distinguish DLB from Alzheimer’s disease 

(Inagawa et al., 2020). 

I have already adjusted the pareidolia task to make it suitable for in-scanner 

use and piloted this in 35 PD patients (17 hallucinators). Participants with 

hallucinations experienced significantly more pareidolias than non-

hallucinators and the number of pareidolias correlated with the severity of 

their hallucinations (Figure 8.1). Using this task during ultra-high field MRI 

will allow me to examine functional changes during pareidolias within 

cortical layers in LBD-hallucinators. Given the findings of increased 

weighting of prior knowledge in PD-hallucinators (Chapter 3), I predict that 

BOLD signal during the experience of pareidolias will be increased in deep 

and superficial layers (representing feedback connections) but not in middle 

layers (representing feedforward connections) in patients with PD and 

habitual visual hallucinations compared with non-hallucinators.  

Identifying layer specific changes associated with PD-hallucinations will 

provide new insights to the complex changes in circuitry that give rise to 

hallucinations. As different cortical layers have different cell populations 

and inputs from different neutrotransmitter systems, this could also open 

potential avenues for treatments for this distressing symptom. 
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Figure 8. 1. The Pareidolia Task: Pilot data 

A. Example of an image in the Pareidolia task. This black and white image is perceived as containing a 

face in the absence of one (Pareidolia) by people with Lewy Body Dementia (LBD) and habitual 

hallucinations 

B. Pareidolias were significantly more common in patients with hallucinations (mean ± standard 

deviation= 5.3 ± 5.9)  compared to non hallucinators (2.3 ± 3.0) and controls (2.5 ± 4.6); p=0.011. 

C. Hallucination severity (using the Miami Hallucinations Questionnaire) was associated with higher 

number of perceived pareidolias (F=23.65, df=34, r2=0.400, p<0.001). 
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8.3. Bridging structure and function 

In contrast with previous “static” characterisation of functional changes, in 

Chapter 7 I examined how dynamic patterns of functional connectivity 

change in PD with hallucinations. PD-hallucinators showed changes 

affecting primarily regions of high controllability, which are important for 

switching the brain between states. PD-hallucinators spent more time in a 

more segregated functional sub-state; this is in keeping with prior work in 

PD with cognitive impairment (Fiorenzato et al., 2019). Time spent in this 

segregated state was correlated with hallucination severity suggesting that 

this finding is specific to presence of hallucinations.  

To provide a link on how structural changes may lead to changes in brain 

function, in Chapter 6, I showed that PD patients with visual hallucinations 

show widespread changes in structural connectivity between brain regions, 

particularly affecting highly connected brain regions that are important for 

switching the brain between different states. Building further on this on 

Chapter 7, I modelled the transition of the structural connectome between 

specific states of functional connectivity. I showed that the observed 

changes in dynamic functional connectivity seen in patients with PD could 

be potentially explained by changes in the structural connectome as PD with 

hallucinations needed less energy to transition to a segregated connectivity 

state and therefore this transition may be preferred.  

By linking the regions most important for this transition to regional 

differences in neurotransmitter density profiles and receptor gene 

expression, I was able in Chapter 7, to identify specific neurotransmitters 

that may be important in modulating hallucinations in PD: 5HT2A has a 

established role in visual hallucinations (Cheng et al., 1991; Huot et al., 

2010) but other receptors identified such as 5HT1B and GABA, as well as 

noradrenergic receptors (ADRA1B and ADRA2A) have not been clearly 



195 

 

linked to PD-hallucinations previously. This finding could inform future 

research into the role of these receptors in PD-hallucinations which could be 

potential novel therapeutic targets.   

Finally, whilst assessing changes in dynamic functional states and 

modelling the structural connectome’s transition between these states has 

provided useful insights in the healthy brain (Braun et al., 2019; Cornblath 

et al., 2020), this was the first application of these methods in disease. 

Similar methods could provide important insights into other symptoms, 

particularly transient and unpredictable symptoms, such as visual 

hallucinations, where dynamic approaches are more suitable. I plan to apply 

this framework to better understand the temporal dynamics of cognitive 

fluctuations in Dementia with Lewy Bodies (DLB).   

Cognitive fluctuations are particularly common and distressing in DLB 

(Walker et al., 2015) and are thought to be secondary to changes in 

attentional circuitry and the ability of switching the brain between states 

(Matar et al., 2020). Changes in temporal functional dynamics have been 

described in DLB (Schumacher et al., 2019) and Parkinson’s dementia 

(Fiorenzato et al., 2019), but their relationship with cognitive fluctuations 

and underlying structural changes are unclear. Identifying key regions for 

these temporal alterations and their neurotransmitter, gene expression and 

cyto-architectural profiles could provide important new insights to cognitive 

fluctuations.  

The methodology described in Chapter 7, investigating the temporal 

dynamic changes associated with visual hallucinations in PD, has significant 

potential to shed lights into cognitive fluctuations as well, given that these 

are similarly transient and unpredictable. In future work, I plan to use 

established measures of cognitive fluctuations in DLB, such as the Clinician 

Assessment of Fluctuation (CAF) (Walker et al., 2000) and Dementia 
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Cognitive Fluctuation Scales (DCFS) (Lee et al., 2014) to assess how 

changes in brain structure and connectivity lead to altered functional state 

dynamics in DLB. As described in Chapter 7, I plan to link these findings 

with neurotransmitter systems using: 1) neurotransmitter density profiles 

from PET-derived atlases using JuSpace (Dukart et al., 2021) and2) regional 

gene expression data from the Allen Institute Brain Atlas (Hawrylycz et al., 

2015),This will shed light onto the neurotransmitter systems that drive 

cognitive fluctuations in DLB.  

 

8.4. Understanding drivers of regional vulnerability  

In a cross-sectional analysis in Chapter 6, I showed that brain regions which 

are vulnerable to white matter connectivity loss in PD with visual 

hallucinations, show specific gene expression profiles with downweighting 

of genes related to mRNA metabolism and enriched in oligodendrocyte 

markers and upweighting of genes related to protein localisation and 

enriched in neuronal markers. This provides important insights to biological 

processes and cell types driving regional vulnerability.  

Using similar methodology, I was able to assess regional white matter 

vulnerability in patients with PD who are at high risk of dementia (Zarkali et 

al., 2020) (Figure 8.3). I found that connection type and gene expression 

profiles affected regional vulnerability with interhemispheric connections 

and regions with higher expression of genes related to metabolic processes 

and neuronal markers being most affected (Zarkali et al., 2020). 

Subsequently, other work in our group has applied this to iron deposition in 

the same population (Thomas et al., 2021).  

Building further on these findings, I plan to link changes in cortical layers 

identified using 7T imaging (see Chapter 8.1 Next Steps) to understand the 
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neurotransmitter systems, cell types and molecular processes that drive 

regional vulnerability at the cortical layer level. To do this I will use layer 

specific data on cellular composition and neurotransmitter receptor maps 

from healthy human brains using BigBrain (Xiao et al., 2019). By 

correlating this rich dataset with cortical layer changes underlying PD-

hallucinations I will be able to provide insights on the drivers of regional 

vulnerability and potential modulating neurotransmitter systems at a finer 

grained level than our current understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interhemispheric                          Intrahemispheric                     Subcortical-cortical 

Figure 8. 2. Hierarchy of connection vulnerability in PD with low visual performance 

(higher risk of dementia).  

Figure illustrates the individual connections showing changes in connectivity strength in 

PD low visual performers. Interhemispheric connections are most affected, followed by 

subcortical-cortical connections, with intrahemispheric and intramodular connections 

showing preserved connectivity strength. The thickness of the line represents absolute 

effect size (difference in connectivity strength in PD low visual performers compared to 

those with intact vision).  

Red: Reduced connectivity strength, Green: Increased connectivity strength, Grey: No 

significant difference in connectivity strength. F: frontal, T: temporal; M: motor-parietal; 

V: occipital, B: Subcortical. 
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8.5. Conclusions 

The work described in this thesis showed, for the first time, that patients 

with Parkinson’s disease and visual hallucinations over-rely on feedback 

signals, with overweighting of prior knowledge when viewing ambiguous 

visual stimuli. In addition, it shed light in the underlying changes in white 

matter structure at the tract and network level, and longitudinally, linking 

the imbalance of feedforward and feedback signals to underlying structural 

connectivity changes. This furthers our understanding on the neural 

mechanisms of visual hallucinations in Parkinson’s disease and will have 

implications for other disorders where hallucinations are prominent (Corlett 

et al., 2019; Haarsma et al., 2020).  

In addition, this thesis has provided further support to the important role 

white matter changes play in Parkinson’s hallucinations and in 

neurodegeneration in Parkinson’s disease in general. Whilst gray matter 

remained relatively preserved longitudinally, white matter showed 

significant macrostructural changes. This finding, will have implications to 

future neuroimaging studies as it highlights the increased sensitivity of 

diffusion weighted imaging compared to imaging techniques assessing grey 

matter in Parkinson’s. Indeed other groups have also described white matter 

changes in PD using fixel based analysis (Rau et al., 2019).  

In this thesis I was able to apply emerging frameworks such as network 

control theory to directly examine the effect structural connectivity changes 

have on brain function. Whilst this has been applied in health previously 

(Braun et al., 2019; Cornblath et al., 2020; Cui et al., 2020), this was the 

first time that it was used in the context of neurodegeneration. This 

methodology could be applied to other neurological and psychiatric diseases 

in order to better understand the interplay between structural changes caused 

by brain pathology and functional activation patterns.  
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Finally this thesis could inform potential therapeutic targets for Parkinson’s 

hallucinations. The medial mediodorsal thalamic subnucleus which was 

identified as a region showing white and, later, gray matter changes in 

Parkinson’s patients with hallucinations (with changes correlating with 

hallucination severity), could be targeted with deep brain stimulation. 

Specific neurotransmitter receptors that were found to play an important 

role in state transitions in PD with hallucinations, such as 5HT2A, GABAA, 

and noradrenergic receptors could also be potential therapeutic targets.  

 

8.6. Future directions 

This thesis aimed to shed light to the neural correlates of visual 

hallucinations in Parkinson’s disease and clarify the changes in large scale 

brain networks that lead to the development of hallucinations. In doing so, 

several important questions have evolved. These were discussed in part in 

this Chapter but are summarised here:  

1. At which level of the cortical hierarchy does the imbalance 

between structural and functional connectivity occur?  

2. Could the network level changes (computational, structural and 

functional) precede the onset of visual hallucinations, therefore 

enabling their use as a potential biomarker? 

3. Are the mechanisms of visual hallucinations transdiagnostic or 

disease specific? 

4. Do similar changes underly other transient symptoms in Lewy 

Body disorders, such as cognitive fluctuations?  
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5. What is the underlying cause of white matter loss in Parkinson’s 

hallucinations: axonal degeneration or demyelination?  

Answering these questions will have important implications for our 

mechanistic understanding of visual hallucinations and neurodegeneration in 

Parkinson’s disease and potential future therapies for this distressing 

symptom of Parkinson’s disease as well as other conditions.  
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14. Appendix 

Appendix 1. The University of Miami Hallucinations 

Questionnaire (Chapter 2).  

Question  Score reference  Score  

1. Do you experience hallucinations?  

0. No hallucinations (skip to 

Annex)   
(Have you ever see/hear/feel/smell/taste things 

that are not really there or that other people 

do not see?) 1. One type only   

 2. Combination  

 

C: Not within the past month, but 

it has happened in the past   

Type: (mark appropriate):   
a. Visual    

b. Auditory    
c. Somatic/Cutaneous    

d. Gustatory    
e. Olfactory (assess each separately)   

2. How often do you experience 

hallucinations? 0 = Only a few times   

 

1 = Occasionally (less than once a 

week, but continuously)   

 2 = Often (about once per week)   

 

3 = Frequently (several times per 

week but < than once per day)   

 

4 = Very frequently (≥once per 

day)   

3. On average, how long do the experiences 

last? 0 = Short Duration (< 1sec)   

 1 = Medium Duration (< 10secs)   

 

2 = Prolonged Duration (> 

10secs)   

4. Do you think what you are 

seeing/experiencing is real? 0 = Not real   

 1 = Sometimes real   

 2 = Always real  
5. How many types of images/sensations do 

you experience? 1 = One   

 2 = Few (2 or 3)   

 3 = Several (more than 3)   
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6. How severe/emotionally distressing do you 

find these images/sensations or visions? 0 = No effect/Friendly   

 1 = Mildly – produce little distress   

 

2 = Moderately – produce distress 

and are disturbing and disruptive   

 

3 = Severely – very disturbing 

(medications may be required)   

7. What do you normally 

see/feel/hear/smell/taste? (Delete incorrect 

responses) Not formed/cannot describe   
a. Voices: Whole Faces     Familiar 

b. Music: Fragmented faces Familiar 

c. Tastes: Whole people Familiar 

d. Smells: Animals  
e. Skin related: Insects/reptiles  

 Objects  
8. Is there anything you can do to make the 

images/sensations disappear? (Delete 

incorrect response) Yes  

 No  
9. At what time of the day or under which 

lighting conditions do you experience 

hallucinations? (Delete incorrect responses) A. Specific time   

  During the day/Bright   

  During the night/Dark   

  Dim  

 B. Anytime  
10. Do the images ever make any sound or 

noise (for visual hallucinations)? (Delete 

incorrect responses) Yes   

 No   

 

N/A (for non-visual 

hallucinations)  
11. Do images move (for visual 

hallucinations)? (Delete incorrect responses) Yes   

 No   

 

N/A (for non-visual 

hallucinations)  
12. Are the images normal size? (Delete 

incorrect responses) Yes   

 No, smaller than normal   

 No, larger than normal   

 

N/A (for non-visual 

hallucinations)  
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13. Are the images transparent or solid? 

(Delete incorrect responses) Transparent   

 Solid   

 

N/A (for non-visual 

hallucinations)  
14. Are the images colored? (Delete incorrect 

responses) Yes   

 No, (black and white)   

 

N/A (for non-visual 

hallucinations)  
15. Is the onset of hallucinations gradual or 

sudden? (Delete incorrect responses) 

Gradual (appear-disappear 

slowly)   

 

Sudden (appear-disappear 

suddenly)  

 I cannot tell  
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Appendix 2. Significant connections in the subnetwork of 

reduced connectivity in patients with Parkinson’s and visual 

hallucinations (Chapter 6). 

L_ventral_23ab to L_p24pr. Test stat: 3.73 

L_p24pr to L_8BL. Test stat: 3.15 

L_p24pr to L_9p. Test stat: 3.32 

L_2 to L_44. Test stat: 3.57 

L_8Av to L_44. Test stat: 3.12 

L_44 to L_52. Test stat: 3.12 

L_a47r to L_MiddleInsular. Test stat: 3.12 

L_55b to L_FrontalOPercular_1. Test stat: 

3.19 

L_44 to L_PFt. Test stat: 3.44 

L_p24pr to L_PreSubiculum. Test stat: 

3.21 

L_PoI2 to L_AuditoryComplex_5. Test 

stat: 3.13 

L_AuditoryComplex_5 to 

L_TemporoParietoOccipitalJunction_3. 

Test stat: 3.22 

L_6_ventral to L_PF_opercular. Test stat: 

3.17 

L_44 to L_PF_opercular. Test stat: 3.13 

L_44 to L_PF. Test stat: 3.25 

L_6r to L_PF. Test stat: 3.22 

L_44 to L_PosteriorInsular_1. Test stat: 

3.11 

L_MiddleInsular to L_FrontalOpercular_5. 

Test stat: 3.26 

L_44 to L_ParaInsular. Test stat: 3.27 

L_a47r to L_ParaInsular. Test stat: 3.16 

L_8BL to R_p24. Test stat: 3.26 

L_V8 to R_V6. Test stat: 3.10 

L_ProStriate to R_V6. Test stat: 3.45 

L_ProStriate to R_V3A. Test stat: 3.25 

L_5L to R_PrimaryAuditory_1. Test stat: 

3.30 

L_8BL to R_5m_ventral. Test stat: 3.65 

L_9p to 

R_SupplementaryCingulateEyeField. Test 

stat: 3.40 

L_SupplementaryCingulateEyeField to 

R_6ma. Test stat: 3.54 

L_6ma to R_6ma. Test stat: 3.43 

L_33pr to R_6ma. Test stat: 3.32 

L_6a to R_6ma. Test stat: 3.46 

R_PrimaryAuditory_1 to 

R_LateralIntraParietalVentral. Test stat: 

3.12 

L_6ma to R_s6-8. Test stat: 3.53 

L_2 to R_s6-8. Test stat: 3.84 

L_p24pr to R_OP2-3. Test stat: 3.15 

R_7PC to R_MiddleInsular. Test stat: 

3.69 

R_3a to R_MiddleInsular. Test stat: 3.21 

R_6a to 

R_AnteriorAngranularInsulaComplex. 

Test stat: 3.12 

R_MedialSuperiorTemporal to 

R_AuditoryComplex_5. Test stat: 3.22 

L_VentralIntraParietalComplex to 

R_STSv_posterior. Test stat: 3.28 

R_7PC to R_STSv_posterior. Test stat: 

3.27 

L_V3A to 

R_DorsalTransitionalVisualArea. Test 

stat: 3.24 

L_ProStriate to 

R_DorsalTransitionalVisualArea. Test 

stat: 3.35 

R_PrimaryAuditory_1 to 

R_IntraParietaR_1. Test stat: 3.36 

L_V8 to R_V6A. Test stat: 3.11 

L_ProStriate to R_V3CD. Test stat: 3.10 

R_MedialSuperiorTemporal to 

R_PosteriorInsular_1. Test stat: 3.10 

R_55b to R_PosteriorInsular_1. Test stat: 

3.14 

R_a47r to R_PosteriorInsular_1. Test stat: 

3.58 

R_10pp to R_PosteriorInsular_1. Test 

stat: 3.10 

R_PoI2 to R_LateralBeltComplex. Test 

stat: 3.23 

R_STSv_posterior to 

R_AuditoryComplex_4. Test stat: 3.13 

R_IntraParietaR_1 to 

R_AuditoryComplex_4. Test stat: 3.35 

R_LateralBeltComplex to 

R_AuditoryComplex_4. Test stat: 3.16 

R_V6A to R_ParaInsular. Test stat: 3.12 

L_55b to L_Cerebellum. Test stat: 3.27 

L_PresylvianLanguage to L_Cerebellum. 

Test stat: 3.48 

L_44 to L_Cerebellum. Test stat: 3.56 
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L_SuperiorFrontalLanguage to R_8BM. 

Test stat: 3.17 

R_p24 to R_10r. Test stat: 3.22 

L_PoI2 to R_8BL. Test stat: 3.12 

R_p24 to R_10d. Test stat: 3.35 

L_10d to R_a47r. Test stat: 3.27 

R_p24 to R_a47r. Test stat: 3.14 

L_VentralIntraParietalComplex to R_6r. 

Test stat: 3.45 

R_2 to R_6r. Test stat: 3.17 

R_p24 to R_9-46d. Test stat: 3.39 

L_33pr to R_9a. Test stat: 3.11 

L_10d to R_a10p. Test stat: 3.28 

R_8Av to R_47s. Test stat: 3.53 

R_9-46d to R_47s. Test stat: 3.28 

R_PrimaryAuditory_1 to R_6a. Test stat: 

3.17 

L_SuperiorFrontalLanguage to R_s6-8. 

Test stat: 3.14 

L_AuditoryComplex_5 to L_Cerebellum. 

Test stat: 3.24 

L_PHT to L_Cerebellum. Test stat: 3.52 

L_AuditoryComplex_4 to L_Cerebellum. 

Test stat: 3.35 

R_6r to L_Cerebellum. Test stat: 3.14 

R_ParaInsular to L_Cerebellum. Test stat: 

3.12 

L_1 to L_Thalamus. Test stat: 3.20 

L_Cerebellum to L_Thalamus. Test stat: 

3.63 

L_PresylvianLanguage to L_Putamen. 

Test stat: 3.12 

L_V8 to Brain-Stem. Test stat: 3.19 

L_44 to Brain-Stem. Test stat: 3.70 

L_44 to L_Hippocampus. Test stat: 3.19 

R_AuditoryComplex_5 to R_Cerebellum. 

Test stat: 3.25 

R_5L to R_Thalamus. Test stat: 3.24 

R_s6-8 to R_Thalamus. Test stat: 3.25 

R_Cerebellum to R_Thalamus. Test stat: 

3.45 

R_ParaBeltComplex to R_Pallidum. Test 

stat: 3.19 

R_STSv_posterior to R_Pallidum. Test 

stat: 3.52 

R_AuditoryComplex_4 to R_Pallidum. 

Test stat: 3.12 
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Appendix 3.  Cortical and subcortical regions and their rank 

controllability in controls (Chapter 6).  
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Appendix 4.  Full Gene Ontology (GO) terms for the 

“Upweighted” module (Chapter 6). 
 

Term name GO ID 

adjusted 

p_value 

negative_log10_of 

adjusted_p_value 

Term 

size 

protein targeting GO:0006605 1.38E-07 6.85985 428 

viral transcription GO:0019083 5.06E-07 6.296222 178 

nuclear-transcribed mRNA catabolic 

process, nonsense-mediated decay GO:0000184 5.06E-07 6.296222 122 

SRP-dependent cotranslational protein 

targeting to membrane GO:0006614 5.06E-07 6.296222 96 

establishment of protein localization to 

organelle GO:0072594 6.61E-07 6.179858 565 

cotranslational protein targeting to 

membrane GO:0006613 6.61E-07 6.179858 101 

establishment of protein localization to 

membrane GO:0090150 1.07E-06 5.970062 330 

viral gene expression GO:0019080 1.47E-06 5.833037 195 

protein targeting to ER GO:0045047 1.47E-06 5.833037 109 

protein localization to organelle GO:0033365 2.17E-06 5.66305 949 

establishment of protein localization to 

endoplasmic reticulum GO:0072599 2.17E-06 5.66305 113 

protein targeting to membrane GO:0006612 6.21E-06 5.207214 195 

protein localization to endoplasmic 

reticulum GO:0070972 6.59E-06 5.180837 137 

ribosome biogenesis GO:0042254 8.58E-06 5.066436 294 

mitochondrial respiratory chain complex 

assembly GO:0033108 9.5E-06 5.022327 99 

translational termination GO:0006415 1.02E-05 4.989984 104 

ribonucleoprotein complex biogenesis GO:0022613 1.88E-05 4.72641 460 

peptide biosynthetic process GO:0043043 1.88E-05 4.72641 755 

mitochondrial translational elongation GO:0070125 2.68E-05 4.572601 87 

translation GO:0006412 3.49E-05 4.457061 730 

mitochondrial respiratory chain complex I 

assembly GO:0032981 3.49E-05 4.457061 65 

NADH dehydrogenase complex assembly GO:0010257 3.49E-05 4.457061 65 

peptide metabolic process GO:0006518 4.22E-05 4.374345 895 

cellular amide metabolic process GO:0043603 4.51E-05 4.345481 1163 

nuclear-transcribed mRNA catabolic process GO:0000956 4.87E-05 4.312476 211 

ribosome assembly GO:0042255 5.4E-05 4.267769 62 

mitochondrial translation GO:0032543 8.28E-05 4.082008 138 

RNA catabolic process GO:0006401 0.000104 3.983372 408 
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oxidative phosphorylation GO:0006119 0.000122 3.914995 144 

amide biosynthetic process GO:0043604 0.000122 3.914995 897 

mitochondrial translational termination GO:0070126 0.000122 3.914995 88 

protein localization to mitochondrion GO:0070585 0.000126 3.898519 142 

mitochondrial electron transport, NADH to 

ubiquinone GO:0006120 0.000128 3.8918 56 

mitochondrion organization GO:0007005 0.000155 3.809926 530 

mitochondrial ATP synthesis coupled 

electron transport GO:0042775 0.000163 3.786642 98 

protein targeting to mitochondrion GO:0006626 0.00017 3.769199 101 

ATP synthesis coupled electron transport GO:0042773 0.00017 3.769199 99 

translational elongation GO:0006414 0.00017 3.769199 140 

mRNA catabolic process GO:0006402 0.000193 3.715352 371 

cellular protein-containing complex 

assembly GO:0034622 0.000208 3.682874 1103 

ribosomal small subunit biogenesis GO:0042274 0.000229 3.639515 68 

rRNA processing GO:0006364 0.000246 3.608656 209 

cellular nitrogen compound catabolic 

process GO:0044270 0.000327 3.485759 592 

ATP metabolic process GO:0046034 0.000329 3.48346 306 

rRNA metabolic process GO:0016072 0.000447 3.349394 220 

ribosomal small subunit assembly GO:0000028 0.000499 3.302053 18 

translational initiation GO:0006413 0.000506 3.295726 196 

protein-containing complex subunit 

organization GO:0043933 0.000526 3.279023 2177 

aromatic compound catabolic process GO:0019439 0.000526 3.279023 607 

cellular macromolecule catabolic process GO:0044265 0.000542 3.265806 1194 

nucleobase-containing compound catabolic 

process GO:0034655 0.000606 3.217439 544 

heterocycle catabolic process GO:0046700 0.000626 3.203438 591 

mitochondrial gene expression GO:0140053 0.000626 3.203438 166 

respiratory electron transport chain GO:0022904 0.000652 3.185973 118 

cellular respiration GO:0045333 0.000652 3.185973 191 

intracellular transport GO:0046907 0.000736 3.133379 1759 

anaphase-promoting complex-dependent 

catabolic process GO:0031145 0.000736 3.133379 83 

protein localization to membrane GO:0072657 0.000755 3.12194 636 

electron transport chain GO:0022900 0.000909 3.041209 188 

establishment of protein localization to 

mitochondrion GO:0072655 0.000985 3.0065 138 

organic cyclic compound catabolic process GO:1901361 0.001319 2.879838 638 

intracellular protein transport GO:0006886 0.002004 2.698026 1162 
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energy derivation by oxidation of organic 

compounds GO:0015980 0.002576 2.589036 287 

ribonucleoprotein complex assembly GO:0022618 0.002853 2.544704 237 

maturation of SSU-rRNA from tricistronic 

rRNA transcript (SSU-rRNA, 5.8S rRNA, 

LSU-rRNA) GO:0000462 0.00322 2.492159 35 

cellular protein localization GO:0034613 0.003883 2.410818 1945 

positive regulation of viral process GO:0048524 0.003946 2.403849 104 

cellular catabolic process GO:0044248 0.003946 2.403849 2287 

cellular macromolecule localization GO:0070727 0.004551 2.341857 1956 

macromolecule catabolic process GO:0009057 0.004739 2.324337 1431 

ribonucleoprotein complex subunit 

organization GO:0071826 0.005585 2.252964 251 

peptidyl-serine acetylation GO:0030920 0.005585 2.252964 2 

ribosomal large subunit biogenesis GO:0042273 0.005585 2.252964 69 

N-terminal peptidyl-serine acetylation GO:0017198 0.005585 2.252964 2 

ncRNA processing GO:0034470 0.006042 2.218833 377 

viral process GO:0016032 0.006426 2.192043 832 

protein insertion into mitochondrial inner 

membrane GO:0045039 0.006426 2.192043 11 

establishment of protein localization to 

mitochondrial membrane GO:0090151 0.006674 2.175616 18 

generation of precursor metabolites and 

energy GO:0006091 0.007136 2.146548 543 

transcription elongation from RNA 

polymerase II promoter GO:0006368 0.007879 2.103545 84 

mRNA metabolic process GO:0016071 0.007882 2.103348 860 

ncRNA metabolic process GO:0034660 0.008121 2.090408 471 

protein transport GO:0015031 0.008176 2.087435 2084 

establishment of protein localization GO:0045184 0.008271 2.08244 2199 

positive regulation of viral transcription GO:0050434 0.008486 2.071288 41 

protein-containing complex assembly GO:0065003 0.008953 2.048034 1852 

cellular protein complex disassembly GO:0043624 0.010374 1.984061 218 

catabolic process GO:0009056 0.010374 1.984061 2665 

protein import into mitochondrial matrix GO:0030150 0.010823 1.965642 19 

maturation of SSU-rRNA GO:0030490 0.011299 1.946956 47 

symbiotic process GO:0044403 0.012268 1.911241 886 

N-terminal peptidyl-glutamic acid 

acetylation GO:0018002 0.013397 1.873002 3 

mitochondrial transport GO:0006839 0.013956 1.855227 263 

peptide transport GO:0015833 0.013956 1.855227 2124 

amide transport GO:0042886 0.015049 1.822499 2158 

macroautophagy GO:0016236 0.015676 1.804767 294 
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protein polyubiquitination GO:0000209 0.015933 1.797714 313 

organonitrogen compound biosynthetic 

process GO:1901566 0.016832 1.773859 1884 

regulation of viral transcription GO:0046782 0.017821 1.749068 64 

maturation of LSU-rRNA GO:0000470 0.01934 1.71354 21 

regulation of viral process GO:0050792 0.020458 1.689135 208 

interspecies interaction between organisms GO:0044419 0.020674 1.684578 936 

DNA-templated transcription, elongation GO:0006354 0.023411 1.630574 112 

regulation of symbiosis, encompassing 

mutualism through parasitism GO:0043903 0.024673 1.607773 224 

protein-containing complex disassembly GO:0032984 0.025342 1.596155 330 

nitrogen compound transport GO:0071705 0.027333 1.563306 2466 

positive regulation of synaptic vesicle 

endocytosis GO:1900244 0.029382 1.531912 8 

transcription-coupled nucleotide-excision 

repair GO:0006283 0.029958 1.523485 73 

regulation of protein targeting GO:1903533 0.030219 1.51972 82 

protein localization GO:0008104 0.031504 1.501628 2863 

establishment of localization in cell GO:0051649 0.032464 1.488595 2271 

negative regulation of centriole elongation GO:1903723 0.032824 1.483807 1 

pigment catabolic process GO:0046149 0.034124 1.466935 7 

tetrapyrrole catabolic process GO:0033015 0.034124 1.466935 7 

porphyrin-containing compound catabolic 

process GO:0006787 0.034124 1.466935 7 

heme catabolic process GO:0042167 0.034124 1.466935 7 

distal tubule morphogenesis GO:0072156 0.036247 1.440724 3 

renal sodium ion absorption GO:0070294 0.047915 1.31953 4 

regulation of transcription from RNA 

polymerase II promoter in response to 

hypoxia GO:0061418 0.04929 1.307242 78 
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Appendix 5.  Full Gene Ontology (GO) terms for the 

“Downweighted” module (Chapter 6). 
 

Term name GO ID 

adjusted 

p_value 

negative_log10_of 

adjusted_p_value 

Term 

size 

mRNA processing GO:0006397 0.001374 2.862095 517 

mRNA metabolic process GO:0016071 0.004514 2.345424 860 

RNA splicing GO:0008380 0.004514 2.345424 439 

histone H3-K9 methylation GO:0051567 0.034524 1.461884 40 

histone lysine methylation GO:0034968 0.034524 1.461884 119 

negative regulation of integrin-mediated signaling 

pathway GO:2001045 0.034524 1.461884 2 

mRNA splicing, via spliceosome GO:0000398 0.034524 1.461884 348 

monoubiquitinated protein deubiquitination GO:0035520 0.034524 1.461884 10 

RNA splicing, via transesterification reactions GO:0000375 0.034524 1.461884 351 

chromosome organization GO:0051276 0.034524 1.461884 1238 

RNA splicing, via transesterification reactions with 

bulged adenosine as nucleophile GO:0000377 0.034524 1.461884 348 

negative regulation of chromatin silencing at rDNA GO:0061188 0.034524 1.461884 2 

mRNA-containing ribonucleoprotein complex 

export from nucleus GO:0071427 0.044654 1.350142 111 

nuclear-transcribed mRNA catabolic process, 

endonucleolytic cleavage-dependent decay GO:0000294 0.044654 1.350142 2 

RNA processing GO:0006396 0.044654 1.350142 929 

mRNA export from nucleus GO:0006406 0.044654 1.350142 111 

peptidyl-lysine modification GO:0018205 0.044654 1.350142 408 

histone mRNA catabolic process GO:0071044 0.044654 1.350142 12 

regulation of chromatin silencing at rDNA GO:0061187 0.045281 1.344089 3 

peptidyl-lysine methylation GO:0018022 0.047765 1.320892 135 

regulation of gene expression, epigenetic GO:0040029 0.047765 1.320892 555 

ribonucleoprotein complex localization GO:0071166 0.047765 1.320892 130 

ribonucleoprotein complex export from nucleus GO:0071426 0.047765 1.320892 129 

histone H3-K9 modification GO:0061647 0.047765 1.320892 51 

mRNA processing GO:0006397 0.001374 2.862095 517 

mRNA metabolic process GO:0016071 0.004514 2.345424 860 

RNA splicing GO:0008380 0.004514 2.345424 439 

histone H3-K9 methylation GO:0051567 0.034524 1.461884 40 

histone lysine methylation GO:0034968 0.034524 1.461884 119 

negative regulation of integrin-mediated signaling 

pathway GO:2001045 0.034524 1.461884 2 

mRNA splicing, via spliceosome GO:0000398 0.034524 1.461884 348 

monoubiquitinated protein deubiquitination GO:0035520 0.034524 1.461884 10 
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RNA splicing, via transesterification reactions GO:0000375 0.034524 1.461884 351 

chromosome organization GO:0051276 0.034524 1.461884 1238 

RNA splicing, via transesterification reactions with 

bulged adenosine as nucleophile GO:0000377 0.034524 1.461884 348 

negative regulation of chromatin silencing at rDNA GO:0061188 0.034524 1.461884 2 

mRNA-containing ribonucleoprotein complex 

export from nucleus GO:0071427 0.044654 1.350142 111 

nuclear-transcribed mRNA catabolic process, 

endonucleolytic cleavage-dependent decay GO:0000294 0.044654 1.350142 2 

RNA processing GO:0006396 0.044654 1.350142 929 

mRNA export from nucleus GO:0006406 0.044654 1.350142 111 

peptidyl-lysine modification GO:0018205 0.044654 1.350142 408 

histone mRNA catabolic process GO:0071044 0.044654 1.350142 12 

regulation of chromatin silencing at rDNA GO:0061187 0.045281 1.344089 3 

peptidyl-lysine methylation GO:0018022 0.047765 1.320892 135 

regulation of gene expression, epigenetic GO:0040029 0.047765 1.320892 555 

ribonucleoprotein complex localization GO:0071166 0.047765 1.320892 130 

ribonucleoprotein complex export from nucleus GO:0071426 0.047765 1.320892 129 

histone H3-K9 modification GO:0061647 0.047765 1.320892 51 

 

 


