1,687 research outputs found

    Model predictive control for microgrid functionalities: review and future challenges

    Get PDF
    ABSTRACT: Renewable generation and energy storage systems are technologies which evoke the future energy paradigm. While these technologies have reached their technological maturity, the way they are integrated and operated in the future smart grids still presents several challenges. Microgrids appear as a key technology to pave the path towards the integration and optimized operation in smart grids. However, the optimization of microgrids considered as a set of subsystems introduces a high degree of complexity in the associated control problem. Model Predictive Control (MPC) is a control methodology which has been satisfactorily applied to solve complex control problems in the industry and also currently it is widely researched and adopted in the research community. This paper reviews the application of MPC to microgrids from the point of view of their main functionalities, describing the design methodology and the main current advances. Finally, challenges and future perspectives of MPC and its applications in microgrids are described and summarized.info:eu-repo/semantics/publishedVersio

    Applications of Probabilistic Forecasting in Smart Grids : A Review

    Get PDF
    This paper reviews the recent studies and works dealing with probabilistic forecasting models and their applications in smart grids. According to these studies, this paper tries to introduce a roadmap towards decision-making under uncertainty in a smart grid environment. In this way, it firstly discusses the common methods employed to predict the distribution of variables. Then, it reviews how the recent literature used these forecasting methods and for which uncertain parameters they wanted to obtain distributions. Unlike the existing reviews, this paper assesses several uncertain parameters for which probabilistic forecasting models have been developed. In the next stage, this paper provides an overview related to scenario generation of uncertain parameters using their distributions and how these scenarios are adopted for optimal decision-making. In this regard, this paper discusses three types of optimization problems aiming to capture uncertainties and reviews the related papers. Finally, we propose some future applications of probabilistic forecasting based on the flexibility challenges of power systems in the near future.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Recent techniques used in home energy management systems: a review

    Get PDF
    Power systems are going through a transition period. Consumers want more active participation in electric system management, namely assuming the role of producers–consumers, prosumers in short. The prosumers’ energy production is heavily based on renewable energy sources, which, besides recognized environmental benefits, entails energy management challenges. For instance, energy consumption of appliances in a home can lead to misleading patterns. Another challenge is related to energy costs since inefficient systems or unbalanced energy control may represent economic loss to the prosumer. The so-called home energy management systems (HEMS) emerge as a solution. When well-designed HEMS allow prosumers to reach higher levels of energy management, this ensures optimal management of assets and appliances. This paper aims to present a comprehensive systematic review of the literature on optimization techniques recently used in the development of HEMS, also taking into account the key factors that can influence the development of HEMS at a technical and computational level. The systematic review covers the period 2018–2021. As a result of the review, the major developments in the field of HEMS in recent years are presented in an integrated manner. In addition, the techniques are divided into four broad categories: traditional techniques, model predictive control, heuristics and metaheuristics, and other techniques.info:eu-repo/semantics/publishedVersio

    Energy management in microgrids with renewable energy sources: A literature review

    Get PDF
    Renewable energy sources have emerged as an alternative to meet the growing demand for energy, mitigate climate change, and contribute to sustainable development. The integration of these systems is carried out in a distributed manner via microgrid systems; this provides a set of technological solutions that allows information exchange between the consumers and the distributed generation centers, which implies that they need to be managed optimally. Energy management in microgrids is defined as an information and control system that provides the necessary functionality, which ensures that both the generation and distribution systems supply energy at minimal operational costs. This paper presents a literature review of energy management in microgrid systems using renewable energies, along with a comparative analysis of the different optimization objectives, constraints, solution approaches, and simulation tools applied to both the interconnected and isolated microgrids. To manage the intermittent nature of renewable energy, energy storage technology is considered to be an attractive option due to increased technological maturity, energy density, and capability of providing grid services such as frequency response. Finally, future directions on predictive modeling mainly for energy storage systems are also proposed

    Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids

    Get PDF
    Energy management systems (EMSs) are nowadays considered one of the most relevant technical solutions for enhancing the efficiency, reliability, and economy of smart micro/nanogrids, both in terrestrial and vehicular applications. For this reason, the recent technical literature includes numerous technical contributions on EMSs for residential/commercial/vehicular micro/nanogrids that encompass renewable generators and battery storage systems (BSS) The volume “Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids”, was released as a Special Issue of the journal Energies, published by MDPI, with the aim of expanding the knowledge on EMSs for the optimal operation of electrical micro/nanogrids by presenting topical and high-quality research papers that address open issues in the identified technical field. The volume is a collection of seven research papers authored by research teams from several countries, where different hot topics are accurately explored. The reader will have the possibility to benefit from original scientific results concerning, in particular, the following key topics: distribution systems; smart home/building; battery energy storage; demand uncertainty; energy forecasting; model predictive control; real-time control, microgrid planning; and electrical vehicles
    corecore