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Abstract

Coordinating the operation of neighboring microgrids is a promising solution for the problem of
growing penetration of renewable-based microgrids into the power system. In this paper, a hier-
archical stochastic energy management system is proposed for operation management of intercon-
nected microgrids. At the upper-level, a central entity is responsible for coordinating the operation
of microgrids. Based on the energy scheduling made at this level, the power reference values to be
exchanged within the microgrids network and between the microgrids and the main grid are calcu-
lated and communicated with the local energy management systems. At the lower-level, a decision
making approach based on chance-constrained model predictive control is adopted for local oper-
ation management of each microgrid taking into account different sources of uncertainties. The
results show that the proposed strategy provides the microgrids with the opportunity of exploiting
maximum available capacity in the network. Consequently, the microgrids dependency on the main
grid will be reduced and some important performance indices such as multi-microgrid system cost
and real-time power deviations will be improved.

Keywords: Energy management, multi-microgrid system, chance-constrained model predictive
control, uncertainty management, Monte-Carlo algorithm.

1. Introduction

Microgrids which are considered as subsystems of distribution systems have been introduced as
a promising solution for scalability and flexibility requirements of next generation power systems
[1]. During the last decade, a large body of research has been carried out in order to investigate
technical and economical characteristics of microgrids and develop new methodologies for their
efficient operation management [2]-[10]. Studies show that aggregating renewable energy sources
(RESs) and loads in the framework of microgrid under the control of an autonomous entity is an
efficient solution to deal with scalability and complexity problems of conventional power systems.
However, significant number of renewable-based microgrids might result in new problems similar
to those they are supposed to solve. Intermittent nature of power produced by RESs and variability
of loads in a small-scale microgrid may increase its dependency on the upstream network in order
to smooth out power fluctuations.
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Microgrids were initially introduced as a solution for large penetration problem of dynamic
distributed resources through clustering them with local loads in a small geographical area. By
reusing this solution strategy at a higher level, operation of neighboring microgrids can be coor-
dinated locally for benefiting from existing production and demand diversity, utilizing maximum
available capacity and reducing microgrids dependency on the main grid.

Considering these potential advantages, a growing body of research is emerging in this area
[11]-[16]. Model predictive control (MPC) is one of the most appealing control strategies in devel-
oping energy management systems (EMSs) of interconnected microgrids. MPC-based EMSs can
be found in centralized [17], decentralized [18]-[19] and hierarchical forms [20]-[22]. In [23], a
comprehensive review on interconnected microgrids architecture is presented and potential advan-
tages and disadvantageous of different schemes are discussed. A common approach in MPC-based
strategies is that relying on the intrinsic robustness of the receding horizon strategy of decision-
making, the problem is formulated in deterministic framework and uncertainty is not directly taken
into account (Certainty equivalence principle).

Mitigating the uncertainty resulting from RESs production and variability of loads, different
techniques have been adopted in multi-microgrid EMS strategies. In [24]-[27], robust techniques
are used for energy management of interconnected microgrids. Despite effectiveness of the pro-
posed robust approaches, the required computational time for designing uncertainty bounds and
solving the problem as well as conservativeness of the solution strategy, make it inapplicable in
many applications. Scenario-based approaches have been also considered in designing EMS strate-
gies taking into account system uncertainty [28]-[30]. However, the computational effort which is
required for deriving the solution strategy under different probable scenarios, is the main drawback
of this optimization approach. In [31]-[33], chance-constrained MPC (CCMPC) is adopted to man-
age the uncertainty of RESs production and loads in EMS of interconnected microgrids. CCMPC,
in contrast to the robust approaches in which uncertainty bounds are predetermined based on the
worst case predicted scenario of uncertainty, will result in less conservative solutions. Moreover,
knowledge of uncertain parameters can be incorporated to adjust conservativeness of the solution.
The added advantage is that through adjusting confidence level, a satisfactory compromise between
reliability and profitability of the solution can be achieved. In addition, CCMPC requires less com-
putational effort compared to scenario-based approaches.

In the reviewed literature, despite above mentioned advantages of CCMPC compared to other
stochastic optimization approaches and its good performance in other applications [34]-[36], very
few studies are available in operation management of interconnected microgrids using CCMPC.
Moreover, although there are valuable studies in distributed and hierarchical control of multi-
microgrid systems, there are few models in stochastic hierarchical control of interconnected mi-
crogrids. Furthermore, the only sources of uncertainty which have been considered in energy
management of interconnected microgrids, are related to the uncertainties in RESs production and
consumer demand in local models. In this study, it is shown that in a multi-microgrid system, if
these local sources of uncertainty are not managed efficiently inside each microgrid, they can be
easily propagated throughout the network and degrade performance of the whole system.

In order to fill these gaps, this paper aims to develop a novel hierarchical stochastic energy
management strategy based on CCMPC for operation management of interconnected microgrids.
Local sources of uncertainty are related to the imperfect forecasting of RESs generation and con-
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sumers demand. Another source of uncertainty which is studied for the first time in this paper, is
related to the uncertainty in exchanged power between microgrids that can be considered as an ex-
ternal source of uncertainty for each microgrid originating from outside of the subsystem. In other
words, it is shown that presence of uncertainty in local operation of each microgrid will definitely
affect its capability to cooperate with other microgrids. In addition, proposed strategy benefits from
communication within microgrids network in order to make power scheduling based on the most
recent available information of uncertain parameters. The main contributions of this paper can be
summarized as follows:

1. Developing a hierarchical stochastic EMS for interconnected microgrids in the framework of
CCMPC,

2. Modeling and studying the effects of uncertainty in exchanged power among the neighboring
subsystems in the integrated operation management problem of multi-microgrid systems,

3. Proposing a communication-based control strategy to benefit from the most recent informa-
tion of uncertain parameters.

Moreover, in order to evaluate the robustness characteristics of the proposed strategy against other
conventional MPC approaches, a comparative statistical analysis is conducted. The rest of paper is
organized as follows. Section 2 represents the energy management problem of interconnected mi-
crogrids while the proposed strategy is introduced in Section 3. Different case studies are evaluated
in Section 4. Finally, conclusion remarks are given in Section 5.

2. Energy Management of Interconnected Microgrids

Different microgrids located in a neighborhood area, can be considered as interacting subsys-
tems of a larger system. In this structure, each microgrid can benefit from taking power from
neighboring subsystems in case of power shortage or delivering unused power in situations with
power surplus. In case there is not enough power in the regional network to cover the demand, the
main grid (upstream network) can be considered as a highly available source. From the perspec-
tive of the main grid, this higher level of abstraction will result in less complex control strategies
since the set of interconnected microgrids are modeled through the net positive or negative demand
disregarding further details and complexities.

Configuration of an illustrative multi-microgrid system along with power and information flows
are illustrated in Figure 1. In the examined multi-microgrid network, all microgrids are intercon-
nected to each other and also connected to the main grid. It should be mentioned that, power and
communication links failures are not taken into account in this paper.

In order to give a quantitative point of view, consider the following dynamical equations for
each microgrid. In Equation (1), xi(t) denotes the amount of stored energy in the ith microgrid
that can be represented as a state-of-charge (SOC) update function of a battery-based energy stor-
age system with a charging/discharging power Pbatt,i(t) and self-discharging coefficient Ai. Positive
values of Pbatt,i(t) are related to charging process while negative values represent discharging of the
battery. In Equation (2), Pi j(t) and Pig(t) refer to the exchanged power with neighboring subsystems
and the main grid, respectively. Positive values for these variable show the power is transmitted
from the ith microgrid to the jth microgrid and the main grid. Furthermore, Ni is the neighboring
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Figure 1: Illustration of the multi-microgrid system

set of the ith microgrid and Pi(t) denotes the local power adjustment made by controlling the output
power of on-site generators. In addition, Bi is a n×m matrix containing 1 and −1 with respect to
the corresponding decision parameter, while n is the number of storage devices and m shows the
number of on-site generators. Moreover, µi(t) which is defined as the predicted power balance is
calculated through Equation (3) in which M is the number of microgrids and Pi

WT , Pi
PV and Li repre-

sent estimated values of wind turbines (WTs) and photovoltaic systsms (PVs) generation and local
consumption of the ith microgrid, respectively. Furthermore, NWT,i and NPV,i denote the number of
wind turbines and photovoltaic systems in the ith microgrid, respectively.

xi(t +1) = Aixi(t)+Pbatt,i(t) (1)

Pbatt,i(t) =− ∑
j∈Ni

Pi j(t)−Pig(t)+BiPi(t)+µi(t) (2)

µi(t) =
NWT,i

∑
j=1

Pi
WT, j(t)+

NPV,i

∑
z=1

Pi
PV,z(t)−Li(t) i = 1,2, ...,M (3)

Taking into account intermittent nature of RESs production and inherent variability of loads,
µi(t) cannot be perfectly forecasted. Accordingly, adopting dynamical system approach, this ab-
stracted variable can be defined as an endogenous source of uncertainty originating from internal
behavior of related subsystem. However, in a dynamical system with interacting parts, if the uncer-
tainty cannot be managed properly inside a subsystem, it will be easily propagated to other parts
of the system. In the examined energy management problem, interacting parts refer to the power
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exchange within the microgrids network and also with the main grid. A microgrid with positive
energy content (i.e., energy surplus), is supposed to deliver specific amount of power to the neigh-
boring microgrids with power shortage or the main grid. The amount of power to be exchanged is
required to be determined before the realization of uncertain parameters based on the microgrids
estimation of surplus energy. Accordingly, in case the realized production and consumption values
do not match with the estimated quantities, the microgrid would not be able to comply with the
committed values.

From the perspective of the neighboring microgrids with negative energy content (i.e., energy
shortage), in addition to the endogenous source of uncertainty (µi(t)), fluctuation of Pi j(t) could be
also considered as an exogenous source of uncertainty which is originated from the outside envi-
ronment. Accounting for these endogenous and exogenous sources of uncertainties, microgrids are
required to adopt efficient stochastic energy management strategies to mitigate undesirable effects
of real-time power imbalances. Possible actions to ensure supply-demand balance include man-
agement of the batteries as well as on-site generators in case of any probable power deviation. In
case a microgrid could not manage this issue internally, the power deviation could be compensated
through the main grid but at higher cost values with respect to pre-scheduling power transactions
and local production cost in order to make local EMSs (LEMSs) to minimize their unscheduled
power transactions with the upstream network.

From the main grid viewpoint, these power fluctuations can be seen as undesirable disturbances.
More importantly, with the growing number of RES-based microgrids in the next generation power
systems, compensating unscheduled real-time power deviations of all grid-connected microgrids
will complicate energy management problem of utilities.

In this paper, it is assumed that the final goal of interconnected microgrids is to cooperatively
manage uncertainty inside the microgrids network and represent the multi-microgrid system as a
predictable entity to the main grid. In the next section, the aforementioned sources of uncertain-
ties are appropriately modeled and adopting CCMPC, stochastic control strategies are proposed to
efficiently handle the problem and manage the uncertainty.

3. Proposed Methodology

A multi-microgrid system is composed of a number of interacting heterogeneous microgrids
with different specifications and requirements. Accordingly, a central energy management sys-
tem (CEMS) will face a complex decision-making process for the integrated system considering
internal dynamics of individual microgrids as well as interacting parts. Using a hierarchical archi-
tecture, decisions could be made at different levels which considerably reduce the complexity and
computational burden of decision-making process. In this section, a two-level stochastic EMS is
proposed for optimal operation management of interconnected microgrids.

3.1. Level 1: Central energy management system
At first, day-ahead prediction of energy shortage/surplus in individual microgrids is made by

LEMSs during the adopted optimization horizon T using Equation (3). This information is then
communicated with the CEMS which is responsible for coordinating the operation of neighboring
microgrids considering predicted values of power shortage and surplus. After receiving microgrids
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information, a power flow analysis is required to determine the optimal values of power to be trans-
ferred within the microgrids network and between the microgrids and the main grid. At this level,
the CEMS’s objective is to estimate the net amount of power that microgrids will be committed to
exchange with the main grid. Accordingly, from the upstream network’s point of view, the multi-
microgrid system can be seen as an aggregated load or power source in each time interval. To this
end, the energy surplus of interconnected microgrids is primarily exchanged with the neighboring
microgrids suffering from power shortage and the remaining unmet or surplus power is exchanged
with the main grid.

Equations (4)-(8) introduce the operational constraints of power dispatching process which are
considered by the CEMS. Equations (4) and (5) are related to the power lines capacity constraints
while nodal balance constraint is guaranteed using Equation (6). According to Equations (7) and
(8) receiving and delivering power at the same time is not allowed. These constraints are applied
to the problem through adjusting lower and upper bounds of decision variables based on the sign
of µi(t) at each time interval. The power scheduling is then communicated with the LEMSs to be
considered as power exchange reference trajectories. This procedure is summarized in Algorithm 1.

As the original idea is to manage uncertainty within the network of microgrids and prevent from
passing it to the main grid, microgrids seek an efficient operating strategy to cooperatively comply
with the committed values of Pi j(t) and Pig(t) which are considered as power exchange reference
trajectories at lower level.

Pmin
i j ≤ Pi j(t)≤ Pmax

i j i, j = 1,2, ...,M (4)

Pmin
ig ≤ Pig(t)≤ Pmax

ig i = 1,2, ...,M (5)

∑
j∈Ni

Pi j(t)+Pig(t)−µi(t) = 0 i = 1,2, ...,M (6)

i f (µi(t)≤ 0) : Pi j(t)≤ 0, Pig(t)≤ 0 (7)
i f (µi(t)≥ 0) : Pi j(t)≥ 0, Pig(t)≥ 0 (8)

Algorithm 1 Day-ahead power scheduling problem
1: LEMSs calculate day-ahead energy surplus/shortage of microgrids based on the forecasted

RESs production and consumer demand during adopted optimization horizon,
2: LEMSs transmit predicted values of microgrids power balance to the CEMS,
3: CEMS determines power flows within multi-microgrid system and between microgrids network

and the main grid considering system technical and operational requirements according to
Equations (4)-(8),

4: CEMS transmits time-varying power reference trajectories to LEMSs.

3.2. Level 2: Local energy management system
At the second control level, LEMSs have the responsibility of optimizing microgrids operation

according to the power references received from the top level. In this paper, the LEMSs are catego-
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rized in two groups; LEMSs for microgrids with power shortage and LEMSs for microgrids with
power surplus.

3.2.1. LEMSs with power shortage
Microgrids with negative energy content, could compensate their power shortage through neigh-

boring microgrids and the main grid. Microgrids can also benefit from on-site controllable re-
sources considering related generation cost. We assume that there is no uncertainty in the power
to be delivered by the main grid. However, since the power scheduling of CEMS has been accom-
plished based on the predicted power surplus values of microgrids, there is uncertainty in the power
to be delivered by the neighboring subsystems as well as amount of actual required power. As a
result, microgrids in power shortage state, face two sources of uncertainties; an endogenous source
µi(t) and some exogenous sources including Pi j(t). Therefore, microgrids require efficient opera-
tion strategies to ensure supply-demand power balance. The dynamical equation of microgrids in
this category can be considered as Equations (1)-(3). In Equation (2), Pi(t) denotes decision vector
of the ith microgrid containing Pi

CG,r(t) and Pi
R(t) in which Pi

CG,r(t) denotes power generation of the
rth conventional generator which its corresponding element in matrix Bi is equal to 1. It is assumed
that in case of expected power surplus, RESs output power could be also reduced. Accordingly,
Pi

R(t) illustrates a reduction term for RESs output power which the corresponding element in matrix
Bi is equal to −1.

Considering different sources of uncertainties, satisfying power balance constraint of Equation
(2) might not be fully guaranteed. Imbalances between supply and demand may lead to unex-
pected real-time power surplus (∆+) or shortage (∆−). Any real-time power imbalances will be
compensated through the main grid but at large penalty costs to penalize any unscheduled power
transactions with the upstream network. Accordingly, LEMSs desire an operating strategy which
minimizes operation cost of related microgrid while probable penalty cost resulted from real-time
power deviations will also be reduced. This way, each microgrid through optimal management of
its local resources not only minimizes its local cost but also contributes in improving overall per-
formance of the network by minimizing real-time power deviations through accounting for its own
and other subsystems uncertainties.
Considering growing penetration of RES-based microgrids, these cooperative strategies result in
more predictable behaviors of multi-microgrid systems from the distribution system perspective.
Moreover, it also enables the microgrids in a neighborhood area to benefit from maximum avail-
able capacities and flexibilities in the network. In the following, we propose a CCMPC-based
strategy for energy management problem of microgrids with power shortage.

• Problem statement of microgrids with power shortage

Energy management problem of microgrids with power shortage can be formulated as repre-
sented in Equations (9)-(16). At each time step t, each microgrid measures the value of stored
energy in the battery xi(t) and solves the following optimization problem. where, Hp and Hu
show prediction and control horizons, respectively. The cost function includes conventional gener-
ators operating cost as well as cost resulted from cutting RESs available power with the factor of
γi(t)[M.U

kW ] where M.U stands for monetary unit. In Equations (13) and (14), uncertain parameters
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are decomposed into two parts including forecasted value (µ̄i(t) and P̄i j(t)) and forecasting error
(µ̃i(t) and P̃i j(t)). In Equation (16), Pmax

i and Pmin
i denote [Pi,max

CG,r ,P
max
R,i (t)] and [Pi,min

CG,r ,P
min
R,i (t)], re-

spectively in which Pi,max
CG,r and Pi,min

CG,r are determined based on the rth generator specifications. The
value of Pmax

R,i is considered to be the maximum available power of RESs at related hour while Pmin
R,i

is set to zero.

min
Pi(t,...,t+Hu−1)

Hu−1

∑
n=0

f (Pi(t +n)) (9)

f (Pi(t)) =C(Pi
CG,r(t))+ γi(t)Pi

R(t) (10)

s.t. xi(t +n+1) = Aixi(t +n)+Pbatt,i(t +n) (11)

Pbatt,i(t +n) =− ∑
j∈Ni

Pi j(t +n)−Pig(t +n)+BiPi(t +n)+µi(t +n) (12)

µi(t +n) = µ̄i(t +n)+ µ̃i(t +n) (13)
Pi j(t +n) = P̄i j(t +n)+ P̃i j(t +n) (14)

xmin
i ≤ xi(t +n)≤ xmax

i n = 1, ...,Hp (15)

Pmin
i ≤ Pi(t +n)≤ Pmax

i n = 0, ...,Hu−1 (16)

• Proposed CCMPC-based energy management strategy for microgrids with power shortage

Considering uncertain behavior of µ̃i(t) in each microgrid and its influence on power interaction
(Pi j(t)) and taking into account the real-time power balance equations (11)-(12), xi(t) is also an
uncertain parameter. As a result, holding the hard constraint in the form of Equation (15) cannot
be fully guaranteed. Based on the chance-constrained optimization approach, this hard constraint
can be replaced with a probabilistic constraint in the form of Equation (17) which ensures that
the probability of not violating the constraint will be higher than a pre-specified confidence level
1−ρx

i .
P(xmin

i ≤ xi(t)≤ xmax
i )≥ 1−ρ

x
i (17)

Any real-time power deviation within the microgrid according to Equations (11) and (12) will
directly influence energy storage level in the battery. Considering Equation (11), it is possible that
power deviation cannot be fully compensated through storage system. In this case, the imbalance
power will be compensated by the main grid which ensures feasibility of the solution.

Adopting the proposed approach in [37]-[38] to derive solution strategy, the following struc-
ture denoted in Equation (18) is considered for each microgrids control law, where P̄i(t) and x̄i(t)
are related to the expected values of control and state variables, respectively. Moreover, ki de-
notes correction vector which is required to ensure stability of (Ai +Biki). In the examined energy
management problem, state variable refers to the SOC of the battery while decision variables are
considered as control variables.

Pi(t) = P̄i(t)+ ki(xi(t)− x̄i(t)) (18)

Using expected values for state and control variables, system dynamics can be written as follows.

x̄i(t +1) = Aix̄i(t)+ P̄batt,i(t) (19)
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P̄batt,i(t) =− ∑
j∈Ni

P̄i j(t)− P̄ig(t)+BiP̄i(t)+ µ̄i(t) (20)

Defining the state error as δxi(t) = xi(t)− x̄i(t), the dynamic of state error for the ith microgrid can
be written as

δxi(t +1) = (Ai +Biki)δxi(t)− ∑
j∈Ni

(Pi j(t)− P̄i j(t))+(µi(t)− µ̄i(t)) (21)

Taking into account covariance matrix of state PX ,i(t + 1) = E[δxi(t + 1)δxi(t + 1)T ] and control
variables PP,i(t +1) = E[δPi(t +1)δPi(t +1)T ], from Equations (18) and (21) we have:

PX ,i(t +1) = (Ai +Biki)PX ,i(t)(Ai +Biki)
T + ∑

j∈Ni

Wi j(t)+Wi(t) (22)

PP,i(t +1) = kiPX ,i(t +1)kT
i (23)

in which, Wi j(t) represents input covariance matrix of subsystem j from subsystem i point of view
at time instant t and Wi(t) denotes covariance value for µi(t).

Considering Equation (20), expected values of neighboring subsystems inputs (P̄i j(t +n)) dur-
ing the prediction horizon n = 0, ...,Hp− 1 are required to evaluate system dynamic [37]. In this
paper, these variables are considered as power references which are received initially from CEMS
and updated through the process using proposed strategy which will be introduced in section 3.2.3.
Moreover, according to the recursive update formulation of state variable covariance matrix rep-
resented through Equation (22), the input covariance matrices of neighboring subsystems will be
also needed. It is assumed that control agents have a good estimation of that after several rounds of
power exchanging with each other.

Since solving an optimization problem with probabilistic constraints is a challenging task,
chance constraints are required to be replaced with their deterministic counterparts in a suitable
manner. With the assumption of normal probability distribution for uncertain parameters, i.e.,
µ̃i(t)∼N (0,Wi(t)) and P̃i j(t)∼N (0,Wi j(t)), and linear properties of dynamic equations, deter-
ministic counterparts of the probabilistic constraints can be derived according to Equations (24)-
(27) at the price of suitable tightening of feasible region. In these equations, er f−1 denotes the
inverse of error function and 1−ρx

i and 1−ρ
p
i show the confidence level of the battery state and

control variables, respectively.
Without loss of generality of the paper, one can assume unknown distribution function for the

uncertain parameters and rely on Chebyshev-Cantelli inequality to extract deterministic counter
parts of chance constraints according to [37]-[38].

x̄i(t +n)≤ xmax
i −

√
2PX ,i(t +n)er f−1(1−2ρ

x
i ) n = 1, ...,Hp (24)

x̄i(t +n)≥ xmin
i +

√
2PX ,i(t +n)er f−1(1−2ρ

x
i ) n = 1, ...,Hp (25)

P̄i(t +n)≤ Pmax
i −

√
2PP,i(t +n)er f−1(1−2ρ

p
i ) n = 0, ...,Hu−1 (26)

P̄i(t +n)≥ Pmin
i +

√
2PP,i(t +n)er f−1(1−2ρ

p
i ) n = 0, ...,Hu−1 (27)
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In conclusion, the proposed stochastic energy management problem of microgrids with power
shortage could be reformulated as follows:

min
P̄i(t,...,t+Hu−1)

Hu−1

∑
n=0

f (P̄i(t +n)) (28)

f (P̄i(t)) =C(P̄i
CG,r(t))+ γi(t)P̄i

R(t) (29)

s.t (19), (20), and (22)-(27)

Solving the optimization problem at each sampling time, the expected optimal control sequence
P̄i(t), ..., P̄i(t+Hu−1) for each subsystem will be computed and thanks to Equation (18) the optimal
control law for the actual system will be achieved. Following receding horizon control strategy,
only the first sample of the optimal sequence is implemented and state variables are updated using
Equations (11) and (12) considering realized values of neighboring subsystems transferring power
as well as actual power generation of RESs and consumer demand. This procedure is summarized
in Algorithm 2.

Algorithm 2 Operating strategy for LEMSs dealing with power shortage
1: Measure the level of stored energy in the battery xi(t),
2: Solve the chance-constrained model predictive control problem of Equations (28)-(29) with

respect to Equations (19)-(20) and (22)-(27) and compute control sequence using Equation
(18),

3: Implement first sample of the optimal control sequence,
4: Update system state according to the actual load consumption and RESs generation using

Equations (11) and (12),
5: Calculate total cost including operation cost according to Equation (10) and penalty cost re-

sulted from real-time power imbalances using (∆+λ++∆−λ−),
6: Update power references for the following prediction horizon based on the received informa-

tion from neighboring LEMSs,
7: Shift prediction and control horizons one step and repeat the procedure for the next time inter-

val.

3.2.2. LEMSs for microgrids with power surplus
Microgrids in this group are committed to deliver specific amounts of power to the microgrids

with power shortage and also to the main grid based on their power surplus estimation. However,
considering intrinsic uncertainty of RESs production and variability of loads, the realized surplus
power might deviate from predicted values. Accordingly, LEMSs are responsible for developing
efficient strategies to compensate possible power deviations.

• Problem statement of microgrids with power surplus
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The energy management for these microgrids can be formulated as a tracking control problem
in presence of uncertainty. Problem formulation is represented through Equations (30)-(36); In
Equation (31), the first term penalizes the deviation of transferred power from associated reference
values (P̂i(t)), while the last term represents the penalty cost related to any deviation of SOC of
batteries with respect to the desired value (x̂i(t)). The control vector Pi(t) = [Pi j(t);Pig(t)] includes
power to be transferred to the neighboring microgrids as well as to the main grid and Bi = [−1 −1].
In these equations, Ri ∈ R|Ni|+1×|Ni|+1 and Qi ∈ Rn×n represent relative weighting factors while |Ni|
shows the number of neighboring subsystems of the ith microgrid. As the final goal is to manage the
uncertainty within the multi-microgrid system and to reduce unscheduled power exchange between
the microgrids network and the main grid, related weight coefficient of exchanged power with
upstream network in the matrix Ri is set relatively much higher than coefficients related to the
power transactions with neighboring subsystems as well as Qi elements.

min
Pi(t,...,t+Hu−1)

Hu−1

∑
n=0

J(Pi(t +n)) (30)

J(Pi(t +n)) = [(Pi(t +n)− P̂i(t +n))Ri(Pi(t +n)− P̂i(t +n))T

+(xi(t +n)− x̂i(t +n))Qi(xi(t +n)− x̂i(t +n))T ]
(31)

s.t xi(t +n+1) = Aixi(t +n)+Pbatt,i(t +n) (32)
Pbatt,i(t +n) = BiPi(t +n)+µi(t +n) (33)

µi(t +n) = µ̄i(t +n)+ µ̃i(t +n) (34)

xmin
i ≤ xi(t +n)≤ xmax

i n = 1, ...,Hp (35)

Pmin
i ≤ Pi(t +n)≤ Pmax

i n = 0, ...,Hu−1 (36)

• Proposed CCMPC-based energy management strategy for microgrids with power surplus

Taking into account the uncertainty in RESs production and local demand, the state constraint
of Equation (35) might not be fully guaranteed. Accordingly, this constraint should be replaced
with a probabilistic constraint in the form of Equation (17). Finally, adopting the same approach
described in the previous sections, the proposed CCMPC-based energy management strategy is
formulated as follows. At each time step t, each microgrid measures the value of stored energy in
the battery xi(t) and solves optimization problem according to Equations (37)-(45). The optimal
control sequence P̄i(t), ..., P̄i(t +Hu− 1) is then utilized in order to determine optimal control in-
puts to be implemented in actual system using the control law introduced in Equation (18). This
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procedure is summarized in Algorithm 3.

min
P̄i(t,...,t+Hu−1)

Hu−1

∑
n=0

J(P̄i(t +n)) (37)

s.t x̄i(t +n+1) = Aix̄i(t +n)+ P̄batt,i(t +n) (38)
P̄batt,i(t +n) = BiP̄i(t +n)+ µ̄i(t +n) (P̄i(t) = [P̄i j(t); P̄ig(t)]) (39)

x̄i(t)≤ xmax
i −

√
2PX ,i(t)er f−1(1−2ρ

x
i ) n = 1, ...,Hp (40)

x̄i(t)≥ xmin
i +

√
2PX ,i(t)er f−1(1−2ρ

x
i ) n = 1, ...,Hp (41)

P̄i(t)≤ Pmax
i −

√
2PP,i(t)er f−1(1−2ρ

p
i ) n = 0, ...,Hu−1 (42)

P̄i(t)≥ Pmin
i +

√
2PP,i(t)er f−1(1−2ρ

p
i ) n = 0, ...,Hu−1 (43)

PX ,i(t +1) = (Ai +Biki)PX ,i(t)(Ai +Biki)
T +Wi(t) (44)

PP,i(t +1) = kiPX ,i(t +1)kT
i (45)

3.2.3. Proposed updating process of power reference trajectories
Utilizing recent information of uncertain variables, subsystems with power surplus could achieve

more accurate estimations for the power to be transferred to the neighboring subsystems through the
process. LEMSs can benefit from communication technologies in microgrids network in order to
exchange updated information and improve multi-microgrid system performance. Accordingly, in
this paper it is proposed that in microgrids with power surplus, after implementing the first sample
of optimal control sequence, the remaining samples (P̄i j(t + 1), ..., P̄i j(t +Hu− 1)) can be used to
update the trajectory of power references for the following prediction horizon. It is worth noticing
that according to Equation (31), new references will not deviate considerably from the day-ahead
scheduled trajectory. The proposed hierarchical energy management strategy is illustrated in Figure
2.

Algorithm 3 Operating strategy for LEMSs dealing with power surplus
1: Measure the level of stored energy in the battery xi(t),
2: Solve the chance-constrained model predictive control problem of Equation (37) with respect

to Equations (38)-(45) and compute control sequence using Equation (18),
3: Implement first sample of the optimal control sequence,
4: Update system state according to the actual load consumption and RESs generation using

Equations (32) and (33),
5: Evaluate cost function considering penalty cost resulted from real-time power imbalances,
6: Find new power references utilizing optimal control sequence,
7: Communicate new references for the power to be transferred to neighboring microgrids during

the next prediction horizon,
8: Shift prediction and control horizons one step and repeat the procedure for the next time inter-

val.
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Figure 2: Proposed hierarchical EMS structure

4. Simulation Results

In this section, performance of the proposed strategy is evaluated for a multi-microgrid system
as illustrated in Figure 1. It is assumed that the system contains three modified CIGRE medium
voltage microgrids with total installed capacity of 3790 kW , 3700 kW and 4150 kW for microgrids
1, 2 and 3, respectively. CIGRE benchmark is based upon an European medium-voltage distribu-
tion network [39]-[41]. Sitting and sizing of the distributed energy resources (DERs) within each
microgrid are presented in Table 1. In order to further clarify the system setup, single-line diagram
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of the modified benchmark for microgrid 1 is shown in Figure 3. The peak load of microgrids 1, 2
and 3 in the modified system is assumed to be 2600 kW , 2700 kW and 2750 kW , respectively. Diesel
generators operational cost parameters are represented in Table 2 [42]. Other required simulation
data is given in Table 3 in which λ− and λ+ refer to penalty coefficients related to the real-time
power shortage and surplus, respectively. As it can be seen the penalty coefficients are assumed to
be higher with respect to the cost of on-site generators to show the importance of pre-scheduling for
power exchange with the main grid. The initial value of SOC for all of the microgrids is assumed
to be 50% of the nominal capacity. Moreover, minimum and maximum SOC values are set to 20%
and 80% of battery nominal capacity of each microgrid, respectively.

Day-ahead predicted values of power balance variables for three microgrids which are calcu-
lated based on the forecasted data of RESs generation and consumer demand, are represented by
solid lines in Figure 4. CEMS collects this information from LEMSs and determines the optimal
power scheduling. Day-ahead power scheduling results for three microgrids during adopted opti-
mization horizon are also shown in Figure 4. This information is sent back to the LEMSs in the
lower level to be considered as reference values for future power exchanges. Positive values for
Pi j represent power is transferred from microgrid i to microgrid j and vice versa. Based on the
assumed power balance profile of microgrids, the entire optimization horizon can be divided into
four 6-hour intervals in which role of microgrids changes according to their net energy contents.

Table 1: DERs sitting and sizing specifications

Microgrid 1 Microgrid 2 Microgrid 3
Node Type PMax[kW ] Node Type PMax[kW ] Node Type PMax[kW ]

3 PV 80 2 PV 40 3 PV 80
4 PV 80 4 PV 120 4 PV 80
5 PV 120 5 PV 160 5 PV 80
5 BSS∗ 900 5 DG 300 6 WT 1000
6 PV 120 6 WT 1000 6 WT 300
7 WT 1000 6 WT 150 6 WT 150
7 WT 150 6 WT 150 6 WT 150
7 WT 150 7 PV 120 7 PV 80
7 WT 150 8 PV 160 7 PV 40
8 PV 120 9 PV 120 8 PV 160
9 PV 120 10 PV 160 8 DG 400
9 DG 300 10 PV 20 9 PV 120

10 PV 160 10 BSS 800 10 PV 160
11 PV 40 13 DG 400 12 DG 400
13 DG 300 13 BSS 950
∗ BSS: Battery Storage System
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Table 2: Cost coefficients of diesel generator units (C(P) = aP2 +bP+ c)

Unit Capacity (kW ) a j(M.U∗/kWh2) b j(M.U/kWh) c j(M.U)

1 300 0.0061 0.091 0.184
2 400 0.0056 0.142 0.221
∗ M.U: monetary unit
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Figure 3: Single-line diagram of microgrid 1 based on modified CIGRE benchmark

Table 3: Simulation data
Parameter Value Unit Parameter Value Unit

λ− = λ+ 20 [M.U] Pmax
12 ,Pmax

21 1000 kW
γi i = 1,2,3 10 [M.U] Pmax

13 ,Pmax
31 1100 kW

R
[

ri j 0
0 ri

g

]
=

[
1 0
0 5

]
[M.U] Pmax

23 ,Pmax
32 1200 kW

Q 0.2 [M.U] Pmax
ig i = 1,2,3 1500 kW

HP,HU 4 Hour ρ
p
i = ρx

i i = 1,2,3 20 %
T 24 Hour Ai i = 1,2,3 1
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Figure 4: Predicted power balance and energy exchange references of (a) microgrid 1, (b) microgrid 2 and (c) micro-
grid 3

As it can be seen in Figure 4, microgrid 3 suffers from power shortage during the the first two
intervals (i.e., 01:00-12:00), while microgrid 1 has power surplus during this time. Accordingly,
microgrid 1 is committed to deliver specific amounts of power to microgrid 3 and the main grid
during 1:00-6:00 and to microgrid 2 and microgrid 3 during 7:00-12:00, (see Figure 4-(a)). Dur-
ing 13:00-24:00, microgrid 1 suffers from power shortage and receives power from neighboring
subsystems and the main grid.

Implementing Algorithm 3 by the microgrids with power surplus, associated tracking perfor-
mance is represented in Figure 5 in which tracking intervals of each microgrid are specified. These
results show the importance of taking into account the uncertainty of neighboring subsystems be-
havior. As an example, in the time interval between 13:00-18:00 in which microgrid 3 is committed
to transfer power to other two microgrids, in case microgrids 1 and 2 do not account for the uncer-
tainty of P31 and P32, their operation could be affected by local uncertainty of microgrid 3 which
might result in real-time supply-demand imbalance and consequently large penalty costs. Adopting
Algorithm 2, microgrids with power shortage manage energy level of their batteries and control the
output power of on-site generators taking into account this source of uncertainty. Table 4 repre-
sents hourly generation profiles of microgrid 1 and 2 during the third time interval for two different
cases. Case 1 is related to the proposed CCMPC-based strategy while case 2 refers to the MPC-
based EMS approach where no uncertainty is assumed in predicted values. Accordingly, in case
2 the energy management problem for microgrids with power shortage is considered according to
Equations (9)-(16) and for microgrids with power surplus, as represented in Equations (30)-(36).
However, the proposed updating mechanism for power exchange references is adopted in both
cases. As it can be seen in the table, hourly generation of both microgrids in the first case is higher
than those related to the second case. Although this conservative strategy results in high operating
cost, it is an uncertainty management tool to improve the reliability of the microgrid and to prevent
from higher penalties resulted from possible real-time power deviations.

According to Figure 5, a good tracking performance has been achieved for power exchange
between multi-microgrid system and the main grid during the entire optimization horizon which
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complies with our original goal to confine uncertainty within the microgrids network and to min-
imize unscheduled power transactions with the main grid. For more clarifying the issue, the total
transferred power between the microgrids network and the main grid including real-time power
imbalances are depicted in Figure 6.
Furthermore, Figures 7 and 8 represent normalized SOC of energy storage devices in each micro-
grid in cases 1 and 2, respectively. It is worth mentioning that, adopting the proposed approach for
microgrids with power shortage, the SOC will be kept at higher levels with respect to deterministic
case in order to prevent from real-time power shortage.
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Figure 5: Tracking performance of the examined microgrids using proposed approach (Case 1)

Table 4: Hourly generation profiles of Microgrid 1 and Microgrid 2 during the third interval [kW]

Hour
Case 1 Case 2

Microgrid 1 Microgrid 2 Microgrid 1 Microgrid 2

13:00 0.00 0.00 0.00 0.00
14:00 37.10 48.34 5.14 39.90
15:00 5.51 44.58 0.00 38.02
16:00 30.15 0.00 12.48 0.00
17:00 0.00 0.00 0.00 0.00
18:00 0.00 0.00 0.00 0.00
Total 72.75 92.92 17.62 67.92
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Figure 6: Daily power exchange between microgrids network and the main grid (Case 1)
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Figure 7: Normalized SOC of energy storage devices (Case 1)

4.1. Robustness Analysis
In order to show effectiveness of the proposed approach in considering different sources of

uncertainties and benefiting from communication strategies to update power references, two other
test cases named Case 3 and Case 4 are considered. Case 3 adopts proposed CCMPC-based strategy
while Case 4 relies on the MPC-based approach. The difference between these cases and Cases 1
and 2, is that LEMSs only rely on the day-ahead power scheduling received form the CEMS and
the proposed method for updating power references is not implemented in the system.

Monte Carlo algorithm has been used to generate discrete random scenarios representing the
uncertain nature of RESs production and consumer demand. Random scenarios have been gen-
erated from normal distributions where forecasted quantities were considered as mean values and
standard deviations were set to 5% of the forecasted values for all microgrids.

The average of total real-time power deviations for all 4 cases are given in Table 5 in which, ∆+

shows the power surplus while ∆− represents power shortage. These parameters are informative
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Figure 8: Normalized SOC of energy storage devices (Case 2)

indices to evaluate uncertainty management capabilities of different strategies. The lower the values
of ∆+ and ∆−, the more robust strategy and consequently the lower penalty costs.

Table 6 demonstrates the daily average cost of microgrids including operational cost and penalty
cost which is resulted from real-time power imbalances. According to Table 5 and Table 6, the min-
imum cost and real-time power imbalances are related to the proposed CCMPC-based approach
with communication which approves its superiority in comparison with other strategies. Compar-
ing total cost and power deviation values in the proposed approach with the obtained result from
deterministic MPC-based strategies, it can be concluded that in a multi-microgrid network, neglect-
ing effects of uncertainty in exchanged power among the neighboring subsystems and relying on the
intrinsic robustness of the receding horizon strategy of decision-making, will result in performance
degradation of the whole system.

Moreover, as it can be seen from simulation results in different cases, strategies with commu-
nication among LEMSs to update power references based on the most recent information of RESs
production and loads, result in better performance in terms of cost and real-time power balances
with respect to those strategies without communication and updating mechanism (i.e., case 1 with
respect to case 3 and case 2 with respect to case 4). Breakdown of average daily cost of multi-
microgrid system by operational and penalty costs are denoted in Figure 9. According to this
figure, stochastic methods result in more operating cost in comparison with the deterministic coun-
terpart strategies (i.e., case 1 with respect to case 2 and case 3 with respect to case 4). Obviously,
the extra cost of stochastic methodologies is related to improving system robustness and avoiding
real-time power imbalances. Robustness could be approved through penalty cost represented in the
same figure. As it can be seen, penalty cost has substantially increased in deterministic cases as a
result of more real-time power imbalances.
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Table 5: Total average real-time power imbalances in 100 random scenarios [kW]

Case No. Strategy ∆+ ∆−

1 Proposed CCMPC-based strategy with communication 51.59 29.31
2 MPC-based strategy with communication 107.37 110.37
3 Proposed CCMPC-based strategy without communication 53.28 33.57
4 MPC-based strategy without communication 111.19 113.55

Table 6: Average daily cost of microgrids network in 100 random scenarios [M. U]

Case No. Microgrid1 Microgrid2 Microgrid3 Total cost

1 30411.75 33158.65 31899.98 95470.38
2 30450.74 33019.24 32609.58 96079.57
3 33246.21 37065.14 34469.96 104781.31
4 33393.47 36807.73 35054.25 105255.46
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Figure 9: Breakdown of multi-microgrid system daily cost to operational and penalty costs [M. U]

5. Conclusion

In this paper, a hierarchical stochastic energy management strategy was proposed for a multi-
microgrid system. It was shown in our studies that interconnected microgrids are imposed to dif-
ferent endogenous and exogenous sources of uncertainties that need to be accurately modeled in
problem formulation. The goal of interconnected microgrids in this paper was to confine uncer-
tainty inside the microgrids network and to minimize the unscheduled power exchange with the
main grid considering system cost. Adopting receding horizon control approach, the problem was
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formulated in the framework of chance-constrained model predictive control. Moreover, it was pro-
posed that in order to benefit from the most recent information of the uncertain parameters, local
energy management systems could communicate with each other to update reference trajectories
for power transactions. In order to evaluate effectiveness of the proposed methodology, simulation
studies were carried out in different test cases. According to simulation results, through imple-
menting the proposed methodology, considerable reduction in multi-microgrid system costs was
achieved. Moreover, results demonstrated that although accounting for different sources of uncer-
tainties results in more operating cost, it prevents from large penalty values. Furthermore, it was
shown that by exploiting most recent information of uncertain parameters through inter-microgrids
communication, real-time power imbalances and consequent penalty costs could be decreased.

The main drawback of MPC-based approaches is related to the computational time which de-
pends on many factors including prediction and control horizons and the number of control pa-
rameters which obviously increases with the number of microgrids. This was one of the most
important motivations of the authors to move from centralized approaches to hierarchical and dis-
tributed methodologies. Since every microgrid only solves a local optimization problem, flexibility
and scalability of this approach is much better than centralized techniques. However, even in de-
centralized approaches, increasing the number of subsystems will result in more computational and
communicational time which should be handled by appropriate solutions such as event-based or
learning-based mechanisms.
Finally, during the paper communication and power line failures were not taken into account. Fu-
ture work will focus on isolated mode of operation for interconnected microgrids as well as con-
sidering possibility of communication links failure.
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