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Abstract 

Transactive energy as an emerging approach and sustainable technology can provide an exceptional 

opportunity for microgrids to exchange energy with each other for greater benefits in the cluster mode. 

In this mode of operation, some collective and individual interests can be realized for the microgrids 

based on transactive energy management. This paper proposes mathematical models for microgrid 

clusters using a transactive energy structure to manage energy exchange in the smart grid. In order to 

make an informed decision for the operation of microgrid clusters, chance-constrained programming 

is employed to consider the uncertainties in balancing collective and individual interests under the 

transactive energy management. In this research, sixteen commercial microgrids are considered in the 

process of evaluating the efficiency of the proposed models using the chance-constrained 

programming method. Simulation results prove the effectiveness of the transactive energy approach 

accompanying the implementation of chance-constrained programming in energy management of the 

microgrid clusters.    
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energy management, uncertainty handling  
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Nomenclature 

Abbreviations ItS  
The initial stored thermal energy in thermal 

storage. 

CCHP    Combined cooling, heating and power  /
/

Max Max

Max

eL cL
hL

 
The maximum amount of 

electrical/cooling/ heating energy trading in 

the LTM. 

CCP       Chance-constrained programming  MaxeM  
The maximum amount of energy trading 

between microgrids with the main grid. 

CDFs     Cumulative density functions  minB  
The minimum storage limit coefficient of 

battery. 

DERs     Distributed energy resources  minTs  
The minimum storage limit coefficient of 

thermal storage. 

FFR       Fast Forward Reduction  l  
The number of random variables in the 

CCP model. 

iCDF      
Inverse cumulative distribution 

functions 
Pr  The probability of scenario  . 

LHS       Latin hypercube sampling  /C H   
The thermal efficiency of cooling/heating 

component. 

LTM      Local transaction market  The user-defined confidence level 

PGU        Power generation unit Variables  

RERs    Renewable Energy Resources 
,

,

/m t

m t

CLtM

HLtM
 

The cooling/heating energy transmitted 

from LTM to microgrid m at time t. 

SRS       Simple random sampling 
,

,

/m t

m t

CMtL

HMtL
 

The cooling/heating energy transmitted to 

the LTM from microgrid m at time t. 

Indices  
,

,

/m t

m t

XCin

XCout
 

The cooling energy transmission/ 

contribution state of microgrid m. 

m  Index of microgrids. , ,/m t m ttSc tSd 
The charging/discharging rate of thermal 

storage. 

 

 Index of scenarios. 
,

,

/m t

m t

XtSc

XtSd
 

The charging/discharging state of thermal 

storage in microgrid m at time t.  

t Index of time. 
, ,

, ,

/m t

m t

eBd

eBc





 
The discharging/ charging rate of the 

battery storage. 

Parameters 
, ,

, ,

/m t

m t

XBd

XBc





 
The discharging/charging state of battery 

storage in microgrid m. 

,

,

/m t

m t

tCLO

tHLO
 

The cooling/heating energy load in 

microgrid m at time t. 
, ,m teNtM 

 The electrical energy purchased from the 

power grid by microgrid m. 

/tSc tSd   
The charging/discharging efficiency of 

thermal storage. 
, ,m teMtN 

 The electrical energy sold to the power grid 

by microgrid m. 
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min min/Bc Bd   

The coefficient for minimum 

charging/discharging limit of a battery 

storage. 

 

, ,m tePGU 
 The electricity generated by PGU in 

microgrid m. 

max max/Bc Bd   

The coefficient for maximum 

charging/discharging limit of a battery 

storage. 

 

, ,m tePV 
 The electricity generated by solar PV panel 

in microgrid m. 

min

min

/Tsc

Tsd




 

The coefficient for minimum 

charging/discharging limit of a thermal 

storage. 
, ,m teLtM 

 The electricity transmitted from LTM into 

microgrid m. 

max

max

/Tsc

Tsd




 

The coefficient for maximum 

charging/discharging limit of a thermal 

storage. 
, ,m teMtL 

 The electricity transmitted to LTM from 

microgrid m. 

,pgu pgu   The coefficients of fuel to electricity 

conversion of PGU.  

,

,

/m t

m t

XEin

XEout
 

The electricity transmission/ contribution 

state of microgrid m. 

/Bd Bc   
The discharging /charging efficiency of 

the battery storage. ,m tFbo The fuel consumed by the boiler unit. 

t  The decision time interval. , ,m tFpgu 
 The fuel consumed by the PGU. 

,m teLO  The electrical energy load. ,

,

/m t

m t

XHin

XHout
 

The heating energy transmission/ 

contribution state of microgrid m. 

,bo pgu   The efficiency of boiler and fuel to 

thermal conversion of PGU. , ,m tXpgu  
The ON or OFF state of PGU in microgrid 

m. 

,tpNtM 
 The electricity purchasing price for 

microgrids. , ,m teB  
The stored electrical energy in battery 

storage in microgrid m. 

,tpMtN 
 The electricity selling price for 

microgrids. ,m ttES The stored thermal energy in thermal 

storage in microgrid m. 

tpBO  The fuel price for boiler at time t. 
.

.

/m t

m t

tEcS

tEhS
 

The thermal energy into the thermal storage 

from cooling/heating process. 

tpPGU  The fuel price for PGU at time t. 
,

,

/m t

m t

tECc

tEHc
 

The thermal energy provided to 

cooling/heating component. 

IeB  
The initial stored electricity in battery 

storage. ,m ttECCS 
The thermal energy provided to thermal 

storage from the CCHP system. 

tEPL  The electrical energy price in the LTM. 
,

,

/m t

m t

tESCc

tESHc
 

The thermal energy transmitted to 

cooling/heating component from thermal 

storage. 

tHPL  The heating energy price in the LTM.  The percentage of cost-saving of 

microgrids in Model IV. 

tCPL  The cooling energy price in the LTM. x The vector of decision variables 

θ 
The satisfactory level of individual 

interests in Model III. 
 The vector of K random variables 
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1. Introduction 

Transactive energy is an intriguing subject in the energy market today to balance energy resources in 

ways we have not done before. Transactive energy improves the way we use power, facilitates the 

integration of intermittent renewable energy and improves power grid reliability (Daneshvar et al., 2020). 

In this regard, operation of the high level of Renewable Energy Resources (RERs) for clean energy 

production is considered as a priority research topic (Sedighizadeh et al., 2018) due to significant 

advantages of them such as reducing energy production cost and mitigating greenhouse gas emissions 

(Shezan et al., 2016). Microgrids, as essential components of future power grid especially in the 

integration of RERs (Prathapaneni and Detroja, 2019), can serve as transactive energy agents to provide 

beneficial solutions to the electricity utilities at distribution levels, and to the power system at large scale 

(Rahimi et al., 2016). Additionally, a more reliable power supply can be realized in both autonomous 

islanding and grid-connected as the two modes of the operation of these systems (Justo et al., 2013). In 

this industrial landscape, advanced emerging technologies integrated with a transactive energy network 

allow the interconnected operation of microgrids (Prinsloo et al., 2018). This leads to greater energy 

efficiency along with some collective and individual interests under the cluster mode of communication 

(Bazmohammadi et al., 2019b). For instance, in (Moayedi and Davoudi, 2015) a distributed control 

mechanism manages the power-sharing between the microgrids within a cluster, which reduces the 

maintenance cost, improves the system reliability and availability, and increases the overall lifespan of 

the network. Moreover, multiple interconnected microgrids are considered in (Utkarsh et al., 2018) for 

developing an efficient strategy for energy exchanging and scheduling of internal smart devices. Based 

on the developed strategy, each microgrid aims not only to manage the internal devices, but also to 

optimize its energy trading to gain benefits. To obtain the mentioned objectives, the authors propose 

computational intelligence-based algorithm and distributed model predictive and simulation results are 

analyzed based on the different scenarios. A theoretical framework is proposed by Wang et al. in (Wang 

and Huang, 2016) to efficiently explore the various RERs for the cooperative planning in interconnected 

microgrids. Total system cost is minimized based on the proposed framework and due to the behaviors 

of microgrids, the fair cost sharing method is also designed to provide benefits for all microgrids from 

the cooperative framework. To well manage energy production and consumption in presence of RERs, 

the authors in (Lu et al., 2017) propose a two-level optimization model for the energy control between 

the microgrid clusters and distribution systems. The operation of the distribution network is considered 

in the upper level, while the coordinated operation of microgrids is investigated at the lower level. The 

modified hierarchical genetic algorithm is applied to solve the model and the interactive game matrix is 

also employed to organize the energy trading between the microgrids and distribution network. 
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Currently, one major research direction in the microgrid area is optimal energy management using 

emerging technologies that can control and manage the energy exchange and load sharing in the smart 

grid with high penetration of distributed energy resources (DERs). For example, a deterministic energy 

management system is proposed in (Kanchev et al., 2011), which consists of a PV system along with 

a gas microturbine and embedded storage systems, for business customers of a microgrid in the smart 

grid. Also, Le Anh et al. propose a hierarchical distributed predictive control approach for energy 

management in microgrids with the aim of providing an innovative and comprehensive framework to 

maximize their benefits (Dehghani-Pilehvarani et al., 2019). With the widespread presence of RERs 

in the grid, distributed economic dispatch and robust energy demand management are considered in 

(Zhang et al., 2013) for the grid-connected mode of microgrids with high RERs penetration. Because 

of uncertainties in the energy produced by RERs, establishing an energy balance between supply and 

demand has become more challenging. Thus, in order to assess the supply-demand gap in (Nunna and 

Doolla, 2014), an intelligent agent-based framework is applied for demand-side energy management 

in multi-microgrids with virtual market environments structure. In addition to the aforementioned 

studies, a hierarchical power scheduling method is investigated in (Bazmohammadi et al., 2019a; 

Wang et al., 2015) to optimally manage the power exchange, distribution and storage in the power grid 

with cooperative microgrids. Zhao et al. present an optimal solution for resource management 

problems by enhancing the coordination and communication based on the multi-agent framework for 

microgrids in (Zhao and Ding, 2017). In (Wang et al., 2017), a classical two-stage stochastic 

programming model is employed to control the local energy generation and demand in the presence of 

intermittent RERs with uncertainty, where modeling of the arbiter’s problem and the agent decision 

problems are considered as the first-stage master problem and second-stage subproblems, respectively. 

An energy management and control system in the presence of hybrid energy resources such as solar 

and wind is presented in (Merabet et al., 2016) for a laboratory-scale microgrid. In this system, various 

control configurations are also tested on the proposed microgrid with open-architecture platform. In 

(Dehghanpour and Nehrir, 2017), an agent-based hierarchical model is suggested for power 

management in a distribution system with several microgrids. This research is accomplished in the 

lowest and highest levels of the proposed model to consider optimal energy pricing.  

In addition to the reported research studies on multiple microgrids, the benefits of microgrid clusters 

are also discussed in the literature. For example, the self-organized property of microgrid cluster to 

guarantee energy efficiency and reliability of sensitive loads after extreme events in the isolated mode 

of microgrid cluster is investigated in (He and Giesselmann, 2015). Moreover, the work reported in 

(Marvasti et al., 2014) introduces a hierarchical bi-level decision framework to coordinate energy trade 
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among the distribution grid and microgrid clusters along with the optimal operation of these types of 

microgrids. The potentials of transactive energy for optimal operation and energy management of 

microgrids is also investigated in (Nunna and Srinivasan, 2017), where an agent-based framework is 

proposed to solve the aggregated complexity created by microgrids with comprehensive energy 

management in distribution systems. One of the shortcomings of the current research studies is that 

the uncertainties in some parameters under various scenarios along with realistic conditions of 

operation are not properly considered in the energy management of microgrid clusters with a 

transactive energy paradigm.  

In this paper, optimal scheduling of the cooperative microgrids is carried out by proposing the four 

operational models for microgrids in the cluster mode. The transactive energy concept is applied to 

multiple microgrids in order to manage and control energy exchange effectively. The overall structure 

of this research is shown in Fig. 1.  

  

Fig. 1. The overall structure of this research 

According to Fig. 1, four decision-making scenarios (Models I-IV) are proposed for energy 

management of microgrid clusters with some collective and individual interests based on the 

transactive energy concept. In this framework, each microgrid can trade energy with other microgrids 

and with the power grid based on the new proposed models. In this research, minimizing the total 

energy cost is assumed as a collective interest for the cluster and maximizing the relative amount of 

cost savings is also considered as individual interest. Model I, proposed in this paper, aims at 

evaluating the energy exchange in a way to maximize the individual interests where microgrids do not 

trade energy among themselves. Model II focuses on maximizing the collective interests, in which 
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microgrids can exchange energy with each other to reduce their energy costs. Model III, on the other 

hand, considers both individual and collective interests so that a satisfactory level of individual 

interests is targeted to be satisfied in the microgrid clusters. Models IV is able to maximize individual 

interest as well as collective interests. Indeed, this model realizes the same percentage of cost savings 

in the energy exchanging process. For this study, sixteen commercial microgrids located in the Chicago 

area are intended, which the possibility of the electrical and thermal energy trading is provided for 

them based on the transactive energy paradigm. The chance-constrained programming (CCP) as an 

optimization tool is effectively applied not only to consider realistic conditions of the problem but also 

to achieve certain objectives. In this respect, Latin hypercube sampling (LHS) and fast forward 

reduction methods are used for scenario generation and reduction, respectively. 

The contributions of this paper are described as follows: 

 Energy exchanging, control, and management between microgrids are effectively considered 

by proposing the various operational models to provide both the individual and collective 

interests simultaneously for the participated microgrids in the local energy trading market.   

 The transactive energy concept is applied in structuring some of the operational models not 

only to reduce the system dependency to the main grid but also to provide the same percentage 

of cost-saving for the microgrids.  

 The CCP method is employed for modeling some existing uncertainty parameters along with 

considering the realistic condition of a problem for applying this research to the large-scale 

practical cases. 

The remainder of this paper is organized as follows. Section II provides the general theory behind the 

CCP, LHS method, and fast forward reduction technique. Section III drives the modeling framework 

for microgrid clusters. The operation decision models for transactive energy management are presented 

in Section IV. Section V shows the numerical results of the proposed models for microgrid clusters. 

Finally, Section VI concludes the paper. 

2. Background and assumptions 

2.1. Chance-constrained programming (CCP) 

Stochastic programming and CCP are two popular tools that can be employed as probabilistic 

optimization methods to manage random uncertainties (Marino et al., 2018). Chance-constrained 

optimization is stochastic programming that uses probabilistic measures over the constraints with 

uncertainty parameters (Frick et al., 2019). Indeed, for risk-based decision making, this approach is 

deemed as a typical model for stochastic programming. The CCP technique is an effective way to 
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capture the fluctuations of different uncertain parameters, which are intended as the random variables 

and are modeled using the related probability density functions. This approach has several remarkable 

advantages that attempt to reconcile optimization over uncertain constraints (Schwarm and Nikolaou, 

1999). Based on this method, a stochastic programming model can be converted to the equivalent 

deterministic one while the CCP facilitates the incorporation of the stochastic programming with other 

uncertain optimization techniques such as fuzzy mathematical programming (Huang et al., 2012). The 

CCP method enables the objective function to be maximized or minimized subject to constraints with 

uncertain parameters and specified predetermined confidence levels. The decision-makers can 

determine these confidence levels as appropriate safety margins. Indeed, the decision-makers can 

adopt the optimal strategies by receiving valuable information from the CCP approach regarding the 

tradeoffs between the prescribed level of probability and the objective function’s tolerance values of 

the constraints (Chen et al., 2013). On the other hand, the CCP method is incorporated with the scenario 

generation methods for probabilistic evaluating the problem considering various states of the uncertain 

parameters’ occurrence. Generating numerous scenarios in the CCP is a useful way for considering 

almost all occurrence states of the uncertain parameters and for realistic modeling of the system. 

However, evaluating a large set of scenarios could be complex and time-consuming, which brings high 

computational burdens accordingly making such algorithms inappropriate for practical problems. In 

addition to the aforementioned disadvantages, the CCP method cannot provide robust conditions for 

the systems that face a high level of uncertainties in the presence of numerous RERs. However, in this 

paper, the CCP method is used accompanying the scenario reduction approach for reducing the number 

of generated scenarios to overcome the challenges regarding the complexity, high computational 

burden, and time-consuming caused by a large number of scenarios. Generally, a CCP problem can be 

defined as follows: 

min ( , )
x

f x   (1) 

Subject to:  Pr{ ( , ) 0,   1, , }ig x i k     (2) 

where, ( , )f x  is the objective function, which typically contains random variables, x is the vector of 

decision variables and   presents the vector of K random variables with the cumulative density 

functions (CDFs) ( ) Pr( ) ( 1, )
l lF z z l K    . Equation (2) describes the set of joint probabilistic 

constraints in which probability measure is denoted by Pr(), and the set of constraints is denoted by 

1, , kg g  which includes random variables. The parameter   is a user-defined confidence level 

applied to the probabilistic constraints. In another word, the probability of satisfying the equations 
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with uncertainty parameters is considered to be greater than   % in the presence of the stochastic 

behaviors of the uncertainty parameters. Indeed, at least, the   % of the generated scenarios for the 

uncertainty parameters should satisfy the related equations in the CCP method. Therefore, the amount 

of parameter   is intended to be equal to 90 % for this research i.e. only 10% of generated scenarios 

are allowed to violate the related constraint with the aim of considering the probabilistic nature of the 

problem based on the CCP method. The probability of k individual constraints is defined using the 

joint probability. Through considering the joint distribution of  , a multidimensional integral can be 

used to directly find the solution to the joint CCP problem. Nevertheless, the non-convex solution 

space created by inappropriate numerical processing of multidimensional integration is a basic 

problem for this method. Hence, generating a set of individual chance constraints from the 

decomposition of the joint chance constraint is considered to find the solution to the CCP problem 

(Mühlpfordt et al., 2018). The complete descriptions and model of the CCP approach can be found in 

(Hajian et al., 2012). 

2.2. Latin Hyperbolic Sampling method (LHS) 

In order to solve the probabilistic problems such as probabilistic power flow in the power system, 

Monte-Carlo simulation and simple random sampling (SRS) are utilized, but the large computational 

burden is a basic drawback of this method (Fioriti and Poli, 2019). The LHS is one of the powerful 

stratified sampling methods for scenario generation. This approach is more robust and can cover a 

large number of input random variables in a large sampling space compared to the SRS method for the 

same sample size (Chen et al., 2012). The key principles of LHS can be found in (Yu et al., 2009).  

2.3. Fast Forward Reduction method (FFR) 

In power systems, multistage stochastic programs are applied often in modeling risk management 

problems. All generated scenarios and corresponding probabilities are taken into account in the 

multivariate random data process. In practical problems, considering all scenarios will lead to 

computational complexity and a time-consuming solution. Because of the time limitation of such 

problems, considering all scenarios in solving the problem is not practical (Dolatabadi and Mohammadi-

Ivatloo, 2017). Thus, choosing candidate scenarios among the generated scenarios would be essential for 

such problems. Therefore, scenario reduction methods are proposed for the scenario-based problems. 

The most effective one is the fast forward reduction method. Algorithm 1 presents the complete process 

of the fast forward reduction method in reducing the number of generated scenarios (Wu et al., 2007). 
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Regarding this algorithm, let ( :  1,..., )N    indicate N   different scenarios, which Pr presents the 

probability of scenario  . 
,DS  denotes the distance of scenario pair ( , ).   

Algorithm 1 Scenario reduction process using the fast forward reduction method  

Step 1: Set   is the initial set of scenarios; DR states the scenarios to be deleted so that the 

initial DR  are null. 

Compute the distances of all scenario pairs: 
, ( , ) ; , 1,...,DS DS N        

   

Step 2: For each scenario , compute ( ) Pr . ( , ) ; 1,...,PR DS N    
 

    



  ;   is the 

scenario index that has the minimum distance with scenario  . Choose  so that 

min   , 1,...,PR PR N    

Step 3:    ,  ;  Pr Pr Pr ;DR DR         

Step 4: Repeat steps 2 to 4 until the number of scenarios to be deleted meets the target. 

This approach works based on the Kantorovich distance theory. In other words, the distance of each 

scenario is computed with other scenarios and the candidate scenarios are selected from the scenarios 

with the minimum distance to the other scenarios (Steps 1 and 2). In this process, the probability of the 

selected scenarios is updated by adding the probability of the corresponding deleted scenarios to the 

previous probability of the selected scenario (Step 3). Detailed information on this approach is presented 

in (Wu et al., 2007) and (Keyvanloo et al., 2015).  

3. Comprehensive operational modeling framework for microgrid clusters   

3.1. System architecture for microgrids 

In this study, sixteen commercial microgrids in a cluster together with the needed infrastructure for 

communications with the local transaction market (LTM) and power grid are considered. All 

components used in each of the microgrids and their relationships are illustrated in Fig. 2. Each 

microgrid is equipped with energy generation components, storage systems, and loads. In this research, 

combined cooling, heating and power (CCHP) as well as solar PV panels are assumed to be energy 

generation resources for each microgrid. In addition, electrical and thermal energy storage and their 

associated loads are also considered for each microgrid. The CCHP system is one of the more efficient 

devices in the microgrid structure (Yousefi et al., 2017) and it consists of two components, including 

power generation units (PGUs) and boilers. The PGU unit has a gas turbine for electricity generation. 

The heat energy output of this unit is utilized in the heat recovery process. The boiler unit in the CCHP 
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system is used to compensate for the shortages of thermal energy through the conversion of gas fuel 

into heat. In this research, thermal load (heating and cooling energy demand) is met using the CCHP 

unit’s output and thermal storage is also employed in each microgrid to increase the reliability of 

supplying thermal energy for the consumers (Mehrjerdi and Rakhshani, 2019). Indeed, it is assumed 

that each microgrid only is equipped with a CCHP unit as the system for providing the thermal 

demands of them. In addition, thermal energy trading along with electrical one is considered between 

the networked microgrids based on the transactive energy management that provides the free electrical 

and thermal energy trading for them without changing the transactive energy structure. In Fig. 2, the 

solid and dashed lines represent the electrical and thermal energy flow, respectively. Each microgrid 

is assumed to only trade electrical energy with the power grid, but they can exchange both electrical 

and thermal energy with LTM (other microgrids). 

 

Fig. 2. Energy trading schematic of microgrid clusters with LTM 

Moreover, transactive energy technology is employed for managing the energy trading between 

networked microgrids with each other and the power grid. Generally, transactive energy technology is 

defined by the GridWise Architecture Council as “a set of economic and control mechanisms that 

allows the dynamic balance of supply and demand across the entire electrical infrastructure using value 

as a key operational parameter”, which key value can become money or emission (Daneshvar et al., 

2018a). In this paper, the potential of transactive technology is used in establishing the dynamic 

balance between electrical and thermal energy supply and demand with the aim of minimizing the 

energy cost of microgrid’s cluster. Indeed, the LTM is created for providing free energy trading 

possibility for all microgrids to minimize the energy cost of them in the cluster based on the transactive 

energy technology. In this paper, the appropriate formulations are applied regarding the electrical and 

thermal dynamic energy balance in modeling the LTM for energy trading of microgrids (this is 
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commensurate with the first part of the transactive energy definition i.e. “transactive energy technology 

… across the entire electrical infrastructure”). Moreover, the individual and collective benefits of the 

microgrids are investigated by proposing the four operational models which are also commensurate 

with the second part of the transactive energy definition, i.e. “…using value as a key operational 

parameter such as money”. Because of the existence of thermal energy demand along with electrical 

load in each microgrid, the proposed structure is developed to meet both the electrical and thermal 

energy demands to make it suitable for implementing on the practical cases. Therefore, focusing on 

the integrated electricity and heat system only is one of the accomplished steps in this research while 

proposing transactive energy-based energy trading models for the microgrids with considering their 

individual and collective benefits is the main goal of this study. 

3.2. Mathematical models of microgrids 

In this section, mathematical models of microgrid clusters including the objective function and 

constraints are presented. 

3.2.1. Objective function 

In this research, each microgrid is assumed to have only CCHP and PV as the primary energy 

production units to meet most of the local energy demand. The proposed transactive energy-based 

structure provides a suitable condition for the microgrids to meet the rest of their energy demand 

through the free energy trading in the LTM which subsequently postpones or reduces the need for 

capacity investment in microgrids. If none of the microgrids have the surplus energy for supplying to 

the LTM, they can receive the required energy from the power grid instead of LTM. It should be noted 

that a large portion of energy demand in each microgrid is provided by the CCHP units which add 

relatively high fuel costs to the microgrids operating costs. Hence, the energy cost of the microgrids 

could greatly affect their utility functions. Consequently, this study aims at minimizing the operation 

cost of each microgrid rather than maximizing their profits while satisfying operational constraints 

related to the power grid, LTM, and all components of a microgrid. This function has two terms; the 

first term represents energy trading cost between the power grid and microgrids, and the second term 

is associated with the fuel cost of PGU and boiler units. The objective function in this study is defined 

as follows: 

, , , , , ,

, , ,

Pr .( . . )

(Pr . . . )      

m m t t m t t

t

m t t m t t

t

F eNtM pNtM eMtN pMtN

Fpgu pPGU Fbo pBO m

    



 



  

 




 (3) 
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where, mF  is the objective function for the microgrid m. 

3.2.2. Constraints 

Electrical energy received from the power grid and LTM and the electricity generated inside each 

microgrid should match the electricity leaving each microgrid plus the load. Thus, this constraint is 

expressed as follows: 

, , , , , , , , , ,

, ,

, , , , ,

.

  ,  ,

m t m t m t m t m t Bd

m t

m t m t m t

Bc

eNtM ePV ePGU eLtM eBd

eBc
eMtN eLO eMtL m t

    



  





   

      
 (4) 

In general, both the cooling and heating energy coming from different suppliers into a microgrid should 

be equal to the thermal energy demand and thermal energy coming out of each microgrid. These 

limitations are defined as follows: 

, , , , , .( ).         ,  m t m t C m t m t m t m ttECc tESCc CLtM tCLO CMtL tEcS m t        (5) 

, , , , , .( ).         ,  m t m t H m t m t m t m ttEHc tESHc HLtM tHLO HMtL tEhS m t        (6) 

The fuel consumed by both PGU and boiler units in the CCHP system should not exceed their 

maximum capacities. These restrictions are written as:  

, , , , .        ,   ,  m t m t mFpgu Xpgu Spgu m t       (7) 

,        ,   m t mFbo Sbo m t    (8) 

, , , , , ,( . ) /        ,   ,  m t m t m t pgu pguePGU Fpgu Xpgu m t           (9) 

Thermal energy generated from both the PGU and boiler units can be transmitted to the thermal storage 

or heating and cooling components while satisfying the following constraint: 

, , , , , ,. .        ,   ,  m t m t m t pgu m t bo m ttECCS tECc tEHc Fpgu Fbo m t          (10) 

The limitation of electricity generated by PV panels is formulated as follows: 

, , . .        ,   ,  m t m PV tePV Spv SOL m t       (11) 

Discharging and charging of a battery storage unit cannot occur at the same time. Thus,  

, , , , 1       ,   ,  m t m tXBd XBc m t         (12) 
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The electricity stored in a battery should be within its acceptable range as denoted in (13), which 

depends on the charging and discharging activities indicated in (14) and (15). 

min , ,.        ,   ,  m B m t mSBS eB SBS m t       (13) 

, , , , , ,( ).        ,  1 ,  m t m t m teB IeB eBc eBd t m t           (14) 

, , , 1, , , , ,( ).        ,  2 ,  m t m t m t m teB eB eBc eBd t m t             (15) 

The amount of discharging and charging should not exceed the allowable range, i.e.,  

min , , , , max , ,. . . .        ,   ,  Bc m m t m t Bc m m tSBS XBc eBc SBS XBc m t          (16) 

min , , , , max , ,. . . .        ,   ,  Bd m m t m t Bd m m tSBS XBd eBd SBS XBd m t          (17) 

Similar to battery storage, discharging and charging of thermal storage units cannot occur at the same 

time. Hence,  

, , 1       ,   m t m tXtSc XtSd m t     (18) 

Thermal energy stored in thermal storage units should be within its acceptable range as denoted in 

(19), which depends on the charging and discharging activities expressed in (20) and (21). 

min ,.        ,   m Ts m t mSTS tES STS m t      (19) 

, , ,( ).        ,  1m t m t m ttES ItS tSc tSd t m t       (20) 

, , 1 , ,( ).     ,  2m t m t m t m ttES tES tSc tSd t m t        (21) 

Thermal storage energy must be smaller than its maximum capacity as per (22), and the available 

energy for charging the thermal storage is also considered as a charging rate constraint in (23).  

, . .        ,  m t m t m t mtECCS tEcS tEhS STS m t      (22) 

, , , .         ,  m t m t m t tSdtESCc tESHc tSd m t     (23) 

Discharging rate is taken into account in the determination of energy supply by the thermal storage in 

(24).  

, , . .( ).     ,  m t m t m t m t tSctSc tECCS tEcS tEhS m t      (24) 
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Moreover, the amount of thermal energy discharging and charging should not exceed the allowable 

ranges according to (25) ̶ (26).  

min , , max ,. . . .       ,  Tsc m m t m t Tsc m m tSTS XtSc tSc STS XtSc m t      (25) 

min , , max ,. . . .       ,  Tsd m m t m t Tsd m m tSTS XtSd tSd STS XtSd m t      (26) 

Energy cannot be imported and exported at the same time between microgrids and LTM. This is 

reflected in the following constraints:   

, , 1       ,  m t m tXEin XEout m t      (27) 

, , 1       ,  m t m tXCin XCout m t     (28) 

, , 1       ,  m t m tXHin XHout m t     (29) 

The energy transaction between a microgrid and the LTM depends on each energy transaction state, 

which is illustrated by the following equations:  

, , ,.        ,   ,  m t m teLtM M XEin m t      (30) 

, , ,.        ,   ,  m t m teMtL M XEout m t      (31) 

, ,.           ,  m t m tCLtM M XCin m t    (32) 

, ,.         ,  m t m tCMtL M XCout m t    (33) 

, ,.           ,  m t m tHLtM M XHin m t    (34) 

, ,.         ,  m t m tHMtL M XHout m t    (35) 

where M is an upper limit. 

Equations (36) – (38) are applied to establish an energy balance between supply and demand in the 

LTM.  

, , , ,        , m t m t

m m

eLtM eMtL t       (36) 

, ,       m t m t

m m

CLtM CMtL t    (37) 
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, ,       m t m t

m m

HLtM HMtL t    (38) 

In order to make the proposed structure safely for implementing in the practical cases, the network 

constraints of the networked microgrids are considered. For this aim, energy transactions between all 

microgrids with each other and power grid should be limited in the allowable range according to the 

following constraints.  

, , , ,,        ,  ,  Max

m t m teLtM eMtL eL m t       (39) 

, ,,           ,  Max

m t m tCLtM CMtL cL m t    (40) 

, ,,         ,  Max

m t m tHLtM HMtL hL m t    (41) 

, , , ,,    ,  ,  Max

m t m teNtM eMtN eM m t       (42) 

The maximum electrical energy trading among microgrids and with the main grid is assumed as 3 MW 

in this study. 

The constraints (27) to (42) keep the energy trading among microgrids in allowable ranges with the 

aim of making the proposed framework applicable in the practical cases. Indeed, the mentioned 

constraints should be satisfied to keep the bus voltages and line currents in permissible ranges. 

In the LTM, microgrids do not share energy with each other directly but inject a surplus of energy to 

the LTM when their energy production level is greater than energy consumption and take the same 

energy amount out when is needed considering the minimum energy costs.  

4. Operation models for transactive energy management 

In this paper, four operation decision models are considered for the evaluation of transactive energy 

effects on the energy exchange among the microgrids and power grid. The differences between the 

proposed models are briefly indicated in Table 1 in terms of individual and collective interests of the 

microgrids in the cluster.  

Table 1. Differences between the features of the proposed models for microgrids. 

Microgrid benefits 
Index of proposed models 

I II III IV 

Individual interests     

Collective interests     
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Collective and a satisfactory level 

of individual interests     

Collective and individual interests 

with same percentage of cost saving     

 

This research is structured from the microgrids operator’s viewpoint that seeks to maximize 

microgrids’ benefits. Indeed, the objective function of this research is a cost-based single objective 

that is formulated to minimize microgrids’ energy cost based on the proposed operational models. For 

each model, the CCP method is applied to come up with optimal decisions for the realization of random 

data. In this method, some constraints are allowed to be violated with a certain probability. We consider 

the production of PV and selling and purchasing prices as uncertainty parameters and let them be 

random variables in the CCP method. Therefore, all constraints that include the abovementioned 

parameters can violate with probability 10% in the CCP. Indeed, we assume 90%   for this study. 

One of the important goals of this work is proposing the free energy trading possibility for the 

microgrids in the cluster. It is assumed that all microgrids have agreed to participate in the cluster not 

only to gain the individual and collective benefits but also to help the dynamic energy balancing in the 

cluster. Therefore, the energy trading price between all microgrids with each other is zero (free) in this 

free energy trading environment. All of the proposed models are solved considering the free energy 

trading condition in the LTM, which is called Case I throughout this paper. To ensure the stability of 

the transactive energy technology in the energy management of the microgrids, the complete 

constraints are applied for all components especially energy trading in the LTM and power grid. All 

these constraints are employed for providing safely structure for the power grid that lets reliable energy 

sharing among microgrids and with the main grid by setting realistic parameters based on the 

information of microgrids in the Chicago area. 

In addition, to evaluate the implications of considering the cost of energy exchanging between 

microgrids on their total cost and cost-saving, model II as the sample studied model is assumed in two 

modes of operation; case I indicates freely trade of energy among microgrids and case II is considered 

to model the LTM with costs of electrical and thermal energy exchange among the microgrids. Due to 

this, ,  ,t tEPL CPL and 
tHPL  are assumed as the prices for electricity, cooling, and heating energy of 

the LTM, respectively. The amount of these prices are listed in Table 2. Furthermore, the objective 

function in case I is calculated using (3) but in case II, the following equation is employed where Em 

is added as another term to (3): 



18 
 

, , , , , ,

, ,

.( )+ .( )

.( )      

m t m t m t t m t m t

t t

t m t m t

t

E EPL eLtM eMtL CPL CLtM CMtL

HPL HLtM HMtL m

 


  

  

 


 (43) 

In (43), the positive amount of 
mE would be revenue from energy transactions for microgrid m while 

it would be energy cost when the positive value is reached for 
mE  in the energy trading market. 

4.1. Model I 

Model I is considered for evaluation of energy trade between the microgrids and the power grid in 

individual mode. The microgrids in this model cannot exchange energy with each other but with the 

power grid. The problem formulations of this model based on the CCP technique becomes:  

,min  FI I m

m

F  (44) 

subject to the constraints in (4) – (42). 

, , , ,

, ,

0, 0,  0, 0  ,

0 , 0       ,  

m t m t m t m t

m t m t

XEin XEout XCin XCout m t

XHin XHout m t

     

   
 

where, 
,I mF  is the energy cost for the mth microgrid in model I, which is calculated using (3).  

4.2. Model II 

In this model, all microgrids could trade energy among themselves and with the power grid to 

maximize collective interests. Indeed, all microgrids exchange energy in order to minimize the total 

cost of the cluster. The mathematical equation of this model is as follows: 

,min  F ( )II II m m

m

F E   (45) 

 subject to the constraints in (4) – (42). 

Table 2. Amount of energy trading prices among the microgrids. 

Price ($/kW) tEPL  tCPL  
tHPL  

Amount  , , , / 4t t tpMtN pNtM pMtN     0.01 0.01 

where, 
,II mF  is the energy cost for the mth microgrid in model II, which is calculated using (3) and 

Em=0 for case I.  
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4.3. Model III 

Although maximum collective interests can be achieved by model II, individual interests may not be 

guaranteed under this model for each microgrid. In other words, some microgrids may not benefit 

when they join the cluster.  

Therefore, model III is proposed not only to maximize collective interests but also to provide a 

satisfactory level of individual interests through extending model I with a set of constraints. In this 

model, the realization of the satisfactory level of individual interests is analyzed with the assumption 

of four various amounts of θ. Therefore, θ=0, 0.05, 0.1, and 0.14 are assumed for the assessment of 

Model III. Indeed, there is no logical producer in selecting the values of θ for example 0.14 instead of 

0.15 and all of the selected magnitudes only are assumption amounts that are used with the aim of 

indicating the features of Model III. The equations in model III are modified as  

,min  FIII III m

m

F  (46) 

Subject to:  

, ,  .(1( )      )III m I mp mF F      (47) 

Constraints (4) – (42). 

where, 
,III mF  is the energy cost for the mth microgrid in model III, which is calculated using (3).  

4.4. Model IV 

Because the two previous models are not able to maximize both the collective and individual interests 

simultaneously, model IV is implemented to do so by considering the same percentages of the cost-

saving for all microgrids. In this regard, variable  is introduced as a percentage of cost-saving of 

microgrids for maximizing the relative individual interests in each microgrid. 

max    (48) 

Subject to:  

, ,( )  .(1    )   IV m I mp mF F      (49) 

Constraints in (4) – (42). 

where, 
,IV mF  is the energy cost for the mth microgrid in model IV, which is calculated using (3).  
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To sum up, the summary of the proposed models is completely shown in Fig. 3 to simply describe the 

features of the models. 

 

Fig. 3. Summary of the features of the proposed operational models 

5. Simulation results 

In this study, we utilized the CCP for the evaluation of energy trade between the power grid and sixteen 

commercial building level microgrids located in Chicago, U.S. The size of generation units in 

microgrids are different with each other and are considered based on their energy demand. Thus, the 

amount of cost-saving for microgrids will be different in the proposed models. All electrical and 

thermal loads for the Chicago area can be accessed in (Chen and Hu, 2016). The study is accomplished 

for the month of July. The time of use rate is used for purchasing and selling electricity (Daneshvar et 

al., 2018b). The information of the one-month data of solar radiation can be found in (Daneshvar et 

al., 2019). The size of the different devices is tabulated in Table 3 for all microgrids. Moreover, Table 

4 includes the efficiency of all devices in the microgrids. 

Table 3. The size of the different devices (in kW) in the microgrids. 

Devices 
Microgrid index 

M1 M2 M3 M4 M5 M6 M7 M8 
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PV panel  255 830 1930 2417 1159 1045 3435 4898 

PGU 20 194 2132 113 98 90 282 732 

Boiler 63 581 5937 607 524 502 1459 6455 

Battery storage 20 194 2132 113 98 90 282 732 

Thermal storage 63 581 5937 607 524 502 1459 6455 

Devices M9 M10 M11 M12 M13 M14 M15 M16 

PV panel  2090 116 255 2242 634 501 945 391 

PGU 495 43 69 1574 370 139 498 63 

Boiler 1174 170 302 2505 599 252 1114 271 

Battery storage 495 43 69 1574 370 139 498 63 

Thermal storage 1174 170 302 2505 599 252 1114 271 

 

Table 4. The efficiency of the different devices in the microgrids. 

Efficiency 

PV panel Heating component Cooling component PGU Boiler 

0.22 0.85 0.7 0.51 0.9 

Charging of 

battery storage 

Discharging of 

battery storage 

Charging of 

thermal storage 

Discharging of thermal 

storage 

0.9 0.9 0.95 0.95 

All other parameters required for this research are the same as those considered in (Chen and Hu, 

2016). We consider the uncertainties to be the electricity purchasing and selling prices, and the 

electricity production of PV panels. In addition, the LHS and fast forward reduction methods are used 

for scenario generation and reduction processes, respectively. Various scenarios are generated and then 

reduced for each of the uncertainty parameters. Furthermore, normal and beta distributions are 

employed for two price parameters and the electricity generation parameter by the PVs, respectively. 

Then, the inverse cumulative distribution functions (iCDF) are calculated. Eventually, the expected 

value of microgrid energy costs is computed for all proposed models. The problem presented in this 

paper is the MIP problem and GAMS software with a CPLEX solver is effectively used for solving it, 

which optimal solutions are reached from solving this problem. Indeed, the optimality of the extracted 

results is guaranteed due to the use of the CPLEX solver for the MIP problem without any nonlinear 

equations. Numerical results of all studied models are tabulated in Table 5. The number of variables 

and constraints, as well as the computing time of the problem for each of the four models, are tabulated 
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in Table 6 and simulations of them were completed by a PC with Intel Core i7-6700HQ CPU @ 2.60 

GHz with 16.00 GB RAM. 

Table 5. Numerical results of all evaluated models in Case I. 

MI Model I Model II 
Model III 

Model IV 
θ=0 θ=0.05 θ=0.1 θ=0.14 

M1 62.131 60.994 62.131 59.024 55.918 53.433 52.190 

M2 1142.442 1875.891 980.728 1085.320 1028.198 982.500 959.651 

M3 19469.523 18631.331 19469.523 18496.047 17522.571 16575.108 16354.399 

M4 -180.324 -540.972 -180.324 -189.340 -198.356 -205.569 -208.800 

M5 393.664 1102.838 393.664 373.981 354.298 338.551 330.678 

M6 372.428 904.905 372.428 353.807 335.185 320.288 312.840 

M7 734.255 2354.395 734.255 697.542 660.830 631.459 616.774 

M8 11448.603 6530.355 9738.987 9973.248 10303.743 8271.058 9616.827 

M9 2055.836 3697.557 2055.836 1953.044 1850.252 1768.019 1726.902 

M10 430.989 643.484 347.056 296.335 231.657 370.651 362.031 

M11 612.164 786.233 444.101 581.556 542.120 526.461 514.218 

M12 30246.964 16757.205 17816.650 19150.840 20221.956 22087.069 25407.450 

M13 4587.275 2921.001 3641.549 3302.571 3216.704 3945.056 3853.311 

M14 1303.752 1289.085 926.439 1003.741 1077.995 1121.227 1095.152 

M15 6318.359 4991.470 5321.398 5040.477 4979.537 5433.789 5307.422 

M16 597.300 731.861 596.750 564.576 537.570 513.678 501.732 

Total 

Cost 
79595.361 62737.635 62721.171 62742.768 62720.178 62732.778 66802.775 

 

Table 6. Number of variables and constraints along with the computing time of the problem. 

Specifications Model I Model II 
Model III 

Model IV 
θ=0 θ=0.05 θ=0.1 θ=0.14 

Variables 36 36 36 36 36 36 37 
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Constraints 24 39 40 40 40 40 40 

Run time (s) 2.84 4.65 4.88 5.42 7.15 8.34 14.61 

 

The results provided in this table indicate that model II can provide collective interests for the 

microgrids in both cases I and II while reducing the total energy costs in comparison with model I. 

The energy cost in case I is less than that of case II, which means that if microgrids exchange energy 

freely with each other (case I), they can achieve the lowest cost. All microgrids’ cost savings of this 

model are illustrated in Fig. 4. For the case I in model II, microgrids 4 and 7 have the maximum and 

minimum percentage of cost-saving, respectively. The behavior of the above microgrids (4 and 7) in 

receiving total electrical energy from all sectors is demonstrated in Fig. 5 for 1st of July as a sample 

day. 

 

Fig. 4. Percentages of energy cost saving for all microgrids in model II 
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Fig. 5. Behavior of microgrids 4 and 7 in receiving total electrical energy 

In Fig. 5, both microgrids 4 and 7 have received more energy in the time intervals 12 to 14 when 

electrical energy consumption is at its peak level. However, some microgrids have a negative cost-

saving and they are losing money when they joined the cluster in this model.  

Therefore, model III is considered not only to provide collective interests but also to establish 

acceptable levels of individual interests for microgrids. This model is implemented in different 

assumed amounts of expected percentages of cost-saving that are depicted in Fig. 6. For this reason, 

when 0.14   the microgrids have nearly cost-saving and better condition compared to other modes. 

However, none of the mentioned cost savings is the optimal solution for the microgrids percentage of 

cost-saving and they are only assumptive values. Moreover, the amount of cost saving in the 

microgrids varies denoting that some microgrids have larger cost savings in comparison with others. 

The mentioned drawbacks of model III made us proud to propose a new model that can provide the 

same percentage of cost-saving for all microgrids.  

 



25 
 

Fig. 6. Percentages of cost-saving for all microgrids in model III 

 

Therefore, in order to satisfy the relative amount of cost-saving of the microgrids, model IV is proposed 

to provide the same percentage of cost-saving. After running this model, 16% cost saving  was obtained 

for all microgrids. In this model, each of the microgrids can gain the percentage of cost-saving 

depending on their size in the system. However, 16% saving for microgrids will imply different values 

to the operators. For example, for the microgrids 1 and 13, the mentioned percentage of cost-saving 

imposes $9.941 and $733.964 cost-saving, respectively. In this work, microgrid 12 with a suitable 

amount of cost-saving and is assumed as a sample microgrid and 1st of July is considered as a sample 

day for evaluation of electrical energy exchange between various components of the system. For this 

purpose, the portion of each electrical energy resource in meeting the demand of microgrid 12 is shown 

in Fig. 7. 

 

Fig. 7. Electrical energy coming to the microgrid 12 on 1st of July 

From this figure, renewable energy and shared energy are used for meeting the demand in the 

microgrid with minimum energy costs and dependency on the power grid. To sum up, after the 

analyzing of the proposed models in providing the collective and individual interests along with the 

energy management and control for the microgrids based on the transactive energy technology, model 

IV not only can provide mentioned benefits for the microgrids but also achieving the same percentage 

of cost saving can also be realized based on this model. Therefore, model IV as the complete 

transactive energy-based model is proposed for all microgrids in the system to exchange energy with 

each other and the power grid based on the reliable technology paradigm. As mentioned in the previous 
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sections, all microgrids can trade electrical and thermal energy with each other within the LTM 

structure. The amount of electrical, heating, and cooling energy transmitted (received) to (by) the LTM 

by (from) all microgrids is illustrated in Fig. 8  for a given day in July as an illustrative example. As 

obvious from this figure, all microgrids have a large amount of electrical energy exchanging with LTM 

during the morning hours (8-10 am), noon (11-12 am and 12-1 pm), and evening (1-5 pm) when the 

amount of electricity demand is higher than other times. Moreover, the amount of cooling energy 

consumption is increased as the sun rises and the maximum cooling demand is reached at noon when 

the temperature is high due to the maximum solar radiation, which in turn necessitates more cooling 

energy trading of microgrids in the mentioned times. On the other hand, the amount of heating energy 

exchange among microgrids peaks in the early morning (4-9 am) and during the night (9-11 pm) when 

the heating demand is relatively higher.  

 

Fig. 8. Electrical and thermal energy traded between all microgrids in the LTM for a sample day 

6. Conclusion  

This paper proposed four models to scrutinize the energy exchange between sixteen microgrids and 

the power grid using the notion of transactive energy as a sustainable approach. In this research, the 

chance-constrained programming method was utilized to solve the problem while considering realistic 

conditions for field data obtained from the Chicago area. Four types of models were developed and 

analyzed in this study. Model I assumed that the microgrids do not have any energy sharing among 

themselves. Maximizing collective interests was considered in model II when the microgrids could 

exchange energy with each other. Model III was structured to provide an admissible level of cost-

saving for each microgrid along with meeting collective interests. Finally, the last model was 

structured for satisfying the collective interest as well as relative individual interests. The numerical 

results indicated that although the minimum total energy cost ($62720,178) is reached in model III, 
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this model could not provide a suitable amount of cost-saving for all microgrids meaning that 

individual benefit of some microgrids could be ignored in this model. However, model IV could 

provide the same amount of cost-saving (better individual benefits) for microgrids in comparison with 

other models while preserving the collective interest of microgrids. Hence, the microgrids were able 

to achieve both the individual and collective benefits in model IV, when they joined the cluster and 

operated under the transactive energy scheme. Indeed, using the transactive energy technology in 

developing the LTM has led to providing an appropriate energy trading mechanism for the 

interconnected microgrids. Based on this mechanism, all microgrids could gain both the collective and 

individual benefits in the cluster mode. 

Although considering both the collective and individual interests of the microgrids is an important 

issue in the cluster mode, proposing the effective models that can meet both the mentioned interests 

for them in the systems with a high level of the stochastic producers is also a significant issue that 

needs to be intended. Indeed, equipping the microgrid to the high level of RERs for more clean energy 

production is necessary due to the economic and environmental issues. In such a condition, all 

microgrids will need the capable models that not only can meet both the collective and individual 

interests for them but also can provide robust conditions with the aim of guaranteeing the reach of the 

special amount of cost-saving for each of the microgrids. Moreover, considering this issue that which 

microgrids have injected energy into the LTM at a particular time and which ones receive the energy 

from LTM will also be an important point in exactly dividing the profits between the microgrids in the 

cluster, which all of these topics can be intended as the future trends for this work. 
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