2,079 research outputs found

    New Algorithms for Structure Informed Genome Rearrangement

    Get PDF

    The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas

    Full text link
    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) constitute a multi-functional, constantly evolving immune system in bacteria and archaea cells. A heritable, molecular memory is generated of phage, plasmids, or other mobile genetic elements that attempt to attack the cell. This memory is used to recognize and interfere with subsequent invasions from the same genetic elements. This versatile prokaryotic tool has also been used to advance applications in biotechnology. Here we review a large body of CRISPR-Cas research to explore themes of evolution and selection, population dynamics, horizontal gene transfer, specific and cross-reactive interactions, cost and regulation, non-immunological CRISPR functions that boost host cell robustness, as well as applicable mechanisms for efficient and specific genetic engineering. We offer future directions that can be addressed by the physics community. Physical understanding of the CRISPR-Cas system will advance uses in biotechnology, such as developing cell lines and animal models, cell labeling and information storage, combatting antibiotic resistance, and human therapeutics.Comment: 75 pages, 15 figures, Physical Biology (2018

    Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving.</p> <p>Results</p> <p>We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD) using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing <it>bona fide </it>orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs), and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms.</p> <p>Conclusion</p> <p>The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene order conservation in prokaryotes whichever their taxonomic distance. Thus, our approach will make easy the rapid identification of POGS in the next few years as we are expecting to be inundated with thousands of completely sequenced microbial genomes.</p

    Efficient algorithms for gene cluster detection in prokaryotic genomes

    Get PDF
    Schmidt T. Efficient algorithms for gene cluster detection in prokaryotic genomes. Bielefeld (Germany): Bielefeld University; 2005.The research in genomics science rapidly emerged in the last few years, and the availability of completely sequenced genomes continuously increases due to the use of semi-automatic sequencing machines. Also these sequences, mostly prokaryotic ones, are well annotated, which means that the positions of their genes and parts of their regulatory or metabolic pathways are known. A new task in the field of bioinformatics now is to gain gene or protein information from the comparison of genomes on a higher level. In the approach of "comparative genomics" researchers in bioinformatics are attempting to locate groups or clusters of orthologous genes that may have the same function in multiple genomes. These researches are often anchored on the simple, but biologically verified fact, that functionally related proteins are usually coded by genes placed in a region of close genomic neighborhood, in different species. From an algorithmic and combinatorial point of view, the first descriptions of the concept of "closely placed genes" were only fragmentary, and sometimes confusing. The given algorithms often lack the necessary grounds to prove their correctness, or assess their complexity. Within the first formal models of a conserved genomic neighborhood, genomes are often represented as permutations of their genes, and common intervals, i.e. intervals containing the same set of genes, are interpreted as gene clusters. But here the major disadvantage of representing genomes as permutations is the fact that paralogous copies of the same gene inside one genome can not be modelled. Since especially large genomes contain numerous paralogous genes, this model is insufficient to be used on real genomic data. In this work, we consider a modified model of gene clusters that allows paralogs, simply by representing genomes as sequences rather than permutations of genes. We define common intervals based on this model, and we present a simple algorithm that finds all common intervals of two sequences in [Theta](n2) time using [Theta](n2) space. Another, more complicated algorithm runs in [Omikron](n2) time and uses only linear space. We also show how to extend these algorithms to more than two genomes and present the implementation of the algorithms as well as the visualization of the located clusters in the tool Gecko. Since the creation of the string representation of a set of genomes is a non-trivial task, we also present the data preparation tool GhostFam that groups all genes from the given set of genomes to their families of homologs. In the evaluation on a set of 20 bacterial genomes, we show that with the presented approach it is possible to correctly locate gene clusters that are known from the literature, and to successfully predict new groups of functionally related genes

    Protein evolution and the early history of life

    Get PDF

    Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequence of the pathogen <it>Mycobacterium tuberculosis </it>(<it>Mtb</it>) strain <it>H37Rv </it>has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other <it>Mtb </it>strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of <it>Mtb </it>pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of <it>Mtb </it>and <it>M. bovis</it>, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, <it>Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes</it>, and <it>Bifidobacterium longum</it>.</p> <p>Results</p> <p>Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four.</p> <p>Conclusions</p> <p>Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of <it>Mtb </it>in a comparative context, and are available online and through TBDB.org.</p

    An Integrative Method for Accurate Comparative Genome Mapping

    Get PDF
    We present MAGIC, an integrative and accurate method for comparative genome mapping. Our method consists of two phases: preprocessing for identifying β€œmaximal similar segments,” and mapping for clustering and classifying these segments. MAGIC's main novelty lies in its biologically intuitive clustering approach, which aims towards both calculating reorder-free segments and identifying orthologous segments. In the process, MAGIC efficiently handles ambiguities resulting from duplications that occurred before the speciation of the considered organisms from their most recent common ancestor. We demonstrate both MAGIC's robustness and scalability: the former is asserted with respect to its initial input and with respect to its parameters' values. The latter is asserted by applying MAGIC to distantly related organisms and to large genomes. We compare MAGIC to other comparative mapping methods and provide detailed analysis of the differences between them. Our improvements allow a comprehensive study of the diversity of genetic repertoires resulting from large-scale mutations, such as indels and duplications, including explicitly transposable and phagic elements. The strength of our method is demonstrated by detailed statistics computed for each type of these large-scale mutations. MAGIC enabled us to conduct a comprehensive analysis of the different forces shaping prokaryotic genomes from different clades, and to quantify the importance of novel gene content introduced by horizontal gene transfer relative to gene duplication in bacterial genome evolution. We use these results to investigate the breakpoint distribution in several prokaryotic genomes

    Doctor of Philosophy

    Get PDF
    dissertationBacteriophages as the most abundant biological entities on the planet play a significant role in microbial population dynamics in various ecosystems. The potential of bacteriophages as a driving force in evolution of microbial communities through controlling the bacterial population, naturally selecting phage-resistant bacteria, and facilitating horizontal gene transfer have been studied. However, few studies have demonstrated the effect of phages on the microbial communities in different natural ecosystems, biological nutrient removal reactors, and hypersaline environment. In this study, the role of bacteriophages in functional gene transfer and how they affect different nutrient cycles and bacterial diversity and population in lab-scale and natural ecosystems were investigated. The research was accomplished through studying the bacteriophage population, diversity, and their role in bacterial infection and subsequent alteration in bacterial population and diversity. The ecosystems studied in this study included lab-scale biological phosphorus removal and hypersaline Great Salt Lake as engineered and natural models for understanding the phage-host interaction. The biomass and sediment samples were collected from the lab-scale bioreactor and deep brine layer in Great Salt Lake and subjected to various environmental stress factors to understand the role of bacteriophage and prophage induction in bacterial diversity. In addition, the sediment sample from the Great Salt Lake was analyzed with metagenomics approach. The evaluation of prophage induction showed that various environmental stress factors including nutrients, heavy metals, toxic chemical, and antibiotic can induce phages integrated onto bacterial genomes (i.e. prophages), resulting in a decrease of the bacterial population involved in different nutrient cycles. Analyzing the viral and bacterial metagenomes explored the GC content, oligonucleotide and k-mer profile, genetic homology, CRISPRs, and prophage network. Our in-depth metagenomics analysis identified phage and bacteria communities comprehensively and proved the role of bacteriophages in defining the bacterial community population, diversity, and their effects on various nutrient cycles. Identification of bacteriophage diversity, population, and their functional genes using metagenomics approach in this study will shed light on the bacterial and viral diversity in Great Salt Lake and this information will be helpful in constructing metabolic models to better study the microbial interaction in various hypersaline ecosystems

    Finding a Needle in the Virus Metagenome Haystack - Micro-Metagenome Analysis Captures a Snapshot of the Diversity of a Bacteriophage Armoire

    Get PDF
    Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral β€œneedle" within the greater viral community β€œhaystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities

    Bioinformatics in microbial biotechnology – a mini review

    Get PDF
    • …
    corecore