

ii

Acknowledgments / Danksagung

Diese Doktorarbeit entstand in der Zeit von Juni 2002 bis Mai 2005 am Centrum für

Bioinformatik und Genomforschung (CeBiTec) der Universität Bielefeld. Die finanzielle

Unterstützung dieser Arbeit wurde von der International NRW Graduate School in Bioin-

formatics and Genome Research bereitgestellt. Hierzu gilt mein erster Dank Prof. Dr. Enno

Ohlebusch, der wesentlich zu meinem Interesse und meiner Aufnahme an der Graduate

School beigetragen hat.

Die praktische Durchführung meiner Forschung, sowie die Erstellung dieser Arbeit, wäre

ohne die Unterstützung einer Vielzahl von Menschen, denen ich an dieser Stelle meinen

persönlichen Dank aussprechen möchte, nicht möglich gewesen.

Insbesondere danke ich Prof. Dr. Jens Stoye sowohl für meine kurzfristige und herzliche

Aufnahme in die Arbeitsgruppe Genominformatik, als auch für die ausgezeichnete Betreu-

ung während meiner Forschungszeit und bei der Erstellung dieser Arbeit. Ein weiterer

Dank richtet sich auch an die Mitarbeiter des Instituts für Genomforschung der Univer-

sität Bielefeld. Hier waren es insbesondere Dr. Jörn Kalinowski, als mein zweier Betreuer,

und Christian Rückert, die mir stets in allen Fragen, die die praktische Seite dieser Arbeit

betrafen, mit Rat und Tat zur Seite standen. Ebenso möchte ich mich an dieser Stelle

auch noch mal bei Ed Hein und Carolin Andreas bedanken, die als studentische Hilfskraft,

bzw. während der Anfertigung ihrer Bachelorarbeit, ihren Teil zum Gelingen dieser Ar-

beit beigetragen haben. Ein herzlicher Dank meinerseits geht auch an Jan Krüger für die

Bereitstellung von Gecko auf dem Bielefelder Bioinformatik Server (BiBiServ) und die

unzähligen kreativen Kaffeepausen.

Ganz besonders herzlich möchte ich mich an dieser Stelle aber auch bei meinen Eltern

Hildegard und Friedhelm für die vielfältige Unterstützung während meines Studiums und

der Promotion bedanken. Nicht zuletzt gilt mein ganz persönlicher Dank an dieser Stelle

meiner Partnerin Andrea für ihr Verständnis, ihre Geduld und Unterstützung während der

Erstellung dieser Arbeit.

Gedruckt auf alterungsbeständigem Papier nach ISO 9706.

Contents

1 Introduction 1

1.1 Structure of the Thesis . 3

2 Biological Background 5

2.1 Terms and Principles in Molecular Genetics 5

2.1.1 Mutation and Evolution . 6

2.1.2 DNA - The Code of Life . 8

2.2 Introduction to Comparative Genomics . 10

2.2.1 Similarity and Homology . 11

2.2.2 Orthologs and Paralogs . 12

2.2.3 Gene Prediction . 13

2.2.4 Function Prediction and Annotation 14

3 Gene Clusters 17

3.1 Biological Relevance of Gene Clusters . 17

3.1.1 Using Gene Clusters for Function Prediction 18

3.1.2 Using Gene Clusters for Evolutionary Analysis 19

3.2 Existing Approaches for Gene Cluster Detection 20

3.2.1 Gene Cluster Detection using Conserved Gene Pairs 20

3.2.2 Gene Cluster Detection using Graph Comparison 22

3.3 A First Formal Model for Gene Clusters 24

3.3.1 Gene Clusters and Common Intervals 24

3.3.2 Algorithms for finding Common Intervals 25

3.3.3 Limitations of the Model . 26

3.4 Modelling Paralogous Genes . 27

3.4.1 Definitions . 28

3.4.2 First Simple Algorithms . 30

3.4.3 An Algorithm Using the Naming Technique 35

3.4.4 A First Quadratic Time Algorithm 38

3.4.5 A Simpler Quadratic Time Algorithm 41

iii

iv CONTENTS

3.4.6 Improving the Running Time in Practice 44

3.4.7 Generating Non-redundant Output 44

3.4.8 Multiple Genomes . 45

3.4.9 Gene Clusters in a Subset of Multiple Genomes 46

3.5 A Related Approach: Gene Teams . 47

3.6 Summary . 49

4 Data Preparation 51

4.1 The COG Database . 52

4.2 A Relaxed Family Definition . 54

4.2.1 Notation . 54

4.2.2 Creating the Families of Homologs 55

4.2.3 The GhostFam Tool . 58

5 Application 65

5.1 Sequence Selection and Parameter Input 65

5.2 Cluster Grouping . 68

5.2.1 Finding Maximal Gene Clusters . 68

5.2.2 Finding Fragmented Gene Clusters 69

5.3 Pattern Detection . 71

5.3.1 Gene Replacement . 71

5.3.2 Cluster Separation . 72

5.3.3 Gene Duplication . 74

5.4 Visualization . 76

6 Experimental Results 81

6.1 Running Time Evaluation . 81

6.2 Statistics on Real Genomic Data . 87

6.3 Two Real World Examples with Gecko 90

6.3.1 The Operon for Tryptophan Biosynthesis 91

6.3.2 A Gene Gluster for the Assimilatory Sulfate Reduction 92

7 Summary and Outlook 95

List of Figures 99

List of Tables 101

Bibliography 103

Chapter 1

Introduction

The research in genomics science rapidly emerged in the last few years, and the availability

of completely sequenced genomes continuously increases due to the use of semi-automatic

sequencing machines. Also these sequences, mostly prokaryotic ones, are well annotated,

which means that the positions of their genes and parts of their regulatory or metabolic

pathways are known. The traditional way in sequence comparison, e.g. to predict the

function of unknown genes, is to establish orthologous relations to well-characterized genes

in other organisms on nucleic acid or protein level. A new task in the field of comparative

genomics now is to gain gene or protein information from the comparison of genomes on a

higher level.

In the field of high-level genome comparison the attention is directed to the gene order

and content in related genomes. During the course of evolution speciation results in off-

spring genomes that initially have the same gene order and content. In the same way the

duplication of a whole genome creates a new genome which has two identical copies of the

ancestral genome embedded in it. In both cases the offspring genomes underlie a process

of divergence over time. This means that events like gene duplication, gene loss, horizontal

gene transfer, and many more, result in a changed gene composition, while rearrangements

like translocation, transposition, inversion and chromosome fission and fusion disrupt the

gene order. If there is no selective pressure on the gene order, the successive occurrence

of rearrangements over time will lead to a randomized gene order. Therefore, the presence

of a region of conserved gene order is a source of evidence for the functional role of a gene

group.

A more detailed examination of the genomic sequences reveals that there is a remark-

able difference between the evolution of higher eukaryotes and more primitive organisms

including prokaryotes and yeast. The close evolutionary relationship among animals or

plants, which have been the subject of comparative mapping studies, is manifested by rel-

atively long conserved segments, which are regions of the chromosome with identical gene

content and a linear order in both. In contrast, two closely related prokaryotes often have a

1

2 CHAPTER 1. INTRODUCTION

quite diverged gene order in general, but share many gene clusters, which are sets of genes

in close proximity to each other, but not necessarily contiguous nor in the same order in

both genomes. The existence of such gene clusters has been explained in different ways,

e.g. by functional selection, operon formation, and the physical interaction of the gene

products. Therefore, the conservation of gene order is a valuable information for many

fields in genome research.

From an algorithmic and combinatorial point of view, the first descriptions of the

concept of “closely placed genes” in the literature were only fragmentary, and sometimes

confusing. The definitions of gene clusters differed as the case arises, and models for gene

clusters were based on heuristic algorithms which depended on very specific parameters

like the size of gaps between genes. These algorithms also lacked the necessary grounds to

prove their correctness, or assess their complexity.

In the first formal descriptions of conserved genomic neighborhoods, genomes are often

represented as permutations of their genes, and common intervals, i.e. intervals containing

the same set of genes, are interpreted as gene clusters. But here the major disadvantage

of representing genomes as permutations is the fact that paralogous copies of the same

gene inside one genome can not be modelled. Together with the observation that with an

increasing number of genes the relative frequency of paralogous genes inside a genome also

significantly increases, it becomes clear that the modelling of genomes as permutations is

insufficient for the use on real genomic data.

In this thesis, we developed a new model for gene clusters that allows the presence

of paralogous genes in the genomes. Therefore, we generalized the representation of the

genomes from permutations to strings and defined a gene cluster as a common character

set, which is similar to a common interval but allows disregarding the frequency at which a

particular gene occurs in an observed interval. For the established model, we present effi-

cient algorithms to detect the gene clusters in any given number of genomes. Furthermore,

we present the results from the application of our algorithms to real genomic data using our

developed Gecko software. This software serves as a basic tool for the data preparation,

the visualization of the computed clusters, and the interpretation of the results.

Parts of this dissertation thesis have been published in advance [64], and two further

papers are submitted [18, 63]. The stand-alone version of Gecko was written in JAVA and

can be obtained free of charge for non-commercial use from http://bibiserv.techfak.uni-

bielefeld.de/gecko/ together with the data files used for the evaluation of Gecko and

further documentation.

1.1. STRUCTURE OF THE THESIS 3

1.1 Structure of the Thesis

This thesis consists of seven chapters. In Chapter 2, an introduction into the basic terms

and fundamental mechanisms in molecular biology and comparative genomics is given. We

introduce the cell as the basic unit of all living organisms, and the DNA with its central

role in growth, mutation, and evolution of the cell.

Chapter 3 is devoted to the biological background and the presentation of models and

algorithms for gene cluster detection. Based on the formal model of gene clusters as

common intervals of permutations, we present a more general and biologically meaningful

model, by allowing the presence of paralogous genes. With a new algorithm (Algorithm CI)

that we also present in this chapter, we show that gene clusters based on this model

extension are still feasible to calculate.

In Chapter 4, we describe different approaches for the grouping of genes from several

genomes to gene families, if they show similar amino-acid sequences in each of the genomes.

Pretending that genes from one family carry out a similar function in the cell, the classi-

fication of genes to their families of homologous genes is the basic input for the following

gene cluster detection algorithms.

In Chapter 5, we present the computer program Gecko with the implementation of

our algorithms for gene cluster detection. The optimal visualization of the located gene

clusters and the detection of patterns regarding the content of a cluster are the essential

parts of the program allowing an efficient interpretation of the given results.

The applicability of our programs is shown in Chapter 6. In the first part of this chapter

we verify the claimed time complexities on an artificially created data set. Subsequently,

we prove the computed results from a set of 20 bacterial genomes on a well-known gene

cluster from the literature (the tryptophan operon) as well as on recent studies on a set of

genes regarding the sulfur utilization in the family of Corynebacteria.

Chapter 7 concludes the thesis by recalling the main results and presenting a foresight

on further applications of gene cluster analysis.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Biological Background

Since the motivation of this work as well as its applications and results have their origin in

the field of genetics, this chapter will give an overview of the central terms and principles

of molecular genetics and its recent branch, comparative genomics. This chapter cannot be

a self-contained introduction neither to molecular genetics nor to comparative genomics,

therefore the interested reader might use any of the relevant textbooks (e.g. [2, 48, 46, 36,

40]). The notation in the first part concerning the molecular genetics is according to [48],

whereas the comparative genomics part conforms with [40].

2.1 Terms and Principles in Molecular Genetics

The cell is the basic unit of all living organisms. Today we distinguish between two dif-

ferent types of cells, the prokaryotic cells (literally, cells without a defined nucleus) and

eukaryotic cells (cells with a true nucleus). Although they differ radically in their organi-

zation, both cell types contain the same groups of complex chemical components: proteins,

nucleic acids, lipids, and polysaccharides. This observation leads to the assumption that

all cells have evolved from the same type of cell, a universal ancestor whose nature is so

far unknown. From a more general point of view, one can look at a cell as a chemical

machinery converting one form of energy into another by breaking large molecules into

smaller ones, building up larger molecules from smaller units, and performing many other

kinds of chemical transformations. Here, the term metabolism refers to the collective series

of chemical processes that occur in living organisms and the components of the cell’s chem-

ical machinery are called enzymes. In the cell, the enzymes are protein molecules that are

capable of catalyzing specific chemical reactions and the fact, whether a cell is able to carry

out a certain chemical reaction or not, depends on the presence of the particular enzyme

in the cell that catalyzes this reaction. Generally, the specificity of enzymes is very high,

such that even very similar chemical reactions are catalyzed by different enzymes. This

specificity is determined primarily by the three-dimensional structure of the enzyme (see

5

6 CHAPTER 2. BIOLOGICAL BACKGROUND

Figure 2.1), which again is determined by the sequence of amino acids that the enzyme

consists of.

Figure 2.1: The three-dimensional structure of a protein (computer generated model [48]).
Different regions of the protein (domains) are displayed in different color.

To answer the question how a cell is able to build precise amino acid sequences, rep-

resenting the different proteins, one can look at a cell as a coding device that contains a

storage for coded protein sequence data and a machinery able to access this information.

This code is called genetic code and it is stored in the sequence of nucleotides in the hered-

itary molecule deoxyribonucleic acid (DNA). The DNA in the cell is present as two long

molecules, which are intertwined forming the DNA double helix (see Figure 2.2).

The DNA is the essential molecule for two major processes of the cell. First, before a

cell division occurs, the DNA is being replicated, this means that each new cell gets an exact

copy of the complete set of genetic instructions. Second, a piece of the genetic code, the

gene, must be transcribed and translated to build a new protein. During the transcription,

messenger ribonucleic acid (mRNA) molecules are formed that contain a complementary

copy of the genetic information. In the translation process, the mRNA, now containing the

genetic instructions to make the protein, combines with ribosomes and through the action

of many other factors yields a protein that folds to perform a specific function in the cell

(see also Section 2.1.2).

2.1.1 Mutation and Evolution

In the normal growth process of a cell, resulting in the division into two new cells, the

replication of the DNA during this process ensures that both new cells finally contain

2.1. TERMS AND PRINCIPLES IN MOLECULAR GENETICS 7

Figure 2.2: The double helix structure of the DNA molecule, detected by James D. Watson
and Francis H. C. Crick [76] in 1953.

precisely the same genetic code. Even though the fidelity of the replication is very high,

occasionally mistakes in copying the DNA occur. Such mistakes, called mutations, may

have no detectable effect to the cell, but in other cases may cause the production of a

malfunctioning protein, resulting in a defective cell, probably leading to its death. Such

cells usually disappear from the population and therefore mutations are generally harmless.

In very rare cases a mutation causes the formation of a protein with an improved function.

This selective advantage over time might result in the replacement of the parent cell type

from the population by the mutated type. This process of natural variation by mutation,

together with its effects on the population of a species, is called natural selection and is

the fundamental process of evolution.

The course of evolution has lead to the development of the two different cell types

of prokaryotes and eukaryotes. The major structural differences between prokaryotic and

eukaryotic cells are once the size, prokaryotic cells are approximately 25 times smaller than

eukaryotic cells, and also the arrangement of DNA inside the cell. Eukaryotic cells contain

a closed compartment, the membrane surrounded nucleus, hosting several DNA molecules.

On the other hand, prokaryotes only contain a nuclear region, the nucleoid, which is not

bounded by any membrane, and contains only a single DNA molecule. Prokaryotes are

all bacterial species and can be divided into the two different lineages of Bacteria and

Archaea. In contrast, there are several groups of eukaryotic microorganisms like algae,

fungi, and protozoa and of course all multicellular life forms (plants and animals) are made

of eukaryotic cells (see Figure 2.3).

Although given their structure, cells can be classified as either prokaryotic or eukaryotic,

the similar structure alone does not necessarily imply an evolutionary relationship. Today’s

methods for estimating the evolutionary distance between two species (the difference in

8 CHAPTER 2. BIOLOGICAL BACKGROUND

Figure 2.3: The phylogenetic tree created from the comparative sequencing of ribosomal
RNA [48]. It shows the evolution of the three groups of living organisms.

time from their divergence up to now) rely on the comparison of their DNA’s amino acid

sequence. Here it turned out that the part of DNA encoding for the ribosomal RNA

(structural RNA of the ribosome, the key cell structure involved in translation) is a well

suited criterion for reconstructing phylogenetic (evolutionary) relationships.

2.1.2 DNA - The Code of Life

In the majority of prokaryotes studied so far, most or all of the cellular DNA is found

as a single circular molecule. The cell is said to have a single chromosome, although

the arrangement of DNA within this chromosome differs greatly from that within the

chromosomes of eukaryotic cells. Since the length of a single unfolded DNA molecule

(approx. 1 mm) exceeds the length of the whole cell by a factor of 1000 (e.g. in E. coli),

it is folded back on itself many times, this folding is called supercoiling. Additionally,

many prokaryotic species also contain much smaller but also circular DNA molecules called

plasmids. Plasmids generally encode proteins that are not essential for cell growth, but

provide proteins coding for additional features, e.g. to resist antibiotics or other toxic

materials. Generally, prokaryotic protein coding regions can be found compactly attached

to each other, such that a large part of prokaryotic DNA can be considered as protein

coding.

In contrast, eukaryotic DNA is mostly found divided between two and more chromo-

somes with variable length, where each chromosome usually contains one linear double-

stranded DNA molecule. In addition, protein coding genes in eukaryotes are frequently

2.1. TERMS AND PRINCIPLES IN MOLECULAR GENETICS 9

split into two or more coding regions (exons), which are intervened by non-coding regions

called introns. Compared to prokaryotes, eukaryotic genes are not organized in such a

compact consecutive order, there are also larger regions on eukaryotic chromosomes that

contain only a few protein coding parts.

The different structures of prokaryotic and eukaryotic genes are accompanied by differ-

ent mechanisms in their protein synthesis (see Figure 2.4).

promotor

coding region

transcription
terminator

messenger RNA

protein

prokaryotic gene

transcription

translation

promotor

exon 1

eukaryotic gene

intron 1 exon 2 exon 3intron 2

coding regions

transcription

pre-mRNA polyadenylation

splicing and modificationpolyadenylated pre-mRNA

AAA...

mature mRNA

AAA...
transport and translation

protein

CAP

poly(A)-tail

polyadenylation signal

Figure 2.4: Information flow in prokaryotic and eukaryotic cells. The left part shows the
DNA processing in a prokaryotic cell. The coding region of a gene is transcribed to its
messenger RNA, and during the translation the protein is built. In eukaryotic cells (right)
the situation is more complex. During the transcription the pre-mRNA is constructed from
the DNA with its introns and exons. Then the polyadenylation adds the poly(A)-tail to
the end of the pre-mRNA, and in the following splicing the intron are cut out yielding
the mature mRNA. This is transported out of the nucleus into the cytoplasm, where the
translation results in the final protein.

In prokaryotes, the synthesis of a protein starts with the docking of the enzyme RNA

polymerase, responsible for the transcription, in the promotor region of the gene. While

reading the DNA sequence starting from the promoter region, the RNA polymerase synthe-

sizes the mRNA molecule until it reaches the transcription terminator. Then the protein

is built by translating the mRNA into a sequence of amino acids. This is done by the

ribosomes that read the sequence of nucleotides of the mRNA and for each triplet of nu-

cleotides or codon add the encoded amino acid to the so far constructed amino acid chain.

When the ribosome reaches a stop codon, indicating the end of the mRNA, it releases the

protein that then folds to its final structure. Sometimes, we can find two or more protein

10 CHAPTER 2. BIOLOGICAL BACKGROUND

coding regions in-between a promotor and stop codon. These genes are said to form an

operon, i.e. a set of genes being always transcribed and translated together.

The protein synthesis in eukaryotes starts, similarly to prokaryotes, with the binding of

the so called RNA polymerase II at the transcription start site in the promoter region of

the eukaryotic gene. Shortly after the transcription begins, a typical feature of eukaryotic

mRNA, the cap, is added to the start of the mRNA. After the last exon is transcribed, the

polyadenylation signal in the gene allows the construction of the poly(A)-tail, and during

the following splicing, the introns are cut out of the pre-mRNA. Many pre-mRNAs are

spliced following a fixed scheme in which each intron is simply removed from the sequence.

In contrast, the alternative splicing allows also to cut coding regions (exons) from the

pre-mRNA. To this end, one eukaryotic gene can be spliced into many different mature

mRNAs, coding for different proteins. Finally, the mature mRNA is transported out of the

nucleus into the cytoplasm of the cell, and similar to prokaryotes, the ribosomes translate

the mRNA constructing the encoded protein.

Finally, we can summarize that the DNA, or more precisely its whole nucleotide se-

quence that we call genome, defines the structure and behavior of each living cell. There-

fore, the next section addresses the question what information we can infer from an organ-

ism when we have access to its nucleotide sequence.

2.2 Introduction to Comparative Genomics

More than 25 years ago, the development of an automated DNA sequencing process by Fred

Sanger et al. [61] provided the opportunity to quickly reveal the genomic sequence of an

organism. Up to now (May 2005) there are more than 261 completely sequenced genomes

published (21 Archaea, 207 Bacteria, 33 Eukarya), and the Genomes Online Database

GOLD1 contains over 1100 sequencing projects that are currently in progress.

The following introduction mainly concerns comparative genomics on prokaryotes. Here

a central topic is the detection of proteins and the explanation of their function in the cell.

In comparative genomics on eukaryotes, the attention is mostly directed on other topics

like conserved splicing and detection of transcription factor binding sites. These topics will

not be part of this thesis and therefore we will skip this area in the introduction. Before

we focus on the problem of locating the protein coding sequences in the DNA and the

prediction of the function of these proteins, mainly based on amino acid/DNA sequence

comparison, it is necessary to clarify the meaning of some basic and often inconsistently

used terms.

1http://www.genomesonline.org

2.2. INTRODUCTION TO COMPARATIVE GENOMICS 11

2.2.1 Similarity and Homology

A central concept in comparative genomics is the search for significant DNA sequence sim-

ilarities to infer homology. Unfortunately, the term “homology”, even in many scientific

publications, is often misused as synonym for similarity [55], while its correct meaning is

simply “of common origin”. The distinction between homology and similarity arose for

research in zoology and botanics, e.g. our hand and the wing of a bat are homologous

organs, but the bat’s wing is ’only’ analogous (similar) to the wing of the butterfly. Ho-

mology does not necessarily imply similarity, and similarity does not guarantee homology,

although in most cases it is a good indication. Considering the above definition, commonly

used phrases like “sequence homology” or “significant homology” should be seen only as

substitutes for “(significant) sequence similarity”.

If nowadays we conclude that two genes or proteins are homologous, this is always only

a conjecture. The true evidence for homology can only be given by the exploration of

their common ancestor and all intermediate forms. Since we do not have fossil records

of these extinct forms, we can only predict homology based on the similarity of their

DNA sequences. This sequence similarity can be expressed numerically and correlated

with probability. Generally, we can state that the higher the similarity between two given

sequences, the higher is the probability that they have not originated independently from

each other and their similarity is merely by chance. And indeed, we find many proteins,

conserved in a large number of species, showing such a high similarity that there seems to

be no doubt that they are homologs.

On the other hand, the situation gets more difficult when the observed sequence similar-

ity gets lower. The difficult question to answer is where to draw the line between similarity

indicating homology and similarity due to other reasons or just by chance. In fact it seems

that there is no fixed criterion to answer this question. A lower level of similarity might

also indicate homology if additional other properties (e.g. similar protein structure) apply.

One way to answer the question where to draw this line is discussed in Chapter 4.

One should be aware that common ancestry alone is not the only possible explanation

for an observed sequence similarity. There exists the second logically consistent alternative

that similarity is the result of convergence from unrelated species. In this case the similar

sequence of genes is strictly required to perform their similar function. For example,

convergence was detected in nature on a set of lysozyme molecules [42, 66, 67] in different

species. But, in most cases the region of convergent sequence positions comprises only a

few amino acid residues, which are only a small part of the protein. So, convergence alone

is not able to explain the observable sequence similarity of whole proteins.

12 CHAPTER 2. BIOLOGICAL BACKGROUND

2.2.2 Orthologs and Paralogs

For a correct protein function inference, it is important to distinguish between two principal

types of homology. These types, called orthology and paralogy, differ in their evolutionary

relationship and may lead to different functional implications [22, 23]. The term orthology

describes genes in different species, being derived from a single gene in their common

ancestor. On the other hand, two genes are called paralogous if they have evolved through

a gene duplication within the same ancestral genome (see Figure 2.5).

Figure 2.5: The development of a globin gene in the chicken, mouse, and frog genomes.

The identification of orthologous genes and proteins is an essential source of information

for the functional genome analysis in comparative genomics today. A set of orthologous

genes usually performs the same function as their common ancestor from which they are

derived. Therefore, in most cases it is sufficient to explore the function of a single gene from

such a set and transfer its function to all other genes of that set. This works well at least

for those organisms that carry only a single copy of this gene and do not contain further

genes capable of providing the same function. If the organism relies on the function of the

encoded protein, this puts a strong selective pressure on the conservation of this gene.

In contrast, paralogous gene copies are free to evolve new functions. After emerging

from a gene duplication event, they can distribute the selective pressure among each other.

Today, sequenced genomes show a rate of 25% to 80% of genes being member of a family

of paralogs [34], reflecting the functional diversification that occurred at different periods

in evolution.

Unfortunately, the interaction of speciation events, the origin of orthologous genes,

2.2. INTRODUCTION TO COMPARATIVE GENOMICS 13

and gene duplications, responsible for the paralogous families, result in very complex evo-

lutionary scenarios, making it quite impossible to infer their precise way of evolution.

This situation can get even more tricky when considering the fact that during evolu-

tion in certain lineages some copies of a gene may have disappeared (lineage-specific gene

loss) [6, 14] or after speciation duplicated orthologs evolved independently (lineage-specific

expansion) [35, 45].

Summarizing, we can state that the observation of sequence similarity between genes

is a hint to their common origin. The knowledge about homology can be used as a basis

to transfer information concerning function or evolution from an experimentally verified

protein to an uncharacterized homolog. However, those inferences should always be treated

with the appropriate caution, since it is not always simple to elucidate their true way of

evolution up to now.

2.2.3 Gene Prediction

A first important issue after finishing the DNA sequencing is to locate the genes, i.e. the

regions of the DNA sequence that potentially encode proteins. Prokaryotic genes are

usually made up of uninterrupted stretches of DNA between a start codon (typically ATG,

but sometimes also GTG, TTG, or CTG) and a stop codon (typically TAA, TGA, or TAG).

This region is called an open reading frame (ORF), and its average length is approx. 1000

base pairs (bp), while the usual minimum length of an ORF is at least 100 bp. For most

common purposes a suitable strategy to define a gene is to take the longest ORF for a

given region of DNA. Further evidence for a predicted ORF can be obtained using the

following methods, e.g.:

• search a database for homologous proteins encoded by a similar sequence;

• calculate the codon bias or other statistical features of the sequence and compare it

to that of known proteins;

• search for a typical ribosomal binding site preceding the predicted coding region;

• check if the coding region has a typical promotor region in front.

Generally one can distinguish between two different types of gene identification ap-

proaches. The intrinsic methods rely only on the evaluation of the statistical properties

of the DNA sequence (length, codon usage, presence or absence of a promotor region or

ribosomal-binding site). These methods are provided with a training set of known protein

sequences, from which they extract the information how a protein coding sequence should

look like. Popular examples for these intrinsic methods are GeneMark [11], Glimmer [17],

and the more recent program ZCURVE [28].

14 CHAPTER 2. BIOLOGICAL BACKGROUND

The extrinsic approach to predict a gene includes a comparison of the putative protein

coding sequences with verified homologous protein sequences from a database, and a search

for functional motifs. If the putative ORF product has a significant similarity to at least

one protein from the database, one can be quite sure that the ORF under observation is

a true gene. Obviously, the combination of statistical and similarity based approaches has

the potential to improve the reliability of the results obtained by a single method. Two

programs that implement such combination are ORPHEUS [24] and CRITICA [7].

A still unsolved problem for all described methods is the objective evaluation of their

predictive accuracy, since only a small fraction of the predicted genes are experimentally

verified. The only way out is the use of a sample set where the location of the genes is

known. This set is divided into a training set and a test set. The accuracy of the prediction

then can be expressed in terms of sensitivity and specificity for each applied method (see

also [12]).

2.2.4 Function Prediction and Annotation

The next step after locating the protein coding regions on the DNA is to explore their

functional role and biological meaning for the organism. Unfortunately, the discovery and

verification of protein functions in wet-lab experiments is extremely time consuming and

very expensive. Therefore, bioinformatic tools have been developed that provide an auto-

mated prediction of the possible function of a gene. Again, the most important information

that is used in different approaches, is the sequence and structural similarity to proteins

from a database whose function is already experimentally verified. On average we can

observe that for approx. 30-35% of the genes no reliable prediction can be made with such

methods, and for many of the rest the predicted functions are very general and need to

be refined [27]. A further complication arises from the fact that orthology (inferred from

similarity) in general is not a one-to-one relationship (see Section 2.2.2). In those cases

the transfer of functional assignments has to be handled with a special caution, because

paralogous gene copies might have acquired new functions.

Another source of evidence for a functional prediction can be derived from conserved

phylogenetic patterns [53, 26, 80]. A phylogenetic pattern is defined by a set of genomes

in which a group of orthologous genes appears. The general idea is that if a group of

genes together performs a required function in an organism, e.g. they participate in one

important metabolic pathway, they all should be conserved during evolution. In that sense,

from the detection of groups of orthologs with a similar phylogenetic pattern, one can infer

that these genes are functionally associated. In contrast, the detection of a complementary

phylogenetic pattern is a strong indication of an evolutionary event called non-orthologous

gene displacement. Here, the function of a particular gene was taken over by another gene

that has no common ancestor, and therefore no similarity, with the original gene [27]. For

2.2. INTRODUCTION TO COMPARATIVE GENOMICS 15

those genes, the inference of function only by similarity is convicted to fail.

The evaluation of genomic neighborhoods is an additional approach towards the dis-

covery of protein function. Here, the central idea is that functionally related proteins tend

to conserve their genomic neighborhood, and in many cases form an operon [21]. How

to use these gene clusters for functional and evolutionary predictions is the main topic of

Chapter 3.

16 CHAPTER 2. BIOLOGICAL BACKGROUND

Chapter 3

Gene Clusters

In this chapter, we present the concept of gene clusters and its manyfold applications in

comparative genomics. In the literature, the concept of gene clusters is frequently used,

often with varying meanings, lacking a clear definition of what it stands for, and how it

can be used to gain information from. Therefore, in the beginning of this chapter, we focus

on the biological relevance of gene clusters and their application in genome annotation

and evolutionary analysis. Afterwards, we present different formal models of gene clusters,

accompanied by efficient algorithms to detect them, and discuss their applicability to real

genomic data.

3.1 Biological Relevance of Gene Clusters

The first emergence of the term gene cluster in the literature dates back to the year 1966

where R. H. Bauerle and P. Margolin [8] described the functional organization of five genes

forming the “tryptophan gene cluster” in S. typhimurium, compared to their organization

in E. coli. In the following years, the detection of the tryptophan gene cluster was reported

also in other species [54], and numerous other clusters were reported. The discovery of more

and more gene clusters raised the question what the reasons for the conservation of clusters

over time might be and what information regarding function and evolution these clusters

contain [13, 58].

The first systematic approaches discovering the mechanisms behind gene cluster con-

servation were reported in the mid-nineties when complete prokaryotic genome sequences

became available. Shortly after (almost) finishing the sequencing of the first bacterial

genomes in 1996, Tatusov et al. [73] observed that the gene order between the two closely

related genomes of E. coli and H. influenzae surprisingly showed almost no conservation for

regions larger than a few genes. In [49], Mushegian et al. described a similar observation on

a larger set of also more distantly related genomes, leading to the conclusion that generally,

the gene order in bacterial genomes is under no selective pressure and therefore extensively

17

18 CHAPTER 3. GENE CLUSTERS

shuffled over time [39]. On the other hand, those local regions of gene order conservation

were found even in distantly related species, where here the order inside the conserved re-

gion again may vary. This trend in evolution to conserve the formation of locally conserved

clusters over time allows the inference of many different types of information about the

functions of genes in those clusters as well as their evolution.

3.1.1 Using Gene Clusters for Function Prediction

In 1997, Tamames et al. [69] developed a combined approach of sequence comparison and

functional gene product classification on the genomes of E. coli and H. influenzae, study-

ing their gene order relationship and genome organization. They addressed the question

whether and to what degree functionally related genes are adjacent within and between

the two bacteria. For this purpose, they classified all genes from the two genomes into

eight general functional classes (e.g. transport, metabolism) and compared the number

of neighboring gene pairs assigned to the same functional class with those belonging to

different functional classes inside each genome and afterwards between the two genomes.

In both cases, they observed a statistically highly significant tendency for genes of the

same functional group to occur as a consecutive gene pair and proposed that this cluster-

ing represents some functional constraints on the genomes that are maintained by natural

selection. Additional support for the hypothesis that evolutionary pressure leads to the

conservation of gene clusters comes from the observation that 90 % of the conserved gene

pairs found between E. coli and H. influenzae maintain their relative orientation, i.e. they

are transcribed in the same direction.

One year later, Dandekar et al. [15] took advantage of the availability of more published

genome sequences and developed an approach based on the comparison of nine genomes.

They divided them into three groups of three genomes each, such that in each group at least

one more distantly related genome is present, since the conservation of gene order in closely

related species is more likely to be a result of a lack of time for genome rearrangements

after their divergence from a common ancestor. In each of the three genome sets, they

were able to locate approximately 100 genes conserved in groups of at least two genes,

from which at the time of study at least 75 % of the genes are experimentally verified to

encode functionally interacting proteins.

Both articles clearly reveal that gene order conservation is a hint at functional interac-

tion of gene products. Therefore, it could routinely be used as a tool for predicting protein

function in several different ways [15]:

1. If the products of two genes have only been tentatively assigned functions, their

location in a conserved cluster can be used to predict the functional interaction as

well as their function.

3.1. BIOLOGICAL RELEVANCE OF GENE CLUSTERS 19

2. If a gene with an unknown function is found in a conserved cluster among several

genomes, the functional interaction of the genes may give valuable information de-

lineating the search space for their unknown function.

3. Even if the function of all individual genes in a cluster is known, the fact that they are

not randomly distributed in the genome might reveal novel functional or evolutionary

aspects (see following Section).

3.1.2 Using Gene Clusters for Evolutionary Analysis

Similar to the function prediction for gene products based on sequence similarity, also

the first described studies of molecular evolution used the comparison of single genomic

sequences. Here again, the availability of completely sequenced genomes allows to direct

the analysis to a higher, more comprehensive level of whole genomes.

Addressing the question, how genomic information can be used to obtain information

about genome evolution, Huynen and co-workers [33, 34] described how genome content

can create baseline expectations for measures of genome distances. In their approach

working on the first nine available genome sequences, they used information from the

fraction of known orthologous sequences between the genomes and combined it with the

conservation of gene order and the spatial clustering of genes for which an ortholog is

present in another genome. After correlating these measures with the divergence time

between the compared genomes they were able to derive calibration curves that show how

their selected indicators for genome evolution can be used to extract information about

the evolution of new microbial genomes.

A more detailed analysis of the relation between the amount of gene cluster conser-

vation and evolutionary distance was performed by Tamames in [68], observing that the

distribution of gene clusters over the evolutionary distance fits to a sigmoid curve (see Fig-

ure 3.1). This curve can be subdivided into three parts, where the first part (dashed line)

shows that the gene order conservation for closely related species is very high since there

was not enough time for an extensive genomic rearrangement. The second part (solid line)

shows a region of decreasing gene order for phylogenetically more distant species. In this

area, gene order conservation could be used as one criterion to estimate the phylogeneti-

cal distance between the analyzed genomes. For a larger evolutionary distance, the curve

shows a saturation (dotted line), where for an increasing genomic distance, the amount

of cluster conservation is constant at a low level. The gene cluster analysis of genomes

from this region with a larger phylogenetic distance is especially relevant for the inference

of functional association between the gene products of a conserved cluster, since here the

conserved order cannot be due to a recent descent from a common ancestor.

All described approaches show that the conservation of gene order is a source of in-

formation for many fields in genomic research. Especially the combination of information

20 CHAPTER 3. GENE CLUSTERS

Figure 3.1: Sigmoid distribution of conserved gene order with increasing evolutionary
distance. The distribution is divided into three parts. The first part (dashed line) shows
the very high level of gene order conservation for phylogenetically closely related species.
In the second part (solid line) the conservation of gene order decreases constantly with
an increase in evolutionary distance, and in the end (dotted line) the cluster conservation
reaches a saturation level for distantly related species.

from conserved gene clusters with different approaches in comparative genomics, like de-

tection of gene fusion and phylogenetic profiling, provides a powerful strategy to unravel

their way of evolution or the hidden function of certain gene products [79]. Therefore, the

detecting of conserved gene clusters is an important task on the way of discovering of so

far missing pieces in the puzzle of bacterial life.

3.2 Existing Approaches for Gene Cluster Detection

After discovering the value of gene cluster conservation, in recent years many approaches

have been developed to detect regions of conserved genomic neighborhood. These regions

are used to infer evolutionary information or functional associations of the proteins encoded

by genes from those gene clusters.

3.2.1 Gene Cluster Detection using Conserved Gene Pairs

Overbeek et al. [52] developed an automatic procedure to detect gene pairs of close or-

thologs, where close in this case means belonging to one run of genes (i.e. a set of genes

separated by at most 300 bp on a genome), and orthologs are operationally defined as

bidirectional best hits (BBH) between two genomes. Additionally, they scored the hits

according to their phylogenetic distance inferred from the rRNA-based phylogenetic tree,

since it is expected that pairs of close orthologs are more likely to occur by chance in

3.2. EXISTING APPROACHES FOR GENE CLUSTER DETECTION 21

phylogenetically closely related species than in distantly related genomes. They also sug-

gested some relaxation to the definition of close gene pairs by not insisting on BBHs and

instead using a threshold defined by a certain expectation value for the observed sequence

similarity. With their approach they were able to reconstruct several previously known

metabolic pathways [51].

The general concept of conserved gene pairs of Overbeek et al. was extended by Lathe

and co-workers [44] with some modifications in the parameter settings for a conserved pair

(a shorter distance of 250 bp for close pairs, and same transcriptional orientation). Starting

from the detection of a conserved gene pair they search for more conserved neighbors in

further genomes. If such neighbors are found, these are added to the set of conserved

genes which they call über-operon, and the procedure starts again on the newly added

genes. Applying the method to 15 prokaryotic genomes, they observed that although the

exact neighborhood of each gene is not necessarily conserved, each gene can be found in

a context of transcriptionally associated genes. Therefore, this method is especially useful

to locate gene clusters that do not form an operon-like structure although their genes are

transcriptionally related [41].

Web-based Tools

The implementation of Overbeek’s approach was the first genome context-based operon

comparison tool which was available in the WIT database1. Unfortunately, this database

has been closed for the public in 2001.

Another well known web-based tool for gene cluster detection is the Search Tool for Re-

curring Instances of Neighboring Genes STRING2, developed by Bork and colleagues [65].

This tool is based on a similar approach as WIT. The STRING search starts from a sin-

gle protein sequence that can be entered as a FASTA3 file or just by its gene name from

a complete genome. If the sequence is entered in FASTA format it is compared against

the database of all proteins encoded in complete genomes so that the user can choose

one of the best hits as query gene. Then STRING performs an iterative analysis of gene

neighborhoods around the query gene in all genomes in the database. After the nearest

neighbors of a gene in question are identified, the next iteration of STRING would look

for their neighbors and record if any of these were found previously. If no new neighbors

are found, STRING reports that the search has “converged”. If this does not happen even

after five consequent search cycles, the program would just tabulate how many times each

particular gene was found in the output. The good graphical representation of genes and

their neighborhood makes STRING a fast and convenient tool to search for consistent gene

1http://wit.mcs.anl.gov
2http://www.bork.embl-heidelberg.de/STRING
3http://bioweb.pasteur.fr/seqanal/interfaces/fasta.html

22 CHAPTER 3. GENE CLUSTERS

associations in complete genomes, given a single query gene.

The similarity neighborhood approach web tool SNAPper at MIPS4 [38] is similar

to STRING, but instead of using pre-computed pairs of orthologs, it looks for sequence

pairs with a user-defined significant similarity. In addition, SNAPper does not require

the related genes to form conserved gene strings, they only need to be in the proximity

of each other. SNAPper looks for the homologs of a given protein, then takes neighbors

of the corresponding genes and again looks for their homologs, and so on. The program

then builds a similarity-neighborhood graph (SN-graph), which consists of the chains of

orthologous genes in different genomes and adjacent genes in the same genome. The hits

that form a closed SN-graph, i.e. recognize the original set of homologs, are predicted

to be functionally related. An advanced version of SNAPper offers the choice to select

several parameters, allowing a fine-tuning of the performance of the tool depending on the

particular query protein.

3.2.2 Gene Cluster Detection using Graph Comparison

Besides the approach of locating gene clusters by identifying conserved gene pairs, another

successful way to detect gene clusters is based on the comparison of different types of

graphs.

In 2000, Ogata et al. published a method for identifying correlated gene clusters based

on a graph comparison algorithm [50]. The general idea of this method is that one can

represent the sequence of genes in a genome as a one-dimensional connected graph whose

vertices correspond to the genes and two adjacent genes are connected by a single edge

disregarding the direction of transcription. A second graph is derived from the Kyoto En-

cyclopedia of Genes and Genomes (KEGG5) database, where a metabolic pathway from

the database is treated as a graph with gene products as vertices connected by edges rep-

resenting the chemical compounds used. Thus, two adjacent vertices represent successive

reaction steps in the used pathway. Given these two graphs, the essential procedure then

is to extract a set of gene products catalyzing successive reactions in a pathway that are

encoded by genes in close locations on the genome. Therefore, the correspondence between

the two graphs is given by EC6 numbers, which assign to each gene its enzymatic function

(if known). Then the detection of functionally related enzyme clusters (FREC) becomes a

problem of detecting groups of EC numbers that are formed by clusters of corresponding

vertices in both graphs.

With this approach Ogata et al. developed a method to locate functionally associated

genes in a single genome when their functions are known. On the other hand, this method

4http://pedant.gsf.de/snapper/
5http://www.genome.ad.jp/kegg/
6http://www.chem.qmul.ac.uk/iubmb/enzyme/

3.2. EXISTING APPROACHES FOR GENE CLUSTER DETECTION 23

can also be used to find clusters of conserved genes between two different genomes, by

replacing the graph from the KEGG database with the graph representation of a second

genome. In this case, the connection between the two graphs (EC numbers in the case of

using KEGG) could be represented by links based on sequence similarity. With this graph

representation, Fujibuchi et al. [25] developed a three step procedure to find conserved

clusters in multiple genomes. In the first step of this procedure the graph comparison

is used to identify correlated clusters in a pairwise genome comparison. Afterwards, all

corresponding pairwise clusters are combined using P -quasi complete linkage clustering,

which is an intermediate between single and complete linkage clustering and requires that

each element of the cluster has a connection to at least P % of the other elements. In

the final step, the located gene clusters are analyzed in more detail trying to identify

gene fusion events or paralogs. Applying their method to a set of 16 prokaryotes and

one uni-cellular eukaryote, it turned out that the gained results significantly depend on

the determination of the parameter P . An additional disadvantage of this graph based

approach is the expected running time for 17 genomes, which they expected to be about

one week on ten CPUs in parallel.

Finally, a combination of the pairwise and graph based approaches can be found in [59],

where Rogozin and co-workers delineated a more general type of connected gene neighbor-

hood, called gene arrays, which is similar to the über-operon concept of Lathe et al. [44]

since it combines partially overlapping regions of conserved gene order.

Summary

The preceding sections showed that the conservation of gene order contains valuable in-

formation for many fields in genome research, especially for gene function prediction and

the inference of evolutionary relationships. Unfortunately, the definition of gene clusters

differs significantly from method to method, and the underlying models are often based

on heuristic algorithms, which depend on very specific parameters like the size of gaps

between genes, the completeness ratio of clusters, or the scoring scheme for phylogenetic

distances. This leads to the problem that generally the results of these methods are not

comparable, and the fact that so far only a few gene clusters are experimentally verified

makes it even harder to rate the quality of the clusters reported by a single method.

Another drawback of all methods described above is that due to the missing formal

model, the development of sound and efficient algorithms is very difficult, but indispensable

due to an increasing number of available sequences. Finally, a statistical analysis to test

the significance, if an observed gene cluster occurs just by chance, is also missing in many

of the described approaches. Such an analysis was performed by Durand and Sankoff [20],

who present probabilistic models to determine the significance of gene clusters, but leave

open the question how to detect these gene clusters in two or more given genomes.

24 CHAPTER 3. GENE CLUSTERS

Therefore, the following sections of this chapter address the establishment of formal

models for gene clusters together with efficient algorithms for their detection in any given

number of genomes.

3.3 A First Formal Model for Gene Clusters

The first rigorous formulation of the concept of a gene cluster was given by Uno and

Yagiura [75]. Representing the genomes as permutations of numbers, they introduced the

notion of common intervals as contiguous regions in each of two permutations containing

the same elements. This simplified representation was the origin for many studies on

modelling gene clusters, therefore we will discuss this model with some of its extensions in

more detail in the following.

3.3.1 Gene Clusters and Common Intervals

The following high-level genome representation was motivated by studies in the field of

global genome rearrangement. The representation of genomes as permutations is used in

the evolutionary analysis of genomes [29, 62] as well as in the functional analysis of gene

order [31, 32, 75].

Genes are described by numbers from the setN := {1, 2, ..., n}, so that a genome is given

by the sequence of its genes, which is a permutation π of the numbers from N . By π(i) = j

is denoted that the ith element of π is j. A set of indices {x, x+1, ..., y} is denoted by [x, y]

for x, y ∈ N and x ≤ y. The corresponding set of elements {π(x), π(x + 1), ..., π(y)} from

π is given by π([x, y]) and called an interval of π. Let Π = (π1, π2, ..., πk) be a family of k

permutations of N . W.l.o.g. in the following is always assumed that π1 = idn := (1, 2, ..., n).

With the representation of genomes as permutations, we define a simple and restricted

model for gene clusters based on the definition of common intervals.

Definition (common interval). A common interval of the family Π is a k-tuple c =

([l1, u1], ..., [lk, uk]) with 1 ≤ lj < uj ≤ n for all 1 ≤ j ≤ k if and only if:

π1([l1, u1]) = π2([l2, u2]) = ... = πk([lk, uk]).

This definition allows to identify a common interval c by the contained elements, i.e. c ≡
πj([lj, uj]) for 1 ≤ j ≤ k. Since π1 = idn, the above set equals the index set [l1, u1], and

this will be the standard notation for a common interval. The set of all common intervals

of Π is denoted CΠ and because of lj < uj it contains no common interval of size one.

3.3. A FIRST FORMAL MODEL FOR GENE CLUSTERS 25

Example. Let N = {1, ..., 5} and Π = (π1, π2) with π1 = id5, and π2 = (1, 4, 5, 2, 3). We

have

CΠ = {([1, 5], [1, 5]), ([2, 3], [4, 5]), ([2, 5], [2, 5]), ([4, 5], [2, 3])},

and in standard notation:

CΠ = {[1, 5], [2, 3], [2, 5], [4, 5]}.

3.3.2 Algorithms for finding Common Intervals

After defining the set of all common intervals of Π, now the challenge is to develop an

efficient algorithm that finds all elements of CΠ. If Π consists of only two permutations

(k = 2), an easy test if an interval π2([x, y]), 1 ≤ x < y ≤ n, is a common interval of

Π = (π1, π2) is based on the following functions:

l(x, y) := min π2([x, y]),

u(x, y) := max π2([x, y]),

f(x, y) := u(x, y)− l(x, y)− (y − x). (3.1)

Since f(x, y) counts the number of elements in [l(x, y), u(x, y)] \ π2([x, y]), an interval

π2([x, y]) is a common interval of Π if and only if f(x, y) = 0.

An easy way to find CΠ is to test for each pair of indices (x, y), 1 ≤ x < y ≤ n,

if f(x, y) = 0, yielding a naive O(n3) time algorithm. The usage of running minima

and maxima reduces the time complexity to O(n2). Uno and Yagiura [75] described an

algorithm where the main idea was to reduce the number of pairs to be tested by introducing

wasteful candidates. This resulted in an O(n+K) time algorithm for finding all K common

intervals of two permutations of n elements.

Heber and Stoye [32] extended this solution to find all common intervals of k permu-

tations. Therefore, they introduced the concept of irreducible intervals and presented an

algorithm that runs in optimal O(kn + K) time, where again K is the output size. They

also showed how to deal with circular permutations, multi-chromosomal permutations and

signed permutations, where the sign is a representation for the coding direction of the

gene [31].

To apply the gene cluster model on real data, the genomes have to be transformed into

permutations. This transformation is usually performed using the following preprocessing

procedure:

1. Detect the genes in the genomes (using a gene prediction algorithm, see Section 2.2.3).

26 CHAPTER 3. GENE CLUSTERS

2. Find for each gene its orthologs by searching for bidirectional best hits (BBHs) in

the other genomes (using a similarity based approach, see Section 2.2.2).

3. Delete all genes from the genome sequence having no corresponding ortholog in each

of the other genomes.

4. Number the genes such that:

• the first genome sequence becomes the identity permutation π1 = idn,

• the genes in the following sequences are numbered so, that each gene gets the

same number as its ortholog in π1.

3.3.3 Limitations of the Model

In the application to real data, the simplicity of this model for gene clusters, based on the

definition of common intervals, comes at the cost of quality. There are many assumptions

and simplifications made, which make this model of gene clusters insufficient to the use

on real biological data. The problems causing these insufficiencies can be divided into two

groups, where the first group is the preprocessing of the data, and the second group of

problems results from the strictness of the model.

Preprocessing errors: During the preprocessing, each orthologous gene is assigned a

unique number from the permutation over N . This causes problems in cases, where paral-

ogous genes inside a genome are present (Figure 3.2a). A second reason for an insufficient

cluster detection is the usage of BBHs to identify orthologous genes. This may lead to a

wrong classification of orthologous genes, especially when there are two or more hits with

almost the same significance of similarity (Figure 3.2b). Further sources of errors resulting

in a poor quality of detected clusters are the disregarding of the coding direction of the

genes and the neglecting of the length of the non-coding regions between the single genes.

Errors from strictness: The stringency in deciding whether an interval of two genomes

is a common interval is given by the function f in Equation (3.1) and simply extends for

multiple genomes. Exactly the same (number of) orthologous genes have to be part of the

region under observation, and this for each of the handled genomes. But over time there

might occur evolutionary events, causing that a gene product is no longer required for an

organism, or its function is taken over by another gene. So, the gene originally coding for

that product does no longer underlie the evolutionary pressure of staying in the cluster.

It can be expected, that over time this gene will move out of the cluster. After such an

event the described algorithms are no longer able to detect the involved gene cluster, just

3.4. MODELLING PARALOGOUS GENES 27

Figure 3.2: Errors from preprocessing. The genomes are drawn as a sequence of arrows,
where arrows with the same color indicate homologous genes. In (a), a duplication of the
blue gene in Genome 1 raises the problem to assign the “correct” ortholog to the blue gene
in Genome 2. The choice using the ’8’ (solid blue line) results in a scenario where no gene
cluster could be detected, while using the ’9’ (dotted blue line) will result in a partially
conserved region of the elements 9,10,11. In (b), the blue gene 15, duplicated from gene 8
outside the cluster in Genome 1, is more similar to the blue gene 15 in Genome 2. With
this assignment the whole gene cluster could not be detected, while assigning the 8 to the
blue gene in Genome 2 (dotted line) is the preferable choice to detect the cluster.

because of a single missing gene in one genome. Therefore, it seems to be necessary to

develop models allowing gene clusters with a certain amount error tolerance.

Figure 3.3: Errors from strictness. In Genome 2 and 3, gene 8 (light blue) is replaced by
gene 18 and additionally in Genome 3 gene 10 is missing. In this scenario, no cluster will be
reported, even though the conservation of the other genes is a highly valuable information.

3.4 Modelling Paralogous Genes

In the previous section, we have seen that the development of a formal model for gene

clusters allows the creation of efficient algorithms detecting them. However, we have also

seen that if a model is too abstract, then it is not able to produce results of sufficient

quality. A possible approach to build a more accurate cluster model could contain the

28 CHAPTER 3. GENE CLUSTERS

incorporation of more genomic information (e.g. coding direction, paralogs, length of a

gene, ...) into the model. But, these model extensions quickly increase the computational

complexity of the algorithms to detect those clusters.

Figure 3.4: Representing paralogs. If a gene duplication (a) is detected (genes 8, 9), we
represent both duplications (b) by the same number (8).

With respect to both speed and accuracy, in this section we present our model for gene

clusters, which tries to keep a balance between computational complexity and biological

relevance of the developed model. Incorporating the notion of paralogs, our extended

model is able to solve the problems arising from the preprocessing of the genomes (see

Section 3.3.3). Whenever a gene duplication is observed, it is no longer the goal to identify

which of the duplicated genes corresponds to a certain homolog in another genome, instead

each paralog is denoted by the same identifier (number), see Figure 3.4. Allowing for

possible multiplicities, obviously the genomes are no longer permutations but sequences

(strings) of their genes. To this end, the modelling of gene clusters as common intervals

over permutations has to be generalized to strings.

3.4.1 Definitions

Given a string S over the finite alphabet of integers Σ := {1, ...,m}, |S| ≤ n is the length

of S, S[i] refers to the ith character of S, and S[i, j] is the substring of S that starts with

the ith and ends with the jth character of S. For convenience it will always be assumed

for a string S that S[0] and S[|S|+ 1] are characters not occurring elsewhere in S, so that

border effects can be ignored when speaking of the left or right neighbor of a character in

S. In our application of comparative genomics, the characters from Σ represent the genes.

We will refer to S as a genome or a string interchangeably.

Definition (character set). Given a string S, the character set of a substring S[i, j] is

defined by

CS(S[i, j]) := {S[k] | i ≤ k ≤ j} ⊆ Σ.

3.4. MODELLING PARALOGOUS GENES 29

A character set represents the set of all genes occurring in a given substring of a genome,

where the order and the number of occurrences of paralogous copies of a gene is irrelevant.

Observe that if S is a permutation π = S then CS(S[i, j]) = π([i, j]).

Definition (CS-location, maximal). Given a string S over an alphabet Σ and a sub-

set C ⊆ Σ, the interval [i, j] is a CS-location of C in S if and only if CS(S[i, j]) = C. A

CS-location [i, j] of C is left-maximal if S[i − 1] /∈ C, it is right-maximal if S[j + 1] /∈ C,

and it is maximal if it is both left- and right-maximal.

A CS-location of a subset C of Σ represents a contiguous region in a genome that contains

exactly the genes contained in C, allowing for possible multiplicities. Note that C has a

maximal CS-location in S if and only if C has a CS-location in S.

Definition (common CS-factor of k strings). Given a collection of k strings S =

(S1, S2, . . . , Sk) over an alphabet Σ, a subset C ⊆ Σ is a common CS-factor of S if and

only if C has a CS-location in each Sl, 1 ≤ l ≤ k.

A common CS-factor of k genomes represents a gene cluster that occurs in each of the

k genomes. This concept is similar to a common interval of k permutations, but it allows

the presence of paralogous genes in the genomes and particularly within a gene cluster.

Example. Let S1 = (3, 5, 7, 9, 7, 4, 6, 8, 1, 2) with Σ = {1, 2, · · · , 9}. The character set

CS(S1[3, 5]) of the substring S1[3, 5] is the set {7, 9}. The set C = {7, 9} has three dif-

ferent CS-locations in S1: [3, 4], [4, 5], and [3, 5], where only [3, 5] is maximal. With

S2 = (5, 2, 7, 4, 9, 7, 2), C is a common CS-factor of the two strings S1 and S2, because C

has also a CS-location in S2: [5, 6].

These definitions motivate the following two problems, where the solution of Problem 2

implies a solution of Problem 1:

Problem 1. Given a collection of k strings S = (S1, S2, . . . , Sk), find all its common

CS-factors.

Problem 2. For each common CS-factor of S, find all its maximal CS-locations in each

of the Sl, 1 ≤ l ≤ k.

Unfortunately, the presented algorithms for detecting gene clusters, defined as common

30 CHAPTER 3. GENE CLUSTERS

intervals on permutations (see Section 3.3.2), are not straightforwardly extendable to de-

tect common CS-factors. The reason is the counting function of Equation 3.1, which

requires that each number in the represented genome occurs exactly once.

Therefore, in the following sections, we present several different approaches to solve

Problem 1 and Problem 2 as efficiently as possible for two strings, finally presenting a

worst case optimal quadratic time and linear space algorithm. Afterwards, we show how

to generalize the algorithms to any given number of strings. For all algorithms the input

is always given by two strings S1 and S2 of numbers from the alphabet Σ. The output for

each common CS-factors is then given as a pair of its CS-locations ([i, j]S1 , [i
′, j′]S2), where

[i, j]Sl denotes a CS-location [i, j] of sequence Sl.

3.4.2 First Simple Algorithms

A first non-trivial solution to find all common CS-factors of two strings was the Two Stack

Algorithm, shown in Algorithm 1.

The general idea of this algorithm is, that for fixed starting positions i in S1 and i′ in

S2 one alternately extends the substring S1[i, j] and S2[i′, j′] to the right, while keeping

track of the characters that are missing in the substring of the other sequence. Therefore,

the stack ST1 is used to store all characters occurring in S2[i′, j′] and not in S1[i, j], and

ST2 visa versa. To store the information that a character c ∈ Σ occurs in the substring

S1[i, j] (resp. S2[i′, j′]) read so far, a bitvector OCC1 (OCC2) of length Σ is used, such

that OCC1[c] = 1 (OCC2[c] = 1) if c occurs in S1[i, j] (S2[i, j]). The boolean phase

indicates whether S1 (phase=false) or S2 (phase=true) is being extended. Since the

stacks contain only the characters that are present in exactly one of the substrings read

so far, a common CS-factor of the two strings is found only if both stacks are empty (see

example in Figure 3.5).

For the analysis of this algorithm observe that there are |S1| · |S2| different pairs of

start indices i and i′ for the outer while-loop starting in line 5 of Algorithm 1. The body

of this while-loop is executed at most |S1| + |S2| times, since in each iteration, j or j′

is incremented by one or more if the while-loops in lines 15 or 18 are executed. With

exception of the while-loop starting in line 10, all other operations can be performed in

constant time. To show that for a fixed pair of start indices i and i′ the body of the while-

loop starting in line 10 is executed at most |S1| times, observe that this loop is executed at

most once for each element pushed on the stack ST1. This holds since each character in S1

can be pushed on the stack only once. The same argumentation holds for the while-loop

not stated explicitly if phase = false.

Summarizing we can state that with n denoting the length of the longer sequence, the

Two Stack Algorithm outputs all common CS-factors of S1 and S2 in O(n3) time.

3.4. MODELLING PARALOGOUS GENES 31

Algorithm 1 Two Stack Algorithm
1: for i = 1, . . . , |S1| do
2: for i′ = 1, . . . , |S2| do
3: OCC1[c]← 0, OCC2[c]← 0 ∀ c ∈ Σ, clear stacks ST1, ST2

4: initialize: j ← i, j′ ← i′, phase← true, OCC1[S1[j]]← 1, push(ST1, S1[j])
5: while j ≤ |S1| and j′ ≤ |S2| and [i, j]S1 , [i′, j′]S2 are left-maximal do
6: if phase then
7: {walking in S2:}
8: if S2[j′] = peek(ST1) then
9: OCC2[S2[j′]]← 1

10: while notempty(ST1) and OCC2[peek(ST1)] = 1 do
11: pop(ST1)
12: end while
13: if empty(ST1) then
14: if empty(ST2) then
15: while OCC1[S1[j + 1]] = 1 do
16: j ← j + 1
17: end while
18: while OCC2[S2[j′ + 1]] = 1 do
19: j′ ← j′ + 1
20: end while
21: output the pair ([i, j]S1 , [i

′, j′]S2)
22: j′ ← j′ + 1
23: if S2[j′] ≤ |S2| then
24: OCC2[S2[j′]]← 1
25: push(ST2, S2[j′])
26: j ← j + 1
27: phase← not(phase)
28: end if
29: else
30: phase← not(phase)
31: j ← j + 1
32: end if
33: else
34: j′ ← j′ + 1
35: end if
36: else
37: if OCC1[S2[j′]] = 0 and OCC2[S2[j′]] = 0 then
38: push(ST2, S2[j′])
39: end if
40: OCC2[S2[j′]]← 1, j′ ← j′ + 1
41: end if
42: else
43: {walking in S1 (symmetric to previous block):}
44: substitute: j ↔ j′, i↔ i′, ST1 ↔ ST2, C1 ↔ C2, S1 ↔ S2

45: end if
46: end while
47: end for
48: end for

32 CHAPTER 3. GENE CLUSTERS

Figure 3.5: Starting with i = 2 in S1, line I shows the initial configuration of the stacks
ST1 and ST2. In lines II and III, during the increase of j′, the characters not occurring in
S1[i, j] are pushed onto the stack ST2. In line IV, the character on the top of ST1 is read
in S2[i′, j′]. Then ST1 is updated, such that all characters on top of ST1 are removed from
ST1 if they occur in S2[i′, j′] (here only ’5’). Since, ST1 is now empty, the substring to be
increased changes from S2 to S1. Now the characters read during the increase of j and not
occurring in S2[i′, j′] are pushed onto ST1 (lines V-VII). In line VIII, the character on top
of ST2 is read in S1, ST2 is updated and since it is now empty the increasing substring
changes to S2. Finally, in line IX the substring S2[i′, j′] contains all characters from S1[i, j]
and both stacks are empty. Then both substrings are tested for right-maximality (S1[i, j]
is not right-maximal) and the common CS-factor ([2, 7]S1 , [1, 8]S2) is reported. Afterwards
(in line X), the procedure continues with the search for further common CS-factors until
the end of S1 or S2 is reached.

3.4. MODELLING PARALOGOUS GENES 33

Shifting Algorithm

A second less complex algorithm solving our problems in cubic time, is the Shifting Algo-

rithm (see Algorithm 2). Here, the basic idea is that for a fixed maximal CS-location in

S1, one shifts through S2, searching for maximal CS-locations of the same character set as

the CS-location in S1.

Algorithm 2 Shifting Algorithm
1: OCC1[c]← 0 for each character c of S1 in Σ
2: OCC2[c]← 0 for each character c of S2 in Σ
3: for i = 1, . . . , |S1| do
4: j ← i
5: OCC1[S1[i]]← 1
6: while j ≤ |S1| and [i, j]S1 is left-maximal do
7: OCC1[S1[j]]← 1
8: if [i, j]S1 is right-maximal then
9: i′ ← 1, j′ ← 1

10: while j′ ≤ (|S2|+ 1) do
11: if OCC1[S2[j′]] = 1 then
12: OCC2[S2[j′]]← 1
13: j′ ← j′ + 1
14: else
15: if |OCC1| = |OCC2| then
16: output the pair ([i, j]S1 , [i

′, j′ − 1]S2)
17: end if
18: while i′ ≤ j′ do
19: OCC2[S2[i′]]← 0
20: i′ ← i′ + 1
21: end while
22: j′ ← j′ + 1
23: end if
24: end while
25: end if
26: j ← j + 1
27: end while
28: end for

For a fixed position i, the substring S1[i, j] is extended to the right as long as it is

left-maximal. Again, OCC1[c] = 1 indicates that character c occurs in the substring of

S1 read the so far, and additionally |OCC1| counts the different characters (number of

ones in OCC1). For each left-maximal substring of S1 that is also right-maximal (which

is explicitly tested in line 8), an iterated shift of i′ and j′ through S2 is performed, where

[i′, j′]S2 is a CS-location candidate for a common CS-factor.

The shifting is an alternating application of two steps (see Figure 3.6). The first step

34 CHAPTER 3. GENE CLUSTERS

Figure 3.6: Shifting through S2. The extension step starts, once a character from S1[i, j]
is found in S2 (line II). The extension continues until the first character not in S1[i, j] is
detected (line IV). If now the character set of S1[i, j] and S2[i, j − 1] are equal, a common
CS-factor is found (line X). In lines V-VII the interval boundaries are moved to the new
start position behind the last index of the substring processed before.

3.4. MODELLING PARALOGOUS GENES 35

(lines 12 and 13) extends the substring S2[i′, j′] to the right, as long as its character set

contains only characters also occurring in S1[i, j]. The characters read are marked in OCC2.

In the second step, once a character not in S1[i, j] is read, we know that S2[i′, j′ − 1] was

right-maximal and if S2[i′, j′ − 1] contains all characters from S1[i, j] (test in line 15),

we have detected a common CS-factor. Since S2[i′, j′ − 1] was right-maximal, we cannot

find another common CS-factor by extending S2[i′, j′− 1] to the right. So, the left interval

boundary i′ is increased to the next possible starting position for a new CS-location (j′+1)

establishing again the left-maximality. During the increase of i′, all characters read are

removed from OCC2, such that |OCC2| = 0, when i′ = j′ + 1.

Obviously, this algorithm runs in O(n3) time, since there are (n2) substrings in S1, for

which a linear time shift for i′ and j′ through S2 has to be performed. This yields the total

time complexity of O(n3).

3.4.3 An Algorithm Using the Naming Technique

In 2003, Amir et al. [4] developed an algorithm for efficient text fingerprinting by sets of

symbols, originally addressing a problem in natural language processing. It turned out

that these sets of symbols are exactly the character sets from the definition of common

CS-factors, and therefore this algorithm can be applied to solve our problems as well.

On a high level, this algorithm can be described as follows: Enumerate for the strings

S1 and S2 all occurring character sets and assign them a name representing these sets.

Common CS-factors are all character sets whose names are found at least once in each of

the two strings.

For given a string S1 of length n over alphabet Σ (for simplicity, it is assumed that

|Σ| is a power of 2), the algorithm performs |Σ| iterations, where in the k-th iteration all

the substrings of S1 are enumerated, whose character sets are of size k (see Figure 3.7).

Therefore, a maximal substring S1[a, b] is maintained, and similar to OCC in the previous

algorithm, a binary array LIFE[1..|Σ|] is used, where LIFE[i] is 1 if character i is present

in the character set of S1[a, b], and 0 otherwise.

Initially, the substring contains the longest prefix of S whose character set has size

k. Then, the substring is modified in the following way: First, b is increased until the

character set of S1[a, b] has size k + 1, then the left boundary a is increased until the

character set of S1[a, b] has size k, and finally b is increased again, as long as the character

set remains with size k. This substring movement procedure is repeated until the end of S1

is reached. By this procedure, easily the character sets of all substrings of S1 can be found

in Θ(n|Σ|) time, but the same set may be found several times. The rest of the algorithm

deals with the identification of multiple occurrences of the same character set. Therefore,

some additional data structure is used.

A subarray LIFE[i2l + 1..(i + 1)2l] of LIFE (0 ≤ l ≤ log |Σ|, 0 ≤ i ≤ |Σ|/2l − 1) will

36 CHAPTER 3. GENE CLUSTERS

S : 6 6 4 3 53 4 5 3

1 2 3 4 5 6 7 8

0 0 1 1 1 0 0 0

S:

LIFE:

a b

I

II

III

IV

V

VI

VII

S : 6 4 3 53 4 5 3 6 0 0 1 1 1 0 01LIFE:

a b

S : 3 4 6 4 3 55 3 6 0 0 1 1 1 0 00LIFE:

a b

0 0 1 0 1 1 0 0LIFE:

0 0 1 1 1 0 01LIFE:

0 0 1 1 1 0 00LIFE:

0 0 1 1 0 1 0 0LIFE:

S : 3 4 4 3 55 3 6 6
a b

S : 3 4 3 55 3 6 6 4
a b

S : 3 4 5 3 53 6 6 4
a b

S : 3 4 5 53 6 6 4 3
a b

names:

(0,0) : 2 (1,1) : 3 (1,0) : 4 (2,3) : 5 (4,2) : 6

(5,6) : 7 (3,2) : 8 (5,8) : 9 (2,4) : 10 (10,8) : 11

0 0 1 1 1 0 0 0

2 3 4 2

5 6

7 level 3

level 2

level 1

level 0

0 0 1 1 1 0 01

2 3 23

5 8

9

0 0 1 1 1 0 00

2 3 24

10 8

11

0 0 1 0 1 1 0 0

2 4 3 2

10 8

11

Figure 3.7: Enumerating maximal substrings of three characters. Starting from the first
maximal substring of three characters [1, 4] in line I, b is extended to 5, reading the first
character not in [1, 4] (line II). Then a is incremented (to position 3) until the character set
of the remaining substring is of size 3 again. To ensure right-maximality, in a third step
(line IV) b is incremented as long as no new character is read, resulting in the new maximal
substring [3, 6] containing three different characters. These three steps are repeated until
the end of S is reached. In the center, for each substring the corresponding array LIFE
is shown. The red numbers indicate the changed positions, compared to the previous
line. The blue numbers represent the maximal substrings of three different characters,
which have to be collected and named. The naming of each LIFE array is shown on the
right. The name on the upper level is the representation for each character set of the
corresponding substring. Here, the numbers 7 and 11 represent (name) the character sets
to be enumerated in lines I and IV, respectively.

3.4. MODELLING PARALOGOUS GENES 37

be called a block of level l. The main idea of the algorithm is assigning a name for each

block in LIFE in all the configurations of LIFE. The naming is done in a way that ensures

that two blocks of the same level with the same content get assigned the same name. In

particular, in all the maximal locations of some character set C, the names assigned to the

entire array (i.e., to the block of level log |Σ|) are equal.

The naming is performed in the following way: Consider the initial configuration of

LIFE (i.e., the one that corresponds to the first substring). The name of a block of level

0 is the corresponding value in LIFE. Now, suppose that names for all the blocks of level

l − 1 are assigned and the names to the blocks of level l are assigned from left to right. A

block of level l is composed of two blocks of level l − 1. Suppose that the names of these

blocks are x and y. If the pair (x, y) appeared previously, then the name of the current

block is the name that was assigned to the pair (x, y). Otherwise the minimum unused

name is assigned to the pair (x, y), and also to the current block. See Figure 3.7 for an

example.

After each movement of the interval, two positions in the array LIFE are changed: In

one position, a 1 is changed into 0, and in a second position, a 0 is changed into 1. After

each of these changes, the algorithm updates the names of the blocks. This can be done

efficiently as only one block changes its name in each level.

Checking whether a pair (x, y) appeared previously can be done in O(log n) time us-

ing balanced binary search trees. Thus, creating the names for the first interval takes

O(|Σ| log |Σ| log n) time, and updating the names after each interval movement takes

O(log |Σ| log n) time. Therefore, the resulting overall time complexity of this algorithm

is O(n|Σ| log |Σ| log n).

To find common CS-factors of two strings, the algorithm is applied to a second string

using the same naming as in the previous one. Finally, names of character sets occurring

in both strings are common CS-factors. In contrast to applications in natural language

processing where this algorithm was designed for, in our application for gene cluster detec-

tion the alphabet size is closely related to the length of the genomes. We always assume

that |Σ| ∈ Θ(n), yielding a total time complexity of O(n2 log2 n).

In [18], we showed how to further reduce the time complexity of this algorithm to

Θ(n|Σ|(log(|Σ|/ log n) + 1)) by improving the technique of assigning the names to each

level of name blocks. The general idea of this improvement is to use a preprocessing

step, calculating all possible names for a fixed level of the name representation, allowing a

constant time look-up for a required name at runtime. Additionally, by using an efficient

representation of these names, the time complexity to create the name for a character

set of a fixed size at a fixed starting position can be further reduced from Θ(log |Σ|) to

Θ(log(|Σ|/ log n) + 1). In the simplest case, this efficient representation of a name for a

character set is the number corresponding to its binary value in LIFE.

38 CHAPTER 3. GENE CLUSTERS

Figure 3.8: Preprocessing of S1 = (3, 5, 7, 4, 7, 6, 5, 3, 1). For a fixed position i = 2 of S1,
the longest maximal interval is [2, 7] (a). For each character in this interval, its rank is
assigned in the left-to-right order of their first occurrence (b). Afterwards, for each finite
rank r the interval Int[r] denotes the maximal substring in S1 starting at position i and
containing only characters of rank ≤ r.

3.4.4 A First Quadratic Time Algorithm

The algorithm developed by Didier in 2003 [19], is related to the shifting algorithm (Algo-

rithm 2) in Section 3.4.2, since it also starts with the detection of maximal substrings in S1

and then, in a preprocessing of S2, builds a data structure allowing the efficient detection

of substrings in S2 containing the same character set.

For a fixed left index i in S1, Didier’s algorithm scans the suffix of S1 starting at

position i for maximal intervals. During the scan, to each character c ∈ Σ its rank Rank[c]

is associated, i.e. the position of c in the list of different characters as they occur in left-

to-right order in [i, j]S1 , and ∞ if c does not occur in the interval. The corresponding

maximal interval [i, j]S1 for a finite rank r is stored in Int[r], see Figure 3.8.

For each fixed position i in S1 a preprocessing of S2 has to be performed. In the

preprocessing, for each position k of S2 the following tables are filled (see Figure 3.9):

1. LNeighbor, containing for any position k of finite rank r the greatest position smaller

than k with rank r + 1, if it exists. Otherwise LNeighbor[k] is undefined.

2. RNeighbor, containing for any position k of finite rank r the smallest position greater

than k with rank r + 1, if it exists. Otherwise RNeighbor[k] is undefined.

3. LDistance containing for any position k that has a left neighbor kl, the maximum

rank of the characters occurring in S2[kl, k] and ∞ otherwise.

4. RDistance, containing for any position k that has a right neighbor kr, the maximum

rank of the characters occurring in S2[k, kr] and ∞ otherwise.

5. Succ, containing the successor of the k-th position, defined as LNeighbor[k] if

3.4. MODELLING PARALOGOUS GENES 39

Figure 3.9: Preprocessing of S2 = (6, 7, 5, 6, 5, 7, 7, 4, 1) with S1 and i = 2 from the previous
example (Figure 3.8). For each position k in S2, the displayed arrays are computed (a). In
(b) the hierarchical organization of the intervals MaxInt is shown.

LDistance[k] ≤ RDistance[k] and RNeighbor[k] otherwise. If LDistance[k] =

RDistance[k] =∞, k has no successor.

6. MaxInt, containing for any position k the maximal interval [x, y]S2 , such that x ≤
k ≤ y and each character c ∈ [x, y]S2 has a rank ≤ Rank[S2[k]].

Since a large part of the algorithmic work is done in the preprocessing, the final step

of collecting the common CS-factors is straight-forward (see Algorithm 3).

Algorithm 3 Reporting Intervals
1: for all positions k with Rank[S2[k]] = 1 do
2: LBound← k, RBound← k
3: j ← k
4: repeat
5: LBound← min(j, LBound)
6: RBound← max(j, RBound)
7: if [LBound,RBound] ⊆MaxInt[j] then
8: output ([i, Int[Rank[S2[j]]]]S1 , MaxInt[j]S2)
9: end if

10: mark j such that it is not traversed again
11: j ← Succ[j]
12: until j is empty or j is marked
13: end for

For each starting position k in S2 withRank(S2[k]) = 1, an interval [BoundL,BoundR]S2

is created, tracking the region in S2 covered by the characters being read along the path

of positions j succeeding k. If [BoundL,BoundR]S2 ⊆ MaxInt[j], then this region is a

40 CHAPTER 3. GENE CLUSTERS

sub-interval containing all characters from the maximal interval of the characters read so

far, i.e. a common CS-factor ([i, Int[Rank[S2[j]]]]S1 , MaxInt[j]S2) is detected. Finally, the

interval MaxInt[j] is marked in order not to be reported again, and j becomes its successor

Succ[j]. If the successor is empty or marked before, the algorithm continues with the next

position k with Rank(S2[k]) = 1.

The analysis of Algorithm 3 which reports the intervals is rather obvious. Since due to

the marking, each position k in S2 is read at most once, the algorithm runs in O(n) time.

Some more attention needs to be directed to the preprocessing of S2. Here, observe that

LNeighbor and RNeighbor can be created in linear time, as well as Succ once the distance

tables are filled. More difficult is the computation of the tables RDistance and LDistance.

To compute RDistance, Didier uses a stack algorithm to store each position of S2 which

qualifies as a candidate for a right neighbor of a newly read position of S2. On the stack,

the stored elements appear ordered according to their rank appearing in right-to-left order

in S2. Therefore, the value of RDistance[k] can be found as the rank of greatest position

in the stack that is smaller or equal to RNeighbor[k]. To find the greatest position in the

stack, Didier uses a binary search (LeftDistance is computed using the same strategy).

Since the number of elements on the stack can be as large as the number of characters in

S2, and the binary search can be performed in O(log n) time, and the complexity for filling

the distance tables is O(n log n).

Since the tableMaxInt is computed again in linear time, using a simple stack algorithm,

the total time complexity for the preprocessing and therefore for the whole algorithm is

O(n log n) for a fixed position i in S1. This yields the total time complexity of O(n2 log n)

to compute all common CS-factor of S1 and S2.

In [18], we presented a modified version of this algorithm reducing the time complexity

to O(n2) while staying still linear in space consumption. The general idea of this im-

provement is the more efficient calculation of the tables RDistance and LDistance (see

Figure 3.9). Recall that the entry RDistance[i] (LDistance[i]) denotes the maximal oc-

curring rank in the interval [i, j]S2 where j is the right (left) neighbor of i. To compute

the tables RDistance and LDistance, Didier uses a stack to store all possible candidates

for right neighbors and performs a binary search on the elements on the stack to find the

character of maximal rank in [i, j]S2 , once the right neighbor j is determined. This binary

search for the maximum rank takes log s time, where s is the number of elements on the

stack, and in the worst-case this number can be as large as n. A more detailed analysis of

this search revealed that it could also be formulated as a Range Maximum Query (RMQ)

on the ranks of the interval [i, j]S2 . In [9], Bender and Farach-Colton formulated an algo-

rithm allowing to answer an RMQ in constant time after a linear time preprocessing of the

input sequence. Thus, performing an RMQ preprocessing on S2 and replacing the binary

search by an RMQ on the interval [i, j]S2 , the over all preprocessing time for S2 (tables and

RMQ) reduces to O(n) and allows the detection of all common CS-factors with all their

CS-locations in quadratic time using linear space.

3.4. MODELLING PARALOGOUS GENES 41

(a) POS[1] = 9 (b) NUM(i, j) :
POS[2] = empty
POS[3] = 1, 8
POS[4] = 4
POS[5] = 2, 7
POS[6] = 6
POS[7] = 3, 5

i\j 1 2 3 4 5 6 7 8 9
1 1 2 3 4 4 5 5 5 6
2 1 2 3 3 4 4 5 6
3 1 2 2 3 4 5 6
4 1 2 3 4 5 6
5 1 2 3 4 5
6 1 2 3 4
7 1 2 3
8 1 2
9 1

Figure 3.10: Preprocessing of S1 = (3, 5, 7, 4, 7, 6, 5, 3, 1) with Σ = {1, . . . , 7}. (a) for each
character c ∈ Σ, POS[c] holds the positions at which c occurs in S1; (b) the table NUM
holding the values |CS(S1[i, j])|.

3.4.5 A Simpler Quadratic Time Algorithm

With the algorithm “Connecting Intervals” (CI) [64], we developed a simple algorithm that

solves our problems in Θ(n2) time requiring Θ(n2) space. An overview of the algorithm is

given in Algorithm 4.

In a preprocessing step, the algorithm constructs two simple data structures, illustrated

in Figure 3.10. The first data structure, POS, contains for each character c ∈ Σ a list

POS[c] that holds the positions of occurrence of c in string S1 in ascending order, see

Figure 3.10 (a). The second data structure, NUM , is a |S1| × |S1| table where entry

NUM(i, j) contains the number |CS(S1[i, j])| of different characters in the substring S1[i, j]

for each 1 ≤ i ≤ j ≤ |S1|, see Figure 3.10 (b). Clearly, POS requires linear space and can

be computed in linear time by a simple scan over S1, while NUM requires Θ(n2) space

and its computation takes Θ(n2) time.

On a high level, Algorithm CI can be described as follows (see Figure 3.11): For a fixed

position i in S2, while reading the substring of S2 starting at that position, the observed

characters are marked in S1, and simultaneously maximal intervals of marked characters

are tracked. This is iterated for all start positions i of substrings in S2.

The maximal intervals of marked characters in S1 are candidates for common CS-

factors with the current substring S2[i, j]. It only needs to be tested (i) if the character

set of a candidate interval coincides with that of S2[i, j], and (ii) if the substring S2[i, j] is

a maximal CS-location of its character set.

In fact, to test (i) it suffices to compare the number of different characters in the two

substrings. We know that the maximal marked intervals in S1 contain a subset of the

characters in S2[i, j], hence if the character sets have equal size, they must be equal. The

number of different characters in S2[i, j] can be tracked while reading the substring of

42 CHAPTER 3. GENE CLUSTERS

S2: 6 6 5 7 7 4 157 S1: 3 5 4 6 5 3 17 7
i j

S2: 6 6 5 7 7 4 17 5

S2: 5 7 7 4 16 67 5

S2: 6 67 5 5 7 7 4 1

S2: 6 6 7 7 4 17 5 5

S2: 6 6 4 17 5 5 7 7

S2: 6 6 17 5 5 7 7 4

IV

V

VI

VII

i j

i j

i j

i j

i j

S1: 3 4 6 5 3 15 7 7

S1: 3 5 7 4 7 6 5 3 1

S1: 3 6 3 15 57 4 7

S1: 3 4 6 3 15 7 7 5

S1: 3 6 3 15 7 4 7 5

S1: 3 6 35 7 4 7 5 1

i j

I

II

III
...

...
...

Figure 3.11: Example for Algorithm CI. In lines I-III position i = 2 is fixed as the left end
of the increasing interval [i, j] of S2. While moving j to the right, the observed characters
are marked in S1 (red color), and maximal intervals of marked characters are tracked (the
boxes). If [i, j]S2 contains the same elements as a tracked interval, a common CS-factor is
detected (blue boxes). If, while moving j to the right, [i, j]S2 is no longer right-maximal
(line III), the algorithm stops the movement of j and selects i + 1 as new fixed left end
(skipped in the figure). In lines IV-VII, the procedure is illustrated for i = 5, where the
two marked intervals [2, 3]S1 and [5, 5]S1 are merged in line VI.

3.4. MODELLING PARALOGOUS GENES 43

Algorithm 4 Connecting Intervals (CI)
1: preprocessing: build data structures POS and NUM
2: for i = 1, . . . , |S2| do
3: OCC[c]← 0 for each character c in Σ
4: j ← i
5: while j ≤ |S2| and [i, j] is left-maximal in S2 do
6: c← S2[j]
7: OCC[c]← 1
8: while [i, j] is not right-maximal in S2 do
9: j ← j + 1

10: end while
11: for each position p in POS[c] do
12: mark position p in S1

13: find the maximal interval [start, end] of positions marked so far containing position p
14: if NUM(start, end) = |OCC| and [start, end] is maximal in S1 then
15: output the pair ([i, j]S1 , [start, end]S2)
16: end if
17: end for
18: j ← j + 1
19: end while
20: end for

S2 starting at position i. (In Algorithm 4 we use a binary vector OCC plus a counter

|OCC| that counts the number of ones in OCC.) The number of different characters in a

maximal marked interval in S1 can be read from the table NUM that was computed in

the preprocessing phase.

Test (ii) is performed implicitly by the way how the value of j is incremented and the

while-loop starting in line 5 of Algorithm 4 is terminated. Clearly, during the process of

increasing j, once the interval [i, j] of S2 is not left-maximal for some j ≥ i (i.e. S2[i− 1] =

S2[j′] for some j′ ∈ {i, . . . , j}), it will never be left-maximal for any j′′ > j. Hence it

is a valid action to terminate the while loop as soon as [i, j] of S2 is not left-maximal,

and left-maximality is guaranteed whenever the body of the while-loop is entered. Right-

maximality is explicitly tested in line 8 of Algorithm 4. This can be done in constant time

by testing if OCC[S2[j + 1]] = false.

For the analysis we have to show how the marking and tracking of maximal intervals

in S1 is performed. Obviously, marking the r occurrences of character c = S2[j] in S1

is possible in O(r) time using the list POS[c]. Further, if for each maximal interval of

marked positions in S1 the interval boundaries [start, end] are stored at the left and right

end of the interval, then it is easy to test, whenever a position p of S1 is newly marked, if it

connects to already existing intervals (ending at position p− 1 or starting at position p+ 1

or both), and to increase these intervals by index p (if p connects to only one interval) or

44 CHAPTER 3. GENE CLUSTERS

merge the two intervals (if p connects to two intervals). All this can be done in constant

time for each newly marked position p of S1.

The for-loop starting in line 2 of Algorithm 4 is executed |S2| ≤ n times; and in

the outer while-loop together with the while-loop in line 8, j is incremented at most

|S1| ≤ n times. More difficult is the analysis of the for-loop starting in line 11. Here,

observe that due to the test for right-maximality in line 8, this for-loop is reached for

each character c = S2[j] only once, and hence for each i the body of the loop is executed

at most
∑

c∈Σ |POS[c]| = |S1| ≤ n times, where |POS[c]| is the number of occurrences of

character c in S1. Together with the preprocessing, this yields the overall Θ(n2) time and

space complexity. Due to the fact that the number of common CS-factors can be as large

as n(n + 1)/2, e.g. assume S1 = S2 = (1, 2, . . . , n), this algorithm is time-optimal in the

sense of worst case analysis.

3.4.6 Improving the Running Time in Practice

Regarding the application of the algorithms to biological data, there is an additional option

of improving the runtime for Algorithm CI. If we bound the maximal size of the character

set of a common CS-factor (i.e. the maximal number of different genes in a gene cluster)

to a fixed number s, Algorithm CI can be modified to report all common CS-factors

in O(ns) time if the number of paralogs inside a CS-location is small, compared to the

number of different characters in the corresponding character set. This improvement can

be achieved simply by terminating the extension of the interval [i, j]S2 , once |OCC|S2 > s

(see line 5 in Algorithm 4). The same technique is also applicable in the improved version

of the fingerprinting algorithm described in Section 3.4.3. Here, the algorithm is applied

only to all character sets of S1 with at most s different characters, yielding an overall

time complexity of Θ(ns(log(|Σ|/ log n) + 1)). For the quadratic time version of Didier’s

algorithm, the limitation of the maximal character set size has no effect on the running

time, since for each fixed i in [i, j]S1 , a linear time preprocessing for the RMQ has to be

performed.

3.4.7 Generating Non-redundant Output

Independent from the selected algorithm, a common CS-factors is always reported as
a pair of its maximal CS-locations ([i, j]S1 , [i

′, j′]S2), leading to a large amount of re-
dundancy for paralogous gene clusters. For example, given S1 = (1, 2, 3, 1, 2) and S2

= (1, 2, 4, 1, 2, 5, 1, 2), the algorithm outputs the CS-locations for the common CS-factor
{1, 2} in the following way:

([1, 2], [1, 2]), ([1, 2], [4, 5]), ([1, 2], [7, 8]), ([4, 5], [1, 2]), ([4, 5], [4, 5]), ([4, 5], [7, 8]).

3.4. MODELLING PARALOGOUS GENES 45

A non-redundant output of the following form should be preferred, though:

S1 : [1, 2], [4, 5] − S2 : [1, 2], [4, 5], [7, 8].

This output can be obtained by an efficient storage of common CS-factors. Two additional

tables LOC1 and LOC2, each of size |S1|×|S1|, are used to store the lists of intervals for the

common CS-factors. Then, in a first step, the chosen algorithm is applied to S1 as first and

second input sequence, yielding the paralogous gene clusters within S1. These are stored in

LOC1 such that if [i′, j′]S1 is contained in list LOC1(i, j), then CS(S1[i′, j′]) = CS(S1[i, j]),

in the following way. Initially, all lists LOC1(i, j) are empty. Whenever a common CS-

factor with maximal CS-locations [i, j]S1 and [i′, j′]S1 , i′ 6= i, of a paralogous cluster is

detected, then the CS-location [i′, j′]S1 is appended to the list in LOC1(i, j) and the interval

[i′, j′]S1 is marked, so that it is not being tested again.

In the second step, the algorithm is applied to S1 and S2, detecting the orthologous

gene clusters between these two genomes. Whenever a common CS-factor with maximal

CS-locations [i, j]S1 and [k, l]S2 is found, the CS-location [k, l]S2 is appended to LOC2(i, j).

Finally, the output for each non-empty entry LOC2(i, j) is

S1 : [i, j]S1 , LOC1(i, j) − S2 : LOC2(i, j).

3.4.8 Multiple Genomes

To solve Problems 1 and 2 for any given k ≥ 2, the described algorithms can easily be

extended to more than two strings. The general idea is that a set of characters C ⊆ Σ is

a common CS-factor of k strings S = {S1, . . . , Sk} if and only if it is a (pairwise) common

CS-factor of a fixed string (w.l.o.g. S1) and all other strings in S. Therefore, the algorithm

is applied to each pair of input strings (S1, Sr) with Sr ∈ S and 1 ≤ r ≤ k. Note that,

in order to generate non-redundant output, S1 is also compared to itself. Since the first

input string is always S1, the preprocessing step for the table NUM has to be performed

only once. For each processed pair (S1, Sr) of input strings, a table LOCr is built.

The output is performed by testing for each non-empty field in LOCk(i, j) if the cor-

responding fields in LOCr(i, j) with 1 < r < k are also non-empty. If this is the case, the

output is:

S1 : [i, j]S1 , LOC1(i, j) − S2 : LOC2(i, j) − . . . − Sk : LOCk(i, j)

The k iterations of the algorithm lead to an overall worst case time and space complexity of

O(kn2) for the comparing step as well as for the processing of the LOC tables to generate

the output.

The use of a further |S1| × |S1| table LAST allows to speed-up the test for non-empty

LOCr(i, j) to constant time for each pair (i, j). The entry LAST (i, j) refers during the

46 CHAPTER 3. GENE CLUSTERS

iteration of r from 1 to k to the largest value r′ ≤ r such that LOCr′(i, j) is non-empty.

Initially, all entries in LAST (i, j) refer to LOC1(i, j). If the algorithm finds a common

CS-factor with CS-locations [i, j]S1 and [k, l]Sr , then, before updating LAST (i, j) to r, it

tests if the old value LAST (i, j) < r− 1. In this case, the pair [i, j] is marked such that it

will not be reported in the end. After all string pairs are processed, the output is written

for each unmarked pair [i, j] with LAST (i, j) = k.

If one is interested in solving only Problem 1, i.e. the detection of the common CS-

factors without the CS-locations, the space complexity can be reduced to Θ(n2). This is

done by dropping tables LOC2, . . . , LOCk for the orthologous clusters and only using the

entries in tables LAST and LOC1.

3.4.9 Gene Clusters in a Subset of Multiple Genomes

With the algorithms used for multiple strings, we are now able to find gene clusters that

occur simultaneously in any given number of genomes. Unfortunately, with an increasing

number of genomes, the probability to have a conserved gene cluster in all genomes de-

creases rapidly. For the use on biological data, it is hence even more interesting to find

gene clusters that appear in only a subset of the given genomes. More formally spoken,

we search for gene clusters that appear in a subset of at least k′ out of k given genomes.

Therefore, it is necessary to soften the requirements of the definition of common CS-factors:

Definition (common CS-factor of k0 out of k strings). Given a collection of k

strings S = (S1, S2, . . . , Sk) over an alphabet Σ and a threshold k′ ≤ k, a subset C ⊆ Σ

is a common CS-factor of k′ out of k strings of S if and only if C has a CS-location in at

least k′ strings Si1 , . . . , Sik′ ∈ S, 1 ≤ ir ≤ k, 1 ≤ r ≤ k′.

The corresponding problems are defined similar to Problems 1 and 2 (see Section 3.4.1 on

page 29):

Problem 3. Given a collection of k strings S = (S1, S2, . . . , Sk) and a threshold k′, find

all its common CS-factors of k′ out of k strings.

Problem 4. For each common CS-factor of k′ out of k strings of S, find all its maximal

CS-locations in each of the Sl, 1 ≤ l ≤ k it occurs in.

Based on the above described iterated use of the algorithms for multiple strings, their

extension in order to solve Problems 3 and 4 for common CS-factors based on the relaxed

definition is rather straight-forward.

3.5. A RELATED APPROACH: GENE TEAMS 47

For the moment, let us restrict our attention to common CS-factors that are present

in S1. Then it is possible to use the above described algorithm and to count in how

many strings a CS-location of a common CS-factor was detected. Therefore, another table

COUNT (i, j) is used that counts the number of strings a common CS-factor was found

in. Initially, all entries in COUNT (i, j) are set to 1. Whenever, during the processing

of string pair (S1, Sr), the algorithm finds a common CS-factor with a CS-location [i, j]S1

and [k, l]Sr for the first time, COUNT (i, j) is incremented by one. A CS-location [i, j]S1

is seen for the first time if LAST (i, j) 6= r before being updated to r. Then, the output is

written for each pair [i, j] with COUNT (i, j) ≥ k′.

In the general case, a common CS-factor does not necessarily occur in S1. So, in a next

step it is necessary to apply this algorithm again to the collection S without string S1.

This procedure is repeated k − k′ times, until the number of remaining strings in S falls

below k′ yielding a worst case time complexity of Θ(k(1+k−k′)n2). The space complexity

is O(kn2) if non-redundant output is written. If only Problem 3 is to be solved, the space

complexity can be reduced to Θ(n2), just as in the non-relaxed case.

Summarizing we can conclude that an efficient incorporation of paralogous genes into

the former gene cluster model based on common intervals leads to a new model for which

time complexity to detect the clusters increases from linear to quadratic time. In both cases

the time complexity grows linearly with the number of compared genomes. Therefore, it

seems to be possible to incorporate further refinements of the gene cluster model and still

staying feasible in computation time and space.

3.5 A Related Approach: Gene Teams

Introducing the concept of gene teams as a formal model for gene clusters, Bergeron

et al. [10] chose an alternative way of improving the model of gene clusters based on

common intervals. Relaxing the requirement of direct consecution of genes in a cluster

(also referred to as errors from strictness in Section 3.3.3), they allowed the genes to be

separated by gaps whose length does not exceed a given threshold overcoming the problem

that a single misplaced gene disqualifies the commonality between two or more otherwise

similar genomic regions.

To formalize the concept of gene teams, they denote by Σ the set of n genes on a

chromosome (or string) C. A function PC : Σ → R associates to each gene g ∈ Σ a real

number PC(g), called its position. Therefore, the function PC induces a permutation on any

subset S of Σ, ordering the genes in S from the gene of lowest position to the gene of highest

position. Given two genes g and g′, the distance between the two genes on chromosome C is

given by ∆C(g, g′) = |PC(g)−PC(g′)|. For example, if Σ = {1, 2, 3, 4, 5} take the following

chromosome C, where genes not in Σ are denoted by asterisks: C = 3 ∗ ∗ 5 4 1 ∗ 2. If the

48 CHAPTER 3. GENE CLUSTERS

position of a gene is given by the number of genes preceding it, then ∆C(3, 4) = |0−4| = 4

and the permutation induced on the subset {1, 3, 5} is (3 5 1).

For a given subset S ⊆ Σ, and (g1 . . . gk) the permutation induced on S on a chromosome

C, for δ > 0, S is called a δ-chain of C if ∆C(gj, gj+1) ≤ δ, for 1 ≤ j ≤ k. This definition is

somehow similar to the definition of character sets of a substring (see Section 3.4.1) since

it describes a set of genes appearing in close proximity of each other, but in the case of

δ-chains it forbids multiple occurrences of a gene and for δ > 1 does not require a direct

consecution of the genes. Then a subset S ⊆ Σ is a δ-set of two chromosomes C and C ′

if S is a δ-chain in both chromosomes, and similar to a common CS-factor, a gene cluster

is defined as a δ-team (or gene team) of C and C ′, that is a maximal δ-set with respect

to inclusion. For example consider the following chromosomes: C = 3 ∗ ∗ 5 4 1 ∗ 2 and

C ′ = 1 2 ∗ ∗ ∗ 3 ∗ 4 5. For δ = 1 the only δ-team is the set {4, 5}. With δ = 2 we get

{1, 2} and {4, 5}, and with δ = 3 the resulting teams are {1, 2} and {3, 4, 5}. Finally, with

δ = 3, the δ-team {1, 2, 3, 4, 5} contains all genes from Σ.

The definition of a gene team is straight-forwardly extendable to multiple chromosomes

as well as circular chromosomes. In [10], Bergeron et al. present an efficient O(mn log2 n)

time algorithm that requires O(nm) space, where m is the number of chromosomes and n

the maximal number of contained genes.

Acting on this model of gene clusters based on gene teams, He and Goldwasser [30]

generalized the concept by removing the constraint that each gene must have a unique

copy, i.e. again the generalization from permutations to strings. Their definitions of δ-

chain, δ-set and δ-team are similar to the original definitions. In fact, when applied to a

pair of chromosomes with a one-to-one orthologous relationship, they are equal. For the

development of an efficient algorithm to detect the gene teams on permutations, Bergeron

et al. made use of the following helpful properties: If Σ1 and Σ2 are δ-chains of C and

Σ1 ∩Σ2 6= ∅, then Σ1 ∪Σ2 is also a δ-chain. A similar property follows for δ-sets, and thus

it is shown that the collection of δ-teams forms a disjoint partition of the underlying genes.

With the existence of paralogs, these properties may no longer hold, and in general

this leads to different structural properties that complicate the algorithmic search for the

extended δ-teams. Finally He and Goldwasser described an O(n2) time and linear space

algorithm for the comparison of two chromosomes of maximal length n. Unfortunately,

a major drawback of this method is that it is not efficiently extendable to more than

two genomes, since it shows a worst case time complexity of O(nm), where m denotes

the number of compared chromosomes. However, their application to the two bacterial

genomes of B. subtilis and E. coli generated meaningful results and clearly showed again

that it is essential to have an appropriate model that includes the notion of paralogous

genes.

3.6. SUMMARY 49

k δ permutation based string based

O(n2) [18]
2 0 O(n+ output) [75] Θ(n2) [64]

Θ(n|Σ|(log(|Σ|/ log n) + 1)) [18]

2 ≥ 0 O(n log2 n) [10] O(n2) [30]
O(kn2) [18]

≥ 2 0 O(kn+ output) [32] Θ(kn2) [64]
Θ(kn|Σ|(log(|Σ|/ log n) + 1)) [18]

≥ 2 ≥ 0 O(kn) [10] O(nk) [30]

Table 3.1: Algorithm Overview. The table shows the time complexities for the algorithms
described before, when applied to two and multiple (k) genomes, where δ ≥ 0 denotes that
the genes in a cluster do not have to be in direct consecution.

3.6 Summary

In the previous sections, we discussed various aspects of the phenomenon that bacterial

genomes tend to maintain several small regions of conserved gene content during the course

of evolution. The knowledge that those regions of local gene order conservation contain

important information for many different types of genome analysis drove the development

of different strategies to detect these gene clusters. Since the first approaches to locate gene

clusters were not based on a formal model, their definition differed as the case arises and the

heuristic algorithms for their detection depended on settings of very specific parameters,

like the significance of sequence similarity and measure of phylogenetic distances. With

the first rigorous formulation of the concept of gene clusters based on the definition of

common intervals over permutations, the term gene cluster started to become a formal

notion. Shortly after the formal description, efficient algorithms were presented, allowing

the detection of these clusters in two and afterwards in multiple genomes. Unfortunately,

the first formal models turned out to be too abstract formulations of the biological concept

of a gene cluster. Therefore, the focus in research was directed to the development of more

specific models, which are closer to the biological concept, but also more difficult to define.

On a small scale of a few or only two genomes, these models incorporating the notion of

paralogous genes or genes not in direct consecution have proven that in many cases the

detected clusters match with known groups of interacting genes.

For the development of a tool to detect gene clusters on a large set of 10−100 genomes,

it is decisive to choose a well suited model allowing a fast and reliable detection of the

clusters. Therefore, from the described models (see Table 3.1) we can exclude those which

do not allow the presence of paralogous genes (i.e. defined on permutations), since especially

large genomes tend to contain several copies of a single gene. Due to exponential runtime

50 CHAPTER 3. GENE CLUSTERS

in the number of genomes, the string based model of gene teams also disqualifies for an

efficient implementation. Therefore, the only remaining option for multiple genomes is

the gene cluster model based on common CS-factors. In Section 3.4, we presented two

algorithms finding the clusters in O(kn2) time and space for k genomes if the variant

for the non-redundant output is selected. Since the time and space complexity of the

algorithms grows linearly in the number of genomes, this is the most suitable model and

used in the implementation for our tool Gecko (see Chapter 5). From the two possible

algorithms to detect gene clusters based on common CS-factors, we chose Algorithm CI for

the implementation, since it is based on more elementary data structures, and therefore

can be expected to perform more efficient at runtime.

Remaining Problems

For all algorithms detecting gene clusters defined as common CS-factors, we face the

problem that in their output still a large amount of redundant information is present.

Consider the following example: Let S1 = (1, 2, 3, 4, 5, 6), S2 = (7, 8, 2, 3, 4, 5, 9) and

S3 = (10, 5, 4, 3, 2, 11), the output according to Section 3.4.8 is:

1. S1 : [2, 2] − S2 : [3, 3] − S3 : [5, 5]

2. S1 : [2, 3] − S2 : [3, 4] − S3 : [4, 5]

3. S1 : [2, 4] − S2 : [3, 5] − S3 : [3, 5]

4. S1 : [2, 5] − S2 : [3, 6] − S3 : [2, 5]

5. S1 : [3, 3] − S2 : [4, 4] − S3 : [4, 4]

6. S1 : [3, 4] − S2 : [4, 5] − S3 : [3, 4]

7. S1 : [3, 5] − S2 : [4, 6] − S3 : [2, 4]

8. S1 : [4, 4] − S2 : [5, 5] − S3 : [3, 3]

9. S1 : [4, 5] − S2 : [5, 6] − S3 : [2, 3]

10. S1 : [5, 5] − S2 : [6, 6] − S3 : [2, 2]

Obviously, the gene cluster of practical interest is the cluster no 4, since all other clusters

only contain a subset of characters from cluster no 4. Note that this type of redundancy

only occurs on gene clusters defined as common CS-factors, since a gene team of a set

of characters is defined as a maximal δ-set with respect to inclusion. Thus, a filter or

postprocessing step to eliminate such redundancies is not required for gene cluster detection

algorithms defined based on the definition of gene teams.

Having eliminated such non-maximal gene clusters, the output of a cluster detection

algorithm can be significantly reduced without loosing any valuable information. For the

practical application in comparative genomics, there are several further directions in which

the output of the algorithms might be optimized. All these optimizations can be performed

in a postprocessing step succeeding the main algorithm and are described in detail in

Section 5.2.

Chapter 4

Data Preparation

Before we focus on the practical application of our algorithms to detect gene clusters in

real genomic data, in this chapter we will describe how the input data for such algorithms

can be generated. As we discussed at the end of the previous chapter, the most appropriate

model for cluster detection using multiple genomes is based on gene clusters described as

common CS-factors. In this model, the genomes are represented by strings of characters,

where the i-th gene in a genome has its corresponding character at the i-th position in

the associated string. The challenging task in the generation of the input data for our

algorithms is the denotation of homologous genes in all genomes by the same character

(i.e. to identify which genes belong to one family of homologs) in each of the associated

strings. Therefore, in this chapter we will present two different approaches to generate these

strings of characters which can be applied to our algorithms for gene cluster detection. The

first approach is based on the family classification from the COG database1 and was used

in the initial evaluation stage (see Chapter 5). Since a detailed analysis of the gene cluster

detection algorithms required a more flexible definition of families of homologous genes, we

developed an alternative approach to group genes to families of homologs. The underlying

model, as well as the algorithms and visualization of the generated families are described

in the second part of this chapter.

Remember that the terms homology, orthology, and paralogy originally describe the

phylogenetical property of descent from a common origin. Since true evidence for a com-

mon origin can only be given by exploration of the common ancestors of the genes in all

intermediate forms and we do not have fossil records of these extinct forms, this is impossi-

ble to derive by bioinformatics means. Our use of these terms in the following sections will

therefore be slightly more relaxed by only predicting a common origin, implying a similar

function, based on the similarity of their DNA sequences.

1Clusters of Orthologous Groups of proteins, http://www.ncbi.nlm.nih.gov/COG

51

52 CHAPTER 4. DATA PREPARATION

4.1 The COG Database

The database of Clusters of Orthologous Groups of proteins (COGs) was established by

Tatusov and co-workers in 1997 [72] and is designed to classify genes from completely

sequenced genomes on the basis of their common origin. Due to the recent progress in

genome sequencing, the database was updated several times [71, 74] and now contains

138,458 genes from 66 unicellular organisms that are clustered into 4873 COGs [70].

For the classification of genes into COGs, an all-against-all sequence comparison of the

protein coding gene sequences in all completely sequenced genomes was performed. For

the sequence comparison, the gapped BLAST program of Altschul et al. [3] was used under

exclusion of regions with low-complexity and predicted coiled-coil regions [72]. Then, the

clustering of genes into COGs is based on the idea that any group of three genes from

distantly related genomes that are more similar to each other than to any other gene from

the same genomes belong to an orthologous family. More precisely, the construction of the

COGs is performed as follows:

(i) After computing the all-gainst-all sequence comparison, (ii) all paralogous genes

are grouped together. Here two genes are called paralogous, if they are more similar to

each other than to any other gene from other genomes. (iii) Then triangles of mutually

consistent, genome-specific best hits are located. (iv) These triangles are merged if two

of them share a common side. In two further steps the constructed clusters are manually

optimized. This becomes especially important, since the presence of fused genes and genes

encoding multi-domain proteins sometimes leads to the connection of particular clusters.

(v) These clusters have to be identified and separated. On the other hand, some genes have

evolved via duplication after the divergence of the compared species (lineage specific gene

expansion [45]). In this situation, the identification of the orthology relationship is difficult

and might lead to the creation of large clusters of co-orthologs. (vi) Therefore, large COGs

are reviewed in more detail using phylogenetic trees, cluster analysis and visual alignment

inspection. As a result those clusters might be split into two or more COGs.

By this method, in the latest update of the database the rate of genes present in COGs

varies from 43% in Borrelia burgdorferi to 99% in Buchnera sp. In the average case, the

rate of genes belonging to COGs in prokaryotic genomes is approximately 80%.

Extracting the family classification

The most practical approach to transform a genome classified in the COG database into a

string of (COG-)numbers, is downloading the genome from the NCBI database for complete

bacterial genomes2. The database contains all publicly available genomes, where each

genome is given in a table in which the genes are ordered along their occurrence in the

2http://www.ncbi.nlm.nih.gov/genomes/static/eub g.html

4.1. THE COG DATABASE 53

Figure 4.1: Structure of the table representation of Aquifex aeolicus VF5 obtained from the
NCBI database for complete bacterial genomes. For each gene, the entry in the column
containing the associated COG cluster (boxed) can be used as identifier in the string
representation of the genome. In this example, the representation of A. aeolicus starts
with the numbers: 480, 50, 51, 87, 88, 89,

particular genomes. Each line in the table represents one gene together with additional

information about the functional annotation, the exact location on the genome and the

COG cluster the gene belongs to. By extracting the column for the COG cluster from such

a table, a simple representation of a genome as a string of numbers can be obtained (see

Figure 4.1).

Advantages and Disadvantages of using the COG database

Besides the easy access of the clustering information, a further advantage of using the COG

database to create the string representation of the genomes is that this database is being

frequently updated while more complete genome sequences become available. In addition,

the classification of genes to their COGs is manually inspected, such that misclassifications

appear less often than in a fully automated and unsupervised process.

On the other hand, not all sequenced prokaryotic genomes are available in the database.

Especially many Actinobacteria like Corynebacterium diphteriae, Corynebacterium effi-

ciens, Nocardia farcinica, Streptomyces coelicolor, and Symbiobacterium thermophilum are

so far not considered in the COG classification, although some of the genome sequences

are publicly available since a few years.

54 CHAPTER 4. DATA PREPARATION

A further disadvantage of the COG database is the absence of interaction options to

control the grouping of genes into COG clusters. For some applications, like the detection

of genes with a conserved neighborhood, the COG classification is sometimes too specific,

i.e. genes that have a similar function are grouped into different families. For example,

the typical ABC transport system is built of three components (periplasmic component,

ATPase component, and permease component) which are in most cases encoded by genes

of the three particular families. Here, the COG database contains 36 different families for

periplasmic components, 54 families for ATPase components, and 67 families for permease

components.

Since the distribution of genes with a very similar function into different gene families

complicates the location of conserved genomic neighborhoods, it is desirable to have a

more flexible model of COGs allowing to put those genes into one gene family that share

a common function, e.g. encode for one particular component.

4.2 A Relaxed Family Definition

The absence of many Actinobacteria, which are of high interest for a detailed evaluation

of the algorithm in cooperation with members of the Institute of Genome Research at

Bielefeld University, together with the clustering in the COG database being too specific,

led to the decision to develop an alternative approach that allows a fully automated and

parameterized grouping of genes into families of homologs, only based on the evaluation of

their sequence similarity. Therefore, we present a new definition of a family of homologous

genes, where homology in this case is defined by a combination of parameterized tests for

paralogy and orthology. Based on this definition of gene families, we describe an algorithm

that establishes this family classification based on the results of an all-gainst-all TBLASTN

comparison.

4.2.1 Notation

Given a collection of k genomes G = (G1, G2, . . . , Gk), |Gi| is the number of genes in

Gi and Gi[j] denotes the j-th gene of genome Gi with |Gi[j]| the length of its amino-

acid sequence. Applying an all-against-all TBLASTN comparison [3], we get for each

pair of genes (Gi[j],Gi′ [j
′]), 1 ≤ i, i′ ≤ k, 1 ≤ j ≤ |Gi|, 1 ≤ j′ ≤ |Gi′ |, a TBLASTN hit

Hit(Gi[j], Gi′ [j
′]). The TBLASTN hit contains three different values: Hitp(Gi[j], Gi′ [j

′]) is

the rate of matching amino-acids, Hitl(Gi[j], Gi′ [j
′]) the length of the calculated alignment,

and Hite(Gi[j], Gi′ [j
′]) denotes the E-value of the hit. Furthermore we call

Hitc(Gi[j], Gi′ [j
′]) :=

Hitl(Gi[j], Gi′ [j
′])

max(|Gi[j]|, |Gi′ [j′]|)
the coverage of Hit(Gi[j], Gi′ [j

′]).

4.2. A RELAXED FAMILY DEFINITION 55

Definition (paralog). Given two genes g = Gi[j] and g′ = Gi′ [j
′] of G, i = i′, j 6= j′,

and the thresholds p0, e0, and c0, g and g′ are called paralogous if and only if

Hitc(g, g
′) > c0 and (Hitp(g, g

′) > p0 or Hite(g, g
′) < e0).

We call two genes of the same genome paralogous, if their TBLASTN hit has a sufficiently

large coverage and either the rate of matching amino-acids exceeds the chosen threshold

or the probability that this hit occurred just by chance (E-value) is below the selected

threshold.

Instead of relying only on the E-value as measurement of the significance of a TBLASTN

hit, we also regard the rate of matching amino-acids to decide whether two genes are

conserved paralogs or not. This becomes especially important for genes consisting only of

a very short amino-acid sequence, since by the definition of the E-value genes of shorter

amino-acid sequences are more likely to occur by chance, and therefore the E-value might

not reflect the true significance of the hit. Another important aspect in the test-condition

for paralogs is the term regarding the coverage of a TBLASTN hit. Many genes are

composed of smaller pieces of amino-acid sequences called domains. Usually, domains

encode a certain sub-function of a gene, and it is quite common that if a sub-function is

required in many different processes of an organism, one will find several genes containing

such a highly similar domain, while the general functions of the genes may differ. Therefore,

choosing for example a threshold of c0 > 0.7 requires that the length of the computed

alignment for two genes has to cover at least 70% (generally at least three of four domains)

of the amino acid sequence of both genes.

Definition (ortholog). Given two genes g = Gi[j] and g′ = Gi′ [j
′] of G, i 6= i′, and the

thresholds p0, e0, and c0, g and g′ are called orthologous if and only if

Hitc(g, g
′) > c0 and (Hitp(g, g

′) > p0 or Hite(g, g
′) < e0).

In general, the definition of paralogs and orthologs are identical, except that orthologs

cannot be found inside the same genome and paralogs not between different genomes. But

observe, that in the practical application it will be possible to set the thresholds for the

parameters p0, e0, and c0 differently for paralogs and orthologs.

4.2.2 Creating the Families of Homologs

The general idea of our strategy to group genes into families of homologs is similar to

the construction of the COG clusters described in Section 4.1. In contrast to the COG

approach, here we have a more flexible description of paralogous and orthologous genes

56 CHAPTER 4. DATA PREPARATION

and our grouping procedure does not rely on the identification of best hits between species

with a constrained phylogenetical relation (best hits creating a triangle structure in phy-

logenetically distant species).

After performing the all-against-all TBLASTN search, in a first step the TBLASTN

hits between two genes g and g′ are made symmetric. This becomes necessary, since for

g and g′ always at least two hits (Hit(g, g′) and Hit(g′, g)) exist. Since the TBLASTN

program is not symmetric in the order of input parameters the two hits might slightly differ

in their coverage, E-value and matching rate. These differences may cause inconsistencies

in determining if the two genes are paralogs or orthologs, especially if the values are in a

close proximity around the selected thresholds p0, e0, and c0. To enforce symmetry, the

hits are modified by averaging as follows:

H̃itc(g, g
′) =

Hitc(g
′, g) +Hitc(g, g

′)
2

,

H̃itp(g, g
′) =

Hitp(g
′, g) +Hitp(g, g

′)
2

,

H̃ite(g, g
′) = 10(log10(Hite(g′,g))+log10(Hite(g,g′)))/2.

The creation of symmetric hits becomes more difficult if for two genes more than one pair

of hits is reported by the TBLASTN program. In this case, only the pair which is least

likely to occur by chance, i.e. the pair with the lowest E-value, is considered for determining

orthology or paralogy.

In the next step, the families of paralogs for each of the given genomes are constructed

using a single-linkage clustering (see Algorithm 5).

First, a gene g is chosen that was not assigned to any family before, and a new family

f is created that initially consists only of the gene g. Then, all genes are added to the

family f that are paralogs of g. For each gene newly added to a family f , it is tested if

there exist other paralogs that are not present in f so far. If so, these genes are added to

f as well. Finally, f is stored in the list L that holds the result of the clustering.

This procedure guarantees that if two genes are paralogs according to our definition,

they are grouped into the same family. During the clustering, the restriction regarding

the coverage of a TBLASTN hit is used to suppress the problem of chaining, which is a

typical side-effect of single linkage clustering, especially when genes contain only a small

but highly conserved matching region, e.g. a single conserved domain. Clearly, the selection

of appropriate threshold values for p0, e0, and c0 is essential for retrieving clusters of an

appropriate quality, and is discussed in Section 6.3.

In the second grouping step, for each family of paralogs, corresponding (orthologous)

families of paralogs in the other genomes are determined. Therefore we introduce the

parameter r0 referred to as overlap ratio. We call two families of paralogs f and f ′ a pair

4.2. A RELAXED FAMILY DEFINITION 57

Algorithm 5 Constructing Families of Paralogs
1: create an empty list L
2: for each genome Gi, 1 ≤ i ≤ k do
3: for each gene g from Gi do
4: if g is not added to a paralog family then
5: create a new family f
6: add g to a temporary list l
7: while l is not empty do
8: g ← first element from l
9: add g to f

10: while g has a paralog g′ not in f do
11: add g′ to l
12: end while
13: remove g from l
14: end while
15: add f to L
16: end if
17: end for
18: end for

of orthologous families if at least r0 percent of the genes in f have an orthologous gene

in f ′, where f ′ is the family of larger size, i.e. it contains at least as many genes as f .

For an efficient iterative detection for pairs of orthologous families, the families of paralogs

in L are sorted by their size, i.e. the number of contained genes, such that the largest

family is at the first position in the list. Then families of homologs are built as follows (see

Algorithm 6):

Algorithm 6 Constructing Families of Homologs
1: sort the families of paralogs in L by their size in descending order
2: create an empty list L′

3: while L is not empty do
4: f ← first family in L
5: create an empty temporary list l
6: for each family f ′ in L that forms a pair of orthologous families with f do
7: store the genes of f ′ in l
8: remove f ′ from L
9: end for

10: add all genes from l to f
11: add f to L′

12: remove f from L

13: end while

In the beginning, the largest (the first) family of paralogs f ∈ L is taken and all genes

from each family f ′ ∈ L that form a pair of orthologous families with f are copied to

58 CHAPTER 4. DATA PREPARATION

a temporary list l. Afterwards, these families f ′ are removed from L and the family of

homologs is created by adding all genes from the temporary list l to f . Finally, f is moved

from L to the result list L′.
These steps are repeated until L is empty. Due to the change of the gene content in the

families now stored in the list L′ it is possible that there are further pairs of orthologous

families present in L′. Therefore, the algorithm is applied again, now with L′ as input list,

as long as there are no further pairs of orthologous families found. After the procedure

terminates, the last calculated list L′ contains the final families of homologs.

To use the computed family classification for our gene cluster detection algorithm, each

family in L′ is assigned a unique identifier, such that the genomes can then be represented

by sequences over the alphabet of these family identifiers. For simplicity, each family

consisting of only one gene, is represented by the identifier ’0’, indicating that this gene

has no homolog in any other of the given sequences.

4.2.3 The GhostFam Tool

To provide an easy access to the family construction algorithm based on our relaxed gene

family definition, we developed the tool GhostFam as a part of our gene cluster detection

tool Gecko (see next Chapter). Besides the efficient implementation of the algorithms

from the previous section, the focus in the development of GhostFam was directed to the

graphical representation of the resulting families for an easy evaluation, verification, and

manual manipulation. With the graphical user interface allowing a comfortable setup of

all algorithmic parameters and the illustration of the computed results, GhostFam serves

as an elementary module for data preparation in the Gecko tool.

Input Data and Threshold Setting

To successfully create a new session, GhostFam provides an interactive dialog to set the

essential parameters for the localization of the input data files. These data files contain the

information about the genomes to be analyzed as well as the gene content and the results

of the all-against-all TBLASTN comparisons for each genome. After defining the input

files, a second dialog allows the setting of the thresholds for the definition of orthologous

and paralogous genes (see Figure 4.2). At the beginning of a new session, these thresholds

are always set to their default values. The default values were experimentally obtained

during the evaluation phase described in Chapter 6. During a GhostFam session it is

also possible to modify these thresholds, but then the classification algorithms have to be

restarted.

After confirming the parameter selection, the tool automatically starts the first group-

ing algorithm, i.e. the classification of the genes into their families of paralogs. Before

continuing with the second grouping algorithm that creates the families of homologs, there

4.2. A RELAXED FAMILY DEFINITION 59

Figure 4.2: GhostFam dialogs for parameter input. The left part of the figure shows a
list of available genomes read from an input data file. On the right side, the dialog for
determining the thresholds for the family classification as well as file and directory settings
are displayed.

is the option to perform manual corrections of the automatically created families of par-

alogs (see below in Paragraph ’Manual Editor’). This editor can also be used to optimize

the final classification after the second grouping step.

Graphical Family Representation

The result of the classification is displayed in a table in the main window of GhostFam (see

Figure 4.3). From this table, each family can be selected for a more detailed inspection.

Therefore, the upper right part of the main window graphically displays a selected family

based on the quality of the TBLASTN hits between its contained genes. In the graphic,

each gene of the family is placed on a virtual cycle and a black line is drawn between two

genes, whenever the two genes are either paralogs or orthologs.

For a more detailed analysis of the role of a single gene in the family, it can be selected

in the graph and its connections to other genes can be read from the table in the lower

left of the window. In this table, all hits of this gene to other genes of the family as well

as to genes in other families are listed. Additionally, the hits of the selected gene to other

genes inside the family are colored in the graph according to their significance. For an

easy evaluation, the TBLASTN hits are divided into three classes of significance. Low

significant hits are hits not fulfilling the test condition for paralogs (resp. orthologs) in

Section 4.2.1. These hits are drawn in blue color in the graph and are abbreviated by an

60 CHAPTER 4. DATA PREPARATION

Figure 4.3: Graphical Family Representation. The upper left table contains the list of
all constructed families. From this table, a single family can be selected for the graphical
representation on the right. For a selected gene from the displayed family (here Bifidobac-
terium longum 142, colored in green), one can find its annotation marked in the lower-right
table and in the lower-left table the TBLASTN hits against all other genes. The hits to
genes in the cluster are colored in the graph by their quality (orange: highly significant,
yellow: significant, blue: not significant, grey: no hit found).

4.2. A RELAXED FAMILY DEFINITION 61

’L’ in the first column of the lower left table containing the hits. Those hits fulfilling the

test condition for paralogs (resp. orthologs) are drawn in yellow color and abbreviated

with ’S’ (significant). With an additional set of threshold values for the parameters of the

test condition, highly significant hits (’H’) can be highlighted in orange color. Significant

TBLASTN hits to genes in other families are marked with ’ !’, while those highly significant

hits are represented by ’ !!’. This classification allows an easy evaluation of the connectivity

of a created gene family. Especially the occurrence of highly significant hits to genes not

in the family or the absence of significant hits inside a family hint to some sub-optimal

classification.

In the lower right table of the main window, all genes from a family are listed together

with their functional annotation, and their gene name and TrEMBL-ID3, if available in

the input data file.

Manual Editor

Since an automatic classification of genes into families of homologs, only based on pair-

wise evaluation of their sequence similarity, cannot guarantee to result in the biologically

most plausible partition, the computed list of families might contain some sub-optimally

clustered gene families. Therefore, GhostFam also provides an editor (see Figure 4.4) to

modify single family classifications manually. This manual editor is designed to be used

at two different stages of the family classification process. First, after the grouping of

genes into their families of paralogs, and for a final polishing of the gene families, once the

families of homologs are generated.

In principle, the user interface for the manual editor is a duplicated version of the main

window of GhostFam. It allows three different types of operation: Splitting a gene family

into two new families, merging two families into one, and moving genes from one family to

another. With these three elementary operations, all necessary steps to achieve a desired

configuration can be performed.

Due to the side-effect of chaining in the single-linkage clustering of genes into their

families of paralogs, splitting a family into two or more can be expected to be the most

common operation in the editor. A typical example is given in Figure 4.4. The figure

clearly depicts a gene family (no. 64) that consists of two groups of genes that are highly

connected among each other, but show almost no similarity between each other. In this

situation the editor allows to delineate the two groups and to split them into two families.

The result is shown in Figure 4.5.

3http://www.ebi.ac.uk/trembl/index.html

62 CHAPTER 4. DATA PREPARATION

Figure 4.4: GhostFam Manual Editor. Both sides of the editor show the same gene family
that clearly consists of two different groups of genes. To split the gene family, on one side,
the genes which should create the new family have to be selected by double-click in the
graphic or in the bottom table. By clicking on the corresponding button the selected genes
are moved into a new family. The result of the split is shown in the next figure.

4.2. A RELAXED FAMILY DEFINITION 63

Figure 4.5: The result of the suggested split from the previous figure. Now each family is
almost completely connected, i.e. all genes in the family can be considered to be homologs.

64 CHAPTER 4. DATA PREPARATION

From GhostFam to Gecko

After the successful grouping of all genes into their families of homologs, the export tool

of GhostFam creates a data file which can be used as input for the gene cluster detection

with Gecko. In the data file, each gene is represented by the number of the gene family

it belongs to (see Figure 4.6). For simplicity, each gene family consisting of only one gene

is denoted by ’0’, indicating that no homolog was found in the processed genomes.

Figure 4.6: Example of an export data file created by GhostFam.

Chapter 5

Application

In this chapter, we describe the practical application of our algorithms to detect gene

clusters in real genomic data. For the design of a gene cluster detection software, several

issues regarding speed, accuracy, flexibility, and usability have to be weighted and opti-

mized against each other in order to develop a tool of maximal practical usability. On this

background, our tool for gene cluster detection in prokaryotic genomes (Gecko) is de-

signed as one solution for the optimization of these given issues. Since a proper evaluation

and interpretation of the results from a gene cluster detection approach still needs a large

amount of experience and expert knowledge, Gecko is built to meet the requirements

for a software especially used by the molecular biologist, thus bringing the information to

those who can best interpret it.

An overview of the different consecutive processes performed for gene cluster detection

with the Gecko software can be found in Figure 5.1. The program starts with the reading

of the input data files containing the string representation of the genomes together with the

functional annotation of each gene, if available. With these files, obtained from the COG

database or the GhostFam tool, in an initial step the sequences to be analyzed as well as

the algorithmic parameters have to be determined. After running the gene cluster detection

algorithm on the chosen sequences, the result is postprocessed to allow an efficient analysis

of the output. Since the generation of the input data is described in detail in Chapter 4,

and the algorithmic part is discussed in Chapter 3, here we focus on the sequence selection

and parameter input, as well as on the postprocessing (cluster grouping, pattern detection)

and visualization.

5.1 Sequence Selection and Parameter Input

When starting a new Gecko session, the first decision to make is the selection whether

to work on a gene family classification based on the COG database or created by the

GhostFam tool. In both cases, the chosen data file is read, parsed, and the list of

65

66 CHAPTER 5. APPLICATION

Figure 5.1: Data flow in Gecko. A new Gecko session always starts with the sequence
selection from the imported data files. After choosing the algorithmic parameters, the clus-
ter detection is started. In the cluster grouping and pattern detection step, the algorithmic
output is postprocessed to achieve an optimized visualization.

contained genomes is displayed in a dialog. From this dialog, the sequences to be used for

gene cluster detection have to be selected (see Figure 5.2, left).

The choice of sequences to be used for the cluster detection is a crucial point for the

evaluation of the reported results. As described in Section 3.1, the conservation of gene

order depends of the evolutionary distances of the analyzed species. On the one hand, if

the aim of the cluster detection is to find groups of genes that are probably functionally

related, it is important to choose genomes of a sufficient phylogenetic distance. On the

other hand, if the detected gene clusters are used to analyze the evolutionary development

of a genomic region in a particular lineage, the computed results become more significant

the more genomes from this lineage are used in the cluster detection.

Additionally in the selection dialog, for each genome the number of contained genes

is listed. This number can give a first hint in indicating whether an organism is able to

synthesize all its required products for the housekeeping functions by itself, or depends on

an environment providing these metabolites. For the analysis of the presence or absence of

particular gene clusters encoding elementary functions of the organism, the total number

of genes in a genome also provides a certain estimation about the number of gene clusters

to be expected.

After the composition of the genome set for the gene cluster detection algorithm is deter-

mined, four essential parameters (minimal cluster size, minimum number of sequences k′,
identity rate, and uncharacterized genes) customizing the detection algorithm have to be

set (see Figure 5.2, right).

5.1. SEQUENCE SELECTION AND PARAMETER INPUT 67

Figure 5.2: The dialogs for the sequence selection (left), and the input of the algorithm
parameters for the gene cluster detection (right).

The minimal cluster size can be set in a range of 1 up to 30 and describes the minimum

number of different genes that have to be contained in a gene cluster. In practice, this

parameter can be seen as a filter, removing all clusters from the output consisting of less

genes than the given value for the parameter. The typical default value for the minimal

cluster size is two. A smaller value (’1’) would lead to the detection of a gene cluster even

if only a single ortholog is conserved. If the value for the minimal cluster size is chosen

above ’2’, observe that also for the reconstruction of fragmented gene clusters no cluster

fragment of size below the minimal cluster size is available.

The minimum number of sequences (k′) indicates, in how many sequences a gene cluster

has to appear at least (see also Section 3.4.8). The range for the values of this parameter

reaches from two up to the total number of sequences to be analyzed. A proper setting

for this parameter is important from two different points of view. On the one hand, the

value for k′ linearly scales the runtime of the cluster detection algorithm, and on the

other hand it significantly determines the interpretability of the reported result. If the

results of the cluster detection are used for the prediction of gene functions due to their

conserved neighborhood, it is important to choose a k′ that is larger than the number

of pairwise closely related species in the genome set. Otherwise, it can be expected that

a large proportion of the reported gene clusters are found due to the close evolutionary

relatedness of their genomes rather than due to their functional association.

The identity rate is essential in the cluster grouping step during the postprocessing of

the algorithms output and therefore discussed in Section 5.2.

Finally, the parameter uncharacterized genes is a boolean value indicating whether a

68 CHAPTER 5. APPLICATION

preprocessing of the input data file is performed, in which all genes that have no homolog

in any other of the analyzed genomes are removed from their genomes. This preprocessing

is especially useful if the prediction of the open reading frames (ORFs) of a genome is

not reliable. In this case, an originally conserved genomic region may erroneously be

represented interleaved by falsely predicted ORFs causing a disruption of the genomic

neighborhood. Such interleaved regions can often no longer be detected by the applied

algorithms. On the other hand, by deleting these genes from the genome, previously not

directly adjacent genes now become immediate neighbors. This creation of new artificial

neighborhoods can result in an increased number of falsely reported clusters, such that the

decision whether or not to allow or remove the genes without homologs from the genomes

has to be made for each input data file as the case arises.

5.2 Cluster Grouping

After running the gene cluster detection algorithm, for an efficient evaluation and inter-

pretation of the results, it is necessary to perform a postprocessing of the reported gene

clusters. The example in the algorithmic summary in Section 3.6 clearly shows the large

amount of redundant clusters being reported, due to a missing restriction regarding a max-

imality criterion of the reported clusters. In the following, two postprocessing procedures

are described to optimize the output of the gene cluster detection. In a first step, all non-

maximal gene clusters are removed from the result, and the second procedure attempts to

discover and reconstruct gene clusters that have been partially disrupted during the course

of evolution.

5.2.1 Finding Maximal Gene Clusters

With the reduction of the reported gene clusters to only maximal clusters, it is possible

to significantly reduce the amount of redundant output of the cluster detection algorithm

without losing any important information. For a systematic filtering of redundant gene

clusters, in the following we formally define the notion of maximality on gene clusters.

Recall from the definition in Section 3.4 that a gene cluster is modelled by a common CS-

factor, and Algorithm CI, which is our selected algorithm for the gene cluster detection,

outputs a common CS-factor by its maximal CS-locations from the corresponding genomes.

Definition (location set). Given a collection of k strings S = (S1, S2, . . . , Sk) and

a common CS-factor C of S, the set L(C) of all maximal CS-locations of C in the Si,

1 ≤ i ≤ k is called its location set.

5.2. CLUSTER GROUPING 69

Note that in the location set of a common CS-factor all CS-locations from all strings

are collected in a single set.

Definition (covering). A CS-location l := [i, j]S covers a CS-location l′ := [i′, j′]S in

the same string S, if and only if i ≤ i′ and j′ ≤ j.

Example. Let S1 := (5, 1, 2, 3, 6) and S2 := (7, 3, 2, 1, 8), Algorithm CI outputs the

common CS-factors by their location set:

{1} : L({1}) = {[2, 2]S1 , [4, 4]S2},
{2} : L({2}) = {[3, 3]S1 , [3, 3]S2},
{3} : L({3}) = {[4, 4]S1 , [2, 2]S2},
{1, 2} : L({1, 3}) = {[2, 3]S1 , [3, 4]S2},
{2, 3} : L({2, 3}) = {[3, 4]S1 , [2, 3]S2},
{1, 2, 3} : L({1, 2, 3}) = {[2, 4]S1 , [2, 4]S2}.

Obviously, the common CS-factor of interest is {1, 2, 3} since all other common CS-factors

are only subsets of it, and each CS-location of their location sets is covered by a CS-location

in the location set of {1, 2, 3}.

With the definitions above, we can now give a formal description of the common CS-factor

of interest from the previous example:

Definition (maximal CS-factor). Given the set of all common CS-factors C(S) of a

collection of strings S, we call a common CS-factor C ∈ C(S) a maximal CS-factor if and

only if there exists no C ′ ∈ C(S), C ′ 6= C, such that C ⊂ C ′ and each CS-location l ∈ L(C)

is covered by a CS-location l′ ∈ L(C ′). We denote by M(S) the set of all maximal CS-

factors in S.

Note that non-maximal CS-factors can already be identified during the gene cluster detec-

tion, as soon as a larger, covering CS-factor is found. That is why in our implementation,

the removal of non-maximal CS-factors is performed in parallel with the gene cluster de-

tection, in order to save space.

5.2.2 Finding Fragmented Gene Clusters

In the next postprocessing step, gene clusters that might have been fragmented by genomic

rearrangements over time are linked together. To achieve this, the set of all maximal CS-

factorsM(S) is searched for CS-factors that are supersets of other CS-factors fromM(S).

The idea behind this postprocessing is that larger conserved regions of a few genomes are

70 CHAPTER 5. APPLICATION

found fragmented in several other genomes. Nevertheless, the functions of the genes from

these fragments can be expected to be still related to the functions of the genes from the

larger conserved region.

Definition (primary CS-factor). Given the set of all maximal CS-factors M(S) of a

collection of strings S, a maximal CS-factor C ∈ M(S) is called a primary CS-factor if

and only if there exists no C ′ ∈ M(S), C ′ 6= C, such that C ⊂ C ′. We denote by P(S)

the set of all primary CS-factors in S.

A primary CS-factor is a gene cluster that is not a subset of any other reported gene

cluster. On the other hand, in the set of all maximal clusters, there might exist clusters

that are fragments (subclusters) of several primary clusters. For a better visualization

of the whole collection of conserved gene clusters it is desirable to have the fragments

associated to (all of) their primary clusters:

Definition (joined cluster set). Given a primary CS-factor C ∈ P(S) of a collection

of strings S and the set of all maximal CS-factors M(S), the set J (C) := {C ′ ∈ M(S) |
C ′ ⊆ C} is called the joined cluster set of C.

In the second step of the postprocessing phase, for each primary CS-factor its joined

cluster set is created.

Example. Given three sequences S1 = (1, 2, 3, 5, 4, 1, 2), S2 = (4, 2, 1, 6, 4, 1), and S3 =

(4, 1, 7, 3, 1, 2) with M(S) = {{1, 2, 3}, {1, 2}, {1, 2, 4}, {1, 4}} for k′ = 2 and P(S) =

{{1, 2, 3}, {1, 2, 4}}, the resulting joined cluster set are J (C)1 = {{1, 2, 3}, {1, 2}} and

J (C)2 = {{1, 2, 4}, {1, 2}, {1, 4}}. Note, that {1, 2} is a maximal CS-factor of both joined

clusters.

For the practical use, another (even more) interesting aspect is the joining of cluster frag-

ments containing a certain rate of genes that are not present in the maximal conserved

region. The presence of such genes may indicate a change in the functional role of a gene

or a whole gene cluster, or probably an incorrect homology classification. To model such

extensions, we introduce a parameter p, referred to as identity rate, that allows a formal

definition for joining gene clusters containing some non-matching genes:

Definition (p-primary CS-factor). Given the set of all maximal CS-factors M(S) of

a collection of strings S and a non-negative identity rate p, 0 ≤ p ≤ 1, a maximal CS-

factor C ∈M(S) is called a p-primary CS-factor if and only if there exists no C ′ ∈M(S),

C ′ 6= C, such that C ′ ⊂p C, where A ⊂p B if and only if |A ∩ B| ≥ p · |A|. We denote by

Pp(S) the set of all p-primary CS-factors in S.

5.3. PATTERN DETECTION 71

Similar to the combination of a primary CS-factor with its conserved fragments to a joined

cluster set, we model a set of p-identical clusters as follows:

Definition (p-joined cluster set). Given a p-primary CS-factor C ∈ Pp(S) of a col-

lection of strings S and the set of all maximal CS-factors M(S), the set Jp(C) := {C ′ ∈
M(S) | C ′ ⊂p C} is called the p-joined cluster set of C.

In the example above, J (C)1 and J (C)2 become a single p-joined cluster set for iden-

tity rates p ≤ 0.66. Note that for p = 1, a p-joined cluster set becomes a joined cluster set

as defined above.

The final result of the second postprocessing phase is the creation of a list of all p-joined

cluster sets from the output of the gene cluster detection. In this list, each maximal CS-

factor is present as an element of at least one p-joined cluster set. This list of all p-joined

cluster sets is the final result of our gene cluster detection approach.

In the following, we will show how to highlight gene clusters, showing particular bio-

logical characteristics, and we will introduce into the gene cluster visualization, which is

besides the algorithmic part the second central aspect of Gecko.

5.3 Pattern Detection

The search for characteristic biological patterns in the list of all computed gene clusters

(p-joined cluster sets), is a first step towards an automatic classification of the significance

of a reported gene cluster. A sorting by significance (however defined on gene clusters)

allows a more efficient evaluation of the list of all reported clusters. Obviously, the number

of genes contained in a cluster, and the number of genomes containing the cluster are

objective criteria to estimate how interesting a reported cluster might be. Therefore, in

the visualization (see next section) the list of the clusters is shown sorted first by the

number of genes a cluster contains and second by the number of genomes it covers. This

measurement alone turned out be a first acceptable way of sorting the clusters, but it also

shows disadvantages if the content (the genes) of the gene clusters is totally neglected.

Therefore, three different biologically motivated patterns regarding the content of a

gene cluster are described in the following. The detection of these patterns in the located

clusters is performed subsequent to the last postprocessing step.

5.3.1 Gene Replacement

The first gene cluster pattern, which is especially straightforward to model and locate, is

the gene replacement pattern. The occurrence of such a pattern strongly points to small

72 CHAPTER 5. APPLICATION

Figure 5.3: Gene replacement pattern between C. glutamicum and B. linens. The gene
cluster in both genomes consists of three conserved genes (cysH, cysD, cysN) and one
different gene (cysY, pink) in C. glutamicum and (cysG, black) in B. linens.

deviations in the functional role of a gene cluster, consider the example in Figure 5.3.

In this example, a gene cluster of C. glutamicum and B. linens clearly depicts the

replacement of the last gene in the gene cluster from these genomes. The functional role of

the whole cluster in both organisms is located in the sulfur utilization, but the deviation

in the last gene of the cluster indicates that a small change in the role of the cluster has

occurred during their divergence in evolution. In fact, a more detailed analysis of the sulfur

utilization process of the two organisms revealed that they use different types of sulfur in

their utilization process. While C. glutamicum uses the cysY gene to reduce sulfite, at the

same point B. linens uses a cysH gene to add a methyl group to the so far created sulfur

metabolite.

For a precise description of what we call a gene replacement pattern, the following

definition formally describes our model of this pattern:

Definition (gene replacement pattern). Given a p-joined cluster set Jp(C) :=

{C1, C2, . . . , Cn} of n maximal CS-factors. A gene replacement pattern occurrs in Jp(C) if

and only if there exists a pair (Ci, Cj) of maximal CS-factors from Jp(C) with size(Ci) =

size(Cj) ≥ 3 and |Ci\Cj| = 1.

The detection of a gene replacement pattern in the list of all gene clusters can be per-

formed in a straightforward fashion. Each p-joined cluster set is searched for maximal

CS-factors of the same number of (different) genes. All maximal CS-factors of the same

size (and at least three genes) are compared pairwise whether their set of genes is identical

except for one position. If such a pattern is found in a cluster, the cluster as well as the

pair of maximal CS-factors are marked for later visualization (see Section 5.4).

5.3.2 Cluster Separation

A further topic in the analysis of the content of a gene cluster is the search for gene

clusters that in some genomes contain the genes in one single contiguous region, and that

are divided into two or more regions in another genome. This separation of a gene cluster in

5.3. PATTERN DETECTION 73

Figure 5.4: Cluster Separation Pattern between C. glutamicum and M. tuberculosis . Both
genomes hold the genes for sulfur utilization in conserved genomic regions. While in
M. tuberculosis this region is divided into two parts separated by three genes not associated
with the sulfur utilization, in C. glutamicum this region is completely conserved.

two or more pieces may indicate that the biological mechanisms in the species are similar,

but the encoded products are needed at different points in time.

In the example in Figure 5.4, the operon for sulfur utilization in C. glutamicum is found

in one single conserved region. This organization implies that the encoded products are

required in direct succession. On the other hand, in M. tuberculosis this cluster is separated

into two different parts, indicating that the sulfur utilization is performed in two steps not

necessarily in direct consecution. Of course, a second possible explanation for such pattern

could be found in the evolutionary distance of the organisms. If the involved organisms

are closely related, the proximity of the genes might still be remaining from their recent

common ancestor, and the genomes might not have had enough time to be shuffled more

than by the single disruption.

For an efficient search for such structural characteristic, we define a cluster separation

pattern as follows:

Definition (cluster separation pattern). Given a p-joined cluster set Jp(C) :=

{C1, C2, . . . , Cn} of n maximal CS-factors. Let L :=
⋃n
i=1 L(Ci) be the set of all CS-

locations and G :=
⋃n
i=1Ci the set of all genes of Jp(C). A cluster separation pattern

occurrs in Jp(C), if and only if there exists a CS-location [i, j]S ∈ L with CS([i, j]S) = G
and a pair of CS-locations ([i1, j1]S′ , [i2, j2]S′), S 6= S ′, with CS([i1, j1]S′)∪CS([i2, j2]S′) = G
and CS([i1, j1]S′) 6= G 6= CS([i2, j2]S′).

Less formally spoken, a cluster separation pattern occurs if a p-joined cluster set con-

tains a CS-location in one genome and a pair of CS-locations in a second genome that

cover all the genes from the cluster. In the pair of CS-locations from the second sequence,

none of the CS-locations alone is allowed to contain all genes from the cluster, but it is not

explicitly forbidden that those CS-locations may partially overlap in their gene content.

The detection of this pattern in the output of all p-joined clusters is performed in two

74 CHAPTER 5. APPLICATION

Figure 5.5: Transporting a signal molecule through the cell wall by an ABC transporter.
(a) The substrate or signal molecule (red circle) binds at the substrate binding site (blue)
outside the cell, while the opening of the transport channel in the cell wall (light-blue
bar) requires ATP inside the cell. (b) Transport through the cell wall. (c) Release of the
substrate inside the cell, while ATP is reduced to ADP.

consecutive steps. In a first step, it is tested for each cluster whether it contains a CS-

location that covers all genes from the cluster. If such a CS-location is found, the set of

all locations is evaluated to determine if any combination of two CS-locations in another

sequence contains all genes of the p-joined cluster set. Again like the first pattern, the

successful location of the second pattern is indicated by a marked field in the final list of

all clusters shown in the visualization.

5.3.3 Gene Duplication

The last pattern describing the content of a gene cluster detected by the Gecko program is

the gene duplication pattern. This pattern simply indicates that the detected gene cluster

contains at least one gene more than once in a single genome, i.e. at least one pair of

paralogs is present. In the following, we will distinguish between two different types of gene

duplication patterns. The first type concerns clusters in which a gene duplication occurs

inside a single conserved genomic region, where as the second type of clusters describes

a region of internal gene duplication, where a whole set of genes, maybe an operon, is

duplicated.

A typical example for the occurrence of both types of the gene duplication pattern are

the so called ABC transporters. ABC transporters are used to transfer molecular signals

through the membranes (cell walls) which provide a natural barrier to movement of polar

molecules. The ABC transporters concentrate and transport molecules into or out of a

cell, but require a source of energy. The mechanism of an ABC transporter is shown in

Figure 5.51.

1Figure from: http://chen.bio.purdue.edu/projects.html

5.3. PATTERN DETECTION 75

An ABC transporter consists of at least three different components: An ATPase com-

ponent, the membrane helices and a substrate binding site. The substrate binding site

binds a substrate making the membrane permeable for these molecules. The permeabil-

ity is realized by the membrane helices which build a channel for the transportation of

molecules through the membrane. The required energy for the transportation process is

delivered from the ATPase component based on a reduction of ATP to ADP.

Since this transport through a cell wall is a very elementary process that is frequently

required in many organisms, usually there are several copies of the set of genes present in

each genome. Therefore, it is of special interest to locate these gene clusters that contain

regions of internal duplication, since these regions can be predicted to encode a similar

function. On the other hand, a gene cluster encoding for an ABC transport system is also

a good example for a gene cluster showing the occurrences of a paralogous gene inside a

single conserved region. Depending on the type of molecule to be transported into the

cell, the number of required membrane helices or the amount of required energy can differ.

A preferable solution for an organism, e.g. to ensure that enough energy to perform the

required function is available, is the conservation of a set of genes, where the ATPase

component is encoded twice, i.e. as a paralog inside a conserved cluster.

Based on the definition of a gene cluster as a p-joined cluster set, we can model the

gene duplication pattern as follows:

Definition (gene duplication pattern). Given a p-joined cluster set Jp(C) :=

{C1, C2, . . . , Cn} of nmaximal CS-factors and the set of all its CS-locations L :=
⋃n
i=1 L(Ci).

A gene duplication pattern occurs in Jp(C) if and only if there exists a CS-location

[i, j]S ∈ L with |CS([i, j]S)| < 1 + j − i, or if there exists a location set L(Ci) of a

maximal CS-factor in Jp(C) that contains two CS-locations in the same sequences S,

[a, b]S 6= [a′, b′]S.

In the first case of the definition it is tested whether the total number of genes in a

conserved region of a genome exceeds the number of different genes of the corresponding

gene cluster. If so, the only possible explanation is a gene duplication inside the single

conserved region. In the second case it is tested whether a conserved fragment (maximal

CS-factor) of the cluster has more than one occurrence (CS-location) in a single sequence.

If this is true, a region of internal duplication in the gene cluster is present.

In practice, the detection of both variants of the gene duplication pattern can be per-

formed in a straightforward fashion. For the reason of time efficiency, the second type of

the pattern (a region of internal duplication) is tested first. For a single maximal CS-factor

only the number of CS-locations per sequence have to be counted. If there is more than

one, the p-joined cluster fulfills the gene duplication pattern. If this first test is negative,

then each CS-location is tested whether its length exceeds the number of different genes

in the maximal CS-factor.

76 CHAPTER 5. APPLICATION

5.4 Visualization

One of the most important requirements for a tool that extracts information from a large

data set is the capability to visualize the computed results in a style which is appropriate

for the needs of the expected users. The Gecko tool was designed in close cooperation

with molecular biologists, thus allowing to develop a user interface for the algorithmic part

and a visualization of the computed results, meeting the requirements of that group of

scientists as optimal as possible.

As described in the previous section, the final result of an application of the gene cluster

detection algorithms together with the postprocessing and the pattern detection on a given

set of genomes is a list of gene clusters, ordered by their size (number of different genes in

the cluster) and the number of sequences it occurs in. From the pattern detection, each

cluster contains three different marks indicating if the corresponding pattern can be found

inside the cluster. In the main window of Gecko, the sorted list of all computed gene

clusters can be found in the upper left table, see Figure 5.6.

From this list, the user can select a single gene cluster for a more detailed inspection.

The selected cluster is drawn in a graphical representation right next to the table. In this

representation of a gene cluster, each conserved gene from the cluster is drawn by an arrow,

where the pointing direction of an arrows indicates on which strand of the genome the gene

is encoded. The numbers inside the arrows show the gene family or COG cluster a gene

belongs to. For a better overview, the arrows are colored, such that all genes belonging to

the same gene family in a cluster are always drawn in the same color. The blue numbers

in front, behind and between the arrows show how many genes not in the cluster can be

found at the corresponding position.

Since a complete gene cluster (p-joined cluster set) is often composed of a set of con-

served fragments (maximal CS-factors), it might be of certain interest to analyze a single

fragment of the whole cluster in detail. Therefore, a table in the lower left of the main

window contains the list of all such fragments from which a single fragment can be selected

for a graphical representation below the graphic of the main cluster.

A further helpful feature available in both graphics is the option to draw the conserved

regions centered by one gene family. The number of the family can be entered in the

corresponding field in the toolbar, or it can be determined by right-clicking the mouse on

the gene family. In the centering process, the genomes are shifted to the right or left, such

that the first occurrence of the centering gene in a genome is always found in one column in

the graphic. If the genes in that column do not point in the same direction, the orientation

of the whole genome is flipped. This change in the coding direction is indicated by a light

yellow background for the particular genome.

For the detailed evaluation of a single conserved region it is possible to get access to

the functional annotation as well as additional information about the gene name and the

5.4. VISUALIZATION 77

Figure 5.6: The main window of Gecko. The table in the upper left contains the list
of all gene clusters calculated from the “data medium.csd” data file with the parameters
displayed in the toolbar. For the graphical representation, the gene cluster no. 11247 is
selected and drawn right next to the table. Here the conserved regions are centered along
the gene family 757 (green color). As marked in the checkbox ’P2’ and easily detectable
in the graphic, this cluster shows the cluster separation pattern, since in B. linens and
L. xyli the cluster is found in a single conserved region which is separated into two parts in
many other genomes, e.g. in C. glutamicum. Additionally, a marked checkbox ’P1’ would
indicate the occurrence of the gene replacement pattern, whereas ’P3’ is marked when a
gene duplication is found in the cluster. The six cluster fragments of which the complete
cluster is composed are shown in the lower left table.

78 CHAPTER 5. APPLICATION

functional COG category of all genes in that region by a left-click on one gene of this region.

Therefore, a new dialog appears displaying all available information about the genes from

this region (see Figure 5.7).

Another advantage of using the GhostFam tool for data preparation is the option to

manually verify the grouping of the genes into their families of homologs given a located

gene cluster. Here a typical scenario is the presence of an additional or the absence of an

expected gene in a conserved gene cluster. To clarify the role of such a gene, the result of the

classification in GhostFam can be recalled to evaluate a possible false family assignment

or to discover falsely predicted ORFs. Especially the latter case was often found during the

application of the gene cluster detection of real genomic data (see Chapter 6). Here, our

data for the genome of C. efficiens , seemed to contain a larger number of such ’additional’

ORFs.

For a fast location of gene clusters containing one or more gene families of interest, the

toolbar also provides a filter option for the list of all clusters. If a located gene cluster is of

particular interest, e.g. for documentation, Gecko additionally offers the option to export

the graphical representation to a compressed bitmap file.

5.4. VISUALIZATION 79

Figure 5.7: Annotation windows in Gecko. For each conserved region in a genome, an
annotation window can be displayed. In this window, all information about the functional
role of a gene together with its gene name, TrEMBL-ID, and location on the genome is
displayed. If the input data file is based on the COG database, also the COG functional
category is shown. These windows are also available for the interleaving regions of a gene
cluster, here displayed for the single interleaving gene coref 2705 of C. efficiens . Since this
gene has no homolog in any other sequence, i.e. its identifier is ’0’, this gene is probably a
falsely predicted ORF.

80 CHAPTER 5. APPLICATION

Chapter 6

Experimental Results

In the first part of this chapter, we will evaluate the performance of the gene cluster

detection algorithm (Algorithm CI) implemented in the Gecko software. To prove that

the algorithm runs within the claimed time complexity, the evaluation was performed on

an artificially created data set, especially designed to test the worst case running time in

different scenarios.

Subsequently in this chapter, we will present some results from the application of the

gene cluster detection algorithm to real genomic data. Here we will show the positive effect

on the quality and number of the detected gene clusters by modelling genomes based on the

representation as strings instead of permutations. Afterwards, we evaluate the distribution

of structural patters in the detected gene clusters to test whether these patterns are helpful

criteria to express a special significance for a particular cluster.

Unfortunately, due to the lack of experimentally verified reference data, a proof of the

correctness of each reported gene cluster by hand is not feasible. Therefore, in the last part

of this chapter we will compare some results obtained by Gecko with a gene cluster (the

tryptophan biosynthesis operon) that is well known from the literature, and a cluster that

is intensively studied – also by wet-lab experiments – at the Institute of Genome Research

at Bielefeld University.

6.1 Running Time Evaluation

To show that our implementation of the gene cluster detection algorithm (Algorithm CI)

runs in the claimed time complexity, we tested the three different scenarios (increasing

string length n, increasing number of strings k, and decreasing number of required strings

k′) on an artificially created data set. All tests were performed on a single 900 MHz

UltraSPARC-III+ CPU running the Solaris 9 operating system. To ensure that the Java

Virtual Machine has enough main memory available to run Gecko, it was started with

the option -mx1500m.

81

82 CHAPTER 6. EXPERIMENTAL RESULTS

length n time t [ms]
√
t n√

t

100 8 2.83 35.35
200 29 5.39 37.13
500 195 13.96 35.80

1,000 782 27.96 35.76
2,000 3,360 57.97 34.50
3,000 7,561 86.95 34.51
4,000 13,564 116.47 34.34
5,000 22,990 151.63 32.97

10,000 83,550 289.05 34.59

Table 6.1: Running time evaluation of Algorithm CI for a fixed k = 2 and varying string
lengths n. The second column shows the absolute running time of Algorithm CI for each
chosen n, and in the third column the square root of this value is shown. The fourth
column shows the ratio of computed sequence length per time.

Figure 6.1: The square root of the running time of Algorithm CI is plotted for the different
lengths of the input strings. All data points can be found on a straight line (dotted),
proving the quadratic correlation of running time and string length.

6.1. RUNNING TIME EVALUATION 83

The first test was designed to prove that the worst case running time of Algorithm CI,

applied to a single pair of strings (genomes), scales quadratically with n = max(|Si|),
1 ≤ i ≤ k, the maximal number of characters contained in the longest string. Therefore,

we created two strings of length n, where S1 = (1, 2, ..., n) and S2 = (n + 1, n + 2, ..., 2n).

This can be considered the worst-case for Algorithm CI, since each CS-location of the

two strings is maximal, i.e. has to be considered for the detection of a common CS-factor

(see Section 3.4.5). Since the two strings contain no common character, obviously no

common CS-factor will be detected. This setting was chosen to avoid an influence of the

first postprocessing procedure, which runs in parallel with the cluster detection, on the

measured running time of the algorithm.

For the evaluation, we chose different string lengths from 100 up to 10,000 characters.

The running time of Algorithm CI for the different values of n is shown in Table 6.1 and was

averaged over three test runs. These values and their graphical representation in Figure 6.1

clearly depict the quadratic increase in the running time of the cluster detection algorithm

with a linear increase in the string length.

The second test was designed to prove that Algorithm CI, if applied to a set of k

strings, runs in O(kn2) time to compute all common CS-factors occurring in all k strings.

Therefore, we applied Algorithm CI to a test set of k strings, each of length n = 1000 and

the minimum number of strings k′ was fixed to k. Like in the first test scenario, the k

strings in the test set are created in a way such that two strings have no common character,

i.e. no common CS-factor is detectable:

Sl = (n · (l − 1) + 1, n · (l − 1) + 2, . . . , n · (l − 1) + n), 1 ≤ l ≤ k.

Note that for the application of Algorithm CI to each pair of strings from this set the

alphabet size |Σ| does not exceed 2n, even if the maximal number used for the identifi-

cation of the characters in the strings is n · k (the last character in Sk). Therefore, in

the implementation of Algorithm CI the characters from a pairwise comparison are always

mapped onto characters from Σ := {1, 2. . . . , 2n}.
Again, the shown running time for each k in Table 6.2 is the average of three individual

tests. The values from the table are visualized in Figure 6.2. As clearly depicted in the

figure, for k ≥ 20 the running time increases linearly with the number of selected strings,

proving together with the first test the predicted time complexity of O(kn2). For less than

20 strings, the preprocessing of the first string that creates the tables NUM and POS (see

Section 3.4.5) contributes a small constant amount of time to the overall running time,

such that for these measures the running time is above the straight line in the Figure 6.2.

In the third test scenario, we will show that our implementation of the gene cluster

detection algorithm in Gecko finds all gene clusters that occur in k′ out of k strings in

O(n2k(1+k−k′)) time. Therefore, we chose a test set of k = 20 strings of length n = 2000

84 CHAPTER 6. EXPERIMENTAL RESULTS

strings k time t [ms] k
t[s]

2 1304 1.53
5 1351 3.70

10 2760 3.62
20 4667 4.28
40 8072 4.95
60 11716 5.12
80 15037 5.32

100 18726 5.34
150 31054 4.83
200 37884 5.28
500 93611 5.34

Table 6.2: Running time evaluation of Algorithm CI for a fixed string length n = 1, 000
and varying number of strings k. Since k′ = k the common CS-factors must occur in each
of the given strings. In the last column, the string per time ratio is calculated.

Figure 6.2: The figure shows a plot of the running time of Algorithm CI for the different
numbers of strings k of length n = 1000.

6.1. RUNNING TIME EVALUATION 85

k′ time t[s] est. appl. ae
ae
t

perf. appl. ap
ap
t

2 385.2 380 0.986 209 0.543
4 372.1 340 0.914 204 0.548
6 350.6 300 0.856 195 0.556
8 324.9 260 0.800 182 0.560

10 295.3 220 0.745 165 0.559
12 257.6 180 0.699 144 0.559
14 207.5 140 0.675 119 0.573
16 155.5 100 0.643 90 0.579
18 97.5 60 0.615 57 0.584
20 35.2 20 0.568 20 0.568

Table 6.3: Running time evaluation of Algorithm CI for a fixed string length n = 2, 000
and a fixed number of strings k = 20, varying the minimum number of required strings k′

for the detection of a gene cluster. Column three shows the number of estimated pairwise
applications ae of Algorithm CI according to the given O(n2k(1 +k−k′)) time complexity.
The exact number of performed applications ap is shown in column five, and the calculated
ratios for the observed running times are shown in column four, respective column six.

and varied k′ in steps of size two from 2 up to 20. The computation time is shown in

Table 6.3.

For the analysis of the running time results, recall that the term k(1 + k − k′) =: ae
estimates the number of applications of Algorithm CI to a pair of strings. In the table,

the third column contains this number of estimated pairwise applications for each k′. In

theory, the ratio of the number of applications per time (column four) is expected to be

constant, but in the table it is clearly observable, that this ratio constantly decreases for

an increasing value of k′. This means, that O(n2k(1 +k−k′)) is a correct upper bound for

the running time of the gene cluster detection with Gecko, but there might exist tighter

upper bounds.

To find such an upper bound, recall from Section 3.4.9 the description how to detect

common CS-factor located in k′ out of k strings. Here, the general idea was based on the

application of Algorithm CI to each pair of strings (S1, Sr), 1 ≤ r ≤ k, to locate all gene

clusters occurring in S1 and at least k′− 1 further strings. Since a common CS-factor does

not necessarily occur in S1, in the next step Algorithm CI was applied to the same set of

strings, but without S1 and with k′ decremented by one. Here, the given term k(1+k−k′)
counts the number of applications of Algorithm CI not exactly, since in each iteration, not

only k′, but also the number of strings k is reduced by one. With this refinement, the exact

number ap of performed applications of Algorithm CI can be calculated by ap =
∑k

k′ k
′.

This number is displayed for each k′ in the fifth column of Table 6.3, and the computed

ratio of performed applications per time is given in the last column. As expected from

theory, now this ratio is constant for all values of k′. The result is also shown graphically

in Figure 6.3.

86 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.3: Visualization of the measured running time (dots) with different values for
k′, with k = 20 and n = 2000. On the right Y-axis, the estimated number of pairwise
applications of Algorithm CI (triangles) is compared to the exact number of performed
applications (squares).

6.2. STATISTICS ON REAL GENOMIC DATA 87

k / minsize : 32 / 2 32 / 3 43 / 2 43 / 3
no paralogs 1984 792 2504 1494

inside region 243 43 365 97
duplicated region 259 115 357 256

both 248 49 560 196
total 2734 999 3786 2043

Table 6.4: Observed number of gene clusters for the different types of gene duplications.

6.2 Statistics on Real Genomic Data

For the first application of Gecko to real genomic data, we built a test set of the 43

COG-classified bacterial genomes from the NCBI database (see Section 4.1). Furthermore,

we created a second test set of 32 genomes by removing the closely related genomes from

the previous set. This was done to avoid misleading conclusions in the interpretation of

the results, since many gene clusters in closely related species are conserved due to the lack

of time for intensive genome rearrangements.

A first interesting question to answer is how many gene clusters can be found with the

representation of genomes by strings instead of permutations like in previous approaches.

To answer this question, we applied our gene cluster search to both sets of genomes with

a fixed k′ = 2 and without the second postprocessing step to keep the results comparable

with results from other tools. For both sets, the test was run with a minimal cluster size

of two to find all gene clusters of more than a single conserved homolog, and also with a

minimal cluster size of three to figure out how many gene clusters consist of more than

only a conserved gene pair.

For the evaluation, we partitioned the reported gene clusters according to the type of

the observed gene duplication into the following four groups: no paralogs, paralogs inside

a single conserved region, duplicated conserved regions, and both types in one cluster. The

number of clusters for each group in the four different test cases are given in Table 6.4 and

graphically displayed in Figure 6.4.

Besides the expected decrease in the total amount of detected gene clusters using the

reduced genome set of only more distantly related species, it is an interesting observation

that independently of the chosen genome sets and the minimal cluster size, the rate of

gene clusters containing at least one type of paralogs is always found between 20% and

33%. These rates can be considered a lower bound for the number of gene clusters that

cannot be (completely) detected by an approach based on the representation of genomes on

permutations. However, the true number of missing or incompletely reported gene clusters

can be expected to be even higher, since the presence of paralogs also complicates the

detection of clusters that by themselves do not contain a paralog, but e.g. have a single

duplicated gene outside the conserved region (see also Section 3.3.3).

88 CHAPTER 6. EXPERIMENTAL RESULTS

Figure 6.4: Chart representation of the observed number of gene clusters for the different
types of gene duplications: no paralogs (blue), paralogs inside a single conserved region
(red), duplicated conserved regions (yellow), both types (cyan). Charts I and II show the
distribution of the duplication types in the reduced genome set, and Chart III and IV were
computed from the results using the complete test set of 43 genomes.

Evaluation of Pattern Frequencies

The same sets of genomes were used to analyze the number of occurrences for the defined

content patterns (see Section 5.3). For a compact notation, we call the gene replacement

pattern pattern1, the cluster separation pattern pattern2, and the gene duplication pattern

pattern3. Note that in this analysis we do not distinguish between the two different types

of gene duplication patterns.

The gene cluster detection was performed with k = 2 to evaluate the pattern distribu-

tion in all p-joined cluster sets consisting of more than a single gene, and k = 5 to figure

out how the ratios of the different types of patterns change when considering only clusters

appearing conserved among a larger number of organisms. To identify the influence of

the identity rate p from the second postprocessing step on the pattern distribution, each

computed list of clusters was postprocessed with p = 0.7 and p = 0.9. The computed

pattern frequencies are shown in Table 6.5 and visualized in Figure 6.5.

An unexpected first observation in the analysis of the pattern frequencies is the fact

that the relative distribution of the content patterns for each combination of the different

parameter settings on both test sets is almost identical. So far, there is no plausible reason

for this observation, since even the total number of reported p-joined cluster sets varies in

the wide range of 200 up to more than 2000 clusters for particular parameter settings.

On the other hand, with a larger k′ and an increased identity rate p the tendency

to have conserved gene clusters showing a content pattern increases in both test sets.

These observations allow two different interpretations of the data. Once they indicate

that especially those gene clusters which are conserved in a larger number of genomes,

6.2. STATISTICS ON REAL GENOMIC DATA 89

k k′ identity rate p pattern 1 pattern 2 pattern 3 no pattern
43 2 0.7 233 (16%) 34 (2%) 480 (33%) 903 (62%)
43 2 0.9 360 (19%) 97 (5%) 714 (37%) 1056 (55%)
43 5 0.7 66 (21%) 17 (5%) 106 (34%) 173 (55%)
43 5 0.9 78 (22%) 25 (7%) 125 (35%) 191 (54%)
32 2 0.7 144 (14%) 16 (2%) 284 (28%) 681 (66%)
32 2 0.9 170 (14%) 36 (3%) 387 (31%) 774 (62%)
32 5 0.7 30 (15%) 8 (4%) 66 (33%) 116 (58%)
32 5 0.9 36 (17%) 10 (5%) 71 (33%) 119 (56%)

Table 6.5: Distribution of the pattern frequencies for both test sets with different values
for k′ and p. Note that the sum of the percent values exceed 100%, because in some gene
clusters more than one content pattern was found.

Figure 6.5: Visualization of the relative cluster distribution under the different parameter
settings.

90 CHAPTER 6. EXPERIMENTAL RESULTS

i.e. encode important functions for many species, are more often found containing a content

pattern. And secondly, those gene clusters which do not contain many additional not

conserved genes, are more frequently highlighted in the pattern detection phase. To this

end, the detection of a content pattern points to a more important functional role of a gene

cluster since in the average case those clusters are more often and more purely conserved.

Therefore, the detection of a content pattern is a further valid criterion (besides the size

and the number of covered genomes) for rating the significance of a gene cluster.

Furthermore, the results from the comparison of the pattern frequencies conform with

the distribution of the different types of gene duplications inside a gene cluster. It is again

observable that the total number of gene clusters significantly decreases whenever closely

related genomes are excluded from the test set. Since in general pattern3 (the gene dupli-

cation pattern) collects all three types of gene duplications in Figure 6.4, the observation

that this pattern is found in about one third of the detected clusters strongly points to the

large proportion of conserved clusters that are not detectable with the representation of

the genomes by permutations.

6.3 Two Real World Examples with Gecko

To demonstrate the usability of Gecko for the gene cluster detection on real data, we

applied it to a test set of 20 sequences from the following genomes: Bifidobacterium

longum, Brevibacterium linens, Bacillus subtilis, Corynebacterium diphtheriae, Corynebac-

terium efficiens, Corynebacterium glutamicum, Escherichia coli, Lactococcus lactis, Leifso-

nia xyli, Mycobacterium avium, Mycobacterium leprae, Mycobacterium tuberculosis, Nocar-

dia farcinica, Propionibacterium acnes, Pseudomonas aeruginosa, Streptomyces avermitilis,

Streptomyces coelicolor, Thermobifida fusca, Tropheryma whipplei and Wolinella succino-

genes. The running time for the complete analysis (establishing the gene families with

GhostFam and finding the clusters with Gecko) was 21 minutes on a single 900 MHz

UltraSPARC-III+ CPU running the Solaris 9 operating system.

For the grouping of the genes into their families of homologs with GhostFam we used

the following parameter setting: p0 = 50%, e0 = 10−5, c0 = 0.6, r0 = 0.5. This parameter

setting is the default setting in GhostFam and was obtained by several test runs during

the development of GhostFam. For Gecko we considered all gene clusters occurring in

at least two genomes (k′ = 2) with a minimal cluster size of two different genes. For the

merging of the 2,014 detected cluster fragments we chose an identity rate of p = 0.6.

In the following we will discuss two specific examples. As a proof of concept, we describe

the Gecko results for the well known operon for the tryptophan biosynthesis. The second

example is a new gene cluster that was recently detected with the Gecko software and

whose genes are involved in the assimilatory sulfate reduction.

6.3. TWO REAL WORLD EXAMPLES WITH GECKO 91

Figure 6.6: The tryptophan biosynthesis gene cluster in the Actinobacteria C. glutamicum,
C. efficiens, C. diphtheriae, M. tuberculosis, N. farcinica, S. coelicolor and S. thermophilum
as well as in the taxonomically remote eubacterium L. lactis as detected by Gecko. The
following gene families are displayed: 35 - peroxodoxin BCPB; 146 - anthranilate synthase,
aminase subunit (trpAa); 168 - putative membrane protein; 422 - anthranilate synthase,
amidotransferase subunit (trpAb); 432 - putative prolipoprotein diacylglyceryl transferase;
455 - tryptophan synthase, β subunit (trpEb); 623 - anthranilate phosphoribosyl transferase
(trpB); 707 - tryptophan synthase, α subunit (trpEa); 718 - indoleglycerol phosphate
synthase (trpD); 1292 - putative membrane protein; 1993 - phosphoribosyl-anthranilate
isomerase (trpC), 2714 - fusion of indoleglycerol phosphate synthase and phosphoribosyl-
anthranilate isomerase (trpDC).

6.3.1 The Operon for Tryptophan Biosynthesis

Gene clusters, especially operons, embracing the complete gene content of a biosynthetic

pathway are frequently found in bacteria. Among these, the operon for the synthesis of

the amino acid tryptophan (Trp operon) has a classical status for both biochemistry and

molecular genetics. Although this gene cluster can be observed as a whole-pathway operon

in most bacteria sequenced so far, there are a number of instances where the Trp operon was

found split into two or more parts. Therefore, it was especially interesting to investigate

and reconstruct the evolutionary processes and possible lateral gene transfer events using

the Trp operon as example [78, 77].

Figure 6.6 shows the visualization of the Trp operon in a number of bacteria from the

Actinobacteria, a lineage inheriting Trp operons in different arrangements. The analysis of

the gene cluster in the figure reveals that Gecko correctly shows that the Trp operon is

a whole-pathway operon of

trpAa(146) - trpAb(422) - trpB(623) - trpD(718) - trpC (1993) - trpEb(455) - trpEa(707)

in the non-Actinobacterium L. lactis with an insertion of two unrelated genes between

trpC and trpEb1.

1The genetic nomenclature is taken from Xie et al. [78]

92 CHAPTER 6. EXPERIMENTAL RESULTS

In most of the Actinobacteria, a trpC (1993) ortholog is missing and an unrelated gene

(1292) is present in front of the trpD(718) gene. In addition, the whole-pathway Trp operon

of the gene order

trpAa(146) - trpAb(422) - trpB(623) - trpDC (2714) - trpEb(455) - trpEa(707)

that was laterally transferred to an ancestor of all three Corynebacterium species is also

clearly depicted. A subsequent mutational decay nowadays led to a situation where only

the trpD(1292)-region of the original Trp operon is retained and the laterally transferred

Trp operon is responsible for tryptophan biosynthesis. It is interesting to note that the

trpD and trpC genes have been fused to encode one polypeptide with both protein do-

mains in Corynebacteria. A presumably recent mutation event disrupted the gene order

in C. diptheriae where three genes from an unrelated biosynthetic pathway have been in-

serted between trpDC (2714) and trpEb(455). All these findings were correctly revealed

and depicted by Gecko.

6.3.2 A Gene Gluster for the Assimilatory Sulfate Reduction

The second example for a successful application of the gene cluster search with Gecko is

a conserved set of genes participating in the assimilatory sulfate reduction in several Acti-

nomycetales and E. coli .

As the metabolism of sulfur in C. glutamicum has been studied intensively by our

cooperating group of Genetics at the Institute of Genome Research at Bielefeld Univer-

sity [37, 56, 57, 60], Gecko was used to analyze whether this cluster of genes involved in

the assimilatory reduction of sulfate is retained between different bacteria. From a manual

analysis of those genes it is known that a cluster of eight genes is conserved between the

closely related organisms C. glutamicum and C. efficiens . For the analysis with Gecko,

the genome sequences of all completely sequenced Actinomycetales as well as those of the

two model organisms E. coli and B. subtilis were used as test set. Performing the family

assignment with GhostFam, the manual editor was used for one necessary correction of

the automatic family classification, since the genes encoding (P)APS reductase (cysH) and

sulfate adenylate transferase subunit 1 (cysD) were wrongly clustered together due to their

high sequence similarity in the parts encoding for the substrate binding domains.

Based on the family classification created with GhostFam, Gecko was used to de-

termine if parts of the cluster are also conserved in the other genomes from the test set.

The results with Gecko are shown in Figure 6.7.

Additionally, all reported parts of the gene cluster that contain the eight conserved genes

from C. efficiens and C. glutamicum were manually verified to test whether the results

delivered by Gecko were correct and complete. The evaluation showed that Gecko cor-

6.3. TWO REAL WORLD EXAMPLES WITH GECKO 93

Figure 6.7: Visualization of the search for retained parts of a gene cluster involved in
the assimilatory reduction of sulfate found to be conserved between C. glutamicum and
C. efficiens . All completely sequenced Actinomycetales and the two model organisms
E. coli and Bacillus subtilis were used for the Gecko analysis. The following gene fam-
ilies are displayed: 13 – putative acyl-CoA dehydrogenase; 121 – predicted permease;
246 – putative integral membrane protein; 396 – conserved hypothetical protein; 497 –
putative ferredoxin-NADP reductase; 660 – conserved hypothetical protein; 909 – sulfite
reductase (cysI); 861 – phosphoadenosine phosphosulfate reductase (cysH); 911 – sulfate
adenylyltransferase subunit 2 (cysD); 910 – sulfate adenylyltransferase subunit 1 (cysN);
1369 – adenylylsulfate kinase (cysC); 1729 – putative regulatory protein; 2305 – hypothet-
ical protein; 2981 – putative secreted protein; 4529 – putative acetyltransferase (cysE).

rectly detects all parts of the experimentally verified cluster found in C. glutamicum

and C. efficiens to be present in N. farcinica, M. avium, M. tuberculosis , S. coelicolor ,

S. avermitilis , and E. coli , including possible gene duplication events in N. farcinica,

M. avium, and S. avermitilis . An additional interesting observation revealed by Gecko is

the conservation of two up to now unstudied gene families (660, 2305). Both families were

found as part of the gene cluster in several actinomycetal genomes. While most of the

genes of the cluster, like cysI (909), cysH (861), cysD (911), cysN (910), and cysC (1369),

have been examined quite intensively in E. coli [43], the function of the genes from these

two gene families has yet to be determined experimentally.

Beside the correct identification of all manually verified parts of the cluster, Gecko also

correctly reported this cluster to be missing in C. diphtheriae, B. linens , L. xyli , M. leprae,

P. acnes , and T. whipplei . This is likely to be due to the fact that all these bacteria are

either pathogens or commensals which might retrieve the needed sulfur directly from their

respective hosts. A closer inspection of B. subtilis , where the cluster was also not found,

revealed, that this organism encodes this function in a different set of genes. Since no other

organism with a similar set of genes was part of the test set, the missing of this cluster in

the result of Gecko was to be expected.

In the attempt to reconstruct both of the discussed gene clusters using the well known

neighborhood search in STRING (see Section 3.2.1), it was not possible to reveal the whole

clusters as obtained with Gecko. It was only possible to extract for each conserved operon

94 CHAPTER 6. EXPERIMENTAL RESULTS

different fragments of the complete gene cluster, depending on the chosen query gene. For

example, the search for a cysD gene correctly discovers the complete operon structure in

S. avermitilis , but the larger conserved region between C. glutamicum and C. efficiens

also including cysI is only reported incompletely, while not directly enquiring for the cysI

gene. Also the conserved parts in N. farcinica and M. avium were not reported due to the

absence of those genomes from the database used by STRING.

Chapter 7

Summary and Outlook

In this thesis we developed the new formal and biologically meaningful model of a com-

mon CS-factor to describe a gene cluster as a set of genes found in a conserved genomic

neighborhood in two or more genomes. These gene clusters play an important role in the

elucidation of the functional role of gene products. With the availability of all conserved

gene clusters from a whole set of prokaryotic organisms, we have an additional source of

information for the understanding and reconstruction of the evolutionary events resulting

in the structure and organization of bacterial genomes as observable today. We presented

a formal description of the problem of detecting gene clusters in a given set of genomes

and reviewed prior work on different heuristic approaches for the solution of the problem.

We have studied, implemented, and improved algorithms for the efficient localization of

gene clusters, finally resulting in a worst case optimal quadratic time algorithm that uses

linear space. Additionally, we developed a software tool for the input data preparation, the

visualization and evaluation of the computed gene clusters. Finally, we tested the behavior

of our developed algorithms on artificially generated as well as real biological data.

The main benefit of our new model for gene clusters accompanied by the efficient al-

gorithms detecting them is the speed in which the results are computed and the overall

high quality of the reported gene clusters. Due to its efficiency, the implementation of the

gene cluster detection in Gecko is highly suitable for being used on large sets of genomes,

allowing the detection of only rarely conserved clusters. Furthermore, our developed data

preparation tool GhostFam provides a simple and fast way to partition genes into families

of homologs. Its parameterized definition of homology allows a highly flexible clustering of

the genes and provides independence of commonly used databases like the COG database.

This independence is an important feature for the detection of gene clusters in newly se-

quenced organisms due to the fact that the family classification of their genes only becomes

available from a database with a significant delay in time.

The results of the application of the Gecko tool to real genomic data clearly revealed

that our formal model for gene clusters together with the presented algorithms is a fast

95

96 CHAPTER 7. SUMMARY AND OUTLOOK

and reliable way to extract all gene clusters from a given set of genomes. Based on these

gene clusters, well founded hypotheses regarding the functional role of a single gene or a

whole conserved region can be generated. These hypotheses can be used to significantly

reduce the time and cost for a further experimental verification of the predicted function

of a gene or the rearrangement of functionally related genes in a conserved genomic region.

Although the results reported by Gecko when applied to real data achieved a remark-

able quality, there are still some unsolved problems on which further work can be expected

to show promising improvements on the reported gene clusters:

• Instead of the detection of fragmented gene clusters by their grouping into p-joined

cluster sets, the incorporation of missing or additional genes into the definition of

common CS-factors might be a good alternative to locate partially conserved gene

clusters. Under such a model, the second postprocessing step becomes unnecessary,

and furthermore, it would become possible to detect imperfectly conserved clusters

in only two genomes.

• The use of information about transcriptional regulators like promoters and transcrip-

tion terminators could be another valuable source of information to be incorporated

into the gene cluster reconstruction. For example, the occurrence of a transcrip-

tional terminator inside a gene cluster suggests that the genes in that region are not

transcribed together, i.e. they do not form an operon.

• The analysis of the number and distribution of the content patterns in the located

gene clusters has revealed that so far approximately 60% of the clusters cannot be

assigned to any content pattern. This large number indicates that there might exist

other, up to now not characterized content patterns, whose detection and formaliza-

tion could increase the amount of information automatically inferable from the set

of reported gene clusters.

• In 2002, Durand and Sankoff constructed tests to determine the significance of gene

clusters against the null hypotheses of random gene order [20]. By considering the

significance of individual clusters of particular genes and the overall degree of cluster-

ing in whole genomes, their approach allows a well founded and reliable estimation of

the expectation value of a located cluster. This value together with an extended set

of content patterns can be used to create a meaningful ranking of the located gene

clusters, allowing to analyze the most important gene clusters at first.

• Since the number of experimentally verified gene clusters is still quite low, it is not an

easy task to decide whether a detected gene cluster is a set of functionally interacting

genes, or just a group of unrelated genes that is found in a conserved neighborhood

due to a lack in time to diverge. Therefore, the combination of gene clusters with

97

data from gene expression could be a promising approach to estimate the quality of a

detected cluster. In this case it would be expected that if the genes inside a conserved

region are functionally related, they should show a similar expression profile.

Beyond the application of Gecko for the functional analysis of genes in bacterial genomes,

there are further fields in genome comparison in which Gecko can be used to retrieve

valuable information:

• The use of information from conserved genomic regions to infer evolutionary rela-

tionships in a given set of genomes is not a commonly used approach so far. Usually

evolutionary trees are constructed based on evolutionary distances computed from

comparisons of the 16S small-subunit rRNA. In [16], Deed et al. showed that due to

the problem of lateral gene transfer, the evolution of the 16S small-subunit rRNA

does not always tells the true story about the evolution of an organism. Here, the

conservation of gene clusters can be used as a further source of evidence for the

verification of predicted evolutionary scenarios [5].

• A further possible application of the detection of conserved genomic neighborhoods

is the search for gene clusters in viral genomes. In this approach, which is recently

started in cooperation with the Bergen Center for Computational Science, Gecko is

used to locate conserved clusters in a group of newly sequenced large algae infecting

viruses. Here the detected gene clusters are used to support the functional annotation

of the genes.

• Finally, regarding the question whether the described gene cluster detection approach

is also applicable to eukaryotic genomes, there is not a simple ‘yes’ or ‘no’. In general,

there is a significant difference between the evolution of higher eukaryotes and more

primitive organisms including prokaryotes and yeast. Usually, eukaryotic genomes

contain relatively long conserved segments, which are regions of the chromosome

with identical gene content and a linear order in both. Here, the model of common

CS-factors for gene clusters does not seem to be a good choice since there are more

efficient methods to detect common substrings of two strings. But also in eukaryotes

there are some mechanisms that show a certain relation to the concept of gene order

conservation in prokaryotes and therefore might be interesting to be analyze using

the model of common CS-factors:

– For example imprinted genes, i.e. genes that are expressed from predominantly

one of the parental alleles in mammalian genomes, together with their control

elements often occur in conserved gene clusters [47]. The detection and analysis

of these clusters, especially the gene order inside a cluster, is an important task

98 CHAPTER 7. SUMMARY AND OUTLOOK

in understanding the development of different diseases, e.g. the Prader-Willi

syndrome, the Angelmann syndrome, or the Beckwith-Wiedemann syndrome.

– A further application for the detection of functionally related genes in eukary-

otes is the detection of cis-regulatory modules (CRMs) [1]. These modules

act as promoters or enhancers on the expression level of a particular gene and

therefore significantly influence its transcriptional regulation. Since the local-

ization of the CRMs turned out to be rather difficult, a comparative analysis of

co-regulated genes can be used to predict putative target sites. Here the general

idea is that functionally related genes, needed in exactly the same conditions,

can be found co-regulated or co-expressed. Since a similar expression level can

be achieved by the use of groups of similar CRMs, the upstream regions of co-

expressed genes are typical target sites for a more detailed search for conserved

groups of CRMs.

We hope that this work is only a first step toward the natural use of high-level genome

comparison methods as a valuable source of information for the understanding and inter-

pretation of the code of life in all species including ourselves.

List of Figures

2.1 3-dimensional Protein Structure . 6

2.2 DNA Double Helix . 7

2.3 Universal Phylogenetic Tree . 8

2.4 Information Flow in Cells . 9

2.5 Defining orthology/paralogy . 12

3.1 Gene Cluster Distribution by Evolutionary Distance 20

3.2 Errors in Preprocessing . 27

3.3 Errors from Strictness . 27

3.4 Representing Duplications . 28

3.5 Two Stack Algorithm . 32

3.6 Shifting Algorithm . 34

3.7 Enumerating Step . 36

3.8 Didiers Algorithm Part 1 . 38

3.9 Didiers Algorithm Part 2 . 39

3.10 Preprocessing of Algorithm CI . 41

3.11 Example Algorithm CI . 42

4.1 From a Genome to a String of Numbers . 53

4.2 Input Data and Parameters . 59

4.3 Graphical Family Representation . 60

4.4 Manual Editor 1 . 62

4.5 Manual Editor 2 . 63

4.6 Export Data File . 64

5.1 Data Flow in Gecko . 66

5.2 Parameter Input in Gecko . 67

5.3 Gene Replacement Pattern . 72

5.4 Cluster Separation . 73

5.5 ABC Transporter . 74

5.6 Gecko Main Window . 77

99

100 LIST OF FIGURES

5.7 Gecko Annotation Windows . 79

6.1 Running time with Increasing String Length 82

6.2 Running time with Increasing Number of Strings 84

6.3 Running time with Increasing k’ . 86

6.4 Frequency of Different Types of Duplications 88

6.5 Frequency of Pattern Occurrences . 89

6.6 The Tryptophan Biosynthesis Gene Cluster 91

6.7 Sulfate Reduction Gene Cluster . 93

List of Tables

3.1 Algorithm Overview . 49

6.1 Evaluation Running Time 1 . 82

6.2 Evaluation Running Time 2 . 84

6.3 Evaluation Running Time 3 . 85

6.4 Frequency of Different Types of Duplications 87

6.5 Frequency of Pattern Occurrences . 89

101

102 LIST OF TABLES

Bibliography

[1] S. Aerts, P. Van Loo, G. Thijs, Y. Moreau, and B. De Moor. Computational detection

of cis -regulatory modules. Bioinformatics, 19(90002):5ii–14, 2003.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell. Garland Science, New York, 4th edition, 2002.

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic Acids Res., 25(17):3389–3402, 1997.

[4] A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprinting via

parikh mapping. J. Discr. Alg., 26:1–13, 2003.

[5] S. G. E. Andersson and K. Eriksson. Dynamics of gene order structures and genomic

architectures. In D. Sankoff and J. H. Nadeau, editors, Comparative genomics, pages

267–280. Kluwer Academic Publishers, 2000.

[6] L. Aravind, H. Watanabe, D. J. Lipman, and E. V. Koonin. Lineage-specific loss and

divergence of functionally linked genes in eukaryotes. Proc. Natl. Acad. Sci. USA,

97(21):11319–11324, 2000.

[7] J. H. Badger and G. J. Olsen. Critica: Coding region identification tool invoking

comparative analysis. Molecular Biology and Evolution, 16(4):512–524, 1999.

[8] R. H. Bauerle and P. Margolin. The functional organization of the tryptophan gene

cluster in salmonella typhimurium. Proc. Natl. Acad. Sci. USA, 56:111–118, 1966.

[9] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings of

the 4th Latin American Symposium on Theoretical Informatics, LATIN 2000, volume

1776 of LNCS, pages 88–94. Springer Verlag, 2000.

[10] A. Bergeron, S. Corteel, and M. Raffinot. The algorithmic of gene teams. In Proceed-

ings of the Second International Workshop on Algorithms in BioInformatics, WABI

2002, pages 464–476, 2002.

103

104 BIBLIOGRAPHY

[11] M. Borodovsky and J. McIninch. Genemark: parallel gene recognition for both dna

strands. Comp. Chem., 17(19):123–133, 1993.

[12] M. Burset and R. Guigo. Evaluation of gene structure prediction programs. Genomics,

34:353–367, 1996.

[13] M. Case and N. H. Giles. Evidence for nonsense mutations in the arom gene cluster

of neurospora crassa. Genetics, 60(1):49–58, 1968.

[14] S. T. Cole, K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson, P. R. Wheeler,

N. Honore, T. Garnier, C. Churcher, D. Harris, and et al. Massive gene decay in the

leprosy bacillus. Nature, 409(6823):1007–1011, 2001.

[15] T. Dandekar, B. Snel, M. Huynen, and P. Bork. Conservation of gene order: a

fingerprint of proteins that physically interact. Trends Biochem. Sci., 23:324–328,

1998.

[16] E. J. Deeds, H. Hennessey, and E. I. Shakhnovich. Prokaryotic phylogenies inferred

from protein structural domains. Genome Res., 15:393–402, 2005.

[17] A. L. Delcher, D. Harmon, S. Kasif, O. White, and S. L. Salzberg. Improved microbial

gene identification with glimmer. Nucleic Acids Res., 27:4636–4641, 1999.

[18] D. Didier, T. Schmidt, J. Stoye, and D. Tsur. Character sets of strings. Algorithmica,

submitted, 2004.

[19] G. Didier. Common intervals of two sequences. In Proceedings of the Third Interna-

tional Workshop on Algorithms in Bioinformatics, WABI 2003, LNBI, pages 17–24.

Springer Verlag, 2003.

[20] D. Durand and D. Sankoff. Tests for gene clustering. J. Comput. Biol., 10(3/4):453–

482, 2002.

[21] M. D. Ermolaeva, O. White, and S. L. Salzberg. Prediction of operons in microbial

genomes. Nucleic Acids Res., 29(5):1216–1221, 2001.

[22] W. M. Fitch. Distinguishing homologous from analogous proteins. Trends Genet.,

19:99–113, 1970.

[23] W. M. Fitch. Homology a personal view on some of the problems. Trends Genet.,

16:227–231, 2000.

[24] D. Frishman, A. Mironov, H.-W. Mewes, and M. Gelfand. Combining diverse evidence

for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res.,

26:2941–2947, 1998.

BIBLIOGRAPHY 105

[25] W. Fujibuchi, H. Ogata, H. Matsuda, and M. Kanehisa. Automatic detection of con-

served gene clusters in multiple genomes by graph comparison and p-quasi grouping.

Nucleic Acids Res., 28:4029–4036, 2000.

[26] T. Gaasterland and M. A. Ragan. Microbial genescapes: phyletic and functional

patterns of orf distribution among prokaryotes. Microb Comp Genomics, 3(4):199–

217, 1998.

[27] M. Y. Galperin and E. V. Koonin. Who’s your neighbor? new computational ap-

proaches for functional genomics. Nat. Biotechnol., 18:609–613, 2000.

[28] F.-B. Guo, H.-Y. Ou, and C.-T. Zhang. Zcurve: a new system for recognizing protein-

coding genes in bacterial and archaeal genomes. Nucleic Acids Res., 31:1780–1789,

2003.

[29] S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: Polynomial

algorithm for sorting signed permutations by reversals. Proceedings of the 31st Annual

ACM Symposium on the Theory of Computing (ACM), 46:1–27, 1999.

[30] X. He and M. Goldwasser. Identifying conserved gene clusters in the presence of

orthologous groups. In Proceedings of the Eighth Annual International Conference on

Computational Molecular Biology, RECOMB 2004, pages 272–280, 2004.

[31] S. Heber and J. Stoye. Algorithms for finding gene clusters. In Proceedings of the

First International Workshop on Algorithms in BioInformatics, WABI 2001, pages

252–263, 2001.

[32] S. Heber and J. Stoye. Finding all common intervals of k permutations. In Proceedings

of the 12th Annual Symposium on Combinatorial Pattern Matching, CPM 2001, pages

207–218, 2001.

[33] M. Huynen and P. Bork. Measuring genome evolution. Proc. Natl. Acad. Sci. USA,

95:5849–5856, 1998.

[34] M. Huynen and E. van Nimwegen. The frequency distribution of gene family size in

complete genomes. Mol. Biol. Evol., 15(5):583–589, 1998.

[35] I. K. Jordan, K. S. Makarova, J. L. Spouge, Y. I. Wolf, and E. V. Koonin. Lineage-

specific gene expansions in bacterial and archaeal genomes. Genome Res., 11(4):555–

565, 2001.

[36] R. Knippers. Molekulare Genetik. Thieme, Stuttgart, 6th edition, 2001.

106 BIBLIOGRAPHY

[37] D. Koch, C. Rückert, D. A. Rey, A. Pühler, and J. Kalinowski. The ssu and seu gene

clusters of Corynebacterium glutamicum ATCC 13032 encode a system for the utiliza-

tion of sulfonates and sulfonate esters as sulfur sources. Submitted for publication,

2005.

[38] G. Kolesov, H. W. Mewes, and D. Frishman. Snapper: gene order predicts gene

function. Bioinformatics, 18(7):1017–1019, 2002.

[39] A. B. Kolsto. Dynamic bacterial genome organization. Molecular Microbiology,

24(2):241–248, 1997.

[40] E. V. Koonin and M. Y. Galperin. Sequence-Evolution-Function: Computational Ap-

proaches in Comparative Genomics. Kluwer Academic Publishers, 1st edition, 2002.

[41] J. O. Korbel, L. J. Jensen, C. von Mering, and P. Bork. Analysis of genomic context:

prediction of functional associations from conserved bidirectionally transcribed gene

pairs. Nat Biotechnol, 22(7):911–917, 2004.

[42] J. R. Kornegay, J. W. Schilling, and A. C. Wilson. Molecular adaptation of a leaf-

eating bird: stomach lysozyme of the hoatzin. Mol. Biol. Evol., 11(6):921–928, 1994.

[43] N. M. Kredich. Biosynthesis of Cysteine. In F. C. Neidhardt, R. Curtis III, J. L. Ingra-

ham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter,

and H. E. Umbarger, editors, Escherichia coli and Salmonella: Cellular and Molecular

Biology, volume 2, pages 514–527. ASM Press, Washington D.C., 2nd edition, 1996.

[44] W. C. Lathe III, B. Snel, and P. Bork. Gene context conservation of a higher order

than operons. Trends Biochem. Sci., 25:474–479, 2000.

[45] O. Lespinet, Y. I. Wolf, E. V. Koonin, and L. Aravind. The role of lineage-specific

gene family expansion in the evolution of eukaryotes. Genome Res., 12(7):1048–1059,

2002.

[46] H. Lodish, A. Berk, S. Zipursky, and P. Matsudaira. Molecular Cell Biology. W. H.

Freeman, New York, 4th edition, 2000.

[47] S. Lopes, A. Lewis, P. Hajkova, W. Dean, J. Oswald, T. Forne, A. Murrell, M. Con-

stancia, M. Bartolomei, J. Walter, and W. Reik. Epigenetic modifications in an im-

printing cluster are controlled by a hierarchy of dmrs suggesting long-range chromatin

interactions. Hum. Mol. Genet., 12(3):295–305, 2003.

[48] M. T. Madigan, J. M. Martinko, and J. Parker. Brock Biology of Microorganisms.

Prentice Hall, Inc., Upper Saddle River, New Jersey, 8th edition, 1997.

BIBLIOGRAPHY 107

[49] A. R. Mushegian and E. V. Koonin. Gene order is not conserved in bacterial evolution.

Trends Genet., 12:289–290, 1996.

[50] H. Ogata, W. Fujibuchi, S. Goto, and M. Kanehisa. A heuristic graph comparison

algorithm and its application to detect functionally related enzyme clusters. Nucleic

Acids Res., 28:4021–4028, 2000.

[51] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. Use

of contiguity on the chromosome to predict functional coupling. In Silico Biol.,

http://www.bioinfo.de/isb/1998/01/0009/, 1998.

[52] R. Overbeek, M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The use of gene

clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96:2896–2901, 1999.

[53] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and T. O. Yeates.

Assigning protein functions by comparative genome analysis: protein phylogenetic

profiles. Proc. Natl. Acad. Sci. USA, 98(8):4285–4288, 1999.

[54] A. R. Proctor and W. E. Kloos. The tryptophan gene cluster of staphylococcus aureus.

Journ. Gen. Microbiol., 64:319–332, 1970.

[55] G. R. Reeck, C. de Haen, D. C. Teller, R. F. Doolittle, W. M. Fitch, R. E. Dickerson,

P. Chambon, A. D. McLachlan, E. Margoliash, and T. H. Jukes. Homology in proteins

and nucleic acids: a terminology muddle and a way out of it. Cell, 50:667, 1987.

[56] D. A. Rey, A. Pühler, and J. Kalinowski. The putative transcriptional repressor

McbR, member of the TetR-family, is involved in the regulation of the metabolic

network directing the synthesis of sulfur conatining amino acids in Corynebacterium

glutamicum. J. Biotechnol., 103(1):51–65, 2003.

[57] D. A. Rey, C. Rückert, D. J. Koch, A. Pühler, and J. Kalinowski. The McbR repres-

sor modulated by the effector substance S-adenosylhomocysteine controls directly the

transcription of a regulon involved in sulfur metabolism of Corynebacterium glutam-

icum ATCC 13032. Submitted for publication, 2005.

[58] H. W. Rines, C. M. E., and N. H. Giles. Mutants in the arom gene cluster of neurospora

crassa specific for biosynthetic dehydroquinase. Genetics, 61(4):789–800, 1969.

[59] I. B. Rogozin, K. Makarova, J. Murvai, E. Czabarka, Y. I. Wolf, R. L. Tatusov, L. A.

Szekely, and E. V. Koonin. Connected gene neighborhoods in prokaryotic genomes.

Nucleic Acids Res., 30:2212–2223, 2002.

108 BIBLIOGRAPHY

[60] C. Rückert, A. Pühler, and J. Kalinowski. Genome-wide analysis of the L-methionine

biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and

homologous complementation. J. Biotechnol., 104(1-3):213–228, 2003.

[61] F. Sanger, S. Nicklen, and A. R. Coulson. Dna sequencing with chain terminating

inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463–5467, 1977.

[62] D. Sankoff, R. Cedergren, and Y. Abel. Genomic divergence through gene rearrange-

ment. In Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Se-

quences, chapter 26, pages 428–438. Academic Press, Orlando, Fla., 1990.

[63] T. Schmidt, C. Rückert, J. Kalinowski, and J. Stoye. Gecko: a tool for efficient gene

cluster detection in prokaryotic genomes. Bioinformatics, submitted, 2005.

[64] T. Schmidt and J. Stoye. Quadratic time algorithms for finding common intervals in

two and more sequences. In Proceedings of the 15th Annual Symposium on Combina-

torial Pattern Matching, CPM 2004, volume 3109 of LNCS, pages 347–358. Springer

Verlag, 2004.

[65] B. Snel, G. Lehmann, P. Bork, and M. A. Huynen. String: a web-server to retrieve

and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res.,

28(18):3442–3444, 2000.

[66] C.-B. Stewart, J. W. Schilling, and A. C. Wilson. Adaptive evolution in the stomach

lysozymes of foregut fermenters. Nature, 330:401–404, 1987.

[67] K. W. Swanson, D. M. Irwin, and A. C. Wilson. Stomach lysozyme gene of the langur

monkey: tests for convergence and positive selection. J. Mol. Evol., 33:418–425, 1991.

[68] J. Tamames. Evolution of gene order conservation in prokaryotes. Genome Biol.,

2:0020.1–11, 2001.

[69] J. Tamames, G. Casari, C. Ouzounis, and A. Valencia. Conserved clusters of func-

tionally related genes in two bacterial genomes. J. Mol. Evol., 44:66–73, 1997.

[70] R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, E. V.

Koonin, D. M. Krylov, R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya, B. S. Rao,

S. Smirnov, A. V. Sverdlov, S. Vasudevan, Y. I. Wolf, J. J. Yin, and D. A. Natale.

The COG database: an updated version includes eukaryotes. BMC Bioinformatics,

4(1):41, 2003.

[71] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and K. E. V. The COG database: a

tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res.,

28(1):33–36, 2000.

BIBLIOGRAPHY 109

[72] R. L. Tatusov, E. V. Koonin, and D. J. Lipman. A genomic perspective on protein

families. Science, 278(5338):631–637, 1997.

[73] R. L. Tatusov, A. R. Mushegian, P. Bork, N. P. Brown, W. S. Hayes, M. Borodovsky,

K. E. Rudd, and E. V. Koonin. Metabolism and evolution of haemophilus influenzae

deduced from a whole-genome comparison with escherichia coli. Curr Biol., 6(3):279–

291, 1996.

[74] R. L. Tatusov, D. A. Natale, I. V. Garkavtsev, T. A. Tatusova, U. T. Shankavaram,

B. S. Rao, B. Kiryutin, M. Y. Galperin, N. D. Fedorova, and E. V. Koonin. The COG

database: new developments in phylogenetic classification of proteins from complete

genomes. Nucleic Acids Res., 29(1):22–28, 2001.

[75] T. Uno and M. Yagiura. Fast algorithms to enumerate all common intervals of two

permutations. Algorithmica, 26:290–309, 2000.

[76] J. D. Watson and F. H. C. Crick. A structure for deoxyribose nucleic acid. Nature,

171:737–738, 1953.

[77] G. Xie, C. A. Bonner, J. Song, N. O. Keyhani, and R. A. Jensen. Intergenomic

displacement via lateral gene transfer of bacterial trp operons in an overall context of

vertical genealogy. BMC Biology, 2:15–44, 2004.

[78] G. Xie, N. O. Keyhani, C. A. Bonner, and R. A. Jensen. Ancient origin of the

tryptophan operon and the dynamics of evolutionary change. Microbiol. Mol. Biol.

Rev., 67(3):303–342, 2003.

[79] I. Yanai and C. DeLisi. The society of genes: networks of functional links between

genes from comparative genomics. Genome Biol., 3:0064.1–12, 2002.

[80] Y. Zheng, R. J. Roberts, and S. Kasif. Genomic functional annotation using co-

evolution profiles of gene clusters. Genome Biology, 3(11):0060.1–0060.9, 2002.

