235 research outputs found

    Gemini Planet Imager Observational Calibrations VI: Photometric and Spectroscopic Calibration for the Integral Field Spectrograph

    Full text link
    The Gemini Planet Imager (GPI) is a new facility instrument for the Gemini Observatory designed to provide direct detection and characterization of planets and debris disks around stars in the solar neighborhood. In addition to its extreme adaptive optics and corona graphic systems which give access to high angular resolution and high-contrast imaging capabilities, GPI contains an integral field spectrograph providing low resolution spectroscopy across five bands between 0.95 and 2.5 μ\mum. This paper describes the sequence of processing steps required for the spectro-photometric calibration of GPI science data, and the necessary calibration files. Based on calibration observations of the white dwarf HD 8049B we estimate that the systematic error in spectra extracted from GPI observations is less than 5%. The flux ratio of the occulted star and fiducial satellite spots within coronagraphic GPI observations, required to estimate the magnitude difference between a target and any resolved companions, was measured in the HH-band to be Δm=9.23±0.06\Delta m = 9.23\pm0.06 in laboratory measurements and Δm=9.39±0.11\Delta m = 9.39\pm 0.11 using on-sky observations. Laboratory measurements for the YY, JJ, K1K1 and K2K2 filters are also presented. The total throughput of GPI, Gemini South and the atmosphere of the Earth was also measured in each photometric passband, with a typical throughput in HH-band of 18% in the non-coronagraphic mode, with some variation observed over the six-month period for which observations were available. We also report ongoing development and improvement of the data cube extraction algorithm.Comment: 15 pages, 6 figures. Proceedings of the SPIE, 9147-30

    Metallicity gradients in local field star-forming galaxies: Insights on inflows, outflows, and the coevolution of gas, stars and metals

    Full text link
    We present metallicity gradients in 49 local field star-forming galaxies. We derive gas-phase oxygen abundances using two widely adopted metallicity calibrations based on the [OIII]/Hbeta, [NII]/Halpha and [NII]/[OII] line ratios. The two derived metallicity gradients are usually in good agreement within +/-0.14 dex/R25 (R25 is the B-band iso-photoal radius), but the metallicity gradients can differ significantly when the ionisation parameters change systematically with radius. We investigate the metallicity gradients as a function of stellar mass (8<log(M*/Msun)<11) and absolute B-band luminosity (-16 > MB > -22). When the metallicity gradients are expressed in dex/kpc, we show that galaxies with lower mass and luminosity, on average, have steeper metallicity gradients. When the metallicity gradients are expressed in dex/R25, we find no correlation between the metallicity gradients, and stellar mass and luminosity. We provide a local benchmark metallicity gradient of field star-forming galaxies useful for comparison with studies at high redshifts. We investigate the origin of the local benchmark gradient using simple chemical evolution models and observed gas and stellar surface density profiles in nearby field spiral galaxies. Our models suggest that the local benchmark gradient is a direct result of the coevolution of gas and stellar disk under virtually closed-box chemical evolution when the stellar-to-gas mass ratio becomes high (>>0.3). These models imply low current mass accretion rates (<0.3xSFR), and low mass outflow rates (<3xSFR) in local field star-forming galaxies.Comment: 25 pages, 21 figures, accepted to MNRA

    The M 31 double nucleus probed with OASIS and HST. A natural m=1 mode?

    Get PDF
    We present observations with the adaptive optics assisted integral field spectrograph OASIS of the M 31 double nucleus at a spatial resolution better than 0.5 arcsec FWHM. These data are used to derive the two-dimensional stellar kinematics within the central 2 arcsec. Archival WFPC2/HST images are revisited to perform a photometric decomposition of the nuclear region. We also present STIS/HST kinematics obtained from the archive. The luminosity distribution of the central region is well separated into the respective contributions of the bulge, the nucleus including P1 and P2, and the so-called UV peak. We then show that the axis joining P1 and P2, the two local surface brightness maxima, does not coincide with the kinematic major-axis, which is also the major-axis of the nuclear isophotes (excluding P1). We also confirm that the velocity dispersion peak is offset by ~ 0.2 arcsec from the UV peak, assumed to mark the location of the supermassive black hole. The newly reduced STIS/HST velocity and dispersion profiles are then compared to OASIS and other published kinematics. We find significant offsets with previously published data. Simple parametric models are then built to successfully reconcile all the available kinematics. We finally interpret the observations using new N-body simulations. The nearly keplerian nuclear disk of M31 is subject to a natural m=1 mode, with a very slow pattern speed (3 km/s/pc for M_BH = 7 10^7~\Msun), that can be maintained during more than a thousand dynamical times. The resulting morphology and kinematics of the mode can reproduce the M~31 nuclear-disk photometry and mean stellar velocity, including the observed asymmetries. It requires a central mass concentration and a cold disk system representing between 20 and 40% of its mass. Abridged..Comment: 21 pages. accepted for publication in A&

    Axisymmetric dynamical models for SAURON and OASIS observations of NGC 3377

    Get PDF
    We present a unique set of nested stellar kinematical maps of NGC 3377 obtained with the integral-field spectrographs OASIS and SAURON. We then construct general axisymmetric dynamical models for this galaxy, based on the Schwarzschild numerical orbit superposition technique applied to these complementary measurements. We show how these two datasets constrain the mass of the central massive object and the overall mass-to-light ratio of the galaxy by probing the inner and outer regions respectively. The simultaneous use of both datasets leads us to confirm the presence of a massive black hole with a mass of M_{BH} = 7_{-5}^{+4} 10^{7} M_\sun (99.7% confidence level), with a best-fit stellar mass-to-light ratio ΥI=2.1±0.2\Upsilon_I = 2.1 \pm 0.2 (for an assumed edge-on inclination).Comment: 15 pages, 14 figures. Accepted for publication in A&A (original fig. layout, letterpaper

    On-sky speckle nulling demonstration at small angular separation with SCExAO

    Get PDF
    This paper presents the first on-sky demonstration of speckle nulling, which was achieved at the Subaru Telescope in the context of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) Project. Despite the absence of a high-order high-bandwidth closed-loop AO system, observations conducted with SCExAO show that even in poor-to-moderate observing conditions, speckle nulling can be used to suppress static and slow speckles even in the presence of a brighter dynamic speckle halo, suggesting that more advanced high-contrast imaging algorithms developed in the laboratory can be applied to ground-based systems.Comment: 5 figures, accepted for publication by PAS

    Gas accretion as the origin of chemical abundance gradients in distant galaxies

    Full text link
    It has recently been suggested that galaxies in the early Universe can grow through the accretion of cold gas, and that this may have been the main driver of star formation and stellar mass growth. Because the cold gas is essentially primordial, it has a very low abundance of elements heavier than helium (metallicity). As it is funneled to the centre of a galaxy, it will lead the central gas having an overall lower metallicity than gas further from the centre, because the gas further out has been enriched by supernovae and stellar winds, and not diluted by the primordial gas. Here we report chemical abundances across three rotationally-supported star-forming galaxies at z~3, only 2 Gyr after the Big Bang. We find an 'inverse' gradient, with the central, star forming regions having a lower metallicity than less active ones, opposite to what is seen in local galaxies. We conclude that the central gas has been diluted by the accretion of primordial gas, as predicted by 'cold flow' models.Comment: To Appear in Nature Oct 14, 2010; Supplementary Information included her

    A Magnified View of the Kinematics and Morphology of RCSGA 032727-132609: Zooming in on a Merger at z=1.7

    Get PDF
    We present a detailed analysis of multi-wavelength HST/WFC3 imaging and Keck/OSIRIS near-IR AO-assisted integral field spectroscopy for a highly magnified lensed galaxy at z=1.70. This young starburst is representative of UV-selected star-forming galaxies (SFG) at z~2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction, and there is a clear signature of a tidal tail. We constrain the age, reddening, SFR and stellar mass of the star-forming clumps from SED modelling of the WFC3 photometry and measure their H-alpha luminosity, metallicity and outflow properties from the OSIRIS data. With strong star formation driven outflows in four clumps, RCSGA0327 is the first high redshift SFG at stellar mass <10^10 M_sun with spatially resolved stellar winds. We compare the H-alpha luminosities, sizes and dispersions of the star-forming regions to other high-z clumps as well as local giant HII regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local Universe. Spatially resolved SED modelling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system which is not detected in H-alpha emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.Comment: 22 pages, 16 figures, accepted to Ap
    corecore