18 research outputs found

    Consistent Digital Curved Rays and Pseudoline Arrangements

    Get PDF
    Representing a family of geometric objects in the digital world where each object is represented by a set of pixels is a basic problem in graphics and computational geometry. One important criterion is the consistency, where the intersection pattern of the objects should be consistent with axioms of the Euclidean geometry, e.g., the intersection of two lines should be a single connected component. Previously, the set of linear rays and segments has been considered. In this paper, we extended this theory to families of curved rays going through the origin. We further consider some psudoline arrangements obtained as unions of such families of rays

    High Dimensional Consistent Digital Segments

    Get PDF
    We consider the problem of digitalizing Euclidean line segments from R^d to Z^d. Christ {et al.} (DCG, 2012) showed how to construct a set of {consistent digital segments} (CDS) for d=2: a collection of segments connecting any two points in Z^2 that satisfies the natural extension of the Euclidean axioms to Z^d. In this paper we study the construction of CDSs in higher dimensions. We show that any total order can be used to create a set of {consistent digital rays} CDR in Z^d (a set of rays emanating from a fixed point p that satisfies the extension of the Euclidean axioms). We fully characterize for which total orders the construction holds and study their Hausdorff distance, which in particular positively answers the question posed by Christ {et al.}

    Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays

    Get PDF
    We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive method to connect any two points in Zd\mathbb{Z}^d. The construction must be {\em consistent} (that is, satisfy the natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work has shown asymptotically tight results in two dimensions with Θ(logN)\Theta(\log N) error, where resemblance between segments is measured with the Hausdorff distance, and NN is the L1L_1 distance between the two points. This construction was considered tight because of a Ω(logN)\Omega(\log N) lower bound that applies to any consistent construction in Z2\mathbb{Z}^2. In this paper we observe that the lower bound does not directly extend to higher dimensions. We give an alternative argument showing that any consistent construction in dd dimensions must have Ω(log1/(d1)N)\Omega(\log^{1/(d-1)} N) error. We tie the error of a consistent construction in high dimensions to the error of similar {\em weak} constructions in two dimensions (constructions for which some points need not satisfy all the axioms). This not only opens the possibility for having constructions with o(logN)o(\log N) error in high dimensions, but also opens up an interesting line of research in the tradeoff between the number of axiom violations and the error of the construction. In order to show our lower bound, we also consider a colored variation of the concept of discrepancy of a set of points that we find of independent interest

    Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays

    Get PDF
    We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive method to connect any two points in Zd. The construction must be consistent (that is, satisfy the natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work has shown asymptotically tight results in two dimensions with Θ(logN) error, where resemblance between segments is measured with the Hausdorff distance, and N is the L1 distance between the two points. This construction was considered tight because of a Ω(logN) lower bound that applies to any consistent construction in Z2. In this paper we observe that the lower bound does not directly extend to higher dimensions. We give an alternative argument showing that any consistent construction in d dimensions must have Ω(log1/(d−1)N) error. We tie the error of a consistent construction in high dimensions to the error of similar weak constructions in two dimensions (constructions for which some points need not satisfy all the axioms). This not only opens the possibility for having constructions with o(logN) error in high dimensions, but also opens up an interesting line of research in the tradeoff between the number of axiom violations and the error of the construction. A side result, that we find of independent interest, is the introduction of the bichromatic discrepancy: a natural extension of the concept of discrepancy of a set of points. In this paper, we define this concept and extend known results to the chromatic setting

    High Quality Consistent Digital Curved Rays via Vector Field Rounding

    Get PDF
    We consider the consistent digital rays (CDR) of curved rays, which approximates a set of curved rays emanating from the origin by the set of rooted paths (called digital rays) of a spanning tree of a grid graph. Previously, a construction algorithm of CDR for diffused families of curved rays to attain an O(?{n log n}) bound for the distance between digital ray and the corresponding ray is known [Chun et al., 2019]. In this paper, we give a description of the problem as a rounding problem of the vector field generated from the ray family, and investigate the relation of the quality of CDR and the discrepancy of the range space generated from gradient curves of rays. Consequently, we show the existence of a CDR with an O(log ^{1.5} n) distance bound for any diffused family of curved rays

    Mapping Multiple Regions to the Grid with Bounded Hausdorff Distance

    Get PDF
    We study a problem motivated by digital geometry: given a set of disjoint geometric regions, assign each region Ri a set of grid cells Pi, so that Pi is connected, similar to Ri, and does not touch any grid cell assigned to another region. Similarity is measured using the Hausdorff distance. We analyze the achievable Hausdorff distance in terms of the number of input regions, and prove asymptotically tight bounds for several classes of input regions

    Decomposition of Geometric Set Systems and Graphs

    Full text link
    We study two decomposition problems in combinatorial geometry. The first part deals with the decomposition of multiple coverings of the plane. We say that a planar set is cover-decomposable if there is a constant m such that any m-fold covering of the plane with its translates is decomposable into two disjoint coverings of the whole plane. Pach conjectured that every convex set is cover-decomposable. We verify his conjecture for polygons. Moreover, if m is large enough, we prove that any m-fold covering can even be decomposed into k coverings. Then we show that the situation is exactly the opposite in 3 dimensions, for any polyhedron and any mm we construct an m-fold covering of the space that is not decomposable. We also give constructions that show that concave polygons are usually not cover-decomposable. We start the first part with a detailed survey of all results on the cover-decomposability of polygons. The second part investigates another geometric partition problem, related to planar representation of graphs. The slope number of a graph G is the smallest number s with the property that G has a straight-line drawing with edges of at most s distinct slopes and with no bends. We examine the slope number of bounded degree graphs. Our main results are that if the maximum degree is at least 5, then the slope number tends to infinity as the number of vertices grows but every graph with maximum degree at most 3 can be embedded with only five slopes. We also prove that such an embedding exists for the related notion called slope parameter. Finally, we study the planar slope number, defined only for planar graphs as the smallest number s with the property that the graph has a straight-line drawing in the plane without any crossings such that the edges are segments of only s distinct slopes. We show that the planar slope number of planar graphs with bounded degree is bounded.Comment: This is my PhD thesi
    corecore