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Abstract. We study a problem motivated by digital geometry: given a
set of disjoint geometric regions, assign each region Ri a set of grid cells
Pi, so that Pi is connected, similar to Ri, and does not touch any grid
cell assigned to another region. Similarity is measured using the Haus-
dorff distance. We analyze the achievable Hausdorff distance in terms of
the number of input regions, and prove asymptotically tight bounds for
several classes of input regions.
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1 Introduction

Digital geometry is concerned with the proper representation of geometric objects
and their relationships using a grid of pixels. This greatly simplifies both repre-
sentation and many operations, but the downside is that common properties of
geometric objects no longer hold. For example, it may be that two digitized lines
intersect in multiple connected components. One objective of digital geometry is
how to consistently digitize a set of geometric objects. Another objective is the
presentation of vector objects with bounded error, using subsets of pixels.

Early results in digital geometry were mostly concerned with consistency
and arose in computer vision. For a survey, see Klette and Rosenfeld [11,12].
More recently, also error bounds under the Hausdorff distance have been studied.
Chun et al. [5] investigate the problem of digitizing rays originating in the origin
to digital rays such that certain properties are satisfied. They show that rays
can be represented on the n × n grid in a consistent manner with Hausdorff
distance O(log n). This bound is tight in the worst case. By ignoring one of
the consistency conditions, the distance bound improves to O(1). Their research
is extended by Christ et al. [3] to line segments (not necessarily starting in the
origin), who obtain the logarithmic distance bound in this case as well. A possible
extension to curved rays was developed by Chun et al. [4]. Other results with
a digital geometry flavor within the algorithms community are those on snap
rounding [6,7,10], integer hulls [1,9], and discrete schematization [13].
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In a recent paper, Bouts et al. [2] showed that any simple polygon, no matter
how detailed, can be represented by a simply connected set of unit pixels such
that the Hausdorff distance to and from the input is bounded by 3

√
2/2.

Fig. 1. Three disjoint simply connected
regions and a representation by simply
connected sets of disjoint pixels.

Contribution. We extend the
result from [2] to multiple regions, see
Fig. 1. We investigate several restric-
tions on the class of regions and
we show that stricter restrictions
allow for pixel representations with
a smaller symmetric Hausdorff dis-
tance. All our bounds are tight. We
express our bounds in the number of
input regions. Our results are shown
in Table 1; they are fundamental results on the error that may be incurred
when converting vector to grid representations, a common operation in com-
puter graphics and GIS.

We do not make any assumptions on the resolution of the input. If the mini-
mum distance between any pair of polygons is at least some constant (e.g., 4

√
2

is enough), then we can realize a constant Hausdorff bound in all cases by apply-
ing the results from Bouts et al. [2] separately on each polygon. We consider the
case where no such assumptions are made.

Table 1. Worst-case bounds on Hausdorff distances for m regions; β is constant.

Region class Points Convex β-fat Convex Two regions Three regions

Hausdorff distance Θ(
√

m) Θ(
√

m) Θ(m) Θ(1) unbounded

Notation and Definitions. We denote by Γ the (infinite) unit grid, whose unit
squares are referred to as pixels. The (symmetric) Hausdorff distance between
two sets A,B ⊂ R

2 is defined as H(A,B) = max{maxa∈A(minb∈B(|ab|)),
maxb∈B(mina∈A(|ab|))}, where |ab| is the distance between the points a and b.
Further we denote by H ′(A,B) = max{H(A,B),H(∂A, ∂B)} the (symmetric)
Hausdorff distance between the sets themselves and between their boundaries.
See Fig. 2 for an example where the distinction between H(·, ·) and H ′(·, ·) is
important.

Fig. 2. The Hausdorff distance between the
green and red regions is large while the
Hausdorff distance between their bound-
aries is small. The inverse is true for the red
and purple regions. (Color figure online)

Let R = {R1, R2, . . . Rm} be a set
of m disjoint simply connected regions
in the plane. In this paper, we show
how to assign a subset of the pixels
Two such grid polygons are disjoint if
they do not meet in any edge or ver-
tex of the grid. A grid polygon is con-
nected Pi ⊂ Γ to each region Ri ∈ R,
such that the result is a set of m dis-
joint simply connected regions. if its
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pixels are connected by edge adjacency, and simply connected if it is con-
nected and its complement is also connected by edge adjacency. We call the
set {P1, P2, . . . , Pm} of such grid polygons a valid assignment for R.

Overview. We are interested in finding for any set of regions R a valid assign-
ment such that for all i the (symmetric) Hausdorff distance between Ri and Pi

is at most h, and the (symmetric) Hausdorff distance between their boundaries
is also at most h. In general, a worst-case bound on h will be a function of m.
We study this problem under several restrictions on R; refer to Table 1. For each
class of restrictions, first we show that there is a set of regions in that class for
which any valid assignment contains at least one region Ri with a grid polygon
Pi where H ′(Ri, Pi) = Ω(h). Second we show that for any set of regions in that
class, we can find a valid assignment such that for all regions Ri ∈ R with cor-
responding grid polygon Pi, we have H ′(Ri, Pi) = O(h). Hence, our bounds are
asymptotically tight.

We may interpret a solution to our problem as a coloring of Γ : each pixel
q ∈ Γ is assigned one color in C = {c1, . . . cm} ∪ {b}, where ci is the color of the
input region Ri and b is the background color.

Our upper bound constructions all follow a similar scheme. Let Γk be a coars-
ening of the grid Γ whose cells have k × k pixels. We call these cells superpixels.
We will determine for each region from R which superpixels it contains and
which ones it properly intersects. If a region Ri contains a superpixel, then all
pixels of Γ in that superpixel will be part of Pi. If Ri properly intersects a super-
pixel, we ensure that at least one, but not all pixels in that superpixel will be
part of Pi. A superpixel not intersecting Ri will have no pixels in Pi. The main
challenge is then finding a scheme by which each grid polygon becomes simply
connected yet all remain disjoint. It is then relatively straightforward to see that
H ′(Ri, Pi) ≤ k

√
2.

2 Input Regions are Points

In this section we first consider the simplest possible case, namely, R is a set
of points. We will construct a map that assigns points to pixels such that the
symmetric Hausdorff distance between each point and its corresponding pixel is
bounded. For a lower bound, consider a set of m points R that all lie within a
single pixel. If we want to assign each point to a unique pixel, we clearly need
to use m different pixels. Any set of m pixels has diameter Ω(

√
m), so at least

one of the point regions will be mapped to a pixel at distance Ω(
√

m).
We now present a scheme that maps any set of m points R to a set of pixels,

such that the symmetric Hausdorff distance between any point and its pixel is
at most O(

√
m). Let Γk be a coarsening of Γ with k = 2

⌈√
m

⌉
. Associate each

region in R with the superpixel that contains it. Each superpixel has the space to
accommodate m disjoint pixels without using the bottom row and right column
by using exactly the odd numbered rows and columns. Any assignment of the
points to these pixels is easily seen to have Hausdorff distance O(

√
m).
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Theorem 1. If R is a set of m points, a valid assignment exists such that
for each region Ri ∈ R with a corresponding region Pi, we have H ′(Ri, Pi) =
O(

√
m). Furthermore, there exists a set R of m points such that for every valid

assignment we have H(Ri, Pi) = Ω(
√

m).

3 Input Regions are Convex β-fat Regions

A connected region R is β-fat if for some point t in R, the ratio of the radius of
the smallest t-centered circle containing R and the radius of the largest t-centered
circle contained in R, is β (or larger) [14]. Observe that the only regions that
are 1-fat are points and disks, as points are β-fat regions for any β ≥ 1 by
convention. In this section we consider the class R of convex β-fat regions for
a constant β. From Sect. 2 it follows that for any m, there exists a set of m
regions for which the (symmetric) Hausdorff distance between R and any valid
assignment is Ω(

√
m).

Let R be a set of convex β-fat regions and let Γk be a coarsening of Γ with
k = 2

⌈√
m

⌉
+ 3. We present an algorithm that maps R to a set of grid polygons

P, such that the symmetric Hausdorff distance between any region Ri and its
assigned region Pi is at most O(β

√
m).

Lemma 1. Let R be a convex β-fat region, and let p be a point in R. Either R
has diameter less than 16βk, or R contains a superpixel within distance 16βk
from p.

This leads to the following algorithm with two cases for each region Ri,
depending on the set of superpixels Si contained in Ri.

Case 1: Si is empty. We select any superpixel S intersected by Ri and we
assign Ri to a unique pixel in S while using neither the topmost, bottommost,
leftmost, or rightmost rows and columns, similar to the procedure in Sect. 2.
This pixel has a distance of at most 16βk +

√
2k to any point on Ri since Ri has

diameter smaller than 16βk by Lemma 1. This also means that for each such
region Ri, we have H ′(Ri, Pi) ≤ 32βk.

Case 2: Si is not empty. We need two steps. First we assign all pixels in each
superpixel of Si to Ri. Note that Si is not necessarily connected, as can be seen
in Fig. 3 (left). Nonetheless we can connect the superpixels in the second step
using Lemma 2 below.

Lemma 2. Let S1 and S2 be two superpixels in different connected components
of Si. Let v1 be the center of S1 and v2 the center of S2. The path consisting
of pixels that either intersect or border the line segment v1v2 must be entirely
contained in Ri, and at least at twice the unit distance from the border of Ri.

Proof. The line segment between v1 and v2 is contained within Ri by convexity.
Similarly, the line segment from any vertex of S1 to a vertex of S2 is contained
in Ri and necessarily also in the bounded slab that bounds these sixteen edges.
Such a slab is at least as wide as S1 and S2 (hence it is at least 16βk pixels wide).
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The line segment between v1 and v2 forms the spine of this slab, any pixel that
intersects or borders this spine has at most two unit distance to this spine and
hence is contained within the slab and via transitivity in Ri. Moreover, since the
slab is at least 16βk wide, and since each pixel has distance at most two from
the spine, each pixel in the path is at much more than distance two from the
border of the slab and via transitivity the border of Ri. �	

Fig. 3. A convex β-fat region Ri

(purple), and the region formed by
sweeping a superpixel from S1 to
S2 (green). Pi (red) consists of S1,
S2, and all pixels on the segment
between the centers of S1 and S2.
(Color figure online)

Let S1 and S2 be two superpixels in dif-
ferent connected components of the superpix-
els contained in Ri. We connect S1 and S2

with a path of pixels according to Lemma 2.
Since this path is entirely contained in Ri and
since there are at least two pixels between a
pixel in this path and the border of Ri, no
other region will attempt to color the pixels
in this path. We repeat this process until for
each region the assigned pixels form a con-
nected grid polygon and whenever we enclose
an area between superpixels with these paths,
we make sure to assign all the pixels in this
area to Ri; by the convexity of Ri all these
pixels are contained in Ri. This provides our
pixel assignment Pi.

What remains to be proven, is that for each region Ri with non-empty Si,
H ′(Ri, Pi) ≤ 32βk holds. First, we prove that for each (boundary) point p of Pi,
there is a (boundary) point q of Ri within distance 32βk. By construction, we
know Pi ⊆ Ri, so the claim holds for interior points. Now, let p ∈ ∂Pi. We assume
for the sake of contradiction that there is no point of ∂Ri within distance

√
2k.

As p is contained within Ri, we have that Ri contains the superpixels containing
p, a contradiction. Second, we prove the inverse. For a point q of Ri, Lemma 1
guarantees that Ri contains a superpixel S within distance 16βk of q. Then
S ⊆ Pi holds, proving the claim. As Pi ⊆ Ri, this also proves that for each
boundary point q of Ri, there is a boundary point p of Pi within distance 16βk.

Theorem 2. If R is a set of m β-fat convex regions for a constant β, a valid
assignment exists such that for each region Ri ∈ R with a corresponding region
Pi, we have H ′(Ri, Pi) = O(

√
m). Furthermore, for any β ≥ 1, there exists a set

R of m β-fat regions such that for every valid assignment H(Ri, Pi) = Ω(
√

m).

4 Input Regions are Convex Regions

When R is a set of convex regions, we can easily show that the coloring has a
lower-bound Hausdorff distance of Ω(m): we can place m horizontal line seg-
ments of length Ω(m) that all pass through the same pixels. Then P must have
its elements on disjoint lines of pixels, giving Hausdorff distance at least Ω(m)
for the outer regions. Each Pi must extend sufficiently far left and right. Since
all Pi are connected, they will intersect a common vertical line. The topmost or
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bottommost intersection with this line belongs to a grid polygon with Hausdorff
distance Ω(m). (Note that if the Pi need not be connected, O(

√
m) Hausdorff

distance can always be realized.)
We will describe an algorithm that, given a set of convex regions R, gives a set

of disjoint orthoconvex grid polygons P such that, for all i, H ′(Ri, Pi) = O(m).

Observation 3. Let R1, R2 ∈ R be two disjoint convex regions, and let � be a
horizontal line that intersects R1 left of R2. Then any horizontal line intersecting
both R1 and R2 intersects R1 left of R2. Similarly, all vertical lines that intersect
both R1 and R2 do so in the same order.

Observation 3 allows us to define two partial orders �x and �y on R: Ri �x

Rj if and only if there is a horizontal line intersecting both regions and Ri

intersects the line left of Rj ; since the regions are convex we get a partial order [8].
We extend this partial order as follows: first we add transitive arrows, where we
recursively add the inequality Ri �x Rj if there exists a region Rk with Ri �x Rk

and Rk �x Rj and we denote this partial order by Πx(R). We then transform
Πx(R) into a linear order XR : R → [1,m] in any manner. A linear order
YR : R → [1,m] is defined symmetrically.

Fig. 4. The coloring algorithm for con-
vex regions. (a) The input of four convex
regions, overlaid onto a superpixel grid with
k = 10. (b) The pixels colored in Step 1 and
2 of the algorithm. (c) The final coloring
obtained after Steps 3 and 4.

Given XR and YR, we assign a
coloring. Let Γk be a coarsening of
Γ with k = 2m. For any superpixel
S ∈ Γk, we denote by S[x, y] the
pixel that is the (2x)th from the left
and (2y)th from the bottom within S.
Additionally the horizontal and ver-
tical lines induced by Γk are called
major lines. Each region Ri that inter-
sects at most one major horizontal
line and at most one major vertical
line is a small region. Each region Ri

that intersects at least two major hor-
izontal lines or at least two major ver-
tical major lines is a large region. Our
assignment of regions to pixels, illustrated in Fig. 4, is:

1. For each small region Ri we choose one superpixel S containing a point of Ri

and color the pixel p(S,Ri) = S[XR(Ri), YR(Ri)] with ci (this single pixel
will be Pi).

2. For each superpixel S and each large region Ri intersecting S that also inter-
sects the two major horizontal lines incident to S, or the two major vertical
lines incident to S, we color p(S,Ri) = S[XR(Ri), YR(Ri)] with ci. Note that
region Ri need not intersect two opposite edges of S.

3. For any two pixels that are colored with ci in edge-adjacent superpixels (Ri

must be large), we color all pixels in the row or column between them with ci.
4. For any four superpixels that share a common vertex, if they each contain a

pixel colored with ci in Step 1, we color all pixels in the square between these
pixels with ci.
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Let P be the set of polygons induced by this grid coloring.

Lemma 3. Each polygon Pi ∈ P is simply connected.

Proof. If Ri is small, Pi is a single pixel and thus simply connected. If Ri is
large, it intersects a connected set of superpixels, and our algorithm connects
all of these together, so Pi is connected. The resulting grid polygon Pi cannot
contain holes: the presence of a hole would imply that the set of superpixels
intersected by Ri contains a hole, which is not possible due to Ri being simply
connected and convex.

Fig. 5. The cases for the proof of Lemma 4.

Our algorithm actually produces orthoconvex polygons (refer to the full ver-
sion for details).

Lemma 4. The polygons in P are pairwise disjoint.

Proof. Assume by contradiction that the colorings of two regions R and B inter-
sect. Then the intersection was created during one of the four coloring steps. In
steps 1 and 2, we assign each color to single pixels per superpixel in unique rows
and columns, hence they cannot create two colorings that intersect.

Let the colorings of R and B intersect after step 3. This implies that R
and B are both large regions. The intersection occurs between a vertical and
horizontal pixel sequence in a super pixel S. Assume without loss of generality
that the vertical sequence belongs to R and the horizontal sequence belongs to
B. Consider the case that the pixel p(S,R) assigned to R in S in step 2 is to the
top-left of p(S,B) (See Fig. 5); the other three cases are symmetric. Then the
intersection occurs between the column sequence connecting p(S,R) to p(Sd, R)
and the row sequence connecting p(S,B) to p(S�, B), where Sd is the superpixel
directly below S and S� is the superpixel directly to the left of S.

Since B is large and assigned a pixel in S it intersects both horizontal major
lines incident to S or both vertical major lines incident to S. The same applies
for R. We first consider the case where B does not intersect the major line
through the bottom edge of S, and hence it must intersect both vertical lines.
That is, B spans the vertical slab defined by S and does so in or above S. Since
R intersects the cell Sd below S it then follows that R �y B. However, since
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p(S,R) lies above p(S,R) we also have B �y R. Since B = R we thus obtain a
contradiction.

Thus, B intersects the horizontal major line � through the bottom edge of S.
Since R is convex, and intersects both S and Sd it intersects the bottom edge
of S (and thus �) in a point r. Symmetrically, B intersects the left edge of S in
a point b. If B also intersects the horizontal line � in some point b′ this point
cannot be left of r, as this would immediately imply that B �x R, contradicting
the assignment of p(S,R) and p(S,B). So b′ lies right of r. However, then the
vertical ray starting at r pointing upwards intersects the segment connecting b
and b′. Since B is convex, this segment is contained in B. This implies R �y B,
which again contradicts the assignment of p(S,R) and p(S,B). It follows that
step 3 does not create intersecting colorings.

Finally, let (the colorings of) R and B intersect only after step 4. Without
loss of generality, the coloring of a region R is entirely contained in the coloring
of a large region B. Let S be the superpixel containing the lone pixel of R.
Without loss of generality we assume that the pixel p(S,R) assigned to R in S
is to the top-left of p(S,B). Thus, B intersects S, the superpixel above S, the
superpixel left of S, and the superpixel left and above S. The point b where these
four superpixels meet lies inside B by convexity. Let r be any point in R ∩ S.

As B is a large region it needs to intersect two opposite major lines incident
to S. Assume that B intersects the vertical major lines, in particular the one
incident to the right edge of S in a point b′. The vertical line through r intersects
the segment between b and b′. The point r is above that segment, because the
opposite would imply R �y B. As a consequence r is also right of the segment
between b and b′, which implies that the horizontal line through r intersects
this segment left of R, a contradiction. The case where B intersects the major
horizontal line through the bottom edge of S is symmetric. �	

If a region Ri intersects a superpixel S, then Pi has a pixel in S or in at least
one of the eight adjacent superpixels. Conversely, if Pi contains a pixel in S, we
know that Ri intersects S. This gives a bound on the Hausdorff distance between
the regions and the grid polygons. For the boundaries, note that if Ri contains a
superpixel S and all four edge-adjacent superpixels, then Pi contains S. Further-
more, if Pi contains a superpixel S, then Ri also contains S. Together this gives
a bound on the Hausdorff distance between the boundaries. Since superpixels
have size Θ(m), the Hausdorff distance between Ri and Pi and between their
boundaries is at most O(m). We thus obtain the following result.

Theorem 4. If R is a set of m convex regions, a valid assignment exists such
that for each region Ri ∈ R with a corresponding region Pi, we have H ′(Ri, Pi) =
O(m). Furthermore, there exists a set R of m convex regions such that for every
valid assignment, there exists some 1 ≤ i ≤ m with H(Ri, Pi) = Ω(m).

5 Input Regions are General Regions

When the input regions are arbitrary, we see a sharp contrast between the case
m ≤ 2, where constant Hausdorff distance can be realized, and the case m ≥ 3,
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where the Hausdorff distance may be unbounded. The fact that a single region
can be represented as a grid polygon with constant Hausdorff distance was shown
before by Bouts et al. [2]. In Sect. 5.1 we show that the same result holds for
two regions. In Sect. 5.2 we show that for three regions, no bounded Hausdorff
distance bound exists that applies to all inputs.

5.1 Two Regions

Our result for two arbitrary regions is based on a combination of two previous
results: mapping a polygon to the grid with constant Hausdorff distance by
Bouts et al. [2], and a result on the Painter’s Problem in [15]. We briefly explain
the former result in our framework using superpixels first (see Fig. 6), and then
extend it to our case with two regions using the latter result.

Fig. 6. Left, a region with Γ and Γ3. Middle, the set P ′ of pixels chosen in the first
selection. Right, the set P of pixels chosen after the spanning tree pixels are added.

Assume we have a region R that we want to represent by a grid polygon
P . Consider the grid coarsening Γ3, which has superpixels of 3 × 3 pixels. For
every superpixel fully covered by R, choose all nine pixels in P . For every super-
pixel visited but not covered by R, take the middle pixel. Take nothing from
superpixels not visited by R. Let the chosen pixels be P ′.

Observe that P ′ forms a set of grid polygons that has no interior boundary
cycles. Also observe that all superpixels for which at least one pixel is in P ′ is a
connected (but not necessarily simply connected) part of Γ3.

We make P ′ into one simply connected grid polygon P by using a (mini-
mum) spanning tree on the components of P ′. We will add pixels from visited
superpixels only, and only ones adjacent to the already chosen center pixel. Two
separate components will always be connected using one or two pixels.

Since the boundary of P does not intersect the interior of fully covered super-
pixels and visited superpixels always have a piece of boundary of P , it is easy to
see that H(Ri, Pi) = Θ(1) and H(∂Ri, ∂Pi) = Θ(1). This result is an alternative
to the one by Bouts et al., albeit with worse constants.

A Painter’s Problem instance takes a grid, and for each cell, the color white,
blue, red, or purple. White indicates the absence of red and blue while purple
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indicates the presence of both red and blue. The question is whether two disjoint
simply connected regions for red and blue exist that are consistent with all
specifications of the cells, or, in the terminology of [15], “admits a painting”.
Since red cells can simply be colored red and blue cells blue, the problem boils
down to recoloring the purple cells with red and blue pieces. The red and blue
pieces in a cell provide a panel, and all panels together make up a painting. They
prove:

Lemma 5 (Theorem 2 in [15]). If a partially 2-colored grid admits a painting,
then it admits a 5-painting.

In a 5-painting each cell contains at most 5 components. The components
make sure that the overall red and blue parts are connected across the whole
painting. Additionally [15] show that each cell has at most 3 intervals of alter-
nating red and blue along each side. This implies that there are only a constant
number of configurations within a cell, so all configurations can be represented
using a grid of constant size c for each cell.

In our problem, we have two regions R1 and R2 that we call red and blue, for
consistency. We create a grid coarsening Γc+2. We record for every superpixel
whether it is fully covered by red or blue, or visited by red and/or blue. If one
color covers a superpixel completely, we assign all of its pixels to that color. If
a color, say, red, visits a superpixel but blue does not, we start by making the
middle c × c pixels of that superpixel red. Finally, for all superpixels visited by
both red and blue, we apply the results from [15]. Since the recording of colors
with panels comes from disjoint simply connected regions, namely, our input, we
know that the 2-colored grid of superpixels admits a painting with connected
regions/colors, so it admits one as specified in Lemma 5.

Once we choose a coloring of pixels in each 2-colored superpixel according to
the panels, it remains to make the red set and blue set of pixels simply connected.
The method from [15] did not produce any cycles in the 2-colored superpixels,
the visited 1-colored superpixels are separate connected components of c × c
pixels in the middle, and the covered 1-colored superpixels cannot create cycles
either. We create a single red component by making a spanning tree of the red
components. To achieve this, we only need to use pixels in the outer ring of
the visited 1-colored superpixels. Then we do the same with blue. Since we add
pixels of the same color to 1-colored superpixels, we will never try to color a
pixel in both colors or create crossings. We then obtain the following result:

Theorem 5. If R consists of two disjoint, simply connected regions, a valid
assignment exists such that for each region Ri ∈ R with corresponding Pi, we
have H ′(Ri, Pi) = Θ(1).

5.2 Three or More Regions

In the following we argue that the Hausdorff distance between an input of at
least three general regions and any corresponding grid polygons is unbounded.
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Fig. 7. The regions for h = 3; I is highlighted. The dashed line subdivides the boundary
of I into its left and right part.

Formally, for a given integer h > 0, we show a construction of regions R =
{R,B,G} for which there are no corresponding grid polygons with Hausdorff
distance smaller than h. We only sketch the main idea here, see the full version
for details.

We construct regions R = {R,B,G} that form nested spirals with a long
bottleneck of height 1. The bottleneck is traversed from left to right h times by
each of R, B, and G. If we remove the parts of R, B, and G inside the bottleneck,
we get 3h + 3 connected components in total. This is illustrated in Fig. 7 for
h = 3. Outside the horizontal strip of height 1 containing the bottleneck, the
three regions are more than 2h apart. We define the part of the plane within
distance h of at least one of the bottom horizontal segments of the regions R
as I. All region components must be connected inside I. Inside I, it is possible
that the grid polygons make different connections than those in R. However, we
argue that no matter how these connections are made, the grid polygons PR, PB,
and PG, together have to pass through I from left to right at least h + 2 times,
thus requiring I to have height at least 2h + 3. However, the available vertical
space is only 2h + 1 if the Hausdorff distance must stay below h, allowing h + 1
connections of pixel polygons. Hence, we obtain a contradiction.

The most involved part is to argue that PR, PB, and PG, together have to
pass through I at least h + 2 times. This argument critically depends on the
following Lemma (see Fig. 8 for an illustration).

Lemma 6. Given an alternating sequence V = r1, b1, g1, ..., rk, bk, gk of 3k 3-
colored points on a line, any planar drawing below the line connecting points of
the same color induces a partition of the points into at least 2k + 1 components.

The idea is that I splits the regions in R (and thus their corresponding grid
polygons) into 3h + 3 connected components. However, the regions intersect the
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Fig. 8. A set Q that includes two red points ri and ri+� splits V into two disjoint
subsequences V1 and V2, that have at most one set, namely Q, in common. If there was
a second such a set Q′, the grid polygons corresponding to Q and Q′ would intersect.
(Color figure online)

right half of the boundary of I only 3h times, and in an order in which the
colors alternate, we can use Lemma 6 to show that we can decrease the number
of connected components by at most h− 1 by connecting the regions incident to
“the right side” of I to other regions on the right side of I. The same holds for the
regions on the left side of I. It thus follows that the remaining 3h−2(h−1) = h+2
of the reduction in the number of connected components (after all, in the end
there are only three regions left) must be achieved by connecting regions incident
to “the left side of” I to “the right side” of I. Therefore, PR, PB , and PG pass
through I at least h+2 times as claimed. Therefore, this allows us to obtain the
following result:

Theorem 6. For all integer h > 0 there exist three regions R = {R1, R2, R3},
for which there is no valid assignment to grid polygons P1, P2, P3 so that all
regions Ri ∈ R have H(Ri, Pi) < h.

6 Conclusion

In this paper we have shown what Hausdorff distance bounds can be attained
when mapping disjoint simply connected regions to the unit grid. We expressed
our bounds in terms of the number of regions and obtained different results
depending on the shape and size characteristics of the regions, and showed that
they are worst-case optimal. The result in Sect. 5.1 generalizes a result of Bouts
et al. [2] and the result in Sect. 5.2 shows that a result by Van Goethem et
al. [15] cannot be generalized from two to three colors. Our results are slightly
more general than we expressed them: for example, the bound for point regions
in fact holds for any set of regions that each have constant diameter.

We assumed that our regions all had the same shape and size characteristics.
In some cases it is interesting to see what happens in combinations. In particular,
suppose we have one general region R0 and m point regions R1, . . . , Rm; what
Hausdorff bounds can be attained? It turns out that we get a trade-off: we can
realize a Hausdorff distance of O(

√
m) for the point regions and for R0, but we

can also realize a Hausdorff distance of O(1) for R0 but then some point region
will have a Hausdorff distance of Θ(m). Figure 9 illustrates this. We may map
the points to the grid first using the O(

√
m) bound, and then map R0, or we

can map the points to the grid in a constant width strip close to the boundary
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Fig. 9. Left, an instance with one general region (purple) and m point regions. Middle
and right, two possible realizations for different Hausdorff bounds.

of R0. Note that in the former case, we could have left a spacing of three pixels
between the mappings of the point regions. Then the point regions still attain
the O(

√
m) bound, while H(R0, P0) = O(1) by using the extra space to allow

P0 to reach every necessary place. However, H(∂R0, ∂P0) will still be Θ(
√

m),
so we do not improve H ′(R0, P0).

While we concentrated on worst-case optimal bounds, our constructive proofs
of the upper bounds will often give visually unfortunate output. Also, for a
given instance we may not achieve O(1) Hausdorff distance for m point, β-fat
convex, or convex regions even when constant would be possible for that instance.
This leads to the following two open problems. Firstly, can we realize visually
reasonable output when this is possible for an instance (and how do we define
this)? Secondly, can we realize a Hausdorff distance that is at most a constant
factor worse than the best possible for each instance, in polynomial time?
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