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Abstract
We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive
method to connect any two points in Zd. The construction must be consistent (that is, satisfy the
natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work
has shown asymptotically tight results in two dimensions with Θ(logN) error, where resemblance
between segments is measured with the Hausdorff distance, and N is the L1 distance between the
two points. This construction was considered tight because of a Ω(logN) lower bound that applies
to any consistent construction in Z2.

In this paper we observe that the lower bound does not directly extend to higher dimensions.
We give an alternative argument showing that any consistent construction in d dimensions must
have Ω(log1/(d−1) N) error. We tie the error of a consistent construction in high dimensions to the
error of similar weak constructions in two dimensions (constructions for which some points need not
satisfy all the axioms). This not only opens the possibility for having constructions with o(logN)
error in high dimensions, but also opens up an interesting line of research in the tradeoff between
the number of axiom violations and the error of the construction. In order to show our lower bound,
we also consider a colored variation of the concept of discrepancy of a set of points that we find of
independent interest.
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34:2 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

1 Introduction

Euclidean line segments are one of the most fundamental objects of geometry. Although often
loosely referred to as the shortest path connecting the endpoints, segments have a clear and
unique axiomatic definition out of which many interesting properties follow. For example, it
is well-known that the intersection of two segments is always a segment (that could possibly
degenerate to a point or even become empty). The definition of other mathematical concepts
heavily depends on the definition of segments (such as convex regions).

The definition of segment works very well in a Euclidean or similar spaces with infinite
precision. Digital representation (such as pixels in a screen) introduces imprecision. The
most common approach used in practice is to somehow round the Euclidean segment into
the digital space. The digital segments will look very similar to the Euclidean counterparts
(that is, the error is very small). However, we cannot guarantee the useful properties and
concepts that follow from the axiomatic definition of Euclidean segment (see Figure 1).

In the aspect of the consistency of digital segments, we look for a deterministic method to
construct digital segments in a way that (i) the analogous of Euclidean axioms are satisfied
and (ii) the digital segments resemble the Euclidean ones as much as possible.

Figure 1 Left: Two Euclidean line segments that intersect in a point. Right: Rounding produces
polylines that intersect in three disconnected components.

Preliminaries
Our aim is to construct a digital path dig(p, q) for any two points p, q ∈ Zd. Ideally, we want
dig to be defined for any pairs of points in Zd (full list of requirements is described below),
but sometimes we consider the case in which dig is only defined for a subset of Zd × Zd.

I Definition 1. For any S ⊆ Zd × Zd, let DS(S) be a set of digital segments such that
dig(p, q) ∈ DS(S) for all (p, q) ∈ S. We say that DS(S) forms a partial set of consistent
digital segments on S (partial CDS for short) if for every pair (p, q) ∈ S it satisfies the
following five axioms:
(S1) Grid path property: dig(p, q) is a path between p and q under the 2d-neighbor topology1.
(S2) Symmetry property: if (q, p) ∈ S, dig(p, q) = dig(q, p).
(S3) Subsegment property: for any r ∈ dig(p, q), dig(p, r) ∈ DS(S) and dig(p, r) ⊆ dig(p, q).
(S4) Prolongation property: ∃ r ∈ Zd such that dig(p, r) ∈ DS(S) and dig(p, q) ⊂ dig(p, r).
(S5) Monotonicity property: for all i ≤ d such that pi = qi, it holds that every point

r ∈ dig(p, q) satisfies ri = pi = qi.

These axioms give nice properties of digital segments analogous to Euclidean line segments.
For example, (S1) and (S3) imply that the intersection of two digital segments is another
segment (that could degenerate to a single point or an empty set). (S5) implies that the
intersection of a segment with an axis-aligned halfspace is a segment.

1 The 2d-neighbor topology is the natural one that connects to your predecessor and successor in each
dimension. Formally speaking, two points are connected if and only if their || · ||1 distance is exactly one.
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A partial CDS for S = Zd × Zd is called a set of consistent digital segments (CDS for
short). Although our final goal is to have such a construction that works for the case in
which S = Zd × Zd, in this paper we consider subsets of the form S = {o} × Zd (where o is
the origin or any fixed point in Zd). We say that a partial CDS on such a set is a consistent
digital ray system (CDR for short), as it contains all segments (or rays) from o to Zd.

Another property that we want from partial CDS is that they visually resemble the
Euclidean segments. The resemblance between the digital segment dig(p, q) and the Euclidean
counterpart pq is measured using the Hausdorff distance. The Hausdorff distance H(A,B)
of two objects A and B is defined by H(A,B) = max{h(A,B), h(B,A)}, where h(A,B) =
maxa∈A minb∈B δ(a, b), and δ(a, b) is the standard || · ||∞ L-infinity norm.

Thus, the resemblance of a partial CDS on S is defined as max(p,q)∈S H(dig(p, q), pq) (that
is, the biggest error created between a digital segment and its Euclidean counterpart). This
value is simply referred to as the error of the partial CDS construction. We are interested
to see how the error grows as we enlarge our focus of interest. Thus, we limit the domain
to the case in which both points are in the L1 ball of radius N centered at the origin (i.e.
GN = Zd ∩B1(o,N)). Rather than looking for the exact function, we are interested in the
asymptotic behavior of the error as a function of N . For simplicity, we will actually restrict
ourselves to the positive orthant G+

N = GN ∩i Hi, where Hi = {p ∈ Zd : pi ≥ 0} and pi is the
i-th coordinate of p (the results extend to other orthants by symmetry).

Previous Work
Research on the digital representation of line segments has been an active area of research
for over half a century [10]. Many different approaches have been considered. Most common
techniques look for methods that implicitly encode the properties we desire. For example, a
popular approach is to consider a dynamic method to digitize line segments. In this setting,
the way we transform a Euclidean segment into a digital one will depend on which other
segments are present (and their specific coordinates). It is known that a grid of exponential
size is needed if we want to preserve the combinatorial types [9]. Another workaround is
known as snap rounding that represents line segments by polygonal chains: Each segment is
carefully rounded to avoid inconsistencies. Note that both of these ideas implicitly keep the
error small while making sure that the intersection of two digital segments is a connected
component. Although they work well in practice, they have the drawback that they cannot
be used to define objects that are based on digital segments (such as digital starshapes or
convex region).

The first paper to explicitly look for an axiomatic approach was in 1987 by Luby [11]: in
his work he introduced the concept of CDS (under the name of smooth geometries) and gave
a method to construct CDSs in Z2 based on a characterization of CDRs in Z2: any CDR
can be uniquely identified by four total orders of the integers (and vice versa). By choosing
a proper total order and using it for all points of Z2 we obtain a CDR with O(logN) error.
Håstad2 gave a matching lower bound for any such construction. The lower bound is based
on discrepancy theory [12]: any CDR is mapped to a sequence of real numbers in [0, 1) in a
way that the error of the CDR is proportional to the discrepancy of the sequence (intuitively
speaking, a measure on how well shuffled the numbers are).

These results were rediscovered by Chun et al. [8] and Christ et al. [6]. They renewed
interest in the topic and sparked other related research: Chowdhury and Gibson [4] gave
necessary and sufficient conditions for a collection of CDRs to form a CDS. In a companion

2 The lower bound was published by Luby, but credit given to Håstad (see Theorem 19 of [11]).

ESA 2020



34:4 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

paper, the same authors [5] afterwards provided an alternative characterization together
with a constructive algorithm; specifically, they gave an algorithm that, given a collection
of segments in an N ×N grid that satisfies the five axioms, computes a CDS that contains
those segments. The algorithm runs in polynomial time of N .

Unfortunately, most of these results only work on the digital plane. Out of the previously
mentioned results, only the CDR construction of Chun et al. [8] extends to three and higher
dimensions. The construction has O(logN) error regardless of the dimension. Chun et al. [8]
also considered the case in which the monotonicity property (S5) is not preserved. They
showed that if we remove (S5), we can obtain a CDR with O(1) error in any dimension.
Although the error is small, the resulting segments are far from what we would consider
similar to the Euclidean segments (because they loop around many times). Recently, Chiu
and Korman [2] showed that the problem in higher dimensions behaves very differently from
the two dimensional case. Specifically, they studied how to extend the CDS construction of
Christ et al. [6] and showed that it is very limiting in three (and higher) dimensions. We can
use their method to get arbitrarily many CDRs (with Ω(logN) error) and sometimes we can
get a CDS. However, whenever the construction yields a CDS, it will have Ω(N) error.

Our interest in higher dimensions comes motivated by an application in image segmenta-
tion. Image segmentation is the act of separating an object from its background in an image
(that is, determining which pixels are part of the background and which ones not). Chun et
al. [8] showed how to combine their CDR construction with the framework of Asano et al. [1]
to segment two dimensional images. This idea has been extended to consider other shapes (see
[7] for a detailed list), but always two dimensional. The hope is that a high dimensional CDR
with low error will produce more accurate segmentation algorithms. Although traditional
images taken with a camera are two dimensional, images from a medical equipment such as
those taken with an MRI machine can have three or even higher dimensions (say, when we
want to track changes of a particular object along time).

Results and paper organization
When approximating some geometric object, it often happens that higher dimensions create
a larger error than in a lower dimension setting. Since the high dimensional setting contains
a two dimensional subspace, it is common for lower bounds to extend to higher dimensions.
However, this is not true for the case of CDRs: although a three dimensional CDR contains two
dimensional subspaces, those subspaces need not exactly be CDRs (and thus the Ω(logN)
lower bound does not directly hold). In this paper, we further explain the reason and
investigate the lower bound for the higher dimensional case.

The main reason why a subspace is not a CDR is because of the prolongation property
(S4): we require that every segment is extendable, but has no constraints on the dimension
in which it does so. In particular, a subspace of a high dimensional CDR need not be a
CDR (see an example in Figure 2). Subspaces of CDRs are what we call weak CDR: it is
a construction that almost always behaves like a CDR but some vertices may not satisfy
the prolongation property (S4). Each vertex that does not extend is called an inner leaf. In
this paper we study weak CDRs in two dimensions and the implications that they have for
(proper) CDRs in higher dimensions.

The new found properties of weak CDRs allow us to extend the two-dimensional lower
bound to higher dimensions. Håstad’s bound was based on a mapping from a (two-
dimensional) CDR into a pointset in [0, 1) ⊂ R and tied the error of the CDR to the
discrepancy of the transformed pointset. Our lower bound uses an additional intermediate
step: from any CDR we consider the weak CDR it generates in the x1x2-plane. We then
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Figure 2 (left) A drawing of a CDR in G+
N ⊂ Z3 for N = 4. Notice that the CDR is a tree whose

leaves are at the plane x+ y + z = N . (middle) A cross section on the xy-plane of the same CDR.
Observe that vertices A and B do not extend within the xy-plane. Thus, the subspace is a weak
CDR (rather than a proper CDR). (right) A map of the weak CDR into a two-colored pointset.
Regions with many blue points and few red correspond to portions of the CDR with high error.

map this weak CDR into a set of points in the unit square and then use discrepancy theory
to obtain a lower bound for the weak CDR and eventually to the high dimensional CDR.
Overall, we show a very strong link between the three spaces (CDR in high dimensions, weak
CDR in the x1x2-plane and set of points created by our mapping). Along the paper we will
analyze properties of each of the spaces, and see what implications it has for the other two.
Specifically, we show the following:
(i) Because we now need to account for more general constructions (weak CDRs instead

of proper CDRs), the mapping needs to be changed. Instead of creating points in the
[0, 1) interval, in Section 2 we map into a two-colored pointset in [0, 1)× [0, 1).

(ii) Similar to the two dimensional case, we can tie the error of the weak CDR to the
discrepancy of the mapped pointset. First, we extend the discrepancy results [12] to
our exact setting. Let R and B be a set of red and blue points in the unit square,
respectively. Let m = |B| − |R| and assume m > 0. For any set P of points in the unit
square and x, y ∈ [0, 1] let P [x, y] be the number of points in P ∩ [0, x] × [0, y]. For
any two real numbers 0 ≤ x, y ≤ 1 we define the discrepancy of R and B at (x, y) as
DR,B(x, y) = mxy − (B[x, y]−R[x, y]). The discrepancy of R and B is simply defined
as D∗R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| (i.e., the highest discrepancy we can achieve
among all possible rectangles). The discrepancy D∗R,B of a two-colored pointset is high
if and only if there is an axis-aligned rectangle with the origin as corner in which the
difference of the cardinalities is far from the expected difference.
I Theorem 2 (Two colors discrepancy). For any set R and B of points such that
|B| > |R| it holds that D∗R,B = Ω

(
(|B|−|R|)·log(|B|+|R|)

|B|+|R|

)
.

The proof is given in Section 3.
(iii) With this new discrepancy result we obtain a trade-off between the error of any weak

CDR and the number of inner leaves (i.e., vertices that do not satisfy (S4)). When
the weak CDR has zero inner leaves (and thus is a proper CDR) our bound matches
the lower bound of Håstad. As the number of inner leaves increases, the lower bound
decreases. In Section 4 we prove the following relationship.
I Theorem 3. For any N ∈ N, any weak CDR defined on G+

N ⊂ Z2 with κ2 inner
leaves between lines x+ y = dN/2e and x+ y = N has Ω(N logN

N+κ2
) error.

(iv) We then apply Theorem 3 to obtain a lower bound for CDRs in d dimensions: intuitively
speaking, if the 2-D subspace has few inner leaves (say, o(N logN)), then it will have
ω(1) error. On the other hand, a weak CDR with many inner leaves in the 2-D
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subspace will cause too many points to extend to one of the remaining dimensions, and
create large error as well. This gives a lower bound of Ω(log1/(d−1) N) for any CDR
construction in d dimensions (see Section 5):
I Theorem 4. Any CDR in Zd has Ω(log1/(d−1) N) error.

Although we believe our analysis to be loose (especially in Theorem 4), we are not certain
that the existing CDR constructions with O(logN) error are tight either. In the full version of
the paper in [3], we explore the possibility of having a CDR in high dimensions with o(logN)
error (rather than directly looking at CDRs in high dimensions, we see what properties it
would imply in the other two subspaces). Although we cannot explicitly find a construction
with o(logN) error, we provide interesting insight on how further research can solve this
question. In particular, we give a weak CDR construction with 5/2 error and Θ(N2) inner
leaves. In order to further reduce the number of inner leaves in weak CDRs with constant
error we instead look at how to create a two-colored pointset with constant discrepancy. We
show that it is not possible to have o(N2) red points in some pattern of the pointset with
constant discrepancy, which gives us a condition on any weak CDR with o(N2) inner leaves.

Further discussion on the implication of these results is given in Section 6.

2 Mapping a weak CDR into a pointset

We start by showing how to transform a weak CDR in two dimensions into a two-colored
pointset in [0, 1)2. Given any weak CDR, its restriction to G+

N forms a spanning tree T of
G+
N because of axioms (S1) and (S3). Although the tree is undirected, we see it as a directed

graph (rooted tree) whose edges are oriented away from the origin (root). Then, (S5) implies
that the parent of each vertex (x, y) (except the root) is either (x− 1, y) or (x, y − 1). For
any edge e = uv of T , where u is the parent of v, we define T (e) as the subtree of T that is
rooted at the child node v of e. We slightly abuse the notation and use T (v) to denote the
subtree that is emanating from v towards the leaves (that is, T (v) = T (e)).

For any n ≤ N let Ln be the points of G+
N whose sum of coordinates is n (i.e., Ln =

{(x, y) ∈ G+
N : x+ y = n}). We follow the usual terminology that we call a vertex of degree

one a leaf. We further consider two subcategories: we say that a leaf v of T is an inner leaf
if it is not in LN . All the vertices in LN are called boundary leaves. Note that, by properties
of CDR, all vertices of LN are proper leaves (since any children should be in LN+1, which is
outside G+

N ). Further note that in a proper CDR there will be no inner leaves. A vertex v of
T is a split vertex if it has degree three or it is the origin. Let S be the set of split vertices
and D the set of inner leaves.

2.1 Auxiliary function
Before giving the transformation from a tree to a point set we first define an auxiliary
function M : G+

N → [0, 1]. For any p ∈ LN we set M(p) = px
px+py . For any subtree T ′(v) of T

we define two more functions inductively for v ∈ Ln from n = N to 0 as follows:

max(T ′(v)) = max
p∈T ′(v)∩(D∪LN )

M(p) and min(T ′(v)) = min
p∈T ′(v)∩(D∪LN )

M(p),

where M(p) for p ∈ D is defined in the next paragraph.
For any inner leaf ` ∈ D, we know that the edges e1 = (`x − 1, `y + 1)(`x, `y + 1)

and e2 = (`x + 1, `y − 1)(`x + 1, `y) must be present in T . Thus, we define M(`) as
M(`) = max(T (e1))+min(T (e2))

2 . Intuitively speaking, we look at the leaves above and to the
right of `, and assign a value that is in between the two of them (see Figure 3, left). The
following statement shows that these values are sorted along Ln.
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I Lemma 5. Let T (u), T (v) ⊂ T be two subtrees of T rooted at the vertices u, v ∈ Ln
(respectively) for some n ≤ N such that ux < vx. Then, it holds that max(T (u)) < min(T (v)).

Proof. We prove this statement by induction on n from N to 1. If both u, v ∈ LN then both
T (u) and T (v) consist of a single vertex and the proof trivially follows. Now, assume that
the statement is true for any two vertices u′, v′ ∈ Li for i > n. We need to show that the
statement holds for any two vertices u, v ∈ Ln such that ux < vx.

First observe that if we have two descendants u′ and v′ from u and v respectively such
that u′, v′ ∈ Ln′ for some n′ > n, then it holds that u′x < v′x. Indeed, this follows from the
fact that when we embed T in the natural way with edges drawn as straight segments, the
result is a tree with no crossings. Thus, if v′x < u′x happened for some descendants, then the
two paths in T from u to u′ and from v to v′ would either cross or form a cycle. Any of
those two situations would contradict with the fact that T is a weak CDR.

Back to our original proof, consider the case in which neither u nor v are inner leaves. By
the above argument we have that the x-coordinate of any child u′ ∈ Ln+1 of u must be smaller
than any child v′ ∈ Ln+1 of v. By induction, this implies that max(T (u′)) < min(T (v′)) and
thus max(T (u)) < min(T (v)).

The cases in which u or v are inner leaves are similar: if u is an inner leaf, we have
max(T (u)) = M(u) = max(T (u1))+min(T (u2))

2 , where u1 = (ux, uy + 1) ∈ Ln+1 and u2 =
(ux + 1, uy) ∈ Ln+1. By induction on u1 and u2 we have max(T (u1)) < min(T (u2)) and
max(T (u)) < min(T (u2)), thus we need to compare min(T (u2)) with any children of v. If v
is also an inner leaf, we can do a similar argument and have that max(T (v1)) < min(T (v))
where v1 = (vx, vy + 1).

In general, given u, let u′ ∈ Ln+1 be the child of u with the largest x-coordinate (or u′ = u2
if u is an inner leaf). Similarly, we define v′ as the child of v with the smallest x-coordinate
(or v′ = v1 if v is an inner leaf). Again, by planarity of the natural embedding, we have
that u′x ≤ v′x if at least one of u, v is an inner leaf. In either case, we can use induction and
get that max(T (u′)) ≤ min(T (v′)) which implies max(T (u)) < max(T (u′)) ≤ min(T (v′)) ≤
min(T (v)) (if u is an inner leaf) or max(T (u)) ≤ max(T (u′)) ≤ min(T (v′)) < min(T (v)) (if
v is an inner leaf) completing the proof. J

For any subtree T ′ of T , its depth is the longest possible length of a path from its root to
any of its leaves. Any split vertex s ∈ S has two branching edges e1 and e2, each defining a
subtree. The subtree of higher depth is the preferred subtree of s (in case of tie, we choose
the tree emanating from (sx + 1, sy)). For any point p ∈ G+

N we define a walk from p to some
leaf of T . If p ∈ Ln has degree two, we follow the single edge to Ln+1. If p ∈ S, we follow
the edge to the preferred subtree. This process is continued until we reach a leaf γ(p).

With this virtual walk we can define the function M to all points p ∈ G+
N (not only leaves)

of the domain as follows. If p is neither a split nor a leaf, we define M(p) as M(p) = M(γ(p)).
For a split vertex s, let s′ be the child of s that is not on the preferred subtree of s. Then,
we define M(s) as M(s) = M(γ(s′)).

Intuitively speaking, from any vertex we always follow its only edge away from the root
(if it has degree 2) or the preferred edge (if it has degree 3) until we reach a leaf. The only
exception is if we start on a split vertex, in which case we do not follow the preferred edge at
the first step. This exception is needed to make sure that the end points of the walk starting
from split vertices are distinct.

I Lemma 6. For any split vertex s ∈ S, there exists a unique leaf ` ∈ D ∪ LN such that
M(s) = M(`). And for any leaf ` ∈ D ∪ LN \ {(N, 0)}, there exists a unique split vertex
s ∈ S such that M(s) = M(`).

ESA 2020
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Figure 3 (left) A tree of a weak CDR and the value of the auxiliary function M applied to
all leaves of the tree. (right) The tree transformed into blue and red point sets. Two vertices
of the same layer are mapped to points with the same y-coordinate and an inner leaf and its
corresponding split vertex are mapped to points with the same x-coordinate (see the highlighted
orange circles). (For Theorem 8) The x-coordinate of v = (6, 2) (green circle) can be bounded in
terms of the difference between blue and red point in the axis-aligned rectangle with corners (0, 0)
and π(v) = (M(v), vx+vy

N
) = ( 10

12 ,
8

12 ). The rectangle contains 11 blue points and 3 red ones.

Proof. By definition of the auxiliary function, two leaves do not have the same mapping.
Thus, it remains to show that the walk of two different split vertices cannot end at the same
leaf. Imagine doing the walk backwards: start at any leaf, walk towards the origin and
stop as soon as you reach a split vertex by traversing its non-preferred edge. Since each
split vertex has exactly two children, it follows that exactly one leaf will stop at each split
vertex. The exceptional case is the leaf (N, 0), from which walking backwards to the origin
is a horizontal path and the path does not contain any non-preferred edge. That is, in the
inverse walk we follow preferred edges until we reach a non-preferred edge. This is equivalent
to starting at a split vertex and follow the non-preferred edge once and continue with the
preferred edges, which is the exact definition of our auxiliary function. J

2.2 Transforming the tree into a pointset

With the auxiliary function M we can define the mapping between a weak CDR into a
bicolored pointset in the unit square. For any vertex v = (vx, vy) ∈ G+

N we define its
transformation as π(v) = (M(v), vx+vy

N ). Given any weak CDR, we look at the tree T it
defines in G+

N . Each vertex v ∈ D creates a red point π(v) and each split vertex w ∈ S creates
a blue point π(w) (note that we do not transform the boundary leaves in LN into points). We
define the mapping of T as the union of the sets R = {π(v) : v ∈ D} and B = {π(v) : v ∈ S}
(see Figure 3, right). Note that the two sets depend on the tree T (and thus R = R(T ) and
B = B(T )). From now on we assume that T is fixed, and thus we simplify the notation for
ease of reading. For any set P of points in the unit square and x, y ∈ [0, 1] let P [x, y] be the
number of points in P ∩ [0, x]× [0, y].

I Lemma 7. For any weak CDR T in G+
N ⊂ Z2 and n < N , the red and blue points on

the horizontal line y = n/N alternate in color starting and ending with a blue point. In
particular, we have B[1, n/N ]−R[1, n/N ] = n+ 1.
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Proof. For the first statement we observe that only points that lie in Ln will have y-
coordinates equal to n/N . Moreover, since Ln+1 has one more vertex than Ln, each diagonal
must have exactly one more split vertex than inner leaves. Indeed, Chun et al. showed that
in proper CDRs each diagonal has exactly one split vertex (and of course, zero inner leaves).

Now we need to show that split vertices and inner leaves appear alternatingly on the
diagonal line. Consider two consecutive split vertices u, v ∈ Ln such that ux < vx. By
definition of split, the edges eu = (ux, uy)(ux + 1, uy) and ev = (vx, vy)(vx, vy + 1) are all
in T . Observe that there are vx − ux − 1 vertices in Ln and vx − ux − 2 vertices in Ln+1
between eu and ev. Since two different vertices of Ln cannot connect to the same vertex of
Ln+1, one of them will not reach Ln+1. That vertex will be an inner leaf and will be between
u and v as claimed.

That is, the blue pointset has one more point than the red pointset in each horizontal
line y = i/N . Summing up the differences from i = 0 to n, we get that in total there are
n+ 1 additional blue points p = (x, y) with y ≤ n/N . J

With the above observations we can now state the main relationship between the weak
CDR and its mapped pointset. For any vertex v ∈ Ln, its path to the origin splits the tree
into two portions. Consider the portion of the tree up to Ln that is above the path from v to
the origin. In L0, the subtree contains a single vertex (the root) whereas at the diagonal Ln
contains vx+ 1 vertices. Since the number of leaves grows with split vertices and shrinks with
inner leaves, this means that in the portion of the tree that we are looking at, the difference
between split vertices and inner leaves must be vx, see Figure 3. Note that if the two children
of a split vertex (e.g., (5, 0) in Figure 3) are not in the same portion, the number of leaves
does not grow with that split vertex. However, these split vertices may be still contained in
the rectangle that we consider in the mapped pointset. This is the reason why we do not
have an equality in Theorem 8.

I Theorem 8. For any vertex v ∈ G+
N it holds that B[M(v), vx+vy

N ]−R[M(v), vx+vy
N ]− 2 ≤

vx ≤ B[M(v), vx+vy
N ]−R[M(v), vx+vy

N ].

Proof. We split the proof into two auxiliary lemmas.

I Lemma 9. Let v ∈ Ln be a split vertex such that vx < n. If M(v) < M(γ(v)) the rectangle
[M(v),M(γ(v))] ×

[
0, n−1

N

]
contains exactly one point, which is blue and has M(γ(v)) as

x-coordinate. If M(γ(v)) < M(v) the rectangle [M(γ(v)),M(v)]×
[
0, n−1

N

]
contains exactly

one point, which is blue and has M(γ(v)) as x-coordinate. When v = (n, 0) ∈ Ln the rectangle
[M(v),M(γ(v))]×

[
0, n−1

N

]
is empty.

Proof. We first consider the case of M(v) < M(γ(v)). When we keep following from v to the
preferred subtree, we end up in a leaf, called `. By definition of M we have M(`) = M(γ(v)).
Since vx < n we have M(γ(v)) 6= 1. By Lemma 6 there is a unique split vertex s ∈ S
such that M(s) = M(`). This split vertex is below layer Ln (indeed, we reach Ln from
` by following only preferred edges and the inverse walk has to stop when we traverse a
non-preferred edge of s) and therefore s is transformed to a blue point in the rectangle. Now
let s′ be a split vertex which is mapped to a blue point in the rectangle. We will show that
s′ = s. Let `′ be the unique leaf such that M(`′) = M(s′). Consider first the case in which
`′ is below layer Ln (that is, `′x + `′y < n). Then let v′ be the vertex on dig(o, v) and L`′x+`′y .
If `′x < v′x (resp. v′x < `′x) then Lemma 5 implies that M(`′) < min(Tv′) ≤ M(v) (resp.
M(γ(v)) ≤ max(Tv′) < M(`′)). This would be a contradiction to s′ being mapped to a blue
point in the rectangle.
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It remains to consider the case in which `′ is above layer Ln. Define `′′ to be the vertex
on dig(o, `′) and Ln. Lemma 5 implies that `′′ = v (otherwise we have either M(`′) < M(v)
or M(γ(v)) < M(`′) which would again be a contradiction). Recall that there is only one
split vertex whose walk to its corresponding leaf through preferred subtrees passes through v.
Hence s′ = s and there is exactly one blue point in the rectangle.

We now show that there cannot be any red point either. Indeed, recall that for every
red point there is a blue point with the same x-coordinate and smaller y-coordinate because
for each inner leaf ` there is a unique split vertex s defined by the walk from s to ` such
that M(`) = M(s). From the previous argument, we know that s with M(s) = M(γ(v)) is
mapped to the only one blue point in the rectangle and its corresponding leaf ` defined by
the walk is above Ln. Hence, even if ` is an inner leaf, the mapped red point is not in the
rectangle. Moreover, there cannot be any other red point in the rectangle (since it would
imply that the corresponding blue point would also be in and we already ruled out this case).

In the same way we can also prove that ifM(γ(v)) < M(v) the rectangle [M(γ(v)),M(v)]×[
0, n−1

N

]
contains exactly one point, which is blue and hasM(γ(v)) as x-coordinate. If vx = n

then ` as defined above is the leaf (N, 0) and M(`) = 1. Lemma 6 implies that there is no
split vertex s with M(s) = 1. J

I Lemma 10. For any vertex v ∈ G+
N it holds that

vx −B
[
M(v), vx + vy − 1

N

]
+R

[
M(v), vx + vy − 1

N

]
+ 1 ∈ {0, 1}. (1)

Proof. We first prove by induction over n that ∀n ∈ {0, 1, ..., N} the following statement
holds.

{M(γ(p))|p ∈ Ln}

=
{
x ∈ [0, 1] :

∣∣∣∣B ∩ {x} × [0, n− 1
N

]∣∣∣∣− ∣∣∣∣R ∩ {x} × [0, n− 1
N

]∣∣∣∣ = 1
}
∪ {1}. (2)

The quantity |B ∩ {x} × [0, n−1
N ]| − |R ∩ {x} × [0, n−1

N ]| counts the difference between the
number of blue points and red points on the vertical segment with x-coordinate x and
length n−1

N . Because of Lemma 6 we know that each split vertex shares the same value
with a leaf in the auxiliary function M . If the leaf is an inner leaf, both blue (split) and
red (inner) points lie on the same unit segment {x} × [0, 1]. Otherwise, there is only one
blue point on {x} × [0, 1] because M(p) for p ∈ LN are all different. Hence the quantity
|B ∩ {x} × [0, n−1

N ]| − |R ∩ {x} × [0, n−1
N ]| can either be 0 or 1.

The base case n = 0 trivially holds. We have {M(γ(p))|p ∈ L0} = {1} and

B ∩ {x} ×
[
0, n− 1

N

]
= R ∩ {x} ×

[
0, n− 1

N

]
= ∅

We assume that Section 2.2 holds for layer Ln and we prove that it also holds for Ln+1. We
distinguish 3 cases for any vertex q in layer Ln.

If q has degree 2 then q and its child r ∈ Ln+1 are mapped by M ◦ γ to the same value.
Moreover q does not create any vertex in the set B nor R.
If q is an inner leaf, then the value M(γ(q)) will not appear in {M(γ(p))|p ∈ Ln+1} any
more. The value M(γ(q)) also disappears in{

x ∈ [0, 1] :
∣∣∣B ∩ {x} × [0, n

N

]∣∣∣− ∣∣∣R ∩ {x} × [0, n
N

]∣∣∣ = 1
}
∪ {1}.

because q created a red point in R with the coordinates (M(γ(q)), nN ) = (M(q), nN ).
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If q is a split vertex, then the value M(γ(q)) will stay in {M(γ(p))|p ∈ Ln+1}. Moreover
{M(γ(p))|p ∈ Ln+1} contains the additional value M(q). The value M(q) also appears in{

x ∈ [0, 1] :
∣∣∣B ∩ {x} × [0, n

N

]∣∣∣− ∣∣∣R ∩ {x} × [0, n
N

]∣∣∣ = 1
}
∪ {1}

because q creates a blue point in B with the coordinates (M(q), nN ).

Hence Section 2.2 holds.
Let v be a vertex in layer Ln, i.e. n = vx + vy. By Lemma 5 we know that a vertex u ∈ Ln
with ux < vx satisfies M(γ(u)) < M(γ(v)). By Lemma 5 we also know that a vertex w ∈ Ln
with vx < wx satisfies M(γ(v)) < M(γ(w)). Hence the number of vertices in layer Ln with
smaller x-coordinate than that of v is exactly the number of vertices which are mapped by
M ◦ γ to a smaller value than that of v. If vx < n:

vx = |{u ∈ Ln|ux < vx}|
Lemma 5= |{u ∈ Ln|M(γ(u)) < M(γ(v))}|

= |{u ∈ Ln|M(γ(u)) ≤M(γ(v))}| − 1
(2)= B

[
M(γ(v)), n− 1

N

]
−R

[
M(γ(v)), n− 1

N

]
− 1

Lemma 9=
{
B[M(v), n−1

N ]−R
[
M(v), n−1

N

]
− 1 if M(γ(v)) ≤M(v)

B[M(v), n−1
N ]−R

[
M(v), n−1

N

]
if M(v) < M(γ(v))

If vx = n then:

vx = |{u ∈ Ln|M(γ(u)) ≤M(γ(v))}| − 1 (2)= B

[
M(γ(v)), n− 1

N

]
−R

[
M(γ(v)), n− 1

N

]
Lemma 9= B

[
M(v), n− 1

N

]
−R

[
M(v), n− 1

N

]
J

By Lemma 7, the red and blue points on the line y = vx+vy alternate in color starting and
ending with a blue point. Hence, any interval [0, x] on the line y = vx + vy contains at most
one more blue points. Therefore, B[M(v), vx+vy

N ]−R[M(v), vx+vy
N ]− (B[M(v), vx+vy−1

N ]−
R[M(v), vx+vy−1

N ]) is at most one. Lemmas 10 and 7 directly imply Theorem 8. J

3 Bichromatic discrepancy

Let R and B be a set of red and blue points in the unit square, respectively. Let r = |R| and
b = |B|, and further assume that b > r. Let m = b− r (which is positive since b > r). For
any set P of points in the unit square and x, y ∈ [0, 1] let P [x, y] be the number of points in
P ∩ [0, x]× [0, y].

For any two sets R and B and real numbers x, y ≤ 1 we define the discrepancy of R and
B at (x, y) as

DR,B(x, y) = (b− r)xy − (B[x, y]−R[x, y]). (3)

The discrepancy of R and B is simply defined as D∗R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| (i.e.,
the highest discrepancy we can achieve among all possible rectangles).

I Theorem 2 (Two colors discrepancy). For any set R and B of points such that |B| > |R|
it holds that D∗R,B = Ω

(
(|B|−|R|)·log(|B|+|R|)

|B|+|R|

)
.
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Note that if we set R = ∅ we get the classic two dimensional discrepancy result for which
there are several proofs (see [12] for a detailed survey). In order to extend the bound for
the case of R 6= ∅, we make minor changes to Schmidt’s proof [13]. We start by using an
auxiliary function G (defined below) and combining it with the trivial inequality∫

(x,y)∈[0,1]2
DR,B(x, y)G(x, y)dxdy ≤ max

(x,y)∈[0,1]2
|DR,B(x, y)|

∫
(x,y)∈[0,1]2

|G(x, y)|dxdy

to obtain D∗R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| ≥
∫
DR,BG∫
|G|

.

Note that for simplicity in the notation we removed the integration limits. Our definition
of G is identical to the one used by Schimdt: Let m = dlog2(b+ r)e+ 1 and observe that, by
definition of m we have 2(b+ r) ≤ 2m ≤ 4(b+ r). For any j ∈ {0, . . . ,m} we define function
fj : [0, 1]2 → {−1, 0, 1} as follows: subdivide the unit square with 2j equally spaced vertical
lines and 2m−j horizontal lines.

For any value of j we subdivide the unit square into rectangles of area 2−m (larger values
of j will result in thinner but wider rectangles). Let A be a rectangle of subdivision associated
to fj . We define fj within the rectangle to be 0 if A contains any point of R ∪B. If A does
not have neither red nor blue points, we further subdivide it into four congruent quadrants.
The function value of fj is equal to 1 in the upper right and lower left quadrants, and −1 in
upper left and lower right quadrants (see a visual representation of fj in [12], page 173).

Then, we define G as G = (1 + cf0)(1 + cf1) . . . (1 + cfm) − 1, where c > 0 is a small
constant (whose value will be chosen afterwards). Note that G can also be expressed as
G = G1 + . . . Gm, where Gk = ck

∑
0≤j1≤...≤jm≤m fj1fj2 . . . fjk .

Schmidt showed that
∫
|G| ≤ 2 (regardless of the value of m). Thus, we now focus in

giving an upper bound for
∫
DR,BG.

I Lemma 11. There exists a constant c1 such that
∫
DR,BG1 ≥ cc1

b−r
b+r log(b+ r).

Proof. By definition of G1 we have
∫
DR,BG1 = c

∑m
j=0

∫
DR,Bfj . Thus, it suffices to show

that for any value of j it holds that
∫
DR,Bfj ≥ c′ b−rb+r (for some other constant c′ > 0).

Recall that, when defining fj , we subdivided the unit square into at least 2(b + r)
rectangles. For the rectangles that contain at least one point of R ∪B, fj is set to zero, and
thus they do not contribute to the integral. Since we have b+ r many points, we know that
there must exist at least b+ r rectangles that do not contain any point of R or B. Let A
be any such rectangle, and let ASW , ANW , ASE , ANE be the four subquadrants of A (where
the subindex refers to the cardinal position of the quadrant). Recall that fj is equal to 1 for
any point of ASW ∪ANE and −1 for points of ASE ∪ANW .

Let w and h be vectors defined by the horizontal and vertical sides of ASW , respectively.
Observe that their lengths are 2−j−1 and 2j−m−1, respectively. Then, we have∫

A

fjDR,B

=
∫
ASW

DR,B −
∫
ANW

DR,B +
∫
ANE

DR,B −
∫
ASE

DR,B

=
∫
ASW

[DR,B(x, y) +DR,B(x+ w, y + h)−DR,B(x, y + h)−DR,B(x+ w, y)]dxdy.
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If we apply the definition of DR,B (Eq. (3)) to the four terms inside the integral we get∫
A

fjDR,B =
∫
ASW

((b− r)[xy + (x+ w)(y + h)− x(y + h)− (x+ w)y])dxdy

−
∫
ASW

(B[x, y] +B[x+ w, y + h]−B[x, y + h]−B[x+ w, y])dxdy

+
∫
ASW

(R[x, y] +R[x+ w, y + h]−R[x, y + h]−R[x+ w, y])dxdy.

Observe that we are integrating twice positively and twice negatively over almost identical
functions. In fact, the terms of the first integral all cancel out except along the rectangle
[x, x+w)× [y, y+h). Similarly, when we look at the second and third terms, the contribution
of any point in R ∪ B is cancelled out unless it is in the rectangle [x, x + w) × [y, y + h).
However, by definition of A there are no such points. Thus, we obtain∫

A

fjDR,B =
∫
ASW

(b− r)w · h dxdy =
∫
ASW

(b− r)2−m−2dxdy = (b− r)2−2m−4

That is, when we integrate fjDR,B over a rectangle A containing no point of R ∪B, the
result is (b−r)2−2m−4. We know that there are at least b+r rectangles not containing points of
R∪B, thus their contribution is at least (b+r)(b−r)

22m+4 = (b+r)
2m

(b−r)
16·2m ≥

1
4

(b−r)
16·4(b+r) = Ω( b−rb+r ). J

I Lemma 12. There exists a constant c2 such that
∑m
k=2

∫
DR,BGk ≤ c2c2

b−r
b+r log(b+ r).

Proof. Recall that Gk = ck
∑

0≤j1<j2<...<jk≤m fj1 . . . fjk . Fix any valid set of indices and
consider the value of

∫
fj1 . . . fjkDR,B .

As shown in [12], function fj1 . . . fjk is largely defined by fj1 and fjk . Indeed, if we overlay
the rectangular partition defined by functions fj1 , . . . , fjk we obtain a grid of rectangles
whose width is 2−jk and height 2−(m−j1). In each of these rectangles, the function is zero (if
any of the rectangles associated to the fji functions contains a point of R ∪B), or is further
subdivided into four equal sized quadrants and in each one it is +1 or −1 alternatively.

Let A be one of the rectangles of the refined grid. As shown in Lemma 11, we have that∫
A

fj1 . . . fjkDR,B = τ(b− r)2−2(m+jk−j1)−4,

where τ ∈ {−1, 1}. This extra term appears because the product of the different func-
tions involved can change the sign of each of the four quadrants. In any case, we have∫
A
fj1 . . . fjkDR,B ≤ (b− r)2−2(m+g)−4 where g = jk − j1.
By the way the grid is constructed, there are 2m−j1 × 2jk = 2m+g many rectangles, and

thus we conclude that
∫
fj1 . . . fjkDR,B ≤ (b − r)2−m−g−4. In order to obtain a bound∫

DR,BGk we sum over all possible indices.∫
DR,BGk = ck

∑
0≤j1<...<jk≤m

∫
fj1 . . . fjkDR,B ≤

ck(b− r)
2m+4

∑
0≤j1<...<jk≤m

2−(jk−j1).

Note that in the sum, the indices j2, . . . jk−1 do not matter. Thus, we group the terms by
the gap between the indices j1 and jk (say, if j1 = 3 and jk = 7 the gap is 4). Note that the
minimum gap is at least k − 1 (since otherwise we do not have enough space to choose the
k − 2 indices in between) and at most m. Once we have a gap of g there are m− g options
for index j1.
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∫
DR,BGk ≤ ck(b− r)

2m+4

m∑
g=k−1

m−g∑
j1=0

∑
j1<j2<...<jk−1<j1+g

2−g

= ck(b− r)
2m+4

m∑
g=k−1

m−g∑
j1=0

(
g − 1
k − 2

)
2−g ≤ ck(b− r)m

2m+4

m∑
g=k−1

(
g − 1
k − 2

)
2−g.

In order to upper bound the sum over all Gk, we first reorder the summation order.
m∑
k=2

∫
DR,BGk ≤

m∑
k=2

ck(b− r)m
2m+4

m∑
g=k−1

(
g − 1
k − 2

)
2−g

= (b− r)m
2m+4

m∑
g=1

2−gc2
g+1∑
k=2

(
g − 1
k − 2

)
ck−2

= (b− r)m
2m+4

m∑
g=1

2−gc2(1 + c)g−1

= (b− r)mc2

2m+5

m∑
g=1

(
1 + c

2

)g−1
.

The sum contains the first terms of the geometric sum
∑∞
g=1

( 1+c
2
)g−1 ≤ 2

1−c (for any
c < 1). In particular, if we set c ≤ 1/2 we can upper bound the partial sum by 4. Recall
that m = Θ(log(b+ r)) and 2m = Θ(b+ r). Thus, the lemma is proven. J

I Corollary 13. There exists a constant κ > 0 such that
∫
DR,BG ≥ κ

(
(b−r)·log(b+r)

b+r

)
.

Proof. Apply the inequality
∫

(A+B) ≥
∫
A−

∫
|B| and Lemmas 11 and 12 to obtain:∫

DR,BG =
∫
DR,BG1 +

m∑
k=2

∫
DR,BGk ≥ c(c1 − cc2)

(
(b− r) · log(b+ r)

b+ r

)
Note that Lemmas 11 and 12 holds for any value of c such that c ∈ (0, 1/2]. By choosing a

sufficiently small value of c (say, c = min{ 1
2 ,

c1
2c2
}) we obtain

∫
DR,BG ≥ cc1

2

(
(b−r)·log(b+r)

b+r

)
.

J

This completes the proof of Theorem 2.
When R = ∅, it would be expected that we need to distribute the blue points uniformly

in the unit square to have a low discrepancy. Indeed, it is also held for the red points. The
following theorem implies that even if there are many red points, but the red points are
concentrated in the lower half of the unit square, the discrepancy cannot be reduced. For
simplicity, we only show a special case of how the discrepancy is depended on the points in
[0, 1] × [1/2, 1], which is good enough for our purpose in Section 5. Notice that the same
argument can be applied in a more general case.

I Theorem 14. For any set R and B of points in the unit square such that |R| = r, |B| = b

and b > r. Let r2 and b2 be the number of red and blue points in [0, 1]× [1/2, 1] respectively.
It holds that

D∗R,B = Ω
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
.
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Proof. Let R2 and B2 be the set of red and blue points in [0, 1] × [1/2, 1] respectively.
Consider the upper half of the unit square [0, 1]× [1/2, 1] and rescale the vertical length to
be 1. By Theorem 2, there exists a point (x, 2y) such that |DR2,B2(x, 2y)| = |2xy(b2 − r2)−
(B2[x, 2y]−R2[x, 2y])| ≥ 2c

(
(b2−r2)·log(b2+r2)

b2+r2

)
for some constant c.

Then, we map the point (x, 2y) back to a point (x, 1/2 + y) in the original unit square.
We will show that either DR,B(x, 1/2 + y) or DR,B(x, 1/2 − ε) would give us the desired
lower bound, where ε is an arbitrarily small constant such that rectangle [0, 1]× [0, 1/2− ε]
only contains B \B2 and R \R2.

If |DR,B(x, 1/2 + y)| ≥ c
(

(b2−r2)·log(b2+r2)
b2+r2

)
, we are done.

If |(b− r)/2− (b2 − r2)| ≥ c/4
(

(b2−r2)·log(b2+r2)
b2+r2

)
, the proof is also done. Because

|DR,B(1, 1/2− ε)|
(3)= |(b− r)(1/2− ε)− (B[1, 1/2− ε]−R[1, 1/2− ε])|
= |(b− r)(1/2− ε)− (b− r − (b2 − r2))|
= |(b− r)/2− (b2 − r2)− (b− r)ε|

> c/8
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
.

Suppose that the two cases do not hold, we have |DR,B(x, 1/2+y)| < c
(

(b2−r2)·log(b2+r2)
b2+r2

)
and |(b − r)/2 − (b2 − r2)| < c/4

(
(b2−r2)·log(b2+r2)

b2+r2

)
. Let R1 = R \ R2 and B1 = B \ B2,

which are inside the rectangle [0, 1]× [0, 1/2− ε]. Consider

DR,B(x, 1/2 + y)
= (b− r)x(1/2 + y)− (B[x, 1/2 + y]−R[x, 1/2 + y])
= (b− r)x(1/2 + y)− (B2[x, 1/2 + y]−R2[x, 1/2 + y] +B1[x, 1/2− ε]−R1[x, 1/2− ε])
= (b− r)x(1/2− ε)− (B1[x, 1/2− ε]−R1[x, 1/2− ε]) + (b− r)xε

+(b− r)xy − (B2[x, 1/2 + y]−R2[x, 1/2 + y])
= DR,B(x, 1/2− ε) + (b− r)xy − (B2[x, 1/2 + y]−R2[x, 1/2 + y]) + (b− r)xε
> DR,B(x, 1/2− ε) + 2(b2 − r2)xy − (B2[x, 1/2 + y]−R2[x, 1/2 + y])

−c/2
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
+ (b− r)xε

= DR,B(x, 1/2− ε) +DR2,B2(x, 2y)− c/2
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
+ (b− r)xε

The first inequality is given by b−r > 2(b2−r2)−c/2
(

(b2−r2)·log(b2+r2)
b2+r2

)
. Since |DR,B(x, 1/2+

y)| < c
(

(b2−r2)·log(b2+r2)
b2+r2

)
and |DR2,B2(x, 2y)| ≥ 2c

(
(b2−r2)·log(b2+r2)

b2+r2

)
, we can conclude that

|DR,B(x, 1/2− ε)| = Ω( (b2−r2)·log(b2+r2)
b2+r2

). J

4 Lower bound for two dimensional weak CDRs

Before giving the proof of Theorem 3, we recall that a proof for a proper CDR (i.e., one
without inner leaves) was given in [8]. Our proof follows the same spirit, so we first give an
overview of their proof and describe what changes when we introduce inner leaves.
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Figure 4 Illustration of why the two sets I (purple disks) and L(I) (green squares) should have
proportional sizes. If the size of L(I) grows drastically (as shown in the figure), the point of the
highest x-coordinate in L(I) must make a significant detour to pass through I, causing a large error.
A similar effect happens if the size of L(I) is comparatively small.

I Lemma 15. Given a CDR, a point p = (x, y) ∈ LN , and an integer n < N , let p′ =
(x′, y′) ∈ Ln be the unique point of Ln that is in dig(o, p). The Hausdorff error of the CDR
is at least |x′ − x · nN |.

Proof. This result was shown by Chun et al. [8] (Lemma 3.5, in Cases 1 and 2). We give the
proof for completeness. Consider the L-infinity ball of radius |x′ − x · nN | centered at p · nN .
By construction, this ball contains p′ in its boundary. Because of the monotonicity axiom,
no vertex of dig(o, p) can be in the interior of the ball. In particular, when measuring the
Hausdorff distance of point p · nN ∈ op we get an error of at least |x′ − x · nN |. J

Consider any point p ∈ LN and virtually sweep a line of slope −1 from the origin all
the way to LN . During the sweep, the intersection between the diagonal line and either the
Euclidean segment op or the digital one dig(o, p) will be a point. Lemma 15 says that if we
can find an instant of time for which two intersection points are at distance ∂ from each
other, then the Hausdorff error of the whole CDR must be Ω(∂) (see Figure 4).

In order to find this instant of time we see how much the subtrees grow. Consider a
consecutive set of I vertices in some intermediate layer Ln. Let L(I) be the vertices of LN
whose digital path to the origin passes through some vertex of I. If the CDR has small
error, we need L(I) to have roughly N

n |I| many points. The difference between the expected
number of vertices and |L(I)| combined with Lemma 15 will give a lower bound on the
Hausdorff error.

Our proof follows the same spirit (transform the tree into a pointset, use discrepancy
to find a subset with too many/too few children and use Lemma 15 to find a large error).
Although all three steps follow the same spirit, they need major changes to account for the
possibility of inner leaves.

The biggest change is how we map the tree. In proper CDRs each line has a unique
split vertex and always extends to LN . Thus, a region with a large number of split vertices
directly implies a large error. In our setting, we could potentially have a region with many
split vertices followed by a large number of inner leaves to cancel out the growth. This is
why we need two major changes: first we now color the points red and blue depending on
whether they are split vertices or inner leaves. We also introduce a second dimension to track
when the children of a split vertex stop extending. Intuitively speaking, the x-coordinate of
our mapping will be similar to the mapping done by Chun et al. [8] whereas the y-coordinate
represents time. Thus, the difference in y-coordinates between red and blue points can be
used to determine for how long are the two children of a split vertex alive (the longer the
difference in y-coordinates, the further away that the two children extend).
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We now use the mapping of Section 2 together with the two colors discrepancy (Theorems 2
and 14) to show a lower bound on the error of weak CDRs. The discrepancy result in
Theorem 2 considers the points in the whole unit square. Due to some technical reasons, in
Section 5 we will need a discrepancy result for the points in the upper half of the unit square
instead (Theorem 14). The difference between the two theorems is just a constant factor and
thus would have little implication. Here we use Theorem 14 and prove the result in terms of
the number of inner leaves in the upper half. Specifically, we show the following result.

I Theorem 3. For any N ∈ N, any weak CDR defined on G+
N ⊂ Z2 with κ2 inner leaves

between lines x+ y = dN/2e and x+ y = N has Ω(N logN
N+κ2

) error.

Proof. Given a weak CDR and its associated tree T , consider its transformation into the sets
R and B of red and blue points defined by π. Let b2 and r2 be the numbers of blue and red
points in the rectangle [0, 1]× [1/2, 1] respectively. By Lemma 7, we have b2 − r2 = bN/2c.
We apply the discrepancy result (Theorem 14) with b2− r2 = bN/2c and r2 = κ2, and obtain
that there exists α, β ∈ [0, 1] such that |B[α, β]−R[α, β]−N · α · β| > c′ · N ·logN

N+κ2
.

We want to use Theorem 8 on the vertex of T whose image is (α, β). Naturally, such
a vertex need not exist, but we will find one nearby whose associated discrepancy is also
high. Let n = bN · βc and observe that B[α, β] = B[α, nN ]; indeed, by the way we transform
points, their y-coordinates are of the form i/N . However, by definition of n we know that β
is between n/N and (n+ 1)/N and thus no point can lie in the horizontal strip y ∈ (n/N, β]
(by the same argument we also have R[α, β] = R[α, nN ]).

If we substitute β in the previous equation we get∣∣∣B [α, n
N

]
−R

[
α,

n

N

]
− αn

∣∣∣ > c′ · N logN
N + κ2

− 1 ≥ c′′ · N · logN
N + κ2

for a large enough N , κ2 ∈ O(N logN) and for some c′′ > 0. We get the additional 1 term
because of the rounding in the definition of n.

Now we need to do a similar operation for α. Let qi = (i, n− i) be a vertex of Ln. By
Lemma 5 the image of the auxiliary function M(qi) monotonically increases as i grows. Let
Q = {qi : M(qi) ≤ α} and α′ = maxqi∈QM(qi). Note that, by definition of the set Q, it
trivially holds that α′ ≤ α.

I Lemma 16. B[α, nN ]−R[α, nN ] = B[α′, nN ]−R[α′, nN ]

Proof. The difference between the two rectangles is the rectangle ∆ whose opposite corners
are (α′, 0) and (α, n/N), and one of the boundary (α′, 0)(α′, nN ) is open. We claim that red
and blue points are paired (sharing the same x-coordinate) in ∆ (and thus, for each red point
that we remove we are also removing a blue one). By Lemma 6, we know that all the blue
points have different x-coordinates, so do red points. Hence, if there are red and blue points
on the same vertical line, they must be the only pair in that vertical line. First notice that if
there is a red point in ∆, there also exists a blue point in ∆ with the same x-coordinate and
below the red point. By the virtual walk that we define the auxiliary function, every split
vertex is closer to the origin than the corresponding leaf. Hence, after the transformation π,
if there is a red point, then there must exist a blue point with the same x-coordinate (by
Lemma 6) and smaller y-coordinate. Then, we will show that if there is a blue point in ∆,
there also exists a red point in ∆ with the same x-coordinate.

Assume, for the sake of contradiction that there exists a blue point p in ∆ such that there
does not exist a red point q with the same x-coordinate as p in ∆. Let s be the split vertex
whose image is p. By definition of the transformation π, the x-coordinate of p is M(s), which
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n N

p

qm

γ
γ′

dig(op)

n N

αN

qk

p

dig(op)

Figure 5 (left) When k is small we have Ω(N logN
N+κ2

) consecutive vertices in Ln that are not
productive (shown as squares). In particular, the ray γ through the middle point must make a large
detour. (right) When k is large, there is a digital path through qk with a big detour.

is between α′ and α. We apply Lemma 6 to find the unique leaf ` such that M(s) = M(`).
Since π(`) 6∈ ∆, we have that `x + `y > n. Let m be the unique vertex of Ln that is in the
path from s to `. It follows that π(m) = (M(`), nN ) ∈ ∆. This gives a contradiction with the
definition of α′, and thus implies that if there exists a blue point in ∆, then there also exists
a red point in ∆ with the same x-coordinate. J

Thus, given a pair (α, β) whose associated rectangle has high discrepancy, we have snapped
it to the pair (α′, nN ) that defines another rectangle with high discrepancy. More importantly,
by definition of Q, we know that π(q|Q|−1) = (α′, nN ). Note that q|Q|−1 need not be a split
vertex or an inner leaf (and thus, (α′, nN ) may not be a point of R ∪B).

Let b′ = B[α′, nN ] and r′ = R[α′, nN ]. If we apply Theorem 8 to point q|Q|−1 we get that
b′ − r′ − 2 ≤ |Q| − 1 ≤ b′ − r′. This set Q is the one that makes the role of I in the proof
overview: we know that vertices of Q are the ones that extend to cover all the vertices of LN
whose image is α′ or less. As such, we would expect |Q| to contain roughly nα′ elements.
However, the discrepancy result tells us that the size of Q is c′′N logN

N+κ2
units away from that

value. We say that p is productive if some point of T (p) is in LN (this is equivalent to the
fact that p can be extended to reach the boundary). Let k ≤ b′− r′− 2 be the biggest integer
such that qk is productive. Note that k is well defined because q0 is always productive ((0, n)
always extends to (0, N)). The proof now considers a few cases depending on whether k is
small or large (specifically, we say that k is small if |Q|−1−k ≥ (b′−r′−2)−k > c′′

2 ·
N logN
N+κ2

,
large otherwise) and if Q contains too few or too many points.

k is small. Recall that we looked for the largest possible k (such that qk is productive). Thus,
if k is small, we have many points in layer Ln that are consecutive and not productive.
In particular, none of the vertices in qb′−r′−b c′′2 ·N logN

N+κ2
c, . . . , qb′−r′−2 are productive. Let

qm = qb′−r′−b c′′4 ·
N logN
N+κ2

c (note that this point is surrounded by non-productive points in
both sides along Ln).
Shoot a ray γ from o towards qm. Let p be the vertex on LN that is closest to γ. Observe
that the || · ||∞ distance between γ and p is at most 1/2. Let γ′ be the ray shooting
from o towards p. Similarly, the || · ||∞ distance between γ′ and qm is at most 1/2 (see
Figure 5, left).
We now apply Lemma 15 to dig(o, p). We know that the Euclidean segment op is close
to qm. The digital segment must cross Ln and is far from qm (the closest it can pass
is either qb′−r′−b c′′2 ·N logN

N+κ2
c−1 or qb′−r′−1). That is, we know that the intersection of op
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with the line x+ y = n is at most half a unit away from qm. Similarly, the intersection
with dig(o, p) is at least b c

′′

4 ·
N logN
N+κ2

c from qm. Thus, by triangle inequality the || · ||∞
distance between dig(o, p) and op is at least b c

′′

4 ·
N logN
N+κ2

c − 3/2 ∈ Ω(N logN
N+κ2

).
k is large and b′ − r′ ≥ nα+ c′′ · N logN

N+κ2
. Look at the x-coordinate of qk. We know that

Q has at least b′ − r′ − 1 ≥ nα + c′′ · N logN
N+κ2

− 1 many elements, and k is among the
productive vertices with the largest x-coordinate. In particular, the x-coordinate of qk is
at least b′ − r′ − 2 ≥ nα+ c′′

2 ·
N logN
N+κ2

− 2.
Let p be the unique leaf of LN such that M(p) = M(qk). We now apply Lemma 15 to
dig(o, p) at the line x+ y = n. By definition of p, we have that dig(o, p) passes through
qk. Now, by definition of Q, we know that M(qk) ≤ α and in particular the x-coordinate
of p is at most αN (see Figure 5, right). Thus, the Euclidean segment op must intersect
at a point whose x-coordinate is at most αn.
That is, when we look at the Euclidean and the digital segments along line x+ y = n,
the Euclidean crossing happens at x-coordinate at most αn. However, the x-coordinate
of the digital crossing is at least αn+ c′′

2 ·
N logN
N+κ2

− 1. By Lemma 15 we conclude that
the error must be Ω(N logN

N+κ2
) as claimed.

b′ − r′ < nα− c′′ · N logN
N+κ2

. This proof is very similar to the previous case. Consider the
vertex p = (bαNc, N − bαNc) ∈ LN and apply Lemma 15 to dig(o, p) and op.
At line x+ y = n the Euclidean segment op passes through a point whose x-coordinate is
bαNc · nN ≥ bαnc−1. By definition, M(p) ≤ α and thus dig(o, p) must pass through some
vertex q of Q. In particular, the x-coordinate of q is at most b′ − r′ < nα− c′′ · N logN

N+κ2
,

giving the Ω(N logN
N+κ2

) error and completing the proof of Theorem 3. J

Note that if we use Theorem 2 instead, the same argument follows and we would get the
following result.

I Theorem 17. For any N ∈ N, any weak CDR defined on G+
N ⊂ Z2 with κ1 inner leaves

has Ω(N logN
N+κ1

) error.

5 Lower bound for CDRs in high dimensions

We now use the lower bound of weak CDRs to obtain a lower bound for CDRs in three or
higher dimensions. Consider the restriction of any d-dimensional CDR T to the x1x2-plane
(we call this restriction the x1x2-restriction of T and denote it by Tx1x2). Recall that the
key observation is that Tx1x2 is a (possibly weak) CDR and that any inner leaf in Tx1x2 must
extend in some xi-direction in T for some i ∈ [3..d]. We have seen that Tx1x2 needs to have
a large number of inner leaves to have o(logN) error. In the following, we will show that a
large number of inner leaves will cause constraints for Zd and have an impact in the overall
error of T .

We do a slight abuse of notation and use the same terms as in two dimensions. For
simplicity of the notation, we assume that N is a positive even number. For any n ≤ N , let
Ln = {(x1, x2, . . . , xd) ∈ G+

N :
∑d
i=1 xi = n}. Given any CDR in G+

N , we consider the CDR
as a tree rooted at the origin. Let T (v) be the subtree rooted at v.

From Theorem 3, we already know that in order for Tx1x2 to have sublogarithmic error
we must have κ2 ∈ ω(N) inner leaves. However, each inner leaf ties to a boundary leaf in
LN in d dimensions. In other words, the subtrees rooted at the vertices in LN/2−1 ∩ Tx1x2

must cover all these boundary vertices. We now observe that a weak CDR with inner leaves
in the x1x2-plane induces subtrees which are too big for the high dimensional proper CDR
(See Figure 6).
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v

LN

z

y

xo

u

u′

error

LN/2−1

BN

Figure 6 Illustration of Lemmas 18 and 19: the red region represents the region of BN . If we
have lots of inner leaves in Txy, it will have many descendants in the three dimensional CDR at
layer LN so that the height of the red region attempting to contain them is large. In particular,
we can find a vertex v on the xy-plane such that v is on the dig(o, u) and u is far away from the
xy-plane. For simplicity, we show the Euclidean error between v and u′, but we note that the proof
argues under the || · ||∞ metric.

I Lemma 18. Given any CDR in G+
N , let κ2 be the number of inner leaves in Tx1x2 between

LN/2 and LN . There exists a vertex v ∈ LN/2−1 such that vi = 0 for i = 3, . . . , d and some
boundary leaf u ∈ T (v) ∩ LN has uj ≥ (κ2/N)

1
d−2 − 1 for some j ∈ [3..d].

Proof. The proof follows from a packing argument. Consider the set V = {(0, N/2 −
1, 0, . . . , 0), (1, N/2 − 2, 0, . . . , 0), . . . , (N/2 − 1, 0, 0, . . . , 0)}. Note that these vertices lie in
the x1x2-plane and thus are in Tx1x2 . Because they are the two dimensional equivalent of
LN/2−1, the union of their subtrees covers Tx1x2 between N/2 and N . In this region we
know that we have κ2 many inner leaves, which will extend to LN with the first step in the
xi-direction for some i ∈ [3..d]. Let YN be the extended vertices on LN from these κ2 inner
leaves, i.e., |YN | ≥ κ2.

Let BN = {(x1, x2, . . . , xd) ∈ G+
N :

∑d
i=1 xi = N, x1 + x2 < N and ∀i ∈ [3..d], xi <

(κ2/N)
1
d−2 − 1}, see Figure 6. Since we have less than (κ2/N)

1
d−2 choices for x3, . . . , xd, at

mostN choices for x1 and the value of x2 is adjusted to satisfy the constraint
∑d
i=1 xi = N , the

size of BN is less than κ2. Hence, BN cannot contain all vertices of YN . Moreover, no vertices
of YN lie on x1x2-plane, so there exists some vertex u ∈ YN such that uj ≥ (κ2/N)

1
d−2 − 1

for some j ∈ [3..d], which is in T (v) ∩ LN for some v ∈ V . J

The existence of this vertex v is the root of the problem. We conclude with the following
statement.

I Lemma 19. Any CDR defined on G+
N ⊂ Zd with κ2 inner leaves in Tx1x2 between LN/2

and LN has Ω((κ2/N)
1
d−2 ) error.
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Proof. Apply Lemma 18 to obtain a vertex v ∈ LN/2−1 ∩ Tx1x2 that satisfies some u ∈
T (v) ∩LN with uj ≥ (κ2/N)

1
d−2 − 1 for some j ∈ [3..d]. Let u′ be the intersection of ou and

the affine plane containing LN/2−1, see Figure 6. As LN and LN/2−1 are parallel, u
′
j−oj
uj−oj ≥

1
3

for N ≥ 6, this implies that u′j = Ω((κ2/N)
1
d−2 ). By construction, we have that v is on the

dig(o, u) and vj = 0, hence || · ||∞ distance between dig(o, u) and ou is Ω((κ2/N)
1
d−2 ). J

Combining with Theorem 3 gives us a lower bound for CDRs in d dimensions.

I Theorem 4. Any CDR in Zd has Ω(log1/(d−1) N) error.

Proof. By Theorem 3 and Lemma 19, the error is Ω(N logN
N+κ2

) and Ω((κ2/N)
1
d−2 ), where κ2

is the number of inner leaves in Tx1x2 between LN/2 and LN . The balance between the two
is obtained by choosing κ2 = Θ(N log

d−2
d−1 N), giving the Ω(log1/(d−1) N) lower bound. J

6 Final remarks

Common intuition would say that the Ω(logN) lower bound for the error of two-dimensional
CDR and CDS automatically extends to higher dimensions. The observation that this is not
true opens up new ways in which research can continue. We believe that further analysis of
the mapping between the three spaces (from CDR in high dimensions to the 2-D weak CDR
to the two-colored pointset) and the high interdependence between the three spaces can help
in designing better lower and upper bounds.

Our lower bound Ω(log1/(d−1) N) extends the previous lower bound. The next step would
be to close the gap between Ω(log1/2 N) and O(logN) bounds in three dimensions. Even
if the final answer ends up being Θ(logN) we believe that the relationship between high
dimensional CDRs, weak CDRs induced in subspaces and the mapping to pointset gives a
better understanding of CDRs.

We also find that weak CDRs are an interesting research topic on their own. In particular,
we would like to find the relationship between the number of inner leaves and the error of
the construction. That is, say that we want a CDR with O(e) error (for some e ≤ logn).
What is the minimum number of leaves ` = `(e) that such a CDR must have? Can we find
such a construction?

Theorem 3 seems to indicate a linear relationship between the two, and it is not hard
to obtain one (an example is given in [3]). However, this construction is most likely not
the best possible one. Indeed, even if we are interested in O(logN) error, this construction
creates a large number of inner leaves, but we know of CDRs with the same error and no
inner leaves. Thus, the question becomes, can we significantly improve upon the greedy
construction, which can be found in the full version of the paper in [3]? Or is there some
exponential dependency between the number of inner leaves and the error of the weak CDR?
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