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Abstract
We consider the problem of digitalizing Euclidean line segments from Rd to Zd. Christ et al.
(DCG, 2012) showed how to construct a set of consistent digital segments (CDS) for d = 2: a
collection of segments connecting any two points in Z2 that satisfies the natural extension of the
Euclidean axioms to Zd. In this paper we study the construction of CDSs in higher dimensions.

We show that any total order can be used to create a set of consistent digital rays CDR in Zd

(a set of rays emanating from a fixed point p that satisfies the extension of the Euclidean axioms).
We fully characterize for which total orders the construction holds and study their Hausdorff
distance, which in particular positively answers the question posed by Christ et al..

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, I.4.1
Digitization and Image Capture

Keywords and phrases Consistent Digital Line Segments, Digital Geometry, Computer Vision

Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.31

1 Introduction

Computation in Ancient Greece was rigorously done with ruler and compass using the five
axioms of Euclidean geometry. The study of these axioms has had a drastic influence in
the development of mathematics. Indeed, the removal of one of them (the fifth one) created
non-Euclidean geometries, which have had huge influence on science and technology.

Computers and digital data have nowadays replaced the ruler and compass methods of
computation. In order to have a rigorous system of geometric computation in the digital
world, it is desirable to establish a set of axioms similar to those of the Euclidean geometry,
where we need to replace a line by a Manhattan path in the micro scale that in a macro scale
can be seen as a straight line.

There have been several attempts to define digital segments in a two dimensional n× n
grid. The two dimensional bounded space is the most popular case to consider given its
many applications in computer vision and computer graphics. Solutions have been proposed
from a robust finite-precision geometric computation point of view [6, 8], snap rounding [5],
and many more.

A pioneering work by Michael Luby in 1987 [7] introduced an axiomatic approach of the
set of digital rays emanating from the origin. He showed that lines should curve by Θ(logn)
to satisfy a set of axioms analogous to Euclid’s axioms (the lower bound proof was given

∗ M.K. was supported in part by the ELC project (MEXT KAKENHI No. 12H00855, 15H02665, and
24106007).

© M.K. Chiu and M.Korman;
licensed under Creative Commons License CC-BY

33rd International Symposium on Computational Geometry (SoCG 2017).
Editors: Boris Aronov and Matthew J. Katz; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


31:2 High Dimensional Consistent Digital Segments

by Håstad). The theory was recently re-discovered by Chun et al. [4] and Christ et al. [3].
Using these results we can define a geometry that satisfies Euclid-like axioms in the two
dimensional grid, and only a small bend of the lines will be needed (i.e., Θ(logn) in an n× n
grid, a formal definition is given below).

Chun et al. and Christ et al. proposed a d-dimensional version of the set of axioms, but
unfortunately it is not constructive. That is, they left open how to find a system to generate
a complete set of digital segments in d-dimensional space that resembles the Euclidean
segments. In this paper we provide the first significant step towards answering the question
for high dimensions. For the purpose we extend the constructive algorithm of Christ et al. [3]
to spaces of arbitrary dimension and study how much of a bend it creates.

2 Preliminaries

Let x1, x2, . . . , xd denote the coordinate axes in Zd, and pi denote the i-th coordinate of a
point p ∈ Zd (for simplicity, from now on all indices are in the set {1, . . . , d}). Our aim is
to construct a digital path for any two points p, q ∈ Zd (we denote such a path by R(p, q)).
Ideally, we want R to be constructive and defined in the whole domain, but sometimes we
will consider subsets of Zd × Zd instead.

I Definition 1. For any S ⊆ Zd × Zd, let DS(S) be a set of digital segments such that
R(p, q) ∈ DS(S) for all (p, q) ∈ S. We say that DS(S) forms a partial set of consistent digital
segments on S (partial CDS for short) if for every pair (p, q) ∈ S it satisfies the following five
axioms:
(S1) Grid path property: R(p, q) is a path between p and q under the 2d-neighbor topology1.
(S2) Symmetry property: R(p, q) = R(q, p).
(S3) Subsegment property: For any r ∈ R(p, q), we have R(p, r) ∈ DS(S) and R(p, r) ⊆

R(p, q).
(S4) Prolongation property: There exists r ∈ Zd, such that R(p, r) ∈ DS(S) and R(p, q) ⊂

R(p, r).
(S5) Monotonicity property: For all i ≤ d such that pi = qi, it holds that every point

r ∈ R(p, q) satisfies ri = pi = qi.

These axioms give nice properties of digital line segments analogous to Euclidean line
segments. For example, (S1) and (S3) imply that the non-empty intersection of two digital
line segments is connected under the 2d-neighbor topology. In particular, the intersection
between two digital segments is a digital line segment that could degenerate to a single point
or even to an empty set. (S5) implies that the intersection with any axis-aligned halfspace is
connected, and so on.

Ideally, we want the set S to be as large as possible. A subset of Zd × Zd that is often
used for constructions is S = {p} × Zd (for some p ∈ Zd). We say that a partial CDS on
such a set is a consistent digital ray system (CDR for short). Note that this means that
we have a method to connect a fixed point p to any other point of Zd. A partial CDS for
S = Zd × Zd is called a set of consistent digital segments (CDS for short). Our aim is to
create a CDS in Zd, since it is a constructive way to connect any pairs of points.

It is not straightforward how to create a CDS, even when d = 2. For example, the
simple rounding scheme of Euclidean segments to the digital world that is often used in

1 The 2d-neighbor topology is the natural one that connects to your predecessor and successor in each
dimension. Formally speaking, two points are connected if and only if their L1 distance is exactly one.
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Figure 1 Two different Euclidean line segments and their corresponding digital line segments via
a rounding scheme. Note that their intersection in Z2 (highlighted with grey disks) is not connected
under the 4-neighbor topology, which implies that the rounding scheme is not consistent.

computer graphics, does not generate a CDS (since axioms are not always preserved, see
Figure 1). Another alternative is to use the bounding box approach that makes all moves in
one dimension before moving in another one. Although this set of segments is consistent, it
will be visually very different from the Euclidean line segments. Thus, the objective is to
create a CDS that resembles the Euclidean segments.

The straightness or resemblance between the digital line segment R(p, q) and the Euclidean
segment pq is often measured using the Hausdorff distance. The Hausdorff distance H(A,B)
of two objects A and B is defined by H(A,B) = max{h(A,B), h(B,A)}, where h(A,B) =
maxa∈A minb∈B δ(a, b), and δ(a, b) is the natural Euclidean distance, given by || · ||2 norm.

I Definition 2. Let DS(S) be a partial CDS. We say that DS(S) has Hausdorff distance
f(n) if for all p, q ∈ S such that ||p− q||1 ≤ n, it holds that H(pq,R(p, q)) = O(f(n)).

Constructions with smaller Hausdorff distance resemble more the Euclidean segments
and thus, are more desirable. Hence, the big open problem in the field is what is the
(asymptotically speaking) smallest f(n) function so that we can have a CDS in Zd? Or
equivalently: what is the asymptotic behavior of the Hausdorff distance of the CDS that
best approximates the Euclidean segments?2

2.1 Previous work
Although the concept of consistent digital segments was first studied by Luby [7], it received
renewed interest by the community when it was rediscovered by Chun et al. [4]. The latter
showed how to construct a set of consistent digital rays (CDR) in any dimension. The
construction satisfies all axioms, including the Hausdorff distance bound:

I Theorem 3 (Theorem 4.4 of [4], rephrased). For any d ≥ 2 and p ∈ Zd we can construct a
CDR with O(logn) Hausdorff distance.

Håstad3 and Chun et al. [4] showed that any CDR in two dimensions must have Ω(logn)
Hausdorff distance. Thus logn is the smallest possible distance one can hope to achieve.
This result was generalized by Christ et al. [3], who shows a correspondence between CDRs
in Z2 and total orders on the integers (details on this correspondence is given in Section 3).

2 Note that in the original definition of Christ et al. [3], the requirement is for points p, q ∈ S such that
||p − q||2 ≤ n. The focus of interest is the two dimensional case, and for any fixed dimension both
metrics are equivalent (since

√
d

d ||p− q||1 ≤ ||p− q||2 ≤ ||p− q||1. However, since we are interested in
bounds that depend in the dimension d, it is more accurate to measure the distance between p and q
with the L1 metric.

3 The lower bound was published by Luby, but credit given to Håstad (see Theorem 19 of [7]).

SoCG 2017
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In particular, this correspondence can be used to create a CDS in Z2 that has O(logn)
Hausdorff distance. Note that the Ω(logn) lower bound also holds for CDS, so this result is
asymptotically tight.

This answers the question of how well can CDSs approximate Euclidean segments in the
two dimensional case. However, the question for higher dimensions remains largely open.
Although the method of Christ et al. [3] cannot be used to construct CDSs or CDRs in higher
dimensions, they show that it can create partial CDSs.

I Theorem 4 (Theorem 16 of [3], rephrased). Let S = {(x, y) : xi ≥ yi} ⊂ Zd × Zd. We can
construct arbitrarily many partial CDSs on S.

Note that S contains segments of positive slope (that is, only for the pairs (p, q) such
that q is in the first orthant of p), hence it is roughly a small fraction (roughly 1/2d−1) of
all possible segments. Other than Theorems 3 and 4, little or nothing is known for three or
higher dimensions. Up to date, the only CDS known in three or higher dimensions is the
naive bounding box approach (described in Section 3) that has Ω(n) Hausdorff distance. In
particular, it still remains open whether one can create a CDS in Zd with o(n) Hausdorff
distance (for d > 2).

Other research in the topic has focused in the characterization of CDSs in two dimensions.
Chowdhury and Gibson [1] gave necessary and sufficient conditions so that the union of CDRs
forms a CDS. This characterization heavily uses the correspondence between CDRs and total
orders, and thus it was stated in terms of total orders. In a companion paper, the same
authors [2] afterwards provided an alternative characterization together with a constructive
algorithm. Specifically, they gave an algorithm that, given a collection of segments in an
n× n grid that satisfies the five axioms, computes a CDS that contains those segments. The
algorithm runs in polynomial time of n. Both results only hold for the two dimensional case.

Other definitions

Given two points p, q ∈ Zd such that p 6= q, the slope of R(p, q) is the sign vector t =
(t1, t2, . . . , td) ∈ {+1,−1}d, where ti = +1 if pi ≤ qi and is −1 if pi ≥ qi. Note that two
points have more than one slope when pi = qi for some index i. For simplicity, we refer to
the slope of R(p, q) (whenever p and q have more than one slope we pick one arbitrarily). Let
T be the set containing all 2d slopes of Zd. For any two vectors u, v ∈ Zd, let u · v denote
their dot product.

A total order θ of Z is a binary relation on all pairs of integers. We denote that a is
smaller than b with respect to θ by a ≺θ b. We say that two elements a and b are consecutive
if there is no number between them (i.e., no integer c satisfies a ≺θ c ≺θ b).

We define three operations on total orders: shift, flip and reverse. The shift operation
is denoted by θ + c and is the result of adding a constant value c to each integer without
changing their binary relations (that is, a ≺θ b if and only if a + c ≺θ+c b + c). Similarly,
the flip of θ is denoted by −θ and is the result of changing the sign of all binary relations
(that is, a ≺θ b if and only if −a ≺−θ −b). The reverse operation of θ (denoted by θ−1) is
the total order resulting in inverting all relationships (that is, a ≺θ b if and only if b ≺θ−1 a).

For any a < b ∈ Z, we will restrict a total order θ to an interval [a, b] (and denote
it by θ[a, b]). For these subsets we also use the same shift, flip and reverse operations
whose definitions follow naturally. In particular, observe that (θ[a, b])−1 = (θ−1)[a, b],
(θ[a, b]) + c = (θ + c)[a+ c, b+ c], and −(θ[a, b]) = (−θ)[−b,−a]. Due to lack of space some
proofs are deferred to the extended version of the document.
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2.2 Results overview and paper organization
We study properties that CDRs and CDSs must satisfy in high dimensions (i.e., d ≥ 3), and
show that they behave very differently from the two-dimensional counterparts. In Section 3
we introduce the concept of axis-order. Although not needed in two dimensions, it allows us
to extend the total order construction of Christ et al. to higher dimensions.

Given a point p ∈ Zd, a total order θ on the integers, and a slope t, we construct a
partial CDS which we denote by TOC(θ, p, t). This partial CDS contains segments having
an endpoint p and slope t. In two dimensions it generates a tree that covers a quadrant
whose corner is p (analogously, in higher dimensions it covers an orthant whose apex is p).

In two dimensions we have 2d = 4 different slopes. Christ et al. [3] showed that we can
pick any four total orders, apply each order to a different slope, and the union of the four
constructions will be a CDR. In this paper we show that the analogous result does not hold
in higher dimensions: fixing the total order for a single orthant uniquely determines the
behavior of other orthants.

I Theorem 5 (Necessary and sufficient condition for CDRs). For any d > 2, point p ∈ Zd and
set {θt : t ∈ T} of 2d total orders,

⋃
t∈T TOC(θt, p, t) forms a CDR at p if and only if for any

t, t′ ∈ T it holds that θt[t · p,∞) = θt′ [t′ · p,∞)− t′ · p+ t · p, where T is the set containing
all possible slopes of Zd.

In particular, there is a unique way of completing the partial CDS TOC(θ, p, t) to a
CDR which we denote by TOC(θ, p). The next step is to consider the union of several
CDRs to obtain a CDS. For the two dimensional case, Christ et al. showed that we can pick
2d−1 = 2 total orders, and if we use them consistently for all points of Z2, the result will
always be a CDS. Theorem 5 already implies that only one total order can be involved in
the construction of CDSs. In Section 4 we observe that not all total orders will create one,
and fully characterize which total orders do so.

I Theorem 6 (Necessary and sufficient condition for CDSs). θ is a total order such that⋃
p∈Zd TOC(θ, p) forms a CDS if and only if θ = θ + 2 and θ = −(θ + 1)−1.

In particular, this result positively answers the question posed by Christ et al. of whether
their approach can be extended to create CDSs in higher dimensions (posed in a preliminary
version of [3]).

The main difference between two dimensional and higher dimensional spaces is that the
construction for two different slopes has a larger portion in common. In two dimensions,
two quadrants share at most a line (whose behavior is unique because of the monotonicity
axiom), but in general orthants may share a subspace of dimension d− 1. The total orders
associated to each orthant must behave similarly within the subspace, which creates some
dependency between the total orders. More importantly, each orthant shares subspaces with
other orthants, and so on. This cascades creating common dependencies that cycle back
to the original orthant and highly constrain the total orders. In Section 6 we discuss this
dependency and argue that variations of this construction will also have the same necessary
and sufficient conditions.

3 Extending the total order construction to higher dimensions

In this section we use a total order to construct a CDR in Zd. We start by reviewing the
construction of Christ et al. [3] for Z2. Given a total order θ and two points p = (p1, p2), q =
(q1, q2) ∈ Z2 such that q1 ≥ p1 and q2 ≥ p2, we view the digital segment R(p, q) as a collection

SoCG 2017
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p

q

r

o x1 + x2 = 2 x1 + x2 = 6

x1 + x2 = 11

x1

x2

Figure 2 Example of the construction of Christ et al. in Z2. Given p = (1, 1), q = (8, 4) and
a total order θ such that θ[2, 11] = 5 ≺ 3 ≺ 2 ≺ 7 ≺ 9 ≺ 8 ≺ 11 ≺ 10 ≺ 6 ≺ 4. The path must
perform q1 − p1 = 7 steps in the x1 direction and q2 − p2 = 3 steps in the x2 direction. Since
p1 + p2 = 2 and 2 is among the 7 smallest elements in θ[2, 11], it moves in the x1 direction. Similarly,
at point r = (4, 2), the path will move in x2 direction because r1 + r2 = 6 is among the 3 largest
elements of θ[2, 11]. Observe that, for any c ∈ [2, 11] there is a unique point m in the path such that
m1 +m2 = c.

of steps that form a path from p to q. Due to the monotonicity property, in each step the
path increases either the first or second coordinate by one. Clearly, this path must do
q1 + q2− p1− p2 steps, out of which q1− p1 are in the x1 coordinate (and the remaining ones
in the x2 coordinate). The choice of which steps we move in which coordinate depends on
θ: assume that after moving several steps we have reached some intermediate point (r1, r2).
Then, we check whether or not the number r1 + r2 is among the q1 − p1 smallest elements of
θ[p1 + p2, q1 + q2 − 1]. If so, we move from (r1, r2) in the x1 coordinate. Otherwise we do so
in the x2 coordinate (see an example in Figure 2).

All of the segments created this way have slope (+1,+1). In a similar way, we can pick
a total order to define the segments emanating from p with slope (+1,−1), (−1,+1) and
(−1,−1). We emphasize that there is no dependency between the total orders: the choice of
total order for one slope has no impact on the available options for the others. Moreover,
any four choices will result in a CDR (similarly, any CDR in Zd is associated with 2d total
orders of Z, one for each slope). As mentioned before, this independence between quadrants
does not hold in higher dimensions.

3.1 Constructing a CDR in Zd from a total order
The construction of Christ et al. explains how to construct segments of slope (+1,+1) in
Z2 (or equivalently, for points in the first quadrant). The segments of different slopes are
obtained via symmetry. In higher dimensions it will be useful to have an explicit way to
construct segments of any slope. Thus, we first generalize the method of Christ et al. for
any orthant.

In order to get an idea of our approach, we first look at the folklore bounding box
approach to construct a CDS. When defining the path between point p and point q, we
consider the minimum bounding box formed by the two points. The point with smaller x1
coordinate will move in the x1 coordinate until reaching the x1 coordinate of another point.
Afterwards, the one with smaller x2 coordinate will move in the x2 coordinate, and so on
until the two points meet (see Figure 3).

So, if d = 3, for any segment whose slope is (+1,+1,+1) we first do all the movements
in the x1 coordinate, then x2 coordinate, and finally in the x3 coordinate. However, if
the segment has slope (+1,−1,−1), then the bounding box CDS will travel first in the x1
coordinate, then x3 and finally x2. Intuitively speaking, even though in both cases we are
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p

q

1

2

3

Figure 3 Example of the bounding box approach in Z3. p = (0, 3, 0) and q = (3, 0, 3). The
number in each circle indicates the order in which we execute the movements.

performing the same steps (i.e, we use the natural order 0 ≺ 1 ≺ 2 ≺ 3 ≺ . . .), the order in
which we execute each dimension is slightly different (or equivalently, the total order is being
interpreted differently). We model this difference in interpretation through a new concept
which we call axis-order.

Given a slope (t1, t2, . . . , td), let a1, . . . ak be the indices of the coordinates with positive
value in increasing order (that is, ti = +1 if and only if i = aj for some j ≤ k). Similarly,
let b1, . . . bd−k be the indices of the coordinates with negative value in decreasing order.
Then, the axis-order of (t1, t2, . . . , td) is xa1 , xa2 , . . . , xak

, xb1 , . . . , xbd−k
. For example, the

axis-order of (−1,+1,+1) is x2, x3, x1, and the axis-order of (+1,−1,+1) is x1, x3, x2. As
we will see later, it will be useful to consider subspaces of Zd. We observe a property that
follows from the definition of axis-order.

I Observation 7. Let a1, . . . ak be a sequence of indices such that a1 < . . . < ak, and let
t, t′ ∈ {−1, 1}d be two slopes such that tai = t′ai

(for all i ≤ k). Then, t and t′ have the
same axis-order τ restricted to a subspace H spanned by {xa1 , xa2 , . . . , xak

}. Moreover, the
axis-order of −t and −t′ restricted to H is the reverse of τ .

With the help of axis-order we can extend the two dimensional construction to higher
dimensions. Given a point p = (p1, . . . , pd) ∈ Zd, a total order θ and a slope t, we construct
the set of rays emanating from p with that slope. Define the orthant Ot(p) = {q ∈ Zd : ti ·qi ≥
ti·pi}: by definition, the segment from p to any point inOt(p) has slope t. Also, let xa1 , xa2 , . . .

be the axis-order of t.
For any point q = (q1, . . . , qd) ∈ Ot(p) we construct the segment R(p, q). Similar to the

two dimensional case, the path from p to q must do t · q− t ·p steps, out of which |p1− q1| will
be in the first coordinate, |p2−q2| in the second, and so on. We traverse through intermediate
points, each time increasing the inner product with t by one. At each intermediate point r,
we check the position of t · r in θ[t · p, t · q− 1]; if it is among the |pa1 − qa1 | smallest elements
in θ[t · p, t · q − 1] then we move in the xa1 coordinate. Otherwise, if it is among the smallest
|pa1 − qa1 |+ |pa2 − qa2 | elements we move in xa2 , and so on.

For example, if the total order θ satisfies 3 ≺θ 1 ≺θ 5 ≺θ 7 ≺θ 9 ≺θ 8 ≺θ 6 ≺θ 4 ≺θ 2 ≺θ 0,
p = (0, 0, 0) and q = (2,−3, 5), the slope is (+1,−1,+1), axis-order is x1, x3, x2. So we
must look at θ[p · (+1,−1,+1), q · (+1,−1,+1)− 1] = θ[0, 9]. In this total order the number
(+1,−1,+1) · (0, 0, 0) = 0 is the largest element in θ[0, 9], so we move from (0, 0, 0) in the x2
coordinate to point (0,−1, 0). At point (0,−1, 0) the number (+1,−1,+1) · (0,−1, 0) = 1 is
the second smallest element in θ[0, 9], so we move in the x1 coordinate, and so on. Overall
the path is (0, 0, 0) → (0,−1, 0) → (1,−1, 0) → (1,−2, 0) → (2,−2, 0) → (2,−3, 0) →
(2,−3, 1)→ (2,−3, 2)→ (2,−3, 3)→ (2,−3, 4)→ (2,−3, 5).

SoCG 2017
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I Definition 8. For any point p ∈ Zd, slope t, and total order θ, we call the collection of
segments {R(p, q) : q ∈ Ot(p)} the total order construction of θ (centered at p) for the slope
t, and denote it by TOC(θ, p, t).

3.2 Properties of the total order construction
I Lemma 9 (Translation Lemma). For any p ∈ Zd, slope t and total order θ, the set of
segments in TOC(θ, p, t) is the translated copy of the set of segments in TOC(θ − t · p, o, t),
where o is the origin.

I Lemma 10. For any p ∈ Zd, slope t and total order θ, the set of segments in TOC(θ, p, t)
forms a partial CDS on {p} × Ot(p).

Proof. This statement is a particular case of Theorem 4: we are interested in segments of a
single slope emanating from a fixed point, whereas Theorem 4 only requires segments of a
fixed slope. The proof given by Christ et al. [3] is for slope (+1, . . . ,+1), but the arguments
extend naturally for the general case. J

Let θ0 be the natural order on the integers (that is, θ0 = {. . . ≺ −1 ≺ 0 ≺ 1 ≺ 2 ≺ . . .}).
Fix any point p ∈ Zd and apply the total order construction TOC(θ, p, t) to all slopes.
Similarly, let θ1 be result of swapping the position of −1 and −2 in θ0 (i.e., θ1 = {. . . ≺
−1 ≺ −2 ≺ 0 ≺ 1 ≺ 2 . . .}). Let C0(p) and C1(p) the union of segments created with each
total order, respectively.

I Proposition 11. C0(p) is a CDR that is included in the bounding box CDS whereas C1(p)
is not a CDR.

3.3 Gluing orthants to obtain CDRs
The second example of Proposition 11 shows an example of a total order that cannot be
applied everywhere to form a CDR. Theorem 5 stated in Section 2.2 shows the relationship
that total orders in different slopes must satisfy in order to create a CDR. Intuitively speaking,
this correlation is so strong that choosing one total order effectively fixes the rest. The
remainder of this section is dedicated to proving this interdependency. We start by showing
the proof of one implication of the equivalence.

I Lemma 12 (Necessary condition for CDRs). Let p ∈ Zd and {θt : t ∈ T} be a set of 2d
total orders such that

⋃
t∈T TOC(θt, p, t) forms a CDR. Then, for any t, t′ ∈ T , it holds that

θt[t · p,∞) = θt′ [t′ · p,∞)− t′ · p+ t · p.

Proof (Sketch). We prove the statement by contradiction. That is, assume that there exist
two slopes t, t′ such that v ≺θt v

′ but v′ − t · p+ t′ · p ≺θt′ v − t · p+ t′ · p. Without loss of
generality, we can choose t and t′ so that the corresponding orthants share a two-dimensional
plane (pick a sequence of intermediate orthants so that pairwise they do, and look at the first
time in which the equality is not satisfied). We pick a point q such that R(p, q) has both slope
t and t′, and look at R(p, q) from both the viewpoints of TOC(θt, p, t) and TOC(θt′ , p, t′).

Along the path R(p, q) we look at two intermediate points r and r′. The main feature of
these points is that the behavior of R(p, q) at those points depends on the positions of v and
v′ in θt (if we look at it from the viewpoint of TOC(θt, p, t)). Since v ≺θt v

′, we can choose q
in a way that the path will move in different directions at the two points. Then, we study
the same segment from the viewpoint of the other orthant. In this case, the behavior of the
same intermediate points will depend on the positions of v′− t · p+ t′ · p and v− t · p+ t′ · p in
the shifted total order instead. Thus, if the relationships are reversed, the two paths behave
differently and in particular we cannot have a CDR. J
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I Lemma 13 (Sufficient condition for CDRs). For any point p ∈ Zd, let {θt : t ∈ T} be a set
of 2d total orders such that θt[t · p,∞) = θt′ [t′ · p,∞)− t′ · p+ t · p for any t, t′ ∈ T . Then,⋃

t∈T TOC(θt, p, t) forms a CDR.

This completely characterizes the CDRs that can be made with the total order construction
in Zd. For any point p, slope t and total order θ, there is a unique CDR that can be created in
this way and contains TOC(θ, p, t). Since the choice of slope is not important, let TOC(θ, p)
be the unique CDR that contains TOC(θ, p, (+1, . . . ,+1)).

I Corollary 14. For any p ∈ Zd there exist arbitrarily many CDRs with O(logn) Hausdorff
distance.

Proof. An explicit construction of a single CDR in Zd with O(logn) Hausdorff distance was
given by Chun et al. [4]. They showed that the CDR generated using the Van der Corput
sequence [9] as total order has low Hausdorff distance (for any dimension). Christ et al. [3]
extended the result showing that the straightness is asymptotically same as the discrepancy of
the permutation corresponding to the total order, which is known to be Θ(logn). Moreover,
for any total order θ with low discrepancy, it holds that θ + k has low discrepancy (for any
k ∈ Z), so the arguments for d = 2 extend directly to the higher dimension construction.
Thus, we omit them. J

4 Necessary and sufficient conditions for CDSs

Next we focus our attention to constructing CDSs. Christ et al. [3] showed that if we apply
the same total order construction to all points of Z2 we get a collection of CDRs whose union
is always a CDS. For any total order θ, let TOC(θ) =

⋃
p∈Zd TOC(θ, p). Unlike the two

dimensional case, the construction TOC(θ) does not always yield a CDS in higher dimensions.
Theorem 6 stated in Section 2.2 gives necessary and sufficient conditions that the total order
must satisfy.

Recall that in principle, we allow different orthants (except (+1, . . . ,+1)) to have different
total orders in this construction. For any point p ∈ Zd and slope t, let θpt be the total
order associated to point p and slope t in TOC(θ). Since TOC(θ) in particular contains
TOC(θ, p), Theorem 5 gives a relationship between θ and θpt . We give a stronger bound on
that relationship as well.

I Theorem 15. If θ is a total order such that TOC(θ) forms a CDS, then for any p ∈ Zd
and slope t it holds that θpt [t · p,∞) = θ[t · p,∞). In particular, TOC(θpt , p, t) = TOC(θ, p, t).

This shows that, if we want to create a CDS in this fashion, we must use the same total
order θ for all points and all slopes. Again, this contrasts with the d = 2 case where we can
combine any two total orders for slopes (+1,+1) and (+1,−1). Christ et al. [3] showed that
if we repeat the construction for all points of Z2 the union will form a CDS. The remainder
of this section is dedicated to showing Theorems 6 and 15.

4.1 Two dimensional preliminaries
We will often consider two dimensional subspaces and find some requirements that extend
to the whole space. Thus, we first show a subtree property that CDS in Z2 must satisfy.
Consider any point p ∈ Z2, slope t, point q ∈ TOC(θpt , p, t) such that q 6= p, and all points
r ∈ Z2 such that R(p, r) passes through q. This set of points (and their paths to q) form a
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p = (0, 0)

q = (2, 2)

0 ≺ 8 ≺ 4 ≺ 2 ≺ 6 ≺ 9 ≺ 1 ≺ 5 ≺ 3 ≺ 7θpt [0, 9]

⊆ θpt [4, 9]{8, 4} ≺ 6 ≺ 9 ≺ {5, 7}

a b

θpt [0, 3] ≺ 20 ≺ 1 ≺ 3

n = 10

X1(n)

|| ||

|| ||
X3(n)

ia = 4 ib = 7

X2(n)
||

θqt [4, 9]

r = (p1 + ia, n− (p1 + ia)) = (4, 6)
r′ = (ib − 1 + p1, n− (ib − 1 + p1)) = (6, 4)

r

r′

Figure 4 Example of the subtree property. (left) geometric interpretation of the subtree property.
The paths to p that pass through q impose a constraint on θq

t . In particular, a point in the diagonal
x1 + x2 = n will pass through q if and only if it is between r and r′ (highlighted points in the figure).
(right) implications in the total order of θq

t . In red bold we highlight the points that belong to the
left interval. The points in the right interval are classified into the three sets X1(n), X2(n) and
X3(n) according to their positions (left of a, right of b, or in between). The fact that the subtree of
q (black in the left figure) has to be preserved in q implies many relationships for θq

t that are shown
in the third line.

subtree of TOC(θpt , p, t). The same tree must be part of TOC(θqt , q, t) or it would violate
(S3) (see Figure 4, left).

We express this subtree property in terms of total orders θpt and θqt . Assume t = (+1,+1),
let s1, s2 ≥ 0 be integers such that q = p + (s1, s2), and let n be any number such that
n > s1+s2. We will consider the restriction of the total order θpt to three intervals: [t·p, t·q−1],
[t · q, t · p + n − 1], and [t · p, t · p + n − 1]. Note that the union of the first two forms the
third one. In order to reduce notation we call them the left, the right, and the complete
intervals. Similarly, we call θpt [t · p, t · q − 1], θpt [t · q, t · p+ n− 1], and θpt [t · p, t · p+ n− 1]
the left order, the right order and the complete order. The subtree property says that many
inequalities in the right order must also hold in θqt .

First assume that s1, s2 6= 0; let a and b be the s1-th and (s1 + 1)-th smallest numbers
in the left order, respectively. By definition, these two numbers are consecutive in the left
order, but they need not be in the complete order (i.e., there could be numbers from the
right interval).

Let ia and ib be the positions of a and b in the complete order, respectively. We partition
the numbers of the right interval into three groups, depending on whether they are (i) smaller
than a, (ii) larger than a and smaller than b, or (iii) larger than b (all these comparisons
are with respect to θpt ). Let X1(n), X2(n), and X3(n) be the three sets, respectively (see
Figure 4).

Before giving the subtree property we extend the definitions of these three sets for the
cases in which s1 and s2 can be zero. If s1 = 0 then a and ia are not well defined (similarly,
b and ib are not defined when s2 = 0). In the first case we set ia = 0, X1(n) = ∅ and classify
the numbers of the right interval into X2(n) and X3(n) depending on whether they are
smaller or larger than b. Similarly, if ib is not defined, we set ib = n + 1, X3(n) = ∅, and
numbers are be split into the two sets X1(n) and X2(n).

The following lemma characterizes the points whose path to/from p passes through q in
the quadrant of (+1,+1).
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I Lemma 16. For any n > s1 + s2, let r ∈ Z2 be a point such that r1 + r2 = p1 + p2 + n.
The path R(p, r) passes through q if and only if r1 ≥ q1, r2 ≥ q2 and ia ≤ r1 − p1 ≤ ib − 1.

I Lemma 17 (The subtree property). For any n > s1 + s2 and u, v ∈ [t · q, t · p+ n− 1], the
following relationships must hold in θqt :

u ≺θq
t
v for all u ∈ X1(n) and v ∈ X2(n),

u ≺θq
t
v for all u ∈ X1(n) ∪X2(n) and v ∈ X3(n),

u ≺θq
t
v for all u, v ∈ X2(n) such that u ≺θp

t
v.

I Remark. Although we have stated the subtree property for slope (+1,+1), it is straightfor-
ward to see that this result extends to other ones. We stick to this notation for simplicity of
exposition, although we will afterwards use it for negative slope as well.

4.2 Application in high dimensional spaces
With the subtree property we can show the first necessary condition of Theorem 6.

I Lemma 18. Let θ be a total order such that TOC(θ) forms a CDS. Then, θ = θ + 2.

Proof. We first give a birdseye overview of the proof: choose an arbitrary λ ∈ Z and consider
the affine plane H = {x3 = λ, x4 = 0, . . . , xd = 0}. In this plane we look at the origin
p = (0, 0), and points q = (0,−1) and r = (−1, 0) (see Figure 5, left). In particular, we look
at the third quadrant (the one with slope (−1,−1)): first, from Theorem 5 we know that
θp(−1,−1) must coincide with θ (on the interval [λ,∞)).

We apply the subtree property from p to q and r; the key property is that both θq(−1,−1)
and θr(−1,−1) coincide with θ + 2 on the interval [λ+ 1,∞). Moreover, all paths to p must
pass through either q or r, which in particular implies that all inequalities from θp(−1,−1)
must also be preserved in either θq(−1,−1) or θr(−1,−1). By combining all of these properties,
we show that θ coincides with θ + 2 on the interval [λ + 1,∞). The result works for any
value of λ, so when λ→ −∞ we get θ = θ + 2 as claimed.

More formally, pick any λ ∈ Z and consider the points p = (0, 0, λ, 0, . . . 0), q =
(0,−1, λ, 0, . . . , 0) and r = (−1, 0, λ, 0, 0, . . . , 0). By construction, these points lie on the
affine plane H = {x3 = λ, x4 = 0, . . . , xd = 0} as claimed.

Let t = (+1, . . . ,+1) and t′ = (−1,−1,+1, . . . ,+1). By definition of TOC(θ) we have
θpt = θqt = θrt = θ. We use Theorem 5 to determine the total order used at slope t′ for the
three points: θpt′ [t′ · p,∞) = θpt [t · p,∞) − t · p + t′ · p = θ[t · p,∞) − t · p + t′ · p = θ[λ,∞).
Similarly, at point q we have θqt′ [λ+ 1,∞) = θ[λ− 1,∞) + 2 = (θ+ 2)[λ+ 1,∞) and at point
r we have θrt′ [λ+ 1,∞) = (θ + 2)[λ+ 1,∞) (The six total orders and their relevant orthants
are depicted in Figure 5, right).

For any n > 0 consider the bounded interval [λ, λ+ n− 1]. We apply Lemma 17 in the
third quadrant to obtain relationships between θpt′ , θ

q
t′ and θrt′ . Let Xpq

1 (n), Xpq
2 (n), and

Xpq
3 (n) be the partition in the three sets obtained when applying the subtree property to p

and q (similarly, we define the sets Xpr
i ). Since we are applying it to the third quadrant and

in particular the axis-order is x2, x1, we must swap the definitions of s1 and s2 (i.e., s1 will
be equal to the difference in the x2 coordinate of p and q).

For the pair p, q we have s1 = 1, s2 = 0. Thus the left interval consists of the singleton
[λ, λ], the right interval is [λ+ 1, λ+ n− 1], Xpq

3 (n) = ∅ and we are splitting the numbers of
the right interval into sets Xpq

1 (n) and Xpq
2 (n) depending on whether or not they are larger

than λ. That is,

Xpq
1 (n) = [λ+ 1, λ+ n− 1] ∩ {i ∈ Z : i ≺θp

t′
λ} ,

Xpq
2 (n) = [λ+ 1, λ+ n− 1] ∩ {i ∈ Z : λ ≺θp

t′
i} .
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p

Q1

Q3

q

p

θ[λ,∞)

θ[λ,∞)

r

θ[λ− 1,∞)

(θ + 2)[λ+ 1,∞)

q

θ[λ− 1,∞)

(θ + 2)[λ+ 1,∞)

x1

x2

r

Figure 5 An example of the CDR at p is shown on the left hand side and the relationships
between the total orders for the different quadrants at p, q and r on the right hand side. The
subtrees at q and at r in Q3 are represented by solid blue and dashed red segments respectively. In
the example θ[0, 8] = {2 ≺ 8 ≺ 4 ≺ 0 ≺ 6 ≺ 9 ≺ 1 ≺ 5 ≺ 3 ≺ 7}.

Applying the subtree property to the pair p, r gives a similar partition. In this case, the
three sets become Xpr

1 (n) = ∅, Xpr
2 (n) = [λ+ 1, λ+ n− 1]∩ {i ∈ Z : i ≺θp

t′
λ} = Xpq

1 (n), and
Xpr

3 (n) = [λ+ 1, λ+ n− 1] ∩ {i ∈ Z : λ ≺θp

t′
i} = Xpq

2 (n).
The sets Xpq

i imply some constraints on θqt′ (similarly, Xpr
i gives constraints on θrt′).

Recall that we previously observed that θqt′ [λ + 1,∞) = θpt′ [λ + 1,∞) = (θ + 2)[λ + 1,∞),
which in particular implies that all constraints of the subtree property apply to θ + 2.

Xpq
2 (n) says that all relationships in θpt′ [λ+ 1, λ+ n− 1] are preserved for numbers that

are larger than λ in θpt′ . Similarly, Xpr
2 (n) says that relationships for numbers smaller than

λ must also be preserved. Thus, we conclude that all relationships (both larger and smaller
than λ) must be preserved. Hence, we conclude that θpt′ [λ+ 1, λ+ n− 1] ⊂ (θ + 2)[λ+ 1,∞).
This reasoning applies for any values of λ ∈ Z, and n > 0. In particular, when λ→ −∞ and
n→∞ we get θ = θ + 2 as claimed. J

With this result we can now show Theorem 15.

(Proof of Theorem 15). Let t′ = (+1, . . . ,+1) and note that, by definition, we have θpt′ = θ.
We apply Theorem 5 and obtain θpt [t·p,∞) = θpt′ [t′·p,∞)−t′·p+t·p = θ[t′·p,∞)−t′·p+t·p. The
term −t′ ·p+t ·p must be an even number (since each coordinate of vector t−t′ is either a zero
or a two). Thus, we can apply θ = θ+2 repeatedly until we get θ[t′·p,∞)−t′·p+t·p = θ[t·p,∞)
as claimed. J

Specifically, we give two necessary conditions that together are also sufficient. The two
conditions are derived from the axioms S1-S5. The first necessary condition is θ = θ + 2,
which is already proved in Lemma 18.

The other necessary condition derives from the symmetry axiom (S2) of CDSs.

I Lemma 19 (Necessary condition 2 for CDSs). Any total order such that TOC(θ) forms a
CDS satisfies that θ = −(θ + 1)−1.

Proof (Sketch). This proof follows the same spirit as Theorem 5, but using the symmetry
axiom instead. For any two numbers a, b such that such that a ≺θ b we choose two points
p, q ∈ Zd and look at R(p, q). In particular, we look at two specific intermediate points r
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and s. The key property of these two points is that the behavior of R(p, q) around those
points is determined by the positions of a and b in θ. Then, we look at the symmetric path
R(q, p) and show that the behavior around the same intermediate points now depends on
the positions of −b− 1 and −a− 1. In order to satisfy the symmetry axiom, the return path
R(q, p) has to be the same and thus we must have −b− 1 ≺θ −a− 1. J

This completes one side of the implication of Theorem 6. In order to complete the proof
we show that the two requirements for θ are also sufficient.

I Lemma 20 (Sufficient condition for CDSs). Let θ be a total order that satisfies θ + 2 = θ

and θ = −(θ + 1)−1. Then, TOC(θ) forms a CDS.

5 Characterization of necessary and sufficient conditions

Let F be the collection of total orders of Z that satisfy the necessary and sufficient conditions
of Theorem 6. In order to bound the Hausdorff distance of the CDS associated to these
constructions, we must give properties of total orders in F .

I Observation 21. All odd numbers appear monotonically in any total order θ that satisfies
θ = θ + 2. The same holds for even numbers.

The above result follows from repeatedly applying the fact that a ≺θ b⇔ a+ 2 ≺θ b+ 2.
The second necessary condition also gives a strong relationship between odd and even
numbers.

I Observation 22. Let θ be a total order such that θ = −(θ + 1)−1. Then, it holds that
0 ≺θ 2⇔ −3 ≺θ −1.

By combining the previous two observations we get that either both odd and even numbers
increase monotonically for any θ ∈ F or both decrease monotonically. Next we study the
relationship between odd and even numbers.

I Lemma 23. Let θ ∈ F be a total order in which two numbers of the same parity are
consecutive in θ. Then, it holds that 1 ≺θ 2⇔ 2q + 1 ≺θ 2q′ for all q, q′ ∈ Z.

I Corollary 24. There are exactly four total orders in F in which two numbers of the same
parity are consecutive.

Proof. Let θ ∈ F be any such total order. By Lemma 23 either all odd numbers appear
before all even numbers or vice versa. There are four cases depending on whether 0 ≺θ 2
or 2 ≺θ 0 and 1 ≺θ 2 or 2 ≺θ 1. The first inequality determines whether all even numbers
appear monotonically increasing or decreasing in θ (by Observations 21 and 22 this also
determines the order of all odd numbers). The second inequality determines whether odd
numbers are smaller or larger (with respect to ≺θ) than the even ones. Thus, under the
assumption that two numbers of the same parity are consecutive in θ, only the following four
orders exist:

τo+e+ = {. . . ≺ 1 ≺ 3 ≺ 5 ≺ . . . ≺ 0 ≺ 2 ≺ 4 ≺ . . .},
τo−e− = {. . . ≺ 5 ≺ 3 ≺ 1 ≺ . . . ≺ 4 ≺ 2 ≺ 0 ≺ . . .},
τe+o+ = (τo−e−)−1 = {. . . ≺ 0 ≺ 2 ≺ 4 ≺ . . . ≺ 1 ≺ 3 ≺ 5 ≺ . . .},
τe−o− = (τo+e+)−1 = {. . . ≺ 4 ≺ 2 ≺ 0 ≺ . . . ≺ 5 ≺ 3 ≺ 1 ≺ . . .}.

J

SoCG 2017



31:14 High Dimensional Consistent Digital Segments

It remains to consider the case in which θ ∈ F is a total order in which no two numbers
of the same parity appear consecutively. That is, we have an odd number followed by an
even number, followed by an odd number, and so on. For any q ∈ Z, let αq be the unique
total order satisfying 0 ≺αq 2q + 1 ≺αq 2 ≺αq 2q + 3 and αq = αq + 2.

I Theorem 25. F = {τo+e+ , τo−e− , τe+o+ , τe−o−} ∪ {αq : q ∈ Z} ∪ {(αq)−1 : q ∈ Z}

This completely characterizes the set F of total orders, and allows us to find a lower
bound on the Hausdorff distance of the associated CDSs.

I Theorem 26. For any p = (p1, . . . , pd) ∈ Zd, total order θ ∈ F and n > 0, there exists a
point q ∈ Zd such that ||p− q||1 = 6n and H(pq,R(p, q)) ≥ 2

√
5n

5 .

Proof (Sketch). Pick a point q sufficiently far from p and look at one every other step in
the path R(p, q). The way in which the path behaves will depend on the position of the odd
numbers of θ (or even numbers depending on the parity of the starting point). Since odd and
even numbers appear monotonically in θ, the path will do all steps in one direction before
moving into a different one. Intuitively speaking, the movements in the odd numbers will
form a bounding box and so will the movements in the even numbers (although the path is
not necessarily the bounding box CDS). J

I Remark. First notice that a linear upper bound in the Hausdorff distance trivially follows
from the monotonicity axiom. Although asymptotically speaking our construction has the
same Hausdorff distance as the bounding box CDS, it can be seen that our leading constant
is roughly twice smaller: for points whose L1 distance is at most n, the bounding box CDS
has an error of

√
2n
4 ≈ 0.3n whereas, say, TOC(τo+e+) has an error of

√
5n

15 ≈ 0.15n.

6 Conclusions

Increasing the dimension from two to three brings a significant change in the associated
constraints for creating CDRs and CDSs. Although we have not been able to create a CDS
with o(n) Hausdorff distance, we believe that the results presented in this paper provide
the first significant step towards this goal. The next natural step would be to consider
constructions that apply different total orders to different points of Zd.

For simplicity of exposition, we have defined the CDS as the union of CDRs at all
points. The construction of Christ et al. [3] considers the union of half CDRs instead (CDRs
that are defined for only half of the slopes, such as slopes that satisfy t1 = +1). We note
that the same result would follow if we use their approach. Indeed, in order to derive the
two necessary conditions, we have only looked at two slopes. For simplicity we have used
(+1, . . . ,+1) and (−1,−1,+1, . . . ,+1), but the same result follows for any two slopes that
differ in two coordinates. Thus, constructing CDSs by gluing half CDRs would result in the
same necessary and sufficient constraints.

Similarly, one could consider using some kind of priority between slopes (say, lexicograph-
ical) so that if p and q are in more than one orthant, only the definition of R(p, q) in the
lexicographically smallest slope is considered. This removes the dependency between orthants
(Theorem 5), but has a consistency problem: we can find three points p, q, q′ ∈ Zd such that
R(p, q) and R(p, q′) have different slopes, but the intersection of the two segments is not
connected (such as in Figure 6).
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x2

x1

x3

p

q′

q

Figure 6 Removing dependency between orthants can create inconsistencies between them.
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