159,284 research outputs found

    CScript : a distributed programming language for building mixed-consistency applications

    Get PDF
    Current programming models only provide abstractions for sharing data under a homogeneous consistency model. It is, however, not uncommon for a distributed application to provide strong consistency for one part of the shared data and eventual consistency for another part. Because mixing consistency models is not supported by current programming models, writing such applications is extremely difficult. In this paper we propose CScript, a distributed object-oriented programming language with built-in support for data replication. At its core are consistent and available replicated objects. CScript regulates the interactions between these objects to avoid subtle inconsistencies that arise when mixing consistency models. Our evaluation compares a collaborative text editor built atop CScript with a state-of-the-art implementation. The results show that our approach is flexible and more memory efficient

    Quantifying Eventual Consistency with PBS

    Get PDF
    Data replication results in a fundamental trade-off between operation latency and consistency. At the weak end of the spectrum of possible consistency models is eventual consistency, which provides no limit to the staleness of data returned. However, anecdotally, eventual consistency is often “good enough ” for practitioners given its latency and availability benefits. In this work, we explain this phenomenon and demonstrate that, despite their weak guarantees, eventually consistent systems regularly return consistent data while providing lower latency than their strongly consistent counterparts. To quantify the behavior of eventually consistent stores, we introduce Probabilistically Bounded Staleness (PBS), a consistency model that provides expected bounds on data staleness with respect to both versions and wall clock time. We derive a closed-form solution for version-based staleness and model real-time staleness for a large class of quorum replicated, Dynamo-style stores. Using PBS, we measure the trade-off between latency and consistency for partial, non-overlapping quorum systems under Internet production workloads. We quantitatively demonstrate how and why eventually consistent systems frequently return consistent data within tens of milliseconds while offering large latency benefits. 1

    Eventual Consistency: Origin and Support

    Get PDF
    Eventual consistency is demanded nowadays in geo-replicated services that need to be highly scalable and available. According to the CAP constraints, when network partitions may arise, a distributed service should choose between being strongly consistent or being highly available. Since scalable services should be available, a relaxed consistency (while the network is partitioned) is the preferred choice. Eventual consistency is not a common data-centric consistency model, but only a state convergence condition to be added to a relaxed consistency model. There are still several aspects of eventual consistency that have not been analysed in depth in previous works: 1. which are the oldest replication proposals providing eventual consistency, 2. which replica consistency models provide the best basis for building eventually consistent services, 3. which mechanisms should be considered for implementing an eventually consistent service, and 4. which are the best combinations of those mechanisms for achieving different concrete goals. This paper provides some notes on these important topics

    A novel causally consistent replication protocol with partial geo-replication

    Get PDF
    Distributed storage systems are a fundamental component of large-scale Internet services. To keep up with the increasing expectations of users regarding availability and latency, the design of data storage systems has evolved to achieve these properties, by exploiting techniques such as partial replication, geo-replication and weaker consistency models. While systems with these characteristics exist, they usually do not provide all these properties or do so in an inefficient manner, not taking full advantage of them. Additionally, weak consistency models, such as eventual consistency, put an excessively high burden on application programmers for writing correct applications, and hence, multiple systems have moved towards providing additional consistency guarantees such as implementing the causal (and causal+) consistency models. In this thesis we approach the existing challenges in designing a causally consistent replication protocol, with a focus on the use of geo and partial data replication. To this end, we present a novel replication protocol, capable of enriching an existing geo and partially replicated datastore with the causal+ consistency model. In addition, this thesis also presents a concrete implementation of the proposed protocol over the popular Cassandra datastore system. This implementation is complemented with experimental results obtained in a realistic scenario, in which we compare our proposal withmultiple configurations of the Cassandra datastore (without causal consistency guarantees) and with other existing alternatives. The results show that our proposed solution is able to achieve a balanced performance, with low data visibility delays and without significant performance penalties

    Assessing Consistency of Effects when Applying Multilevel Models to Single-Case Data

    Get PDF
    In the context of single-case experimental designs, replication is crucial. On the one hand, the replication of the basic effect within a study is necessary for demonstrating experimental control. On the other hand, replication across studies is required for establishing the generality of the intervention effect. Moreover, the "replicability crisis" presents a more general context further emphasizing the need for assessing consistency in replications. In the current text, we focus on replication of effects within a study and we specifically discuss the consistency of effects. Our proposal for assessing the consistency of effects refers to one of the promising data analytical techniques: multilevel models, also known as hierarchical linear models or mixed effects models. One option is to check, for each case in a multiple-baseline design, whether the confidence interval for the individual treatment effect excludes zero. This is relevant for assessing whether the effect is replicated as being non-null. However, we consider that it is more relevant and informative to assess, for each case, whether the confidence interval for the random effects includes zero (i.e., whether the fixed effect estimate is a plausible value for each individual effect). This is relevant for assessing whether the effect is consistent in size, with the additional requirement that the fixed effect itself is different from zero. The proposal for assessing consistency is illustrated with real data and it is implemented in free user-friendly software

    Conflict-Free Replicated Data Types in Dynamic Environments

    Get PDF
    Over the years, mobile devices have become increasingly popular and gained improved computation capabilities allowing them to perform more complex tasks such as collaborative applications. Given the weak characteristic properties of mobile networks, which represent highly dynamic environments where users may experience regular involuntary disconnection periods, the big question arises of how to maintain data consistency. This issue is most pronounced in collaborative environments where multiple users interact with each other, sharing a replicated state that may diverge due to concurrency conflicts and loss of updates. To maintain consistency, one of today’s best solutions is Conflict-Free Replicated Data Types (CRDTs), which ensure low latency values and automatic conflict resolution, guaranteeing eventual consistency of the shared data. However, a limitation often found on CRDTs and the systems that employ them is the need for the knowledge of the replicas whom the state changes must be disseminated to. This constitutes a problem since it is inconceivable to maintain said knowledge in an environment where clients may leave and join at any given time and consequently get disconnected due to mobile network communications unreliability. In this thesis, we present the study and extension of the CRDT concept to dynamic environments by introducing the developed P/S-CRDTs model, where CRDTs are coupled with the publisher/subscriber interaction scheme and additional mechanisms to ensure users are able to cooperate and maintain consistency whilst accounting for the consequent volatile behaviors of mobile networks. The experimental results show that in volatile scenarios of disconnection, mobile users in collaborative activity maintain consistency among themselves and when compared to other available CRDT models, the P/S-CRDTs model is able to decouple the required knowledge of whom the updates must be disseminated to, while ensuring appropriate network traffic values

    Consistency issue and related trade-offs in distributed replicated systems and databases: a review

    Get PDF
    However, achieving these qualities requires resolving a number of trade-offs between various properties during system design and operation. This paper reviews trade-offs in distributed replicated databases and provides a survey of recent research papers studying distributed data storage. The paper first discusses a compromise between consistency and latency that appears in distributed replicated data storages and directly follows from CAP and PACELC theorems. Consistency refers to the guarantee that all clients in a distributed system observe the same data at the same time. To ensure strong consistency, distributed systems typically employ coordination mechanisms and synchronization protocols that involve communication and agreement among distributed replicas. These mechanisms introduce additional overhead and latency and can dramatically increase the time taken to complete operations when replicas are globally distributed across the Internet. In addition, we study trade-offs between other system properties including availability, durability, cost, energy consumption, read and write latency, etc. In this paper we also provide a comprehensive review and classification of recent research works in distributed replicated databases. Reviewed papers showcase several major areas of research, ranging from performance evaluation and comparison of various NoSQL databases to suggest new strategies for data replication and putting forward new consistency models. In particular, we observed a shift towards exploring hybrid consistency models of causal consistency and eventual consistency with causal ordering due to their ability to strike a balance between operations ordering guarantees and high performance. Researchers have also proposed various consistency control algorithms and consensus quorum protocols to coordinate distributed replicas. Insights from this review can empower practitioners to make informed decisions in designing and managing distributed data storage systems as well as help identify existing gaps in the body of knowledge and suggest further research directions
    • …
    corecore