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Abstract

Current programming models only provide abstractions for sharing data un-

der a homogeneous consistency model. It is, however, not uncommon for a

distributed application to provide strong consistency for one part of the shared

data and eventual consistency for another part. Because mixing consistency

models is not supported by current programming models, writing such appli-

cations is extremely difficult. In this paper we propose CScript, a distributed

object-oriented programming language with built-in support for data replica-

tion. At its core are consistent and available replicated objects. CScript regu-

lates the interactions between these objects to avoid subtle inconsistencies that

arise when mixing consistency models. Our evaluation compares a collabora-

tive text editor built atop CScript with a state-of-the-art implementation. The

results show that our approach is flexible and more memory efficient.

Keywords: Distribution, Consistency models, Replicated data types

1. Introduction

According to the CAP theorem [1] a distributed system cannot remain both

available and consistent under network partitions. This forces programmers

to choose between availability (AP) and consistency (CP) in the event of a

∗Corresponding author
Email address: kdeporre@vub.be (Kevin De Porre)

Preprint submitted to Journal of Parallel and Distributed Computing February 26, 2020



partition. This choice can be made for each piece of shared data [2]. We5

call applications that share multiple pieces of data with different guarantees

mixed-consistency applications. When developing such applications, program-

mers face two major problems. First, distributed programming languages lack

abstractions to share data under AP/CP guarantees. This forces programmers

to manually synchronise replicas. As a result, programmers often make mistakes10

against consistency models [3]. Second, many AP approaches such as [4, 5, 6]

develop common data types with hardcoded conflict resolution semantics. Un-

fortunately, programmers cannot compose these data types to design custom

ones. Going beyond the current portfolio of available replicated data types

(RDTs) requires programmers to manually engineer the RDT using ad hoc con-15

flict resolution strategies. This has shown to be error-prone and results in brittle

systems [6, 7, 8].

To help programmers develop mixed-consistency applications, we argue that

distributed programming languages should have (1) built-in RDTs for writing

AP and CP functionality and (2) built-in defense mechanisms that prevent pro-20

grammers from making mistakes when mixing data with different consistency

guarantees. In this paper, we propose CScript, a novel distributed programming

language with native support for availability and consistency. CScript extends

JavaScript with first-class replicas and services. Replicas are objects that en-

code their availability and consistency guarantees, and can be composed into25

services which are distributed over the network. CScript supports two families

of AP replicated data types guaranteeing strong eventual consistency [6] (SEC):

conflict-free replicated data types [6] (CRDTs) and strong eventually consistent

replicated objects [9] (SECROs). CRDTs are a subset of the RDTs for which

all operations commute. SECROs use semantic information provided by the30

programmer to reorder conflicting operations such that they do not need to

commute. This approach is based on the idea that conflict detection and res-

olution naturally depends on the semantics of the application [10]. When the

operations of an RDT do not commute and conflicts can be solved by reorder-

ing operations, CScript programmers can use SECROs to build the RDT. All35
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replicas of this RDT are guaranteed to converge to the same state.

This paper complements our previous exposition of SECROs in [9] by proving

convergence and showing that progress depends on the data type itself. Hence,

we formulate a necessary condition for SECRO data types which enables us to

give a general proof of progress.40

The remainder of this paper is organised as follows. Section 2 discusses

related work that is necessary to understand this paper. Section 3 introduces

our motivating example for mixed-consistency. Section 4 describes CScript’s

architecture and programming model. Section 5 describes our novel SECRO

data type which is part of CScript. We then work out our motivating exam-45

ple in Section 6 using CScript. Section 8 evaluates CScript by benchmarking

a collaborative text editing application. Finally, we discuss related work in

Section 10 and close with final conclusions in Section 11.

2. Background

In this section we introduce background knowledge on the CAP theorem, its50

implications, and the consistency models on which the paper builds.

The CAP theorem [1, 11] describes the interactions between consistency (C),

availability (A) and partition tolerance (P) in a distributed system consisting of

nodes that can write to a conceptually shared memory. A system is consistent

if all reads return the latest write. A system is available when all nodes are55

able to read from and write to the shared memory at any point in time. The

system is partition tolerant if it is able to maintain its consistency or availability

guarantees in the face of network partitions. The CAP theorem proves that a

distributed system cannot remain both available and consistent under network

partitions. This led to a multitude of consistency models (mainly weak consis-60

tency models 1) being developed [12]. Eventual consistency [13] for instance,

states that when updates stop, all replicas will eventually converge to the same

1Consistency models weaker than sequential consistency.
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state.

Strong eventual consistency (SEC) [6] is a variation on eventual consis-

tency [13] that imposes an additional strong convergence requirement: correct65

replicas that received the same updates (possibly in a different order) must

be in the same state. Strong convergence thus defines when replicas converge,

something that is not specified by traditional eventual consistency.

Today’s only implementation of the SEC model is the conflict-free replicated

data type (CRDT) [6]. CRDTs come in two flavours which have been proven70

equivalent: state-based CRDTs (abbreviated CvRDTs) and operation-based

CRDTs (abbreviated CmRDTs). CvRDTs require replicated state to form a

join-semilattice. As such, two states can always be merged deterministically by

computing their least upper bound. On the other hand, CmRDTs require all

operations to commute and as such guarantee strong convergence by design.75

Imposing all operations to commute (or the equivalent requirement for state

to form a join-semilattice) hurts the applicability of CRDTs. For this reason the

literature describes only a limited portfolio of CRDTs. Furthermore, CRDTs

cannot be composed out of the box. Some research [8, 14] seeks to improve the

composability of CRDTs, however, none of these composition mechanisms is80

general enough to allow arbitrary compositions for all CRDTs. JSON CRDTs [8]

for instance only let programmers compose linked lists and maps. Hence, pro-

grammers often need to engineer their own CRDTs from scratch (if possible)

or rely on manual conflict resolution which is error-prone and results in brittle

systems [6, 7, 8].85

3. Motivation: A Mixed-Consistency Application

This section introduces a grocery list application which acts as a motivating

example of mixed-consistency throughout this paper. Users of the application

can create shared grocery lists to which they can add and delete items. Users

can also request more pieces of an item or mark a certain quantity of an item90

as bought.
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The application must meet the following consistency requirements:

Automatic Sharing Grocery lists are shared between all users. When a user

creates a new grocery list, other users must automatically see that list.

Consistent Purchases Users should not be able to concurrently mark the95

same item as bought, i.e. purchases must happen consistently.

Offline Availability Users should be able to add, delete or update items of a

grocery list, even while being offline. Updating a shared grocery list while

being offline causes the list to diverge from the other replicas. The system

must solve state inconsistencies when the user comes back online.100

Note that the application requires multiple consistency levels. The grocery

list itself is eventually consistent but marking items as bought is strongly con-

sistent. Sometimes both levels interact, e.g. when purchasing an item we first

try to mark it as bought and then update the grocery list.

Implementing this application is difficult because it not only requires pro-105

grammers to implement the application logic but also to deal with aspects of

distribution such as implementing service discovery, serialising objects, and im-

plementing different consistency models to keep copies consistent. We argue

that a language with appropriate replication mechanisms and built-in consis-

tency models, can avoid this accidental complexity by hiding it in the language.110

As a result, programmers can focus on the application logic.

4. CScript

We now introduce CScript, our JavaScript extension for mixed-consistency

applications. First, we provide a high-level description of CScript and describe

the typical architecture of CScript applications. Afterwards, we introduce the115

building blocks of CScript’s programming model.
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4.1. Architecture

CScript is designed as a JavaScript library with dedicated syntax by means

of macros [15]. When using the dedicated syntax an additional transpilation

step is required to transform CScript into JavaScript (ECMAScript 6). The120

resulting application runs on top of NodeJS [16].

CScript
Instance

User
Interface

User A

CScript
Instance

User
Interface

User B

CScript
Instance

User
Interface

User C

Figure 1: Architecture of a typical CScript application with three users. Each user runs an

instance of the application which consists of a CScript instance and a user interface.

Figure 1 shows the typical architecture of CScript applications. Users of

the application run a CScript instance and possibly a user interface displaying

the application’s state. CScript instances running on the same local network

are interconnected and form a full-mesh peer-to-peer network (dotted lines).125

Apart from the CScript instances there is no additional infrastructure, i.e. no

centralised servers. All network communication is managed by the CScript

runtime.

4.2. Programming Model

We now describe CScript’s programming model which is centered around130

the concepts of replicas and services. We then illustrate how these concepts

facilitate the development of collaborative mixed-consistency applications.

4.2.1. Replicas

CScript introduces first-class replicated objects, called replicas. Like regular

objects, replicas contain state in the form of fields and behaviour in the form135
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GroceryService
- list: GroceryList
- inventory: Inventory

+ add(item): void
+ delete(item): void
+ buy(item, quantity): void

subscribe to "Grocery"

subscribe to "Grocery"

(a) User C subscribes to the “Grocery”

topic.

User
Interface

User A

User
Interface

User B

User
Interface

User C

GroceryService
- list: GroceryList
- inventory: Inventory

+ add(item): void
+ delete(item): void
+ buy(item, quantity): void

publish       as "Grocery"

(b) User A publishes a service under the

“Grocery” topic. User C automatically

discovers the service and acquires a copy.

Figure 2: Exchanging a GroceryService containing two replicas (list and inventory) between

CScript instances.

of methods. State can be primitive data or JavaScript objects. Programmers

can invoke methods of a replica but cannot access state directly. The state of a

replica is automatically kept consistent by its consistency model.

CScript supports two types of replicas: available and consistent replicas. The

former guarantee SEC [6] and thus favor availability over consistency. The latter140

guarantee sequential consistency [17] and thus favor correctness over availability.

4.2.2. Services

When building mixed-consistency applications, replicas alone are not enough.

Programmers need a way to compose replicas - possibly with different consis-

tency guarantees - into a bigger unit that provides specific functionality. To this145

end, CScript provides first-class services.

Services encapsulate state (primitive data, objects, and replicas) and imple-

ment some methods which form the service’s API. The methods use the state

and coordinate between the replicas to provide specific functionality. Program-

mers must use the service’s API as they cannot access a service’s state directly.150

4.2.3. Publications and Subscriptions

CScript lets programmers implement replicas and bundle them into services.

To share services between instances of an application running of different de-
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vices, CScript features a topic-based publish-subscribe mechanism [18]. This

mechanism lets application instances share services with one another without155

knowing each other beforehand, making the underlying network transparent to

the application. Figure 2 shows how CScript instances can publish services on

the network and discover published services. When one instance discovers a

service published by another instance, it acquires a copy of the service. The

replicas encapsulated by the service are automatically managed by the CScript160

runtime such that they uphold their consistency guarantees.

4.2.4. The Interplay Between Consistent and Available Replicas

Mixed-consistency applications share several pieces of data with different

consistency guarantees. When building such applications, programmers must be

careful not to break these guarantees. Ideally, the programming model enforces165

consistency models using a strict set of rules:

1. Each replica implements one specific consistency model.

2. Programmers can only interact with replicas through their public interface,

i.e. programmers cannot access or modify a replica’s internal state directly.

3. Replicas are self-contained since they are replicated over the network.170

4. Replicas may not leak references to their internal state as this would allow

programmers to access internal state directly, thereby breaking rule 2.

5. Data that is replicated under a certain consistency model should not flow

to replicas that enforce a stronger consistency model as it would break the

stronger guarantees.175

We now discuss how CScript enforces the aforementioned rules. Even though

CScript provides consistent and available replicas, programmers can only nest

replicas that guarantee the same level of consistency. Otherwise, one replica

could provide different (possibly conflicting) consistency levels, thereby breaking

rule 1. Hence, consistent replicas may embed other consistent replicas but not180

available replicas, and vice-versa. Replicas are black boxes and do not allow

programmers to access or modify internal state directly (rule 2).

8



CScript deep copies the arguments that are passed to the methods of replicas

as well as the return values. Deep copying the arguments ensures that the replica

remains self-contained (rule 3). Deep copying the return value avoids leaking185

references to internal state (rule 4).

Regarding data flows (rule 5), CScript does not yet prohibit data obtained

from available replicas to be passed as argument to a method of a consistent

replica. We foresee a statically typed version of the CScript language that

encodes the consistency model of data as part of its type and rejects illegal190

information flows at compile time.

5. Strong Eventually Consistent Replicated Objects (SECROs)

We now focus on CScript’s support for available replicas: strong eventu-

ally consistent replicated objects (SECROs), a novel RDT that addresses the

applicability issues of CRDTs discussed in Section 2. SECROs use semantic195

information provided by the programmer to guarantee SEC without requiring

operations to commute. This makes SECROs generally applicable.

5.1. SECRO data type

Like regular objects, SECROs contain state in the form of fields, and be-

haviour in the form of methods. The methods define the SECRO’s public in-200

terface which cannot be circumvented. Methods can be further categorised in

accessors (i.e. methods querying internal state) and mutators (i.e. methods

updating the internal state).

SECROs differ from regular objects in that programmers can enforce

application-specific invariants by associating concurrent preconditions and post-205

conditions to the mutators. We say that pre and postconditions are state val-

idators. State validators are used by the SECRO to order concurrent operations

in a way that does not violate any invariant.
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5.2. State Validators

State validators associate rules to mutators. Those rules express invariants210

over the state of the object which need to uphold in the presence of concurrent

operations 2. Behind the scenes, SECRO’s replication protocol may interleave

concurrent operations. From the programmer’s perspective the only guarantee

is that these invariants are upheld. State validators come in two forms:

Preconditions specify invariants that must hold prior to the execution of their215

associated operation. As such, preconditions approve or reject the state

before applying the actual update. In case of a rejection, the operation is

aborted and a different ordering of the operations will be tried.

Postconditions specify invariants that must hold after the execution of their

associated operation. A postcondition does not execute immediately after220

applying an operation. Instead, it executes after all concurrent operations

complete. As such, postconditions approve or reject the state that results

from a group of concurrent, potentially conflicting operations. In case of

a rejection a different ordering of the operations is tried.

5.3. SECRO’s Replication Protocol in a Nutshell225

Recall that SECROs guarantee SEC (eventual consistency and strong con-

vergence). To provide this guarantee SECROs implement a dedicated optimistic

replication protocol. We now briefly discuss this protocol, a detailed explanation

including pseudo code is given in Section 7.

SECRO’s replication protocol asynchronously propagates update operations230

to all replicas. In contrast to CRDTs, the operations of a SECRO do not neces-

sarily commute. Therefore, the replication protocol totally orders the operations

at all replicas. This order respects causality and all pre and postconditions.

Replicas maintain their initial state and a sequence of operations called the

operation history. Each time a replica receives an operation, it is added to the235

2From now on, we use the terms operation and mutator interchangeably, as well as the

terms update and mutation.
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replica’s history, which may require reordering parts of the history. Reordering

the history boils down to finding an ordering of the operations that fulfils two

requirements. First, the order must respect the causality of operations. Second,

applying all the operations in the given order may not violate any of the con-

current pre or postconditions. An ordering which adheres to these requirements240

is called a valid execution. As soon as a valid execution is found each replica

resets its state to the initial one and executes the operations in-order. Reorder-

ing the history is a deterministic process, hence, replicas that received the same

operations find the same valid execution.

Note that the existence of a valid execution cannot be guaranteed for ar-245

bitrary pre and postconditions. It is the programmer’s responsibility to define

correct ones. However, the replication protocol guarantees that:

1. Eventually, all replicas converge towards the same valid execution (i.e.

eventual consistency).

2. Replicas that received the same updates have identical operation histories250

(i.e. strong convergence).

3. Replicas eventually perform the operations of a valid execution if one

exists, or issue an error if none exists.

As users perform operations, the operation histories of replicas may grow

unboundedly. To alleviate this issue we allow a replica’s state to be commit-255

ted periodically. Concretely, replicas maintain a version number. Whenever a

replica is committed, it clears its operation history and increments its version

number. The replication protocol then notifies all other replicas of this commit,

which adopt the committed state and also empty their operation history. As

we explain in Section 7.1, the commit operation does not require synchronising260

the replicas and thus does not affect the system’s availability.
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6. CScript From the Programmer’s Perspective

We now illustrate CScript’s programming model by implementing a grocery

application that fulfils the requirements outlined in Section 3.

6.1. The Grocery Service265

We model the grocery application as a CScript service, which is shown

in Listing 1. On Line 1 we define the GroceryService using the service key-

word. Similarly to class definitions in ES6 3, services have a constructor method

to initialise the service (Lines 4 to 7). The GroceryService’s constructor defines

two fields: the grocery list’s name and author (Lines 5 and 6). Additionally,270

the service encapsulates two replicas, groceryList and inventory, which are

defined using the rep keyword (Lines 2 and 3). The former is the grocery

list (an available replica) whereas the latter is the inventory containing all the

items marked as bought (a consistent replica). Syntactically there is no differ-

ence between the eventually consistent groceryList replica and the sequentially275

consistent inventory replica because the consistency guarantees depend on the

type of the replica. Finally, the service defines functionality to add, delete, and

buy grocery items. This functionality is exposed through the GroceryService’s

API which consists of the add, delete, and buy methods (Lines 8 to 14). The

implementation of the buy method is discussed in Section 6.2.280

1 service GroceryService {

2 rep groceryList = new GroceryList ();

3 rep inventory = new Inventory ();

4 constructor(name , author)

5 this.name = name;285

6 this.author = author;

7 }

8 add(item) {

9 return this.groceryList.add(item);

10 }290

11 delete(itemName) {

3ECMAScript 6
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12 return this.groceryList.delete(itemName );

13 }

14 buy(itemName , buyingQuantity) { /* ... */ }

15 }295

Listing 1: Implementation of the grocery service.

6.2. The Sequentially Consistent Inventory of Purchases

Listing 2 shows the implementation of the Inventory class, which keeps a

map to track how many pieces of each item were marked as bought (Line 3),

this is called the “stock”. The inventory defines an approve method which is

called before marking a certain quantity of an item as bought (Lines 5 to 15).300

This method first checks that the user’s view on the stock is equal to the actual

stock for that item (Lines 8 and 9), thereby rejecting concurrent purchases of

the same item. If the check succeeds, the inventory approves the buy request

and updates its stock for that item (Lines 10 and 11).

1 class Inventory {305

2 constructor(stock = []) {

3 this.stock = new Map(stock);

4 }

5 approve(itemName , stockQuantity , buyingQuantity) {

6 if (buyingQuantity <= 0)310

7 return false;

8 const trueStock = this.stock.getOrElse(itemName , 0);

9 if (trueStock === stockQuantity) {

10 this.stock.set(itemName , trueStock + buyingQuantity );

11 return true;315

12 }

13 else {

14 return false;

15 } } }

Listing 2: Implementation of the grocery service’s inventory.

By default, CScript replicas are sequentially consistent unless the data type320

implements SEC. CScript guarantees sequential consistency by serialising all

operations on a single (remote) copy of the replica which resides at the creator of
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(a) Peer 1 discovers a con-

sistent replica at peer 2.

(b) Peer 2 passes the con-

sistent replica to peer 1 by

far reference [19].

(c) Peer 1 holds a far ref-

erence to a remote object

living at peer 2.

Figure 3: How to exchange consistent replicas and interact with them.

the (grocery) service, as depicted in Figure 3. This means that there is no central

server hosting the inventory, instead, the inventory is hosted by the device that

created it. Interactions with consistent replicas may therefore involve network325

communication. For this reason, property accesses and method invocations on

consistent replicas are asynchronous and return a promise.

1 buy(itemName , buyingQuantity) {

2 return new Promise ((resolve , reject) => {

3 const stockQuantity = this.groceryList.get(itemName ). bought;330

4 this.inventory

5 .then(inventory => {

6 return inventory.approve(itemName , stockQuantity , buyingQuantity)

7 }). then(accepted => {

8 if (accepted) {335

9 this.groceryList.bought(itemName , buyingQuantity );

10 resolve ();

11 }

12 else {

13 reject("Buy request rejected.");340

14 }

15 });

16 });

17 }

Listing 3: Buying a certain quantity of a grocery item.

Listing 3 shows the implementation of the grocery service’s buy method.345
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The method first fetches the user’s local view on the stock from the eventu-

ally consistent grocery list, which may thus be outdated (Line 3). Then, it

asynchronously sends a request to the inventory by calling the approve method

(Line 6). If the request is approved, it informs the local grocery list replica

(Line 9) which then marks the given quantity of that item as bought in the UI.350

This method shows that services may have to interact with replicas that exhibit

different consistency guarantees in order to provide the required functionality.

6.3. The Eventually Consistent Grocery List

We now discuss the implementation of the GroceryList, which is an avail-

able replica providing functionality to fetch the items of a list, add items to a list,355

and mark (a certain quantity of) items as bought. To this end, we implemented

the grocery list using our SECRO data type, presented in Section 5.

Listing 4 shows the implementation of the GroceryList which extends the

SECRO interface. Its public interface consists of one accessor (get) and three

mutators: add, bought, and delete. It also associates a precondition to the360

bought method and a postcondition to the add method, using the pre and

post keywords respectively (Lines 14 and 15). The side-effect free method get

is annotated with @accessor, otherwise, CScript treats it as a mutator 4. The

tojson and fromjson methods serve to (de)serialise the object as it will be

replicated over the network. In order for the receiver to know the GroceryList365

class, this SECRO must be registered at the CScript factory (Line 20).

1 class GroceryList extends SECRO {

2 constructor(items = []) {

3 super ();

4 this.items = new Map();370

5 items.forEach(this.add.bind(this ));

6 }

7 @accessor

8 get() { /* ... */ }

9 // operations to manipulate the list375

4When a mutator is invoked, the operation is propagated to all replicas.
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10 add(item) { /* ... */ }

11 bought(itemName , quantity) { /* ... */ }

12 delete(itemName) { /* ... */ }

13 // SECRO’s state validators

14 post add(originalState , state , args , res) { /* ... */ }380

15 pre bought(state , args) { /* ... */ }

16 // serialisation methods

17 tojson () { /* ... */ }

18 static fromjson(items) { /* ... */ }

19 }385

20 Factory.registerAvailableType(GroceryList );

Listing 4: Structure of the grocery list.

Lets now take a look at the implementation of the add, bought, and delete

mutators and their associated pre and postconditions.

1 add(item) {

2 const description =

3 this.items.getOrElse(item.name , {requested: 0, bought: 0});

4 description.requested += item.requested;

5 this.items.set(item.name , description );

6 }

7 post add(originalState , state , args , res) {

8 const [item] = args ,

9 addedQuantity = item.requested ,

10 resultingQuantity =

11 state.items.getOrElse(item.name , 0). requested;

12 return resultingQuantity >= addedQuantity;

13 }

Listing 5: Adding items to a grocery list.

Listing 5 shows the implementation of the add method (which adds a certain390

quantity of an item to the grocery list) and its associated postcondition. First,

add fetches the item from the grocery list in case it already exists, or, creates

a new item description otherwise (Line 3). Then, it increments the requested

quantity (Line 4) and updates the item’s description in the underlying map
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(Line 5). add’s postcondition 5 states that the resulting state must reflect at395

least the quantity requested by the operation. While this invariant always holds

in a sequential system, it may be violated when operations run concurrently, e.g.

due to a concurrent delete of the same item. By stating this invariant explicitly,

the SECRO will ensure add-wins semantics.

1 bought(itemName , quantity) {400

2 const quantities = this.items.get(itemName );

3 quantities.bought += quantity;

4 }

5 delete(itemName) {

6 this.items.delete(itemName );405

7 }

8 pre bought(state , args) {

9 const [itemName , quantity] = args;

10 return this.items.has(itemName );

11 }410

Listing 6: Marking items as bought and deleting items from the grocery list.

Listing 6 shows the bought and delete methods. bought fetches the item’s

description (Line 2) and increments it with the bought quantity (Line 3). delete

removes the item from the underlying list (Line 6). On Lines 8 to 11 we associate

a precondition 6 to the bought method which checks that the item exists. We

associate no postcondition to delete (only to add) because we expect adds to415

win over deletes, as shown in Figure 4.

Having discussed the implementation of the add, bought, and delete op-

erations, we now describe which operations can be generated by the users in a

5Postconditions receive four arguments: the state before applying the operation, the state

after applying all concurrent operations, the operation’s arguments and return value.
6Preconditions receive the state before applying the operation and the arguments.
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mangos: {requested: 5, bought: 3}

lasagna: {requested: 2, bought: 0}

add( {item: "lasagna",
requested: 1} ) mangos: {requested: 5, bought: 3}

lasagna: {requested: 3, bought: 0}

mangos: {requested: 5, bought: 3}

lasagna: {requested: 1, bought: 0}

network
communication

Alice's
Grocery List

Bob's
Grocery List

mangos: {requested: 5, bought: 3}

lasagna: {requested: 2, bought: 0}

mangos: {requested: 5, bought: 3}

lasagna: {requested: 1, bought: 0}

delete("lasagna")
mangos: {requested: 5, bought: 3}

Figure 4: Alice adds one lasagna while concurrently Bob deletes the lasagnas from the grocery

list. After propagating the operations the resulting list contains one lasagna because Bob was

not aware of Alice’s addition at the time of his deletion.

given state s. We call this the set of valid updates and denote it Vs.

item = 〈name, req, bought〉 name ∈ String req ∈ N+ bought ∈ N0

add(item) ∈ Vs
(1)

〈name, , 〉 ∈ s qty ∈ N+

bought(name, qty) ∈ Vs
(2)

〈name, , 〉 ∈ s

delete(name) ∈ Vs
(3)

The first rule states that users can always add well-formed items to the grocery

list, independent of the application’s state. The second rule states that users

can only buy a positive quantity of an existing item. The third rule states that

users can only delete existing items.420

6.4. Sharing Grocery Services Between Users

Users of our grocery application can create new grocery lists at will. Each

grocery list must be shared between all instances (users) of the grocery appli-

cation. To this end, we use CScript’s publish-subscribe mechanism.

Every time the user creates a new grocery list the createGrocery function425

from Listing 7 is invoked. This function first creates a grocery service represent-

ing the list (Line 3), then publishes the newly created service under the Grocery

type tag using the publish <service> as <typetag> construct (Line 4). The

typetag is the topic of publication and is defined using the deftype keyword

on Line 1. Afterwards, the function calls processService which installs the430

necessary callbacks on the service, such that the application can react to incom-

ing updates, e.g. when another user adds an item to the shared grocery list.

Reacting to updates will be discussed further in this section.
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1 deftype Grocery

2 function createGrocery(name , author) {435

3 const gservice = new GroceryService(name , author );

4 publish gservice as Grocery;

5 processService(gservice );

6 return gservice;

7 }440

Listing 7: Exporting grocery services on the network.

Listing 8 shows how to subscribe to services of the Grocery type using

the subscribe <typetag> with <callback> construct (Line 2). The provided

callback is parametrised with the discovered service. Upon discovering a service,

CScript invokes the callback, which in this case fetches the service’s name and

author (Lines 3 and 4) and creates a unique identifier for the service (Line 5).445

The callback then stores the discovered service in a map, on Line 6. Note

that the name and author fields contain regular objects. When discovering the

service the application acquires a deep-copy of those fields (which contrary to

replicas are not kept consistent).

1 const services = new Map ();450

2 subscribe Grocery with gservice => {

3 const name = gservice.name ,

4 author = gservice.author ,

5 id = ‘${name} by ${author}‘;

6 services.set(id, gservice );455

7 processService(gservice );

8 }

Listing 8: Subscribing to grocery services.

In order to make services self-contained, they do not have access to enclosing

lexical scopes, much like isolates in AmbientTalk [19] or spores in Scala [20].

6.4.1. Reacting to Updates of the Grocery List460

When a user modifies a shared grocery list all replicas will eventually observe

the update and in turn update the user interface. To this end, CScript replicas

emit two events to which applications can react: RemoteUpdate and Update.
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The former is triggered when a replica receives an update from a remote replica.

The latter is triggered when a replica applies an update.465

:UI groceryList
:Replica :UIgroceryList

:Replica

m3:	trigger
<<Update>>

:Alice :Bob
needs

something
m1:	add(item)

m2:	add(item)

m4:	update	UI

m5:	refresh

m6:	observe	item

m7: trigger
<<Update>>
<<RemoteUpdate>>

m8:	update	UI

m9:	refresh

m10:	observe	item

Figure 5: Sequence diagram illustrating updates of the grocery application.

Figure 5 shows how updates are propagated between two users. Alice adds

an item to her grocery list (m1) and the operation is sent to bob (m2). Up-

date events are triggered on both devices (m3 and m7) which causes the user

interfaces to be refreshed (m4, m5 and m8, m9).

7. SECRO’s Replication Protocol470

Having introduced the CScript language and our SECRO data type, we now

turn our attention to the replication algorithm behind SECROs. The detailed

algorithm is explained in [9]. This paper provides the correctness proofs and

presents only the parts of the algorithm that are relevant to the proofs.

7.1. Algorithm475

The algorithm described in this section assumes a reliable causal order broad-

casting mechanism without loss of generality, i.e. a communication medium in

which messages arrive in an order that is consistent with the happened-before

relation [21]. It also assumes that reading the state of a replica happens side-

effect free and that mutators solely affect the replica’s state (i.e. the side effects480

are confined to the replica itself).
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A SECRO replica r is a tuple 〈vi , s0 , si , h, idc〉 consisting of the replica’s

version number vi , its initial state s0 , its current state si , its operation history

h, and the globally unique identifier of the latest commit operation idc . Reading

the value of the replica simply returns its latest local state si . A mutator m is485

represented as a tuple 〈o, p, a〉 consisting of the update operation o, precondition

p, and postcondition a. When a mutator is applied to a replica a mutate message

is broadcast to all replicas. Such a message is an extension of the mutator

〈o, args, p, a, c, id〉 which additionally contains the arguments args passed to the

operation o, the node’s logical clock time c, and a globally unique identifier id.490

We denote that a mutation m1 happened before m2 using m1 ≺ m2 . Similarly,

we denote that two mutations happened concurrently using m1 ‖m2 . Both

relations are based on the clocks carried by the mutate messages [22].

Algorithm 1 governs the replicas’ behaviour to guarantee SEC by ensuring

that all replicas execute operations in the same order. In particular, algorithm 1495

delivers a list of mutate messages l to a replica r which optionally returns the

updated replica r′, denoted l ⇓ r = Some r′ or l ⇓ r = None. The algorithm

consists of two parts. First, it appends the list of mutate messages to the oper-

ation history, sorts the history according to the >> total order, and generates

all linear extensions of the replica’s sorted history (see Lines 1 and 3). We500

say that m1 = 〈o1 , args1 , p1 , a1 , c1 , id1 〉 >> m2 = 〈o2 , args2 , p2 , a2 , c2 , id2 〉 iff

id1 > id2, however, this could be any total order. The generated linear exten-

sions are all the permutations of h ′ that respect the partial order defined by the

operations’ causal relations. Since replicas deterministically compute linear ex-

tensions and start from the same sorted operation history, all replicas generate505
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the same sequence of permutations.

ALGORITHM 1: Handling mutate messages
arguments: A list of mutate messages l, a replica r = 〈vi , s0 , si , h, idc〉

1 h′ = h ++ l

2 s′i = si

3 for ops ∈ LE(sort>>(h′)) do

4 si = copy(s′i) // Restore the replica’s state

5 pre = 0

6 post = 0

7 for m ∈ ops do

8 concurrentClosure = TC(m,h′) ∪ {m}

9 ogStates = Map()

10 retVals = Map()

11 for 〈o, args, p, a, c, id〉 ∈ concurrentClosure do

12 if p(si, args) then

13 pre += 1

14 ogStates.put(id, copy(si)) // copy state to pass to postcondition

15 retVals.put(id, o(args)) // o’s side-effects mutate si

16 end

17 end

18 for 〈o, args, p, a, c, id〉 ∈ concurrentClosure do

19 ogState = ogStates.get(id)

20 retVal = retVals.get(id)

21 if a(ogState, si, args, retVal) then

22 post += 1

23 end

24 end

25 ops = ops \ concurrentClosure

26 end

27 if pre == |ops| ∧ post == |ops| then

28 return Some 〈vi , s0 , si , ops, idc〉

29 else

30 return None

31 end

32 end

Second, the algorithm searches for the first valid permutation. For each op-

eration within such a permutation it computes the transitive closure of concur-

rent operations 7 and checks that their pre (Lines 11 to 17) and postconditions510

7The transitive closure of a mutate message m with respect to an operation history h is

denoted TC(m,h) and is the set of all operations that are directly or transitively concurrent

with m, including m itself. A formal definition is provided in Appendix C.
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(Lines 18 to 24) hold. Postconditions are checked only after all concurrent op-

erations of the transitive closure executed since they happened independently

and may thus conflict. The algorithm returns the replica’s updated state as

soon as a valid execution is found, l ⇓ r = Some 〈vi, s0, s′i, h′, idc〉. If no valid

execution exists the algorithm fails, l ⇓ r = None.515

Besides reading and mutating replicas, it is possible to commit a replica.

Commit clears the replica’s operation history h, increments the replica’s version

and replaces the initial state s0 by the current state si . This avoids unbounded

growth of operation histories, but operations concurrent with the commit will

be discarded 8. Commit operations commute in order not to compromise avail-520

ability. The detailed commit algorithm and its explanation can be found in [9].

7.2. Convergence and Progress Properties

As mentioned before, SECROs guarantee strong eventual consistency (SEC).

This means that the replication algorithm ensures two properties: strong con-

vergence and progress [6]. The former states that replicas which received the525

same operations must be in equivalent states. The latter states that if some

replica generates a valid operation, applying that operation on another replica

may not lead to an error state [23].

The SECRO algorithm guarantees strong convergence by deterministically

reordering the operations at all replicas. Recall from the previous section that530

all replicas execute all operations in the same order and thus converge to the

same state. Appendix A provides the complete proof of convergence.

The main advantage of SECROs over CRDTs lies in the fact that it is a

general-purpose RDT. Programmers explicitly specify preconditions and post-

conditions that constrain the data type’s behaviour under concurrent operations.535

Depending on these pre and postconditions a replica may or may not end up in

8Since commit may drop operations, one can argue that SECROs are similar to last-writer-

wins (LWW) strategies. However, SECROs guarantee invariant preservation, which is not the

case with CRDTs.
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an error state. Hence, we cannot provide a general proof of progress that holds

for all SECROs. Instead, we require the SECRO’s pre and postconditions to

accept at least one causal serialization 9 of the operations (see Lemma 1).

Lemma 1. Given an initial state s and a set of valid updates Vs
10, there exists540

an ordering of the updates that respects causality and all pre and postconditions.

Appendix B provides a proof that SECROs whose pre and postconditions

meet Lemma 1 guarantee progress. It is up to the programmer to prove Lemma 1

when designing custom SECROs.

8. Evaluation545

To evaluate CScript we built several applications, including the grocery list

application and a collaborative text editing application. The text editor is built

on top of SECROs, one of CScript’s core abstractions, which makes the applica-

tion highly available and partition tolerant (AP). We compare the application to

a state-of-the-art implementation on top of JSON CRDTs [8]. To this end, we550

perform various experiments which quantify the memory usage and execution

time of both implementations.

JSON CRDTs are closely related to SECROs because they allow program-

mers to build custom CRDTs by nesting linked lists and maps, without having

to worry about conflicts. However, the extensibility of JSON CRDTs is lim-555

ited to the composition of lists and maps, and conflict resolution cannot be

customised because it is hardcoded by the implementation of lists and maps.

Note that SECROs are designed to ease the development of custom RDTs

guaranteeing SEC. Hence, our goal is not to outperform JSON CRDTs, but

rather to evaluate the practical feasibility of SECROs. The results show that560

9An ordering of the operations that respects the causality of the operations.
10The set of valid updates Vs is defined as the set of all updates that can be generated by

the application while being in state s.
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SECROs are memory efficient but induce a linear time overhead on top of the

operations. Overall, SECROs can be made practical by committing regularly.

8.1. A Text Editing Application

The collaborative text editor lets users share text documents and work on

them simultaneously. A naive version of this application stores text documents565

as a linked list of characters. An improvement would be to store documents as

a balanced tree of characters, allowing for logarithmic time lookups, insertions,

and deletions. We implemented both versions of the text editor using SECROs

in CScript. The tree version uses a third party AVL tree and extends it with

pre and postconditions to turn it into a SECRO that can freely be replicated.570

The implementation is publicly available at [24] and is detailed in [9].

Since JSON CRDTs only let programmers nest linked lists and maps, it is

not possible to implement a balanced tree data structure. Hence, using JSON

CRDTs we were only able to implement the naive version of the text editor.

We compare to JSON CRDTs because they are designed to build custom575

CRDTs and are thus similar to SECROs which are meant to build custom

RDTs. We did not compare CScript to other languages because performance

benchmarks would be biased by the language.

8.2. Methodology

All experiments presented in this section were performed on a cluster consisting580

of 10 worker nodes which are interconnected through a 10 Gbit twinax connec-

tion. Each worker node has an Intel Xeon E3-1240 processor at 3.50 GHz and

32 GB of RAM. Depending on the experiment, the benchmark is either run on

a single worker node or on all ten nodes. We specify this for each benchmark.

To get statistically sound results we repeat each benchmark at least 30 times,585

yielding a minimum of 30 samples per measurement. Each benchmark starts

with a number of warmup rounds to minimise the effects of program initialisa-

tion. We also disable NodeJS’ just-in-time compiler optimisations.
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We perform statistical analysis over our measurements as follows. We dis-

card samples that are affected by garbage collection (e.g. the execution time590

benchmarks). For each measurement comprising at least 30 samples we compute

the average value and the corresponding 95% confidence interval.

8.3. Memory Usage

To compare the memory usage of the SECRO and JSON CRDT text editors,

we perform an experiment in which 1000 operations are executed on each text595

editor. We continuously alternate between 100 character insertions followed

by deletions of those 100 characters. We force garbage collection after each

operation 11, and measure the heap usage. Figure 6 shows the results. Green

and red columns indicate character insertions and deletions respectively.
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(b) Memory usage of the list and tree im-

plementations of the SECRO text editor.

Figure 6: Memory usage benchmarks. Error bars represent the 95% confidence interval for

the average taken from 30 samples. The experiments are performed on a single worker node.

Figure 6a confirms our expectation that the SECRO implementations are600

more memory efficient than the JSON CRDT one. The memory usage of the

JSON CRDT text editor grows unbounded since CRDTs cannot delete charac-

11Forcing garbage collection is needed to get the real-time memory usage. Otherwise, the

memory usage keeps growing until garbage collection is triggered.
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ters but merely mark them as deleted using tombstones 12. Conversely, SECROs

support true deletions by reorganising concurrent operations in a non-conflicting

order. This results in lower memory usage, since all 100 inserted characters are605

deleted by the following 100 deletions.

Figure 6b compares the memory usage of the list and tree-based implementa-

tions using SECROs. We conclude that the tree-based implementation consumes

more memory than the list implementation because nodes of a tree maintain

pointers to their children, whereas nodes of a singly linked list only maintain a610

single pointer to the next node. Interestingly, we observe a staircase pattern.

This pattern indicates that memory usage grows when characters are inserted

(green columns) and shrinks when characters are deleted (red columns). Over-

all, memory usage increases linearly with the number of executed operations,

even though we delete the inserted characters and commit the replica after each615

operation. Hence, SECROs cause a small memory overhead for each executed

operation, as shown by the dashed regression lines.

8.4. Execution Time

In this section we discuss several aspects of the execution time of SECROs.

First, we analyse the effect of committing the SECRO’s operation history on the620

execution time of operations. Then, we compare the SECRO list implementation

of the text editor to a state-of-the-art implementation with JSON CRDTs.

8.4.1. The Effect of Commit on the Execution Time

We now present two benchmarks related to the commit operation. The first

quantifies the performance overhead of SECROs that results from reordering the625

operation history. The second illustrates the effect of commit on the execution

time of the collaborative text editor and how commit improves its performance.

To quantify the performance overhead of SECROs we measure the execution

times of 500 constant time operations, for different commit intervals. Each

12Tombstones are a trick to make the insert and delete operations commute
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Figure 7: Execution time of SECROs for different commit intervals, performed on a single

worker node of the cluster. Error bands represent the 95% confidence interval for the average

taken from a minimum of 30 samples. Samples affected by garbage collection were discarded.

operation computes 10 000 tangents and has no associated pre or postcondition.630

Hence, the results reflect the best-case performance of SECROs.

Figure 7a depicts the execution time of the aforementioned constant time

operation. If we do not commit the replica (red curve), the operation’s execution

time increases linearly with the number of operations. Hence, SECROs induce

a linear overhead. This results from the fact that the replica’s operation history635

grows with every operation. Each operation requires the replica to reorganise

the history. To this end, the replica generates linear extensions of the history

until a valid ordering of the operations is found (see Algorithm 1 in Section 7.1).

Since we defined no preconditions or postconditions, every order is valid and

the replica generates exactly one linear extension and validates it. To validate640

the ordering, the replica executes each operation. Therefore, the operation’s

execution time is linear to the size of the operation history.

Note that commit implies a trade-off between concurrency and performance.

Small commit intervals lead to better performance but less concurrency, whereas
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large commit intervals support more concurrent operations at the cost of per-645

formance. Figure 7a illustrates this trade-off. For a commit interval of 50 (blue

curve), we observe a sawtooth pattern. The operation’s execution time increases

until the replica is committed, whereafter it falls back to its initial execution

time. This is because commit clears the operation history. When choosing a

commit interval of 1 (green curve), the replica is committed after every oper-650

ation. Hence, the history contains a single operation and does not need to be

reorganised. This results in a constant execution time.

We now analyse the execution time of insert operations on the collaborative

text editor. Figure 7b shows the time it takes to append a character to a text

document in function of the document’s length, for various commit intervals. If655

we do not commit the replica (red curve), append exhibits a quadratic execution

time. This is because the SECRO induces a linear overhead and append is a

linear operation. Hence, append’s execution time becomes quadratic. For a

commit interval of 100 (blue curve) we again observe a sawtooth pattern. In

contrast to Figure 7a the peaks increase linearly with the size of the document660

because append is a linear operation. For a commit interval of 1 (green curve)

we get a linear execution time. This results from the fact that we do not need to

reorganise the replica’s history. Hence, we execute a single append operation.

From these results, we draw two conclusions. First, SECROs induce a linear

overhead on the execution time of operations. Second, commit is a practical665

solution to keep the performance of SECROs within acceptable bounds.

8.4.2. SECRO vs JSON CRDT Text Editor

We now compare the naive list implementation and the advanced tree imple-

mentation of the text editor to the JSON CRDT implementation. To this end,

we measure the time it takes to append characters to a text document. Although670

this is not a realistic edition pattern, it showcases the worst case performance.

From Figure 8a we notice that the SECRO versions exhibit quadratic perfor-

mance, whereas the JSON CRDT version exhibits linear performance. The

reason for this is that reordering the SECRO’s history induces a linear overhead
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Figure 8: Execution time of character insertions in the collaborative text editors. Replicas

are never committed. Error bars represent the 95% confidence interval for the average taken

from a minimum of 30 samples. Samples affected by garbage collection are discarded.

on top of the operations themselves (as explained in Section 8.4.1). Since insert675

is also a linear operation, the overall performance of the text editor’s insert

operation is quadratic. To address this performance overhead the replica needs

to be committed periodically.

Figure 8a also shows that the SECRO implementation that uses a linked

list is faster than its tree-based counterpart. To determine the cause of this680

counterintuitive observation, we measured the different parts that make up the

total execution time in Appendix D. We found that the time overhead incurred

by copying the document 13 kills the speedup we gain from organising the doc-

ument as a tree. This is because each insertion inserts only a single character

but requires the entire document to be copied.685

To validate this hypothesis, we re-execute the benchmark shown in Fig-

ure 8a but insert 100 characters per operation. Figure 8b shows the resulting

execution times. As expected, the tree implementation now outperforms the list

13Since JavaScript objects are mutable, our prototype implementation of SECROs needs to

copy the state before tentatively executing its operation history.
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implementation. This means that the speedup obtained from 100 logarithmic

insertions exceeds the copying overhead induced by the tree. In practice, this690

means that single character manipulations are too fine-grained. Manipulating

entire words, sentences or even paragraphs is more beneficial for performance.

Overall, the execution time benchmarks show that deep copying the doc-

ument induces a considerable overhead. We believe that this overhead is not

inherent to SECROs, but to its implementation on top of mutable objects.695

9. Guidelines for Designing Replicated Data Types (RDTs)

We now provide some guidelines for designing replicated data types under

(strong) eventual consistency. When designing available systems, programmers

need to use existing RDTs or design their own. If a data type’s operations

naturally commute then replicating it will guarantee strong eventual consistency700

out of the box, given that updates are eventually propagated to all replicas. This

is for instance the case of a counter data type, whose increment and decrement

operations commute.

When the data type’s operations do not naturally commute, one can browse

the literature for an equivalent CRDT. A CRDT may exist that applies some705

clever tricks to make the operations commute (e.g. OR-Sets [25]).

If none of the above applies one can resort to SECROs to build their repli-

cated data type without worrying about commutativity. SECROs are able to

omit the commutativity requirement by (re)ordering operations deterministi-

cally. This naturally entails some performance cost, as shown in Section 8.710

Note that some conflicts may not be solvable solely by reordering operations

and can thus not be tackled using SECROs. This is the case for mutually exclu-

sive operations. When two mutually exclusive operations execute concurrently,

a conflict will arise that can only be solved by discarding at least one of the

operations. In those cases, the programmer may resort to synchronising the715

mutually exclusive operations, similarly to [26, 27], or implement an ad-hoc

conflict resolution scheme.
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Finally, we draw the relation between CmRDTs (operation-based CRDTs,

see Section 2) and SECROs. Both data types ensure SEC, but CmRDTs require

all concurrent operations to commute. As such, all valid serialisations of the720

operations - those respecting causality - yield the same valid state. Interestingly,

SECROs guarantee that all replicas agree on one valid serialisation (without

having to synchronise with one another). Pre and postconditions are used to

confine the set of serialisations from which to pick one, e.g. to ensure that the

given serialisation guarantees a certain conflict resolution strategy. Since all725

serialisations of a CmRDT are equivalent, any CmRDT can be implemented as

a SECRO that associates no pre or postconditions to the operations. We thus

conclude that CmRDTs are a subset of SECROs.

10. Related Work

We now describe work that is closely related to the ideas presented in this pa-730

per. We distinguish between two research areas. First, we discuss programming

languages and abstractions that like CScript help programmers trade off con-

sistency for availability and vice-versa. Second, we discuss research on (strong)

eventual consistency that is related to the SECRO data type.

Programming Languages. CAPtain [28] is a programming model with735

two types of replicated objects: consistents and availables. The former guaran-

tee strong consistency whereas the latter guarantee availability but only even-

tual consistency. These two types of objects are completely separated and form

CAPtain’s unit of distribution. In contrast to CAPtain, CScript bundles replicas

into services which can be partly consistent and partly available, and distributes740

those services over the network. Each service exposes specific functionality

through its API by coordinating between consistent and available replicas.

Geo [29] is an actor system for geo-replication that combines caching with

replication techniques to hide latency and benefit from data locality where pos-

sible. Geo supports “single-instance” and “multi-instance” caching policies for745

actors across clusters. The single-instance caching policy is similar to consistent
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replicas in CScript, as it ensures a single instance of the actor that serialises all

updates. The multi-instance caching policy replicates the actor to every clus-

ter. These actors can be kept strongly consistent using Geo’s distributed cache

coherence protocol, or eventually consistent using Geo’s Versioned API.750

The MixT programming language [3] proposes mixed-consistency trans-

actions to manipulate data with different consistency levels within a single

database transaction. Using information flow analysis, MixT can break down

mixed-consistency transactions into subtransactions for each consistency level

and still guarantee atomicity. MixT works on top of existing databases whereas755

CScript’s programming model integrates replication at the object-level.

Lasp [14] is the first programming language where CRDTs are first-class cit-

izens. New CRDTs are defined through functional transformations over existing

ones. In contrast, CScript provides SECROs, general-purpose RDTs which are

not limited to a portfolio of builtin data types. Existing data structures can be760

turned into SECROs by associating state validators to the operations.

Eventual Consistency. Central to SECROs is the idea of using

application-specific information to reorder conflicting operations. Bayou [10]

was the first system to use application-level semantics for conflict resolution by

means of user-defined merge procedures. However, our work does not require765

manual conflict resolution; programmers instead specify the invariants the appli-

cation must uphold in the face of concurrent updates, and the underlying update

algorithm deterministically orders operations as to respect these invariants.

IPA [30] is closely related to SECROs as it preserves application invari-

ants without coordinating operations. IPA extends the operations of traditional770

CRDTs with effects that guarantee the preservation of invariants in the face of

concurrent updates. IPA differs from SECROs in that they modify operations

whereas SECROs reorder concurrent operations.

JSON CRDTs [8] ease the construction of CRDTs by hiding the commu-

tativity restriction that traditionally applies to the operations. Programmers775

can build new CRDTs by nesting lists and maps in arbitrary ways. The ma-

jor shortcoming is that nesting lists and maps does not suffice to implement
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arbitrary RDTs. Moreover, programmers cannot customise conflict resolution

because it is hardcoded by the implementation of lists and maps. Hence, JSON

CRDTs are not truly general-purpose as opposed to SECROs.780

Cloud types [5] are RDTs that like SECROs do not impose restrictions on

the operations of the data type. However, cloud types hardcode how to merge

updates coming from different replicas of the same type. As such, programmers

have no means to customise the merge procedure of cloud types to fit the appli-

cation’s semantics. Instead, they are bound to implement a new cloud type and785

the accompanying merge procedure that fits the application. Hence, conflict

resolution needs to be manually dealt with.

Some work has considered a hybrid approach offering SEC for commutative

operations, and requiring strong consistency for non-commutative ones [27, 26].

There are some similarities to SECROs as they employ application-specific in-790

variants to classify operations as safe or unsafe under concurrent execution.

These hybrid approaches synchronise unsafe operations, whereas SECROs re-

order them as to avoid conflicts without giving up on availability. Partial Order-

Restrictions (PoR) consistency [31] uses application-specific restrictions over

operations but cannot guarantee convergence nor invariant preservation since795

these properties depend on the restrictions over the operations specified by the

programmer.

11. Conclusion

In this work we propose CScript, a distributed programming language fea-

turing consistent and available replicas. Consistent replicas guarantee strong800

consistency but are not available under network partitions. On the other hand,

programmers can always execute operations on available replicas but they only

guarantee strong eventual consistency (SEC) [6]. CScript lets programmers

bundle replicas into larger components called services. Services can mix avail-

able and consistent replicas which eases the development of mixed-consistency805

applications. The CScript runtime manages all replicas automatically, thereby
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freeing the programmer from manually synchronising them.

CScript supports two types of available replicas: conflict-free replicated data

types (CRDTs) [6] and strong eventually consistent replicated objects (SE-

CROs). Several CRDTs are built-in and programmers can implement custom810

ones. When CRDTs are not applicable, programmers can use our general-

purpose SECRO data type. A SECRO is an RDT that guarantees SEC without

imposing restrictions on the data type’s operations. Upon concurrent opera-

tions, SECROs compute a global total order of the operations that is conflict-

free, without synchronising the replicas. To this end, SECROs use state val-815

idators: application-specific invariants that determine the object’s behaviour in

the face of concurrency. By specifying state validators arbitrary data types can

thus be turned into available replicas.

To the best of our knowledge, SECROs are the first approach to support truly

general-purpose RDTs while still guaranteeing SEC. In this paper, we prove820

that SECROs guarantee convergence and we formulate a necessary condition

for SECRO data types which is sufficient to then prove progress.

To evaluate our work, we implemented a collaborative text editing appli-

cation using SECROs in CScript and compared it to a state-of-the-art imple-

mentation that uses JSON CRDTs. The memory usage benchmarks reveal825

that SECROs are more memory efficient than JSON CRDTs. Time complexity

benchmarks reveal that SECROs induce a linear time overhead which is pro-

portional to the size of the operation history. Performance wise, SECROs can

be competitive to state-of-the-art solutions if committed regularly.
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A. General Proof of Convergence for SECROs

In this appendix we prove that the SECRO data type guarantees strong

convergence. In other words, we prove that SECRO replicas which received the

same updates are in equivalent states.

In what follows we consider the SECRO implementation without commits940

and can therefore simplify the representation of SECRO replicas to a tuple

r = 〈s, h〉 consisting of the replica’s initial state s and its history h.
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Definition A1. Assume a replica r1 with initial state s1 and history h1, and

a replica r2 with initial state s2 and history h2. We say that r1 is equivalent to

r2 iff they have the same initial state and the same operation history:945

∀r1∀r2 : r1 ≡ r2 ⇐⇒ s1 = s2 ∧ h1 = h2.

We now prove convergence for the SECRO implementation without commits.

We use the notation l ⇓ r to deliver a list of updates l to a replica r which

optionally yields the updated replica. We denote the set of permutations of a

list l by Perm(l).950

Theorem A1. Replicas that received the same updates (possibly in a different

order) are in equivalent states:

∀r1, r2 ∀l1, l2 : r1 = 〈s1, h1〉 ∧ r2 = 〈s2, h2〉 ∧ s1 = s2 ∧

h1 ++ l1 ∈ Perm(h2 ++ l2) =⇒ l1 ⇓ r1 ≡ l2 ⇓ r2

Proof. When we deliver the updates l1 to the replica r1, Algorithm 1 ap-

pends the incoming updates to the history on Line 1: h′1 = h1 ++ l1. Simi-

larly, when we deliver the updates l2 to replica r2, we add the updates to the

history: h′2 = h2 ++ l2. Since h′1 and h′2 are permutations of one another,

sorting them according to a total order >> yields the same list of updates:955

l = sort>>(h′1) = sort>>(h′2). Both replicas then deterministically generate

the linear extensions of l on Line 3: LE(l) and search for the first extension

that is valid (i.e. respects all pre and postconditions). Given that the pre and

postconditions are deterministic, finding the first valid extension is also deter-

ministic. Hence, either both replicas find the same ordering of operations h′960

and end up in equivalent states 〈s1, h′〉 ≡ 〈s2, h′〉, or, both replicas end up in

an error state because no valid extension exists. �

B. Proof of Progress for SECROs

As argued in Section 7.2, we cannot provide a general proof of progress for

SECROs because the pre and postconditions are defined by the programmers.965

Instead, we require the SECRO’s pre and postconditions to meet Lemma 1.
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Lemma 1. Given an initial state s and a set of valid updates Vs, there exists

an ordering of the updates that respects causality and all pre and postconditions.

Using Lemma 1 we define correctness of replicas.

Definition B1. A replica r = 〈s, h〉 is correct iff the replica is an instance of970

a SECRO whose pre and postconditions meet Lemma 1 and all updates from its

history h are valid.

Given a replica r = 〈s, h〉 we can compute the replica’s current state by

successive applications of the updates from its history, denoted s / h. Listing 9

defines the generic / operator which applies a list of updates on some state, in975

Haskell. Updates are functions from state to state.

1 type Update s t a t e = s t a t e −> s t a t e

2 (/) : : s t a t e −> [ Update s t a t e ] −> s t a t e

3 s / h = fo ld l (\ s t a t e update −> update s t a t e ) s h

Listing 9: Definition of the / operator to compute a replica’s current state given its initial

state and update history.

We now prove that correct replicas guarantee progress.980

Theorem B1. For any correct replica r1 = 〈s, h1〉 and any valid update u

issued by some other correct replica r2 = 〈s, h2〉 while being in state t = s / h2,

delivering the update u at replica r1 does not fail:

∀r1, r2, u : r1 = 〈s, h1〉 ∧ r2 = 〈s, h2〉 ∧ t = s / h2 ∧

u ∈ Vt =⇒ [u] ⇓ r1 6= None

Proof. Let V be the set of valid updates observed by replica r1, i.e. V

contains all (and only those) updates from its history h1. Upon delivering the

update u at replica r1, [u] ⇓ r1, the algorithm generates all linear extensions of

the updates in V ′ = V ∪ {u} (Line 3 in Algorithm 1). Those linear extensions

are all the serializations of the updates that respect the causality of the updates.985

The algorithm then continues by searching for the first valid extension (Lines 7

to 32). Since r1 is a correct replica, at least one linear extension is valid (cf.

Lemma 1). The algorithm will find that linear extension and return the updated
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replica on Line 28, [u] ⇓ r1 = Some r′1. Hence, delivering a valid update at a

correct replica cannot fail. �990

C. Transitive Closure of Concurrent Operations

Recall from Algorithm 1 in Section 7.1 that checking preconditions and post-

conditions requires computing the transitive closure of concurrent operations.

We now formally define the transitive closure of concurrent operations.

Definition C1. An operation m1 = (o1, p1, a1, c1, id1) happened before an op-995

eration m2 = (o2, p2, a2, c2, id2) iff the logical timestamp of m1 happened before

the logical timestamp of m2: m1 ≺ m2 ⇐⇒ c1 ≺ c2.

Definition C2. Two operations m1 and m2 are concurrent iff neither one hap-

pened before the other [32]: m1 ‖m2 ⇐⇒ m1 ⊀ m2 ∧m2 ⊀ m1.

Definition C3. We define ‖+ as the transitive closure of ‖.1000

Definition C4. The set of all operations that are transitively concurrent to an

operation m with respect to a history h is defined as: TC(m,h) = {m′ |m′ ∈

h ∧ m′ ‖+ m}.

D. Detailed Execution Time of the Text Editor

In Section 8.4.2 we found that the SECRO implementation that uses a linked1005

list is faster than its tree-based counterpart. To determine the cause of this

counterintuitive observation, we measure the different parts that make up the

total execution time:

Execution time of operations Total time spent on append operations.

Execution time of preconditions Total time spent on preconditions.1010

Execution time of postconditions Total time spent on postconditions.

42



Copy time Due to the mutability of JavaScript objects our prototype imple-

mentation in CScript needs to copy the state before validating the poten-

tial history. The total time spent on copying objects (i.e. the document

state) is the copy time.1015

Figures D.9a and D.9b depict the detailed execution time for the list and tree

implementations respectively. The results show that the total execution time is

dominated by the copy time. We observe that the tree implementation spends

more time on copying the document than the list implementation. The reason

being that copying a tree entails a higher overhead than copying a linked list as1020

more pointers need to be copied. Furthermore, the tree implementation spends

considerably less time executing operations, preconditions and postconditions,

than the list implementation. This results from the fact that the balanced tree

provides logarithmic time operations.

Unfortunately, the time overhead incurred by copying the document kills the1025

speedup we gain from organising the document as a tree. This is because each

insertion inserts only a single character but requires the entire document to be

copied.

E. Throughput of the Text Editor

The experiments presented in Section 8 focused on the execution time of se-1030

quential operations on a single replica. To measure the throughput of the text

editors under high computational loads we also perform distributed benchmarks.

To this end, we use 10 replicas (one on each node of the cluster) and let them si-

multaneously perform operations on the text editor. The operations are equally

spread over the replicas. We measure the time to convergence, i.e. the time that1035

is needed for all replicas to process all operations and reach a consistent state.

Note that replicas reorder operations locally, hence, the throughput depends on

the number of operations and is independent of the number of replicas.

Figure E.10 depicts how the throughput of the list-based text editor varies

in function of the load. We observe that the SECRO text editor scales up to1040
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Figure D.9: Detailed execution time for appending characters to the SECRO text editor. The

replica is never committed. The plotted execution time is the average taken from a minimum

of 30 samples. Samples affected by garbage collection are discarded.
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Figure E.10: Throughput of the list-based SECRO and JSON CRDT text editors, in function

of the number of concurrent operations. The SECRO version committed the document replica

at a commit interval of 100. Error bars represent the 95% confidence interval for the average

of 30 samples.

50 concurrent operations, at which point it reaches its maximal throughput.

Afterwards, the throughput quickly degrades. On the other hand, the JSON

CRDT implementation achieves a higher throughput than the SECRO version

under high loads (100 concurrent operations and more). Hence, the JSON

CRDT text editor scales better than the SECRO text editor. However, SECROs1045

are truly general-purpose which allowed us to organise documents as balanced

trees of characters, which is not possible using JSON CRDTs.
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