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Abstract

Over the years, mobile devices have become increasingly popular and gained im-

proved computation capabilities allowing them to perform more complex tasks such as

collaborative applications. Given the weak characteristic properties of mobile networks,

which represent highly dynamic environments where users may experience regular invol-

untary disconnection periods, the big question arises of how to maintain data consistency.

This issue is most pronounced in collaborative environments where multiple users in-

teract with each other, sharing a replicated state that may diverge due to concurrency

conflicts and loss of updates.

To maintain consistency, one of today’s best solutions is Conflict-Free Replicated Data

Types (CRDTs), which ensure low latency values and automatic conflict resolution, guar-

anteeing eventual consistency of the shared data. However, a limitation often found on

CRDTs and the systems that employ them is the need for the knowledge of the replicas

whom the state changes must be disseminated to. This constitutes a problem since it is

inconceivable to maintain said knowledge in an environment where clients may leave

and join at any given time and consequently get disconnected due to mobile network

communications unreliability.

In this thesis, we present the study and extension of the CRDT concept to dynamic

environments by introducing the developed P/S-CRDTs model, where CRDTs are cou-

pled with the publisher/subscriber interaction scheme and additional mechanisms to

ensure users are able to cooperate and maintain consistency whilst accounting for the

consequent volatile behaviors of mobile networks. The experimental results show that

in volatile scenarios of disconnection, mobile users in collaborative activity maintain

consistency among themselves and when compared to other available CRDT models, the

P/S-CRDTs model is able to decouple the required knowledge of whom the updates must

be disseminated to, while ensuring appropriate network traffic values.

Keywords: CRDT, Eventual Consistency, Dynamic Environments, Publish/Subscribe,

Data Propagation, Mobile Networks.
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Resumo

Ao longo dos anos, os dispositivos móveis tornaram-se cada vez mais populares e adqui-

riram capacidades computacionais acrescidas, o que lhes permitem realizar tarefas cada

vez mais complexas tais como aplicações colaborativas. Tendo em conta as redes móveis,

que representam ambientes altamente dinâmicos onde os utilizadores podem incorrer

em períodos regulares de desconexão involuntários, levanta-se a grande questão de como

manter a consistência dos dados. Este problema é mais pronunciado em ambientes colabo-

rativos onde vários utilizadores interagem entre si, compartilhando um estado replicado

que pode divergir devido à conflitos de concorrência e perda de atualizações.

Para manter a consistência, uma das melhores soluções dos dias hoje é os Conflict-
Free Replicated Data Types (CRDTs), que fornecem baixos valores de latência e resolução

automática de conflitos, garantindo a consistência eventual dos dados compartilhados.

No entanto, uma limitação frequentemente encontrada nos CRDTs e nos sistemas que

os empregam, é a necessidade do conhecimento das réplicas para qual as mudanças de

estado devem ser disseminadas. Isto constitui um problema, pois torna-se inconcebível

manter o referido conhecimento em ambientes em que os clientes podem sair, entrar e

serem desconectados a qualquer momento, devido à fraca natureza das redes móveis.

Nesta dissertação, apresentamos o estudo e a extensão do conceito de CRDT a am-

bientes dinâmicos através da introdução do modelo P/S-CRDTs, em que os CRDTs são

acoplados ao esquema de interação publicador/subscritor e mecanismos adicionais para

garantir que os utilizadores possam cooperar e manter a consistência enquanto lidam com

os consequentes comportamentos voláteis das redes móveis. Os resultados experimentais

mostram que em cenários de desconexão, os utilizadores móveis em atividades colaborati-

vas conseguem manter consistência entre si e que quando comparado com outros modelos

disponíveis de CRDT, o modelo P/S-CRDTs permite desacoplar o conhecimento neces-

sário de quem as atualizações deve ser disseminadas para, ao mesmo tempo garantindo

valores de tráfego de rede apropriados para redes móveis.

Palavras-chave: CRDT, Consistencia Eventual, Ambientes Dinamicos, Publish/Subscribe,

Propagação de Dados, Redes Móveis.
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Introduction

1.1 Context & Motivation

Throughout the years, mobile devices have become more portable, smarter and afford-

able, leading to a surge of users embracing such devices as smartphones, tablets and

smartwatches which nowadays consists the mainstream way of accessing the internet for

mundane activities, such as accessing social networks, communicating with friends and

checking emails. Due to the growth, 13.1 billion mobile devices were registered world-

wide in 2019 and a projected value of 16.8 billion mobile devices worldwide by 2023

(Figure 1.1).

Thus, according to studies conducted by Cisco [31], mobile traffic accounts for 51%

of the global communication traffic, generating 19.01 exabytes per month in 2018 and ex-

pecting mobile data traffic to reach 77.5 exabytes per month in 2022 at an annual growth

rate of 46%. Furthermore, researchers reveal that the exponential mobile traffic growth is

directly linked to the increased consumption of media streaming services, representing

the largest chunk of mobile user interactions.

Hence, services such as online shopping, social networks and media streaming have

millions of concurrent users accessing on a daily basis from these mobile devices, as a con-

sequence applications that revolve around these services must meet clients expectations

of availability, scalability and low latency. To assure that services are able to scale, repli-

cation techniques are employed where services are replicated across multiple replicas

around the world. Having user’s data scattered among multiple replicas enables services

to provide better fault-tolerance, however since mobile users grow at an unprecedented

rate, centralized network systems observe an increased resource consumption generating

expensive network loads that not only becomes harder for the services to manage but also

resulting in high latency for mobile users.
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Figure 1.1: Projection for the number of mobile devices worldwide from 2019 to 2023 in
billions. Based on [33].

Moreover, as users demand network systems for better performance and overall bet-

ter user experience, whilst such systems must deal with large amounts of data traffic,

traditional approaches such as Mobile Cloud Computing (MCC) [49] incur new notice-

able challenges such as security vulnerability, low coverage, lagged data transmission

and revealing unacceptable performance values as communication between mobile users

and remote cloud centers is often over a long distance, adding to the latency in cloud

computation. Moreover, MCC is not a suitable approach for scenarios involving real-time

applications and guaranteeing high quality of service.

Therefore, Mobile Edge Computing (MEC) [18] is introduced as a way to address

the challenges that are raised by MCC systems. By expanding the traditional cloud

architecture with additional datacenter layers, edge computing provides computation

and storage closer to the users (Figure 1.2), offering cloud computing capabilities within

the radio access network at a considerable bandwidth cost decrease, compared to MCC

systems. By adding datacenters closer to the client device, edge computing makes possible

next generation mobile and IoT applications that require low latency or that produce large

volumes of data. In addition, end users get more powerful computing, energy efficiency,

storage capacity, mobility, location and context awareness support for end users.

In order to communicate, mobiles nodes in MEC environments exchange messages

through a wireless medium, using standard technologies such as Wi-Fi, WiFi-Direct, Blue-

tooth, or a combination of these [50, 54, 55]. Unfortunately, by nature, mobile network

communications are unreliable, being prone to limited bandwidth, regular periods of

disconnection and overall poor connectivity, thus entailing new dilemmas around the

trade-offs between high availability, data consistency and performance.

As it is impossible for a distributed system to provide availability, partition tolerance

and consistency simultaneously [26], some services opt to provide two of the above char-

acteristics and discard the third. For instance, more robust services, require data to be
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Figure 1.2: Architecture of Mobile Edge Computing (MEC).

consistent at all times, thus providing strong consistency guarantees alongside with avail-

ability, at the cost of not ensuring partition tolerance. On the other hand, some services

rather guarantee partition tolerance and high availability, at the cost of having a weaker

form of consistency.

Thus, in mobile environments where the network may be composed by a large amount

of clients and subject to the unreliable side of over-the-air communication channels, often

a debate is created around strong and weak forms of consistency. Since, over-the-air

communication channels are characteristically unreliable, thus inducing various common

erratic behaviors such as network disconnection and unpredictable message loss. In

collaborative scenarios where mobile users share a common state throughout the activity,

said prominent erratic behaviors of mobile environments create some pragmatic side

effects.

A user in a collaborative activity, such as a shared to-do list application may momen-

tarily suffer a disconnection period, whilst the remaining intervenients of the application

are still operating. Once the user reconnects with the network, some data inconsistencies

may be noticeable, such as missing items comparatively to the remaining intervenients

who kept issuing modifications during the user’s disconnection, meaning that the user

has an out of date version of the state, hence diverging in correlation the correct and up to

date state as the activity continues. Additionally, a very common issue found in collabora-

tive applications are concurrency conflicts, originated from concurrent activity within the

collaborative application. Thus, if a conflict occurs and the system is unable to determine

the correct order of the operation, application users will experience a permanent state

divergence, as different operation orders are applied to different users.

In order to to eliminate the side effects originated in dynamic environments, some

solutions were formulated, such as rollback mechanism that when detected a conflict,

allows the system to revert to prior state where no conflicts are present and apply the
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resolution algorithm for the detected conflicting operations. Although being able to

solve conflicts, rollback mechanisms suffer from severe problems either by relying on a

primary replica to run the conflict resolution as well as some systems that employ the

rollback technique requiring all replicas be frozen whilst the conflicts are solved [45], thus

representing a non optimal approach for mobile users, as it doesn’t meet the availability

expectations of mobile users.

Ultimately, ensuring data consistency in dynamic environments where communica-

tions are unreliable, whilst meeting mobile users expectations of low latency and high

availability is an ongoing struggle. Notably in times where the number of mobile devices

increases exponentially and with the introduction of new emergent technologies such as

5G, guaranteeing data consistency is of paramount importance.

1.2 Problem & Challenges

As the dilemma to be studied in this thesis revolves around the characteristic dynamic

environment originated by mobile networks, where users may join as well as willingly

leave the network, or unwillingly due to over-the-air communication channels being

susceptible to frequent periods of disconnection, thus representing an environment where

users show highly volatile behaviour. Due to the unpredictability and unreliability of over-

the-air communication channels, problems arise and are more noticeable in applications

based on collaborative activity among users, where a state defined by the application is

shared and managed among users.

As a result, users who experience a disconnection in such applications are prone to

inconsistencies, since during the time out of the network, the user’s state diverges from

the common shared state among users. Not only that, but concurrent operations among

users, showcases the same effects by creating conflicts, to which networks alone are not

capable of solving.

Thus, one of today’s best approaches to obtain conflict resolution at relatively low

performance impact are the CRDTs [52], which are data types that allow replication

over replicas with no coordination, guaranteeing eventual state convergence. CRDTs

have proven to be a suitable approach to conflict resolution, ensuring that replicas state

eventually converge and offering minimal latency compared to other solutions. This,

allows CRDTs to have low requirements from the network, which in turn demonstrates

why CRDTs are suitable for distributed storage systems such as Riak [1] and AntidoteDB

[2], collaborative applications like Treedoc [48] and LSEQ [41], and peer-to-peer networks

like Legion [39].

Although, CRDTs present themselves as a way to achieve conflict resolution, exist-

ing work on eventually consistent systems employing CRDTs are still heavily focused in

centralized approaches, where the knowledge of participating nodes is taken for granted.

The same cannot be told about the dynamic environments in question which are loosely

coupled networks, where maintaining such a knowledge of the system is inconceivable.
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Therefore, the main questions we intend on asking ourselves is how to guarantee that

nodes will be able to continue to interact and view a consistent state of the storage when

participating nodes in collaborative activity show volatile behavior, by being capable of

leaving and joining the network at any given time and how to enable replicas to dissemi-

nate local updates without holding any reference to the receiving replicas.

1.3 Proposed Solution

The objective of this thesis, as means of solving the previously presented challenges, is

to take the concept of CRDTs and extend it to dynamic environments by coupling the

CRDT objects with a system capable of using the publish/subscribe interaction scheme,

with the intent of taking advantage of the decoupling characteristics of publish/subscribe

systems.

Thus we intend to implement a new design of CRDTs, the Publish/Subscribe CRDTs

(P/S-CRDTs), where mobile users may enjoy a collaborative application deployed in a

peer-to-peer network. Whereas the result of coupling these CRDTs on top of a publish/-

subscribe system, users are able to maintain a shared common state among its peers,

being able to perform volatile scenarios such as disconnection and eventual re-entry in

the network, without feeling the repercussions.

To do so, P/S-CRDTs specify the manner of how updates must be disseminated, how

update’s content are built according to the employed synchronization models, as well

required mechanism to ensure that mobile users who experience disconnection and late

entry events are able to regain consistent, by retrieving the needed missing information

required to converge. Furthermore, by using the publish/subscribe interaction scheme

as the medium for update dissemination, we aim to decouple the knowledge of whom

updates must be sent to, and even make use of publish/subscribe time, space and syn-

chronization decoupling properties, enabling disconnected work for users.

1.4 Contributions

As the solution presented, comprises a new design of CRDTs capable of using the pub-

lish/subscribe interaction scheme to disseminate updates and provide the decoupling

between senders(publishers) and receivers(subscribers), this thesis presents the following

contributions:

1. Proposal of an extension of the CRDT concept to dynamic environments (P/S-

CRDT);

2. Implementation of P/S-CRDTs on top of a topic-based publish/subscribe system

for mobile networks;

3. Development of a mobile collaborative simulations;
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4. Evaluation of the developed of the CRDT concept comparatively with other solu-

tions;

5. Implementation of techniques for storage optimization;

1.5 Communications

Throughout the work done in this dissertation, the developed solution in this thesis was

presented in the following publication:

• CRDTs em Ambientes Dinâmicos [24] António Barreto, Hervé Paulino, João Silva

and Nuno Preguiça. Actas do décimo primeiro Simpósio de Informática, Guimarães,

Portugal, September, 2019.

1.6 Document Outline

The remainder of this document is organized as follows. In Chapter 2 we introduce the

major areas of interest regarding the context of this thesis, state-of-the-art implemen-

tations of CRDTs, eventually consistent mobile systems and a brief introduction to the

generic publish/subscribe interaction scheme. Followed by the model design used as the

proposed solution for this thesis, the P/S-CRDT model in Chapter 3.

Afterwards, in Chapter 4, we showcase the implementation of the proposed solution

with an existing publish/subscribe system as proof of concept. In Chapter 5 we detail the

developed testing environments and show the results obtained in our evaluation process,

describing the results comparatively to other systems. Finally, arriving at Chapter 6

where all conclusions about the developed work are made, along with possible future

work derived from the developed work.
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2
State-of-the-Art

The purpose of this chapter is to exhibit concepts, implementations and re-

lated work of multiple technologies and network systems adopting replicated

data structures, that are pertinent to the development of this dissertation. To

successfully develop the proposed solution, the research was heavily centered

on specific areas of interest such as the eventual consistency model, conflict-

free replicated data types and preexisting mobile edge systems in a collabora-

tive environment that benefit from conflict-free replicated data structures.

To further understand the shortcomings of a strong consistency model,

the uprising of weaker forms of consistency and how should one approach to

achieve conflict resolution in said consistency model, a brief explanation is

presented in Section 2.2.2.

Moreover, given that the goal is to extend the CRDT concept to dynamic

environments a research was conducted on the various types of CRDTs in

order to gather the advantages, disadvantages, and limitations, followed by a

concise analysis of the proposed objective and which of the CRDTs shall bring

the most to the table, showcasing the possible improvements deriving out of

the extension of the CRDT concept to dynamic environments in Section 2.3.

To conclude the Chapter, in Section 2.4, we present several cases of ap-

plications in a collaborative environment, employing an eventual consistency

scheme. Furthermore, in Section 2.5 a succinct overview of the publish/sub-

scribe interaction scheme is made, detailing its roles and properties.
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Figure 2.1: CAP Theorem. Taken from [40].

2.1 CAP theorem

In this day and age, large scale infrastructure services such as Amazon’s S3 (Simple

Storage Service) [3] and Riak® KV [1] that provide resources for a great array of appli-

cations, should present guarantees in the areas of security, availability, scalability and

performance, whilst continuously serving millions of customers around the globe. Given

the scale, additional challenges arise. By processing enormous amounts of requests, these

systems design and architecture must take into account that data inconsistencies occur

in concurrent environments and should not be visible to the clients [57]. To that end,

various replication techniques are used to guarantee a consistent state across multiple

nodes, grant higher performance and availability.

It would be naive to think that when an update operation takes place all observers

will immediately see the effect of that same update since as we know through advances

in technology, new larger internet systems have emerged and new ways of accessing the

network like mobile phones have become mainstream. Thus, entailing new dilemmas

around the trade-offs between high availability and data consistency, in order to con-

ceal the high latency, regular periods of disconnection and poor connectivity of mobile

network communications.

The CAP theorem presented by Eric Brewer [26], states that the properties of availabil-

ity, data consistency and network partition tolerance, only two can be achieved at any

given time (Figure 2.1).

In large scale distributed systems, network partitions are presumed to happen, hence
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consistency and availability cannot be reached simultaneously at any given time. Thus

bringing us to the conclusion that either a consistency relaxation must take place granting

the system high availability or on the other hand making consistency a priority leaving

the system unavailable under certain conditions. Considering the goal of overcoming the

obstacles provided by a dynamic environment, such as a mobile edge network, where

availability is not always granted, it seems rather obvious that a consistency relaxation is

the route to take in order to tackle the obstacles.

2.2 Consistency Models

2.2.1 Strong Consistency

A strong consistency model, implies that after an update is completed, any following

access by a process yields the return of the updated value, therefore granting a consistent

state across all replicas. Regrettably, it comes at a cost for guaranteeing such strong char-

acteristics, requiring an increased communication cost. This communication requirement

becomes problematic whenever connections are slow or unavailable. Hence, any system

that provides strong consistency is susceptible to a state of low availability, for example, if

the network should become partitioned making communications not viable, then multi-

ple clients may become ineffective since they can no longer perform updates or read data.

Moreover,Performance additionally sees a fall-off under a strong consistency model, for

example, if each update requires a round-trip to some central unit and communication

is slow due to the geographical distance between the client and the server [28]. Also

when taking into consideration the characteristics of edge networks, such as over-the-air

communication congestion and unreliability, a stronger consistency would be impractical

considering a large number of nodes requesting and editing a huge number of data in the

same network.

2.2.2 Eventual Consistency

Due to the limitations of a strong consistency scheme, we adopt a weaker form of

consistency frequently designated as eventual consistency in order to achieve consensus

over operations performed on the data structure. The eventual consistency model does not

ensure that following accesses yield the updated value, in turn, it guarantees that if no

new updates take place then eventually all accesses will yield the last updated value, thus

effectively making a trade-off between consistency and availability [22]. There is also an

abundant number of variations that derive from the eventual consistency model, that are

important to consider[28, 34, 57]:

• Causal Consistency: Model based on the happens before relation, distinguishing

between events that are causally related and those that are not. If process A has
communicated to process B that it has updated a data item, a subsequent access by process
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B will return the updated value, and a write is guaranteed to supersede the earlier write
[21]. An access made by another process C that has no causal relationship to process

A is subject to consistency irregularities. Since in this model there is no necessity for

collaboration with other nodes to obtain the correct order of updates, it is regarded

as a fast consistency model according to Attiya and Friedman [21]. It is regarded as

a weak model since it can allow access to stale data and different replicas may have

different state values due to concurrent operations if no reconciliation techniques

applied.

• Session consistency: Model where a process accesses a node in the context of a

session. Session being an abstraction for the sequence of read and write operations

performed during the execution of an application. As long as the session exists, the

system guarantees read-your-writes consistency. If the session terminates because

of a certain failure scenario, a new session must be created and the guarantees do

not overlap the sessions.

• Read-your-writes consistency: Established upon the concept that natural order of

operations for a user is to be able to read what they write in the very same sequence.

Therefore, as long as the session lasts, clients will access the last value they have

updated. Considering process A after having updated a data item, all subsequent ac-

cesses operate on the updated value and never sees an older value. Read operations

within the same session occasionally see other writes that are performed outside

the session, since there may be other users performing writes to other servers and

these updates could be seen in the present session and server. Thus, a user might

perceive the interaction with the system by other users.

• Monotonic read consistency: From the assumption that when requesting more

than one read in the same session, the user expects to see more operations over time

and not fewer. The users can see the evolution of the system as they read through

time increasingly within the session, thus giving the impression that the system is

growing and changing through time. Then if a process has seen a particular value

for the data item, any subsequent accesses will never return any previous values.

• Monotonic write consistency: For a user of the current session and other users

from outside the session, a write is only updated in the server if the copy includes

all the previous session writes. As a result, the user session can be sure of the order

between two write operations, taking into account the cost of coordination among

replicas and requiring users to agree in a write order. Systems that do not guarantee

this level of consistency are notoriously difficult to program.

• Strong eventual consistency: Eventual consistency systems will execute an update

immediately, finding later that it conflicts with another, requiring rollback mech-

anisms to resolve this conflict. This develops a waste of resources, demanding
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consensus to ensure that all replicas conciliate conflicts in the same way. To avoid

this, a stronger condition is required, saying that an object is strongly eventually

consistent if it is eventually consistent and guarantees strong convergence, by vali-

dating that correct replicas that have delivered the same updates have equivalent

state [52]. Summing up, Strong Eventual Consistency (SEC) is a model that reaches

a compromise between strong and eventual consistency, requiring a system to be

eventually consistent and its replicas to have a recipe to solve conflicts automatically,

hence not needing consensus, allowing n-1 nodes to be down.

Numerous combinations of these variations are possible, for instance, one may have

monotonic reads with session-level consistency, which are very desirable in an eventual

consistency system by making it simpler for developers to build applications, whilst

allowing the storage system to provide high availability and relax consistency [57]. A

few application scenarios are possible yet it depends on the particular application and

whether or not one can deal with the consequences.

Given the context of this thesis, a Strongly Eventually Consistent system is desirable

since it is possible to implement it in a decentralized setting without any central server or

leader, and allowing local execution at each node to proceed without waiting for commu-

nication with other nodes, unlike strongly consistent systems [34]. Moreover, large scale

deployments of strong eventual consistency include storage services and collaborative

editing applications such as Google Docs [4].

Additionally, the method of resolving conflicts within an eventually consistent model

comprises many challenges such as what and when to resolve as well as who should

address the conflict resolution. GitHub [5], a hosting service for version control, is an

example of a collaborative environment where manual conflict resolution is employed

by the system. For instance, when a user commits the code changes and then pushes it

to some remote node where other users can access it, whilst another user concurrently

changes the same files, the system will prompt the user for a manual resolution of the

conflict in order to maintain a single consistent copy across all users in the collaborative

environment.

There are different plans of attack to handle these conflicts, a number of systems let

the user manually resolve them, some choose one update as the winner and throw away

the other concurrent updates and other systems merge concurrent updates automatically

such as Riak [1] that uses CRDTs to perform the merge operation [27]. Conclusively

acquiring a consistent state requires two properties, convergence and validity. To ensure

convergence, a system must reconcile differences between multiple copies of distributed

data, requiring that all replicas eventually agree and validity that they agree upon a

sensible resolution.
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Figure 2.2: Example of CRDT-based conflict resolution.

2.3 Conflict Free Replicated Data Types

The Conflict-Free Replicated Data Types (CRDTs) [52] are a family of abstract data types

designed for highly available systems, that can be updated without the expensive synchro-

nization by allowing replicas to be modified without the need of coordination, avoiding

complex roll-back and conflict resolution mechanisms (Figure 2.2). CRDTs represents a

suitable solution for replication in eventual environment given their asynchronous na-

ture, promising eventual convergence and remaining responsive, available and scalable

despite high network latency, faults or disconnection [46].

Considering the relatively new genesis, the CRDTs have proven to be very useful,

seeing the increasing amount of applications and storage services adopting CRDTs, such

as Bet365 [6], SoundCloud [7], GitHub [5], AntidoteDB [2] and Redis [8].

2.3.1 State-based CRDTs

State-based CRDTs (CvRDTs) employ a state-based(or passive) synchronization model,

where replicas synchronize by periodically exchanging their full local state, along with

metadata information. For the payload of the data type a semilattice is used, hence all

operations must comply with associative, commutative and idempotent properties.

When a replica receives the state from another replica, it merges the received state

with its local state with the help of a merge function defined by the data type. Updates

generally are first performed locally at the source, and then later sent to an arbitrary

replica, where it will be merged with the state of that replica using the merge function

(Figure 2.3).

Every update eventually reaches every replica and converges states if [46]:

• (i): The possible states of the CRDT are partially ordered forming a join semilattice.

• (ii): An update mutates the state of a replica by an inflation, producing a new state

that is larger or equal to the original state.
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Figure 2.3: State-based replication. Taken from [51].

• (iii): The merge function produces the join (least upper bound) of two states.

One major downside of using this approach lies in the considerable communication

overhead imposed by the propagation of entire data objects, notably when the size of

these data objects grow significantly. For instance, in a large Set, the full Set needs to be

propagated whenever a single element is added.

On the other hand, state-based CRDTs are usually easier to implement, because ad-

ditional mechanisms for replication are not required and all information is carried by

the state. Moreover, they show a more flexible approach, by having less requirements

regarding the underlying communication channel. Additionally, multiple updates can be

combined to a single replication step [37, 46, 51, 52]. The predominant usage of CvRDTs

is in file systems such as NFS, AFS, and Coda [51], as well as in key-value stores like

Dynamo [9] and Riak [1].

2.3.2 Operation-based CRDTs

Operation-based CRDTs (CmRDTs) make use of the operation-based(or active) synchro-

nization model, solving the issue of the previous synchronization model by simply propa-

gating the update operation metadata, that mutated the local state, to every other replica.

Additionally, CmRDTs require all operations to be delivered according to some specific

order, causal order being the most common.

Furthermore, operation-based CRDTs need to define for each operation, a prepare-
update function to be executed in the replica where the update is submitted (source),

followed immediately by the effect-update function (effector), if this were not true, there

would be no causality between successive updates [52]. The effector function has the

purpose of encoding the side-effects of the update, responsible for the mutation of the

state, so that it may be delivered to all replicas with the intention of accomplishing

convergence.

Updates for CmRDTs are first carried out locally at the source and consequently sent

to all other replicas, thus requiring a reliable delivery to guarantee convergence across all

replicas. It then is possible to rely on any reliable broadcast(or multicast) communication
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Figure 2.4: Operation-based replication. Taken from [51].

subsystem. Since this propagation is done through broadcasting from one to node to the

entire system, there may be cases, such as concurrent updates, where operations reach in

a different order to different replicas. Therefore, to converge to a correct state, operations

need to be commutative.

By comparison with state-based CRDTs, operation-based CRDTs expose a greater ef-

ficiency, by only transmitting information about operations alongside their respective

causal order, allowing larger states. However CmRDTs require operations to be trans-

mitted in their causal order for replication, thus a causally ordered reliable broadcast

channel is required, which requires additional guarantees from the communication chan-

nel. Currently, they are mainly used in cooperative systems such as Bayou and IceCube

[47].

2.3.3 Pure Operation-based CRDTs

When necessary, op-based CRDTs in scenarios such as synchronization of replicas after

failure, are obligated to propagate the full-state, and thus imposing propagation and

storage overheads as well as making indistinguishable the distinction from state-based

CRDTs [23].

In order to make a clear distinction from state-based CRDTs and diminish the im-

pact of the imposed overhead, pure operation-based CRDTs that can only send unitary

operations to other replicas, are introduced. Pure Op-based CRDTs, require effector

functions(effect-update method) to be idempotent, in order to avoid delays originated

by the prepare-update method building messages that duplicate the information already

present in the middleware [59]. Therefore, to obtain idempotence, updates must propa-

gate immediately at the cost of more complex operation representation and of having to

store more metadata in the CRDT state. With pure op-based CRDTs, the prepare-update
method is limited to returning the operation, not being able to inspect the state. Whilst

the effect-update method delegates the entire logic of executing the operation in each

replica, which is also made generic by not being data type dependent [46].

Additionally data types with commutative operations can simply be implemented as
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pure op-based CRDTs using standard reliable causal delivery, whilst data types with non-

commutative operations are implemented using a partially ordered log of operations(PO-
Log), making use of an extended API, such as Tagged Causal Stable Broadcast (TCSB),

that provides extra causality information upon delivery and later informs when delivered

messages become causally stable, allowing operations log compaction [23].

2.3.4 Delta-based CRDTs

By contrast with the previous synchronization models, if an update simply modifies a

minor portion of the state, propagating the complete object’s state to other replicas like in

state-based synchronization is inefficient, since the replica already knows a major portion

of said sate. On the other hand, if a large number of updates modify the same state, such

as increment operations in a counter, propagating all update operations like in operation-

based synchronization, imposes additional overhead over the communication channel,

thus a more sensible approach would be to propagate the whole object’s state once [46].

To solve the presented shortcomings, we present the delta-based CRDTs, that combine

both state and operation synchronization models.

Small Delta CRDTs (δ-CRDTs)

Small delta-based CRDTs (δ-CRDTs) [19] make use of delta-mutators, that update the state

according to the changes made since the last synchronization date. Each replica must

contain a local communication buffer containing deltas, that have not yet been propagated

to neighbor replicas. Taking into account the fact that deltas are not propagated right

away when multiple changes are made to the same item, all deltas contained by the buffer

are merged into a single delta entity before dissemination.

However, δ-CRDTs synchronization may only function in an environment where con-

tinuous and static synchronization patterns among replicas are employed. This consti-

tutes a problem, since scenarios where clients have unreliable communication channels,

exhibiting highly dynamic communication patterns such as mobile edge networks, it is

rather hard to maintain a solution where replicas remain consistent with continuous and

static synchronization patterns [38].

Big Delta CRDTs (∆-CRDTs)

Because ensuring that replicas remain consistent in systems with unreliable commu-

nication channels is an arduous task, Big delta-based CRDTs (∆-CRDTs) [38] have been

introduced as an update over δ-CRDTs, in order to support highly dynamic environments

for large scale systems.

∆-CRDTs do not make use of pairwise communication buffers, reducing the space

overhead upon each replica, instead the CRDT internal metadata is used to compute the

minimal delta that needs to be propagated to another replica, based on a causal context
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exchanged between replicas, such as vector clocks. Hence, ∆-CRDTs are appropriate to

be used in decentralized dissemination protocols, such as gossip protocols.

In contrast with δ-CRDTs, instead of having replicas periodically send deltas to other

replicas, receiving nodes become responsible for disseminating getDelta request, in order

to show the data’s most recent version. When this request is sent, the origin node will

send the version vector, which combines both the identifier of the replica and operation

number, for a specific item being held and the destination node will then answer back with

a fully merged delta if the received version vector is lower than what it holds. Otherwise,

the delta will be empty and as a consequence, each replica is required to maintain a list

of metadata describing the delta history.

Moreover, in order to save space, a garbageCollection function is periodically executed

to delete old metadata associated with all operations that happened before a given point

in time [38]. In the case where the origin node’s version vector is much older than what

the replica has, the framework will fall back to a state-based CRDT and send the full

state.

2.3.5 CRDT applications

Table 2.1: CRDT data types and known implementations, based on [37].

Data Type CRDT Specifications Known Implementations

[52]Integer Vectors Increment-only Integer Vector
[51]Counters G-Counter, PN-Counter Riak [1], Eventuate [10]
[51]Registers LWW-Register, MV-Register Riak [1], Eventuate [10]
[51]Sets LWW-Element-Set, PN-Set, OR-Set, U-Set Riak [1], Eventuate [10]
[51]Maps Dictionary, Map Riak [1]
[51]Graphs 2P2P-Graph, Add-Remove Partial Order

Table 2.2: CRDT use cases and known implementations, based on [37].

Use Case Underlying CRDTs Structure Known Implementations

Dynamic Vector Clocks Increment-only integer vector [52]
Collaborative writing Add-Remove Partial Order [51] Logoot [58], Treedoc [48], WOOT [42],

LSEQ [41]
Logs U-Set [52]

Time-series Event Storage LWW-Element-Set [51] Roshi [11]
Shopping Carts MV-Register [51] Amazon [12]
Location Data Combination of 2P-Set, LWW-element-Set [51] NavCloud (TomTom) [13]
Betting Data OR-Set [51] bet365 [6]

Gameplay statistics Sets of Counters [51] League of Legends [14]

The previously displayed CRDTs can be used to implement several different basic

data types (Table 2.1). Some data types are more tailored than others to certain types of

applications. The applications have a varied range of use cases, varying from collaborative
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environments for text editing to web store shopping carts like the one in Amazon [12],

and even betting applications such as Bet365 [6] (Table 2.2).

To select the most appropriate data types, the data model designer/developer is re-

quired to have an insight on the functionality provided by the data types, as well as

taking into consideration their data model requirements to decide how to maintain the

application state. Since CRDTs are data types designed to be modified concurrently, it

seems rather obvious that the target will be applications in which data can be modified

concurrently. Therefore, one of the most important aspects to consider is the manner

how concurrent updates executed in different replicas are managed and subsequently

propagated to all replicas, this is called the concurrency semantics [46].

Update operations defined in data types may or may not commute. For example, one

of the most simple abstract data types is a counter, which supports increment and decre-

ment operations, to increase and decrease by one unit its integer value. For a counter,

the natural concurrency semantics is to have a final state that reflects the effects of all

updates carried out, considering updates can be executed in any order yielding the same

result(commutative). One way of reflecting the effects of all updates is to have the counter

value be computed as the number of increments and subtracting the number of decre-

ments, whilst verifying conditions, such as non-negativity that impose additional con-

straints or synchronization. Regrettably, for the majority of data types, having concur-

rency semantics as simple as the counter is not the case. For instance, when regarding

a shared set object that supports add and remove update operations, there is no correct

final state when concurrently adding and removing the same element. Thus, several

concurrency semantics are acceptable, with different semantics being appropriate for

different applications [51].

When defining concurrent semantics, it is helpful to understand the concept of happens-
before relation, defining a relation that correlates the causality by saying that if an event

a occurred before an event b in the same process or a is the event responsible for dis-

seminating message m and subsequently b receiving the message or even if there is such

an event c that correlates with both events a and b such that a < c < b, then a happens-
before b. Another relation relevant for the definition of concurrency semantics such as

the last-writer-wins semantics, is the total order among updates. By combining clock time

along with a replica identifier, it is possible to create unique timestamps ensuring total

order. By it itself, these timestamps do not respect the happens-before relation, but it can

be achieved through the combination of physical and logical clocks [46].

Returning to the previous shared set object example, there are different approaches

on how to tackle the fact that there is no correct final state when concurrent updates

occur on the same element. The approaches differ mainly on how concurrent add and

remove operations of the same element are managed, but ultimately it comes down to the

application specification to mold the approach. For instance, a last-writer-wins (LWW) set

incorporates the total order among updates relation by giving a timestamp for each value

so that it can hold multiple add and remove operations, hence a value is in the set if the
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add operation supersedes the remove in the total order among updates. Another example

is the grow only set (G-set), that circumvents the concurrent add and remove issue by

only allowing add operations. There is also the 2P-set where addition and removal of

elements are permitted, but addition becomes unavailable after a removal takes place. In

order to function two sets are available, one for the values added and another set with

the values removed (tombstone set). In the Observed-Removed Set (OR-set), an addition

has precedence over removal, in contrast with the 2P-set.

There is a multitude of abstract data types supported by CRDTs and respective vari-

ants that integrate multiple concurrency semantics, but as one can notice they all serve

their purpose and are perfectly tailored for their job, as Shapiro et al. have shown by

implementing a web crawler that needed concurrent add operations to win over remove

operations for the specific application [52]. A further discussion will be held at Section

2.3.6 on what requirements are needed and which CRDT brings more advantages to the

table, in order to surpass the shortcomings arriving from dynamic environments.

2.3.6 Discussion

Table 2.3: CRDT implementations comparison.

Message Size Propagation Model Prior Knowledge Late Entry Churn Tolerance

[51]CvRDT Big Push/Pull Dependent Converges, sends full state Converges
[51]CmRDT Small Push/Pull Dependent Diverges, requires operations in causal order Diverges
[20]δ-CRDT Medium Push Dependent Converges, reverts to state synchronization Diverges
[38]∆-CRDT Medium Push/Pull Dependent Converges, reverts to state synchronization Converges
P/S-CRDT
(Proposed)

Medium & Small Push Not Dependent Converges Converges

There are many characteristics to take into account when picking the right CRDT,

one must contemplate the needs required by the system to maintain the state (Table

2.3). Such characteristics may come as a consequence of the synchronization model

employed by the CRDT itself, for example, CvRDTs have a big message size since it is

required the exchange of full local state among replicas, which may cause a considerable

communication overhead. On the other hand, CmRDTs have a small message size since

only the update operation metadata needs to be propagated, thus exposing a greater

bandwidth usage efficiency.

Putting into context, when examining the necessities of a mobile edge network, two

challenges immediately come to mind, the entrance of new nodes and the re-entry of

nodes (churn rate). Additionally, it is in our interest to avoid the requirement of prior

knowledge of all nodes currently on the system, which is hard to accomplish for mobile

edge networks. These challenges come as a consequence of highly dynamic environments,

where temporary unavailability is to be expected. Therefore, it is in our interest to discuss

and underline which CRDTs best satisfy the needs of said environment.

At first glance, assuming a scenario where replicas may join at any given time, CvRDTs

and both delta-based CRDTs (δ-CRDTs/∆-CRDTs) provide the best approach. These

CRDTs allow replicas to synchronize with other replicas by receiving their full state, thus
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combining multiple operations into a single replication step. On the contrary, CmRDTs

allow replicas to converge by propagating updates to every other replica, which consti-

tutes a problem since replaying all operations from the beginning in their causal order

will cause considerable overhead.

When, tackling the second challenge, where nodes may re-enter the network, both

δ-CRDTs and ∆-CRDTs present the best approach. If only a small part of the state was

modified while the node was out, then a delta-mutator is propagated, with the changes

made since the last communication. On the other hand, if a large portion of the state was

modified while the node was out, then delta-based CRDTs send the full state since it is

more efficient than propagating all update operations. Additionally, ∆-CRDTs comes as

an improvement over δ-CRDTs, by helping with the minimization of the state that needs

to be transferred. Although operation and state-based CRDTs are capable to deal with

node re-entry, they do so in an inefficient manner, by not differentiating whether the state

has changed too much or just a small portion. Hence when a small modification is made,

operation based is more efficient than state-based, by either using the node’s local state or

copying the state from another node and replaying the missing operations, which is far

better than sending the full state when in turn only sending the last couple of operations

is sufficient. Moreover, when the state modification is so significant that it makes more

adequate sending the full state, then the state-based CRDTs become more profitable in

terms of bandwidth usage than operation based CRDTs [46].

Furthermore, some CRDTs require extra precautions, such as operation-based CRDTs

that require compaction mechanisms to minimize identifier size and remove storage

overhead, also CmRDTs rely on reliable communication subsystems to guarantee exactly-

once and causal delivery. Since we aim to introduce CRDTs to cooperate with a topic-

based publish/subscribe system for mobile edge networks and subsequently develop a

collaborative simulation, it is in our interest to employ a push propagation model with

one-to-many communication, enabling us to formulate an asynchronous and scalable

solution, where clients are decoupled from servers in time. There are various available

CRDT libraries, for instance Akka [15] offers an implementation of delta-CRDTs and

Riak [1] provides a client library with multiple data types, these and other open-source

libraries will require further research, so that it may so that we may extend various

features.

2.4 Eventually Consistent Mobile Systems

2.4.1 Bayou

Bayou [43]: is an example of a replicated, weakly consistent storage system designed

for mobile computing environments. Bayou provides support for collaborative applica-

tions, by managing conflicts generated by concurrent activity whilst relying on the weak

connectivity provided by mobile network communications, where frequent disconnection
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and high latency is expected. Such situations may lead to cases where participants of the

collaborative system may never be all connected simultaneously, thus Bayou’s design re-

quires only occasional, pair-wise communication between participants [56]. This behavior

is the result of Bayou’s partition tolerance mechanism, where a disconnected workgroup

may be away from the rest of the system and yet capable of remaining connected with the

rest of the system through pair-wise communication.

To maximize availability, Bayou employs a model where clients can read and write

any accessible replica without the need for explicit coordination with other replicas. Fur-

thermore, it is made certain that every replica eventually collects updates from every

other, through a chain of direct or indirect pair-wise interactions.

In collaborative systems, conflicts among client update operations are bound to hap-

pen, to that end Bayou has focused on supporting application-specific mechanisms to

detect and resolve the conflicts, ensuring that replicas move towards eventual consistency.

Additionally, Bayou includes two mechanisms to achieve automatic conflict resolution,

the dependency checks and merge procedures, in which clients indicate for each write

operation, how the system should behave in order to settle detected conflict. To this end,

Bayou has to schedule operations in causal order, thus a tentative timestamp is assigned

to each operation as it is accepted by a primary replica. Subsequently, these operations

are executed following their tentative order, but before an operation can be executed, the

dependency check mechanism certifies whether the operation is valid or not. If valid,

then the execution is allowed, otherwise a conflict is detected and the merge procedure

provided by the application comes into action.

One of the major takeaways from Bayou is that to guarantee eventual consistency,

excluding cases where all operations are commutative, servers must be capable to rollback

the modifications caused by previously executed writes and redo them according to a

global order. Furthermore, to arrange operation in their global order, Bayou relies on

primary replicas, which may create a congestion point.

2.4.2 IceCube

IceCube [45]: is another weakly consistent system for optimistic replication, that sup-

ports mobile computing and collaborative work, by letting users write to shared data

with no synchronization. That being said, in mobile environments, users expect to in-

teract with shared data through disconnection periods, which may cause replicas to di-

verge. Therefore, a reconciliation mechanism guaranteeing convergence is compulsory.

Hence, IceCube proposes a general-purpose reconciliation engine that is parameterized

by application semantics, instead of using syntactic mechanisms such as timestamps and

dropping actions to avoid conflicts, which are used by systems like Bayou [43].

The system stores logs with the preformed tentative updates and combines those

concurrent logs into sequential executions, called schedules. These schedules, in turn
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must obey to application semantics, which are expressed through constraints, represent-

ing dependencies and invariants. IceCube uses these constraints, to apply correctness

checks on schedules, which are the means to detect conflicts. Constraints can either be

static, creating an unconditional relation between two operations, or they can be dynamic,

representing the success or failure of a single action, depending on the current state [45].

As dynamic constraints violations can lead to costly roll-backs, IceCube devises a

technique of dividing the work into joint sub-problems, where actions belonging to any

sub-problem commute with actions in all other sub-problems, resulting in more efficient

approach by limiting roll-backs to a small number of actions.

To satisfy these constraints and thus guarantee conflict resolution, a heuristic search

is made by the scheduler to select the best action from a set of candidates, given a merit

unit, measured by the number of other actions that can be scheduled after the selected

action. However, if the execution of the action leads to a dynamic constraint violation, the

scheduler dismantles its execution through roll-back, removing any action that conflicts

statically with the selected action.

IceCube produces a more powerful approach than Bayou, by reconciling in cases

where Bayou’s merge procedures would find a conflict. Additionally, IceCube provides

a bad solution to peer-to-peer networks, since concurrent operations are sent to a single

replica for merging and reaming replicas waiting for the merged log, must be frozen until

reconciliation is completed.

2.4.3 Telex

Telex [25]: is a system that provides solutions for sharing mutable data in collaborative

environments, where disconnected work is tolerable. Since various existing approaches

suffer limitations, such as machine replication, which enforces high latency and does not

provide support for disconnected operations, Telex opts to base itself on an approach that

separates application logic from system logic, combining flexibility and correctness.

Furthermore, application logic is required to disseminate actions and concurrency

invariants to Telex, which in turn takes care of replication, consistency and access control

by detecting conflicts and computing conflict-free schedules. In order to eliminate con-

tention and promote locality, Telex designed and efficient multilog data structure to store

the Action-Constraint Graph (ACG). The ACG is the concept used by Telex to detect and

correct conflicts, by summarizing concurrency semantics of applications. Thus conflict

resolution is application independent, enabling users to operate on their local replica of

shared documents, whilst able to work under disconnection circumstances and suffer no

network latency.

Contrarily to the previously present works, Telex doesn’t rely on a primary site for

commitment, additionally it also takes advantage of commutativity when it is available

and supports any mix of commutative and non-commutative operations. Unfortunately,

Telex suffers from excessive memory consumption, since the ACG is accessed concurrently
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by many threads, and quickly reaches sizes of several tens of thousands of nodes.

2.4.4 Rover

Rover [36]: provides a toolkit for mobile application designers to optimize the utiliza-

tion of network bandwidth, and allow for dynamic division of work between client and

server. The Rover set of tools, supplies mobile communications based on two ideas, re-

locatable dynamic objects (RDOs) and queued remote procedure call (QRPC). In an

effort to reduce client-server communication requirements, Rover presents relocatable

dynamic objects, which are objects with a well-defined interface that can be dynamically

loaded into a client from a server. In addition, queued remote procedure calls feature

a communication system that concedes applications to proceed making non-blocking

remote procedure calls even when a host is disconnected, having requests and responses

exchanged upon network reconnection.

Applications that seek to support Rover’s toolkit, must employ a check-in/check-out

model of data sharing, were applications import RDOs into their address spaces, invoking

methods provided by the RDOs, and export the RDOs back to servers. The authors

exemplify RDOs as taking roles, such as simple calendar items with associated operations

or even as complex modules that encapsulate part of an application, for instance the user

interface of a calendar tool.

Moreover, Rover allows hosts to update shared objects under disconnection circum-

stances, guaranteeing object consistency by means of application-level locking or through

application-specific algorithms to resolve uncoordinated updates to a single object. As

such, objects are required to have a home server, since mobile hosts import objects into

their local cache and then export updated objects back to their respective home servers,

with the intent of detecting conflicts and reconciling them at the server, allowing auto-

matic conflict resolution by employing type-specific concurrency control.

Rover has shown a good set of tools for deployment of applications that are less depen-

dent on high-performance communication connectivity. However, Rover displays a draw-

back by demanding application designers to create relocatable dynamic objects whilst

making sure they are loaded into the client’s cache, and if the design must incorporate

client updates under disconnection, then consistency constraints must be implemented.

2.4.5 SwiftCloud

SwiftCloud [44]: presents an adequate strategy to integrate client and server-side stor-

age. To solve the issue of ad-hoc implementations that inadequately integrate with server-

side storage, leading to the degradation of data consistency guarantees, SwiftCloud offers

the first system to deliver geo-replication to the client machine, introducing a principled

approach to access data replicas at client machines and cloud servers.

The system aims to tackle two big challenges, the first one being how to assure pro-

gramming guarantees for applications running on client machines at an inexpensive price

22



2.4. EVENTUALLY CONSISTENT MOBILE SYSTEMS

and the second one being, how to maintain these guarantees in scenarios of client discon-

nection. To surpass these challenges SwiftCloud supports server-side execution, whilst

assuring the programming guarantees of client-side in-cache execution. In addition, a

client-assisted failover protocol to preserve causality is employed by SwiftCloud, ensur-

ing that clients always see a casually consistent sequence of updates from other users. By

doing so, a client always observes its previous updates and is able to reconnect to other

data centers, by replaying its own updates and the observed stable updates from other

users, that are already present in other data centers.

At its core, SwiftCloud consists of a set of data centers that replicate every object

(CRDTs), whilst in the periphery, client nodes access the system by communicating with

a local module (scout). The scout module caches a subset of the replicated objects, and

assuming that appropriate objects are in cache, a client node supports disconnected op-

eration and obeserves an overall responsiveness improvement. Furthermore, SwiftCloud

provides a transactional key-object API, where applications execute interactions by trig-

gering read and update operations.

To address the issue where different clients observe the same set of concurrent updates

applied in different orders, the system prohibits non-commutative concurrent updates.

Thus, two types of transactions co-exist, the mergeable and non-mergeable transactions.

Mergeable transaction commute with each other and with non-mergeable transactions,

allowing these mergeable transactions to execute on client-side cache. In addition, merge-

able transactions are read-only transactions, or update transactions that apply modifica-

tions to CRDTs. On the other hand, non-mergeable transactions provide the traditional

strongly consistent transaction model where non-commuting concurrent updates conflict,

thus these transactions are exclusively executed in data centers.

Henceforth, SwiftCloud has presented a reliable approach for bringing geo-replication

to the client machine by defining a principled strategy for using client and data center

replicas. Making applications run transactions in the client-side for common operations

affecting a limited number of objects (mergeable transactions) and data center execution

for transactions requiring strong consistency or accessing a large number of objects (non-

mergeable transactions). Moreover, according to SwiftCloud’s evaluation, the employed

client-assisted failover mechanism made possible a trade between a small increase of stale

read operations for better latency values.

2.4.6 Discussion

In order to provide eventual consistency to system users and resolve conflicts caused

by concurrent operations being made by said users within a collaborative environment,

many systems resort to outdated and not well suited approaches. Such techniques as

rollback mechanisms, requiring the system to keep a long log of operations and the

ability to analyze the commutative properties of conflicting operations in order to create

a deterministic order for operations to be applied (Bayou).
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Furthermore, many systems use specific replicas for conflict resolution, thus creating

a congestion point. Also, very often when resolving conflicts, conflicting replicas must be

frozen before they may continue their work, such as the case of IceCube. Lastly, one other

common issue created by conflict resolution mechanism, is often an excessive memory

consumption, due to storage.

Since one of the main subjects of this dissertation is mobile environments, when

resolving conflicts, a system must do so in low latency and scalable approach, giving

care to the disseminated data quantity and size. Thus, when comparing with the conflict

resolution provided by CRDTs, it becomes obvious that CRDTs is the better approach,

due to the versatility and lower latency values, hence making a good solution to guarantee

eventual consistency to users in a mobile network.

However, many systems employing CRDTs, still require the knowledge of the replicas

composing the network, as means of knowing the end targets for update dissemination.

Hence by lifting the need to know which replica to send an update, we aim to further

adapt to mobile environments, where maintaining this knowledge is inconceivable and

not salable due to churn.

2.5 Publish/Subscribe Scheme

Over the years distributed systems have become increasingly complex and larger in scale,

such that these systems now have to deal with thousands of entities distributed all over

the world and still take into consideration that these entities location and behavior may

change throughout the life span of said systems. As a result, many forms of interaction

for such large scale systems arose. One of these forms stands out, the publish/subscribe

interaction scheme [32], due to the capability of providing a loosely coupled form of

interaction.

Figure 2.5: Basic publish/subscribe system interaction. Taken from [32].
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For a better understating of the publish/subscribe paradigm, its best we differentiate

the unit of work and user roles that interact in systems employing this scheme. As the

basic units of the interaction, we have events, these units generally represent an area of

interest. Such areas are commonly specified as topics in topic-based publish/subscribe

systems, and frequently represented as keywords, for instance a football game might be

characterized e.g.“Benfica-Porto” and many events can be coo-related with this topic,

e.g.goals or fouls.

As for the types of users intervening in the interaction, there are the ones denominated

as consumers or subscribers that have the capability of conveying their interest in one or

multiple events and the ones denominated as producers or publishers that generate content

over certain events. Lastly, the system must contain an event notification service that

takes the role of middle man between publishers and subscribers, providing subscription

management, event distribution and storage.

Therefore, if a subscriber wants to receive content related to an event, he must then

subscribe to the area of interest associated with the event by triggering the “subscribe()”
action specified by the system, thus when a publisher generates content related to events

in the system it must then trigger the corresponding “publish()” action specified by the

system. Ultimately, it’s the system’s event notification service responsibility to “notify()”
the subscribers whose interest match each individual publication, as seen in Figure 2.5.

Since publishers produce events by handing them over to the event notification service

and subscribers consume the events indirectly through the service, as long as they are

subscribed to the corresponding topic, it then is possible to observe the decoupling of

these two distinct roles, considering that publishers produce independently of subscribers

and that subscribers consume produced events independently of the publishers.

This loosely coupled form of interaction, makes the publish/subscribe scheme a great

approach when dealing with complex and large scale distributed systems, such as mobile

device networks, which is the focus of the study conducted throughout this thesis. Said

mobile device networks require high scalability, flexibility and extensibility, thus and so

mobile networks may hugely benefit from the characteristics provided by the publish/-

subscribe scheme, which decouples three dimensions, space, time and synchronization
[32]:

• Space decoupling: Interaction between publishers and subscribers is made indepen-

dently of each other, hence publishers do not maintain a reference to the subscribers,

nor have the knowledge of how many subscribers are taking part in the activity. Cor-

respondingly, subscribers do not maintain any reference to the publishers nor know

how many publishers are taking part in the activity.

• Time decoupling: Publishers and subscribers are not enforced to be actively par-

ticipating in the interaction at the same time. For instance, when a subscriber is

25



CHAPTER 2. STATE-OF-THE-ART

Figure 2.6: Space decoupling. Taken from [32].

disconnected, publications can still be made by publishers on events previously sub-

scribed by the subscriber, and interchangeably, when a publisher is disconnected,

the subscribers are still able to get notified of produced events by the event service.

Figure 2.7: Time decoupling. Taken from [32].

• Synchronization decoupling: Publishers production and subscribers consumption

happen in separate control flows, thus the interaction happen in an asynchronous

manner. Therefore, publishers may never be blocked from producing events and

subscribers blocked from being notified of new events whilst fulfilling concurrent

actions.

Figure 2.8: Synchronization decoupling. Taken from [32].

Considering, the loosely coupled form of interaction granted by the publish/subscribe

scheme, it then is possible to give support for mobile environment data dissemination,
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where the mobility of nodes is a constant to be taken into consideration, leading to

scenarios where nodes may leave involuntarily.

Fortunately, since the publish/subscribe interaction, describes two distinct roles with

two different control flows, it allows for node disconnection, considering publishers may

produce without the need of subscribers to be active and conversely, subscribers may

consume without the need for publishers to be active at consumption. Thus, the pub-

lish/subscribe interaction scheme reveals an appropriate approach seeing that by nature

the scheme already grants decoupling properties that support dynamic environments

behaviors.

2.5.1 Discussion

As one of the objectives of this dissertation is to define an efficient update dissemination

pattern, allowing users to propagate updates whilst not depending on the knowledge

of whom to send the updates to, it was compulsory that we found a suitable interaction

scheme.

The publish/subscribe scheme, providing a loosely coupled form of interaction, by

decoupling time, space and synchronization, allows for multiple interesting and benefi-

cial characteristics. Such characteristics as enabling disconnected work since publishers

and subscribers workflow are done separately. Besides, it provides us with the character-

istic of being able to produce and share updates without depending on the knowledge of

whom to send them to, since in the publish/subscribe scheme, publishers and subscribers

do not hold any reference from each other, as they may produce and consume whenever

they like. Thus, the publish/subscribe scheme reveals itself as the chosen medium for

update dissemination for collaborative environments using CRDTs.
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3
P/S CRDTs Model

In this chapter we introduce, the Publish/Subscribe CRDTs (P/S-CRDTs)

model, which is the fundamental basis of the proposed solution hereby pre-

sented. The P/S-CRDTs model aims to define the update dissemination pat-

tern for shared CRDT objects in a collaborative setting, using the publish/sub-

scribe interaction model as the medium for sharing updates. By employing

the proposed model, we intend on studying and demonstrating a suitable ap-

proach to circumnavigate some of the problems that originate from dynamic

environments such as mobile networks. In these networks, mobile device

users may struggle with regular periods of disconnection and overall poor

connectivity due to the weak nature of mobile network communications lead-

ing to a multitude of issues, chief among these are state divergences. Such

state divergences may induce mobile users to experience data inconsistencies,

where some users may see a version of the state and others observe another

state, making impossible collaborative activities such as cooperative text edit-

ing to function properly.

Within this chapter, we commence by giving a technical overview of the

proposed model, its goals and a broad explanation of its elements in Section

3.1, followed by a description of the design of CRDTs and their updates to

be disseminated by the publish/subscribe system in Section 3.2. To finalize

the chapter in Section 3.3, we specify and describe update dissemination by

clarifying how nodes should behave to propagate modifications, by taking a

look at the publisher, subscriber, and broker roles. In addition, we formulate

state and operation based objects, using the P/S-CRDTs model in Section 3.3.3,

superseding with a succinct discussion in Section 3.4.
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3.1 Overview

The proposed solution, the P/S-CRDTs model, defines a model in which the generic

CRDT object design is adapted to dynamic environments, by coupling it with the pub-

lish/subscribe interaction scheme, as the medium for data dissemination. P/S-CRDTs

are designed to be able to guarantee the eventual consistency model while dealing with

volatile scenarios resulting from the poor properties of mobile networks, where users of

collaborative applications in such networks may enter, leave voluntarily and involuntarily

by disconnection and give re-entry into the activity at any given time (Figure 3.1).

Given the possible erratic behavior of mobile networks, it is inconceivable to maintain

the active knowledge of the participants in the activity, therefore the P/S-CRDTs intend

to decouple this need by making it not necessary to recognize the nodes present in the

network for the propagation of updates between nodes. This is achieved by using the

publish/subscribe interaction model, which delivers a loosely coupled form of interaction

where the publishers may produce updates independently of subscribers and subscribers

may consume updates independently of publishers, allowing for node disconnections

since the publishers and subscribers interactions happen in separate control flows.

P/S-CRDTs model has been designed to specify the manner of how object updates

must be disseminated, stored and retrieved given the publish/subscribe interaction model.

Additionally, the following model has been conceived to be adaptable to the common

topic-based publish/subscribe architecture, hence allowing developers to accommodate

P/S-CRDTs to existing publish/subscribe systems with minimal implementation given

the desired data type’s characteristics (synchronization model and concurrency semantic).

Thus, in order to handle the generic CRDT design properties and respective synchro-

nization models, some additional requirements and mechanisms were designed to certify

that the shared state amongst nodes in the network is eventually consistent, enabling

mobile users to interact in collaborative applications without experiencing state diver-

gences. Furthermore, it should be noted that the design of P/S-CRDTs is highly focused

on reducing the cost of communication, considering that the environments in focus are
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mobile networks, which require special attention to the size of the data disseminated

throughout the network to avoid any memory overheads.

The model’s intended usage encapsulates scenarios where mobile users take part in

a collaborative activity, armed with CRDT objects representing the shared state used

by the activity and a publish/subscribe system client for the dissemination of updates

(Figure 3.2). For a better picture, one can conceive the use case of a collaborative text

editing application, where a CRDT represents the shared text to be modified by multiple

users and subsequently, all realized modifications must then be disseminated to other

users through the medium of publish/subscribe interactions adapted with the P/S-CRDTs

model specification. Hence, the model depicts nodes as taking the roles of publishers

and subscribers, since they both are capable to produce updates and consume other

nodes updates by communicating with the broker, who subsequently notifies matching

updates to the ones subscribed by the respective nodes. Given the model specification on

the dissemination of updates and respective requirements, it then must be possible for

mobile users to interact and maintain a consistent sate during dynamic scenarios.

3.2 CRDTs and Updates

The CRDT object, within a collaborative environment, acts as the shared data between

the users that compose the network. CRDTs can represent a multitude of data types

e.g.counters, sets, registers and employ various synchronization models such as state and

operation based synchronization. Thus, given the variety of configurations, modifications

made to shared objects may be shared in different manners. For instance, the commonly

found state-based object in literature requires an update to be the full global state of

the data type, carrying all local and external modifications seen (causal context). On the

other hand, operation-based objects commonly depict updates as unitary local operations

made at source, to then be delivered and applied to target nodes (Figure 3.3).

At heart, CRDT objects contain a state, representing the structure where users will

realize updates over, such as increments over an integer defining a counter or an element

insertion for a set of elements. Such updates are firstly carried locally at source and in

certain cases a precondition may be applied to the update operation to capture safety,

for instance an element may be removed from a set if it is verified that the element is

contained in the set at the source. Reciprocally, in some scenarios the precondition may

be omitted, such as a Grows-only counter that only allows increments, thus not requiring

any verification before the update is conducted locally. Afterwards, in a second phase

described as downstream, updates are to be disseminated to target nodes whose CRDT

object they share in the collaborative network.

Considering that after locally applying an update, the state suffers a mutation, making

it non-convergent in relation to other nodes who have not yet received the updates, a

convergence operation is required. To that effect, shared objects posses a merge operation,

with the goal of guaranteeing that as soon as the updates from other nodes are received,
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Figure 3.3: Update objects for state and operation based GCounter CRDTs shared between
two nodes.

the convergence function takes place, adding the updates to the current local state of

the CRDT. Through the process of convergence, the concurrency semantic is applied,

solving any conflicts between any updates in a deterministic manner, thus guaranteeing

a consistent state across all nodes, once all updates are merged by each individual replica

(eventual consistency).

Hence, due to the multiple existing definitions of what constitutes an update, P/S-

CRDTs characterize updates impartially of their content, only defining in which manner

updates are disseminated. Thus, an update is simply identified as the unit to be propa-

gated and merged with the global state. Moreover, through the use of the generic CRDT

specification containing the mechanism previously described, it then is possible with little

implementation to apply any given CRDT object to the P/S-CRDTs model, independently

of the selected data type and respective concurrency semantic assigned.

3.3 Data Dissemination

Taking in mind mobile users in a collaborative environment, user modifications are to

be disseminated as update objects and retrieved by intervenients in the activity, so that

that they may converge by merging updates into their state. Once nodes participating in

the collaborative activity acquire the shared CRDT object necessary to interact, it then

is possible for nodes to start modifying the state of the CRDT and subsequently share

respective modifications through the dissemination of updates. In order to propagate

updates through all participants in the interaction, P/S-CRDTs use the publish/subscribe

interaction model.

Hence, to accomplish the dissemination of updates through a publish/subscribe sys-

tem, some additional requirements are compulsory to guarantee that data is correctly
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delivered and stored, thus enabling the nodes to merge with the shared updates. Thus, to

better understand all requirements and mechanisms, it is best to specify the behavior of

each system role (publisher, subscriber, and broker) when dealing with the dissemination

of CRDT updates.

3.3.1 Roles

Given the various publish/subscribe interaction components, the publisher, subscriber

and broker each contain certain individual responsibilities when producing, delivering

and retrieving data within the activity.

Thus when designing the P/S-CRDTs model, special attention was given to the be-

havior of every piece of the communication, guaranteeing that the data size of updates

disseminated in the network only carry the precise information for CRDTs to converge

state and giving assurance that updates are sent and delivered by the nodes.

3.3.1.1 Publisher

Taking into consideration the collaborative environment, the main objective of the pub-

lisher agent is the production of content and consequent delivery to the broker agent. The

content in this collaborative environment, is referred to as update objects that must be

delivered to all nodes interested in receiving modifications made for the shared CRDT.

Logically, before nodes are able to interact by publishing updates, first the CRDT must

be made available at the beginning of the collaborative activity, to all nodes that compose

(or will later join) the collaborative network, either by using the publish/subscribe system

or any other available method that enables nodes to acquire the shared CRDT. The CRDT

object carries needed information about the data type and the usual interface with a query

method to access the value, update methods related to the datatype, such as increment
for a counter or insert for sets and finally the convergence method employing the chosen

concurrency semantic.

Thus, once nodes have acquired the shared object, making them ready to share up-

dates, the interaction is done through the following generic topic-based publication

method:

publish(dataItem, topic)

This method enables the publication of objects in the system.

dataItem – Object to be published in the system.

topic – Expression representing the object to be published.

When publishing updates, each object must be attached to a topic expression. Such

topic when publishing an update must be uniquely descriptive of the CRDT, making sure

that for each shared CRDT object in a collaborative network, there is exclusively one topic
associated. By keeping a unique update topic per shared object, it then is possible for
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Figure 3.4: Update publication for a State-based Gcounter CRDT.

an application to simultaneously employ multiple CRTDs and ensure that each object

receives their respective updates under the specific topic. For instance, an application

that makes use of both an ORSet and a GCounter CRDT may specify that in order for

users to publish updates for the ORSet object a publication must be made with the topic
”task_list” and updates directed to the GCounter be published under the ”task_quantity”

topic.

When publishing content in mobile networks, one must be cautious not to send un-

necessary or otherwise irrelevant data within updates. Thus, it is essential to make an

emphasis on the data size of the items published in the network, with the intent of reduc-

ing any unnecessary memory overheads.

Given the caution over data size, P/S-CRDTs initially shared must be designed to

carry a global state, representing the node’s global shared state, that must be convergent

with all other nodes in the collaborative network. In addition, a local state variable must

be attached to P/S-CRDTs, which only contains the modifications made at the source

(Figure 3.4).

This local state object is to be used by state and operation based objects alike. Whilst

state-based objects only carry in the local state object modifications made locally by the

node, operation-based object instead carry the effector function and corresponding argu-

ments. This local state object is to be later shipped to other nodes through a publication

operation, hence the local state object effectively representing the update. By shipping

only local modifications, P/S-CRDTs aim to carry only the precise information for nodes

to converge. For instance, considering a state-based Grows-only counter CRDT, when

publishing an update, only an integer representing the local increments made by the pub-

lishing node is contained in the update item, instead of the whole CRDT which includes

more information than what required to merge.

It should be noted that the action of publishing updates, can be tailored by the likes of

the developer. Either by manually publishing immediately after a modification or trough

an automated task, such that nodes do not directly trigger it, but instead be a part of a

scheduling task that checks for modifications done since last update publication step.
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Figure 3.5: CRDT and update subscription.

3.3.1.2 Subscriber

In a contrariwise manner to the publisher agent, a node who desires to receive update

content in a collaborative activity must subscribe to updates, by using the predetermined

topic for CRDT updates (Fig. 3.5). Once a subscription is made under the update topic by

a node in the activity, the node is then ready to receive other nodes updates via broker

notifications. To be notified of new updates, nodes must trigger the following generic

topic-based subscription with the update topic:

subscribe(topic)

This method enables the publication of objects in the system.

topic – Expression representing the object to be subscribed and afterwards

notified by the broker.

Update subscription may be done whenever a node joins the collaborative activity,

subsequently receiving all future updates made under the specified topic. In a collab-

orative activity, nodes may begin the interaction at a later time. Thus, to join later a

node must be able to obtain content previously produced to maintain a consistent state

in relation to the nodes already present in the activity (Figure 3.6). Hence, bringing a

requirement of assured data retrieval for the subscriber role in the system, enabling users

who join at later time to converge state.

Requirement - Assured data retrieval. A collaborative network node must be able to retrieve
enough information to keep a consistent state, either by retrieving missing updates from the
broker or doing a full copy of another node’s state.

Furthermore, nodes in the context of mobile networks may experience disconnection,

which implies that the node no longer is apart of the activity, thus losing update publica-

tions whilst out. Since P/S-CRDTs updates carry the local state object, only containing

local modifications, in the case of state-based objects it then is required to receive at least

the last local state published from each node in the activity. On the other hand, operation-

based objects require not only the last published update from each node but all recent

previously made updates or in extreme cases a full copy of another nodes state. To ensure

once again that users keep a consistent state once they rejoin the activity, it is compulsory

that when one or more notifications are lost, users are able to determine in cases of need

if a past notification was lost.

35



CHAPTER 3. P/S CRDTS MODEL
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Figure 3.6: Subscription encompassing past publications.

To be able to retrieve lost notifications, each notification must then include some

form of unique identification in the metadata, thus enabling subscribers to request the

lost notification. This retrieval operation may be achieved by several mechanisms, for

instance one may employ the blockchain logic, by forcing notifications to hold the hash

of the previous notification, the subscriber will then be capable of knowing whether a

notification was lost or not, and subsequently request the lost notification given the hash

of the previously lost notification received in the latest notification.

Only when assuring both the previous requirements, the interaction guarantees con-

sistency to nodes in all scenarios commonly found in dynamic environments, where users

may disconnect and reconnect (churn).

3.3.1.3 Broker

As the middle man between publishers and subscribers, we have the broker. With the

function of receiving messages from publisher s informing content produced over a topic

and delivering notifications to the subscribers matching the content produced. From the

broker’s viewpoint (Fig. 3.7), throughout the lifespan of the collaborative application

activity, multiple update publications and subscriptions messages will be received for the

shared objects defined by the application. Subsequently, the broker must retain metadata

associated with all publication and subscription requests, with the intent of notifying all

nodes that have shown interested in receiving updates trough a notification of update

arrival.

To accommodate the needs of dynamic environments, where previous published con-

tent may be accessed by nodes who disconnect and require a specific lost notification or

nodes who join the activity later and require all content previously published, it then is

required for the broker to provide publication persistency to maintain recently published

content.

Requirement - Publication Persistency. Let m be a publication message, if m was received
by the broker and is contained in the broker’s storage at request time, then a subscriber must be
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able to request the retrieval of m.

By providing storage, the broker is able to support subscribers that require missing

updates, thus enabling lost notification retrieval and late entry. However, storing every

update since the start of the activity, is not a scalable and efficient approach to support

lost notification retrieval.

Thus, to optimize the storage, the developer may select a quantity of notifications to

be retained in the broker. Hence if a node requires a lost notification already processed

by the garbage collection, it needs to copy the global state of the CRDT from one of its

peers. If prior requirements were not assured, then consistency would be compromised,

due to loss of updates and no option of recovery.

3.3.2 Disseminating updates

To achieve an interaction where replicas disseminate updates, through the publish/sub-

scribe interaction scheme, it then is required to couple the notion of CRDTs with the

generic operations available by the publish/subscribe interface. For a fully operational

interaction between replicas participating in collaborative application using CRDTs, mul-

tiple specific interaction phases must be detailed (Figure 3.8).
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Once a user acquires the shared CRDT object (CRDT〈Update〉), it then is possible to

start interacting with other nodes by disseminating and retrieving updates. By taking

the role of a publisher agent, users are able to propagate local modifications to the CRDT

state to other participants in a the activity. Such modifications are made available for

other participants by publishing update object in the form of Update〈localState〉. The

update object carries a local state, only containing the local modifications made by the

replica if employing a state-based synchronization, otherwise if employing operation-

based synchronization the local state’s content contains the operations made since last

update publication step.

The update publication is accompanied by a topic, with the objective of holding a

reference to the CRDT, to which the update is made for. The Update〈newState〉 objects, do

not carry the same information as the CRDT objects, such as concurrency semantics or

synchronization model, instead they only carry the precise information (local state) for

other replicas to converge. By not continuously disseminating the whole CRDT object

but instead the update, we aim to reduce the data in traffic, considering that the environ-

ments in question are mobile networks, which require special attention to the data size

disseminated.

Finally, in a last step before beginning the interaction with the remainder of the

collaborative network, a node must subscribe to updates. Interviening replicas show

interest in being notified when CRDT updates are made by subscribing to the predefined

update topic. It is through the use of this operation that replicas may consume updates

and subsequently merge the retrieved updates to converge to a new state, mutating to

a consistent state with all other interviening replicas once all updates are eventually

applied at said replicas.

3.3.3 State-based Synchronization

One of the basic models of CRDTs available in the literature is the state-based CRDTs

(CvRDTs) which propagate the hole entirety of the state to other nodes to be merged.

By applying the P/S-CRDTs model it is possible to couple CvRDTs with the publish/-

subscribe scheme to surpass the inconsistencies introduced by dynamic environments.

Although some details have to be specifically applied to support such a synchronization

model.

As previously discussed, in the P/S-CRDTs model, the data size of the objects dis-

seminated in the network must be reduced to the minimum. Since the environments in

question are mobile networks and said environments don’t scale well whenever data size

is not carefully taken into consideration. Hence, to adapt state-based synchronization

with P/S-CRDTs for mobile environments, some changes where made. Whilst the usual

state object design employs a synchronization that disseminates the full global state to

other nodes, the P/S-CRDTs adaptation of state-based objects (LState-CRDTs), only sends

the node’s local modifications to reduce overall communication volume.
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Algorithm 1 State-based GCounter CRDT (taken from [46]).

1: payload int[] valP . For any id, the initial value is 0
2: query value () : int
3: return

∑
r valP[r]

4: update inc (int n)
5: let id := repId() . repId: generates the local replica id
6: valP[id] := valP[id] + n
7: merge (X, Y ) : payload Z
8: for r ∈ X .valP.keys ∪ Y .valP.keys
9: Z .valP[r] = max(X .valP[r],Y .valP[r])

Algorithm 2 LState-based GCounter P/S-CRDT (adapted from [46]).

1: gState int[] valP . For any id, the initial value is 0
2: lState int count . Initial value: 0
3: query value () : int
4: return

∑
r valP[r] + count

5: update inc (int n)
6: count := count + n
7: merge (X, Y ) : payload Z
8: let repId := Y .repId() . repId: retrieves the replica id
9: Z .valP[repId] = max(X .valP[repId],Y .count)

Thus, when comparing the original design (Algorithm 1) of state objects with the one

employed here (Algorithm 2), it is possible to differentiate them by the use of a local

state object (LState) used by the LState-CRDTs. The local state object represents only the

portion of the state which corresponds to the modifications made at source. For instance,

a counter CRDT shared between two nodes with a total local value of 10, which is the

result of the first node incrementing 7 times and second node incrementing 3 times. With

this design, then the object LState that is used to represent the portion of the state made

at source, is an integer count with the value of 7, and for the global state a count of

10, resultant of the sum of increments made by all nodes. Thus, for both nodes to be

consistent the global state count must be the same in both nodes, such that GState〈nodei〉
= LState〈nodei〉 ∪ LState〈nodej〉.

Given that the local state object S only carries updates done at source and that to

guarantee consistency after applying all updates, every node must reach the same causal

history C, for any node xi of x (adapted from [51]):

• Initially, C(xi) = ∅ ∧ S(xi) = ∅

• After carrying an update f, C(f(xi)) = C(xi) ∪ {f } ∧ S(f(xi)) = S(xi) ∪ {f }

• After carrying the merge against S(xj) from node xj , C(merge(xi ,xj)) = C(xi) ∪ S(xj)

Moreover, since updates within this design only carry a node’s local modifications,

to guarantee that users state are consistent with each other, each last update from each
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node must be shared and have assured delivery. Hence, by using the previously discussed

requirements of lost notification detection and publication persistency, a disconnected

node may rejoin the activity and seamlessly regain convergence. Thus, for nodes who

disconnect and rejoin, it must be possible to detect the missing updates and retrieve such

updates from the broker if still available or if otherwise unavailable retrieve a full copy

of another node’s global state.

As the broker must ensure publication persistency, it is important to realize that

simply saving every update made be each node since the beginning of the interaction in a

log, is not a scalable approach. Thus, instead of storing all updates made by a node since

the beginning of the interaction as a list, the broker should now employ a storage system

where only the latest local state shared by each node is stored. Hence the broker’s log

should now employ a storage system similar to a multi-value register where now for each

node only the latest update is stored, discarding all older versions.

3.3.4 Operation-based Synchronization

Another model of CRDTs available in the literature is the operation-based CRDTs (Cm-

RDTs), that disseminate each local update operation to the remainder of the collaborative

network. When applying CmRDTs with the P/S-CRDTs model, additional requirements

are compulsory to keep consistency ensured.

As specified by the P/S-CRDTs model, CRDTs carry a local state object and in the

case of operation-based synchronization, the object now represents all update operations

made locally since the last publication step. If updates are published periodically, these

local update operations are inserted in the local state object representing a queue of

operations maintaining first in first out order, to ensure that updates are merged with

the state by the same order they were made at source (Algorithm 3). For instance, an

operation-based GCounter CRDT shared between two nodes, where a node executes two

increment(1) operations, increasing the counter value to 2, may then share with the other

node it’s operations by publishing the local state object containing the operations. Once

the update is delivered to the other node, the operations contained within it are applied

to its own counter value.

Since the state object S carries updates done at source, the causal history C(xi) of a

node is defined as follows (adapted from [51]):

• Initially, C(xi) = ∅ ∧ S(xi) = ∅

• After executing the downstream phase of operation f at replica xi , C(f(xi)) = C(xi) ∪ {f }

∧ S(f(xi)) = {f1..fn} ∪ f

Contrarily to the state-based model, receiving the last update is not enough to con-

verge, as now updates carry only operations and to converge the CRDT needs the full log

of operations or a copy of the global state. Furthermore, given that updates only contain
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Algorithm 3 Operation-based GCounter P/S-CRDT (adapted from [46]).

1: gState int val . Initial value: 0
2: lState queue ops . Initial value: ∅
3: query value () : int
4: return val
5: update inc
6: generator (int n)
7: ops.enqueue(inc, [n]) . Operation name and parameters for effector
8: effector (int n)
9: val := val + n

the operations made since last publication step, it means that once a publication is ac-

knowledged by the broker, operations inserted in the local state object are cleared and

only available at the broker’s storage. Thus, in order to guarantee consistency when using

the operation-based synchronization, it is required for subscribers to have the ability to

identify the loss of notifications and subsequently be able to retrieve update notifications,

if contained in the broker’s storage, otherwise a node requires a full copy of another

node’s state.

Additionally, since the broker has the requirement of publication persistency and no

updates can be lost, then a given number of updates are to be preserved so disconnected

nodes and late entry nodes can converge to the correct state, by retrieving missing updates

from the broker if available at request time. Thus to model the broker storage, a list

structure is attributed to each node, where only the last specified number of updates are

inserted and maintained throughout the collaborative activity. By specifying the number

of updates to be stored by the broker, we aim to limit the size of the broker’s log, that if

otherwise stored every update throughout the entirety of a collaborative interaction, it

would achieve a non scalable size.
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3.4 Discussion

In this chapter we presented the P/S-CRDTs model, describing how CRDTs are modeled

and coupled with publish/subscribe operations. The selection of the publish/subscribe

interaction scheme was due to the loosely coupled form of interaction permitting the

decoupling of time, space and synchronization between publishers and subscribers.

Although the publish/subscribe scheme offers great properties for dynamic environ-

ments from the get-go, additional requirements must be enforced upon each interaction

role to ensure that consistency is kept through the lifespan of the activity. Additionally,

the interaction steps were demarcated, where updates are published, stored by the bro-

ker and subsequently all subscribers are notified of new updates, retrieving updates and

merging them with the global shared state.

Furthermore, although the model is specified to be compatible with the majority of

topic-based publish/subscribe systems, a relatively small user implementation is required

when applying specific synchronization models. Such as the state and operation based

synchronization models specified in this chapter, that have different abstractions of what

the update object to be disseminated is, as well as having different requirements for each

model. Thus, as long as requirements are followed and subsequent mechanisms to ensure

them are implemented, then any other types of CRDTs can be adapted to work with

publish/subscribe systems, using the P/S-CRDTs model. Thus, in the next chapter, we

demonstrate the implementation, where multiple CRDTs were implemented using the

P/S-CRDTs model.
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Implementation

In this chapter we present the implementation of the proposed solution,

the P/S-CRDTs model, by assembling it with a publisher/subscriber system,

detailing each component and mechanism necessary to complement the needs

of the system to guarantee consistency among mobile nodes in a collaborative

environment.

Starting with Thyme, a topic-based publish/subscribe system for mobile

edge networks, where an in-depth description is given about its procedures

and features, such as data publication, subscription, retrieval and replication,

in Section 4.1. Followed by the systems architecture used for the implementa-

tion, exposing how each component interacts, in Section 4.2.

Subsequently, every detail about the implementation of P/S-CRDTs in

Thyme, such as how CRDTs were designed to work with thyme, operations

used to disseminate objects, mechanisms added to maintain consistency and

the respective data types integrated are presented in Section 4.3.
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4.1 Thyme

The publish/subscribe system selected as the base to apply the P/S-CRDTs as proof of

concept, is the Thyme [53], a topic-based time-aware publish/subscribe system, precisely

designed for mobile edge networks, that forms a persistent collaborative storage system

by the medium of peer-to-peer communication between mobile devices.

Thyme distinguishes itself from other publish/subscribe systems by being the first

to provide an interface allowing users to specify a time interval in their subscriptions,

thus enabling the retrieval of items that were published in the past, presently produced

or be notified of future items matching the respective topic subscribed.

In Thyme, nodes do not have differentiated roles, instead nodes share the same

responsibilities, being able to be a publisher, subscriber or both, hence there are no

centralized components in Thyme. In addition, the system creates a geographical space

divided into multiple cells, where nodes belonging to a given cell cooperate with each

other to make a virtual node, forming a cluster. Such clusters use a cluster hash table

(CHT), with the intent of storing and managing the metadata of published items.

Given the very peculiar characteristics of being designed for mobile edge environ-

ments and considering time to be a first order dimension [30], it makes Thyme a very

suitable system to apply the P/S-CRDTs model, since not only takes into account node

mobility in mobile edge networks but also provides support by allowing the retrieval

of items in the past, which is crucial for nodes who have a late entry in collaborative

applications and require all updates made.

4.1.1 Thyme’s Interface

Thyme is a publish/subscribe system and thus it offers the regular interface methods

of publication, subscription and subscription cancellation. Additionally, since Thyme

makes an emphasis on the time variable, some operations were tailored to manipulate

such variable to its advantage, like the operation of unpublish where a node can remove

previously shared data, deleting the data from storage, hence making future nodes not

able to retrieve data from the past.

Furthermore, some of the commonly found publish/subscribe operations, such as

subscribe have had changes made to take into account the time variable where now a time

interval can be specified, making possible the retrieval of data published in the past, also

whilst the usual topic-based subscribe interface allows to specify a single topic keyword,

in Thyme a more set of features is supported by allowing the formulation of a set of

topics/keywords as literals. Moreover, since throughout the implementation multiple

Thyme operations were used to accomplish the realization of the P/S-CRDTs model and

for better visualization of the specification provided by Thyme, a list of operations is

presented as follows:
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publish(dataItem, tags, description, opHandler)

This method allows the publication of objects in system.

dataItem – Representation of the object to be published to the system.

tags – A topic tag or set of tags related to the object to be published.

description – Optional object description.

opHandler – Callback function characterizing the behaviour to be executed

when the operation finishes successfully or fails.

subscribe(tags, startTime, endTime, notHandler, opHandler)

This method allows the subscription of objects in system.

tags – A topic tag or set of tags related to the object to be subscribed.

startTime – Starting time for the subscription’s existence.

endTime – Ending time for the subscription’s existence.

notHandler – Callback function characterizing the behaviour to be executed

when a notification matching the subscription topic is received.

opHandler – Callback function characterizing the behaviour to be executed

when the operation finishes successfully or fails.

unPublish(objectId, opHandler)

This method allows the removal of previously published objects in system.

objectId – Identification of the object to be removed.

opHandler – Callback function characterizing the behaviour to be executed

when the operation finishes successfully or fails.

unSubscribe(tags, opHandler)

This method allows to deactivate subscriptions made by the node in the system.

tags – A topic tag or set of tags related to the subscription to be deactivated.

opHandler – Callback function characterizing the behaviour to be executed

when the operation finishes successfully or fails.

download(metaData, dowHandler)

This method allows users to download items published and stored in the system.

metaData – Metada info belonging to the object to be downloaded.

dowHandler – Callback function characterizing the behaviour to be executed

when the object is received successfully or fails.
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hash(“beach”)

hash(“summer”)

publish(      , “beach.jpg”, 

<“beach”, “summer”>)
13

5

2
hash(“beach”)

subscribe((“sun” & “sand”) | “beach”, 

tsstart, tsend)

hash(“sun”)

Figure 4.1: Thyme’s publication and subscription mechanism, where the hashes com-
puted from the tags (“beach” and “summer”) related to the publication of the image object
(“beach.jpg”), determines the cells accountable for the object metadata (cells 2 and 5) and
the subscription (cells 2 and 13). Adapted from [29].

4.1.2 Publishing Data

When a node accomplishes a data object publication, said object is attached to one or

multiple tag expressions representing the associated topic related to the content pro-

duced. Additionally, for each object published a metadata item is created, containing

information about the content, ownership and time of publication, given by the tuple

〈idobj,T , s, ts
pub, idowner〉, where each field represents the following specification:

• idobj is the object’s unique identifier;

• T is the set of topic tags associated to the object;

• s is a brief description of the shared object, such as a thumbnail for an image;

• tspub is the timestamp of the object’s publication;

• idowner is the identifier given to the publishing node.

Upon a node’s object publication, the provided Cluster-Based Hash Table (CHT) man-

ages the metadata by disseminating such information to the cells assigned to the tags

held in T , given the hashes computed from T , managed by the CHT. Thus, every cluster’s

inner node receives and permanently stores the given metadata, as illustrated in Figure

4.1, where the cells assigned with the hash corresponding to the published tags, “beach”

and “summer”, receive the object’s metadata.

Whilst the cell simply stores the metadata item, the produced data object remains

in the publisher’s node. Hence, the unit transmitted through the network is only the

metadata, with the intent of saving on bandwidth cost and network resources, as metadata

tends to have a lesser data size than the actually produced object, resulting in a more

efficient approach than continuously propagating the whole object through the network.

A previous shortcoming from the employed approach by Thyme is that only read

operations were allowed on produced objects, thus not being possible to edit an object

after its original publication. Now with the implementation of the P/S-CRDTs model in

Thyme, it is possible to share CRDT objects and continuously edit it trough the dissemi-

nation and convergence of updates.
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Figure 4.2: Thyme’s subscription notification & data retrieval mechanism. Adapted from
[29].

4.1.3 Subscription and Data Retrieval

In order to carry out a subscription, system users must send a message to the network

withholding metadata information organized as 〈idsub,q, ts
s, tse, idowner, cellowner〉, where

each field represents the following specification:

• idsub is the subscription identifier;

• q is a query’s logic formula that allows the formation of keyword conjunctions and

disjunctions;

• tss is the starting timestamp of the time interval of published content to be retrieved.

To retrieve items published since the beginning of the system matching the specified

query, the parameter must have value of 0;

• tse is the ending timestamp of the time interval of published content to be retrieved.

To retrieve all future content matching the specified query, the parameter must have

value of∞;

• idowner is the subscribing node’s identifier;

• cellowner is the identifier of the cell where the subscribing node is located.

Once a subscription is made, the specified query q is initially parsed by the client’s

Thyme instance, going through the CHT to confer which cells shall be the recipient of

the subscription metadata, instead of targeting individual nodes inside the cell’s cluster.

This is done with the intent of reducing the total number of packets needed to be sent

throughout the network.
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Figure 4.3: Thyme’s active replication mechanism. Adapted from [29].

As the messages are delivered to the nodes contained in the selected cells, those

nodes are now responsible for maintaining and storing the list of active subscriptions and

subsequently notifying nodes of published content matching the topic and time interval

(tss-tse) specified. Since only the metadata is received once a subscribing node is notified,

if the node wishes to retrieve the published object corresponding to the metadata received,

then the node must send a data retrieval message to a replica. Such a replica must be

selected according to a replica selection algorithm, preferably an algorithm that takes

into account the distance between replicas. Thus, if preference is given to the closest

available replica in the Lrep field (Figure 4.2), it is avoided unnecessary latency input due

to data travel time.

In the case where the closest replica doesn’t reply within a predetermined threshold,

by chance of being offline or left the network, the client’s Thyme instance will iterate

through the remainder of the Lrep list, picking the next closest replica and reiterating the

whole process until the desired data is successfully retrieved.

4.1.4 Replication

Given that Thyme is designed for mobile networks, that are dynamic environments with

highly volatile behaviors, it is important to ensure that published data doesn’t disappear

or become inaccessible. Thus, to support data persistence, node entry and disconnection

(churn) tolerance and content availability, Thyme offers two replication strategies:

• Active Replication consists of the replication of published data inside the pub-

lisher’s cell. Once an object publication is considered successful, the author of the

produced object then shares the item with the nodes composing the publisher’s

cell cluster, such as depicted in Figure 4.3 where the orange node (in cell B2) upon

publishing, replicates the object with its peers, effectively storing the object on all

the nodes in the cell.

Hence, each node that obtained the object after the publication, is capable to re-

ply to data retrieval requests, removing the need to rely on the single publishing

node. Thus alleviating the load imposed on the author and effectively boosting the
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Figure 4.4: Thyme’s passive replication mechanism. Adapted from [29].

network’s tolerance to node disconnections, since now the object can be accessed

without the need for the author node to be active;

• Passive Replication takes advantage of object copies replicated across all nodes in

all cells of the system, that were obtained through the download operation. Hence,

as a node’s download request is successful and the object is obtained, the node then

becomes the object’s passive replica, being capable to reply to future download

requests from other nodes, as depicted in Figure 4.4 where the node in cell C1

becomes a passive replica after obtaining the object from cell B2.

Since objects are now scattered across the network, this approach brings an increase

over data availability and performance, considering that nodes interested in ob-

taining the object can now opt to retrieve such item from the closest replica, thus

reducing latency inputs due to high distance communication between replicas.

Additionally, to support the previously described replication mechanisms, Thyme’s

metadata items now include information about the replication list (Lrep), where all nodes

retaining the object corresponding to the metadata are listed with their respective location.

Hence the metadata tuple is now formed by 〈idobj,T , s, ts
pub, idowner,Lrep〉, where Lrep is a

list of pairs 〈idnode, cellnode〉.

4.1.5 Namespaces

The authors of Thyme define as namespaces or worlds, the realm space where mobile

nodes coexist, effectively composing the network. Furthermore, Thyme enables multiple

namespaces to exist together in the same area, even if overlapped, without creating any

issues related to shared resources and synchronization, restricting nodes to belong be

part of only one namespace at a time.

When beginning the interaction, Thyme provides nodes with the choice of joining an

existent namespace or to create a new one. In order to join an existent namespace, a node

must check the heartbeat by listening to packets transmitted via the network (e.g. “hello”

messages), for a predetermined interval of time, ensuring that the namespace to be joined

is live.
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Figure 4.5: Overlapping Thyme namespaces. Adapted from [29].

On the other hand, if the node chooses to create its own namespace, the specification

of multiple parameters is required, such as the time value of how long the realm will be

active and the name used by other nodes to search and join. As the namespace is created,

a unique identification is generated as well as the establishment of a cell to accommodate

future namespace nodes.

Overlapping realms may have nodes interacting to provide better performance and

availability, enabling nodes from different realms to store as well as share objects and

metadata, as depicted in Figure 4.5. Although nodes are only able to reply to object

requests from nodes forming the cluster where the data item belongs.

4.1.6 Node Mobility

Taking everything in mind about mobile environments, where nodes may leave and enter

the network at their very own free will, Thyme considers then node mobility to be of

the uttermost importance, by specifying mechanisms to embrace mobility whilst dimin-

ishing any complications caused by node’s movement. Therefore, when a node’s Thyme

instance detects an abnormal amount of movement, a warning message is broadcasted to

composing cell’s cluster nodes, informing that the node is no longer viable, therefore not

capable of replying to requests and only apt to receive local update messages.

Contrarily, when a node has small movement or is stationary, it becomes stable and

thus the node’s Thyme instance communicates with its peers, informing that the node is

now available to regain full responsibilities, being able to reply to requests. Although the

node may viable again, two scenarios may have happened, such that the node may have

moved but not covered enough distance to justify the transition to another cell, making

it immediately qualified to cooperate with the network.

On the other hand, if it transitioned to another cell, there are multiple node informa-

tion fields that require an update, such as its own state that needs to be updated with
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the state of the cell, by asking one of its peers for the full state, obtaining knowledge of

objects responsible by the cell so that it may help with future requests. Furthermore, if a

transitioning node, was passively replicating data objects, it is required to instruct cells

to update the metadata of the replicated objects, updating the Lrep list about the new

location (〈idnode, cellnode〉).

As for all previously made subscriptions, a notification must be sent to all cells re-

sponsible for managing subscriptions, informing the new location, so that when matching

content is published, the notifications are sent to the new location instead of getting lost

by ending up on the previous location. Conversely, if the transitioning node made any

prior publications, a message must be sent to all cells retaining the delivered object’s

metadata, to update once again the location field with the new one. As a consequence,

the node now will be considered a passive replica to the subscribed object, since now it

individually holds the object data in the new cell.

For nodes who took the liberty of leaving the defined network’s geographical space, it

will now cease to be apart of the system and no longer cooperate.

4.1.7 Discussion

In the context of the P/S-CRDTs model, the aim is to adapt the CRDT design with dy-

namic environments, lifting the demand of knowledge to whom state updates must be

delivered to. Since maintaining the knowledge of active nodes throughout the lifespan

of a collaborative activity is not a sustainable approach, due to the weak nature of mo-

bile communications, where mobile nodes may periodically enter and leave the activity

unwillingly due to network disconnections, an interaction scheme that decouples the

knowledge is then a must.

Thus, publish/subscribe systems presented themselves by being an adept choice, since

publishing and subscribing roles happen in two separate control flows, enabling the

dissemination of updates without the need to hold the recipient’s reference, as well as

making possible the retrieval of updates even if the author is no longer active.

Therefore, by providing the topic-based publish/subscribe interaction scheme, being

designed for mobile edge networks, allowing the retrieval of past updates through the

specification of time on the subscription operation, as well as having mechanism to cope

with node mobility and offering data persistence through replication techniques, Thyme

showed itself as the best candidate for the implementation of the P/S-CRDTs model.

Although providing great properties from the get-go, additional mechanism have to

be added to Thyme, such as the detection of lost notifications and subsequent retrieval,

as well as storage optimizations concerning the selected CRDT synchronization models

implemented, that are state and operation synchronization, each having different requi-

sites.
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Figure 4.6: System architecture.

4.2 System Architecture

As the implementation of the model encompasses the junction of P/S-CRDTs and Thyme,

the structure of the software stack used by mobile nodes in the system to accomplish a

collaborative activity, is then composed by several layers establishing a connection be-

tween the user application level to Thyme’s interface and provided services, as depicted

in Figure 4.6. Thus the system presents the following architecture:

Application. As the top-level layer available to the mobile user, the application, com-

prises the logic unit of the application interacting with the author’s defined CRDTs, by

locally modifying their internal state with designated update operations, e.g. element

insertion and removal over a set CRDT.

Later in Section 5.6, a demonstration of a use case scenario is described, showcasing

a simple java collaborative Todo list application, employing the specified P/S-CRDTs as

proof of concept.

CRDT Manager. This component was developed with the intent of supervising the

produced and obtained application CRDTs. Whilst developers may wish to implement

an approach where updates are propagated immediately after an update, here a periodic

dissemination was chosen. Thus, the manager contains a periodic task scheduled for a

defined time interval, where it is checked if modifications were made.

As an additional implementation detail and in order to check whether or not a modifi-

cation was made, CRDT items have employed a save operation where the node can specify

in what moment he wishes to make modifications since previous publication available to

other subscribing nodes in the next publication. Hence the manager checks to see if the

save operation was triggered since last update dissemination round.
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Thyme Interface. Thyme provides an interface for instance initialization and access

to respective interaction operations, such publish, unpublish, subscribe, unsubscribe and

download, as previously shown in Section 4.1.1.

The interface may be directly accessed by an application or other external components,

in order to trigger the publication of objects, in this context CRDTs and subsequently

execute subscriptions in the past, present or future, given the time interval arguments

exposed by the subscribe operation in the Thyme’s provided interface.

Publish/Subscribe. The publish/subscribe module, incorporates all the logic for the

dissemination and retrieval of objects from mobile nodes in the network. This module is

branched in two distinct roles, the client and the server, where each one has its function-

alities. Whilst the client role manages the publication and subscription requests as well

as all notifications delivered to the node, the server, in turn, manages the storage and link

between subscriptions and publications.

Through the implementation of the proposed solution, this module saw several changes

to accommodate the dissemination and retrieval of updates as well as the additional mech-

anisms to prevent CRDT sate divergences due to the chance of lost notifications.

Storage. Storage is provided in Thyme as a service, responsible by managing stored

data in the system. Storing data is accomplished by using the abstraction of cells, where

the active replication of data inside the cell, allows containing nodes to keep the content

and subscription metadata thus granting data persistence, while at the same time users

act virtual brokers, by replying to incoming requests.

This service, saw small changes added throughout the development to help with the

storage of updates, differentiating the manner of how storage is conducted for state-based

and operation-based types since state synchronization only requires the last full local

set of modifications made to converge, whilst operation synchronization requires the

reception of all individual set of updates.

Network Layer. The mobile network formed by Thyme is done in this layer, where

namespaces (realms where nodes are part of) are generated and managed. It provides

asynchronous interaction between multiple Thyme instances and allows nodes to join

or create new namespaces.

Additionally, the network layer accounts for node mobility by applying mechanisms

to update the localization of the node, making sure data requests are always sent to the

updated location, ensuring requests are delivered (Section 4.1.6).

4.3 P/S CRDTs in Thyme

To demonstrate the concept of P/S-CRDTs, in this section a demonstration will take place,

defining the implementation details behind the chosen design of CRDTs to cooperate with
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Thyme’s system details and provided operations. Furthermore, for the management of

CRDTs with the intent of automation of update dissemination, a simple component was

developed.

Additionally since, through the development of this thesis, two CRDT synchronization

models were chosen. Those being the vanilla models of operation and state-based CRDTs,

that given the models differences, require additional implementation details related to

the design of the update unit to be disseminated. Thus, for each model, a step by step

description of the objects to be used in said synchronization models is given.

4.3.1 Mutable Objects

In Thyme the unit characterized as the object to be disseminated in the system is detailed

as a DataItem. In the previous Thyme implementation, said units could only be non-

mutable objects, thus not being able to be edited after being published, hence Thyme

only supported immutable items.

With the introduction of CRDTs onto the Thyme’s system, the extension of the origi-

nal DataItem was required to integrate the CRDTs common methods that allow users to

edit the item and converge with updates made by other user nodes in the network. Thus,

the MutableDataItem was created, to represent the generic interface the CRDTs (mutable

objects), where usually convergence, query and update methods are provided.

CRDTs, when produced by the author, must be instantiated with the global state

value and a local state object, representing only the updates made by the node. To better

understand, let’s take as an example of a state-based Observed-Remove Set (OR-Set)

CRDT. The OR-Set uses for each element contained in the set, a list with addition tags

(addTag) and another list with removal tags (rmvTag). To update the OR-Set CRDT with

an element insertion, a new unique addTag must be generated and attached to the element

in the observed list. Conversely, to remove an element from the set, all addTags must be

put onto the removed list, becoming rmvTags.

Therefore, taking the example of the OR-Set, the global state of the object is the two

lists (addition and removal lists) where all seen updates from other nodes are merged

into, whilst the local state object is merely the subset of the global state, being also two

lists but with only the locally inserted and removed operations. The usage of the local

state object is made with the intent of reducing at maximum, the data size of updates

transmitted in the network.

Subsequently, to converge the state between two nodes, a and b, when a triggers

the merge method, the local state object from b is received and merged with the global

state value of a by making the union of both addition lists and union of removal lists.

Whilst, the common implementation found in literature uses the global node state objects

to merge, combining all the updates seen by the other node, in this context of mobile

networks, it puts a much bigger load on the network than needed, since propagating all

seen updates constitutes a dataItem with potential bigger than average data size. Besides, a
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query method is always available to retrieve the global value of the CRDT. Such query for

the OR-Set, consists on returning the resulting set of the addition list minus the removal

list. Therefore, an element is contained in the set if the addition list less the removal list

is not empty.

Moreover, as an implementation choice, MutableDataItems contain a save operation.

By saving, the node shows that it’s interested in sharing the updates with the network.

To check whether or not a CRDT has a new state to be published, two version values are

present, given the tuple 〈innerV er,outerV er〉, where outerVer is the last version of the

state that has left the node to be shared and innerVer the current local version of the state.

Hence, if innerVer > outerVer, the node is ready to share the new updates (Listing 4.1).

It should be noted, that the MutableDataItem is made as an abstract object, enabling

users to incorporate any desired data type with respective convergence, query and update

methods.

Listing 4.1: Mutable Data Object Specification

1 // Payload

2 protected State<S> state;

3 // Latest version published

4 private int outerVersion = 0;

5

6 // Merging Function

7 public abstract void merge(final State<S> otherState);

8

9 public final State<S> shareState() {

10 if (state.getVersion() > outerVersion)

11 return this.state;

12 }

13

14 public void save() {

15 state.update(outerVersion);

16 }

17

18 public void updateVersion() {

19 outerVersion = state.getVersion();

20 }

4.3.2 Managing CRDTs

When designing collaborative applications with the use of CRDTs, one may incorporate

one or more CRDT objects of multiple data types and synchronization models, thus

having a component that manages, the application CRDTs is beneficial. With that in

mind, the CRDT manager was developed to alleviate the mobile user’s responsibilities by

automatically checking each node CRDT for a new state version to publish.

CRDTs are registered in the manager once a publication acknowledge is delivered

55



CHAPTER 4. IMPLEMENTATION

Algorithm 4 Outline of a the CRDT manager specification.

1: storage CRDTMap<id,CRDT> mutableItems . Initial value: ∅
2: query items () : CRDTMap
3: return this.mutableItems
4: insert addMutable (objId, item)
5: if !mutableItems.contains(objId)
6: mutableItems.put(objID, item)
7: periodically do (update dissemination)
8: for r ∈mutableItems.keys
9: if r.innerVersion > r.outerVersion

10: publish(mutableItems.get(r), topic)

to the publisher indicating that the publication was successfully made, or when a sub-

scriber receives a notification matching the desired tags and follows up with the download

operation to retrieve the object from the responsible cell.

Once registered in the manager, the CRDTs are periodically accessed by a timerTask
scheduled to trigger every time interval the developer wishes, for testing purposes the

chose interval was one second. The task consists of checking if CRDTs have a new

state containing the newly made updates ready. Since the manager has access to the

〈innerV er,outerV er〉 tuple, it can know whether there is a new local state version avail-

able or not. If there is a new version, then the manager spontaneously publishes the

update, containing the new state (Algorithm 4). Once and the specified callback handler

responds with the successful acknowledgment from Thyme’s publish/subscribe module,

the manager updates the CRDTs outerVersion value to the innerVer value, meaning there

are no new modifications until the next save operation is triggered by the node.

4.3.3 LState-based CRDTs

As state-based synchronization is one of the chosen CRDT synchronization models chosen

to be implemented using the P/S-CRDTs model specification, some additional changes

to the original model were compulsory to accommodate a scalable approach for mobile

networks (Algorithm 5). Thus as previously defined by the P/S-CRDTs model defini-

tion in Section.3.3.3, a new iteration was made over the state-based model, called local

state-based synchronization (LState). Hence, when comparing both the original and new

iteration model of state-based synchronization, changes we made to the construction of

updates objects and one should be merged.

For implementation demonstration purposes, we will now describe how an LState

GCounter data type is constructed using the P/S-CRDTs model and Thyme’s publish/-

subscribe features. Any CRDT object specified must begin by instantiating its state object,

as the state object is the item to be sent within an update item to other nodes in the collab-

orative activity. Thus for a GCounter object, the local state is of type 〈replicaID,Integer〉,
where a replica identifier is given along with its local counter value. In addition, as per
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Algorithm 5 LState-based GCounter P/S-CRDT

1: gState int[] valP . For any id, the initial value is 0
2: lState int count . Initial value: 0
3: onInit():
4: CRDTManager.register(this)
5: save():
6: CRDTManager.updateVersion()
7: query value () : int
8: return

∑
r valP[r] + count

9: update inc (int n)
10: count := count + n
11: merge (X, Y ) : payload Z
12: let repId := Y .repId() . repId: retrieves the replica id
13: Z .valP[repId] = max(X .valP[repId],Y .count)

original in the state-based definition of GCounter a structure is used to store all other

node’s counter values, thus a map incs is used to formulate the global shared state. The

global shared state is then used to calculate the global value of the GCounter by doing the

sum of stored value per node known, thus for all nodes to be consistent in a collaborative

activity, the sum of all values stored by this structure must be the same across all other

nodes. In Thyme the replica identification is the address which is included in the noti-

fication’s metadata produced, hence whenever an update is received a node may use the

address corresponding to a local state of the publishing node, to store its counter value.

Furthermore, two object constructors are given, one for CRDT creation by the author

node and another when nodes instantiate their own counter object with a copy from

another node. As GCounter objects stand for the Grows-only semantic used, where only

increments are allowed, the interface only exposes the increment operation, that must

first be conducted locally, applying its value to the local and global state alike.

Once a user wishes to expose its modifications with the network, it may trigger the save

action, accessing the CRDT Manager component, increasing its inner version, triggering

the publication of the local state as the CRDT Manager verifies that the user inner version

is superior than the outer version meaning an update is available for sharing.

Finally, as nodes retrieve updates, the merge function is used to apply the semantic

concurrency employed by the data type. Hence, in this instance, the GCounter data type

verifies that the received update has a bigger count value compared to the one stored for

the respective update author, if so then the new count value is applied to the global state.

4.3.4 Operation-based CRDTs

The other chosen synchronization model to be adapted by using the P/S-CRDTs model

specification is the operation-based synchronization model. To do so, some additional

changes were made to facilitate update dissemination. Comparatively to the originally
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Algorithm 6 Operation-based GCounter P/S-CRDT

1: gState int val . Initial value: 0
2: lState queue ops . Initial value: ∅
3: onInit():
4: CRDTManager.register(this)
5: save():
6: CRDTManager.updateVersion()
7: ops.clear()
8: query value () : int
9: return val

10: update inc
11: generator (int n)
12: ops.enqueue(inc, [n]) . Operation name and parameters for effector
13: effector (int n)
14: val := val + n

defined model, this implementation chooses to accumulate operations in a queue struc-

ture instead of immediately disseminating the operation to other nodes. Thus in this

adaptation, the update object contains all local operations since the last publication step.

For implementation demonstration purposes, we will once again describe how a

GCounter data type is implemented by using the P/S-CRDTs model. To begin, the CRDT

object must be instantiated with the local state in the form of 〈replicaID,Queue < Ops >〉,
where a replica identifier is given along with a queue structure to hold local made up-

dates. In addition, as per the original in the operation-based definition of GCounter a

structure is used to store the global state, in this case an integer representing the counter

(Algorithm 6).

Furthermore, as every CRDT implemented in Thyme using the P/S-CRDTs model,

two object constructors are given, one for CRDT creation by the author node and another

when nodes instantiate their own counter object with a copy from another node. Once

more, for this data type, the only available update operation is the increment operation.

Whenever an update is conducted, the generator function is called, creating an operation

object specifying the operation to be applied once delivered to other nodes and specific

arguments attached to the operation.

As a user wants to expose its updates with the network, it may do so by triggering the

save action, accessing the CRDT Manager component, increasing its inner version, con-

sequently triggering the publication of the local state as the CRDT Manager verifies that

the user inner version is superior than the outer version meaning an update is available

for sharing. Finally, as nodes retrieve updates, the effector function is called, retrieving

operation from the queue structure contained in the update, applying each operation

locally.
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Operation: Publication

Application Thyme Interface P/S Client P/S ServerCRDT Manager

1: Trigger Publication

2: Publish
3: PubMessage

4: PubCallback

5: AckMessage

6: onSuccess

alt

[If publication
is successful and the
object is an CRDT]

alt

9:
NotificationMessage10: onNotify[If there are

subscriptions
matching publication
tags]

[Else do nothing]

7: RegisterCRDT

[Else only notify
success] 8: onSuccess

Figure 4.7: Object publication sequence diagram.

4.4 Collaborative Node Interaction

As the end game goal is to demonstrate the application of P/S-CRDTs in dynamic envi-

ronments, one of the main usages of today for CRDTs in the mobile network context, are

mobile collaborative applications. Such collaborative activities, consist of one or more

CRDT objects replicated amongst the intervenients of the activity. Throughout the lifes-

pan of the activity, users may edit the shared CRDT by applying their own local updates

and eventually later disseminating the changes made to other user nodes, for merging.

Once updates in the form of state or operations are merged, the CRDTs guarantee data

consistency, more precisely the eventual consistency model.

Thus, in this section we aim to explain the connection made between components

developed and services provided by Thyme, showcasing the interaction and shared data

among components to achieve the dissemination and retrieval of updates in a collabora-

tive activity.
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4.4.1 Acquiring CRDT Objects

As one of the main steps to be accomplished by the nodes in the collaborative activity, is to

attain the CRDT object, in order to edit the state and share updates, effectively commenc-

ing the cooperation between nodes. Seeing that the select means of data dissemination

is via a publish/subscribe system, in this case Thyme, then to attain the CRDT object,

first one must initially produce the object. Much like in collaborative text editing, first

the author node creates the text document to subsequently share it later.

Once produced, the author must use Thyme’s interface to publish the CRDT in the

system under any desired topic. If nodes who desire to be part of the activity already

know the topic in which the CRDT will be attached to prior the publication and used

it to subscribe, these will immediately receive the notification (Figure 4.7), else if only

after the authors publication they obtain the knowledge of the topic used, they must

use Thyme’s subscribe operation, specifying in the starting value of the time interval

where published objects will trigger a notification, the value of 0, corresponding to the

beginning of time for Thyme.

Upon notification arrival, the node will receive the metadata corresponding to the

object, informing the location cell to be targeted to retrieve the copy of the object. Thus,

using Thyme’s download operation, the node may attain the CRDT. To be noted that as

CRDTs are obtained by the nodes, these must be registered to their respective manage-

ment component, to begin the dissemination of updates.

4.4.2 Sharing state modifications

As CRDTs are attained by the intervening nodes, these may start to update the object

with the methods provided by the respective data type’s interface. But before, updates

may be received by all intervening nodes, each must get subscribed to receive updates by

a specific topic where only update objects to the respective CRDT are published to. For

the implementation, the topic used for updates is the objID field held in the metadata

information of the object, generated at publication time as a universal unique identifier.

Hence, nodes how already have a copy of the CRDT, already have the objID since when

a subscription notification is received, only the metadata is contained in the notification

and not the published object.

As nodes subsequently update their CRDT’s state, they may chose to share the mod-

ifications with the network by executing the save operation, resulting in the increment

of the innerVer value, indicating a new available state to be shared. In order to share the

new state, the CRDT manager checks that a new state is ready and publishes it under the

previously received objID as the topic.

Once nodes receive notification of updates from other intervenients, the download

operation is automatically called and as the update is retrieved, the nodes merge the state

object contained in the update, effectively converging the state with all other nodes once

all updates are retrieved. For nodes who experience disconnection, updates may be lost
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<"nodeX"; update(count=Y)> 

Node 2

Node 1

Figure 4.8: Broker storage for lState-based objects.

requiring aid of a mechanism to detect which updates were lost, so further retrieval of

said lost updates may be possible.

4.4.3 Storing updates

Given that Thyme grants the storage service where recent data persistence is assured,

data is always expected to be available. Thus, as updates are published and stored at the

broker, care must be given to not store unnecessary data, to avoid any memory overheads.

For instance, state-based P/S-CRDTs share their local state which means that a newer

update publication from the same node, carries a new local state containing the union of

the previously published state with the new update modification, hence for this synchro-

nization type, only storage is required for the newer versions. Thus, at the storage layer

changes were made to identify when updates for state-based objects are stored, changing

the storage approach to behave such a multi-value register, by saving only the last update

published for a specific CRDT by a node, thus as the key is the update topic for a CRDT

and the multiple values are tuples of 〈nodeAddress, lastUpdt〉 (Figure 4.8).

For operation-based objects, the story is quite different, since now updates carry the

operations carried by publishing node since last publication, thus a new update from the

same node does not contain the operations contained in older updates. Hence now no

updates may be lost and for that reason, the storage now acts as list were all updates are

ordered by their time of publication (Figure 4.9).

4.4.4 Lost notification detection and retrieval

As mobile users suffer from the weak nature of mobile networks, being prone to peri-

odic involuntary disconnections, they may leave the collaborative active, losing updates.

61



CHAPTER 4. IMPLEMENTATION

Broker

Publish(update<Inc(3)>)

Publish(update<Inc(9)>)

node1

node2

...
nodeX

Node 2

Node 1

update<Inc(9)>

update<Inc(5)>

update<Inc(1)>

...
updateX

update<Inc(3)>

update<Inc(7)>

update<Inc(2)>

updateX

...

Figure 4.9: Broker storage for operation-based objects.
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Figure 4.10: Notification hash mechanism used to identify and retrieve missing update
notifications.

For cases such as operation-based objects where update notification cannot be lost to

guarantee consistency, it is important to be able to detect and retrieve lost updates.

For this reason a mechanism was developed, using the popular block chain logic,

in the sense that it uses the next notification to carry the hash of the last notification

created (Figure 4.10). When a node receives a notification, it is checked if the contained

hash was previously seen, if not it means that a notification was lost. To retrieve the

lost update or updates, an operation is provided indicating the last seen hash and the

newly received hash, downloading all updates with hashes between the ones previously

specified in the arguments. To be noted that in state-based objects, if the last notification

is not retrievable and no more updates are made, there is no feasible way for a node to

know that it is missing an update and thus cant converge because it cant retrieve the

missing update. Hence, one of the requirements is that the last notification delivery, must

always be assured.

62



4.5. SUMMARY

4.5 Summary

In this chapter we presented the implementation of the proposed solution, by coupling

the P/S-CRDTs with Thyme, detailing each component and mechanism necessary to

complement the needs of the system to guarantee consistency among mobile nodes in

a collaborative environment. We described Thyme’s system services and interaction

mechanisms, followed by the stack architecture used by our mobile users, describing

each layer and its contents.

Furthermore, a description of how P/S-CRDTs were designed to cope with Thyme

was given, showing how objects are managed and the manner how they are specified,

from the content of the updates to the way CRDTs are checked to see if a new update is

available to share. Moreover, the sequence of operations made to achieve a fully fledged

collaborative activity was detailed, going through how to acquire CRDTs, share updates

as well as how to store updates and retrieve lost update notifications.
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5
Evaluation

In this chapter, we showcase the obtained experimental results, with the

intent to examine the behavior and performance of P/S-CRDTs in cases of

volatile scenarios. For testing purposes, various simulations of collaborative

activities were developed where multiple mobile nodes interact with each

other, whilst experiencing instances of disconnection and late entry in a con-

trolled environment.

To better understand how P/S-CRDTs compare to existing approaches two

study cases were created. Firstly, the ∆-CRDT model is compared against the

current P/S-CRDTs designs implemented on top of Thyme as a competitor

solution. Additionally, an adaptation of an open-source collaborative Java

todo list application from AntidoteDB was used to compare results against the

CRDT update dissemination mechanism used by the AntidoteDB application

versus the P/S-CRDTs model implemented on Thyme.

We begin by presenting the evaluation methodologies, detailing how simu-

lations were built and what questions we intent on answering with the simula-

tions in Section 5.1. We start by answering the question of how much network

volume is generated with P/S-CRDTs in Section 5.2. Following with the anal-

ysis of churn and late entry events in Sections 5.3 and 5.4. As a competitor

model, the delta-based CRDTs are presented, by describing how the imple-

mentation with Thyme was done, along with its respective mechanisms in

Section 5.5. As a use case, a simple Java collaborative todo list application was

made, based on an existent Java AntidoteDB todo list application, with the ob-

jective of comparing against the update dissemination model of AntidoteDB,

in Section 5.6.
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5.1 Evaluation Methodologies

In order to test and gather results from our solution, a simulated environment was made.

To create various simulated scenarios where mobile nodes experience volatile behaviors,

it was used a Java trace-based simulation framework, previously developed in the context

of Thyme’s development. The simulation framework offers an emulation of Thyme’s

network layer, allowing the logical dissemination of messages between any given number

of virtual mobile nodes within a single machine. Simulation scenarios comprise multiple

virtual nodes, each represented by a single thread, that obey to user defined behavior

detailed in a trace file.

Furthermore, trace files are composed of multiple unitary actions, each action always

being instantiated with a time unit representing the moment in which an action must be

executed, and with a node’s numeral identification in order to attach a specific action to

the specified node (Listing 5.1). Along with the common arguments, actions addition-

ally carry all the necessary custom fields belonging to a specific action e.g. subscription

action includes a topic tag and Thyme’s optional description field. Since the traces de-

veloped have the aim of emulating a collaborative activity using P/S-CRDTs, new custom

actions were added to the trace framework, such as specific CRDT update operations e.g.

increment and decrement for counter objects, as well as an action for the implemented

save mechanism that allows nodes to share their local modifications and an assert action

used at the end of all traces to attest eventual consistency. By constructing custom traces,

it then is possible to subdivide test scenarios into multiple categories where we gather

results. The studied scenarios depict the possible common behaviors characteristic of

dynamic environments, thus the three main scenarios studied were:

• A perfect activity interaction where all participants join at the beginning to interact,

never leaving and never arriving late, hence never losing updates.

• An activity where some participants experience occasional disconnection and sub-

sequent reconnection events (churn), making them lose other participant updates.

• The introduction of late entry participants in the activity, meaning that to start

interacting the participants must retrieve an up to date copy of the shared state.

Traces created to express the considered scenarios, revolve around the developed

implementations of P/S-CRDTs. For instance, a scenario may be created to test an ORSet

implementation, using either the adapted LState or Operation synchronization models,

mirroring a supermarket purchase list where nodes insert and remove elements in the

set. Usually, test traces include a varying number of nodes, raging from low quantities

to high quantities. In this evaluation, the lowest number of nodes used in a trace was 3

nodes and the highest being 100 nodes. In scenarios where users disconnect, the intended

behavior is for a node to lose updates and attest that after reconnecting a node can still

converge to a consistent state, for that reason nodes who disconnect in this evaluation
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may lose between 5 and 20 updates. If a node loses updates that are no longer stored by

the broker agent, it is required for a node to acquire a copy of the CRDT from one of its

peers.

Listing 5.1: Example of a trace file.

1 NODE$|$0.00000$|$0

2 NODE$|$0.00000$|$1

3 NODE$|$0.00000$|$2

4

5 #Share PNCounter object identified by "0550-0001".

6 PUB_MUTABLE$|$10.00000$|$0$|$State$|$PNCounter$|$0$|$0550-0001$|$counterApp1

7 SUB_MUTABLE$|$20.00000$|$1$|$0550-0001$|$counterApp1

8

9 #Subscribe to updates for PNCounter identified by "0550-0001".

10 SUB_UPDT$|$40.00000$|$0$|$0550-0001

11 SUB_UPDT$|$50.00000$|$1$|$0550-0001

12

13 #Nodes 0 and 1 modify their local PNCounter value (increment/decrement)

14 INC$|$80.00000$|$0$|$0550-0001$|$1

15 INC$|$80.00000$|$1$|$0550-0001$|$2

16 DEC$|$85.00000$|$1$|$0550-0001$|$1

17

18 #Disconnect node 0.

19 PAUSE$|$100.00000.00000$|$0

20

21 #Nodes 0 and 1 modify their local PNCounter value (increment/decrement)

22 DEC$|$110.00000.00000$|$0$|$0550-0001$|$2

23 INC$|$110.00000.00000$|$1$|$0550-0001$|$5

24

25 #Node 1 saves and shares its modifications.

26 SAVE$|$130.00000$|$1$|$0550-0001

27

28 #Reconnect node 0.

29 RESUME$|$150.00000$|$0

30

31 #Node 0 saves and shares its modifications.

32 SAVE$|$120.00000$|$0$|$0550-0001

33

34 #Late entry for node 2.

35 SUB_MUTABLE$|$160.00000$|$2$|$0550-0001$|$counterApp1

36 SUB_UPDT$|$170.00000$|$2$|$0550-0001

37

38 #Check if counter value is 5, if so consistency has been achieved.

39 ASSERT_STATE$|$250.00000$|$0$|$COUNTER_STATE$|$5$|$0550-0001

40 ASSERT_STATE$|$260.00000$|$1$|$COUNTER_STATE$|$5$|$0550-0001

41 ASSERT_STATE$|$270.00000$|$2$|$COUNTER_STATE$|$5$|$0550-0001

The results gathered, were obtained by running test simulations with Java 8 in a

remote machine belonging to Grid5000 testbed [16], located at Lyon with the following
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specification: Intel Xeon E5-2620 v4 2.10GHz octa-core processor with 64GB of RAM and

a 10 Gbps Ethernet connection. For consistency sake, when creating the traces of the same

data type to later compare with other implemented benchmark components, the same

number of nodes and actions are used, only changing the description of the item used

by the trace. For instance, when comparing local state and operation based PNCounter

P/S-CRDTs, the same number of nodes, operations and disconnection events are applied,

at the same specified time. Additionally, two benchmark components were developed

as a means of comparing different update dissemination models. An adaptation of the

∆-CRDT model and an implementation of an open-source Java collaborative todo list

application using AntidoteDB CRDTs were used as competition benchmarking. These

two components have been adapted to Thyme and simulation traces were created to

gather results against P/S-CRDTs.

Moreover, by executing the stack of trace scenarios in a simulated environment, we

are able to perceive in greater detail, the scalability of the proposed solution without suf-

fering potential hardware limitations. Hence, as the main objective of the evaluation is to

study the update dissemination model, the gathered metrics revolve around the number

of messages and network traffic size used throughout the complete duration of a collabo-

rative activity, distinguishing the type of messages sent (publications, subscriptions, and

downloads) and respective memory size used for each message type. Ultimately, with this

evaluation we look forward to answering the following questions:

1. What is the volume of communication placed on the network, concerning the num-

ber and size of each type of messages disseminated?

2. What trade-offs exist when fast-growing and slow-growing data types use local state

and operation synchronization models?

3. What is the impact of multiple nodes missing update notifications, due to discon-

nection and reconnection events (churn)?.

4. What is the impact of multiple nodes having late entry in the activity?

5. How does the P/S-CRDTs model in Thyme compare to the dissemination of up-

dates in AntidoteDB in terms of communication volume?

5.2 Network Communication Volume

The network communication volume is one of the most relevant aspects of mobile net-

works, given that for these types of environments, data propagation and data design must

be carefully tailored to not incur any unnecessary memory overheads that may lead the

system to not meet mobile user’s quality standards. To this effect, in this section we

aim to answer the two first questions previously declared in Section 5.1, studying the
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Figure 5.1: Number of messages transmitted throughout the entirety of collaborative
activities with 100 nodes.

volume created in collaborative simulations using the P/S-CRDTs model and observing

the behavior of the developed synchronization models for different data types.

The following experiments were conducted using simulations of 25, 50, 75 and 100

nodes with no disconnection and late entry events, as the aim is to inspect how the

volume created by the collaborative interaction scales with an increasing number of con-

current users. Hence, to observe and compare the memory usage of the different CRDTs

implemented with the P/S-CRDTs model in Thyme, each simulation shares the same

number of local modifications per node. By keeping the number of updates per node and

increasing the number of nodes per simulation, it is possible to gather how comparatively

scalable each synchronization type is.

For a collaborative simulation, each node must begin by subscribing to the initial

CRDT object. Once a notification is received for the CRDT publication, the node may

download the object and immediately trigger the update subscription. Thus, every node

realizes two subscription operations throughout the entirety of the interaction. As for

publications, at the beginning of the interaction an author node is responsible for creating

and sharing the shared object trough a publication operation. Subsequently, all other

publication operations in the interaction are of update publication type. Hence, each

publication apart from the initial CRDT sharing action, are all carrying updates. Since

nodes use the developed save mechanism to indicate when they are ready to share their

modifications, it means that each update publication is a direct consequence of a node

triggering the save action.

As for download operations, similarly to the subscriptions, every download initially

downloads the CRDT object and subsequently all other download operations are made

to retrieve updates for said CRDT. Additionally, once updates arrive at the broker, its the

brokers responsibility to notify its subscribers of new updates, enabling them to retrieve

them as they are notified. Thus, notification messages are the most prominent type of

messages seen by the network throughout the interaction, since for each update download
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Figure 5.2: Network traffic usage per message type within a LState and Operation
GCounter simulations.

by a node, first a notification must be delivered. As one may observe in Fig. 5.1, for

simulations for each data type with 100 mobile nodes, the most seen transmitted message

are of notification type, followed by downloads, publications, and lastly subscriptions,

having always a fixed number of 200 subscription messages seen across all data type

simulation with 100 nodes, since each node subscribes twice throughout the interaction.

It should be noted that in Fig. 5.1, there is no synchronization model differentiation and

only the data types are discriminated since for every simulation for a given data type and

a number of nodes, the number of publications, subscriptions, notification, and download

messages are the same. Thus the same number of messages is seen for the simulation of

100 nodes with LState and Operation GCounter simulations, however, the data size of the

messages will vary with the synchronization model, as we shall see.

In Fig. 5.2 it is shown the total network traffic accomplished by each message type

and in Fig. 5.3 the number of respective messages, during a collaborative simulation with

100 nodes using a GCounter object as the shared data, without churn or late entry events.

According to the number of messages and content, one can assume that the download

operations will represent the major percentage of traffic, as shown in Fig. 5.2. Addition-

ally, downloads can either carry the update content or the full object, thus meaning that

messages of this type are the biggest in size compared to all other message types, averag-

ing 203 bytes per update for a GCounter update. On the other side of the spectrum, the

subscriptions are shown as representing the lowest percentage of traffic not only because

of their quantity but also because each subscription only carries a topic expression and

two timestamps, the start and expiration time of a subscription. Hence, subscription

messages carry lesser size when compared to publications that carry more information in

the form of metadata, such as the address of item owner, timestamp of publication, topic,

description, and several other optional information. In addition, notification messages
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Figure 5.3: Number of messages per type within LState and Operation GCounter simula-
tions using 25-50-75-100 nodes.

are the most prominent type of message in the system, as they are sent by the broker

once updates and objects are published, however notification messages are not as heavy

sized as downloads, thus not surpassing the total network traffic caused by the download

requests. Furthermore, although notification messages are superior in quantity, the same

cannot be said about their message size, as these messages only carry metadata indicating

the object identification and address the of object’s location (node), so that other nodes

may retrieve updates by downloading from the address.

Moreover, when comparing the synchronization models in Fig. 5.2, although sim-

ilar in respect to how network traffic is composed in both models, a slight increase is

noticeable due to the total download’s volume. This is a consequence of how the update

content is designed for each of the models, bringing us to the second question of how

each synchronization model behaves with slow and fast-growing data types. Thus, to

compare P/S-CRDTs using LState and Operation synchronization we use the next two

graphs where we isolate fast and slow-growing data types.

In Fig. 5.4 it is shown the comparison only between the developed counter data types

since all share the fact that they all work over an integer value, meaning the data size of

the state and respective updates won’t be as significant as other data types that severely

grow over time, such as sets. At first glance, one of the most notable similarities is that

for both LState GCounter and PNCounter objects, the update data size is inferior when

compared to the operation based counterparts, resulting in overall inferior memory usage
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Figure 5.4: Network traffic for LState and Operation counter data types.
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Figure 5.5: Network traffic for LState and Operation set data types.

for the whole activity. This is due to the fact that the design of these CRDTs, require the

update’s content to only include the local modifications made by the node, hence what is

shared among GCounters is only the pair 〈nIncs,ownerId〉 and for PNCounters the tuple

〈〈nIncs,nDecs〉, ownerId〉. Comparatively to the update objects of operation based CRDTs,

where a queue of operations is contained since last save operation, each operation holds

the arguments and operation identifier, as well as a timestamp of when the operation

was locally executed, to preserve causal order. Thus it makes sense that operation based

updates have more data size on average than state based updates for counter data types.

In Fig. 5.5, it is possible to observe that contrarily to the previous comparison among

counter data types, here the operation based updates don’t apply as much network load as

the state based updates. This can be explained due to the fact that contrarily to counters,

set data structure increase significantly as nodes share their updates throughout the

interaction, inserting and removing elements. A closer look at the displayed graph, one
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can also realize the ORSet CRDTs have a bigger data size compared to GSet CRDTs, since

the ORSet implementation makes use of two data structures, one for elements added

and other for removed elements, whereas for the GSet only one set of elements is used to

represent the state of the CRDT, since GSet’s interface only allows the insertion of new

elements.

Furthermore, operation based objects share updates that contain the local operations

made since last save action within a queue object. Thus, each operation within the update

comes with the identification of the operation to be executed on the receiving end and the

arguments to be used for the operation. Hence, operation based objects have a lighter load

compared to the LState based approach, that although carrying only the local updates,

it still is considerably bigger in size, since for sets the local state is a set containing only

the inserted elements at source for GSet CRDTs and an additional set for the removed

elements at source for ORSet CRDTs. Thus, as more insertion and removal operations are

made, the more elements the sets within the LState’s update will hold, resulting in bigger

updates for the LState based approach, whilst the operation based approach contains only

the operations made, that as a whole make for a lighter update in terms of data size.

Ultimately, we can conclude that for slow-growing data objects, such as counters, the

LState synchronization model outperforms the operation model resulting in overall less

memory volume used to propagate updates. Whilst in the other hand, for fast-growing

data objects, such as sets, the operation based approach is preferable.

Moreover, one possible optimization to reduce the communication volume could be

added, by using one of Thyme’s features, which is the possibility of sending the update

directly into the description field of a notification, if the update content is under a certain

size. Thus, when a node receives a notification of a newly published update, the update

content is already within the notification and node is no longer required to request a

download for the update. Preferably, this feature could be used to disseminate small

sized updates, as including big updates in the notifications is not a scalable approach.

5.3 Churn communication impact

As one of the possible volatile behaviors in mobile networks is involuntary disconnection,

which promptly causes users to lose updates whilst out of the interaction, it is relevant to

study the impact of said events. The P/S-CRDTs model specifies as one of its requirements

that nodes must be able to converge, even in the occurrence of update notification loss, by

either retrieving the lost updates if still in broker’s storage or by downloading an integral

copy of the CRDT object from a node within the interaction upon reconnection. Hence

to study the developed mechanisms to overcome update loss, the conducted experiments

vary the percentage of nodes that lose updates within a simulation.

The simulations presented to study the impact of churn, have 100 nodes and vary the

number of nodes who lose updates, starting with 0 nodes losing updates as a baseline

result and subsequently increasing to 25, 50 and 75 nodes that suffer disconnection.
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Figure 5.6: Number of download messages transmitted in operation-based synchroniza-
tion simulations with 100 nodes, where the percentage number of nodes who lose updates
vary.

Churn Rate Total Downloads Download Object Download Update Download Lost Update

0% 788 99(13%) 689(87%) 0(0%)

25% 842 129(15%) 665(79%) 48(6%)

50% 922 183(20%) 646(70%) 93(10%)

75% 1015 214(21%) 644(63%) 157(16%)

Table 5.1: Number of download operations made for operation GSet simulations with
100 nodes with introduced churn events, showcasing the number of downloads by type,
between object, update, and lost notification downloads.

Churn Rate Total Downloads Download Object Download Update Download Lost Update

0% 784 99(13%) 685(87%) 0(0%)

25% 839 99(12%) 677(80%) 63(8%)

50% 916 99(11%) 711(77%) 106(12%)

75% 1008 99(10%) 730(72%) 179(18%)

Table 5.2: Number of download operations made for lState GSet simulations with 100
nodes with introduced churn events, showcasing the number of downloads by type, be-
tween object, update, and lost notification downloads.

Whenever a node disconnects in these simulations he always later reconnects, and he may

lose between 5 to 20 updates. By varying the number of updates a node loses, we aim

to represent a more realistic scenario where nodes may be able to recover only the lost

updates if still present at the broker’s storage or requires a full object copy if otherwise.

In Fig. B.2 it is possible to analyze the number of download messages generated

for collaborative activities using each data type. Naturally, as disconnections happen

at larger scales, the number of download requests increases. This is due to nodes that

receive updates and promptly verify that the hash of the last notification within the
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Figure 5.7: Network traffic for LState and Operation data types with the increase of nodes
who lose updates.

newly received notification’s metadata, does not match the last seen notification hash

by the node. Meaning that one or more updates were lost whilst out of the interaction.

By using the newly received hash and the last seen hash, it is possible to request lost

notifications within the chain link created between hashes, however if one of the hashes

is no longer associated with any of the stored notifications at the broker, then the full

copy of the global object’s state is required. For implementation purposes, when working

with operation-based objects, the broker’s storage can keep up to ten updates, these being

order by publication timestamp. If contrarily, the broker was designed to store all update

notifications made throughout the interaction in a log, the system would not scale, hence

limiting the number of notifications stored at the broker. Hence, in Tab. 5.1 we observe

the ratio between the download requests for complete object copies and updates. It should

be noted that for a simulation with 100 nodes, there will always be 99 download object

requests, as each node except the CRDT author are required to subscribe to the CRDT

object and subsequently download it.

Thus, as the number of nodes losing updates increases and more download opera-

tions are issued to retrieve lost updates, the more network traffic is generated. In Table

5.1, we can observe in greater detail the multiple cases where download messages are

issued. Downloads can be issued for full object copies, regular updates disseminated and

for detected missing updates. Thus, as the number of users experiencing churn events

increases, the number downloads for missing updates increases. However, by comparing

with Table 5.2, that uses the same GSet data type but with the lState synchronization

model, a peculiar case happens. As lState objects only require the last update contain-

ing the another node’s entire local state to converge, lState then don’t need to retrieve

the full copy of the object, as the broker will always have the last received update. On
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the other hand, as operation-based objects require all updates made throughout the in-

teraction, be applied to their local state to converge, then if updates are lost and not

retrievable, a full copy of the object is need. Although, operation-based objects make use

of both lost update retrieval mechanisms, as operation objects and respective updates are

considerably smaller in size, the network traffic of for operation-based data types still

outperforms state-based data types, in the cases where said data types grow considerable

size as updates are applied throughout the time of a collaborative activity.

In Fig. 5.7 for simulations of 100 nodes, one can see a gradual increase in traffic for

each of the presented data types, noticing once again a slight increase of traffic when the

local state synchronization model is applied to fast-growing data types. Hence, as a con-

sequence of being able to recuperate from disconnections by retrieving lost notifications,

P/S-CRDTs add more volume to the network traffic, proportionally to the downloading

of updates and full copies of the global shared state.

5.4 Node late entry communication impact

Late entry is one more possible scenario of dynamic environments, where a user may

join a collaborative activity at a later time, meaning that the user must either apply all

updates previously done before arrival or get a full copy of the global shared state. Much

like when updates are lost, when a node has a late entry an increase of network traffic is

to be expected due to the increase of download requests.

To observe the impact of late entry on network traffic, simulations were created with

100 nodes, starting with a baseline of 0 nodes having a late entry, increasing the number

of nodes who have a late entry by 25, 50 and 75. Nodes that join the interaction at the

beginning, must go through the process of acquiring the shared object and only then they

may start to modify and share the modifications. On the other hand, nodes that join

at a later time, must acquire a copy of the CRDT object and realize a subscription that

encapsulates the time of entry and indefinite future time. In doing so a node requests

only updates shared after his arrival time.

In Table 5.3, we observe very similarly as to when updates are lost by churn events, in

cases of late entry, the number of download still increases as users who join may converge

Late Entry Rate Total Downloads Download Object Download Update Download Lost Update

0% 788 99(13%) 689(87%) 0(0%)

25% 857 142(17%) 676(79%) 39(4%)

50% 937 201(22%) 644(69%) 92(9%)

75% 1058 227(22%) 686(64%) 145(14%)

Table 5.3: Number of download operations made for operation GSet simulations with 100
nodes with introduced late entry events, showcasing the ratio between object and update
downloads.
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Late Entry Rate Total Downloads Download Object Download Update Download Lost Update

0% 784 99(13%) 685(87%) 0(0%)

25% 849 99(12%) 705(83%) 45(5%)

50% 930 99(11%) 723(78%) 108(11%)

75% 1038 99(10%) 775(74%) 164(16%)

Table 5.4: Number of download operations made for lState GSet simulations with 100
nodes with introduced late entry events, showcasing the ratio between object and update
downloads.
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Figure 5.8: Network traffic for LState and Operation data types with the increase of late
entry nodes.

by downloading the required updates or obtain a full copy of the state. By comparison,

in Table 5.4, where the same GSet data type is used in simulations of 100 nodes, it

is observable the previously explained behavior of downloading only missing updates,

since lState objects only require the last update to converge, however for operation-based

objects a mix of behaviors is possible as to take advantage of the broker’s storage.

In Fig. 5.8 it is shown the network traffic as the number of late entry nodes increases.

Once the number of late entry events increases it is observable an increase of memory

volume input, this being a direct consequence of nodes requiring a copy of the global

shared state and subsequent future update downloads. Although much like when nodes

experience update loss in terms of network traffic results, in this scenario a slight increase

is seen as a result of the increased number download operations for the full global state

instead of single updates.

77



CHAPTER 5. EVALUATION

Algorithm 7 ∆-CRDT replication, taken from [38].

1: upon onVersionVector(vv, replica) do
2: ∆← getDelta(vv)
3: if ∆.size < 0
4: replica.send(∆)
5: optionally do (push model)
6: if vv after self.versionVector
7: replica.send(self.versionVector)
8:

9: upon delta(∆) do
10: self.state.applyDelta(∆)
11: self.versionVector.update(∆)
12:

13: periodically do (pull model)
14: r← randomReplica()
15: r.send(self.versionVector)
16:

17: on local operation do (push model)
18: r← randomReplica()
19: r.send(self.versionVector)

5.5 Big delta CRDTs (∆-CRDTs)

As a competitor to the developed solution, we chose the ∆-CRDTs model, as they represent

an admissible approach for dynamic environments. Thus, for evaluation purposes, the

∆-CRDTs concept was adapted to Thyme, where multiple traces were used to compare

results against identical data types using the P/S-CRDTs model.

∆-CRDTs belong to the family of delta-based CRDTs, being a new better iteration

of the original concept. Whilst δ-CRDTs propagate a delta containing all modifications

made since last communication step, ∆-CRDTs are able to compute the minimal delta

that needs to be propagated to another node, only containing the missing portion of

the state that target nodes require to converge. To compute the minimal delta, internal

CRDT metadata is used, characterizing the causal context between nodes, most commonly

implemented by using a vector clock [38].

To replicate, the minimal delta is first computed by sending a getDelta request contain-

ing the causal context (version vector) of the replica which initiated the communication.

Once a replica receives a getDelta request with the causal context, the minimal delta is

computed by comparing the received version vector with its own, checking for missing

updates. Once computed the delta is to be shipped back to the replica who initiated the

communication (Algorithm .7).

∆-CRDTs use a garbage collection mechanism to remove old metadata associated with

all operations that happened before a given point in time. Thus, in cases where the local

replica’s garbage collection point is further ahead in time than the sender’s causal context,
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∆-CRDTs fall back to a state-based CRDT behavior, requiring the whole state and causal

context shipped and applied at the replica [38].

In order to adapt ∆-CRDTs to Thyme, a meeting with the author of the model was

arranged, where an exchange of implementation advices was made. As ∆-CRDTs were

initially implemented by the author using Legion, a peer-to-peer JavaScript framework,

some concerns arose when contemplating the adaptation of ∆-CRDTs to a publish/sub-

scribe system (Thyme). To this extent, additional implementation details were advised

by the author, as to make possible the ∆-CRDT model comply with the communication

pattern provided by publish/subscribe systems. As Thyme does not expose the network

topology, sending getDelta requests to a random node as specified in Algorithm 7, was

not initially possible.

To circumnavigate the shortcoming, the developed adaptation uses an additional

publication and subscription round to a specific topic, designated to store and share the

addresses of all nodes participating in the collaborative network. Hence each user who

joins the activity, must first publish his address and subscribe to receive other nodes

addresses who join the activity. Once the addresses are made available, nodes may start

to request the minimal delta.

For evaluation purposes, the ∆-CRDT model was applied to two data types, the Grows-

only Counter and the Add-wins Map. The chosen data types represent different sides of

the spectrum when considering size growth in time. Whilst a counter object maintains a

considerable small size throughout the duration of a collaborative activity, a map object,

on the other hand, will most likely grow at a faster rate, as users issue updates. Hence,

by having these two distinct data types implemented in both ∆-CRDT and P/S-CRDTs

we aim to compare the volume of communication placed on the network created by the

different update dissemination techniques.

5.5.1 P/S-CRDTs versus ∆-CRDTs

To evaluate ∆-CRDTs against P/S-CRDTs, two data types were implemented, the GCounter

and AWMap. As these data types belong to opposite sides of the spectrum in terms of

memory size, we used them to study if the ∆-CRDTs obtain better communication volume

against the developed LState and Operation P/S-CRDTs.

In Fig. 5.9 we compare the total memory volume, including publications, subscrip-

tions and download traffic. Similarly to the operation synchronization model, the delta

obtains better memory values for fast-growing data types. This is due the fact that for

∆-CRDTs, the update content corresponds only to the missing modifications (delta mu-

tator) missing in target nodes. Thus, for slow-growing data types such as the GCounter,

the LState wins over since it always only carries the local state of the counter, which is an

integer, whilst the delta carries all the calculated missing modifications for every node.

The same logic cannot be applied to the AWMap since the LState model contains a full

local state of the map which is considerably bigger in size and grows faster, hence delta
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Figure 5.9: Memory volume within LState, Operation, and Delta GCounter and AWMap
simulations.
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Figure 5.10: Traffic volume within LState, Operation, and Delta GCounter and AWMap
simulations, with the introduction of churn events.

∆-CRDTs win by sending the missing portion.

For the experiment conducted in Fig. 5.10, both ∆-CRDTs and P/S-CRDTs have the

same threshold of having the last ten notifications stored in the broker, thus whenever

the update is not recoverable the full copy of the global state is made. Hence, once again

an increase is noticeable due to the download operations to recover the full global state,

as the number of users losing updates increases.

Moreover, although a very small discrepancy between the results obtained between

∆-CRDTs and P/S-CRDTs is visible, it can be attributed to the ∆-CRDTs implementation

restrictions when using a publish/subscribe system requiring an additional subscription

message per node and additional communication step to compute deltas whenever a node
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Figure 5.11: Traffic volume within LState, Operation, and Delta GCounter and AWMap
simulations, with the introduction of churn events.

is contacted to retrieve the delta. Furthermore, in Fig. 5.11 where late entry events were

introduced, a similar volume of network traffic is added, as nodes request downloads for

the full copy of the state, noticing an abrupt increase of network traffic as soon as nodes

start joining later.

5.6 Todo List Application

As a use case and benchmark tool, a simple Java collaborative todo list application was

made using P/S-CRDTs on Thyme. The application was based on an existent open-

source Java AntidoteDB todo list implementation, using the AntidoteDB Java Client. The

selection of this application was due to the fact that it functions by sharing a Map CRDT

among its users and that its done based on a distributed database, therefore giving us the

opportunity to compare the P/S-CRDTs model to a read/write transaction model.

Thus, by evaluating an implementation using P/S-CRDTs on Thyme versus an im-

plementation based on AntidoteDB, we aim to compare the communication cost of both

approaches. To do so, when the adaptation took place, special care was given to maintain

the implementation almost true to the original. Hence, one of the crucial parts of this

adaptation, was the use of the same map CRDT, that gives preference to update opera-

tions over delete operations (add wins semantics). To better understand and compare

both approaches, its best to first comprehend the AntidoteDB architecture (Section.5.6.1)

and subsequently the application’s implementation details (Section.5.6.2).
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Figure 5.12: AntidoteDB Architecture. Taken from [2].

5.6.1 AntidoteDB Architecture

AntidoteDB is a distributed database natively developed in Erlang and employing Cure,

a highly scalable protocol for update replication from a cluster to another. Updates

operations replicate asynchronously, as means to provide guarantees of high availability

under network partitions [2].

To guarantee scalability, data is sharded among a cluster’s replicas using consistent

hashing techniques and a ring organization. For transactions that read/write to multiple

objects, contact is made only to servers that have the objects accessed by the transac-

tion (master-less design). Thus enabling the serving of requests even when some servers

fail. By using Cure, AntidoteDB is able to provide causal consistency, hence guarantee-

ing that related events are made accessible corresponding to their order of occurrence,

whilst unrelated events (events done concurrently) may be in a different order in different

replicas.

The AntidoteDB architecture (Figure 5.12) assures the correct propagation of opera-

tions to different replicas, whilst at the same time assuring the asynchronous propagation

of said operations to remote data centers. To this effect, each AntidoteDB node consists

of the following components [2]:

• Transaction Manager: This component implements the transaction protocol, be-

ing responsible for receiving client’s requests, subsequent request execution, trans-

action coordination and replying to said client requests. Operations contact the

materializer component to generate the snapshot of the objects present in other

nodes.

• Materializer: This component generates and caches the object versions requested
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Figure 5.13: Representation of the application’s utility. Taken from [17].

by clients (snapshots). It connects the log and the transaction manager components.

Additionally, to avoid system degradation over time, the materializer incorporates

pruning mechanisms.

• Log: This component employs a log-based persistent layer, where updates are stored

in a log, this one being persisted to disk for durability. Additionally, this component

maintains a cache layer to provide faster accesses to the log.

• InterDC Replication: This component is responsible for retrieving updates within

the log and subsequently propagation to other data centers. Furthermore, commu-

nication between data centers is done partition-wise.

5.6.2 Collaborative Activity

The collaborative activity to be conducted consists of a collaborative editing application,

where a shared todo list is concurrently updated by multiple nodes[17]. Within the

application, it is possible to identify three main editable objects, boards, columns and

tasks (Figure. 5.13). Boards retain a set of columns and are identified by a given string

expression, likewise columns are identified by a given string expression and retain a set

of task. Conversely, tasks are the basic unit of the application, being only identified by

their description.

A usage scenario where the todo list is well suited is for a supermarket list of must-buy

items. For instance, a user may begin by creating a board identified as "supermarket item
list". Once created, the board is made available for all users to edit, being able to rename

the board, query the content, add and remove columns. The next logical step is to create a

column to contain the tasks, in this case the items to buy, hence one may create a column

identified as "dairy products"and subsequently add dairy products as tasks e.g. "milk",
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Figure 5.14: AntidoteDB cluster with two replicas. Taken from [17].
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Figure 5.15: Network traffic for P/S-CRDTs and AntidoteDB simulations with no discon-
nection and late entry events.

"yogurt", "cheese". On a similar note, users may rename the column, query the content,

and move, add and remove tasks.

In order to test the AntidoteDB implementation versus the P/S-CRDTs on Thyme,

the same principle of using trace executed scenarios were used. In Antidote’s implemen-

tation, to simulate users, it was used an AntidoteDB node instance per user. Each instance

is launched in the form of a Docker container, where application instances run on top

of each AntidoteDB client instance (Figure. 5.14). In addition to the core application

functionalities, it is possible to simulate a real world network partition between repli-

cas by disconnecting the docker network between instances and conversely reconnect.

Hence, being able to compare the impact of churn in the communication volume of both

implementations.

5.6.3 P/S-CRDTs versus AntidoteDB

In order to fairly compare P/S-CRDTs against AntidoteDB, the experiments have been

equally applied to both P/S-CRDTs on Thyme and AntidoteDB, each simulation having
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Figure 5.16: Memory volume for the AntidoteDB and P/S-CRDTs application, for simu-
lations with loss of updates and late entry.

the same number of nodes and operations executed per node. However, one of the short-

comings faced during developed reduced the number of maximum concurrent nodes to

10. Said shortcoming comes from the deployment of AntidoteDB client instances since

the provided application implementation provided by AntidoteDB uses docker contain-

ers to launch and create the network between the multiple instances of AntidoteDB Client.

Hence a recurring bug happened whenever more than ten container instances were ac-

tive, launching an error when an update transaction was made for the todo list, making

impossible transactions reach other AntidoteDB instances, causing nodes to never receive

updates. Thus, for the following results, we used 4, 6, 8 and 10 nodes.

To gather the total network traffic in the AntidoteDB application, each transaction

containing updates was measured and accumulated to make the total sum size of data

disseminated within a simulation. Comparatively, in Thyme we accumulate the total

traffic of publications, subscriptions, and downloads. Across all simulations, each node

realizes 10 operations, creating and deleting boards, columns, and tasks.

In Fig. 5.15 we present the cumulative network traffic results for both P/S-CRDTs

and AntidoteDB application simulations. Both implementations of the application, make

use of a Map CRDT with add wins semantics. For the P/S-CRDTs, the chosen synchro-

nization model for the application is the operation-based model, similarly to the update

dissemination realized in AntidoteDB, which classifies each update operation as a unit to

be shared within a write transaction. A close observation of Fig. 5.15, shows that the P/S-

CRDTs implementation adds more communication volume than Antidote’s implemen-

tation. Since each operation for the P/S-CRDTs on Thyme holds multiple information

such as timestamp, operation identifier ("addBoard", "addColumn", "addTask", etc...) and

needed arguments, it results in bigger sized update operation compared to AntidoteDB.

In order to gather the behavior of both implementations in scenarios of disconnection
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and late entry, the following experiments in Fig. 5.16 were conducted with the maximum

possible number of nodes, which is 10. Nodes that disconnect lose from 5 to 15, in order

to test both scenarios where the update is retrieved or a full copy of the global state is

mandatory, depending on what is available at the broker’s storage at the time.

Initially, as seen before in the network traffic analysis, AntidoteDB presents itself

with a smaller size throughout a simulation with no disconnections, however a soon as

25% of the users in the simulation start to lose updates AntidoteDB obtains a significant

increase in communication volume. As users disconnect in Antidote’s application, write

transactions that are not able to be sent are queued to allow disconnected work, and

once the connection is made available again a snapshot lookup is made to retrieve all

transactions not received. Since on the other hand, the P/S-CRDTs recover by retrieving

the immediate missing updates or the full global state, which in certain cases may be more

efficient to make a full copy than outright retrieve every single update, results in a lesser

memory volume for the P/S-CRDTs. Conversely, in a scenario where users have late entry

AntidoteDB displays less memory volume, as nodes who join with a new AntidoteDB

Client instance automatically execute a snapshot copy from another instance composing

the collaborative network. In turn, P/S-CRDTs have a higher volume due to the full copy

of the global local state and subsequent update subscription immediately made at the

time of entry in the activity.
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6.1 Conclusion

Mobile users are prone to the volatile behaviors of mobile networks, where disconnections

are a recurring incident that leads to data inconsistencies, due to the loss of updates.

Users who are out of the network and later re-enter the interaction may have an outdated

state, effectively creating a state divergence if not resolved. Furthermore, collaborative

applications also incur with concurrent work, causing conflicts that require resolution. If

left unresolved, inconsistencies are created since multiple nodes may apply updates in

a non-deterministic way (different orders), making users permanently see different state

values.

As one of the more widely used approaches to solve the problem previously described,

CRDTs are presented as a great solution by providing automatic conflict resolution at low

latency costs. However, a problem residing in the application of CRDTs is that usually

when an update has to be shared, the targets to receive such update must be known to

the sender. This requirement is inconceivable for dynamic environments, such as mobile

networks, since the active knowledge for a system where nodes may leave and enter

willingly and unwillingly, is very taxing and not a scalable approach.

In this thesis, we proposed a solution that provides collaborative mobile networks who

want to employ CRDTs, a way of sharing and receiving updates between users, whilst

being capable of removing the need for the knowledge of active users in the network.

Thus, we introduced the P/S-CRDTs model, consisting on the adoption of the generic

CRDT model coupled with the publish/subscribe interaction scheme, as the medium for

update dissemination. The publish/subscribe scheme was chosen from the get-go as the

updates dissemination medium, since publish/subscribe systems decouple the workflow

between producers and consumers of such updates, not requiring the knowledge of each
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other to publish and subscribe to content and additionally allowing for disconnected

work. Thus in the context of collaborative activities for mobile networks, the P/S-CRDTs

model specifies all the interaction phases, where users begin to modify the shared state

with local operations, to later share modifications through update objects using the pub-

lish/subscribe system for dissemination of updates. Hence, nodes in the specified model

take the roles of publishers and subscribers, whereby publishing the updates to other

users and subscribing to other user’s updates, it is possible to create a fully collaborative

network.

To ensure that all users within a collaborative activity keep a consistent state, some

additional requirements are specified by the model, such as the need for ensuring that

lost update notifications are detectable and retrievable. By employing such requirements,

then it is possible to circumnavigate the possible volatile scenarios commonly found in

mobile networks. Thus, by being able to retrieve missing updates or a full copy of the

shared state, users are able to suffer disconnections and late entry events, whilst being

able to keep a fully consistent state.

As proof of concept, we coupled the P/S-CRDTs model with Thyme a topic-based

publish/subscribe system for mobile edge networks, adapting state-based and operation-

based CRDTs with the P/S-CRDTs specification. Moreover, tests were conducted in a

simulated environment, taking into consideration all the possible volatile scenarios, to

observe the impact of disconnection/re-connection (churn) and late entry events. Further-

more, two benchmark components were implemented, the ∆-CRDTs model as a direct

competitor and as a use case, a Java To-do list application originally employing Antidot-

eDB CRDTs and respective update dissemination mechanisms.

By evaluating the implemented P/S-CRDTs on Thyme and comparing against the

benchmark components, it was possible to observe that the developed solution showed

adequate network communication volume values for mobile environments, whilst being

able to maintain user’s consistency in volatile behaviors. When comparing the adapted

P/S-CRDTs against the ∆-CRDTs, it was possible to determine that for slow-growing

data types, the lState P/S-CRDTs create less communication volume than the ∆-CRDTs,

however for fast-growing data types, the operation P/S-CRDTs and ∆-CRDTs results came

very close. Thus for certain data types and synchronization models, P/S-CRDTs were able

to outperform ∆-CRDTs, by being able to efficiently recover from disconnection events.

Furthermore, when comparing the use case application using P/S-CRDTs on Thyme

against the same implementation using AntidoteDB, for scenarios of no disconnection

and late entry AntidoteDB revealed lower memory traffic due to its lightweight update

transaction and snapshot lookup mechanism. However, in scenarios of disconnection

P/S-CRDTs outperformed AntidoteDB by recovering updates in a more efficient manner.

In conclusion, we think that the objectives of this dissertation were achieved with the

development of the P/S-CRDTs model, by being capable to provide mobile users with

a consistent collaborative network activity, resilient to volatile behaviors. Moreover, the

P/S-CRDTs model can specify an update dissemination pattern that does not require the
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knowledge of whom to send updates to. When evaluating the solution, we observed that

P/S-CRDTs assume acceptable memory traffic values for mobile networks, thus making

it a suitable approach to dynamic environments to guarantee the eventual consistency

model.

6.2 Future Work

Currently, the solution has been proven as a suitable approach to circumnavigate some

of the problems that originate from dynamic environments and is currently deployed

onto Thyme as proof of concept. Although functional, some refinements and new fea-

tures to the system could only result in an overall better solution. Some of the possible

improvements are as follows:

• To mitigate possible storage overheads, it is feasible the addition of log compaction

algorithms to further improve the storage of updates, since in the context of mobile

networks great care is given to the size of data transmitted and stored. In cases

where CRDTs state may grow at a very fast rate, such as in set data types, sending

even the local state of the node instead of the global state with all seen updates,

is still a considerable data size object. Furthermore, update storage for operation

based CRDTs can be greatly improved by studying the commutative properties of

the operations and compacting such operations accordingly;

• The development of a more complex, practical and real use case application of the

model, would permit a better overview of the P/S-CRDTs model behavior in a real

context. Such as collaborative mobile games that require low latency values for its

users, hence better exposing the full potential of CRDTs and their conflict resolution

low latency values;

• More synchronization mechanisms could be applied, following the P/S-CRDTs

specification, alongside with more data types. Some synchronization models may

even showcase better performance values, such as a modified delta-based model

where the additional delta computation step is removed from the communication

and only the portion of the state changed since last publication is shared;

As continued work is possible out of the scope of what was already accomplished, the

previous list depicts some possible remaining edges and new features that can be devel-

oped to provide and enrich the P/S-CRDTs model with better results and adaptability.
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Figure A.1: Network traffic usage per message type within a LState and Operation PN-
Counter simulations.
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Figure A.2: Network traffic usage per message type within a LState and Operation GSet
simulations.
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Figure A.3: Network traffic usage per message type within a LState and Operation ORSet
simulations.
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A.4. AWMAP
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Figure A.4: Network traffic usage per message type within a LState and Operation
AWMap simulations.
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Figure B.1: Network traffic for LState and Operation counter data types with the increase
of nodes who lose updates, for simulations with 100 nodes.
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Figure B.2: Number of download messages transmitted in lState data type simulations
with 100 nodes, where the percentage number of nodes who lose update vary.

Churn Rate Total Downloads Download Object Download Update

0% 710 99 611

25% 778 113 665

50% 852 162 690

75% 933 196 737

Table B.1: Number of download operations made for operation GCounter simulations
with 100 nodes with introduced churn events, showcasing the ratio between object and
update downloads.

Churn Rate Total Downloads Download Object Download Update

0% 725 99 626

25% 792 117 675

50% 870 170 700

75% 971 198 773

Table B.2: Number of download operations made for operation PNCounter simulations
with 100 nodes with introduced churn events, showcasing the ratio between object and
update downloads.
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Figure B.3: Network traffic for LState and Operation counter data types with the increase
of nodes who experience late entry, for simulations with 100 nodes.

Churn Rate Total Downloads Download Object Download Update

0% 710 99 611

25% 795 121 674

50% 865 168 697

75% 965 203 762

Table B.3: Number of download operations made for operation GCounter simulations
with 100 nodes with introduced late entry events, showcasing the ratio between object
and update downloads.

Churn Rate Total Downloads Download Object Download Update

0% 725 99 626

25% 803 125 678

50% 887 172 715

75% 978 209 769

Table B.4: Number of download operations made for operation PNCounter simulations
with 100 nodes with introduced late entry events, showcasing the ratio between object
and update downloads.

103





20
19

C
on

fl
ic

t-
Fr

ee
R

ep
li

ca
te

d
D

at
a

Ty
p

es
in

D
yn

am
ic

E
n

vi
ro

n
m

en
ts

A
nt

ón
io

B
ar

re
to



António José Sá Barreto
BsC in Computer Science and Engineering

Conflict-Free Replicated Data Types in
Dynamic Environments

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

December, 2019



António José Sá Barreto
BsC in Computer Science and Engineering

Conflict-Free Replicated Data Types in Dynamic
Environments

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

December, 2019

Copyright © António José Sá Barreto, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e pu-

blicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou

que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais

ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.


	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context & Motivation
	Problem & Challenges
	Proposed Solution
	Contributions
	Communications
	Document Outline

	State-of-the-Art
	CAP theorem
	Consistency Models
	Strong Consistency
	Eventual Consistency

	Conflict Free Replicated Data Types
	State-based CRDTs
	Operation-based CRDTs
	Pure Operation-based CRDTs
	Delta-based CRDTs
	CRDT applications
	Discussion

	Eventually Consistent Mobile Systems
	Bayou
	IceCube
	Telex
	Rover
	SwiftCloud
	Discussion

	Publish/Subscribe Scheme
	Discussion


	P/S CRDTs Model
	Overview
	CRDTs and Updates
	Data Dissemination
	Roles
	Disseminating updates
	State-based Synchronization
	Operation-based Synchronization

	Discussion

	Implementation
	Thyme
	Thyme's Interface
	Publishing Data
	Subscription and Data Retrieval
	Replication
	Namespaces
	Node Mobility
	Discussion

	System Architecture
	P/S CRDTs in Thyme
	Mutable Objects
	Managing CRDTs
	LState-based CRDTs
	Operation-based CRDTs

	Collaborative Node Interaction
	Acquiring CRDT Objects
	Sharing state modifications
	Storing updates
	Lost notification detection and retrieval

	Summary

	Evaluation
	Evaluation Methodologies
	Network Communication Volume
	Churn communication impact
	Node late entry communication impact
	Big delta CRDTs (-CRDTs)
	P/S-CRDTs versus -CRDTs

	Todo List Application
	AntidoteDB Architecture
	Collaborative Activity
	P/S-CRDTs versus AntidoteDB


	Conclusion
	Conclusion
	Future Work

	Bibliography
	Network Communication Volume Results
	PNCounter
	GSet
	ORSet
	AWMap

	Churn & Late Entry Impact Results
	Churn
	Late Entry


