
Pedro Filipe Veiga Fouto

Bachelor Degree in Computer Science

A novel causally consistent replication protocol
with partial geo-replication

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: João Leitão, Assistant Professor,
Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa

Co-orientador: Nuno Preguiça, Associate Professor,
Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa

Júri

Presidente: Prof. Hervé Paulino, FCT/UNL
Arguente: Prof. Miguel Matos, IST/UL

Vogal: Prof. João Leitão, FCT/UNL

May, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/195807776?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A novel causally consistent replication protocol with partial geo-replication

Copyright © Pedro Filipe Veiga Fouto, Faculty of Sciences and Technology, NOVA Univer-

sity of Lisbon.

The Faculdade de Ciências e Tecnologia and the Universidade NOVA de Lisboa have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “novathesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Abstract

Distributed storage systems are a fundamental component of large-scale Internet services.

To keep up with the increasing expectations of users regarding availability and latency,

the design of data storage systems has evolved to achieve these properties, by exploiting

techniques such as partial replication, geo-replication and weaker consistency models.

While systems with these characteristics exist, they usually do not provide all these

properties or do so in an inefficient manner, not taking full advantage of them. Addi-

tionally, weak consistency models, such as eventual consistency, put an excessively high

burden on application programmers for writing correct applications, and hence, multi-

ple systems have moved towards providing additional consistency guarantees such as

implementing the causal (and causal+) consistency models.

In this thesis we approach the existing challenges in designing a causally consistent

replication protocol, with a focus on the use of geo and partial data replication. To this

end, we present a novel replication protocol, capable of enriching an existing geo and

partially replicated datastore with the causal+ consistency model.

In addition, this thesis also presents a concrete implementation of the proposed proto-

col over the popular Cassandra datastore system. This implementation is complemented

with experimental results obtained in a realistic scenario, in which we compare our pro-

posal with multiple configurations of the Cassandra datastore (without causal consistency

guarantees) and with other existing alternatives. The results show that our proposed solu-

tion is able to achieve a balanced performance, with low data visibility delays and without

significant performance penalties.

Keywords: Distributed datastore systems, causal+ consistency, geo-replication, partial

replication.

v

Resumo

Os sistemas de armazenamento distribuídos são componentes fundamentais em serviços

da Internet de grande escala. De forma a satisfazer as cada vez maiores expectativas dos

utilizadores em relação à latência e disponibilidade, o desenho destes sistemas tem evo-

luído na tentativa de melhorar estas propriedades, explorando técnicas como a replicação

parcial, geo-replicação e modelos de consistência mais fracos.

Apesar de existirem sistemas com estas características, normalmente não as possuem

todas ou fazem-no de forma pouco eficiente, acabando por não as aproveitarem da melhor

forma. Para além disso, os modelos de consistência fracos (como a consistência eventual)

colocam demasiadas responsabilidades nos programadores para desenvolverem aplica-

ções correctas, pelo que muitos sistemas têm tentado proporcionar garantias de consis-

tência mais fortes, por exemplo implementando o modelo de consistência causal (ou

causal+).

Nesta tese abordamos os desafios existentes na construção de protocolos que garantam

consistência causal, especialmente na presença de geo-replicação e replicação parcial

de dados. Com este fim, apresentamos um novo protocolo de replicação de dados, que

permite enriquecer um sistema de armazenamento de dados com estas características

com o modelo de consistência causal+.

Adicionalmente, esta tese também apresenta uma implementação concreta do proto-

colo proposto sobre o sistema de armazenamento de dados Cassandra. Esta implementa-

ção é complementada com resultados experimentais obtidos num cenário realista, sendo

comparada com várias configurações do sistema de armazenamento de dados Cassandra

(sem garantias de consistência causal) e com outras alternativas existentes. Os resulta-

dos mostram que a nossa solução consegue um desempenho equilibrado, com atrasos de

visibilidade de operações menores e sem penalizações de desempenho significativas.

Palavras-chave: Sistemas de armazenamento distribuídos, consistência causal+, geo-

replicação, replicação parcial.

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Contributions . 3

1.4 Document organization . 3

2 Related Work 5

2.1 Replication Protocols . 5

2.1.1 Replica Location . 6

2.1.2 Replication Schemes . 6

2.1.3 Update Propagation/Synchronization 7

2.1.4 Multimaster / Primary backup . 8

2.1.5 Multi-version tracking . 9

2.2 Consistency models . 9

2.2.1 Strong Consistency . 10

2.2.2 Weak Consistency . 11

2.3 Tracking Causality . 13

2.3.1 Causal history . 13

2.3.2 Metadata Propagation . 15

2.4 Peer-to-Peer . 15

2.4.1 Overlay Networks . 16

2.5 Existing systems . 17

3 Algorithms for causal consistency 23

3.1 System Model . 23

3.2 Design Considerations . 24

3.2.1 Layer Separation . 24

3.2.2 Causality Layer Structure . 25

3.2.3 Concurrency and False Dependencies 26

ix

CONTENTS

3.2.4 Vector Clock vs Explicit Dependencies 26

3.3 Algorithm Design . 27

3.3.1 Proposed algorithm . 28

4 Simulation Work 31

4.1 Model . 31

4.2 Architecture . 31

4.3 Implementation . 32

4.3.1 Protocol Implementation . 33

4.4 Experimental Evaluation . 33

4.4.1 Configuration . 33

4.4.2 Results . 35

4.5 Lessons Learned . 39

4.5.1 Best Tree Topology . 39

4.5.2 Migrate vs Remote Operations . 40

4.5.3 Concurrency . 40

5 Enriching Cassandra with causal consistency 43

5.1 Datastore Selection . 43

5.2 Cassandra Internals . 44

5.2.1 Execution of read operations . 45

5.2.2 Execution of write operations . 47

5.3 Causally Consistent Cassandra Prototype 49

5.3.1 Client . 50

5.3.2 Datastore layer . 50

5.3.3 Causality layer . 51

5.3.4 Operation Execution . 52

5.4 Implementation details . 55

5.4.1 Consistency Model . 56

5.4.2 Inter layer communication . 57

5.4.3 Causality layer . 59

5.4.4 Saturn . 59

5.5 Experimental Work . 60

5.5.1 Setup . 60

5.5.2 YCSB . 61

5.5.3 Experimental Parameters . 62

5.6 Results . 63

5.6.1 Performance versus multiple Cassandra configurations 64

5.6.2 Performance versus Saturn . 66

5.6.3 Visibility Times . 68

5.7 Results Analysis . 69

x

CONTENTS

6 Conclusion and Future Work 71

6.1 Conclusion . 71

6.2 Future Work . 72

Bibliography 75

I Annex 1 - Extra figures 79

xi

List of Figures

2.1 Execution examples that are allowed by eventual consistency but not by causal

consistency . 12

2.2 An example causal history - Adapted from [5] 13

4.1 Operation Visibility Times . 36

4.2 Data Propagated Size . 37

4.3 System Throughput . 38

4.4 Operation latency as seen by clients . 39

5.1 A read operation with LOCAL_QUORUM consistency - extracted from [16] . 46

5.2 A write operation with QUORUM consistency - extracted from [29] 48

5.3 Performance comparison between our solution and multiple Cassandra con-

figurations . 64

5.4 Latency comparison between our solution and multiple Cassandra configura-

tions . 65

5.5 Performance comparison between our solution and Saturn 66

5.6 Latency comparison between our solution and Saturn 67

5.7 Visibility times of each datastore configuration 68

I.1 Latency of each type of operation with 1800 clients and only local operations 79

I.2 Latency of each type of operation with 1800 clients and both local and remote

operations . 80

I.3 Latency of each type of operation with 3600 clients and only local operations 80

I.4 Latency of each type of operation with 3600 clients and both local and remote

operations . 80

I.5 Latency of each type of operation with 5400 clients and only local operations 81

I.6 Latency of each type of operation with 5400 clients and both local and remote

operations . 81

I.7 Latency of each type of operation with 7200 clients and only local operations 81

I.8 Latency of each type of operation with 7200 clients and both local and remote

operations . 82

I.9 Latency of each type of operation with 10800 clients and only local operations 82

xiii

List of Figures

I.10 Latency of each type of operation with 10800 clients and both local and remote

operations . 83

I.11 Latency of each type of operation with 12600 clients and only local operations 83

I.12 Latency of each type of operation with 12600 clients and both local and remote

operations . 84

xiv

List of Tables

4.1 Latencies between simulated datacenters (ms) 34

4.2 Partition distribution across datacenters for the simulation experiments . . . 34

5.1 Latencies between experimental evaluation data centers (ms) 61

5.2 Partition distribution across data centers for the experimental evaluation . . 61

5.3 Raw average visibility time (ms) . 69

xv

C
h
a
p
t
e
r

1
Introduction

Distributed data stores are fundamental infrastructures in most large-scale Internet ser-

vices. Most of these services, specially recent ones, demand fast response times [11, 24]

since latency can be perceived by users and it has been demonstrated that a slight increase

often results in revenue loss for the service [12, 32]. In order to provide low latency to

end-users, two important properties of the underlying data store need to be considered:

geo-replication and consistency.

Currently, most large-scale services requiring low latency choose to geo-replicate their

system. Geo-replication means having system replicas spread across multiple geographic

locations, in order to have replicas close to as many users as possible, thus decreasing

response times.

This technique however, can be further improved by using partial replication. In a

data store supporting partial replication, each replica of the system stores only a subset

of the data. By combining partial replication with geo-replication, a service is capable

of replicating, in each geographic location, only the data relevant to the users of that

location. This is particularly useful for services such as social networks in which the data

accessed by users is heavily dependent on their location. Another advantage of using

partial replication is the lower resource requirements needed for each replica: while a

replica that stores the entire dataset needs an high amount of resources (these replicas are

usually materialized in data centers), a partial replica only needs resources proportional

to the set of data they replicate. This means that a system using partial replication can

use smaller devices as system replicas, for instance set-top boxes, user devices (such as

laptops of desktop computers), or even the upcoming 5G network towers. [15, 17, 35].

The other important property of data stores is their consistency model. Consistency

models can generally be divided in two types: strong consistency and weak consistency.

Strong consistency models are usually used in applications where data consistency is

1

CHAPTER 1. INTRODUCTION

more important than latency, such as the requirements of applications using traditional

(ACID) databases. In services where user-experience is a key factor, weak consistency

is the preferred option as these consistency models favor system availability over data

consistency.

Being the strongest consistency model that does not compromise availability [3, 28],

causal consistency is one of the most attractive weak consistency models, having been

implemented in many recent systems [2, 7, 13, 26, 27]. Causal consistency offers some

guarantees which are more intuitive for programmers to reason about their applications

(when compared to other weak consistency models such as eventual consistency) while

enabling high performance and low latency (when compared to strong consistency mod-

els).

1.1 Motivation

While many recent systems have implemented causal replication models, they do so us-

ing different techniques which result in each implementation having a different behavior.

When comparing these behaviors, the main trade-off that can be observed is between

data freshness (how long an update takes to be seen by users connected to each replica)

and throughput [6, 20]. This trade-off is caused by the way these systems track causality,

with some systems trying to reduce the amount of metadata used, which sacrifices data

freshness, while others use more metadata, sacrificing throughput (and potentially la-

tency) since more processing time is required to handle that metadata. The data freshness

sacrifice is caused by false dependencies as a result of systems compressing metadata. As

such, there is not yet a single best way to track (and enforce) causality.

Another challenge that has not yet been solved by modern systems providing causal

consistency is partial geo-replication. While there are indeed causally consistent systems

supporting partial geo-replication, they do so inefficiently, not taking full advantage of it.

Due to the difficulty of tracking operation dependencies when those dependencies are

over objects not replicated in the local replica, these systems require partial replicas to

handle metadata associated with items that they do not replicate [4, 26, 36]. This means

not only that the metadata overhead will be higher than strictly necessary, but also that

data freshness will be sacrificed, as false dependencies are introduced.

Yet another challenge with large-scale replicated systems is scalability. While sup-

porting a small number of replicas can be simple, increasing the number of replicas can

introduce overheads that hamper the system’s scalability. Such overheads can occur in

systems where, for example, the size of metadata is proportional to the number of replicas

or where a replica with some sort of central role in the system becomes a bottleneck.

2

1.2. PROBLEM STATEMENT

1.2 Problem Statement

The primary goal of this work is explore new designs for replication protocols capable of

offering causal consistency. In order to achieve this, we aim at create a solution that can

better balance the trade-off between data freshness and throughput (while attempting to

maximize both), with support for efficient partial replication and capable of scaling as

much as possible without harming the overall system performance.

1.3 Contributions

The main contributions presented in this thesis are the following:

• Simulation work, which consisted in creating a simulator capable of testing differ-

ent data propagation schemes and the subsequent evaluation of several possible

algorithms, in order to find an appropriate one that satisfies the goals of this work.

• A novel protocol for metadata propagation, which guarantees causal consistency

between datacenters, while also supporting partial replication in a geo-replicated

setting. This algorithm attempts to maximize throughput and data freshness while

using very little metadata. Furthermore, it is able to scale with the number of

servers materializing the data storage system in each data center.

• A concrete implementation of this algorithm over an existing eventual consistent

datastore (Apache Cassandra [24]) and subsequent study of the effects and chal-

lenges of enriching an existing data store with causal consistency.

1.4 Document organization

The remainder of this document is organized in the following manner:

Chapter 2 studies related work: in particular this chapter covers the principles and

techniques used for data replication; existing consistency models and their charac-

teristics (with a focus on causal consistency); and the most relevant existing systems

and which techniques they use to maintain different consistency models.

Chapter 3 discusses the system model assumed for this work, followed by the description

of the algorithms proposed, and the reasoning for such proposals.

Chapter 4 describes the simulation work done for studying and validate the algorithms

described in Chapter 3.

Chapter 5 shows the implementation of the chosen algorithm and its integration in

Apache Cassandra. It also evaluates this implementation and compares it with

the base system.

3

CHAPTER 1. INTRODUCTION

Chapter 6 presents the conclusions and possible directions for future work.

4

C
h
a
p
t
e
r

2
Related Work

In this chapter we discuss relevant related work considering the goals of the work con-

ducted in this thesis. In particular we focus on the following topics:

In Section 2.1 the various techniques required to implement replication protocols are

discussed, we discuss some of the choices that need to be considered for every replication

system.

In Section 2.2 we study and compare consistency models, with special interest on

causal consistency.

In Section 2.3 causal consistency is studied in more detail. We present the most

common ways that existing systems use for causality tracking across operations.

In section 2.4 peer-to-peer networks are discussed, since they are the base of many

replicated system.

In Section 2.5 we present a description of relevant existing replicated data storage

systems.

2.1 Replication Protocols

Many distributed systems resort to some form of data replication. Replicating data across

several replicas is crucial to ensure important properties, such as:

Availability and Fault-tolerance: If a replica (or several) becomes unavailable, due to a

crash, network partition, or any other reason, the system remains available since

there are other replicas that contain copies of the data to ensure that the system can

keep its correct operation. This redundancy of data also makes it very unlikely that

any data will ever be lost, even if multiple replicas (even an entire data center) fail

at the same time.

5

CHAPTER 2. RELATED WORK

Latency: By distributing replicas across different geographic locations (geo-replication),

the overall response time of the system can be improved, for users in different (and

distant) locations, enhancing user experience.

However, the price to pay for these benefits is the increased system complexity, more

specifically there needs to be a protocol to ensure some kind of consistency between all

the replicas, and to govern how different clients should access different copies of data in

different locations.

In the following discussions, we present some architecture decisions used to charac-

terize replication protocols.

2.1.1 Replica Location

Refers to the physical location of the replicas in a system, which is usually related to the

geographic area covered by the system and the importance of latency for users.

Co-located Co-locating replicas consist in having a distributed system replicated on the

same physical location. This is usually useful when attempting to minimize the

latency between replicas, since having replicas close to each other means they can

have direct and fast connection channels to each others. These systems usually

serve users geographically close (for instance a web service available only inside a

country), since latency could become a problem when trying to serve users globally.

Geo-replicated: Geo-replicating a system implies instantiating replicas in several (usu-

ally strategically chosen) geographic locations in order to improve the data distri-

bution. Having replicas physically far from each other may increase latency when

synchronizing updates between replicas, however this implies that replicas are

closer to the users, thus decreasing latency in communications between the user

and a replica (i.e, the service). Since these systems usually focus on user experience,

this trade-off is acceptable (and often welcomed).

2.1.2 Replication Schemes

Depending on the service being provided by the system, it can make more sense to

replicate all the data to every replica, or instead to only replicate a subset of data in each

replica.

Full Replication: In systems that use full replication, every replica is equal having a full

copy of all data in the system. Replicas will behave the same way as every other

replica: every update is propagated to and applied in every single replica and users

can access data from any replica.

Partial Replication: By using partial replication, distributed systems can have replicas

that only contain a subset of the system’s data. Using this technique can increase the

6

2.1. REPLICATION PROTOCOLS

scalability of replicated systems since updates only need to be applied to a subset of

replicas, allowing replicas to handle independent parts of the workload in parallel.

Partial replication is particularly useful when combined with geo-replication, this

allows for the deployment of partial replicas that only replicate the data relevant to

that geographic location.

Using a social network as an example, there could be a partial replica in Europe that

only replicates the data relative to european users. Since european users mostly

access data about other european users, that replica would considerably improve

those user’s experience, while avoiding the need to deploy a full replica (which

would incur in higher maintenance costs).

Genuine Partial Replication[19]: Genuine partial replication is a particular case

of partial replication, where each replica only receives information (meta-data

or the data itself) about data items that it replicates locally. This characteristic

makes genuine partial replication systems highly scalable, since they use less

bandwidth and replicas need to process less information. However, this is not

easy to achieve, since it’s much easier to just propagate (meta-)data to every

replica and let them decide if that data is relevant to them. Additionally, there

is an extra level of complexity in this case related with the handing of more

complex operations that manipulate sets of data objects that are not contained

within a single replica.

Caching: A cache can be seen as a partial replica, where only read operations are

allowed. Caching is often used at the client-side to allow faster response time

when reading frequently accessed data and to reduce server load, but can also

be used at the server-side to increase the speed for responses to frequent read

operations. Caches are usually temporary and are more effective for data that

is modified less frequently.

2.1.3 Update Propagation/Synchronization

The method used by a replication protocol to propagate operations is usually depen-

dent on what is more important: offering the client low latency times or sacrificing fast

response times in favor of showing the client a more consistent view of data.

Synchronous/Eager Synchronization: Systems implementing eager synchronization pro-

tocols usually behave as if there is a single replica of the system state. When a user,

connected to a particular server, executes an operation that operation is immedi-

ately propagated to and executed in every other replica, and only after this step

is a response sent back to the client. These systems are usually associated with

stronger consistency models. Since updates are propagated immediately it’s easier

to maintain a consistent state between all replicas. The cost of executing each update

7

CHAPTER 2. RELATED WORK

synchronously means these systems lack scalability since operations take longer to

execute for each replica in the system, making eager synchronization protocols too

costly for large-scale applications that aim to provide fast user responses.

Asynchronous/Lazy Synchronization: In contrast to eager synchronization, lazy syn-

chronization protocols focus on improving response times. When a user executes

an operation, that operation is usually executed on the server immediately and an

answer is sent back to the client. The operation is then propagated to the other repli-

cas asynchronously. These protocols often allow for replicas to evolve to divergent

states, however they eventually converge as updates are propagated from replica

to replica. Lazy synchronization protocols are usually associated with weaker con-

sistency models, since updates are not propagated immediately and replicas are

allowed to diverge in state. These system usually scale better than eager synchro-

nization systems, since the synchronization cost is lower. They’re also preferred

for applications focusing on user experience, due to their lower response times.

However, systems using lazy synchronization might have issues when attempting

to ensure global invariants over the application state (for example, that a counter

never goes below of above given threshold values).

2.1.4 Multimaster / Primary backup

Whether or not there exists a main replica in the system is another common characteristic

of replication protocols. While some use a single replica to maintain control of the system,

others utilize every replica in a similar way.

Primary-backup: Many classical approaches to replication are based on the primary-

backup model, in this model there is one replica (the primary replica) that has

complete control over the system, and multiple backup replicas that serve only to

replicate the data. Operations are sent only to the primary replica, which executes

them and then propagates them (or their results) to the backup replicas, when the

primary replica fails one of the backups takes its place.

Systems implementing primary-backup strategies may allow clients to execute read

operations in the backups, however the data read from these replicas may be out-

dated. Implementing strong consistency in systems using this replication model

is usually preferred, since it’s easy to maintain consistency if only one replica can

receive operations. The primary-backup model lacks in scalability, since every op-

eration is executed on a single replica, adding more replicas does not increase the

overall performance of the system (in the limit, it may actually decrease it due to

the need to spend additional resources of the master to maintain the additional

replicas up-to-date).

Multi-master: In a multi-master model, as opposed to the primary-backup model, every

replica is equal and can receive and execute every operation, being up to the client to

8

2.2. CONSISTENCY MODELS

choose which replica to connect to (usually the geographically closest one). Replicas

then propagate their operations in the background and resolve conflicts.

This model allows for better scalability of systems, since increasing the number

of replicas can increase the overall performance of the systems. The geographic

positioning of replicas can also be used to decrease latency to users, improving user

experience. However, since it is hard to implement a strong consistency model in a

system where every replica can execute updates without synchronizing, weaker con-

sistency models are usually preferred when dealing with the multi-master model,

there are however multi-master systems with strong consistency, resorting to co-

ordination mechanisms, such as Paxos [25], or other coordination systems such as

Zookeeper [22].

2.1.5 Multi-version tracking

Some systems that resort to weak consistency models (such as causal consistency) make

use of versioning. Versioning is a technique which consists in keeping several versions of

the same data item at the same time. The most common uses for versioning are:

• Consistency - In order to maintain consistency in the system, sometimes older

versions of data need to be returned to the client (for example when the newer

version has not yet been propagated to every replica).

• Transactions - For systems that support transactions, versioning can be useful to

allow users to keep operating on the adequate versions of data items that are being

accessed and modified by other transactions.

In order to distinguish between data versions each version needs to have some kind

of identifier, these identifiers are usually based on whichever technique the system uses

for tracking causal relations (for example, a vector clock).

2.2 Consistency models

According to the original CAP theorem [9, 18], it is impossible for a distributed system

to provide all of the following guarantees simultaneously:

• Consistency - Showing the user only strongly consistent data

• Availability - Having the system always available to the user, even in the presence

of failures

• Partition tolerance - Keeping the system functional and correct in the presence of

network partitions

9

CHAPTER 2. RELATED WORK

In the context of distributed systems (and particularly in the CAP theorem), the def-

inition of consistency is different from the context of, for example, database systems.

Consistency in CAP means that in a distributed system, independently of how the data is

stored in servers, users should see that data as if there was only a single up-to-date copy

of it.

The CAP theorem further defines that only two out of these three properties can be

provided by a distributed system simultaneously however, this formula is misleading

[8]. In reality, CAP only prohibits a specific situation: perfect availability and strong

consistency in the presence of partitions, which are unavoidable in large scale systems

such as geo-replicated systems.

With this in mind, distributed applications usually need to choose between consis-

tency or availability. While it is possible for system to guarantee both consistency and

availability in the absence of such failures [8], most systems nowadays are distributed

and hence subject to suffer network partitions.

While traditional database systems (with ACID guarantees) choose consistency over

availability, recently most systems where user experience is essential to ensure success,

as seen in the NoSQL movement for example, choose availability over strong consistency

[2, 11, 24].

2.2.1 Strong Consistency

A system that chooses consistency over availability typically focuses on providing guar-

antees in line with one of the existing strong consistency models. In these models every

operation is observed by all users in the same order, meaning that users will always

observe consistent states of the system. This kind of consistency is important in situa-

tions where always having a consistent, up-to-date state is essential to the overall system

correctness. We now discuss two of the most relevant strong consistency models:

Serializability: For a system to provide serializability, every client must see the opera-

tions issued to the system in the same order, even if that order does not correspond

to the global real-time order in which the operations were actually issued. In order

to keep the state of every replica consistent, all replicas must appear to execute op-

erations simultaneously. Without this requirement, a client could read two different

values from two distinct replicas.

Linearizability: Linearizability can be seen as a particular case of serializability. In this

case all replicas need to execute operations in the same order, however that order

needs to be the real-time ordering in which they were issued.

For instance, considering 3 clients C1, C2, and C3 issuing 3 operations op1, op2, and

op3, respectively and in this order, considering an external unique source of time.

To provide serializability the system only needs to make sure every replica executes

these operations in the same order (for instance: op2, op3, op1), however to provide

10

2.2. CONSISTENCY MODELS

linearizability every replica must execute the operations in the order: op1, op2, op3
since that was the real-time ordering in which the operations were issued.

2.2.2 Weak Consistency

Weak consistency models, as opposed to strong consistency models, are typically de-

ployed in scenarios where availability is chosen over consistency. In these models opera-

tions may not be seen in the same order by every replica and reads issued by clients may

return out-of-date values, we now discuss three consistency models that fall within this

category.

Eventual Consistency Eventual consistent systems usually try to achieve high availabil-

ity. As the name suggests, in this kind of systems, when there are no more updates

to a certain data item, all nodes will eventually converge to the same state. This

means that, before reaching the converged state, the system may be inconsistent,

allowing users to see out-of-date and/or unordered values. To reach a converged

state, there needs to be some sort of conflict resolution protocol, with the last-write-
wins [34] approach being the most common, although the use of CRDTs [33] has

gained some popularity recently [1, 23].

Causal Consistency Causal consistency is one of the strongest weak consistency mod-

els, being compatible with providing availability in the light of the CAP theorem.

This makes causal consistency a very attractive option for systems that need high

availability while trying to achieve the strongest possible consistency.

This consistency model requires the system to keep track of causal dependencies

between operations and ensures that those operations are always seen by clients in

an order that respects their causality relations.

Causally related operation are operations in which one might influence the other,

for instance, in a social network, if a user creates a post and then immediately

removes it, the remove operation is causally dependent of the create operation.

Operations that do not have any relation between one another, being independent,

are called concurrent operations. These operations do not have to be presented

to users in any particular order because of this. Simultaneous (and therefore con-

current) writes, for example, are concurrent operations: since they are concurrent,

one couldn’t influence the other, since it would be impossible for any of them to be

triggered by the observation of the effects of the other.

Causal+: Causal+ consistency is achieved by adding convergent conflict handling

to causal consistency. Convergent conflict handling ensures that replicas even-

tually converge, by making them all deal with conflicts in the same way. This

property ensures that clients will eventually observe the same (converged)

state, if there are no more write operations being performed over the system.

11

CHAPTER 2. RELATED WORK

2.2.2.1 Differences between eventual and causal consistency

S1

S2

S3

C1

C2

x:0

x:0

x:0

W(x,1)

x:1

x:1

R(x)
0 R(x)

0R(x)

1

Sync

time

a Example 1

S1

S3

C1

C2

x:0

x:0

W(x,1)

x:1

x:0
y:2

R(x) 0
2

R(y)

Sync

W(y,2)

y:2y:0

y:0

y:0

x:1

x:1

Sync

S2 x:0

y:0

time

y:2

b Example 2

S1

S3

C1

C2

x:0

x:0

W(x,1)

x:1

x:0
y:2

R(x)
02

R(y)

Sync

W(y,2)

y:2

y:0

y:0

y:0

x:1

x:1
y:2

Sync

S2 x:0

y:0

C3

R(x)
1

x:1

y:0

Sync

time

c Example 3

Figure 2.1: Execution examples that are allowed by eventual consistency but not by causal
consistency

In this section, we present examples on the differences between eventual and causal

consistency, using Figure 2.1 as reference. In this figure, c1, c2 and c3 refer to clients

operating in a system consisting on three replicas: s1, s2, s3. x and y represent the keys of

objects stored in these replicas. These keys are accessed using read and write operations.

These operations are represented by arrows labeled with either and R or W, where the

parameter in a read operation is the key to access and the parameters in a read operation

are the key and the new value.

Figure 2.1a shows an example of a situation allowed by eventual consistency but not

by causal consistency. In this example, c1 first reads the initial value of x followed by a

read to the updated value of x and finishing with re-reading the initial value.

In Figure 2.1b, two write operation are issued by c2. Since the write operations are

issued by the same client, they are considered causally dependent. As they are causally

dependent, c1 should not be able to see the effects of the second one without seeing the

effects of the first. As such, this execution is valid under eventual consistency but not

under causal consistency.

Figure 2.1c shows a similar situation where c1 should not be able to read the effects

12

2.3. TRACKING CAUSALITY

of the operation issued by c3 without seeing the effects of the operation issued by c2.

However, in this case, the causal dependency originates from c3 reading the effects of the

first operation and then issuing a write operation.

2.3 Tracking Causality

Being one of the strongest consistency models for systems that focus on availability, the

causal consistency model is a very attractive consistency model. Simply assigning a

global order to each operation (using Lamport timestamps, for example) is enough to

guarantee causality. However, this is not an efficient method, since concurrent operations

will still be ordered without need. A more efficient method to guarantee causality is by

tracking causal relations between operations, and then applying those operations in an

order that respects these causal relations. This means that only dependent operations

will be ordered, while concurrent operations can be executed in any order. Since there

is no single best way to track causality, the performance of causally consistent systems is

usually dependent on which protocol or technique is used. The basic concept, in which

most causality tracking techniques are based, is the concept of causal history.

2.3.1 Causal history

Figure 2.2: An example causal history - Adapted from [5]

Throughout this section we follow the definitions originally presented in [5]. Using

causal histories is a very simple way of tracking causality. The causal history of an event

can be defined as the set of events that happened before that event. Imagine a system

with 3 nodes (A, B, and C) in which, every time an events occurs in a node, that node

assigns the event a unique identifier composed by the node name and a local increasing

counter. Each event’s causal history is composed of its identifier and the causal history of

the previous event that occurred at that node.

For example, as seen in Figure 2.2, the second event in node C has the name c2 and

the causal history Hc2={c1,c2}. Also, when a message is propagated to another node,

the causal history of the event that is sent is also propagated along. When that event

13

CHAPTER 2. RELATED WORK

is received, the remote causal history is merged with the local one. This can be seen in

Figure 2.2 when node B receives a message from node A, both causal histories are merged,

and a new event b2 is created.

In a system with this behavior, checking for causality is now simple: if an event

identifier is contained in another event’s causal history, that means the second event is

causally dependent on the first; if neither event identifier is contained in the other causal

history, then the events are concurrent.

While causal histories do work, the algorithm described above is not easy to imple-

ment in an efficient way, as the size of meta-data in a real system implementation would

grow infinitely. Several techniques have been created to address this challenge, by using

the concept of causal history but in more efficient manners:

Vector clock: By studying the structure of causal histories, there’s an important charac-

teristic that can be observed: if a causal history includes an event B3, then it also

includes all events from node B that precede b3 (b2 and b1). Given this property,

the preceding events do not need to be stored, and only the most recent event from

each node is stored.

With this in mind we can, for example, compact the causal history {a1, a2, b1, b2,

b3, c1, c2, c3} into the representation {a 7→ 2, b 7→ 3, c 7→ 3} or simply a vector [2, 3,

3]. This vector is called a vector clock.

All the operations performed over a causal history have a corresponding operation

identified by a particular vector clock:

• When a new event occurs in a node, instead of creating a new identifier for

the event and adding it to the causal history, it’s only needed to increase the

number corresponding to that node in the vector clock. For instance, after an

event occurs in node B, the vector clock [1, 2, 3] becomes [1, 3, 3].

• The union of causal histories (when nodes send messages to other nodes), is

equivalent to choosing the max value from each position of each vector and

placing it in the new vector. For example, the union of the vector clocks [1,

2, 3] and [3, 2, 1] results in the vector clock [3, 2, 3]. Using a more formal

explanations, for two vectors Vx and Vy , the result Vz of their union is achieved

the following way: ∀i : Vz[i] = max(Vx[i], Vy[i])

• To check if there’s a causal dependency between two events, checking if every

position of the vector identifying an event is greater or equal to the correspond-

ing position in the other event vector, and vice versa is enough. Vector Vx is

causally dependent on vector Vy if: ∀i : Vx[i] ≤ Vy[i] and ∃j : Vx[j] < Vy[j].

Usually, in storage systems, only state changes need to be tracked. As such, a new

event identifier only needs to be generated when a write operation occurs (since

read operations do not change data). This is called a version vector.

14

2.4. PEER-TO-PEER

Nearest dependencies: Another property that can be observed in causal histories is that

an event’s causal history contains the causal history of all the events it causally

depends on. Going back to Figure 2.2, the causal history of b2 includes both a1 and

a2, however, since the causal history of a2 already contains a1, there’s no need to

store a1 in the causal history of b2.

This concept is used, for example, by COPS [26]: by only storing the closest depen-

dencies in the causal history of an event it is still possible to transitively rebuild the

full causal history of an event.

2.3.2 Metadata Propagation

A different way to guarantee causality is to control the propagation of metadata to ensure

updates are executed on remote replicas in a causally consistent fashion. Saturn [7] works

by exploiting this observation: it separates data and metadata management, and uses a

decentralized metadata manager that delivers the metadata to data centers in a causal

order. In order to do this, Saturn organizes every datacenter into a single static tree,

in which metadata is propagated through its branches in a FIFO order. Data centers

then apply the updates only when they receive the metadata handled by the metadata

manager, which guarantees the updates are executed in causal order, even if the data

itself is received in a different order.

2.4 Peer-to-Peer

A peer-to-peer system is a decentralized system in which there is no single central server,

each peer implements both server and client functionalities. By allocating tasks among

peers, bandwidth, computation, and storage are distributed across all participants[31].

For a new node to join the system, there is usually little manual configuration needed.

Nodes generally belong to independent individuals who join the system voluntarily, and

are not controlled by a single organization.

One of the biggest advantages of peer-to-peer is its organic growth: due to the dis-

tribution of tasks, each node that joins increases the available resources in the system,

meaning the system can grow almost infinitely.

Another strength of peer-to-peer is its resilience to attacks and failures: since there is

usually no single point of failure, it is much harder to attack a peer-to-peer system than

it is to attack a client-server system. The heterogeneity of peers also makes the system

more resilient to failures since a failure that affects a portion of nodes usually does not

affect every node.

Popular peer-to-peer applications include file-sharing, media streaming and volunteer

computing.

For a peer-to-peer system to function properly, nodes need to be aware of the under-

laying network and its topology. To facilitate communications between nodes, creating

15

CHAPTER 2. RELATED WORK

a logical network that only includes the nodes that belong to the system is the most

common approach. This logical network is called an overlay network.

2.4.1 Overlay Networks

An overlay network is a logical network, built on top of another network. In an overlay

network, nodes are connected by virtual links, which connect two nodes directly through

a combination of multiple underlying physical links. In peer-to-peer systems, this un-

derlying network is usually the Internet. The overall efficiency of a peer-to-peer system

is dependent on its overlay network, which should have the adequate characteristics to

serve that system.

The fundamental choices in an overlay network are the degree of centralization (decen-

tralized vs partially centralized) and the network topology (structured vs unstructured).

Degree of centralization: Overlay networks can be classified by their use of centralized

components (or the lack of).

Partially centralized: These networks use dedicated nodes or a central server to

have some kind of control over the network, usually indexing the available

nodes. These nodes are then used as coordinators, facilitating the entrance of

new nodes into the system and coordinating the connection between nodes.

Partially centralized systems are easier to build than decentralized systems,

however they come with some of the drawbacks of client-server architectures

such as a single point of failure and bottleneck. This bottleneck may also

negate the organic growth that characterizes these systems.

Decentralized: In this design, the use of dedicated nodes is avoided, making ev-

ery node equal. This way bottlenecks and single points of failure are avoided,

while the potential for scalability and resilience is higher when compared to

partially centralized systems. However, since there is no coordinator node,

these network have to rely on flooding protocols to propagate queries/changes,

which is less efficient than having a coordinator node. These systems some-

times "promote"nodes to supernodes, these nodes have increased responsibil-

ities are often chosen for having a significative amount of resources. While

supernodes may increase system performance (for instance, by helping new

nodes enter the system), they may bring some of the drawbacks of partially

centralized networks.

Structured vs unstructured: Choosing between structured or unstructured architectures

usually depends on the amount of churn1 the system is expecting to be exposed

to and the potential usefulness of key-based routing algorithms to the applications

being supported by the overlay network.

1Churn is a measure of the amount of nodes joining and leaving the system per unit of time.

16

2.5. EXISTING SYSTEMS

Structured overlays: In this kind of overlay network, each node is usually assigned

an unique identifier in the range of numerical values that determines the node’s

position in the network. Identifiers should be chosen at random and the nodes

should be distributed in an uniform fashion across the identifier space. This

results in the nodes being organized in a structured way, usually named DHT

(Distributed Hash Table). This structure works similarly to an hash table: each

node is responsible for a set of keys and can easily find the node responsible

for any key. Structuring the nodes in a DHT allows for the use of key-based

routing algorithms, increasing the efficiency of queries, however, it sacrifices

performance when churn is high since the DHT must be updated for each node

that enters or leaves the system, which is a process that has non-negligible

overhead while also requiring the coordination of multiple nodes.

Unstructured overlays: In unstructured overlays, there is no particular structure

linking the nodes, which means that queries are usually propagated by flood-

ing the network. The overlay is formed by establishing arbitrary links between

nodes, meaning peers only have a partial view of the network (usually they

only know themselves and a few neighbors). In unstructured overlays we have

the opposite of structured overlays: queries are less efficient since they need to

be propagated to every node to make sure they reach the ones owning relevant

content, however this architecture handles churn much better than structured

overlays. Since the management of the topology is much more relaxed (i.e has

few restrictions).

2.5 Existing systems

In this section, we present the most relevant existing causal consistent systems and give

a brief overview on how they track causality.

The following systems are not explained in detail as they do not provide partial repli-

cation, which is a key characteristic in the solution we aim at devising. However, they are

historically important when considering causal consistency, and they introduced ideas

which we leveraged in our work.

COPS[26] was the first system to introduce the concept of causal+ consistency, the

strongest consistency model under availability constraints. COPS also contributed

with its scalability, being able to track causal dependencies across an entire cluster.

It works by checking, for each operation, if its causal dependencies have already

been satisfied before making its results visible. It uses client-side metadata to keep

track of the dependencies for each client operation.

Eiger[27] is a scalable, geo-replicated storage system that innovates, in relation to COPS,

by supporting causal+ consistency using column family data models (popularized

17

CHAPTER 2. RELATED WORK

by Cassandra [24]), while most systems support only key-value data models. It also

supports both read-only and write-only transactions, even for keys spread across

multiple servers.

ChainReaction[2] is a geo-distributed key-value datastore. It uses a variant of the chain-

replication technique that provides causal+ consistency using minimal metadata.

By using this special variant of chain-replication, ChainReaction is able to leverage

the existence of multiple replicas to distribute the load of read requests in a single

data center. It also leverages a more compact metadata management scheme, used

to enforce causal consistency.

GentleRain[13] is a causally consistent geo-replicated data store. It uses a periodic

aggregation protocol to determine whether updates can be made visible or not. It

differ from other implementations by not using explicit dependency check messages.

It uses scalar timestamps from physical clocks and only keeps a single scalar to

track causality which leads to a reduced storage cost and communication overhead,

however updates visibility may be delayed.

Kronos[14] is a centralized service, with the purpose of tracking dependencies and pro-

viding time ordering to distributed applications. It provides an interface by which

applications can create events, establish relationships between events, and query

for pre-existing relationships. Internally, in order to keep track of dependencies,

Kronos maintains an event dependency graph.

The following systems are explained in more detail as they are the more recent and

the closest ones to the solution we wish to implement.

Saturn[7]: Saturn was designed as a metadata service for existing geo-replicated systems.

Its purpose is to provide causal consistency to systems that do not yet ensure it by

design, in an efficient way. It does this by controlling the propagation of metadata

for each update, making sure that it is delivered to data centers in an order that re-

spects causality. For this to work, servers can only apply each update after receiving

the corresponding metadata from Saturn, even if that means having to wait after

receiving the update data. Saturn also enables genuine partial replication, which

ensures its scalability. Internally, Saturn organizes data centers in a tree topology

(with data centers as leaves), connecting the tree with FIFO channels. Causality is

guaranteed by making sure metadata is propagated in order (using the mentioned

channels).

Being a novel approach to causality tracking, we are interested and will use in this

work some aspects of Saturn, such as its separation between data and metadata and

the handling of metadata by a separate service. We also leverage on the idea of

using FIFO channels to guarantee causal consistency.

18

2.5. EXISTING SYSTEMS

With this said, Saturn still has some weaknesses that we wish to avoid: organizing

the metadata propagation layer in a static tree means that supporting dynamic entry

and exit of datacenters in the system is very difficult; using a tree also means that

the nodes closer to the root are likely to experience higher load than the nodes closer

to the leaves; the lack of any kind of dependency metadata (for instance a vector

clock) results in false dependencies.

In addition to these, Saturn shows what we think to be its main fault when we

reason about how it could be integrated in a weakly consistent data store: In each

datacenter, the order in which remote operations are executed must be the same

as the order in which the metadata for these operations was received from the tree

structure. This happens because, since there is no dependency information, opera-

tions cannot be executed concurrently. In practice, this means that each datacenter

can only execute a very small number of remote operations at a time, resulting in

very high visibility times and the inability to scale with the number of nodes in a

datacenter.

Eunomia[21] is a recent work that provides causal consistency guarantees in a fully

replicated geo-distributed scenario. It expands the proposal of Saturn [7] of decou-

pling the data replication layer from the causality tracking layer. Eunomia allows

local client operations to always progress without blocking by relying on a intra-dc

stabilization technique. This technique relies on a hybrid physical-logical clock per

data partition that is associated with each client operation. Based on these clocks,

the Eunomia service gathers progress indicators (either operations or notifications

that no operation occurred) from each local data center partition, establishing a

total order of operations that is compatible with causality per data center. This total

order is then employed by the Eunomia service to execute remote operations on

each data center.

Due to the use of a total order, Eunomia can propagate minimal metadata across

data centers. However data centers are limited to the execution of one single re-

mote operation per remote data center simultaneously. The use of the local data

center stabilization procedure can delay the propagation of operations to remote

data centers significantly and hence, affect negatively the global visibility times of

operations. Furthermore, and contrary to Saturn, Eunomia cannot support partial

replication.

We also present Cassandra that, while not providing causal consistency, will still be

used in this work as the base datastore system.

Cassandra[24]: Cassandra is a highly scalable and available, decentralized NoSQL database.

It offers eventual consistency of data and allows for some tuning of consistency. For

this work we are mostly interested in how Cassandra handles data distribution

19

CHAPTER 2. RELATED WORK

and replication, and will ignore inner workings like how the data is stored on disk,

indexed, or how clients interact with it.

First, we need to explain some key terms and concepts of Cassandra, which will

later be referenced in the document (mostly in Chapter 5):

Node: Represents the basic component of Cassandra, where the data is stored. Usu-

ally each node represents a single physical/virtual machine.

Datacenter: Represents a collection of related nodes, which may or may not be part

of an actual physical datacenter, but should always be physically close.

Cluster: Contains one or more datacenters. Represent an entire instance of the

database.

Keyspace or partition is a namespace (or a container) for a subset of data that is

usually used to differentiate data according to its role in the application. For

instance, there is a default “system” keyspace that is used to store information

about the database details and configuration. Keyspaces are essential in sup-

porting partial and geo-replication since each can have a different replication

strategy.

Replication Factor: Is the number of nodes of each datacenter that replicate each

row of data.

Replication Strategy: Each keyspace must have a replication strategy assigned. A

replication strategy specifies in which datacenters the data will be replicated,

and the replication factor in each of these datacenters. For instance, the fol-

lowing command creates a keyspace named “users” with a replication factor

of 3 in the datacenter “europe” and a replication factor of 2 in the datacenter

“canada”.

1 CREATE KEYSPACE users WITH replication = {

2 ’class’: ’NetworkTopologyStrategy’,

3 ’europe’:3,

4 ’canada’:2

5 };

Each row inserted in this keyspace will now be stored in 3 nodes of the “europe”

datacenter plus 2 nodes of the datacenter “canada”, these nodes can be any

subset of nodes on these datacenters.

Virtual nodes or vnodes: are used to distribute rows across nodes in a datacenter.

Each node is assigned a number of vnodes which influences the amount of data

that node will be responsible for. This is useful if nodes don’t all have the same

processing power or, in our case, some nodes are running extra tasks.

Cassandra nodes use Gossip, a peer-to-peer communication protocol to exchange

information about themselves and other known nodes. By periodically exchanging

20

2.5. EXISTING SYSTEMS

state messages, every node quickly learns about all other nodes in the cluster. This

information is used for nodes to know which other nodes are interested in each

operation (i.e, which nodes store each data object).

Inside each datacenter, nodes are organized in a DHT (as explained in Section 2.4),

which is used in conjunction with the replication factor and vnodes to determine

which nodes are responsible for each row of data.

By using different keyspaces with different replication strategies, we can easily

setup a partially replicated cluster with geo-replication. We chose Cassandra as the

base system for this work both because of this and because of its popularity and

well-maintained open source code.

While Cassandra already implements most of the characteristics we desire for this

work, it is important to emphasize that is does so while only guaranteeing eventual

consistency.

Summary

In this Chapter, we presented all the relevant related work that was studied and used and

as basis for this thesis.

In the following Chapter, we will present the system model assumed for this work,

followed by the design decisions that were done in order to reach the first iteration of our

solution. We also present an algorithm capable of assuring the guarantees we’re looking

for and explain how it works.

21

C
h
a
p
t
e
r

3
Algorithms for causal consistency

In this chapter we introduce and discuss some algorithm designs that were initially

considered as possible solutions for providing causal consistency in partially replicated

databases. The protocol must be scalable with the number of nodes in the system. We are

also interested in minimizing the effects of churn and maximizing throughput and data

freshness.

We start by presenting the system model assumed for this work. In our design, we

separate the system in two layers, the datastore layer and the causality layer. We then

present some intuitions about the characteristics of possible algorithms. We finish by

presenting and explaining an algorithm capable of ensuring the consistency guarantees

that we are looking for.

3.1 System Model

The focus of this thesis is on enforcing causal consistency guarantees under partial repli-

cation. We aim at providing such guarantees in the most independent way possible of the

concrete datastore. Due to this, we start by defining the minimal set of assumptions that

we made regarding the operation of the underlying data storage system.

Storage System Consistency: We assume that the storage system provides eventual con-

sistency across data centers, allowing an update to be executed in a data center with-

out coordinating with other data centers. Updates are propagated asynchronously

to other data centers.

Within a data center, we assume that after a write completes, all following reads

will return the written value. While a write of an object is in progress, the value

returned by a read can be either the old or the new value. Unlike linearizability, it

is possible that after a read returns the new value, some other read (issued by other

23

CHAPTER 3. ALGORITHMS FOR CAUSAL CONSISTENCY

client) may still return the old value. This is the common behavior of replication

systems based in quorums that return the most recently written value (and not the

value of the majority). However, we assume that this cannot happen to a single

client (i.e., a client cannot read a value and then read an older value). This can be

enforced in two ways: by having client caching values returned by read operations;

or by simply having clients always contacting the same quorum of nodes when

reading a given object.

Partial and Geo-replication: We also assume the underlying datastore already supports

(some form of) partial and geo-replication. This means that each datacenter should

know which datacenters replicate each data object as to be aware of the datacenters

where to propagate updates to that particular data objects.

FIFO channels and variable latency: For now, we assume that it is possible to establish

connections between datacenters that produce FIFO (first-in first-out) delivery. This

means that messages sent from one datacenter to another are delivered in the same

order they were sent. This assumption may not be needed for all algorithms. We

also consider the possibility of failures or delays on the communication channels

which can lead to variable latency in the delivery of messages between datacenters.

Sharding: Even though we are thinking of datacenters as unique nodes, we’re still going

to assume they implement some form of sharding. Sharding is a technique that

consists in splitting the data that a datacenter is responsible for and storing each

piece in a different node of that datacenter. With sharding, a datastore is able to

spread the load evenly between all its nodes. For instance, if we execute 100 write

operations in a datacenter with 10 nodes, each node will (on average) only need

to execute 10 operations, whereas in a datacenter without sharding, a single node

would have to execute all 100 operations. This implies that the datastore system

can be scaled horizontally within a datacenter.

3.2 Design Considerations

With the specified system model, we now present some intuitions about the principles

and techniques we considered in order to design the proposed algorithm.

3.2.1 Layer Separation

As a starting point, we depart from some of the insights introduced by the Saturn[7]

system. As Saturn, we decided to separate the system in two layers: the datastore layer

and the causality layer. The general principle behind this idea is the following: when

the datastore layer receives a write operation from a client, it executes the operation

locally and propagates it to the other datacenters that are interested in the operation (i.e,

that replicate the data object modified by the client request). Additionally, a label that

24

3.2. DESIGN CONSIDERATIONS

represents that operation is also sent to the causality layer. When a datacenter receives

an operation from another datacenter, it must wait for the reception of the corresponding

label from the causality layer before it can execute the operation.

This separation in layers brings some advantages:

• By using this separation of layers, guaranteeing causality in the system becomes

simpler, since we can focus only on the design and properties of the causality layer.

By delivering operation labels to the datastore layer in causal order, we achieve

causal consistency in the system.

• The (possibly large) operation itself is sent directly to the relevant datacenters in the

datastore layer, while the causality layer will only process and propagate smaller

labels, which can be relevant to minimize communication overhead at the causality

layer.

• This separation will also be useful when implementing the resulting protocol over

an existing datastore, since the changes to the datastore code will be minimal. We

only need to change the behavior of the datastore in very specific locations (gen-

erating a label to send to the causality layer, waiting for the label to execute the

operation, and acknowledging executions back to the causality layer).

With this decision made, we moved on to the next stage: how to efficiently organize the

causality layer while supporting partial replication, maximizing throughput, minimizing

data visibility times, and allowing the presence of dynamic datacenters.

3.2.2 Causality Layer Structure

We started by deciding how the causality layer should be organized. Saturn organizes

all datacenters in a single tree topology. Having all datacenters organized in this fashion

means we would not need to use any extra metadata (like vector clocks or explicit de-

pendencies) to track causality, we would simply need to send all labels through the tree

(assuming FIFO channels).

Instead of having the datacenters organized in a single tree structure, we can also

propagate labels using different (and independent) trees depending for example, on the

datacenter where the operation originated. This translates in having one tree per data-

center in the system, where each datacenter is the root of its own tree. These trees could

then be optimized depending on the distribution of data in the system (i.e, the partial

replication scheme employed), in order to better distribute the load in the causality layer.

Having multiple trees, however, would mean that sending labels in a FIFO channel is

no longer enough to guarantee causality, since causality is only guaranteed between op-

erations propagated through the same tree. As such, in each label, we need to append

a vector clock. Since each tree by itself guarantees causality between operations that

transverse it, this clock effectively tracks dependencies between trees, which means the

25

CHAPTER 3. ALGORITHMS FOR CAUSAL CONSISTENCY

size of the clock depends on the number of trees (i.e, the number of datacenters). While

this addition of a vector clock to each label will increase the load on the causality layer,

some metadata will always be required, as we will explain further below in this section.

A particular case of this multiple tree layout would be having trees where the root

connects to every other (relevant) node, which would result in every label being sent

directly to every interested datacenter. In this case, supporting high churn is trivial, since

we don’t need to change anything in the layout of the causality layer when a datacenter

enters or leaves the system. On the other hand, with either single or multiple trees, a

datacenter joining or leaving requires the trees topology to be reconfigured, which would

require that a part of (or even the entire) system stops executing operations while this

reconfiguration takes place.

3.2.3 Concurrency and False Dependencies

Having the causality layer organized in a single tree may seem like a good idea at first,

since, as explained before, the tree by itself guarantees causality. The most significative

issue with this approach is the lack of concurrency in the execution of remote operations.

Since datacenters are receiving each label in a specific order, without any information

about their dependencies, they have to assume that every label is causally dependent of

all labels previously received, which means all operations must be executed one by one in

the order they were received. This effect is called “false dependencies” and, as explained

in Section 1.1, it is usually mitigated by attaching more precise dependency information

to each label. Since we are considering that the datastore layer supports sharding, having

no concurrency in the execution of remote operations becomes even more penalizing,

since the advantages of sharding is lost (for remote operations). As a result of these

observations, we conclude that labels must have some dependency information attached

to them and, as such, it makes more sense to rely on multiple trees over a single tree.

3.2.4 Vector Clock vs Explicit Dependencies

After having decided that we will be using multiple trees and that we need dependency

information in labels in order to support concurrent execution of operations, making

it possible to take advantage of sharding in the datastore layer, we’re left with another

decision: how fine-grained should that dependency information be.

Here we consider two options: maintaining a vector clock with one entry per datacen-

ter and attach it to the labels or, using a more complex option, having the clients keep

track of direct dependencies explicitly and attaching them to every operation.

By only using a vector clock, the effect of false dependencies is more visible, when

compared to using explicit dependencies. However, this solution has the advantages

of adding very little extra metadata to labels, which is important in order to keep the

causality layer from being a bottleneck to the system, while also respecting the separa-

tion between layers, by avoiding to require the storage of explicit dependencies in the

26

3.3. ALGORITHM DESIGN

datastore layer.

On the other hand, keeping track of explicit dependencies can increase the throughput

of the system by allowing the execution of more operations concurrently, which also

results in taking more advantage of sharding. However, such solution is much more

complex to implement since it requires a client library to be running between the client

and the datastore layer, changing the datastore in order to receive the client dependencies

and send new dependencies back with answers for client operations, and requiring the

datastore layer to share information with the causality layer (to know which dependencies

are missing), which may not be trivial to achieve. The overhead of having to handle

explicit dependencies in the causality layer may also decrease the overall throughput of

the system.

In the next section, we present an algorithm which uses the previous techniques and is

able to achieve the goals of this work: a protocol capable of providing causal consistency

to partial and geo-replicated datastore.

3.3 Algorithm Design

Based on the discussion presented in the previous section, we now present our thought

process when creating the first iteration of our final algorithm. We start by presenting

some ideas that were thought of but eventually abandoned, followed by the chosen algo-

rithm.

All the discussion in this section is based on the materials presented in the previous

section and considering the system model presented in Section 3.1.

At first, we thought about designing the algorithm using fine-grained dependencies.

This means having the client to store information about the data it interacted with, as

explained in the previous section. The main problem with this solution is that we would

have to propagate that dependency information across the causality layer, which could

significantly increase the load on it. We concluded that, in order to avoid the causal-

ity layer to become a bottleneck, which would have a significant negative effect on the

visibility times in the system, especially when the datastore layer can be horizontally

scaled, we need to avoid the use of explicit dependencies. In addition to this, we are also

attempting to separate the causality layer as much as possible from the datastore layer,

which requires us to avoid having causality tracking information in the datastore layer

(and consequently in the client).

Having discarded this option, we then decided to approach the problem in a different

way by identifying the minimum amount of metadata to maintain causality while still

having enough information to allow some concurrency in the execution of operations. As

explained in the previous section, when using multiple trees, the causality information we

require is a simple vector clock with one position per tree. This vector clock is also enough

to have some amount of concurrency, since a datacenter can simultaneously execute one

operation per tree (instead of a single operation at each time when using a single tree).

27

CHAPTER 3. ALGORITHMS FOR CAUSAL CONSISTENCY

Using this option also means that we should be able to keep all the dependency tracking

information on the causality layer, thus keeping the datastore layer mostly unchanged.

We then decided which logic we are going to use to decompose the message propa-

gation across trees. Our first thought was to use a tree for each data partition (the basic

unit for controlling the partial replication scheme). With this structure, each datacenter

would only be part of the trees corresponding to its data partitions, which means we

would have genuine partial replication. Since we need a vector clock with a position for

each tree, as explained before, in this case each datacenter would keep a clock position

per each replicated partition (without needing to keep clock position for non-replicated

partitions). The problem with this approach is that each datacenter, when executing an

operation, would increment its clock positions independently which would make it hard

to track the correct dependencies between operations executed in different datacenters.

This happens because there would not be a single datacenter responsible for each clock

position. A possible solution for this problem would be to have a main datacenter for

each partition, which would be responsible for ordering every write operation in that

partition with the correct clock value. However, we did not want to use this solution since

it would mean the final system would not be fully decentralized, thus losing availability.

Another solution for this problem would be to decompose each clock position into mul-

tiple positions (one per datacenter). With this solution, each clock position would again

be incremented by a single datacenter. While we believe this could be a good solution,

we decided not to use it due to the increased clock size, as this would counter our goal of

minimizing as much as possible the load on the causality layer.

In the end, we decided that having a tree for each datacenter would be a better solution

than having a tree per each partition. With a tree per datacenter, the size of the needed

vector clock would amount to one scalar per datacenter in the system. This way we

minimize the load in the causality layer, in order to prevent it from becoming a bottleneck

for the datastore layer.

3.3.1 Proposed algorithm

With our thought process explained, we now present what our proposed algorithm looks

like. Since we are abstracting the datastore layer, this explanation focus on the causality

layer. In Section 5 we explain the actual implementation and integration of both layers.

As stated before, each datacenter has its own propagation tree, and uses it to propagate

metadata regarding write operations received from clients at their datacenter. This tree

can have any topology, in Chapter 4 we study the effects of the different tree topologies

in the visibility times for remote operations. The metadata used to track dependencies

consists only on a vector clock with one entry per datacenter. This implies that causality

tracking is completely transparent to both the client and the datastore layer. Having this

vector clock also means we have enough information to promote concurrency, enabling

the execution of remote operations in parallel.

28

3.3. ALGORITHM DESIGN

We designed the algorithm in order to support both remote operations and migra-

tions. Remote operations and migrations are the two possible ways of a client executing

operations over data that is not replicated at its local datacenter. When using remote

operations, the client simply issues its operations and the system is then responsible for

routing the client operation to a datacenter that replicates that data. This datacenter will

then execute the operation and reply to the client. Since we are building a causal system,

we need to make sure that remote operations are propagated in a order that respects

causality relations among operations, we leverage on the causality layer to do this. When

using migrations, the client issues a special migration request to the system. This message

is then propagated, in a causal manner, to the target datacenter (through the causality

layer). When this message reaches the target datacenter, the client is notified and can

start executing operations normally on its new datacenter. In both of these scenarios, the

enforcing of causality is transparent to the client, as it simply issues operations and waits

for the response of the system. In Chapter 4 we study the differences between remote

operations and migrations from a more practical stand point.

We now explain how each type of operation (local read, remote read, local write,

remote write and migrate) is handled by our algorithm:

Local Write: For executing a local write, the client issues the operation to the (local)

datastore layer which generates a label representing that operation and handles it

to the causality layer, while also propagating the operation directly to the other

relevant datacenters. The causality layer then increments its own position on its

local vector clock and tags the label with the new clock. It then delivers the label to

the local datastore layer, allowing it to execute the operation and also propagates it

across the causality layer to every other datacenter using the originator datacenter

tree. Once the operation is executed in the local datacenter, the client is notified

that the operation has completed. When each remote datacenter receives the label,

it waits until its local clock is in a state that allows it to be executed (i.e, until all

local clock entries are greater or equal to the operation clock’s entries). When this

happens, the clock position for the operation’s original datacenter is increased and,

in case the data relative to the operation is replicated locally, the label is delivered

to the datastore layer, thus enabling the execution of the operation.

Remote Write: Remote writes are similar to local writes, with the difference that the

operation must first be causally propagated to a datacenter that replicates data,

before being executed. When the client executes a remote write, the datastore

layer, similar to a local write, propagates the operation to all relevant datacenters

and generates a label for the causality layer. The causality layer, however, does

not increase the clock, since the operation will not be executed locally. Instead it

just tags the local clock to the label and propagates it through its tree to the target

datacenter that will execute the operation. When the target datacenter receives the

label, it waits until its all its local clocks entries are greater or equal to the label’s

29

CHAPTER 3. ALGORITHMS FOR CAUSAL CONSISTENCY

clock entries. When this happens, it executes the write operation as if it was a local

one, including increasing its local clock, attaching it to a new label and propagating

it to the other datacenters.

Local Read: This is the simplest operation since it doesn’t require the use of the causality

layer. The client simply issues the read operation to the datastore layer and receives

the response back immediately.

Remote Reads: Remote reads are more complex than local reads, since they require the

use of the causality layer. When a client issues a remote read operation, the datastore

layer generates a label for that read and propagates the operation to the remote

datacenter. The causality layer then attaches (without increasing) its local clock to

the label and propagates it through the tree to the remote datacenter. When the label

reaches the remote datacenter, it is delivered (when possible) to the datastore layer,

which executes the read. The remote datacenter then needs to send the response

back to the client’s datacenter through the causality layer. This is required to make

sure that subsequent operations made by the client are causally consistent. As such,

it sends the response directly through the datastore layer, but also generates a new

label to which the causality layer attaches its clock and propagates to the client’s

datacenter. When the response label arrives at the client’s datacenter and can be

executed, the client receives the response.

Migrate: A migrate operation is somewhat simpler than remote operations. The client

issues the migrate operation to the datastore, which then generates the label and

propagates it to the causality layer (the client could also create the label and send

it directly to the causality layer). The causality layer then attaches the local clock

to the label and propagates it to the target datacenter. When the label reaches the

target datacenter it waits until its local clock matches the one in the label, at which

point it replies to the client. At this point the client can start issuing local operations

on its new datacenter.

Summary

In this chapter we presented the design decisions we were faced with when designing

the first iteration of our solution. We also presented the achieved solution, detailing how

it works and how it enforces causality. In the next chapter, we present some simulation

work used to test and compare some variants of this algorithm.

30

C
h
a
p
t
e
r

4
Simulation Work

In this chapter, we present a study, done by simulation, of the implications of design

decisions and possible alteration for our algorithm.

In order to do this simulation work, we created a simple simulator in which we imple-

mented the causality layer’s propagation variants we wished to test. The main purpose

of this simulator is to try to understand the effects of different tree topologies on the

visibility times of operations. We also use this simulator to understand whether using

remote operations is a better option over migrating clients between datacenters.

4.1 Model

The simulator was build considering the system model presented before, albeit attempt-

ing to fully abstract the datacenter layer focusing primarily on the causality layer. As

such, we assume each datacenter to be composed by two simulator nodes which capture

the causality and the datastore layers, respectively. Since we are abstracting the datastore

layer, we are not going to simulate the effects of the algorithms when this layer is scaled

horizontally (i.e, partitioned), which (as we will see in the next chapter) can have an

important effect on the visibility times of remote operations.

4.2 Architecture

The architecture of the simulator is divided in two main entities: clients and nodes. These

entities communicate by sending messages to each other.

Client: The client is used to simulate an user executing operations in the system. Its

behavior is simple: it generates an operation and sends it to its local nodes, then

remains idle until a response is received, at which point it generates a new operation

31

CHAPTER 4. SIMULATION WORK

and sends it. This cycle is repeated until a specific number of operations have been

completed. The client can be configured to control its generation of operations,

such as the distribution between local and remote operations, the total number

of operations to generate, the use of remote operations or migrations, etc. When

executing the simulations, the number of clients can be specified, in order to better

simulate the normal utilization of the system.

Nodes: The nodes are used to represent the components of the datastore system. Each

node can represent either the datastore or the causality component of a datacenter.

Its behavior and state depends on the implementation used when running the simu-

lation and can be completely arbitrary. The simulator code supports nodes sending

messages to each other or to clients, simulating the latency between them. It can

also simulate the processing time of requests in each node.

4.3 Implementation

As explained in the previous section, the clients are implemented in the simulator and

behave by synchronously sending operations to nodes. The simulator uses a configuration

file to parameterize each simulation. This file has information about the number of

clients to use, the number of operations per client, the percentage of reads and writes,

the distribution of local and remote operations, and which causality tracking metadata

propagation scheme to use in datastore nodes.

The simulation starts by executing the code responsible for creating the nodes. This

code is specific for each protocol and is also used to initialize the state of the simulated

system and informing the simulator of the connections and latency times between nodes.

Each client is then assigned to one of the created nodes, which will be used as the local

node for that client. The latency between a node and a client is the same as the latency

between that node and the client’s local node.

The simulation itself is event driven, with a sorted queue containing all events gen-

erated by nodes and clients in the simulator. Events can be of two types: message propa-
gation and message processing. When the simulation starts, each client generates its first

operation and sends it to a node. This behavior generates a message propagation event for

each message sent, which is added to the queue. The time assigned to each of the events

is the arrival time at the target node. The simulator then advances time to the next event

in the queue.

Since the first event is always a client message reaching a node, the simulator then

delivers the message to that node, which will execute the code specific to the metadata

propagations protocol being simulated, and return a number representing the amount of

time it will take to process that message. The simulator then generates a processing event

for that node which will be used to signal the end of the message processing.

32

4.4. EXPERIMENTAL EVALUATION

Time is then advanced to the next event in the queue. If the next event is also a propa-
gation event, the same sequence happens. If it is a processing event, then the last message

received by the node related to the event finishes being processed and, if the behavior

of the node includes sending new messages, they are added to the event queue. If the

node had received more messages while processing the previous one, then it immediately

starts processing the next message (generating a processing event), otherwise it stays idle

until a new message is received. When a client receives a message from a node (which

represents a response to its latest operation), it simply generates a new operation and

adds the associated propagation event to the event queue.

The simulator then repeats this behavior until no more events are in the event queue,

which means all clients have executed all operations and the simulation has finished.

After the simulation ends, results about client latency, execution times, and data

visibility times are saved to disk, in order to be later analyzed (by automated tools created

for this purpose).

4.3.1 Protocol Implementation

In order to better understand the implications of different design choices for building

metadata dissemination schemes, we started by implementing two different causality

protocols: one based on Saturn’s propagation scheme, which uses a single tree with no

additional metadata besides the operation identification (i.e, a scalar) and another based

on the algorithm described on the end of Chapter 3, which uses multiple trees and a

vector clock to keep track of causal dependencies. We also implemented some variants of

the latter protocol, which differ on the topology of the used tree. We detail these further

ahead.

4.4 Experimental Evaluation

In this section, we present the simulation configuration used in our experiments, followed

by the analysis of the results obtained.

4.4.1 Configuration

In order to run the simulations we first needed to choose the distribution of nodes and

partitions to simulate. We decided to simulate 6 datacenters consisting of Amazon Web
Services (AWS)1 datacenters, spread across the world in the following locations: East

United States, West United States, Europe, Brazil, Japan and Australia. After choosing

these locations, we gathered information about the latency between each pair of datacen-

ters from AWS, whose results are summarized in Table 4.1.

We also distributed the data stored across 18 partitions and attributed these partitions

to different datacenters, with the distribution shown in Table 4.2. To achieve this, we

1https://aws.amazon.com/

33

CHAPTER 4. SIMULATION WORK

East US Europe West US Brazil Australia Japan
East Us - 50 32 70 112 132
Europe 50 - 71 104 170 133

West US 32 71 - 99 97 56
Brazil 70 104 99 - 195 159

Australia 112 170 97 195 - 71
Japan 132 133 56 159 71 -

Table 4.1: Latencies between simulated datacenters (ms)

started by assigning a main datacenter to each data partition. We then replicated each of

these partitions to one or two closest datacenters, and additionally to one or two random

datacenters. Each partition is assigned to a number of different datacenters up to 4.

Partition 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

East US x x x x x x x x
Europe x x x x x x x x x
West US x x x x x x x x x
Brazil x x x x x x x x
Australia x x x x x x x x
Japan x x x x x x x x x x

Table 4.2: Partition distribution across datacenters for the simulation experiments

Since the main purpose of the simulation is to determine the best way to materialize

the causality layer, we created several different tree topologies to evaluate in the context

of the algorithm presented in Chapter 3

Ring Topology: This topology was reached by first finding the shortest ring that spanned

all datacenters. Each datacenter then uses that ring as its propagation tree by prop-

agating messages in both directions (without them crossing on the other side of the

ring). This results in trees with a large height and where the root has two child

nodes and every other node only has one (or none in the leaf nodes).

Ring Core (or Semi Ring) Topology: This topology is based on the previous one how-

ever, the two datacenters with the highest average latency to every other were re-

moved from the ring and connected to the closest datacenters in the ring. This

results in a ring composed with the four northern hemisphere datacenters, with the

two remaining datacenters (southern hemisphere) as “branches” on the ring. Each

datacenter uses the tree rooted in itself to propagate its messages to every other

datacenter.

Clique Topology: In this topology, each datacenter simply connects to every other data-

center and propagates its messages directly to each one of the remote datacenters.

It can be thought of as a tree per datacenter with an height of two, where the root

connects directly to every other node.

34

4.4. EXPERIMENTAL EVALUATION

To emulate the behavior of the Saturn system, we also implemented a solution that

relies on a global tree to propagate metadata.

As for the client configuration, we executed the simulations using 600 clients, dis-

tributed equally across all six datacenters. Each client issues 3000 operations, half of

which are write operations and the other half read operations. Regarding data partitions,

clients alternate between executing operations over a partition replicated on the local

datacenter and a partition not locally replicated. The percentage of operations over local

partitions is 95%, while remote partitions is 5%. When executing operations over remote

partitions, we simulate two different client behaviors: sending remote operations through

the local datacenter, or migrating to a datacenter that replicates the data to be accessed

and executing local operations.

Since we also want to study the effects of having additional causality information in

the causality layer, we also run simulations considering different data object sizes. This

parameters represents the average size of data written to the system in a write operations

or read from the system in a read operation.

To better understand the effects of different causality layer organizations, and since

we are abstracting the datastore layer, we assume the datastore layer to have infinite

resources, allowing it to execute operations very quickly. We do this to avoid making the

datastore layer a bottleneck for the propagation of labels by the causality layer, which

would result in every tested topology and strategy to yield similar results.

4.4.2 Results

We now present the results obtained with the configurations described above.

4.4.2.1 Data Visibility

Figure 4.1 shows the visibility times of write operations when using the different prop-

agation topologies, also comparing the use of remote writes against migrating between

datacenters. When comparing remote writes and migrations, the results are pretty much

the same, with a very small advantage when using migrations. This happens since the

propagation of write operations from the datacenter where the operation originated to

every other datacenter is independent from whether the client using remote writes or mi-

grations. The small difference represents the time difference between the client executing

an operation in its local datacenter or in a remote datacenter.

When comparing the different topologies, differences are more noticeable. Since the

ring topology uses a tree with a high height value, writes take more time to be propagated

to every datacenter, resulting in the worst visibility times. In the global tree topology, the

high visibility times are due to the use of a single tree, which makes it hard to optimize

the propagation path for every datacenter. The writes often need to be propagated all the

way from a leaf node (i.e, datacenter) to the root node, and then back down to another leaf.

When using the semi-ring topology, since each datacenter can choose its own optimized

35

CHAPTER 4. SIMULATION WORK

Figure 4.1: Operation Visibility Times

propagation tree, results are better when compared with the use of a global tree. The best

results are achieved with the use of the clique topology, since this configuration allows

the metadata to be propagated directly to the target nodes without having to go through

multiple hops. Due to this, visibility times are always minimal, which implies that this

topology is the best when considering the visibility times for write operations.

4.4.2.2 Message Size

Figure 4.2 represents an approximation (since the real value depends on the method

of serializing messages) of the number of bytes (considering both operations and meta-

data) propagated by the datacenters using each topology, with the clients using either

remote operations or migrations, and considering different sizes for the data objects being

accessed in the datastore.

When comparing the different topologies we can see that the global tree solution,

due to its use of less causality tracking information, needs to propagate less data across

datacenters. This effect is particularly visible when the size of the data queried and

written by clients is very small as seen in the leftmost group of results. However, as the

size of that data increases, the difference between the various alternatives becomes less

relevant as the size of data objects dominates the results.

We can also observe a small difference between clients executing remote operations or

using migrations. This difference is due to remote operations needing to cross multiple

datacenters through the tree used to propagate causality tracking metadata, whereas

using migrations allows the client to communicates directly with the datacenter that

36

4.4. EXPERIMENTAL EVALUATION

Figure 4.2: Data Propagated Size

replicates the data over which the operations will be executed. This difference is so

small because most operations are executed over local replicas and remote operations are

significantly less frequent (only 5%).

4.4.2.3 Throughput

Figure 4.3 reports the throughput of the system when using each alternative tree topology,

differentiating between the use of migration or remote operations when accessing data

not accessible in the local datacenter. The first thing we notice is that the use of remote

operations leads the throughput for the different topologies to vary considerably. This

happens since remote operations need to go through the causality layer, which means

that topologies where causality information has to perform additional hops between

datacenters (ring) are more affected than when using tree topologies with lower heights,

such as the clique topology (that has the highest throughput). This effect is also visible

when using migrations. However, in this case only the migration messages need to go

through the causality layer, while subsequent operations are sent from the client directly

to the target datacenter, minimizing this effect considerably.

When comparing the use of remote operations with migrations, we notice that, once

again, the tree topologies with highest heights are more affected when using remote

operations, while the topologies with lower heights actually perform worse when using

migrations. This happens because migrations imply clients send extra messages, which

cost is expected to be amortized by the subsequent operations over remote datacenters.

Due to the simplicity of the simulator, this is not visible in these results. However, when

37

CHAPTER 4. SIMULATION WORK

Figure 4.3: System Throughput

we move on to the actual implementation of these algorithms, the difference between

remote operations and local operations on remote datacenters will be more significant,

since the first will need to use the causality layer while the second will not, which is

expected to make this amortization effect noticeable.

4.4.2.4 Client Latency

Figure 4.4, presents the average operations latency as perceived by clients. The response

times of local operations are not shown in isolation, since they are constant, being indepen-

dent from the causality tracking scheme employed. Operations over remote datacenters

when using migrations are also constant, since communications happen in a direct fash-

ion between the clients and the datacenter. The most relevant results are the latencies

in migrate operations (Figure 4.4c) and remote operations when not using migrations

(Figure 4.4b). The first thing we notice is that these results are complementary to the

throughput results, which makes sense, since these are the operations that depend on

the causality layer and will have the most effect on the achievable throughput of each

alternative.

When studying the results reported in Figure 4.4b, we can see that operations over

remote datacenters after migrating are faster than remote operations, which is expected.

However, the difference is smaller in the average latency observed by clients when con-

sidering all operations executed (Figure 4.4a). As explained in Section 4.4.2.3, these extra

operations are amortized in subsequent operations, except when using the clique topol-

ogy. We reinforce that this amortization will happen when using the clique topology in a

38

4.5. LESSONS LEARNED

a All operations

b Remote operations c Migrate operations

Figure 4.4: Operation latency as seen by clients

real setting, although our simulation does not capture this effect.

4.5 Lessons Learned

In this section we present the main lessons learned from the previous results, which

will were used when moving on to the actual implementation of the algorithm in a real

datastore system.

4.5.1 Best Tree Topology

From the results of the simulations we concluded that using the clique topology seems to

be the most promising alternative. In retrospective, it makes sense that since we are using

a vector clock to keep track of causal dependencies, trees are no longer necessary and, as

such, we are only interested in labels reaching their destination as soon as possible.

This solution also has the advantage of being much simpler than using complex trees,

which makes the management of the causality layer more simple and efficient. This can

39

CHAPTER 4. SIMULATION WORK

be useful in the future when we start thinking about supporting the dynamic join and

departure of datacenters in the system.

We also think that the extra information sent with labels (when comparing to Saturn’s

propagation) does not impose a significant overhead. On the contrary, it will most likely

prove very useful in decreasing data visibility times and maximizing concurrency.

4.5.2 Migrate vs Remote Operations

When deciding whether to migrate clients across datacenters or use remote operations,

we decided that migrating is most likely the best choice. As seen on the previous results,

this option provides the best results (except in the clique topology where, as we explained,

we still expect it to perform better in a real implementation).

Since we also expect the causality layer to be the main bottleneck when executing

operations, it makes sense that we try to make as many operations as possible indepen-

dently from this layer. When we execute a remote read, both the read request and the

response need to use the causality layer, which is equivalent to migrating to and back

from a remote datacenter. This means that, if a client needs to execute two or more remote

operations, migrating should be more advantageous.

4.5.3 Concurrency

While these simulations were relevant in assisting us to understand the implications of

some aspects of our causality propagation protocol, there is still an important aspect that

we have not covered in simulations, which is the ability to execute operations concur-

rently.

When using a single global tree, since labels are propagated without any additional

causality tracking information, we need to rely only on the label delivery order to know

when operations can be executed. As such, we need to assume that every label depends

on all previously received labels, which results in operations having to be executed in a

serial order.

When using our scheme to propagate causality tracking metadata, the use of the vector

clock, besides operation labels, enables us to obtain information to exploit a higher level of

concurrency by executing multiple operations in the datastore layer simultaneously. This

aspect can be very important from a performance standpoint, especially for datastores

that use sharding.

Summary

In this chapter, we presented a study, by simulation, of the alternative topology designs

and configurations for our protocol.

40

4.5. LESSONS LEARNED

In the next chapter, we will present a concrete implementation of our protocol, where

we also try to maximize the amount of concurrent operations we can execute, in order to

take advantage of sharding in the datastore layer.

41

C
h
a
p
t
e
r

5
Enriching Cassandra with causal

consistency

After having decided which algorithm to implement, and having simulated its execution

to understand which variant of the algorithm shows to be more promising, the next step

is to implement the algorithm over a real datastore, and to do its experimental evaluation

using a realistic setup (with multiple geo-replicated datacenters operating with partial

replication).

In this chapter, we start by explaining why we chose Cassandra to implement our

solution, discussing some of the relevant implementation details of Cassandra that have

impact in our own implementation. We further detail which aspects of Cassandra had

to be adjusted in our design. After this, we detail the architecture of our solution and

how it interacts with the Cassandra datastore. In the following section we provide the

implementation details of our prototype, explaining the changes made to the datastore

source code and the implementation of the causality layer. This chapter concludes by

reporting the conducted experimental work, followed by the presentation and interpreta-

tion of obtained results. We named our prototype Causal Consistent Cassandra, or simply

C3.

5.1 Datastore Selection

In order to choose which system to use as the datastore, we need to consider the require-

ments presented in Chapter 3.1, among others that we detail below. After a brief study

of the existing systems, we decided that Apache Cassandra is the best choice for several

reasons:

43

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

• It supports the requirements presented on Chapter 3.1, more precisely, it imple-

ments eventual consistency and can be configured to operate under partial geo-

replication

• It supports multiple levels of consistency, since it is possible to execute operations

using different consistency configurations in order to have better data freshness (i.e,

higher chances of reading the most up-to-date version of each accessed data object).

For instance, while executing a read operation, the user can use the consistency

level QUORUM to read from a quorum of all nodes that replicate the data. Having

these several levels of consistency can be useful when trying to guarantee causality

since we need to control which nodes are used to fulfill client requests.

• By using a gossip protocol, as explained in Chapter 2.5, every node in Cassandra has

information about every other node in the system, including which nodes replicate

which data objects. Since the datastore nodes have this information, we don’t need

to maintain it in our causality layer, thus avoiding extra processing in the causality

layer. This is also important to keep the separation between the datastore layer and

the causality layer.

• It implements sharding in an automatic and efficient manner. To scale the system,

all we need to do is add an additional node to a datacenter and the load of that

datacenter will be redistributed to include the new node without the help of any

additional configuration changes by the database administrator. The use of a DHT

inside each Cassandra datacenter is the basis to support this.

• It is a popular and widely used system meaning that it has been exhaustively tested.

Additionally, Cassandra is well documented1, not only on its setup and configura-

tion, but also on its internals which proved to be invaluable when reasoning about

how we should modify it to integrate with our causality layer.

• Being open-source was obviously a requirement, since we need to change its code

to integrate the causality layer. However, the code-base being well-maintained

and readable, combined with the availability of online talks2 explaining the code

structure were decisive reasons for us to adopt Cassandra.

5.2 Cassandra Internals

In this section we explain how Cassandra operates internally. This is relevant to under-

stand how we can change its operation (and code) to integrate it with the causality layer.

We will also discuss the best ways to do this integration while changing the Cassandra

logic as little as possible. Since we are only worried about adding causality, we will mostly

1https://docs.datastax.com/en/cassandra/3.0/index.html
2https://www.datastax.com/dev/blog/deep-into-cassandra-internals

44

5.2. CASSANDRA INTERNALS

focus on the operation propagation part of Cassandra. This discussion builds on the high

level concepts of Cassandra presented in Section 2.5. While presenting the changes to

Cassandra, we are guided by the requirements to implement the algorithm discussed the

previous chapters.

We start by a high level explanation of how operations are executed, followed by the

specific details regarding the execution of read and write operations.

To execute an operation, the client starts by connecting to a datacenter. From that

moment on, each operation requested by the client is sent to one of the nodes of that

datacenter. The node that receives the operation is called the coordinator node and, as

the name suggests, becomes responsible for coordinating the execution of the operation.

The coordinator node, using the information about the cluster (gathered using the gossip

protocol), propagates the request to every relevant node and waits for a reply from a con-

figurable fraction of them. When enough replies are received from the nodes involved,

the coordinator replies to the client, according to the replies received. The nodes to which

the coordinator propagates the operation, as well as the nodes for which the coordina-

tor waits to reply, are chosen depending both on the consistency level of the operation

(which is set by the client) and the replication strategy for the keyspace where the object

manipulated by the operation is located.

5.2.1 Execution of read operations

We now discuss how read operations are executed in Cassandra, followed by the changes

required to integrate this execution with our causality layer.

5.2.1.1 In Cassandra

When a coordinator receives a read operation from a client, it starts by deciding from

which nodes the data will be read (as stated above, this depends on the consistency level).

It then sends a read request to the closest node and a digest request to the others. The

digest request is used to decrease network usage, since the node that receives the digest

request responds with a digest of the data instead of the data itself. When the coordinator

receives the required responses, it returns to the client the response with the most recent

data. If the contacted nodes had different versions, the coordinator is also responsible for

executing the read repair protocol. This protocol is used to make data consistent across

all nodes. The coordinator can also contact extra nodes (more than the consistency level

requires) to execute the read repair protocol. This is implemented in order to try to

maintain the database as consistent as possible as fast as possible.

Figure 5.1 illustrates the execution of a read operation with the consistency level

LOCAL_QUORUM in a cluster with two datacenters and three replicas in each datacenter.

In this situation, node 10 is the coordinator of the read operation and nodes 1, 3, and 6,

and 4, 11, and 8 are the ones that replicate the data required for this operation in each

of the two datacenters, respectively. Since the consistency level, as the name suggests,

45

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

Figure 5.1: A read operation with LOCAL_QUORUM consistency - extracted from [16]

only requires a quorum in the local datacenter to respond, the coordinator chooses to use

nodes 3 and 6 to complete the request (represented by the black arrow). However, due to

the read repair protocol, digest requests were also sent to the other nodes. After nodes

3 and 6 respond, the coordinator can reply to the client with the most recent written

value (between those two nodes). After replying to the client, the read repair protocol

will continue executing to check if the data in the remaining nodes is consistent with the

first two nodes and if not, the inconsistent replicas will be repaired in the background

(by updating the outdated value).

5.2.1.2 Adding causal consistency

In order to integrate Cassandra with our layer, we need to be able to control which nodes

are chosen by the coordinator to fulfill a read request. We need this because we only want

to read from a single datacenter, to guarantee reading a causally consistent value. Also,

we need to be careful to avoid the coordinator executing the read repair protocol in nodes

located on other datacenters, since it could (easily) result in those nodes receiving data

46

5.2. CASSANDRA INTERNALS

that has not reached them through the causality layer yet3. An example of this can be seen

in Figure 5.1, if we consider that a write operation over the same data object was executed

by the client before this read operation, but that the write operation has not reached the

datacenter Beta yet, the read repair protocol could make that write operation visible in

Beta before being delivered by the causality layer, violating causality. The easiest way to

avoid this is to create a new consistency level, which only reads from a single datacenter

and avoids trying to repair nodes outside that datacenter. Luckily, the Cassandra code

structure allows us to easily add new consistency levels.

To support remote reads we need to use the causality layer to propagate both the read

requests and the read responses. We need to do this only in remote read requests (i.e

requests from a coordinator in a datacenter to a node in a remote datacenter) and remote

read responses, since local reads can be executed immediately without using the causality

layer. The simplest way we found to integrate read requests/responses with the causality

layer is by intercepting these messages when they are delivered from the Cassandra’s

component that decodes received messages to the component that executes them. After

intercepting the messages, we wait until the label from the causality layer arrives to pass

the message to the execution component. Additionally, the coordinator must send a label

to the causality layer when sending read requests to nodes in other datacenters, and these

nodes must also send a label to the causality layer when responding to the read request.

Combining this interception of messages with the new consistency level, we are able

to execute both local and remote read operations in a causally consistent manner. In

Section 5.4, we explain in more detail how these changes were made.

5.2.2 Execution of write operations

We now discuss how write operations are executed in Cassandra, followed by the changes

required to adapt this execution with our causality layer.

5.2.2.1 In Cassandra

In write operations, and similarly to read operations, the consistency level of the operation

defines how many nodes must respond to the coordinator before the coordinator replies to

the client. However, unlike the read operations, the coordinator propagates the operation

to all nodes that replicate the relevant data object, instead of just to the nodes required

for satisfying the consistency level. Another difference between read and write requests

is the way the operations are propagated by the coordinator to datacenters other than

its local one. For each remote datacenter, the coordinator chooses a single node and

sends it the write operation with a special tag for it to forward that operation to its

local replicas. During a write operation, even if some nodes are down, the operation is

3Notice that some mechanism has to be put in place to deal with lost messages between data centers or
operation coordinator failure. Although in our prototype we did not address this, a simple solution would be
to rely on a publish-subscribe system with durability, such as Apache Kafka [30], to support communication
between the coordinator of the local operation and relevant nodes in remote data centers.

47

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

successful as long as enough nodes respond. In order for the temporarily unavailable

nodes to catch up when they recover, the system relies on both the read repair protocol

explained previously and the hinted handoff repair mechanism. Hinted handoff is a repair

process used by Cassandra which consists in, when a node is unavailable, the coordinator

storing the data to be sent to that node in a set of hints. When the node becomes available

once again, the coordinator hands off these hints (hence the name) to allow the node to

update its state with the missed operations.

Figure 5.2: A write operation with QUORUM consistency - extracted from [29]

Figure 5.2 illustrates the execution of a write operation in a cluster with the same

nodes and replication strategy as the previous example. In this situation, the consistency

level is set to QUORUM which means that a majority of the total number of (individual)

nodes must respond to the coordinator. In the figure we can see that the quorum that

first responded was composed of nodes 3, 6, 11, and 4 (darker colored nodes). We can

also see in the figure, as explained previously, that the coordinator sent the operation to

a single node in datacenter Beta (node 11), which in turn, forwarded the operation to the

other nodes in its local datacenter (nodes 4 and 8). Despite not being represented in the

figure, every node responds directly to the coordinator (including nodes 4 and 8).

48

5.3. CAUSALLY CONSISTENT CASSANDRA PROTOTYPE

5.2.2.2 Adding causal consistency

Similar to read operations, in order to integrate write operations with the causality layer

we need to make two relevant changes to the operation of Cassandra: create a new con-

sistency level and intercept write requests.

Starting with the new consistency level, we need a consistency level that requires

responses from a quorum inside a single datacenter, be it the local datacenter or a remote

one (depending on the manipulated data object being replicated in the local datacenter

or not). We do not need to modify the number of nodes to which we propagate the

operation, since we want to write to all of them anyway. This consistency level will only

change which nodes the coordinator needs to wait for in order to be able to produce an

answer to the client.

Regarding the interception of operations, in tandem with read operations, we need to

intercept write operations before they are executed by Cassandra nodes and wait until the

node receives the label from the causality layer before executing it. Unlike read operations

however, we also wait for the label while executing local writes. This is required to enforce

causal consistency for reads executing concurrently (and without coordination from the

causality layer). Write responses, in contrast, don’t need to use the causal layer since

they are simply acknowledgment messages (unlike read responses which actually contain

data), and can be sent directly to the coordinator. Considering that for inter-datacenter

writes the coordinator sends only a single message to a node per datacenter, we decided

that it makes more sense that each of these picked nodes should forward the operation

(without executing it) as soon as possible without having to wait for the causality layer,

since otherwise we would be adding unnecessary delays to the data visibility.

By combining these two modifications (the new consistency level and the interception

of write requests), we are able to support both local and remote write operations, while

always enforcing causal consistency across all operations. In fact local and remote writes

behave exactly the same way, with the only difference being that the coordinator waits

for the quorum from nodes in the local datacenter or in a remote one. Again, in Section

5.4 we explain in more detail how these modifications were performed.

5.3 Causally Consistent Cassandra Prototype

In this section we present the complete design of our solution after implementing the

causality layer and integrating it with Cassandra, by doing the required modifications

as discussed in the previous section. In order to simplify this presentation, we divide

the system architecture in three components: the client, the datastore layer (modified

Cassandra) and the causality layer (that implements our algorithm). We then explain how

read, write, and migrate operations are executed in our prototype.

49

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

5.3.1 Client

When executing read and write operations in the local datacenter, the client behaves

exactly in the same way as if it was executing operations in a regular Cassandra system.

This is possible since we don’t use any kind of dependency tracking information on the

client side, thus making the enforcing of causality transparent for the client. A small

exception since when the client needs to execute operations with a new consistency level

which did not exist in the original Cassandra, however this does not change the client

behavior since the client uses this new consistency level just like it would use any of the

existing ones.

Executing remote reads and remote writes is also transparent to the client, since it

will be up to the datastore and causality layers to make sure the operations are executed

in a causally consistent manner. The client simply waits for the coordinator to reply with

the result without being aware of what happens internally in the system.

The transparency is lost for supporting client migrations between datacenters instead

of using remote operations. This happens because, in order to migrate to a remote dat-

acenter, the client communicates directly with the causality layer. The client sends a

migration request to the causality layer node in its current datacenter, then waits until

it receives a response from the target datacenter, at which point it can start executing

operations on the new datacenter. It is the causality layer’s responsibility to make sure

the migration is done while ensuring causal consistency. The migration request created

by the client includes information about which datacenter the client wants to migrate

to. The information about which datacenters replicate which partitions of the datastore

is provided by the Cassandra driver. The client can also attach a list of possible target

datacenters, instead of a single one, to the label. This can be useful when multiple data-

centers replicate the data that the client is interested in. In this case, the causality layer

will choose the datacenter with the lowest load in order to speed up the client migration.

5.3.2 Datastore layer

The datastore layer operates in a similar fashion to the original Cassandra system, but

with the addition of the integration modifications presented in Section 5.2.

It propagates client operations in a regular way to the relevant nodes but only exe-

cutes client operations after receiving the label from the causality layer. The exception

is local reads, which can execute immediately without coordination with the causality

layer. This layer is also responsible for generating the labels corresponding to each client

operation and delivering them to the causality layer. These labels already contain the

target datacenters and nodes for the operation, thus avoiding the need for the causality

layer to have information about the datastore layer.

By using the consistency level we created, this layer makes sure to only reply to the

client after receiving responses from a quorum in a datacenter. For local operations this

quorum is always exclusively composed by nodes in the local datacenter. For remote

50

5.3. CAUSALLY CONSISTENT CASSANDRA PROTOTYPE

writes it is the first quorum to respond in any datacenter, and for remote reads it is the

quorum in the closest datacenter that replicates the data object relevant for the operation.

5.3.3 Causality layer

The causality layer, as the name suggests, is the layer responsible for tracking and en-

forcing causal consistency across the entire system. This layer is not aware of the data

distribution and replication in the datastore layer, it simply receives labels corresponding

to operations and propagates them in a causal manner to the target nodes in local or

remote datacenters (note that labels already contain the target nodes of operations).

Each node in the causality layer maintains the following state: an operation counter,

used to timestamp write operations; an executed clock, a vector with one entry per data

center recording the timestamp of the latest operation executed from that data center; an

executing clock, a vector recording the timestamp of the latest operation from each data

center in execution in the local data center.

When the causality layer receives a label concerning a new local operation, including

a unique identifier and the set of datacenters (and corresponding nodes) where the oper-

ation is to be delivered to, it sets the label dependencies to be those of the executing clock
and, if it is a write operation, increments the local operation counter and uses it to assign

a timestamp to the label.

The causality layer puts the label of the new operation in a log of pending operations

to execute (in case the object being accessed by the operation is replicated locally), and

also propagates it to the causality layers in relevant data centers (i.e., data centers that

replicate the accessed object). When a causality layer receives a label from a remote

data center, it adds it to the log of pending operations. A pending operation is ready to

execute when the operations it depends upon have already completed, i.e., all entries of

the executed clock are larger or equal to the entries in the dependencies of the operation.

When an operation is ready to execute, the causality layer propagates the label to

the local nodes responsible for executing that operation. If it was a write operation,

these nodes then acknowledge the causality layer when the execution completes, which

allows the causality layer to know when the operation is completed locally and update

the executed clock accordingly. In conjunction with our mechanism to record the causal

dependencies of an operation, this approach guarantees that an operation only executes

after all operations it depends upon have completed. A simple clock message is also sent

to the remaining datacenters, (i.e., those not directly interested in the operation) that

notifies them of operations executed on other datacenters that do not affect their locally

stored objects, allowing them to update their executed clock accordingly.

Migrations are also completed in the same manner. After receiving a migration label

from a client, the executing clock is attached to the label and sent to the target datacenter.

If the client specified multiple datacenters in the label, the one with the lowest load will

be chosen (we explain how we do this later in Section 5.4). When the node in the target

51

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

datacenter receives the migration label, it waits until the local executed clock matches the

label’s clock and then responds to the client.

5.3.3.1 Concurrency and the use of two vector clocks

As discussed in Section 3.1, we want to allow a high level of concurrency when executing

remote operations. To this end, we need to be able to detect concurrent operations, to

enable them to be executed in parallel. To do this, using a single clock in each datacenter

is not enough, since that would result in every write operation that was executed in that

datacenter to be tagged with a clock position that made it dependent on every previous

operation. This would mean that when executing these operations in a remote datacenter,

only one could be executed at a time, effectively limiting concurrent execution of remote

operations to a single operation per remote datacenter.

The use of the two vector clocks (executed clock and executing clock), as explained

above, was implemented to solve this problem. By doing this, we attempt to maximize

the number of concurrent operations that can be executed simultaneously, while enforcing

causality. Since we are attaching the executing clock to each label, each operation needs to

wait for the already executing operations before it starts being executed, this is necessary

in order to maintain causality inside each datacenter. In other words, we assumed that

each operation is causally dependent on every write operation being executed in the

local datacenter. If this was not done, we could risk a client reading the result of an

ongoing write operation and then executing its own write operation, which could then be

propagated to remote datacenters before the write operation previously observed, which

would lead to a causality violation.

5.3.4 Operation Execution

After presenting the design of our solution, we now detail the algorithms for executing

operations.

5.3.4.1 Local Read

The local read is the simplest operation in our solution, since we don’t need to track any

kind of causality information. The algorithm operates as follows:

1. The client sends the read operation to a chosen local coordinator.

2. The coordinator propagates the operation to a quorum of local nodes that have a

replica of the object being read.

3. Each node that receives the operation immediately responds to the coordinator.

4. After receiving the response from the quorum, the coordinator replies to the client

with the most recent value received from the quorum of nodes.

52

5.3. CAUSALLY CONSISTENT CASSANDRA PROTOTYPE

5. In the background, the read repair protocol can be executed, but always only in the

local datacenter.

5.3.4.2 Local Write

A local write, while only requiring responses from the local nodes to finish, also needs to

propagate the operation to remote datacenters. The execution proceeds as follows:

1. The client sends the write operation to a chosen local coordinator.

2. The coordinator calculates which nodes in the entire cluster replicate the operation’s

data. It then propagates the operation to all nodes in its datacenter and to one node

in each remote datacenter (as explained in Section 5.2.2). It also generates a label

and delivers it to the causality layer.

3. The causality layer attaches the executing clock and the local operation counter to

the label and propagates it to other datacenters.

4. When the local executed clock allows it, the label is delivered to the local nodes and

the local executing clock is updated.

5. After the local nodes receive both the label and the operation, they execute the write

and reply to both the coordinator and the causality layer.

6. The coordinator receives a quorum of local responses and replies to the client. At

this moment the client finishes executing the operation, but the system is (poten-

tially) still propagating it to remote datacenters.

7. The causality layer receives confirmation that a quorum of nodes executed the write

locally and updates its executed clock

8. Each remote node in the causality layer that received the label waits until it can

execute the operation and then propagates it to its local nodes.

9. Each remote node, after having received the label and the operation (from either

the coordinator directly or the chosen node in its datacenter) executes the operation

and replies to both the causality layer and the coordinator.

10. After a quorum of nodes in each relevant datacenter finishes executing the opera-

tion, it is considered completed.

5.3.4.3 Remote Read

Remote reads are considerably different from local reads, since they need to use the

causality layer to coordinate their execution. We note that, while remote read and remote

write operations were implemented, we do not report them in the experimental results,

53

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

since their use results in lower overall performance when comparing to the use of migrate

operations. We still report these operations for completeness. The algorithm execution

operates as follows:

1. The client sends the read operation to a chosen local coordinator.

2. The coordinator chooses the closest datacenter that replicates the data and propa-

gates the read operation to a quorum of nodes in that datacenter. It also generates a

label and delivers it to the causality layer.

3. The causality layer attaches its executing clock to the label and propagates it to the

remote datacenter.

4. The causality layer node in the remote datacenter receives the label and waits until

it can execute the operation (i.e, until its executed clock matches the label’s depen-

dencies). It then propagates it to its local nodes.

5. Each node in the remote datacenter, after having received both the label and oper-

ation, responds to the coordinator and also delivers a label to the causality layer.

These labels are tagged with the remote data center’s executing clock.

6. The response labels are propagated to the client’s local datacenter, and are delivered

to the coordinator when the causality layer node’s executed clock allows it.

7. When the coordinator receives both the responses and the responses’ labels, it can

reply to the client.

5.3.4.4 Remote Write

The sequence of steps in the execution of a remote write is very similar to a local write,

since all nodes need to receive the operation anyway, the key differences are that the local

datacenter does not execute the operation and, consequently, the coordinator must wait

for a remote quorum of responses.

1. The client sends the write operation to a chosen local coordinator.

2. The coordinator calculates which nodes in the entire cluster replicate the operation’s

data. It then propagates the operation to one node in each remote datacenter (as

explained in Section 5.2.2). It also generates a label and delivers it to the causality

layer.

3. The causality layer attaches the executing clock and the local operation counter to

the label and propagates the label to remote datacenters.

4. Each node in the causality layer that receives the label waits until it can execute the

operation and then propagates it to its local nodes.

54

5.4. IMPLEMENTATION DETAILS

5. Each remote datastore node, after having received the label and the operation (from

either the coordinator directly or the chosen node in its datacenter) executes the

operation and replies to both the causality layer and the coordinator.

6. When the coordinator receives the first quorum of responses from one of the data-

centers, it replies to the client. At this moment the client has finished executing the

operation.

7. After a quorum of nodes in each relevant datacenter finishes executing the opera-

tion, the operation is considered completed.

5.3.4.5 Migrate

The migrate operation is executed between the client and the causality layer, without

having to go through the datastore layer. The execution is as follows:

1. The client wants to execute an operation over a keyspace that is not replicated

locally. It sends a label to the causality layer with either the datacenter it wishes to

migrate to or a list off all datacenters that replicate the intended data object (i.e, the

target keyspace).

2. The causality layer receives the label. If the label contains a list of datacenters, it

chooses the one with the lowest load as the target. It then attaches its executing clock
to the label and propagates the label to the target datacenter.

3. The causality layer node in the target datacenter receives the label and, when its

executed clock allows it, answers to the client.

4. The client receives the label from the remote datacenter and, from that moment on,

it can start executing operations directly on it.

Another option could be for the client to send the migrate operation to the datastore

layer, just like when executing any other operation. However, for simplicity’s sake we

decided to send it directly to the causality layer, since the other option would mean mod-

ifying both the Cassandra driver’s source-code executing in the client and the datastore

to support the migration operation.

5.4 Implementation details

In this section, we present some implementation details on our prototype. We start by

explaining how the Cassandra source code was changed to implement the modifications

required for the integration with the causality layer. We divide this in two parts: the

creation of the new consistency model and the inter layer communication. After explain-

ing the changes to Cassandra, we then present the details of how we implemented the

causality layer and how it operates.

55

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

5.4.1 Consistency Model

Since Cassandra already supports multiple consistency levels, the source code related

to consistency is structured in a generic manner, which means that creating our custom

consistency model was reasonably simple. We started by examining the consistency level

EACH_QUORUM since it is the one closest to what we want. EACH_QUORUM, as the

name suggests, requires operations to be executed in a quorum in each datacenter before

replying to the client. Since for our consistency level we need to execute the operation in

a quorum of a single datacenter, we concluded that we could adapt EACH_QUORUM’s

code to create it. We decided to name our consistency level ANY_QUORUM.

We now present each rule that a consistency level needs to implement in Cassandra,

and explain why it is required and how we implemented it.

BlockFor: This rule is used to know the minimum number of responses an operation

needs to wait for before returning to the client. This is useful in many situations,

for instance to check if we have enough nodes available to execute the operation,

or to know how many nodes failed to respond when an operation times out. Since

we need responses from a quorum in a single datacenter, we implemented this

rule by calculating the size of a quorum of nodes replicating the data in the closest

datacenter (in local operations, the closest datacenter is the local one). This rule is

valid for all operations: local and remote reads and local and remote writes.

FilterForQuery: This rule is used by Cassandra to decide which nodes in the cluster are

going to receive a read operation (since write operations always go to every node).

We implemented this by first finding out the closest (in terms of latency) node that

replicates the data we’re interested in. We then check which datacenter that node

belongs to (if the data exists in the local datacenter, it will always be the chosen one)

and select a quorum of nodes in that datacenter to receive the operation.

AssureSuficientLiveNodes: This rule is used to check if there are enough live nodes

in the cluster to execute the operation with the required consistency level. This is

useful to prevent starting the execution of operation that we already know cannot be

completed. For some consistency levels this is trivial as we only need to compare the

number of total nodes alive with the rule BlockFor. In our case we implemented this

rule by checking if any datacenter has enough nodes alive to fulfill the operation.

ResponseHandler: This rule is used to check whether enough responses have already

been received by the coordinator. This is only used for write operations, since in

read operations we simply wait for the number of responses chosen by the BlockFor
rule. The way we implemented this rule is by storing how many responses we

received from each datacenter and then, each time a response is received, verifying

if we have a quorum of responses from any datacenter.

56

5.4. IMPLEMENTATION DETAILS

It’s important to note that all these rules are generic enough to support all operations

(remote and local reads as well as remote and local writes).

Apart from defining the rules for our new consistency level, we also had to make two

additional small changes. We disabled the inter-datacenter read repair protocol when

using our consistency level since, as explained in Section 5.2, we do not want to risk it

breaking causal consistency.

We also needed to make a very small change to the Cassandra driver in order to

allow using our consistency level, which consisted in added our consistency level to the

Cassandra driver. This was needed since, when configuring the client’s consistency level,

the driver checks if that level exists by verifying a static list of allowed consistency values.

5.4.2 Inter layer communication

In this section we explain how the Cassandra code was modified to allow it to commu-

nicate with the causality layer. This consists in three steps: the coordinator generating

labels to send to the causality layer; a node storing a received operation and waiting

for the label to arrive from the causality layer (or vice-versa); and a node sending an

acknowledgment message to the causality layer confirming that a write operation was

executed.

5.4.2.1 Label generation

In order to support propagating operations to remote datacenters, we need to find where,

in the code, inter-node messages are generated. We cannot just generate labels for every

single message since we only want to add causality support for read and write operations,

and do not want to change the behavior of other Cassandra specific protocols (like the

Gossip or the schema propagation protocols).

We consider four specific situations where we want to generate labels in addition to

simply sending the normal message: when the coordinator propagates a write, regular

read, or range read operation and when a node responds to a read operation. A regular

read differs from a range read since the former only needs data from a single key, while

the latter reads from a range of keys. After finding the code locations dealing with these

situations, we modified them in the following way:

1. The node sends each message to the target nodes (or single node in the read response

case) as it would normally. However, if the messages require coordination with the

causality layer, it attaches a special tag to them symbolizing this. Additionally it

stores the message identifiers and the target nodes in a list.

2. After sending all the messages, the node creates a new label, to which it adds the

type of the message(s) sent (read, write, or read response) and the list were it stored

the message identifiers and the nodes that received them.

57

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

3. That label is sent to the causality tracking layer, which will be responsible for split-

ting it and delivering it to the correct nodes.

This logic was implemented in the same way in all four cases, with a single exception:

since all write operations (even local writes) use the causality layer, write messages are

tagged and their information is stored on the list even when not sent to remote datacen-

ters.

5.4.2.2 Message interception

After having implemented the label generation, we now need to implement the label re-

ceiving logic. We start by identifying the region in the code where the network module of

Cassandra decodes received messages and hands them to the module responsible for exe-

cuting operations. After locating this code, we created an additional module which will

be responsible for holding received messages until their labels arrive (or vice-versa) and

modified the network module to deliver messages to our module instead of the execution

module.

With this done, we are now intercepting every message received in each node, both

labels from the causality layer and regular Cassandra messages from other nodes. The

next step is to filter which messages we want to hold. Since we’re only interested in

specific messages (the ones with the tag symbolizing the need to wait for the label), every

other message (such as Gossip or schema propagation messages) will be immediately

delivered to the execution module.

For the messages that require labels, the behavior is simple. We keep a table for all

the received labels and another for the received messages and use them in the following

manner:

When a label is received from the causality layer and the corresponding message is

already present in the messages table, we can remove it from the table and deliver it to

the message execution module. If the corresponding message is not present we store the

label in the labels table.

When we receive a message from another node we execute the complementary pro-

tocol. If the corresponding label is present, we remove it from the table and execute the

message. If the label is not present we store the message in the messages table.

5.4.2.3 Acknowledgment

Since the causality layer needs to know when an operation has been successfully executed

in each datacenter, each node in the datastore layer is also responsible for generating a spe-

cial Acknowledgment message and sending it to the causality layer each time it completes

a write operation. This information will then be used by the causality layer to detect

when a quorum has completed an operation and increase its executed clock, enabling it to

deliver more labels if there are any pending.

58

5.4. IMPLEMENTATION DETAILS

5.4.3 Causality layer

The causality layer is composed by a single process (causality layer node) running in each

datacenter, with all nodes being able to communicate with each other.

Each of these nodes is divided in two components: a receiver and an executor.

Receiver: This component of the causality layer is responsible for receiving and handling

messages from the local datastore layer. When it receives a label from the datastore

(which can correspond to a write operation, a migration, or a remote read operation),

it attaches a copy of the current executing clock to that label (and the operation

counter, if it is a write operation) and delivers it to the executor components in

every relevant datacenter (including its own). When an acknowledgment message

is received, it checks if the corresponding write operation has been acknowledged

by a quorum of (local) datastore nodes and, in case it has, marks the operation as

completed and updates the local executed clock.

Executor: This component is responsible for storing all waiting labels and checking when

the corresponding operations can be executed. When the local executed clock allows

a label to be executed, it propagates that label to the relevant target(s), which can be

a client, if it was a migration label or local datastore layer nodes, if it was a write or

remote read operation directed at the local datacenter. In order to more efficiently

organize waiting labels, this component maintains a queue with waiting labels for

each datacenter (including the local datacenter). Since labels are propagated among

instances of the causality layer in FIFO order, this component only needs to look

at the head of each of these queues when checking if it can execute pending labels,

since every other label in a queue either depends or is concurrent with the label

currently at the head position.

5.4.3.1 Status Messages

As a small performance enhancement, we implemented a simple status propagation pro-

tocol. Periodically, each causality layer node sends a message to remote causality nodes

informing them of the status of its local queue of pending labels. This information is then

used to direct client migrations to the datacenter with the lower amount of load (when

the client specifies multiple possible target datacenters in its migration message). This

allows to speed up migrations which has an impact on the overall performance of the

system.

5.4.4 Saturn

In addition to implementing our solution prototype, and in order to be able to compare

our solution with Saturn, we also implemented a version of Saturn on top of Cassandra.

Since Saturn requires changing the behavior of both the datastore layer and the client,

59

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

instead of just intercepting messages and generating labels, we needed to add a few more

changes to Cassandra, apart from ones similar to the changes presented in this section.

Following the design presented by [7], we leverage on the Cassandra’s coordinator to

materialize the frontend, the Saturn’s component that hides from the client the datastore

internals. This was done because the coordinator already mediates the access of the client

to the data center internals. To materialize Saturn’s gears, the component responsible for

generating and manipulating operation’s labels, we use Cassandra’s nodes by changing

their behavior to generate a label for each received write operation. These labels are

generated taking into account the client’s label (which is attached to the write operation)

and are then propagated to the causality layer. Moreover, the write operation mutation

was modified to write the label to the datastore with the modified data, which is essential

to ensure that the label can be sent to clients that read the object in the future.

To implement the components label sink and remote proxy of Saturn, the causality

layer components that are responsible for receiving and delevering labels from and to the

datastore, we modified our own causality layer to implement the Saturn logic. All our

changes were performed to try to strictly respect the logic and algorithms described in [7].

Still, we note that we have not enforced linearizability inside each data center, relying

instead in a weaker consistency model. The implication of this is that our implementation

might be more efficient than a correct Saturn implementation at the cost of not correctly

enforcing causal consistency in all situations.

5.5 Experimental Work

In this section we present an evaluation of our work. We start by discussing the employed

experimental setup and configurations, clarifying the decisions we made.

5.5.1 Setup

To run our experiments, we used the cloud platform Microsoft Azure4. Since we wanted

to test a geo-replicated setting, we created multiple datacenters (9 in total) spread across

the world in the following locations: Southeast Asia, South Brazil, Central Canada, West

Europe, Central India, East Japan, East US, West US and Southeast Australia. Table

5.1 shows the measured latencies between these datacenters. Since we also wanted to

measure the effects of sharding, we needed multiple Cassandra nodes in each datacenter.

As such we used four virtual machines in each of these datacenters, each running a

Cassandra instance. The used machines are of the type A2 v2, each having two CPU cores,

4 gigabytes of ram and an hard disk drive with 20 gigabytes. The virtual machines CPUs

vary between one of three models in each datacenter (something we could not control)

and are the following: Intel(R) Xeon(R) CPU E5-2673 v4 @ 2.30GHz, Intel(R) Xeon(R)
CPU E5-2660 0 @ 2.20GHz or Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz. All of them

4https://azure.microsoft.com

60

5.5. EXPERIMENTAL WORK

however, are sufficiently similar among them and hence, should have negligible impact

on our results.

EUS JAP AS AUS IND CA WUS EU BR

EastUS - 154 221 206 190 27 88 133 122
Japan 155 - 72 121 129 169 106 235 263
Asia 221 72 - 95 62 234 172 187 331
Australia 206 121 96 - 152 226 185 287 314
India 190 128 63 153 - 202 228 128 298
Canada 27 169 234 225 203 - 67 96 133
WestUS 87 106 172 181 228 65 - 157 188
Europe 133 235 186 287 127 96 157 - 192
Brazil 122 262 330 314 298 134 188 192 -

Table 5.1: Latencies between experimental evaluation data centers (ms)

Regarding the partial replication aspect, we created 9 data partitions, one named after

each datacenter (which acts as the main datacenter for that partition) and replicated them

across multiple datacenters. The number of datacenters which replicates each partition

varies between 3 and 5. Each partition is replicated in the datacenter it was named after,

at least one datacenter near it and then in one or more random datacenters. Inside each

datacenter, each partition is also replicated in 3 of the 4 existing nodes. Table 5.2 shows

the distributions of partitions across the datacenters.

Partition EUS JAP AS AUS IND CA WUS EU BR

EastUS x x x
Japan x x x x x
Asia x x x x x
Australia x x x
India x x x
Canada x x x x x
WestUS x x x x x
Europe x x x x
Brazil x x x

Table 5.2: Partition distribution across data centers for the experimental evaluation

5.5.2 YCSB

In our experiments, we used Yahoo! Cloud System Benchmark[10] to emulate multiple

clients executing operations in the system and to gather performance metrics for these

experiments.

For simulatin the migration of a client, we adapted YCSB to support the migrate

operation (and halt the execution of operations while a client is migrating). We also added

some extra logic to handle when a client should migrate and how many operation it should

61

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

execute in each datacenter. These changes are only used when running experiments using

either our protocol or Saturn (and not when running the baseline Cassandra system).

Since Saturn assumes the existence of a client library that manages a label associated

with the last operation of each client, we also had to adapt YCSB to emulate this client

library behavior by handling the logic of maintaining, updating and attaching the client

label to operations.

5.5.3 Experimental Parameters

To study how our solution compares to others, we ran experiments using five different

configurations, where three of them use the baseline, eventual consistent Cassandra data-

store, with different configurations and hence, providing different consistency properties:

Cassandra with local quorum consistency (E-LQ): This configuration uses a regular Cas-

sandra cluster, with eventual consistency where clients execute operations locally

using the consistency level LOCAL_QUORUM, which means they only need to wait

for the response of a quorum of local nodes (i.e two out of three). When the client

needs to execute operations over remote data, it uses the consistency level TWO
(which needs to wait for any two nodes to reply), which should in the large majority

of cases result in a quorum in the closest remote datacenter. This is the closest way

to achieve the wanted behavior of clients reading from a single datacenter.

Cassandra with quorum (E-Q): When using this Cassandra configuration, which also

offers eventual consistency, clients use the consistency model QUORUM for all their

operations, which means they need to wait for a response from a quorum (majority)

of the total number of nodes that replicate the data object accessed by the operation.

Cassandra with each-quorum (E-EQ): In this configuration, again using regular Cassan-

dra with eventual consistency, clients use the consistency level EACH_QUORUM
for write operations, which means they need to wait for a quorum in each datacen-

ter where the target data object is replicated before responding to the client. When

issuing read operations, they use the consistency level LOCAL_QUORUM (or TWO
for remote reads, which is equivalent).

Causally consistent Cassandra (C-C3): This configuration uses the solution proposed

in this work and our prototype described in this chapter.

Saturn (C-SAT): This configuration uses our implementation of Saturn.

The multiple configurations of regular Cassandra are used to gather results about

its performance using different consistency levels that attempt to get close to the causal

guarantees provided by our solution.

When using either of the solutions providing causality, one of the machines in each

datacenter needs to be running the causality layer process. Since we don’t want that

62

5.6. RESULTS

machine to be unbalanced in terms of load, we decrease the number of Cassandra tokens

(abstraction used to control the portion of data replicated in each node) in that machine,

which reduces the amount of data it replicates, thus decreasing its load.

For the Saturn configuration, we tried to run the centralized algorithm developed by

the authors that would generate the optimal tree for our setup. However, due to the high

number of datacenters in our setup, the algorithm would take too much time to complete

(multiple weeks). As such, we generated a tree ourselves which attempted to minimize

the overall latency between all (neighboring) datacenters. While this tree is probably not

optimal, we believe that this will have little effect on the results since, as we will explain

later, the visibility times in Saturn are affected by the lack of concurrency of operations,

and not by the latency between datacenters.

As for the client configuration, we created four extra virtual machines in each dat-

acenter (36 total), with the same specifications as the ones that run the datastore. We

then run an instance of YCSB in each of these machines with a variable number of client

threads which ranges from 50 to 350, in steps of 50 (in total this varies the total number

of clients between 1,800 and 12,600). The number of operations executed by each YCSB

instance is always 25,000 (for a total of 900,000 operations), which is then divided by

the number of client threads running. Each client executes an equal number of read and

write operations, following a zipfian distribution for selecting the object that is targeted

by each individual operation.

We also tested two different client patterns: issuing only local operations or issuing

both local and remote operations. The first pattern consists on clients only issuing opera-

tions over data that is available in the local datacenter, which means there is no need for

migrations or remote operations. When using the second pattern, clients execute both

local and remote operations. In this case, clients sequentially alternate between executing

operations on their local datacenter and migrating to some other datacenter and execut-

ing operations there. The number of local and remote operations executed are decided

by generating Poisson-distributed random numbers, using the lambda values of 95 and

5, respectively, resulting in 95% of local operations and 5% of remote operations. While

we implemented both migrations and remote operations in our solution, we concluded,

as explained in Section 4.4.2, that using migrations has more advantages and as such, we

will only use migrations on our experiments.

5.6 Results

After explaining all the setup and configuration involved in setting up our experimental

work, we now present and discuss the results obtained. The main metrics studied are

the following: operation throughput, client latency, and data visibility. In the following

results, the experiments done with the baseline Cassandra are used mostly as reference

points to study the overhead introduced by enforcing causal consistency. These results

are not directly comparable with both our solution and Saturn, since these offer different

63

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

(and strictly stronger) consistency guarantees. The most relevant comparison is between

our solution and Saturn.

5.6.1 Performance versus multiple Cassandra configurations

a Throughput and Latency with only local opera-
tions

b Throughput and Latency using local and remote
operations

Figure 5.3: Performance comparison between our solution and multiple Cassandra con-
figurations

Figure 5.3 reports the overall throughput of the system and client perceived latency

when comparing our solution with different Cassandra configurations, for different num-

bers of clients. Each point in each line represents the (increasing) number of clients

executing operations simultaneously that ranges from 1800 (first point in each line) to

12600 (last point in each line). Better results are represented by lower and rightmost

points, since these represent lower latency and higher throughput values, respectively.

Figure 5.3a represents clients executing only local operations while Figure 5.3b represents

the results obtained with clients executing both local and remote operations.

The results are not surprising, with the best results visible when the client only needs

a response from the local data center (E-LQ), and worsening as more and further nodes

need to be contacted (E-Q and then E-EQ). As expected, due to the overhead of providing

causal consistency guarantees, our system shows lower performance than the different

Cassandra configurations, albeit we consider this an adequate cost for the additional

consistency guarantees.

Figures 5.4a and 5.4c report the average and 95 percentile latency of operations as

perceived by clients while using only local operations while Figures 5.4b and 5.4d show

the same results regarding experiments with both local and remote operations. These

figures report the results of the experiments with 9000 clients (corresponding to the fifth

point in Figures 5.3a and 5.3b). We selected this data point because there is significant

load but the system is not saturated, achieving maximum throughput (for both our solu-

tion and Saturn, as confirmed by results reported further ahead in Figures 5.5a and 5.5b).

64

5.6. RESULTS

a Average latencies with only local operations b Average latencies with local and remote operations

c 95 percentile latencies with only local operations d 95 percentile latencies with local and remote oper-
ations

Figure 5.4: Latency comparison between our solution and multiple Cassandra configura-
tions

Annex I contains the figures regarding the other data points. Note that the Y axis has a

logarithmic scale to make the plots more readable.

Local read latencies are very similar across all cases, except for the configuration of

Cassandra using (global) quorums (Figure 5.4a). This makes sense since in all other four

experiments the client reads from a local quorum without any coordination in the causal

systems (including in our solution), while in this particular one it must read from a global

quorum. In write operations, the Cassandra configurations have latencies proportional

to the number and distance of nodes needed for gathering the quorum, leading to the

expected result that the local quorum has lower latency, followed by quorum and then

each quorum. Our solution has a higher write latency, not because of the nodes that

effectively need to be contacted but because every write operation needs to coordinate in

the causality layer.

Regarding the latencies with both local and remote operations (Figure 5.4b), Cas-

sandra results are similar to the previous ones since the execution of remote operations

65

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

follows the same logic as local operations, the only difference being the latency between

the client and the remote data center. Our solution’s behavior, however has changed

considerably since now the client needs to use migrations before issuing operations in an-

other data center. Overall, this means that read latencies in our solution will be smaller,

since the datastore nodes have less load, but migrate operations take a longer time to

complete, as they need to wait for all causally related write operations to be applied on

the remote data center.

5.6.2 Performance versus Saturn

a Throughput and Latency with only local opera-
tions

b Throughput and Latency using local and remote
operations

Figure 5.5: Performance comparison between our solution and Saturn

Figures 5.5 and 5.6 represent the same measurements as Figures 5.3 and 5.4 with the

difference being that we are now comparing our solution with Saturn.

Starting with the throughput versus latency plots, in the local only scenario (Fig-

ure 5.5a) Saturn apparently has a much better performance than our solution. This

happens because Saturn can execute local write operations faster since it does not coor-

dinate with the causality layer before executing those operations locally. However, as

we will show later in this section (Figure 5.7), this also causes it to be very inefficient in

executing remote operations. The fact that operations in Saturn don’t need to go through

the causality layer also means that, in some particular cases, causality may be violated. If

a client executes a local write and then another client reads the result of that operation

and executes another local write operation, it is possible that the second write (which

is causally dependent of the first write) will be propagated through the causality layer

before the first one, which will result in a clear causality violation (we recognize that this

situations can only happen in extreme asynchronous periods within a data center or in

failure scenarios).

In the scenario with remote operations (Figure 5.5b), our solution shows much better

performance than Saturn, with Saturn’s performance dropping drastically. This happens

66

5.6. RESULTS

because clients now need to use the causality layer in order to migrate between data cen-

ters. Since migration messages need to be propagated through the causality layer and wait

for previous remote write operations to complete, the slow rate at which Saturn executes

the remote write operations means that clients’ migrate operations are en-queued behind

a large amount of remote operations, thus needing a significant amount of time before

they can be completed, leaving clients inactive for long periods of time. In contrast, in

our solution, since we have more metadata and can execute much more remote operations

concurrently, we avoid long remote operations queues hence, migration operations are

much faster, avoiding clients that need to migrate from remaining stalled for long periods

of time.

a Average latencies with only local operations b Average latencies with local and remote opera-
tions

c 95 percentile latencies with only local operations d 95 percentile latencies with local and remote oper-
ations

Figure 5.6: Latency comparison between our solution and Saturn

Looking at operation’s latency, and starting with the local only scenario, Figure 5.6a

shows a big gap in write operation latencies between the two systems. As explained pre-

viously, this is due to local write operations in Saturn not coordinating with the causality

layer before being executed. Again, while this may make Saturn look better than our

solution, it penalizes Saturn when using both local and remote operations (and may not

67

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

guarantee causality in some particular cases).

Looking at the local and remote operations scenario (Figure 5.6a), we can see, just

like in the throughput versus latency figures, a very different scenario. Writes have

lower latency in Saturn since, as previously mentioned, they do not coordinate with the

causality layer. The most interesting thing to note, however, is that the latency of migrate

operations is particularly high in Saturn. This happens because it is the only operation

that needs to go through the causality layer before the client receives a response, instead

of just being executed in the local data center. The difference between our solution

and Saturn is very significant (remember that the Y scale is logarithmic), leading to the

overall latency to be higher in Saturn. As explained before, this happens due to the very

slow execution of remote writes in Saturn, which results in very long queues of remote

operations and migrations waiting to be executed in remote data centers. This explains

the performance of Saturn in Figure 5.5b.

5.6.3 Visibility Times

a With only local operations b With both local and remote operations

Figure 5.7: Visibility times of each datastore configuration

During the previous discussion, we mentioned the difference in the execution time of

remote operations between our solution and Saturn. In Figure 5.7, we report these values.

Results show the average visibility time (i.e how long it takes for a write operation to be

executed in every data center) for each datastore configuration. Again, note that the Y

axis has a logarithmic scale. Table 5.3 reports the raw values for one of these experiences.

Since in both our solution and in Saturn, visibility times are not affected by clients

executing remote or local operations, results are similar in both figures. We can, how-

ever, see a considerable difference between Saturn and our solution, which justifies our

previous arguments that Saturn’s visibility times are negatively affected due to limited

concurrency in the execution of remote writes which, in turn, negatively affects the overall

performance of the system.

68

5.7. RESULTS ANALYSIS

#Clients C-C3 C-SAT E-EQ E-LQ E-Q

50 6,656 17,244 86 200 87
100 5,881 22,446 99 353 100
150 6,765 23,870 108 415 112
200 6,772 24,905 108 372 105
250 6,663 25,481 104 390 110
300 6,688 27,050 95 306 97
350 6,867 27,991 94 333 110

Table 5.3: Raw average visibility time (ms)

5.7 Results Analysis

Having presented and studied the results of our experimental evaluations, we now present

the main lessons the can be taken from them.

When comparing with Cassandra, our solution naturally has worse performance, since

there has to be a cost for providing stronger consistency guarantees (causal consistency

instead of eventual consistency). However, we think that this cost is reasonable, especially

when comparing with the Cassandra experiments that use the EACH_QUORUM consis-

tency level, which can be seen as the baseline that is closest to the causal consistency

experiments (provided by C3 and Saturn). We also believe that there is still wide room

for improvement in order to reduce this overhead, by optimizing our implementation of

C3.

When comparing to Saturn, since in most cases the migration of clients might be in-

evitable when using partial replication, our approach of balancing the execution of local

operations with remote operations shows much better overall results, staying behind only

in the latency of the execution of local operations. We also consider our solution to pro-

vide stronger causal consistency guarantees, since, as we explained in Section 5.3.3.1, we

are not sure that Saturn is able to keep causality in some particular scenarios. This leads

us to conclude that having additional causality-tracking information between operations

is a very important factor for protocols providing causal consistency, as it enables more

parallel and faster execution of remote operations.

It is also worth noting that, due to the inefficiency of Saturn in executing remote

operations concurrently in a datastore that supports sharding, if we scale the datastore

layer even further, by increasing the number of nodes and increasing the number of clients

and operations being executed, it is predictable that the difference in results between our

solution and Saturn will become even more noticeable.

Summary

In this chapter, we presented the implementation of our solution over the Cassandra

datastore, explaining all the relevant inner working of Cassandra and the modifications

69

CHAPTER 5. ENRICHING CASSANDRA WITH CAUSAL CONSISTENCY

required to adapt it to work with our solution. We then presented the implementation

details of our solution, explaining the techniques used to track and enforce causality.

We finished by showing the experimental work conducted, along with the analysis of its

results and the relevant lessons taken from it.

In the next chapter we conclude this thesis, by first showing our conclusions and then

presenting some possible future work.

70

C
h
a
p
t
e
r

6
Conclusion and Future Work

6.1 Conclusion

The causal consistency model is a very appealing consistency model since it occupies a

sweet spot between weak consistency and strong consistency, by combining the availabil-

ity and low latency advantages of traditional weak consistency models and providing

some consistency guarantees, which are enough to simplify the work of programmers

developing applications on top of these datastores.

In this thesis, we presented an in-depth study of the challenges faced when attempting

to create a protocol capable of supporting causal consistency in a partial, geo-replicated

setting. We exploited a novel approach to achieve causality, introduced by the Saturn

system, which consists in separating the datastore layer from the tracking of causality,

which allows the causality layer to work with smaller pieces of data and hence lower

overhead. We then considered and studied, with the help of a simulator created as part of

this thesis, multiple possible approaches to the tracking of causality using this separation

of layers. As a result of this study, a novel tracking protocol was designed, created

while taking in mind a partially, geo-replicated and scalable underlying datastore, and

requiring as few as possible changes to the datastore system.

In addition to the design of this protocol, this thesis also presents a concrete im-

plementation of it. We implemented our protocol over a popular, eventual consistent

datastore, Cassandra, describing the changes required to implement our solution on top

of this system. Experimental work was then conducted, using a realistic, partial and

geo-replicated test setting, in order to validate this protocol, and compare it with both

the unmodified datastore and another causality tracking solution, Saturn.

The experimental results show that our protocol is capable of maintaining a good

balance between the execution of local and remote operations, by using just enough

71

CHAPTER 6. CONCLUSION AND FUTURE WORK

metadata to allow concurrency in the execution of remote operations, which can be very

helpful when scaling the underlying datastore through sharding. These results also

showed a reasonable cost in the addition of causal consistency.

Regarding the initial goals of this work, presented in Chapter 1, we have achieved

most of them. Our solution provides a good trade-off between data freshness and through-

put, having maximized both in a partially replicated scenario (with migrating clients),

when comparing to the state of the art solutions. The small size of metadata used in

our solution allows it to scale both in the number of datacenters and in the number of

machines in each datacenter without any significant performance losses in the handling

of metadata. The only objective which was not completely achieved was in the efficiency

of partial replication, as our solution still does not employ genuine partial replication,

forcing datacenters to handle metadata of operations related to data not replicated in that

datacenter.

6.2 Future Work

In this section we present some possible future work regarding the solution presented

in this thesis, some of which was thought of in the beginning of this work and some that

started showing up as results were analyzed.

Fault Tolerance: Fault tolerance is, of course, an important requirement for every dis-

tributed system. In our implementation, the datastore layer is already fault-tolerant,

but the causality layer is not. In order to even be considered as a practical solution,

this issue needs to be solved. We have thought about several possible techniques to

do this: replicating the causality layer, storing the labels to disk when the queues

become too long, and requiring each causality node to send acknowledge messages

back to the node that delivered a label are some of them.

Causality layer replication: While replicating the causality nodes is a possible way of

achieving fault-tolerance, it can also be used in other ways. Decentralizing the

processing of labels in each datacenter and dividing it by every replica could be

an interesting way to prevent possible bottlenecks in the causality layer, while also

possibly allowing more complex metadata in each label to increase concurrency in

the execution of operations.

Dynamic datacenters: The implementation created in this work assumes the number

of datacenters in the cluster to be static. However, we believe that supporting the

dynamic addition and removal of datacenters is something feasible which could be

very interesting to implement and useful in practice.

Performance of causality layer: While we are satisfied with the results achieved in this

work, we believe that several techniques could be used in the causality layer in order

72

6.2. FUTURE WORK

to improve its performance, thus increasing the overall performance of the system.

Some examples of these techniques are the grouping of concurrent operations into

a single label, or the delegation of some of the work done in the causality layer to

the datastore layer.

Amount of metadata: While the amount of metadata used in this protocol provides satis-

factory results, we believe that we could still devise new schemes in order to improve

data visibility times (which would also increase overall performance). However, we

need to be careful since the exaggerated use of metadata could harm the overall

system performance.

73

Bibliography

[1] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,

and M. Shapiro. “Cure: Strong semantics meets high availability and low latency.”

In: Distributed Computing Systems (ICDCS), 2016 IEEE 36th International Conference
on. IEEE. 2016, pp. 405–414.

[2] S. Almeida, J. Leitão, and L. Rodrigues. “ChainReaction: a causal+ consistent

datastore based on chain replication.” In: Proceedings of the 8th ACM European
Conference on Computer Systems. ACM. 2013, pp. 85–98.

[3] H. Attiya, F. Ellen, and A. Morrison. “Limitations of highly-available eventually-

consistent data stores.” In: IEEE Transactions on Parallel and Distributed Systems
28.1 (2017), pp. 141–155.

[4] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. “The potential

dangers of causal consistency and an explicit solution.” In: Proceedings of the Third
ACM Symposium on Cloud Computing. ACM. 2012, p. 22.

[5] C. Baquero and N. Preguiça. “Why logical clocks are easy.” In: Communications of
the ACM 59.4 (2016), pp. 43–47.

[6] M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. E. Rodrigues. “On the use of

Clocks to Enforce Consistency in the Cloud.” In: IEEE Data Eng. Bull. 38.1 (2015),

pp. 18–31.

[7] M. Bravo, L. Rodrigues, and P. V. Roy. “Saturn: a Distributed Metadata Service

for Causal Consistency.” In: Proceedings of the 12nd ACM European Conference on
Computer Systems. ACM. 2017, (to appear).

[8] E. Brewer. “CAP twelve years later: How the"rules"have changed.” In: Computer
45.2 (2012), pp. 23–29.

[9] E. A. Brewer. “Towards robust distributed systems.” In: PODC. Vol. 7. 2000.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. “Benchmarking

cloud serving systems with YCSB.” In: Proceedings of the 1st ACM symposium on
Cloud computing. ACM. 2010, pp. 143–154.

75

BIBLIOGRAPHY

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: amazon’s highly available

key-value store.” In: ACM SIGOPS operating systems review 41.6 (2007), pp. 205–

220.

[12] P. Dixon. “Shopzilla site redesign: We get what we measure.” In: Velocity Conference
Talk. 2009.

[13] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. “Gentlerain: Cheap and scalable

causal consistency with physical clocks.” In: Proceedings of the ACM Symposium on
Cloud Computing. ACM. 2014, pp. 1–13.

[14] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer. “Kronos: The design and implemen-

tation of an event ordering service.” In: Proceedings of the Ninth European Conference
on Computer Systems. ACM. 2014, p. 3.

[15] M. ETSI. Mobile Edge Computing-Introductory Technical White Paper. 2014.

[16] Examples of read consistency levels in Cassandra. https://docs.datastax.com/en/

cassandra/3.0/cassandra/dml/dmlClientRequestsReadExp.html. Accessed:

2018-03-20.

[17] G. Fettweis, W. Nagel, and W. Lehner. “Pathways to servers of the future: highly

adaptive energy efficient computing (haec).” In: Proceedings of the Conference on
Design, Automation and Test in Europe. EDA Consortium. 2012, pp. 1161–1166.

[18] S. Gilbert and N. Lynch. “Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services.” In: Acm Sigact News 33.2 (2002), pp. 51–

59.

[19] R. Guerraoui and A. Schiper. “Genuine atomic multicast in asynchronous dis-

tributed systems.” In: Theoretical Computer Science 254.1 (2001), pp. 297–316.

[20] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. “Trade-offs in Replicated Sys-

tems.” In: IEEE Data Engineering Bulletin 39.EPFL-ARTICLE-223701 (2016), pp. 14–

26.

[21] C. Gunawardhana, M. Bravo, and L. Rodrigues. “Unobtrusive Deferred Update

Stabilization for Efficient Geo-Replication.” In: Proc. of USENIX ATC 17. Santa

Clara, CA: USENIX Association, 2017, pp. 83–95. isbn: 978-1-931971-38-6.

[22] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. “ZooKeeper: Wait-free Coordi-

nation for Internet-scale Systems.” In: USENIX annual technical conference. Vol. 8.

2010, p. 9.

[23] R. Klophaus. “Riak core: Building distributed applications without shared state.”

In: ACM SIGPLAN Commercial Users of Functional Programming. ACM. 2010, p. 14.

[24] A. Lakshman and P. Malik. “Cassandra: a decentralized structured storage system.”

In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35–40.

76

https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlClientRequestsReadExp.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlClientRequestsReadExp.html

BIBLIOGRAPHY

[25] L. Lamport et al. “Paxos made simple.” In: ACM Sigact News 32.4 (2001), pp. 18–25.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Don’t settle for

eventual: scalable causal consistency for wide-area storage with COPS.” In: Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM.

2011, pp. 401–416.

[27] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. “Stronger Semantics

for Low-Latency Geo-Replicated Storage.” In: NSDI. Vol. 13. 2013, pp. 313–328.

[28] P. Mahajan, L. Alvisi, M. Dahlin, et al. “Consistency, availability, and convergence.”

In: University of Texas at Austin Tech Report 11 (2011).

[29] Multiple datacenter write requests in Cassandra. https://docs.datastax.com/

en/cassandra/3.0/cassandra/dml/dmlClientRequestsMultiDCWrites.html.

Accessed: 2018-03-20.

[30] N. Narkhede, G. Shapira, and T. Palino. Kafka: The Definitive Guide Real-Time Data
and Stream Processing at Scale. 1st. O’Reilly Media, Inc., 2017. isbn: 1491936169,

9781491936160.

[31] R. Rodrigues and P. Druschel. “Peer-to-peer systems.” In: Communications of the
ACM 53.10 (2010), pp. 72–82.

[32] E. Schurman and J. Brutlag. “The user and business impact of server delays, addi-

tional bytes, and HTTP chunking in web search.” In: Velocity Web Performance and
Operations Conference. 2009.

[33] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. “Conflict-free replicated

data types.” In: Symposium on Self-Stabilizing Systems. Springer. 2011, pp. 386–400.

[34] R. H. Thomas. “A majority consensus approach to concurrency control for multiple

copy databases.” In: ACM Transactions on Database Systems (TODS) 4.2 (1979),

pp. 180–209.

[35] A. Z. Tomsic, T. Crain, and M. Shapiro. “Scaling geo-replicated databases to the

MEC environment.” In: Reliable Distributed Systems Workshop (SRDSW), 2015 IEEE
34th Symposium on. IEEE. 2015, pp. 74–79.

[36] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro. “Write

fast, read in the past: Causal consistency for client-side applications.” In: Proceed-
ings of the 16th Annual Middleware Conference. ACM. 2015, pp. 75–87.

77

https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlClientRequestsMultiDCWrites.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlClientRequestsMultiDCWrites.html

A
n
n
e
x

I
Annex 1 - Extra figures

This annex is used to present the extra figures that were left out during the discussion

of results in Section 5.6. These figures were left out since we consider them less relevant

than the ones presented in that discussion. However, for completeness we provide them

here.

a Average latencies b 95 percentile latencies

Figure I.1: Latency of each type of operation with 1800 clients and only local operations

79

ANNEX I. ANNEX 1 - EXTRA FIGURES

a Average latencies b 95 percentile latencies

Figure I.2: Latency of each type of operation with 1800 clients and both local and remote
operations

a Average latencies b 95 percentile latencies

Figure I.3: Latency of each type of operation with 3600 clients and only local operations

a Average latencies b 95 percentile latencies

Figure I.4: Latency of each type of operation with 3600 clients and both local and remote
operations

80

a Average latencies b 95 percentile latencies

Figure I.5: Latency of each type of operation with 5400 clients and only local operations

a Average latencies b 95 percentile latencies

Figure I.6: Latency of each type of operation with 5400 clients and both local and remote
operations

a Average latencies b 95 percentile latencies

Figure I.7: Latency of each type of operation with 7200 clients and only local operations

81

ANNEX I. ANNEX 1 - EXTRA FIGURES

a Average latencies b 95 percentile latencies

Figure I.8: Latency of each type of operation with 7200 clients and both local and remote
operations

a Average latencies b 95 percentile latencies

Figure I.9: Latency of each type of operation with 10800 clients and only local operations

82

a Average latencies b 95 percentile latencies

Figure I.10: Latency of each type of operation with 10800 clients and both local and
remote operations

a Average latencies b 95 percentile latencies

Figure I.11: Latency of each type of operation with 12600 clients and only local operations

83

ANNEX I. ANNEX 1 - EXTRA FIGURES

a Average latencies b 95 percentile latencies

Figure I.12: Latency of each type of operation with 12600 clients and both local and
remote operations

84

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Contributions
	Document organization

	Related Work
	Replication Protocols
	Replica Location
	Replication Schemes
	Update Propagation/Synchronization
	Multimaster / Primary backup
	Multi-version tracking

	Consistency models
	Strong Consistency
	Weak Consistency

	Tracking Causality
	Causal history
	Metadata Propagation

	Peer-to-Peer
	Overlay Networks

	Existing systems

	Algorithms for causal consistency
	System Model
	Design Considerations
	Layer Separation
	Causality Layer Structure
	Concurrency and False Dependencies
	Vector Clock vs Explicit Dependencies

	Algorithm Design
	Proposed algorithm

	Simulation Work
	Model
	Architecture
	Implementation
	Protocol Implementation

	Experimental Evaluation
	Configuration
	Results

	Lessons Learned
	Best Tree Topology
	Migrate vs Remote Operations
	Concurrency

	Enriching Cassandra with causal consistency
	Datastore Selection
	Cassandra Internals
	Execution of read operations
	Execution of write operations

	Causally Consistent Cassandra Prototype
	Client
	Datastore layer
	Causality layer
	Operation Execution

	Implementation details
	Consistency Model
	Inter layer communication
	Causality layer
	Saturn

	Experimental Work
	Setup
	YCSB
	Experimental Parameters

	Results
	Performance versus multiple Cassandra configurations
	Performance versus Saturn
	Visibility Times

	Results Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Annex 1 - Extra figures

